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NOMENC LLATURE

[.Li1ft curve slope

Aspect ratio b“/S; and for foils with dihedral
2(d/c) cot I

Sprn, feet

Chord, fect

Center ot Gravity

Drag coefficient, D/-l—FVZS
Profile drag coeffiliclent
Lift coefficient, L/-}F v3s

2
Section lif: coefficiont, L/i—(o vie

Design Lift coefficient of hydrofoil (lift due to
bottom shape)

Moment coefficilent, M/»lP stc

Pressure coefficlent (p = pPg)/q e
Depth, feet

Drag, pounds

Trailing edge flap

Froude number, V/-{E‘
Gravitational acceleration, ft/se02
Lift, pounds

Static pressure

Dynamic pressure, -}P v2

Reynold's Number, {O cV//u

Projected area, feetz Sw for wings; SH for hydrotnil)

Velocity, feet/second

Distance fran hydrofoil leading edge, measured aft
along chord, feet

Distance from hydrofoil chord line, measured upwawrd,
feet
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Angle of attack; angle between hydrofoil chord and
free steam veloclity vector, measured in plane
perpendicular to hydrofoil transverse axis, degrees

Central angle of circular arc hydrofoil, radians
Dihedral angle, degrees

Flap deflection, degrees

Sweep angle, degrees

Viscosity, lb-sec/ft?

Density, slugs per cubic foot, ]b-secz/ft“

Cavitation number, (gn-p)/q.o

Subscripts:
c cavity
v vapor

Trim angle; angle between hydrofoil chord and airplane
reference line (equivalent of aerodynamic incidence),
degrees
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I Hvdrofoil Scaplane History

While this brief history of hydrofoil =eaplane design and
development is not intended to he comprehensive, an et'fort LIRS
Leon made Lo 11lusiiule the linemge of hydrofoil research duating
Yack over one hund:ed years to the original experiments of
Thomas Moy.

Using water was a test medium, Moy towed « lightwedight hoat
on Englund's Surrey tCanal during 1861, This test vehdcle wis
fitted with thre« c.mbered planes of subsonle airfoll protile
pinned along the =panwise axis and mounted helow the kecl. The k
hoat rose ahove the water surface as speed was increased, while )
the inventor noted the planes developed increased 111t and teim-
med to reduce drag as speed was increased (Rel'. 1).

Foretelllng the configuration of the Piaggio P.Co7 bullt in
1929, the Frenchmen Emmanuel Farcot in 186¢Y and Tissandier in 1897
hoth developed craft fitted with underwater propellers and sube-
merged inclined planes. Tissandier's "glider hoat" was also equip- ;
ped with wings, as wns a model craft built by Clement Ader in ?
1895, Ader's design incorporated two adjnstable underwater how
fuils and a planing horizontal taill, Ader further developed this
configuration through 190Y into a variable =weep wing alr coshion
vehicle having . concave lower wing surtace to entrap the ainr
cus~hion, certainly a remarkable developument half a century aliead
ol its time,

During 1897 & catumuran boat equipped with a series of four
high aspect ratio hydrofoils and an underwater propeller driven
v o steam engine was successfully "flown" over the Seihne cartvyve
itg: one man at 20 mites per hour, NDevetoped by H, F. Phillips
and Comte Jde  Lambert, thils design was iwmpraved through 1907 at
vhich time it was powered by an Antionette internal combustion
engine and was capable of carrying two men over the water at a
spead of thirty four miles per hour,

L Professor Enrico Forlanini of Milan applied for o ladder

v, foil patent in 1905 "to permit bonts and flying machines to 1irt
‘out of contact with the water surface when propelled, theteby

'H nf'ffering mich less resistance and as a consequence he capable of

attaining much highetr speeds," While suitable engines prevented

Forlanini from attaining t'light, he continued liis expe:riments i

through the development of an air propelled vehicle emploving the

original ladder hydrofoil system., Built in 1906, this craft

1iTted clear of the water and reached a speed o 18 knots (Nmph),

1907 appears to have heen the first acceleration point for
hydrotoil development. In that vear: Orville and Wilbue Wrilght,
familiar with the work of Phillips and Comtede Lambert, csperi=-
mented wlth copper sheet hydrofoils mounted on o test bl operatod
in the Miami River at Davion, Ohiog (. e Napler announced his
cancept tor spring loaded variable {incidence hyvdrofol s thit

would vary 11t with heave to maintain stable Hipht - mieanted g :
AR . {
g1 o B
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British patent in 1911, there is no record that Napiler ever buillt
a working model ot this system whtich 1s similar tc the princinle
behind variable aungle trailing edge {(flapped) hvdrofoils; the
American T.. E. Simpson developed the desigh for a variable inci-
dence submerged foil cratt; the Italians Crocco and Ricaldoni
built and tested a hoat equipped with tandem (bow and stern) sur-
fuce plercing hydrofoils., Driven by cambered variable pitch
reversing propellers of dural sheet and a 100 h,p. engine, this
vehilcle exceeded a foil horne speed of 50 mph while carrying two

men,

Also during 1907, the American Peter Cooper Hewitt developed
a tandem ladder foill test vehlcle which weighed 2500 pounds and
reached 30 mphj at this speed, only the lowest folls remained
submerged,

While most of the preceding development programs employed
boats or boat-type test beds, much of this experimentation was
directed toward flight from water as well as the determination of
section 1ift and drag characteristics using water as the fluid
medinm., Early aircraft experimenters realized the advantages of
a large, smooth, and relatively obstruction free launching and
landing area offered by a calm water surface - provided they could
overcome the dual problems of hydrodvnamic suction and drag pres-
ent during water take off,

Finally, the first powered airplane to take off from water
was demonstrated at Marsellles, France by Henri Fabre on March 2%,
1910, Employing a canard arrangement of three low aspect ratio
15% thick cambered float/foils and powered by a Gnome engine,
Fahre's design carried him a distance of approximately 500 yards
at a height of six feet above the water surface. The Fabre floats
were designed to provide lift whether running submerged, upon the
water surface, or in flight - and probably contributed the addi-
tional 1ift necessary for a successful water take off with minimum
thrust,

It is interesting to note that on page 146 of his 1918 Edition
of "Military Airplanes", Grover C, Loening shows the Fabre float
to have considerably less drag than other knewn floats of the
period and an L/D value of 6- over twice that of any other float
tested,

Impressed with Forlanini's work, the Italian General A. Guidoni
determined during 1910 to achieve flight with a hydrofoil seaplane.
Starting with Forlaninil's ladder foill system, which he spon dis-
rarded because of the heaving and pitching associated with dif-
ferential and rapid unporting of the foils, Guidoni equipped each
Ffloat of his twin float Farman F.1l biplane with a tandem cascade
system of three positive d edral hydrofoils per strut. Varia-
tionas of this systemn were successfully flown by Guidoni on three
Farman aircraft, the F,1, F,2, and F,3; although experimentation
probal;ly continued through 1913, there is little docnmentation
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A second period of accelerated hydrofoll aircraft development
hegan in 1911i. In fact, with the excepiiun of supersenic rlight,
there is 1ittle in the aircraft fleld to date that was not tried
in some form by or during 1911, This includes Voisin's amphibian
(using Fabre floats), Curtiss' retractable landing gear, and
Avro's ventilated step floats. By 1911, engines and the state
ot the art of aircraft design had renched & level such (nats
Glen Curtiss made his filrst flight from water u=ing a pusher til-
plane equipped with tandem floats and a forward motinted six oot
span hydrofoilil; the first British water take of'f was accomplished
by Cdr. Schwann in a tractor Avro biplane having ventilated step
twin floats each mounting two struts fitted with two cascade
aluminum alloy hydrotfoils of 40 inch span and 4 inch chord (u
tandem cascade system similar to Guildoni's), The folls were posi-
tioned 4 inches apart, set at 3° incidence, had » camber depth
of 8% chord, and the upper foill was located 20 inches below the
water surface, So by 1911, aircraft developed in France, ltal:,
Great Britain, and the United States had succeeded In conducting
sustained flieght off water,

Another 1911 American seaplane, The Michigan Steel loat
Company's "Flying Fish' was equipped with a single, beam width,
narrow chord hydrofoil mounted below thie aluminum hull, A singloe
seat tractor flyving boat of short wingspan, the "Flying Fish"
skimmed along the water surface supported biv the flat hydrofoil
and a planing section of the hull afterbody - possibly the ['irst
plauning tail hull, During 1911, this design traveled from Detroit
to Cleveland at an average speed of 50 mph, although maximum
spoeds of 70 mph were recorded when the "Flying Fish" lifted clear
o' the water except for the planing tuil,

The first significant attempt to develop an airplane capalile
of rough water or open-sea operation was supported by the British
Admiralty during 1911, Lt, Charles Burney, R,N, conducted towing
experiments that year leading to the design and development of
the Burney X.2 during 1912, and the final X.9 configuration of
19113 intended for shipboard stowage. (Fig, 1.) Influenced by the
work of' Forlanini and Guidoni, the Burney designs emploved o split
Tietjens cascade hydrofoil svstem with two struts forward and one
aft. Water taxiing power was supplied by small counterrotating
propellers tandem mounted between the forward tolls and driven
from the engine through a clutch syvstem, Tn theorv, the water
propellers would get the X.3 foilborne, the tlight propelletr would
be clutched in, and take off through vough sens completed in

airplnne fTashion, In practice, variors stability prohlems 1es=iulted

from both water and air torque reactions when the respective
propellers were engaged, compounded no doubt by inadequate aeio-
dynamie control during unporting. Wrecked during s towing en-
coumter with a hidden sandbar, this intevestiding project was
terminated during late 1913. The various torque problems bhomuding:
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Fig. 1

Burney X, 3 Hydrofoil Seaplane
Tiet jens Split Cascade System

Power Plant: 200 hp Canton-Unne
Span: S57'-10"

k Length: 36'-8%

Wing Area: 500 sq.ft.
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During 1914 the Wright brothers were again testing hyvdrofoils
in the Mismi River. Their main interest lay in stopping water
from breaking away from the upper surface of cambered foils too
soon (speedwise) and thus preventing the subsequent loss of 1ift.
Tests were conducted with cambered sheet steel "hydrovanes" having
an auxiliary narrow cambered strip of steel placed just above the
leading edge. While this slotted hydrofoil was apparently success-
tul in delaying breakaway beyond the specd possible with a plain
(subcavitating) hydrofoil, it was only applied by the Wrights to
cne seaplane design built in 1915. Possibly they were really
seeking a means for obtaining an improved C; for their aircraft,
but if so, such a design was never flown by them. At this same
time, Handley-Page in LEngland was wind tunnel testing and develop-
ing his slotted wing tc a new level of 1lift and stall attitude
capability; apparently nelther group being aware of the others
efforts in the same field.

World War I terminated hydrofoll seaplane research for many
years, until the series of Schmeider Trophy Contest races revived
determined interest in the development of high performance water
based aircraft. Although the only seaplane attempting water take
o1'f from hydrofoils never made the starting line, the configura-
tion and design data for the Italian Piaggio P.C. 7 represent a ‘
hold design attempt to achieve seaplane performance comparable
with landplanes by minimizing frontal area (Fig., 2).

Designed by Plaggio's Chief Engineer, Giovanni Pegna for the
1929 Schneider Trophy Contest and financed by hoth Piaggio and the
ltalian government, the P.C. 7 was a relatively small airplane
of 3709 pounds gross weight, Described in Jane's All The World's
Adrcraft of 1932, page 232c, and more fully by Benjamin Posniak
(now a Senior Pro ject Manager at N S R D C) in
an article for the Italian press puhblished in 1934, the P.C., 7
nsed a split Tietjens hydrofoil system having two foils forward
instead of floats and two small foills superimposed af't below the
tall surfaces. Initial tests revealed difficultieswlith the water
screw due to torque as well as clutch slip caused by o0il and water
seepage; when attempts to correct these problems proved unsuccess-
ful, further development of this interesting design was abandoned.
However, since this configuration was so far ahead of its time,
and could serve as a stepping stone for future high performance
seaplane development (with jet engines precluding propeller
problems), a few of the P.C., 7 design details are presented tor
reference purposes:

Type: Experimental single seat cantilever monoplane

racing seaplane.
Power Plant: 850 hp TIsotta-Fraschini engine of 12 cviinders
Wing: Cantilever; 3 spars; plywood covered and watertight;

wing surface water cooling radiators,
Fuselage: Built-up watertight plywood structure; fuel in
fuselage.

e o nrent D
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Fig., 2

pPiaggio P.C. 7
> Schnieider Trophy Racer

Tietjens Split Flat Monofoll System

;
‘

Power Plant: 850 hp Isotta=-Fraschini
Length: pgrLon
Wing Area: 106,13 sq. ft.

MODEL THURSTON AIRCRAFT CORPORATION REPORT NO, ___6012
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Tail Surfacess: Same as wingj watertight

Flotations Watertight structure having two watertight
compartments in fuselage plus welded aluminum
alloy tanks; rests on water by floating on
the wing, fuselage, and talill

Operation: The 850 hp IF engine drives the water screw
until the P.C. 7 is foilhorne, at which point
the propeller is clear of the water and engaged
for flight.

Spant 222" Height: 8!
Length: 29! Wing Area: 106,13 =sq., ft. total

Weight Empty: 3093 1b, ;};”J,”f,ingfiudﬁiige aren=
llseful loadjg 616 1lb., <7 s '

Grouss Welght 1709 1h,

F-timated maximum speed: 373 mph.

Followlng the failure of the P,C, 7 to achieve water borne
flight, primarily due to mechanical causes rather than basic
configuration, hydrofoil seaplane design received virtually no
emphasis until Edo Aircraft studies begun in 1957 developed the
JRF-5G amphiblan equipped with a Grunberg supercavitating hydro-
foil system (Fig. 3). This configuration was extensively evalu-
ated by Edo and at the U, S. Naval Air Test Center, Patuxent
River, Maryland through 1964,

The Grunberg foill system as adapted to the JRF~5G consisted
ol A supercavitating hydrofoil near the airplane center of gravity
und two planing bow skids; this arrangement was used to permit
evaluation of the hydrofoil while providing safety in the event
of foil failure., This system used the largest supercavitating
hydrofoil built up to that time and the first supercavitating
foil mounted on a seaplane, The bow skids .erved the dual pur~
pose of (l) properly trimming the airplane during transition
through the hump speed regime and (2) preventing the airplane
from diving 1f Lhe submerged foil failed., Both the large hydro-
foil and the bow skids were retracted hydraulically to permit
ramp approaches and land cperations, and were locked in the up
and down positions.

The water performance and test results ohtained with the
JRF-55 are discussed under Section VI of this study.

Subsequent to the JRF-53G program, Edo initiated design and
tank studies during 1964 to develop a single, surface-piercing,
supercavitating hydrofoil for application to the Grumman HU-16
Albatross Amphibian. To flight test this concept in =cale form,

SANFORD, MAINE DATE
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FRONT VIEW

SIDE VIEW

Fig. 3 JRF=5G Airplane
‘ BuNo 37782

TEST AIRPLANE WITH GRUNBERG HYDROFOIL SYSTEM

Spant hgtoon

Lengths: = 38t-hn

Wing Areas: 37% sq. ft.
Gross Weight - 9570 pounds

M
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the Thurston HRV-1 (Skimmer LA-4A) Amphibian was equipped in
1966 with a single foil similar to the Edo design hut 1/2,47
<cale size of that necessary for HU-16 evaluation (Fig. h).
This supercavitating Teil was flown on the HRV-1 during

14 November 1966, representing the first known tlight ot an
alrplane equipped with » single surface-piervcing hyvdraofioil,
The detail flight test program was successfull, completed with
4} data runs recorded; opurational results ar« presented in
Seaction V,
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1I. Description and Clagsification of Hvdrotoil

[V T I

Systems

Since no

comprehensive description of the varlous hydroloil
ity tested

systems is available, an effort has heen made to class

as well as possible arrangements,

~

Refer to Iigures 5

through 21.

¥Fig. 5, The Single Hydrofoil system consists of one hydrofoil

placed slightly ahead of the cg,

with some type of vehicle sta-

hilization provided in addition to the folly such as the wing,
tail, and control surfaces of a seaplane, The single hydrofoil
supports a predetermined percentage of the gross weight at unport-
ing., Conceivably the single hydrofoil arrangement could be either
# monofoil, a hoop foll, or a ladder foil; the Thurston HRV-1,

the only seaplune flown with this type of arrangement, employs a
gingle, positive ditedral, super=-cavitating monofoil,

Fige 6, The Grunberg system employs a main foil {continuons,

=plit, or monofoil) positioned behind the cg, with two hyvdro-skis
ot floats foiward «kimming the water surltunce and stabilleing tae
vehicle, With this desipgn, the main foidl aociangemen! caveio.

most of the unporting design load, while staldilizing wembors oo
vide a small percentnge of the design 1ift (with respect to load
distribution, the Grunberg System is similur to the Canatrd Svstoem),
This foil arrangement has been used on the JRF~5G seaplune (sece
Fig. 3).

Figs, 7-10. The Tandem Hydrofoil systems consist of foil arrange-
ments at the bow and stern with each foil array carrying about

50% of the unporting design load, The foils could be monetfoils,
split, or continuous hoop or ladder foils, or a combination ot

uny of thesej however, most of such arrangements are not practical,
considering the assoclated drag, welght, and cost, As a result,
this system is nnsuitable for seaplane application compared to

the single hydrofoll system, Further, undesitvahle lateral anid
Tongitudinal trim problems could develop during unporting in heawvv
WS,

Figs, 11=14, The Tiet jens Hydrofoll system has a {orward maln
hydrofoil that carries most (60% - 90%) of the unporting design
load, with a smaller hydrofoil arrangement in the stern carrving
the remainder. The 1lifting surfaces at the bhow and stern could

consist of monofoils,

or split or continuons

hoop or Tadder hydro-

foils; again these arrangements are not practical ftor aircrart

application. One split Tietjens arvangement that was tested for
seaplane operation, the Burney X.2 and X.13 of 1912 and 1914 had
two cascaded foil struts at the bow and a similar cascaded set

ol folls at the stern (see Fig.

J)n
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Description and Classification of Hydrofoil Systems (Can't)

Figs, 15 and 16, The A. G, Bell Hydrofoil system, named after

the inventor who employed hydrofoils on his HD-4 boat of 1919,

13 one of a number of more complex hydrotoll systems. The arrange-
ment consisted of a main foll at the cg supporting over half of

the lcad, with smaller stabilizing foll arrangements at the bow

and stern., Bell's original split system liad two ladder arrange-
ments amidships, with smaller single ladder arrays at the bow and
stern, Due to drag, welght, and cost, this and similar complex
sv=tems are considered impractical for aircraft use,

Figs, 17-20, The Canard Hydrofoil system positions & main lhydro-
Foil arrangement located behind the cg carrving 60%-90% of the
nnporting design load, with a4 smaller hyvdrofoll located at the
bows, The arrav at the bow and amidships could consist of mono-
f'ulls, spllt or continuous hoop or ladder toils, or a combination
ul these. Again, this svstem results in too much drag, welght,
aind cost to be practical for modern aircraft application. How-
ever, one split Canard system, the Fabre, using cambered hydrofoil
floats, achieved the first powered flight from water in 1910

(See Pg., 2). Using another design approach, Guidoni flew a twin-
float mounted tandem split Canard system successfully in Italy
dnring 1910 and for several years thereafter (See Pg. 2).

It 1s evident that many of these foil systems overlap. Since
foll arrangements are frequently mentioned by the designer's name
as well as by planform arrangement, 1t was considered advisable
to present configurations under both classifications.

A comprehensive illustration.of possible hydrofoil arrange-
ments is presented in Figure 21, together with conventional no=-
menclature for each configuration,

MODEL THURSTON AIRCRAFT CORPORATION REPORT NO. 0912

CONT SANFORD, MAINE DATE




e e am

PARE o LA

E  SINGLE  HYDROFCIL SYSTEM | 5, GRUNBERG SYSTEM

¢ ] wwet 2t ]

' SMAIL LA D

- é pMiaia Rl

c.G. FoIL SLIGHTLY ApPizox  BLTe | painy (6.
AHORD ¢ C.(=r

Mainy Feil
CoNTIRUOL S

OR. SPLIT

TANDEM  HYDRoFOIL 9SYSTEMS

ConvenTionnaL  |4¢ - bofo T-ogua) SPLIT

C.a c.b

'_4:-@‘/9 AFT J
—_— — ]
]
9. ' 1 O, -
SPL—)T 46":‘-'70’&)‘““0 SPL‘T L

MoDRL
CuNT SANFORD, MAINK BATE

THURSTON AIRCRAFT CORPORATION REPORT M. .__ 6912




I+ i S 1

td s

TIETJENS HYDROFOIL  SYSTEMS

. | 1, ’
) ' ! 1 sour 1
CoNVATICNAL | 86 =90k Fowadd BORREY) \
| (——-—— ‘ '
<.cr.ie ¢,
N
10-90|% AT
13 14
Sped G0 90| Furtu e SPuT
e W
re-{
AFT
A.G. BELL HYDROFOIL SYSTEMS
1y, | &,
CoaTivUouS 1o- L'z e SPLIT
MAIA FOiIL QWAL D (A.G.BELL)
G0 - 8e%] MAAD
Cty, (474
T

MoDAL THURSTON AIRCRAFT CORPORATION REPORT NO. 6912

CONT SANFORD, MAINE DATE




CANARD HYDROFQIL SYSTEMS

17 — e, - —
' |0--41; o - !
COMVENTIONAL | oy aed SPLI J

c.c#_ c:;'?— _
Eo-‘)u% AR T | ( }

; Ha y 20. I
- ol 10-4¢ /o
. 2Pe! T Forw| 42 D SPLIT ’.—“___J D

(=)

E‘ .
| s c..a,? ) .
: 1
6¢ ‘JL/?) l
ART ;'

e e s———————— -——4

g MoniL THURSTON AIRCRAFT CORPORAVION REPORT NO. __ 6017
. ConT SANFORD, MAINE DATE




t

Eii PARE o 1o

Fia, 21| FOoib ARRAMNGEMENTS

£

a@?’k\\
d.

Movnrol S
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CASCADES
MA\'V BE MULTIPLE OK
SINGLE STRUT (AS
- SHoWN)
e £ q.
HCEGPS - HoRIZONTAL Foll MAY HAVE DIHEDRAL

LADDERS - Foibs ™Ay BE OUTBOARD

SPSIvE

NOMENCILATURE

a. Flat monofoil k. Split dihearal hoop foil

b, Positive dihedral monofoil 1. Continuons flat ladder foils
¢c. Negative dihedral monofoil m. Continuous positive dihedral
d, Cantilever monofoil ladder foils

e, Cascaded flat n, Continunus negative dihedral
f« Cascaded positive dihedral ladder foils

g. Cascaded negative dihedral o, Split flat ladder foils

h, Continuous flat hoop foil pP. Split negative dihedral }
i. Continuous dihedral hoop foil ladder foils

Jje Split hoop foil q. Split positive dihedral

ladder foils
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IIT. Hydrofoil Configuration Data

A, Hydrofoil Operating PFPiinclples

A hydrofoill is the marine version of the airfoil as nused
in water to create dynamic 11ift for the support of a vehiclej; or
as an element in a propeller type device. Suhsonic airfoil section
shapes perform well as hydrofoils when operating at low forward
speeds, At equal Reynold's Numbers, the forces and moments created
in #ir and water are essentially identical for these foils when
the flow is completely attached, A toil operating in this condition
is said to be "fully wetted" or "suhcavitating".

At higher speeds, separation of the flow occurs causing
changes in the forces and moments and resulting in a considerable
loss of efficiency. Separation of the flow is termed "cavitation'j
when the entire upper surface of a hydrofoll is completely free of
attaclied flow, the foil is considered to be "supercavitating”.

For operation at high speeds where cavitation cannot be
avolded, hvdrofoils specifically designed to operate in & super-
cavitating regime are superior {to foils de=igned for subcavitating
tlow, wupercavitating hyvdrofoil sections utre characterised by a
sharp leading edge with entrance angles of about six degrees. The
most common section shapes are: plane faced wedges with blunt
trailing edges; the ogive, consisting of convex circular arc sur-
fiices with sharp leading and trailing edges; circular arc concave
cambered lower surface with contoured upper surface; and more complex
shapes designed for increased efficiency, the best known being
developed by M,P, Tulin and V.E. Johnson, Figure 22 (a) and (b).

B, avitation

A hydrofoil moving through the water in a subcavitating
condition and at an angle of attack producing 1ift creates an
increase in water pressure on the lower surface and a decrease on
the upper surface lIln the same manner as an airfoil. The pressures
are a function of the hydrofoil shape and: 1) velocity, 2) angle
of attack, and 3) the operating depth. With increasing speed and
angle of attack and decreasing depth, the pressure on the upper
surface reduces until the pressure dirops to the vapor pressure of
the water &s determined by its temperature. When this occurs, the
water starts te boll or "cavitate" at the chord point where minimum
pressure occurs; normally coinclding with that of maximum thickness,
Further increases in speed or other factors causing additiomnal
decrease in the pressure, lead to enlargement of the cavity along
the foil surface until it covers the entire surface. Still further
pressure reductions cause extension of the cavity several chord
lengths behind the trailing edge. The process of cavitation is
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B. Cavitation (Continued)

similar to the stallingafa wing and is accompanled with a similar
loss of 1i4ft. Since this occurs with increasing speeds, it has a
significance similar to critical Mach effects in aerodynamics.,

The merodynamic pressure coefficient, Cp = 2;§91—, which
(-4

exists on the surface of an airfoil in subsonic potential flow ls
independent of velocity., The same coefficient in hydrodynamics is
independent of velocity wup to the point of cavitation inception,
where flow separation occurs, In the zone of separation, the
pressure coefficient has 1eached the lowest attainable value for

cavitation and is defined as Cpmin = Py Pos s wherte P, i the vapor

900
pressure of the liquid, P, 18 the static pressure of the liquid at

at the operating depth, and q 1s the dynamic pressure, In hydro-
dynamics, the negative of the pressure coefficlient is used and

definad as the cavitation number: d'v = Px ~ P,

- —— et ——

9 oo

Figures 22 (a) and (b) show the shapes and equations tor fonr
supercavitating hydroefoils,

The effect of -e cavitation Ehmber on the flow pattern
abonut n hydrofoil is schematically illustrated in Figure 22 (c).
The patterns shown re not static but are tvplcal average of a
dyrnamic situation., At zero speed, 0" =60 ; as speed inerscases, ¢
decreases, eventually reaching cavitation conditions. When cavita-
tion occurs, the value of & 1s known as the incipient cavitation

number, belng equal to the negative of Cpmin; o'i = -Cpm{n As 0
continues to decrease, the cavity size spreads over iiic (il surface
and goes through a phase which creates foill erosion 'ue . cavitu=-
tion, When the cavity lengthens to a collapse point < .ibat the
pressure pulses created by the cavity collapse clear . «-alling
edge of the foil, the erosion phase ceases. In this caunicion,
however, the eddies and the re-entrant jet which exilst ... the downe

stream end of the cavity may impinge upon the foil trailling edge

and ceuse severe huffeting and foill vibration. Upon further rveduction
of ¢ , the cavity lengthens downstream such that the re-entrant jet
is dissipated before 1t reaches the treiling edge of the foil,
Figure 22 (c¢). 1In that condition, the flow is said to be super-
cavitating. Thus, cavities associated with supercavitating flows
are relatively long, usually well over two chord lengths, and are
filled with either ligquid vapor or foreign gas, or a mixture of
both., Flows 1n which the cavity i1s filled with atmospheric air have
come to be called "ventilated" or "vented" flows. The term "Super-
cavitating" applies to all cases of sufficiently long cavities,
regardless of whetherr they arve filled with water vapor otv air,
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Naturally ventilated flows frequently wecvur durdng hydrofoil
operation due to the proximity of the 1lifting and supporting devices

C., Ventilation

to the free water surtace, Natural ventilation i-. the passage of

J atmorpheric air into the 1+ presanre regions on tne upper snriace
ol" the hydrofoill, Laking ;i ».th along the | .. pressure gide i a
surface plercing -trut, o long the hlunt trailing edge of a aur-
face plercing strut or foil. Natural ventilatlon accurs ounly atfter
cavitation has been establisihed and de clops abiuptly to lts full
stute.

Where the foll is operating under partial cavitation conditions
ie. not supercavitating, ventilation can result in the immediate loss
of 75 percent of 1ift, dropping the supported vehicle into the water,
Natnural ventilation occurs at high speeds, in rongh water and dur-
ing unporting and turning maneuvers. Once ventilation has been
established, itétends to continue even though conditions become less
favorahtle. Unfortunately, the onset of natural \centilation cannot
be piredicted easily from theory or model tests, and suitahily simple
~taiang laws for ventilation onset are not anvaiiahle,

Forced or countrolled ventilation 1s o complished by artitici-
#lly =~upplying air under pressure to that portion of the hydrotfoil
wher: the cavity is desired., In this case, eutul;lished cavitation
is nut necessary. When the cavity size ds chunged by using forced
air, the cavitation number will change and result in changes 1in the
it and drag.

For a foill that 1is operating under supercavitating conditions,
ventilation will have 1little effect on the 11ift and drag. For venti-
lation, the cavitation number is computed by using the air pressure
in the cavity, P in place of the vapor pressure, P, The charactei -

istics of optimum ventilated foills and supercavitating foils are
identical if the cavitation mimbher 1s the same,

D, Aircraft Applications

Since cavitation and ventilation cannot he avoided ftor air-
craft applications due to operation at the water surface ind at
high speeds, hydrofoils for aircraft use should be designed to be
supercavitating and readily ventilated. By using this approach,
the 14ft and drag on the toil will remain smooth and continuocus, and ae
essential condiltions for successful hyvdrofoil aircraft operatinon,

E. Lift, Drag and Moment of Hydrofoils with Zero Sweep and .-
Dihedral at Infinite Depth

The 1ift, drag and moment characteristics of hydrofoils are
dependent on the same factors of shape, attitude, velocity and fluid
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E. Lift, Drag and Moment of Hydrofoils with Zera Swsean and Zoro
Dihedral at Iafinite Depth (Continued)

deneity that affect airfoils, but in addition are dependent upon
depth and cavitation number, With these additional parameters,
the amount of data required to catalog hydrotoll characteristics

becomes exceedingly large.,

In order to avoid the use of a great

number of charts,

the approach taken in this study is to show the

characteristics of typical hydrofoils favored for aircraft ise,
as well as the effects of these various factors on performance.
Furthermore, the volume of experimental data in the lhydrofoil
field is far from adequate, thereby inhibiting any comprehensive
complilation 'of systematic data.,

Figures 23 and 2 show the variation of 1ift, drag, and
moment coefficients and the L/D ratio with angle of attack for suh-
cavitating and supercavitating flows. The duata were taken from
several sources and were combined in the figures to compare the
characteristics ot the different types of foils,

Figure 23 shows the subcavitating characteristics ol' a
conventional airfuil (NACA 661-012), a subcavitating hydroetell (DTMB
Set ‘rs HF-1), and =ix depgree wedge fpptimnm for supercavitation)
wit a blunt trailing edge., The 11ift curve slopes of the wedge
appear to be higher than the other two by a small amount, hut the
dat:1 did not extend sufficiently over the range of aspect ratios
and maximum 1lifts to permit a through comparison. The wedge ap-
parently produces 1ift with characteristics similar to foils designed
for subcavitating flow. The drag of the NACA 66,-012 foil is con-
siderably less than the wedge at those low angles of attack where
the L/D of the NACA foil approaches a maximum. At higher angles
ot attack, the drag of the NACA foll exceeds that of the wedge,
while the L/D diminishes rapidly, and if extended, might drop below
the values for the wedge. Moment data is provided and is of primary
significance in the structural design of the foil and strut,

Figure 24 shows the supercavitating characteristics of the
six degree wedge, the NACA 66_-012 airfoil, and the Johnson 5 term
supercavitating hydrofoil. In supercavitating flow, the John-
son foil shows slightly higher 1ift than the wedge and the NACA
tfoil 11ft degrades almost immediately, developling at most anly 25
percent of the 1ift of the other two foils. The inferiority of a
foil designed for fully wetted operation under supercavitating
conditiens is clearly shown here. It is interesting to note that
maximum L/D values for supercavitating foils are reached in the
first four degrees of angle of attack from zero lift, too near zero
1lift for sustained aircraft operation., Since normal trim angles
would be in the range of about four to twelve degrees above the
zero 1ift angle, normal supercavitating foil operation would center
around that portion of the curve producing 50 to 75 percent of
maximum L/D. These lower L/D and consequently higher drag values
would be occuring at
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ke Lift, Drag and Moment of Hydrofoils with Zero Sweep and Zero
Dihedral at Infinite bepth (Continued)

unporting which is the critical phase of the takc-of from a perform-
ance and controllatility standpoint., The high /I nasoclated with
the low angles of attack would occur at the high =peed end where

it is not as critical,

Fo ¢alculation of "avitati.n Inceptioun

Figure 25 (a) is a nowograph foi the .. ! . uiation of the
speed at which cavitation begins., Data 1s pres-nted for a two
dimensional foil onerating in sea water at a tempeianture of 55°F,
aud requires knowldge of the inception cavitation mmmber for that
loi?, The values ubtained u1re low in compaurison Lo the thiiee
dimen=ional case. However, no known work h. - Leer published cover-
Lag 1 three dimenstional casa or the effect ot tenperatuie varlia-
tion= on 11ft and lrag,  Vapor pressure variation with wat.o tempera.
ture S« presented in Figure 75 (b),
G. ILiects of Cavitation humber on Foil Pertformance

Figures 26, 27, and 78 show the variations of CI’ CD and 1./D

with cavitation number for the NACA 66.-012 airfoil, The horizontal
purtions of the curves are reglons where cavitation does not existy
Whe, =~a.vitation beginsg there 1s A rapid decirease In L/D ratio, even
tthowm Flgure 26 shows an itnuviease in Jift with small amounts of

¢ Jtation at nngles of attack greater than three deprees. Al

a4 St atdion, the dncrease in drag is proportionately greater than

the oorease in lit'ts  PFurther reduction in the cavitation number
cau: - . the drag coeffilcient to peak and then docreuse. The 1lif't

coetiicient, however, decreases rapidly with cavitation number and
the -wdnection in drag coefficient merelv causes a reduction in the

«loape of the L/D ratio curves,

Figures 29 through 40 show the variatlons »f Cl’ “D’ FM and

1./D with cavitation number for a six degree wedge hydirofoil with
Liunt trailing edge at wspect ratios of one, two and four., The 11rt,
drir and moment plots <how lines of constant cavity length, given

in chord lengths of x/c. The 1ift plots show that the 1it't starts

1o deciease when the cavity size equals one chord length., The drag
changes approximately in proportion to the 1if't with the tresult

that the L/D ratios tend to remain constant or incrense s1lghtly.
Aspect ratio does not affect Lift and drag appreciabtidy, al though

a slight improvement of L/D ratio does occur with increasing aspect
ratio,
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H. Effect of Depth of Submergence on Foill Portormance

The effect of depth of submergence on the 11ft curve slope
of subcavitating hvdrofoila of various aspect 1atios 1s shown in
Figure 41, The 1i1't curve slope decreases us the foil approaches
the surface, with rhae most marked reduction ovciurdng wlthiln one
chord length of the wiater surface., Tha eftect on folls o1 aspect
ratios less than ten is essentially the same.

For supercavitating foils, the effect of depth on the effec-
tive angle of attack die to camber also decreasss rapidly within
one chord length ot the water murface, as shown in Figure ‘12. The
vatrlation of 1ift ana draug coefficilents due to submergence within

ot chord length ot the surface ars given in Figure 47, It is =shown
tiint for the Tulin-Burkart (cambered) foil, the Lif't and lrag o unt
vitry, However, tha flat plate 11ift does incrensa slightly as the
il approaches 11+ surface, with the dray;y rremaining ascentially

constant., Figures 4% (a) #nd (b) show that the itcrcase in 1ift
cnefticient neatr the surface 1s slightlyv higher for higher aspect
rratios,

L. Effect of Lea:ding Kige Sweep and Taper on loll Pertformance

The most signiticant eflfects of leading edge sweep on o
hvdrofoil are a delay in cavitation inception and decreased [1tt,
L/D ratios, and iLitt curve slopes. Sweep is highly advantageous
for subcavitating systems attempting to achieve maximum speeds,
Conversely, sweep has a detrimental effect on supercavitatling designs
due te cavitation delay and loss of 1lift., Taper ratio has negligible
effect on cavitation speed and force characteristics,

Figure 45 1is hased on analysis and shows the effects of

hydrofoils. The 1ift curve slope reduces as aspect ratio becowmes
smiller and sweep increases,

Figure 46 presents the physical characteristics of Four
hydrofoils of various sweep angles and taper ratios but of equal
area. All have the NACA 65A006 airfoill section parallel to the
f'ree stream veloclty and were constructed of heat treated chrome-
vanadiun steel having a modulus of elasticity of approximately 730
million, The hydrodynamic characterlstics of these tfoils iar1e given
in Figures 47 through 54,

Figure 47 shows the angular deflection of the swept-back
hydrofolls and the resulting reduction in maximum 11ift loading
capability of the 60 degree sweep foil due to twist.

Figure 48 (a) through 51 (c¢) present the 1ift, drag and L/D
ratio data for the fonr foils.,

Figure 52 shows the increase of cavitation inception speed
with sweep at various coeffilclents of 1ift,

— ]
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Leading Edge Sweep and Taper on Fuil Performance
\
/

Figure ') shows the decrease in 1lift diag ratio with sweop
nt .arious coefficlients o1 11tft,

Figure 54 shows that taper ratio has o slight effert upon
1./D ratios.

J. Effect of Dihedral on Foull Performance

Dihedral is an importiant design paresmeter for -(drcrarlt
application, since the hvdiefoil in tihis cuse should invariably
he of the surface plercing type.

The surface plercing hydrofoil has a netural venting path
aly, therefore, tends to vent readily, " Prioc to tull ventilatio .,
Forces produced by the =i (degree wedge arc wi-own in Figure 57 ()

by the lines labeled tully sttached (hase ..or od), As spred or
nnple of attack are incrensod, flow sepuatarti- . acours on the nnpepe
s dace and full ventilationg is achieved, 1t 1Lt farces pro o ed
e ceduced constderab and are glven by L. vitie labelea fa .

ven o lated. The drag ferces are given in liguie 53 (b).

A factor which beai's mention is the change of aapect ratilo
with immersion of a surface pilercing foil. $Since aspect ratio
af{rcts 11ft and drag, the relationship of" Lmmersion to aspect
1ratio should be given conasilderation when designing a surface
plercing foil system,

K. kif'fect of Hydrofoil Leading Edge Angle ln Supetcavitating PPlow
Tha value of L/D increases as the included anngle of the

hvaretnlil leading edge decireases, llerel.v requiring the entiance
iy, - to be the minimum permitted by strcuctural considerations,

A rma'l dincluded angle will allow opeiation al lower angles of

A wo ool consequently higher L/D's o any plyen bottom - ape,

Nvit whie leading edge, the pressures dne to evugle ot afta & o
precorndinaut rfor high angles of attack and will st bideh the -~ L Lical

gtructural design conditions, Design pressuies ovel the {irst four
to five percent of the chord are thus independent of camber and
bottom shape. A reduction in these pressures could be achieved hy
sacrifioing leading edge sharpness, hut this entails a loss in foil
/D and cavity inception characteristics. The leading edge profile
should be maintained as sharp as structurally feaslibio,

Figure 56 shnws chordwise bending stresses an the sharp lead-
Ing edge of a foll operating at 12 degrees angle of attanck which
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K. Effect of Hvdrntoil Leading Edge Angle in Supercavitating Flow
{Continued)

, suhjects it to a leading ot approximately "q" (}Pvz) paf, It l=

r v1lear that a high strength leading edge material must be considerad
' if reasonably small wedpe angles and therefore maximum L/D's arvo

to he realized. The loading of "q" psf and coriespouniding angle

] of attack of about 12 degrees are reasonable values for stiructural
; design. This loading &t an ultimate stres~ ol '01),000 psi reguires
a leading edge wedge angl«a of 3,1 degrees t'i a maxlimu.: vehicle
apeed of 100 knots, and 6.7 degrees for a maximam vehicls speed of
200 knots,

L. Effect of Trail!lng Edge Flaps on Hydrofoll Peirlormin: o

The L/D values of verious hydrofoils desipgned {or super-
cavitating flow are aAll very similar when plotted versus angle of
attank, However, when plotted versus CL' the penk values of L/D

ocent at different vatues of CL depending upon the bottom shape

ot the foll. Foi wedges with tlat bottoms, the wasimum 1./ ocours
at o very low C As cawlier dncreases wnd A< the hottom -“hape

I
becomes more optiovun, l'ur oxample the Johinsou 5t n toil, the
n s bunon L/D occurs= ut progressively higher v..1ie: ot C]. T he
advintape of the cambered design is that high 111t is obtnined at

maximom L/D values. Stuch profiles would be idesl for optimizing
conditions at the critical point of hump speed wnd unportliug, where
N drag 4s #t a peak., Their disadvantage, however, lies in the fact

i that camtered hvdrofoils must be operated at angles of attack of

3 about fuur degrees above zero 1lift to obtailn optimum L/D values.

. Thils navrow range is impractical for aircrait application since

" comparitively large trim angles will be realized during heave, pitch
: and unporting, As a result, the advantages of a sophisticated

foil such as the Johnson are diminished, and 1he wedge shape hecomes
more attractive, The penalty pald for using the wedge is a smaller
valne of CL compared to the Johnson type at ecqual valines of L/D.

. A wedge can be wmade to perform asimilerly tn a cambered foill

‘ by the nse of a tralling adge flap, Tn this woyv, the advantages

of huth fodls con be realized, For a supercavitating foll, experi.

ments have indicated that tradling edge flaps are an effective way

of maintaining 1ift at speeds below cruising, At a fixed foil

incidence angle, the flap permits 1ift to LHe maintained at lower

: speeds and with less drag than would he possible by increasing the

i foil incidence without the aid of the flap. Furthermore, a

i combination of incidence control and flap deflection provides even
higher 11ift forces than with flap alone., On an ailrcraft, incidence
control is ohbtained simply through changing the pitch of the ailrcraft.
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Lo Effect of Trailing Fdsa Fla

Figure 57 (a) and (1\) pravide 14t ape ! - coeTflictanl
data for a naturally ventilicted asix degree we!se hol'rofoil with
a 25 percent chord trailing edge fiap, As can he seen, Loth 11f1¢
and drag respond proportionally to flap deflection,

By progressing from the lower left to the upper right of
the CI/CD versus C, plot, rigure 58 (c) shows thut the 1.D 1 tlo
can be improved with flap del'lection,

Figure 59 provides duata for est
of attack required te maintain a full
amd rongh water. This should agsl
of' angrla of attack,

ablishing the minimam angles
Yy developed cavity in smooth
st in determining the lower llmit

While of interest r'or cruise range wiotar velilelas and
seaplanes, the added structural and mechani cal
hydrofoils must be welghed a

larye
complexity of f'lapped
~ainst thedr operatlonal advantages,
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Strut Configuration Data

A, Design factors atfecting strut selectlon

Selection of a strut to support the airplane on the hydrofoil
will depend upon the Ffollowing factors:

1. Adrpiane gross wveight

2, Aerodynamic 1lift curve

3. Take off thrust

4, Hydrodynamic drag of entire airplane including eatimated
foll system drag

5. Hump and 1ift off speeds

6, Lift and drag characteristics of foil for all operating
conditions

7. Type of hydrofoil system

The strut must be designed to achieve structural soundness
within acceptable performance boundaries, The main considerations
for strut design are: low side forces, low drag, provision for
venting the hydrofoill, adequate structural rigidity, and resistance
to flutter.

B. Drag

Drag is most critical in the region of hump speed, where
the unporting phase of take off begins, If sufficient excess thrust
exists at hump speed to provide necessary longitudinal acceleration,
strut drag requirements will be reduced in importance.

.

C, Side Forces’ j
Strut side for%es must be kept as low as possible to minimize
highly undesirable airicraft rolling and yawing moments., For this
reason, struts should %e made from hydrofoll profile shapes that
develop as little l1liftias possible, The most effective configura=-
tion is a supercavitatﬂng strut having a relatively lairge leading
edge wedge angle, flat sides with relatively high thickness ratio,
and a btlunt trailing edge. The blunt trailing edge provides early
separation and a path for ventilating air :to the foil., The
relatively blunt leading edge induces early cavitatlon and a cavity
wide enough to completely surround the strut. Any vawing of the
astrut should then provide strut clearance from the cavity boundry.
Under these conditions, the side loads on the strut are minimal,
The actual configuration must take drag into consideration, while
the final design will be a compromise between drag, side forces,
and structural rigidity.

mobaL. THURSTON AIRCRAFT CORPORATION REPORT NO. ___GQ 12

CONT SANFORD, MAINE DATE

TN




MODEL THURSTON AIRCRAFT CORPORATION REPORT NO. 6012
CONT SANFORD, MAINK DATE

e _zo __

D. Typical Strut Cross-Section Shapes

Figure 60 shows two typical struts; one a streamlined
subcavitating shape with a blunt trailing edge and the other a
rectangu lar supercavitating cross-sesction with a wedge leading
edge,

E. Subcavitating Struts

Figures 61 through 67 apply to struts that are fully wetted,
ie, cavitation is absent. They provide a breakdown of the various
drag components and spray height, This data permits calculation
of the total strut drag and the spray height for a non~-yawed
condition. Side force can be approximated by ueing the subcavita-
ting 1ift data for the DTMB series HF-1 foll from Figure 23 for
the appropriate aspect ratilo.

The dreg of a subcavitating strut can be divided into
profile drag, wave drag and spray drag?

1, Profile Drag; Applies to a section in two dimensional
flow and is the total drag for fully submerged struts
(pre~hump speed). This term is the sum of shear and
viscous pressure forces.

Wave Drag and Spray Dragj For surface pilercing struts
(post-hump), wave and apray drang are two additional
surface effect drag terms,

Figure 61 presents the profile drag for three NACA airfoils
(with varylng thickness and size) plus one ogive section, versus
Reynolds Number. A comparison is alsoc made with the skin friction
drag of a flat plate surface. Figure 62 shows the ogive strut data
in more detail. Figure 63 provides wave drag versus Froude Number,
and shows this factor becomes insignificant at higher speeds (for
example, above approximately 20 feet per second for a strut with
a one foot chordg. Figure 64 presents spray drag data for struts
of varying thickness ratios. Figure 65 is a plot of the residual
drag for a typical strut, defined as the total drag minus the
profile drag; or in other terms, the spray drag plus the wave drag.

For speeds greater than 20 feet per second, where the wave
drag diminishes, the residual drag 1s approximately equal to the
spray drag. This 1s the region of interest for a seaplane, since
unporting will occur at speeds above 20 feet per second, Figure 66
shows the direct influence of thickness ratio on profile drag, while
Figure 67 provides spray height information versus speed.
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CONT

F. Supercavitating Struts

ents for varying leading edge angles| the leading edge of the wedge
is the only portion of the strut in contact with the water. The
cavity left behind provides the boundary wall which 1limits the size
of the strut. Any size or shape strut cun be introduced ineide the
cavity without affecting the drag or side force. Figure 69 pro-
vides the cavity width, while Figure 70 preaents cavity length
information, The effect of strut yaw (with the strut remaining
inside the cavity boundry) must be considered when salecting lead-
ing edge angle,

tion providing the desired performance and structural strength.
This 1s a preliminary step toward testing the system for further
refinement.

(| S A

For supercavitating struts, Figure 68 presents drag coeffici-

With this data, it is possible to select a strut configura-
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VARIATION OF THEORETICAL WAVE DRAG COEFF ICIENT
AT HIGH FROUDE NUMBERS FOR SLENDER STRUTS HAVING

LOUSLT-ChOBETRIC CIRCULIAR ARC SEGTIONS
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PROFILE DRAG OF TWO SECTIONS AS A FUNCTION
OF THICKNESS RATIO

Reft Davidson Lab (SIT) Rept. R=596 Fig. 3
and

Theory of Wing Sections, Abbott and Doenhoff
McGraw Hill 1949, pp. 152-3
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V. Full Scale Hydrofoil Test hLesults

A. U.S. Navy JRF=5G Fquipped with Grunberg Supercavitating
Hydrofoil System

Under U,S. Navy sponsorship, during 1957 to 1963, the Fdo
Corporation designed, installed and flight tested a Grunberg super-
cavitating hydrofoil system on a JRF-5G (Grumman Goose) amphibian.
Subsequently during 1963 and 1964 this airplane configuration was
further tested and evaluated by the 1/,S, Navy at the Naval Adlr Test
Center, Patuxent River, Maryland. Front and side views of the
installation are given in Figure 3. This installation used the
largest supercavitating hydrofoil built at that time and was the
t'irst application of a supercavitating hydrofoll to an airplane.
References 42, 43 and 44 cover the work done by Edn, while reference
139 reports on the flight test evaluation performed by the Navy.

The Grunberg supercavitating hydrofoil system used on the
JRF-5G was developed jointly by the Office of Naval Research,
National Aeronautics and Space Administration and the Bureau of
Naval Weapons, The system consists of m Tulin supercavitating
surface-piercing hydrofoil (Ck1=0'2) near the ailrplane cg and two
planing bow skids, Figures 3 and 71. The bow skids were incorpated
for the dual purposes of properly trimming the airplane during
unporting and to prevent the airplane from diving in case of hydro-
foil failure., For an ecperational installation, the hydrofoil would
be located slightly further forward with the bow skide eliminated.

R TR T RS b R T

The hydrofoil was constructed of ATST 416 atainlesa steel
heat treated to 150,000 psi tensile strength. For the purpose of
providing corrosion and erosion resistance, a hard electro-plated
nickel coating was applied ,003 inches thick over the entire foil.

The test airplane was instrumented with a photopanel,
ogscillograph, and flight test boom. Water speed data were devived
from airspeed recordinge and wind information taken by an outside
observer, The hydrofoil and skid struts were equipped with strain
gauges to measure water impact loads.

The bow skids and hydrofoil could he raised and lowered
hvdraulically to permit operation on land or water. lLand operation
was limited to taxling performed with the skids and foil raised.
The main landing gear oleos were extended end stiffened to provide
adequate ground clearance. Water entry was gained by taxiing down
a ramp: once waterborne, the skids and foil wero lowered and locked.
The skids and foil remained down and locked for all water take offs
and landings, as well as all flight work, Railsing the bhow skids in
flight would make the airplane pitch up uncontrollably. The hydro-
foil could be raised in flight and would permit an emergency runway
landing on the stiffened landing gear in a three point attl tude
{(to provide a ground clearance of the lowered bow skids).

N MopiL THURSTON AIRCRAFT CORPORATION REPORT NO. 0012
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A. 17,5, Navy JRF-5G Equipped with Grunberg Supercavituting
Hvdrofoil Svatam [fantinuasd)

The take off maneuver was difficult to accomplish due to
marginal excess thrust plus marginal stability and control existing
during unporting. This, of course, was the resuli¢ of the airplane
1ot being specifically designed for hydrofoil operation ccupled
with the large amount of dirag exhibited by this particular hydrofoil
system., The bow skids created considerable spray when approaching
and during hump speed, necessitating complete dependence upon the
flight instruments for control of the airplane. Airborne, the
airplane was nearly neutrally stable, both longitudinally and
directionally, due to the large bow skids and supporting strut area.
l.ainding technique was similar to that of a conventional seaplane

and was different only because of the marginal stability of the
airplane exhibited during approach.

In the hydrofoil planing condition, the pitch attitude of
the airplane could be varied from the lower limit, where the bow
skids contacted the water, to the upper limit, determined at low
speeds by elevator control 1limit and at high speeds by bouncing or
a heaving motion ot the airplane. Figure 72 shows trim angle data,
plotted against speed and the upper boundary for bounce-free operation,
Bouncing occured on nearly all landings regardless of the airspeed,
rate of descent and wave height, Under calm water conditions, the
bouncing could be prevented by keeping sink rate and airspeed to a
miniipum at touch down and immediately decreasing the pitch attitude
after touch down to below the bounre bhoundary.

When planing on the hydrofoil, the JRF-5C tended to diverge
slowly from a selected heading and diverge rapidly from a selected
bank angle. These tendencies, coupled with weak directional and
lateral control effectiveness at the low speed end of the planing
pharfe, required many large, rapid aileron and rudder control inputs.
Beth directional and lateral control power improved from barely
sufficient at low speeds to satisfactory at take off speed.

The power required to plane on the hydrofoil decreased from
an estimated maximum of 760 BHP at hump speed (21 knots water speed)
to a minimum of 400 BHP in the 40 to 45 knot range. This data was
determined during stabilized speed runs shown in Figure 73. Beyond
this speed, the power required gradually increased to 560 BHP at
70 knots. Figure 74 shows photographs of the JRF-5G planing at
various stabilized speeds, including side views of the accompanying
spray patterns. Figure 75 shows the longitudinal acceleration of
the airpiane at various power settings. The hump sveed is clearly
defined at about 21 mph waterspeed, with minimum drag at 40 mph;
corresponding to the minimum drag point shown in Flgure 773.

Time histories of a take off and landing are given in
Figures 76 and 77. It can be clearly seen that below 30 knots
large rudder and aileron inputs are required to control the airplane.

Figure 78 presents impact normal acceleration at the

MoDEL THURSTON AIRCRAFY CORPORATION REPORT NO. 6012
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A. U.S, Navy JRF-5G Equipped with Grunberg Supercavitating
Hydrofoili Sys:om {Continuea)

airplane cg versus sink rate., Data are also presented in reference
139 for the foil loads versus sink speed. Tn hoth cases, the
relation of load and acceleration is linear with sink speed.

Figure 79 shows the variation of elevator position, trim
angle, bow skid bending stress and hydrofoil main straut compression
loiv] with waterspeed.

. HRV-1 (1.A-L4A) Fquipped with Thurston Airecraft Corporation
Supercavitating Hydrofoil

Under U,S, Navy contracts, the Thurston Aircraft Corporation
designed, installed and flight tested during 1966 to 1968 a single
supercavitating, surface-plercing hydrfoil on a Skimmer I.A-4A
amphibian, page i. This airplane was designated liydro Research
Vehicle (HRV-1), and was the same aircraft vsed for previous hydro-
dvnamiec flight test work with hydro-skis. This installation was
the first application of a single supercavitating hydrofoil on an
airplane, References 128, 129 and 130 cover the hydrofoil test work
performed during this program.

The HRV~1 hydrofoil was a 6.25 degree wedge with a 30 degree ’
lending cdge angle and a flow breakaway groove V4 inch behind the i
lesding cdge on the upper surface, Figure 80, and was cast from .
A5L=TAT aluminum alloy. ‘The projected plantorm area of 100 squae

inches satisfied both the desired foil loading speed requirement
and the qcale/weight relationship compared to a proposed HII-16 .
installation. Figure 81 shows a profile view of the HRV-1 with {
the hydrofoil extended to its maximum of 22 inches. The struti was

a subcavitating streamlined shape with a blunt trailing edge,

Figure 60, Two cluse-up photographs of the foil and strut installed
on the 1IRV=1 are shown in TFigure 82. :

The test airplane was instrumented with an oscillograph
recording strut loads, hull pressures,pitch angles and cg acceleration.
Refcrence 129 sliows the results of tests with the strut located at
hull station 79, while reference 130 shows the results with the
strut at station 96.2%; therg was located at hull station 106 for
both strut locations,

A comparison of data for the hydrofoil versus the airplane
basir hull showed the hydrofoil reduced the hull bLottom pfe&ssures by
about 15 percent and the normal acceleration factor by abqu} 70 percent
in calm water. Under conditions of one and one half to two fbat i
waves, the hull pressures were reduced by about 50 percent and the
acceleration again by about 70 percent, as discussed in Chapter VT,
Hydrofoil take off times were reduced by approximately 30 percent
compared to the basic hull performance figures,

MopEL THURSTON AIRCRAFT CORPORATION REPORY NO. 6912
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B. HRV-1 (LA-4A) Equipped with Thurston Airorafs o
Supercavitating Hydrofoil (Continued)

The JRF-%5G and the HRV-1 represent the only two hydrofoll
seaplane configurations developed and tested in the United States
to datey, both sponsored Ly the Department of the Navy,

e
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Fig. 74
JRF-5G Airplane
BuNo 37782

SPRAY PATTERNS AT CONSTANT WATERSPLEEDS

REF: U.S. Naval Air Test Center, Report No,
FT2121-35R-65, dated 25 July 1965
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VI. Hydrofoil Applicatior. to Seaplane Design

A. Longitudinal Location

" e i

Development of a hydrofoil configuration for eeaplane operation
must be conducted parallel with the basic aircreft design., The foil
longitudinal location along the hull bottom is most critical due to
foil~strut L/D force vector oscillations occuring from heave, trim
changes, and wave front variations experienced during take offj it
: is imperative that the resultant L/D vector angle does not move
; exceasively — creating pitch trim oscillations that cannot be cor=-
. rected by normal pilot control reaction,

While this operational condition is more critical for relat-
ively small seaplanes of lLow mass and moment of interia compared
to long range open sea boats, any sudden shift of hydrofoil result-
ant vector will necessitate a rapid trim conrrection adding to the
horizontal tail load and so prolonging take off (due to increased
loading of the wing and foil).

Reference 130 presents the results of an initial study concerned
with the comparative location of a single surface-piercing hydrofoill
on the HRV-1 test bed. Flight test data confirmed that the hydro-
foil=-strut combination L/D vector must be located to pass ahead of
the most forward center of gravity location anticipated during
} : seaplane operation, .

The hydrofoil must be positioned with the realization that
the nearer the foil-strut L/D vector approaches the seaplane cg,
the greater the landing load impact factor will become relative
to a more forward location. Of course, since the hydrofoil is an
excellent water landing impact load alleviation device, any foil
maximum landing load factor will be considerably less than that of
the bhasic hull (Reference 129, page 16), Countering the more forward
location of a foil to reduce impact loads is the additional considera-
tion that a forward location tends to increase longitudinal pitch
changes with foil 1ift variations during take off and will result
in increased nose up pitch during the landing run out,

As an initial approximation for basic design, the single
hydrofoil center of 1ift should be positioned .35 to .50 MAC ahead
of the airplane normal cg location. The proper longitudinal location
of a hydrofoil for the HRV-1! is shown on Figure 83 referred to the
normal gross weight cg.

B. Extension versus Sea State Capability

While it may be properly agreed that no substitute exists for
thrust and 1ift to reduce water contact time and run during take
off, these factors cannot reduce landing impact into a rough sea to
the degree possible with a surface-piercing hydrofoil, Therefore,
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B. Extension versus Sea State Capability (Continued)

the amount ot toil extension to provide sea state capability in
rough seas becomes another major factor to be considered as the
basic seaplane design develops.

Neglecting power, a hull capable of handling four toot seas
should be able to negotiate eight foot waves if the hydrofoil is
positioned four feet below the keel, Actually, this will not be
so, since the airplane first must have the capability to c¢limb over
the hump and plane before it becomes foil borne. While excess
thrust at relatively low hump speed will materially assist in
reducing damaging wave impact duration, the airplane must not
experience foil unporting prior to attaining sufficient speed to
permit aerodynamic control about all three axes (see discussion
of following Section D).

Hydrodynamically, subject to the limitation of hydrofoil
support strut drag on the margin of excess thrust, a properly
designed hydrofoil may be located as far below the hull as design
sea state conditions require, Practically, design compromise will
be necessary in the areas of handling qualities, support strut
column rigidity and weight, as well as retracted storage require-
ments and retraction system weight.

As shown by the test results of Reference 129 and Figure 84,
increasing the strut extension from 17 inches to 22 inches on the
HRV-1 reduced the hydrofoil landing impact factor by 40% in rough
sea conditions. Since the surface-piercing hydrofoil tends to
submerge upon rough water contact, it is apparent that increased
strut extension provides a greater deceleration time intervalj
resulting in reduced hull bottom contact velocity. (As a matter
of interest, a 22 inch strut extension on the HRV-1 corresponds
to a 54 inch extension for the HU-16 "Albatross" amphibian.)

While maximum strut extension is desirable for rough sea
operation, intermediate extension positions should be used for
take off in reduced sea state conditions. Through this procedure
strut drag 1s reduced, permitting minimum take off run and time
under conditions usually accompanied by relatively low surface
wind v._ ities. -However, it 1s recommended that all landings be
made a. waximum strut extension to reduce hull bottom plating
pressure loadings.

C. Tmpact l.oad Factors and Bottom Pressures

The effect of hydrofoil extension as a landing load alleviation
device to reduce maximum impact load factor and hull bottom pressures
is demonstrated by test data for the IIRV-1 presented in Figures B84
and 85, Impact loads with the extended foil were V3 the basic hull
values, while maximum bottom pressure loadings were reduced 935%.

Carrying these reduced loadings into the hull structure will
result in considerable savings in both airframe complexity and weight.

MoDEL THURSTON AIRCRAFT CORPORATION rerorr No. 6912
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C. Impact Load Factors and Bottom Pressures (Continued)

Far a givan grasa waight, a navinad increasa will ba realizad ar
reduced airframe cost. Experience with the hydrofoil system
installed on the HRV-1 has indicated the complete system, includ-
ing structural provisions and retracting mechaniasm, can be installed
for less than 4% of the airplane gross weight. A 35% reduction in i
bottom pressure loadings should provide at least a corresponding
weight reduction in hull bottom plating and supporting structure;

a saving in weight and cost that will permit installation of the
seaplane hydrofoil system as a balanced structural trade off., As

a result, seaplanes designed for hydrofoil operation realize in-
creased sea state capability without weight penalty. In fact, TAC
preliminary studies have indicated that a complete hydrofoil system
for a 90,000 pound seaplane designed to unport at 60 mph should
weigh less than 3% of gross weight, including foil, strut, retract-
ion system, and supporting structure., As presented in Chapter VIIT,
the larger the seaplane the smaller the percentage of grosa weight
that must be allocated to the hydrofoil system} the attendant re-
duction in hull weight permits incorporation of a hydrofoil system
plus increased paylosd and sea state capability at a fixed gross
weight.

To take full advantage of the hydrofoil system described in
this study, hull design requirements for hydrofoil seaplanes should
be revised to include 10ad alleviation benefits associated with

hydrofoil operation.

D. Hydrofoil Size

The hydrofoil size for a given seaplane configuration must be
based upon:

1. desired unporting velocity
2. hydrofoll section properties
3, airplane trim angles during take off run

4, available thrust versus velocity during take off
5., hydrofoil and strut system drag versus velocity.

1« Of all these parameters, the desired unporting velocity requires
most thorough initial consideration. The airplane must be aerodynami-
cally controllable about all three axes at unporting speed or it will
become unmanageable; resulting in an aborted take off, or, more likely,
a damaging water loop at fairly high speed.

For small seaplanes up to 6,000 pounds gross weight, sufficient
aerodynamic control should be available at unporting speeds of 45 to
50 mph; larger aircraft with higher wing loadings will require higher
unporting speeds to assure sufficlent aerodynamic contrel. Once foil-
borne, the single hydrofoil seaplane is perched upon a pivot hinged
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at the water surface, resquiring surface control response in aufficient v
degree ta provide trim and stability until airborne. Therefore,
unporting speed is basically an aerodynamic consideration rather

than hydrodynamic, and must be established prior to determining
hydrofoil area.

2. For aircraft use, as previously noted on page 19, the hydro-
foil should be of supercavitating type; configuration properties
are set forth in detail in Chapter ITT.

3, Airplane trim angles are required to determine wing and hydro=-
foll 1ift during the take off run and at unporting. The hydrofoil
incidence angle relative to the seaplane reference line must be set
to prevent hydrofoil 1ift from heaving the alrplane into an unported
condition prior to the desired unporting speed (and related aero-
dynamic control veloctty). Most seaplanes trim at approximately
8 degreesduring planing, and this angle could be considered for
preliminary design purposes.

4, An adequate thrust margin must be available to assure rapid
transition from hull displacement to the planing hydrofoil regime.
This requirement is particularly critical for heavy sea state
operation where wave impact duration and relative hull velocity at
impact should be at a minimum. Since hydrofoil aircraft may experi-
ence two hump regions of operation, the first when the hull planes
and the second when foil 1ift displaces the hull above the water
surtf'ace, it is necessary that the thrust margin be maintained at
higher velocities than necessary for basic hull transition from the
displacement to the planing mode. As the foil comes into ection,
sufficient thrust margin must be available o overcome hull, strut,
and foil hydrodynamic drag as well as the aerodynamic drag of the
airplane; and with sufficient margin to continue take off accelera-
tion through hydrofoil unporting. Complete ventilation of the
hydrofoil and support strut will materially reduce system drag as
velocity increases toward unporting speed.

Propeller driven aircraft characterstically experience a
decrease in thrust with velocity during the take off run, and must
be designed with an excess thrust margin prior to hyvdrofoil unport-
ing., Turbo jet aircraft normally experience a slight thrust increase
during the take off phase, permitting a matching of static thrust
to the margin desired during unporting. For either type of pro-
pulsion system, other design factors such as STOl. performance may
determine thrust requirements; however, to assure smooth unporting
and a controllable take off from the planing hydrofoil, adequete
excess thrust margin must be maintained at higher speeds than is
necessary for conventional hull configurations.

5. Hydrofoil and strut drag during take off must be determined
with the view of establishing the minimum strut cross section
necessary to provide adequate structural rigidity, and the minimum
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D, Hydrofoil Size (Continued)

foil area required to provide desired 1iiit ai unporiing, Examples
of hydrofoil area calculation follow,

a) 2300 pound gross weilght HRV-1:

Hull trim angle upon the step = 7.5°; wing CL at this hull
angle = 1.6%; S a 170 eq. ft.} desired unpdrting speed of
L0 knots (67.5 fps).
(1) Wing 1ift = 1.65 x .00119 x 170 x (67.5)°
L = 1520 1lbs.
w
(11) Foil borne load contribution = 2300 - 1520
LH = 780 1bs,
Foil C, = .27 (Ref. 45, Pg.13)
p = 62.4/32.2 = 1.94 for fresh water

Sy = Ly = 780 = .67 8q. ft.
CLFVE ve .27 x 1.94/2 x (67.5)%

It should be noted that an aximl load of 780 to 800
pounds was frequently recorded in the HRV-1 hydrofoil support
strut, but was not exceeded, The HRV-1 support strut, foil,
retraction system, and hull structure reinforcement weighed
73 pounds (3.2% design gross weight).

b) 90,000 pound open ocean seaplane (preliminary design):
Wing CL at unporting = 2.2 Sw = 2000 sq. ft.} desired

unporting speed of 50 knots (84 fps).

o A UL e T T e e T

(1) Wing lift = 2.2 x .00119 x 2000 x (84)2
L, = 37,000 1ibs.

(i1) Foil borne load contribution = 90,000 - 37,000

L, = 53,000 1bs,
Foil C = .26 (Fig. 24, o< = 8°, AR = 4)

S, = LH = 53,000 = 28,5 s8q. ft.

R C p72 v2 126 x 1.94/2 x (80)2
Span (AR of 4) = 13 rt.

System and structural support weight (6° wedge, steel
foll) are estimated at 2540 1bs, or 2.8% of design gross
weight, including hull reinforcement and retraction provisions.

NOTE: Since heavy sea state operation will normally be alcompanied
by surface winds which decrease the water speed for a given wing
1ift value, the decreased contribution of hydrofoil 1ift (or,
conversely, the increased hydrofoil area required) will have to be
taken into consideration when determining unporting speed at the
design sea state conditions. The use of a flapped hydrofoil could
be moat beneficial under these conditions.
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VIT. Hydrofoil Seaplane Design Optimization

A, Design Factors for Integration of Hydrofoil and Seaplane

As discussed in Chapter VI, a successful hydrofoil equipped
seaplane must consider hydrofolil effect upon airplane performance,
handling qualities, and structural design, The hydrofoil alters
the mode of operation on the water so dramatically that adding a
well designed hydrofoil system to an existing seanplane without
modifying the powerplant or control systems would probably result
in an unsatisfactory combination,

Factors to be considered during the initial design of a
hydrofoll seaplane ares

1. Hydrofoil unporting speed

2., FExcess thrust at hump and unporting speeds

3. Airplane stability and control, particularly during the
unporting and foilborne phases,

4, Spray pattern in relation to powerplant ingestion and
airframe impingement

5. Hydrofoil performance and load capability

6. Hull design considerations reducing required hull strength,
and resulting weight savings

7. Hydrofoil retracting design to maximize airborne performance.

B, Stability and Control

Experience to date with two full scale hydrofoil test seaplanes
has shown that baslc airplane stability and control are 1nadequate
at the low speed end of foilborne operation. The airplane is placed
atop an extended strut at speeds below stallj; and must remain stable
during unporting and take off acceleration maneuvers through {its
inherent aerodynamic stability and by the pilot's control. During
planing, a conventional seaplane 1s acted upon by hydrodynamic and
aerodynamic forces which combine to produce a stable condition in
pitch and yaw, with a mildly unstable condition in rollj however,
to maintain a wings level condition, seaplane ailerons are designed
to provide adequate control at very low airspeeds. At higher
planing speeds, the elevator and rudder become effective to provide
aerodynamic pitch and yaw control,

When equipped with a hydrofoil, the seaplane i1s railsed out
of the water and the stabilizing hydrodynamic forces are replaced
by a destabilizing force vector from the foil, This vector acts
about the airplane cg, producing upsetting moments which can only
be counteracted aerodynamically,. Tf the design permits large foil
vector moment armns about the cg coupled with inadequate aerodynamic
stability and control at these slow speeds, the airplane becomes
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i}, Stability and Control (Continued)

uncontiollable al unporting; under such conditions transition to
the planing condition wonld not he attainable and the take of'f’ must
be aborted,

For this renson, the low speed characteristics of the airplane
and the hydrofoil-strut combination must be vcarefully analyzed. “The
hydrotoil-strut resultant 1./D vector must not only pass close to the
ceg (per Chapter VI, A), but must also stay as nearly constant as
possible during unporting and at slow speeds, Any change in 1./D
will rhange the vector moment arm about the airplane cg, resulting
in piteh trim changes, Figure 86,

The upsetting effects of the L./D torce vector changes can he
minimizecd by reducing the strut length. As reviewed in Chapter VI,
this length normally will be a compromise between handling qualities,
strut system weight, desipn sea state wave heights, and minimum
apray pattern conditions. Since any foil will ventilate when it
unports, in order to maintain nearly steady satate foll conditions
during unporting and the early phase of foil planing, cavitation
amd ventilation of the toil and strut must occur prior to unporting,

Fipgare 86 <shows the forces acting on the toilboine airplane
in the longitudinal plane, The l'ore and af't location of the hydro-
foil is related to 'ongitudinal control power. Moving the hydrofoil
aft shortens the moment arm of the tail about the hydrofoil, thereby
10t only requiring more nose up trim but larger elevator deflections
to maintain control, I'n addition, this increases the loading on
the toil and wing, since the tail force (s increased in the down-
ward direction. Variations in the foil-strut L/D (R“ - resul tant
tforce of the foil) will require changes in R, (resultnnt force of ﬁ
the tail) to maintain equilibrium and control,

From the aerodynamic viewpoint, the anirnlane must possess
sutficient stability and control in piteh tn permit holding the
desired trim attitude. This can mean larger than normal control
surfaces, or increased effectiveness thiroupgh boundry layer controul
as used on some STOI airplanes,

In the roll mode, the airplane is destabilized when foilborne
due to the increased toil-strut force vector moment arm acting about

the (g. Mis decreased stability results in a more rapid "wing
drop” motion requiring larger and moure rapid aileron input to main-
tain a wings level attitude, The predominant facrtors attecting

roll stability are strut l!tength and toil-~trut combination side
fforces due to vaw,

lLastly, the vaw mode dire -tional stability is also dependent
upon the longitudinal location of the foil-strut system with respect
to the airplane oy as well as the side forres resulting from toil-
strit vaw. Moving the foil and strut aft will reduce the side load
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B. Stability and Control (Continued)

capability, improving this condition. Yaw instability is of greatest
signifieanca during the unporting phase, when the strut can make its
side force contribution. After the foil unports, the strut is mostly
clear of the water with its side force input essentially eliminated.
The major side force contribution then comes from the foil and is

of relatively minor nature, acting at higher amerodynamic specds
accompanied by more erffective rudder control.

C, Performance

The waterborne performance aspects of hydrofoil seaplane
design center about the excess thrust avallable at hump and unport-
ing speeds. Excess thrust must provide sufficient acceleration to
realize acceptable take off times and distances, To meet these
requirements, available thrust must be as high as possible, con-
sistent with other design requirements, and the airplane total drag
must be kept at a minimum. Factors affecting the airplane total
drag are:

1.
2.
3-
4,
54

Hump speed occurs as the hull transitions from a displacement
to a planing body and usually occurs at a speed where excess thrust
is minimum§ normally coinciding with the speed at which totel drag
i8s a maximum, In the case of a conventional seaplane without a
hydrofoil system, the total drag at hump speed is predominantly
hydrodynamic with a minor contribution from aerodynamic drag. This
hydrodynamic drag peaks at hump speed as the displacement hull rises
in the water; then diminishes as the hull begins to plane. With
the addition of a hydrofoll system and its associated drag, the
total hydrodynamic drag will be greater than for a conventlonal
hull at any given speed prior to hydrofoil unporting.

The normal take off thrust-drag relationship is further altered
since the hydrofoil can be designed to unport at speeds unrelated -
to the hump speed of the basic hull. 1If the hydrofoil were designed
to unport at speeds below the basic hull hump speed, a comparatively
large foil would be required, With such a configuration, the total
drag would increase rapidly until unporting occured and then decrease,
This combination is undersirable due to the unnecessarily large,
heavy foll system and the poor handling qualities associated with
low speed unporting operation.

The more desirable configuration would be designed to unport
slightly above hump speed; permitting a reduction in foil system

m

!ii L S s & B—

Hump speed

Unporting speed

Hull hydrodynamic drag

Hydrofoil-strut combination hydrodynamic drag
Aircraft aerodynamic drag.
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C. Performance {Continued)

size combined with improved aircraft handling qualities. -

If unporting is delayed to speeds considerably above hump
by further reducing the foll system size, hydrodynamic drag will
be reduced at any given speed; but will maintain an approximately
constant level beyond hump speed, since v drag of the submerged
foil and strut will balance any reduction of hull drag due to hull
rise. The disadvantage with this arrangement is the resulting
extended period of high drag accompanied by slow mcceleration;
extending take off time and distance while exposing the airplane
hull to increased periods of wave impact at higher speeds.

Foil size calculations and other performance parameters
must also consider the landing mode, to preclude foil submergence
upon landing contact due to foil overloading. This requirement
is quite important since submergence of the foil would not only
defeat its prime purpose of protecting the hull from wave impact
loading, but could also create a strong secondary reactive force
placing the airplane in undesirable attitudes leading to a high
speed water loop or a violent pitch ejection high above the water
surface.,

D. Spray Patterns

Experiments have shown that spray height and thickness

increase as foil angle of attack and submergence depth increase,
occurring at the slower foilborne speeds where maximum 1ift co-
efficients are being generated. Figure T4 shows foil spray patterns
for the JRF-5G with spray height maximum at a water speed of 39
knots, decreasing as speed increases, To minimize drag, it is
important to minimize the amount of spray impingement on the air-
frame, particularly on flaps and tail surfaces. Excessive spray
represents wasted thrust, resulting in increased take off time

and surface run,

'« Hull Design

The hull should be designed to reflect the reduced impact
loads resulting from hydrofoil operation, and to accommodate the
foil system in the retracted position. Hull bottom loads should
be calculated on the basis of operational speeds somewhat above
unporting but well below take off, Further reductions in bottom
prlating should be realized from decreased bottom pressure loadings
presented in Chapter VI. The resulting saving in hull weight should
be greater than the total weight of the hydrofoil system (see
Section D, 5 of Chapter VI, and Chapter VITI).

e
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F. Hydrofoil System Optimization

To realize maximum performance, the hydrofoil should completely
recess into the hull, A single hydrofoil having dihedral coinciding
with hull deadrise, and supported by a single strut, is best suited
for seaplane hull installation. The support strut could retract
through the keel, with the hydrofoil housed in a hull bottom recess,
The Thurston Aircraft Corporation HRV-1 design is typiral of this
installation (Figures 80, 81, 82 and page 1i).
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ydrofoil Seaplane Development

In conclusion, it is most important to understand that
maximization of operational benefits offered by the hydrofoil
seaplane can only be realized when the entire configuration is
developed for hydrofoil operation,

In thie regard, the following design areas require further
study:

(a) Hull hydrodynamic configuration

(b) Hull etructural loading reductions possible during
displacement and impact conditions

(c) Hydrofoil system weight versus seaplane gross weight

(a) Taking full advantave of hydrofoil 1ift, it 1s quite
possible that a modified semi-chine or chineless hull can be
developed, 1In addition, a stepless, faired step, or retractable
step hull configuration should be possible, using foill 1ift and
excess thrust to assist in planing at an early point in the take
off run, A proper study of these interrelated factors is beyond
the scope of this reportj but should permit design of a streamlined
hull form capable of being pressurized with minimum weight penalty,
while offering a material increase in crmising speed and range
compared to prior seaplane configurations, The hydrofoil should
retract flush with the hull bottom surface, presenting no increase
in form drag when stowed.

(b) As noted in Section C of Chapter VI, a material reduct-
ion in impact load factors and hull bottom loading will be realized
from hydrofoil operation. To take full advantage of the available
reduction in hull structural weight and complexity, specification
design requirements must be reduced accordingly. The savings
possible from reductions in structural weight and construction
complexlty will offset the weight and cost of the hydrofoil system,
while providing increased seua state capability and a probable
increase in payload for a given gross weight. Any serious effort
to design a new open ocean seaplane should be preceded by an
investigation of hull loading reductions possible with the hydro-
foll operating in heavy sea state conditions.

(c) As shown in Figure 87, the welght of the hydrofoil
system referred to seaplane gross weight should reduce slightly
with seaplane size. While this presentation is based upon pre-~
liminary parametric studies, further detail design will be required
to integrate a working hydrofoil system into the seaplane coniigura-
tion and operational specification requirements. For preliminary
design study, the percentage of gross weight set forth in Figure 87
indicates that with attendant reductions in hull weight the hydro-
foil will permit development of a superior seaplane without weight
penalty,
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