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FOREWORD

This report was prepared by Mechanical Technology Incroporated, 968 Albany-
Shaker Road, Latham, New York 12110 under USAF Contract No. AF33(615)-3238. 1The
contract was initiated under Project No. 3048, Task ¥o. 304806. The work was
administered under the direction of the Air Force Aero Propulsion laboratory,
with Mr. M. Robin Chasman and Mr. Everett A. Lake (APFL) acting as project

engineer.
This report covers work conducted from 1 October 1968 to 1 Jaruary 1370.
This report was submitted by the autiiors on June 5, 1970.
This report is Part IX of final documentation issued in multiple parts.

Publication of this report does not constitute Air Force approval of the

report's findings or conclusions. It is published only for the exchange and
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ABSTRACT

This volume presents a study conducted to determine the effects thrust bearings
have on rotor-bearing stability. A computer program was written in order to
study these effects and permits the inclusion of the thrust bearing character-
istics into the rotor system. A manual is provided for the program, containing
a listing of the program and detailed instructions for preparation of input
data. A technique is also presented which permits the user a convenient method
of evaluating the stability of a rotor system with and without the thrust bear-
ing data. Extensive design data are presented for gas-lubricated, externally

pressurized thrust bearings.

This abstract is subject to special export controls
and each transmittal to foreign governments or foreign
nationals may be made only with prior apprcval of the
Air Force Aero Propulsion Laboratory (APFL), Wright-
Patterson Air Force Base, Ohio 45433.
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SYMBOLS

Orifice radius, inch
Dynamic influence coefflcients
Defined by Eq. (20)

Single effective bearing damping, defined by Eq. (19),
lbs.sec/in

Maximum value of B, lbs-.sec/in
Minimum value of B, lbs.sec/in
Dynamic bearing damping coefficients, lbs.sec/inch
Dimensionalized bearing damping coefficient
= CuwB/P LD
a
Radial clzarance, inch
Bearing diameter, inch

Dynamic angular bearing damping coefficients,
1lbs-sec.inck /radians

Sready-state bearing eccentricity, inch
Bearing fluid film forces, 1bs,

Dynamic aagular bearing stiffness coefficients,
lbs.inch/radian

- \[—1
Imaginary part of complex expression

Single effective spring 3tiffness, derined by Eq. (18),
1b/in.

;
Maximum valud of K, 1b/in.

Minimum value of K, 1lb/in.

Dynamic bearing stiffness coefficients, lbs/inch
Dimensionalized stiffness coefficient

- CK/PaLD
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Bearing length, inch
Half haaring span length, inch
- L1+L2

Distance from rotor C.G. to centarline of bearing
number 1

Distance from rotor C.G. to centerline of bearing
nuzbar 2 .

Jou:nulzbcnring mass (half rotor maus for rigid Toter),
lbs+sec*/inch

Cricical mass par bearing, lbu-ncnzlineh

X and y-compenent of rotor banding moment to tha
laft of a rotor mass station, lba.ineh

x and y-acmponent of roter bondint zoment to tha
right of the rotor mass station, lbs:dnech

Nuzber of feadsr holas

Azbient pressure, psia

Supply pressurs, paia

Bearing radius, ingh

Real part of complax expression
Outer zadius of thrust buwaring, inch
Inner radius of thrust daaring, inch

Gas constant, 1nah2/loc2°l

]

Temperature of gas lubrisant,
Time, seconds

x and y-componsnt of rotor shear fovce to the lefg
of a rotor mass otation, lbs,

% and y=component of rotor shear forcs to the right
of a rotor mass station, lhe,

Btatic loud on bearing, lbe.
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External forces cn rotor in x and y direction, lbs.

Complex notation of stiffness and damping axial
coordinate, inch

Rotor amplitudes, inch
Cosine and sine component of rotor x-amplitude, inch
Cosine and sine component of rotor y-amplitude, inch

Axial coordinate, inch

= v/w, whirl frequency ratio

Complex deterministic equaéion

= Re{A}, real part of complex equation

= Im{A}, imaginary part of complex equation
- azldc, inherent compensation factor

= @/C, eccentricity ratio for bearing

Angular displacement of thrust bearing in x-z plane,
radian

2

12wuN (]

T \{c s Compressibility number
a

\

6una2 V RT

P'c3'\/ 1+ 62

, restrictor coefficient

Lubricant viscosity, lbs-sec/in2
Whirl frequency, rad/sec

Critical whirl frequerncy at threshold of instability,
rad/sec

R.,R

lguv _iig , Squeeze number
a C
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@ Angular displacement of thrust bearing in y-z plane, radi:-.
L] Bearing attitude angle, deg. \
Angular displacement of thrust bearing in y-z plane, rad.

o Journal angular velocity, rad/sec

@ Journal angular velocity at threshold, rad/sec

Subscripts

B Bearing

c,s Cosine and sine component (real and imaginary part)
c Critical value

e Effective

] Journal bearing

m Number of total rotor stations

n Rotor station number

T Thrust bearing

x,y : x and y-direction

Superscripts

dot Time derivative

bar Dimensionless quantity
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SECTION I f
INTRODUCTION

For rotors possessing # high degree of dissymmetry or for rather short rotors the'
instability whirl motion will have a substantial confcal whirl component. Under

such conditions the dynamic forces imposed on the rotor by the thrust bearing will
have an important effect on the dynamical characteristics and the stability of the

rotor-bearing system.

The purpose of the study described in this report was to develop the technology fo
determining effects of thrust bearing forces on the stability of rotors supported
in fluid film bearings and to assess the significance of this effect on rotors of
practical design. To this end, a computer program was developed to perform many
of the complex calculations necessary for determination of the stability limits of
complicated rotor-bearing systems which takes account of effects of thrust bearing
stiffness and damping. This computer program is an extension and modification of
a similar program developed in an earlier task performed under contract AF33(615)
3228 (Ref. 1). A complete deacription of the program including a computer listing

is provided in the present report.

The present report provides angular stiffness data for hydrostatic thrust bearing
geometries for use in the determination orf rotor scability. Also a useful, simpli
fied method for determining stability of rotors supported on bearings all of which
are the same is described. Finally, several numerical examples of the calculation
of thrust bearing effects on rotor stability are presented and the significance of

these effects is discussed.



SECTION I1 v
IHE DETERMINATION OF THRESHOLD SPEED FOR WHIRL INSTABILITY OF A RNTOR

1. General Discussion

As is well established, a fluid film bearing supporting a rotor may be likened to
a spring-dashpot system in that the bearing reaction to small displacements may

be expressed in terms of stiffness and damping coefficients. A mass rupported by
springs has a number of natural spring-mass frequencies depending on the complex.ty
of the spring system and the possible modes of motion of the mass. If any mode of
motion is excited at the natural frequency by an external harmonic force, then the
response of the system will be at a maximum but, {f the system possesses effective
damping for this mode of excitation, then the response will be bounded and the sys-
tem will not be unstable. 1f, on the other hand, the natural frequency of a mode
of motion corresponds to a coadition where the effective damping of the system is
negative, then the motion of the system at that frequency will {increase without
bound without any external excitation, and the system is considered as being un-
stable, i.e. subject to self-excited vibration. If a natural frequency occurs at

a condition of zero damping, then the system can be said to be at the threshold of
instability, where infinitesimally small exciting forces applied over a period of

time will result in ever increasing amplitudes of response.

The so-called critical speeds of a rotor-bearing system refer to resonant responses
of the system to unbalance forces of the system which, by their nature, are applied
at a frequency synchronous with the rotational speed cf the shaft. Since fluid film
bearings in general have positive damping to synchronous speed oscillations, criti-
cal speeds are not instabilities but simply represent a condition of large rescnant
response to inherent unbalance forces. Fluid film bearings, however, do have an
effective damping to various modes of motion which does tend toward zero when the
motion occurs at some fraction of the ruoning speed, usually at half the running
speed. Thus, as the running speed of a rotor increases beyond the first critical
speed or natural frequency speed, the rotor will begin to approach the condition
where the first resonant or natural frequency of the system will coincide with the
fractional frequer.y at which effective damping goes to zero. When this coinci-

dence occurs, the rotor is said to have reached the whirl threshold speed. A
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further increase in rotor speed usually results in a very rapid growth of whirl
smplitude and, in almost all cases, the whirl threshold speed represents the

upper limit for safe operation of the rotor.

We might note at this time that because effective damping of fluid film bearings
tends toward zero for half-frequency oscillations, the rule of thumb has arisen
that the threshold of instability is reached at sbout twice the first critical
speed of the rotor. The basis for this rule of thumb will be examined in more
detail in subsection 3 where there is discussed a procedure for using critical

speed maps for predicting threshold of whirl instability.

Having briefly discussed the qualitative nature of whirl instability and {ts dis-
tinction from critical speeds, we will now proceed to show the nature of the
linearized analysis required to determine the whirl threshold speed. 1In the
illustrative treatment below, we shall consider only the translatory mode of a
symmetric rotor supported on two identical bearings. The more general case of
the translatory, conical and bending modes of a non-symmetric rotor will be con-
sidered in subsection 2. For this general case, determination of whirl thresh-
old speed requires use of the computer program developed in this study. For the

simpler case presented below, whirl threshold speed can be determined analytically.

For the translatory mode of a rigid symmetric rotor the gravity and inertia
(D'Alembert) forces are equally borne by the two bearings. The kinematic rela-
tionships between the rotor and stator bearing surfaces at one bearing are at
every instant identical as those of the other. It is therefore cnly necessary to
consider the motion of one journal which has a mass equal to one-half the rotor

mass. Let the rotor mass be 2M and the journal center amplitudes be x and y.

At any given rotor speed and with a known static load on the bearing, the journal
center occupies a certain unique equilibrium position relative to the bearing
center. When the journal whirls around its equilibrium position in a smzll orbit,
hydrodynamic bearing forces are generated in the bearing fluid film. These dy-
namic forces can be expressed in a linearized form by expanding the film forces
into a first order Taylor series. With the bearing fluid film dynamic forces
represented by Fx and Fy and with the dynawmic external forces on the rotor repre-

sented by Wx and Wy as shown in Fig. 1, the linearized equation of motion become:
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d"x : . .

Hdtz -rxq.wx--Kxxx-an-nyY Bxyy-"w"
2 (1)
4y F +W K B 7-K _x-B_x+W

M - - - - - -
e y Ty yw? " Py ¥ T T yx y

where x and y are the whirl amplitudes measured from the static equilibrium posi-
tion, t is time, and the four radial stiffness coefficients and the four radial
demping coefficients are computed from the lubrication equation (Reynolds equation)
as described in Ref. 2. For a given bearing geometry and known lubricant proper-
ties, the eight coefficients are functions of the bearing load and the rotor speed
and, if the lubricant is compressible like a gas, they are also functions of the
whirl frequency. At the threshold of instability, x and y are pure harmonic mo-

tions and can be conveniently expressed in terms of the whirl frequency wv:

x = x_cos (vt) - X, sin (vt)

(2)
y = y,_ cos (vt) - Ve sin (vt)
These equations can also be expressed in complex form:
X = Re J'(x + ix ) ein} = x cos (vt) - x sin (vt)
e ] c s
(€))

_ Lo
y = Re {(yc + 1ys) e vt} =y, cos (vt) - Ve sin (vt)

where Re \ indicates that only the real part of the complex equation is applic-

able. For convenience the Re { ! notation is dropped and Eq. (3) is expressed:

- ivt

x (xc + ixs) e
(4)

= ivt
y (v, + 1yy) e

When thest equations are used in the analysis their complete meaning is defined

by Eq. (3). Time derivatives can also be carried out in the complex notation,



bearing in mind that only the real psrt is of significance; e.g.

. 2 ivt T

R T Re (xc + ixs) € . ,

-} ive
Re {(xc + ix) 37 (e )}
= Re {iv (x + ix ) eiw} o
c s v
= - yx_ sin vt - vx_cos vt
c 8

By differentiating Eqs. (4) and substituting into Eqs. (1) the equations of motion =

can be written:

MX = -2 x-2 y<+W

xX Xy x
(5)
My = -2 x -2 + W
y yx vy ¥ Ty
where:
A « K +1ivB (Similarly for 2., Z , Z )
.. XX xx xy’ “yx’ Tyy
(6)
a Kxx 4+ iyo Bxx
Y = /o (7)

Here, w is the angular speed of rotation and Y is the ratio of the whirl frequency
to the rotational frequency. In this form, the equations are equally valid for an
incompressible and a compressible lubricant. In matrix form Eqs. (5) can be ex-

pressed:



= M=
R A

RO R,

W ———t

. 2
‘zxx - Mv©) zxy x “x
= (8)
2
z 2 - M W
yx (Zyy = ¥ Y y

For the rotor-bearing represented by Eq. (8) to be unstable, it is necessary and
sufficient that Eq. (8) yield a non-zero solution for the amplitudes x and y when
the external forces wx and Wy are zero, i.e. for the system to be unstable a non-

trivial solution to Eq. (9) below must be found.

2
(Zxx - MVY) ny x
= 0 9
2
Z Z - M
yx Zyy = ¥ Y

For a non-trivial solution to exist, the deterrinant of the matrix must vanish.

Setting both the real and imaginary parts of the determinant tao zero gives;

2 2
» - - - - - 10
a & +ib = (z - MW )(z)_y Mv©) zxy z’x 0 (10)
& = Re (&) = (K - MA)(R_ - M%) - K_K

c XX Yy Xy Yyx

- Yz (B wB ~-wB__wB _)=20 (11)
xx yy © Toxy Toyx

A = 1 (a)=vl@®_ -m?)aB_ + (K_ - m?) ab

s m LoXx yy Yy xx

-
- K o8B -K @B | =0 (12)
xy yx  yx  xy]



Thus, when both the real and imaginary parts of the determinant vanish simultan-

eously harmonic motion or whirl is present and this whirl {s referred to as rotor
instsbility. Every combination of y and w satisfying either Eq. (11) or Eq. (12)
can be represented by a point in a y-w plot. Typically the locii of these points

appear as shown in Fig. 2.

Eqs. (11) and (12) contain two unknowns, the whirl frequency ratio, Yy, and the
angular speed of rotation, w. For incompressible fluids, the eight dynamic f£film
coefficients are independent of y, thus Eqs. (11) and (12) may be solved yielding

two expressions for Hvz and Y2.

2 Kxx B + K mex - Kx B - K wa
MV _x Yy Yy Y ¥y yx Y (13)

@B+ 0B
xx yy

2 2
(!*x - My )(KXX,- MVT) - ny ny

wB__ ®B__ - wB__ wB B (14)
xx xy ~ yx

Yz -

yy

At a given rotational speed and load and with the eight coefficients known, Mv2
may be calculated from Eq. (13) and when substituted into Eq. (14) gi':s the
whirl frequency ratio squared value Yz. Two methods of establishing an insta-
bility criteria may be obtained from these two values. First, the actual mass
at the journal bearing may be substituted into the Mvz term to solve for the vz
value which when substituted into the Y2 value yields the apparent threshold
frequency. If this threshold frequency is identical to the rotor speed at
which the coefficients were based then the threshold speed has been obtained.
The second method substitutes the rotor speed, w, in the Vz term to find the
whirl frequency v which, when substituted into the Mv7 term, yields a critical
mass Mc for onset of instability. 1If the actual journal bearing mass M is less

than Mc, then the system is stable; if M is greater than Mc’ the system is



unstable. The mathematical derivation of this stability critecion is given in
Ref. 4.

From compressible fluids, the eight radial dynamic fluid film coefficients are
functions of both y and ®, making a closed form solution to the simultaneocus
Eqs. (11) and (12) impossible and the solution is most conveniently cbtained
graphically. For any fixed value of o, A% and &5 can be plotted as functions
of y to find their zero points. With vy > 0 it is seen that Ab has one zero
point and AE has up to two zero points (only true in this simple case). The
calculation is repeated for several values of w and the results for the vari-

ous zero points may be plotted as shown:

A = Re{a} = 0
c

A =Im{A} =0
8

Threshold

Fig. 2 Loci of Roots for Real and Imaginary Parts of Eq. (10)

The intersection of the two curves define the speed at which instability sets in
or the point at which both the real and imaginaryv parts of the simplified determ-

inant vanish simultaneously.




Analysis of Stability of Arbitrar Non-S etrical Rotor

Consider the arbitrary rotor shown in Fig. 3. Assuming that the two ends of the
rotor are free, the bending moments M' and M' and shear forces V' and V' at

xm ya xm ym
the rotor end will be linearly proportional to the displacementn‘xl and~yi and bend-
ing angles 91 and °1 of the shaft at station 1 provided these displacements and
bending angles are small enough such that linearized analysis applies. Mathe-

matically we can write this linear relationship as

' ) N (e
rvxm (a)) 832 13 %y, X
1’
Vm 821 %22 %23 %2 ,
ﬁ } - < ? ﬁ > (15)
L]
Mem 3] 835 833 84, %
M' a a a a o
My *a1 %2 %3 %) ("1

where the terms '11’ alz.etc.,are the dynamic influence coefficients which relate
the forces at station m to the motions at station 1. These coefficients are
functions of the rotor inertia, rotor flexibility, and the dynamic stiffness and
damping coefficients of the bearings supporting the rotor. Since a1 alz,etc.,
are dynamic coefficients, they explicitly depend upon the rotor speed w and the
frequency ratio Y = v/» where V is the frequency of the shaft motions being con-
sidered. For gas bearing, the stiffness and damping coefficients contained in

all’ alz,etc..are also functions of @ and Y.

For symmetrical, rigid rotors for which only translatory motions 3 and y, are

considered, Eq. (15) above reduces to

L
vam a1 12 *
- (16)

[ ]
Lvym 81 22 b4

10
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This s the situation considered in the previous section, and we see by comparis
of Bq. (15) with Eq. (8) that the coefficients 810 820 8 2

are given |
the analytical expressiocns ‘ 5

1’ and LY

0 = - )
12 © zxy
(17)
5, - zyx
o = @ - Mv?)

For the more general case of an arbitrary flexible rotor supported on dissim-

ilar bearings, the coefficients a 2,etc.,are very complex functions and

, @
usually cannot be expressed in anal;ticai form but must be calculated by means
of a computer program. Therefore, one of the principal tasks to be performed by
a computer program written for analyzing the stability of arbitrary rotors is
that of calculating all of the dynamic influence coeffi:ients as a function of
rotor geometry, rotor speed, frequency ratio ¥ and the dynamic bearing coeffici-

ents supplied as input to the program. The procedure by which these influence

coefficients are calculated is described in Ref. 3, Appendix VIII.

Once the dynamic influence coefficients are calculated for an appropriate range
of © and v, the various thresholds of stability of the rotor-bearing system are
determined'By essentially the same procedure as for the simple, symmetrical roto
bearing system discussed in the previous section. That is, thresholds of insta-
bility are found by determining the values of @ and Y at which both the real and
the imaginary parts of the determinant of the matrix of dynamic influence coeffi
cients simultaneously go to zero. Again, this is accomplished by plotting on a
graph of Y versus w separate curves for the conditions where the real and the
imaginary parts of the determinant go to zero, and determining the thresholds of

instability from the intersections of these curves.

In the case of an arbitrary rotor which is flexible and unsymmetric, determining

12
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the real and imaginary parts of the determinant of the matrix of influence coef- !

ficients cannot, in general, be accomplished anslytically but must be accomplished%
numerically by the computer program for analyzing stsbility. The procedure is ‘
essentially one of having the computer program calculate the values of the real

and imaginary parts of the determinant over a specified range of whirl frequency
ratios at a fixed rotor speed. The program then determines the zero points of

the real and imaginary parts of the determinant by quadratic interpolation each
time a change in the sign of these functions occurs. It should be clearly noted
here that the computer program itself does not determine thresholds of stability;
this remains to be accomplished by the designer by plotting the curves of the

loci of the real and imaginary roots of the stability‘determinant.

The discussion presented above serves to.describe in a qualitative way the nature
of the process of determining the stabiiity of an arbitrary rotor and how this
process is implemented by means of a computer program. A detailed description of
the computer program developed in the present project for the purpose of analyzing
rotor-bearing stability is given in Appendix I.

3. Determination of Rotor-Bearing Stability by Means of Critical Speed Maps.

For a flexible rotor with two translatory and two angular degrees of freedom,i.e.,
X1 yl, 91 and o, the determinant of the matrix of influence coefficients 1is a
higher order polynomial in Y and w than is the simple determinant frow Eq. (9).
Consequently, there are many real and imaginary roots of the determinant and a
number of different thresholds of instability,i.e.,a plot such as that shown in
Fig. 2 will, for an arbitrary flexible rotor, contain meay curves for CE = 0 and
Ab = O and many curve intersections. Each different intersection or threshold of
stability will correspond to a different mode of instability motion,e.g.,transla-
tory whirl, conical whirl,etc. 1In general, only the mode occurring at the lowest
value of w is of interest since this defines the practical operating limits of
the system. However, the presence of a number of modes of instability makes the
determination of the lowest mode a very complex and cos-ly task, even with the
aid of the computer program. Hence, it is desirable to find methocds of approxim-

ately determining thresholds of instability so that the exact process of determinin
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such thresholds by means of the stability program can be accomplished with a

minimum of costly searching.

One convenient approsch for approximately locating the instabilities of most
rotors can be had by use of a critical speed map for the rotor in question. A
critical speed map shows the various natural or resonant frequencies of a rotor
as a function of a single value of spting stiffness K assigned to the bearings
supporting the shaft. A typical critical speed map is shown in Fig. 10. For
complex rotors, such maps are usually obtained by means of a computer program

written specifically for this purposs.

As was discussed earlier in subsection 1., whirl instability can be viewed as
a condition of undamped resonance. 1In particular Lund (Ref. 4) has shown that
i1f this view point is taken, then at the threshold of stability the fluid film
bearing can be represented by a single effective spring stiffness coefficient

K and damping coefficient B given by

1 1
1 4(K.xx - Kylz(YDBxx VDByy) + Z(EEY Y$§Y§7+ ny YnB&Xl
kR = E(K + K ) - m———=
xx yy A
(18)
B o= 3(VoB__ 4 voB ) - A (19)
2 xx Tyy

where A is expressed by the following quartic equation:

A4 + L (X -K )2 + K K -~ 1 (YoB - YoB )2 - ¥bB  YuB A2
4 " xx yy Xy yx 4 xx yy Xy yx

1 1 2
- — K - fr 1y - f, — =
[ 4( x Kyy)(‘usxx Y”Byy) +3 (ny YwByx + ny vJony] 0

(20)
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Since B is real, Eq. (20) has only two solutions for A which are of equal magni-
tude but of opposite sign. In order for the effective bearing demping to become
gzero (corresponding to the undamped resonance criteria) ot some value of v, then
A must be positive from Eq. (20) since (anxx + Ymmyy) is always positive. There-
fore, only the resal, positive value of A is used to define the stiffness coef-
ficient in Eq. (18).

Another method of obtaining the effective stiffness and damping bearing coeffic-
ients at the threshold of stability is by replacing Mvz Ly Z in Bq. (9) and then
solving for Z. From Eq. (9):

(zxx - 2) nygk x
=0 @)

Zyx (zyy - Z)J \y

Since two solutions of Z are obtained, the following notation is used:

N
zmajor 11
1 + 2
zl’ 22 2[(zxx + zyy) b '\/(zxx - zyy) + azxy zyx J
z
minor
(22)
where:
Zxx = Kxx +—1Ywax (Similarly for ny, zyx, Zyy)
zmajor = Kmajor + iYmBmajor (Similarly for Zminor)
The condition for the lowest threshold speed is that “aninor = 0. Thus the

Kminor and Bminor are equivalent to the two expressions shown in Eqs. (18) and

(19).
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In arriving st a Kninor and a Bminor value, the negative sign in front of the
radical {n Eq. (22) is generally used. An evaluation of the value of the rad- !
ical is somewhat difficult since the coefficients of the bearing change con-

stantly with increasing eccentricity. Various bearing types and coefficients

have been evaluated and this sign convention has proven correct. This sign

LAY

convention is also consistent with the analysis by Lund (Ref. 4).

The importance of Kminor lies in the convenience with which.it can be used in
conjunction with a rotor critical speed map to determine the onset of insta-
bility. By cross-plotting the minor stiifness of the bearing as a function
of rotor speed, several critical speed curves may be crossed before the rotor
design speed is reached. The threshold speed is obtained when the first crit-

ical speed corresponding to K divided by the critical whirl frequency

minor’

ratio vy, gives the rotor speed at which the Km and ¥ were evaluated. The

inor
critical whirl frequency ratio {s defined as the value of v/ at which B eval-
uvated from Equation (19, goes to zero. In most instances, the critical fre-

quency ratio is nearly 1/2, and since Km r'tends not to change very rapidly

. ino
with rotor speed, this gives rise to the rule of thumb that the whirl threshoid
speed is approximately twice the first critical speed of the rotor bearing system.

The critical whirl frequency ratio can be determined from Eq. (14).

The specific steps involved in determining threshold speed from a critical speed

map are as follows:

(1) Obtain a critical speed map of the rotor as a function of support

stiffness.

(2) Calculate the eight radial bearing coefficients over some specifiad
speed range which one estimates will contain the whirl threshold speed.

(3) Compute the K and vy values from Eqs. (18) or (22) and (14), for

minor
various shaft speeds.

16
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(4) PFor each of the ‘ninor val&es, enter‘the critical speed map at each

value and obtain the first natursl frequency or critical speed.

(5) For each shaft speed selected divide the critical speed by the com-
puted whirl frequency ratic. When the resulting speed, which we shall
refer to as apparent threshold speed, squals the shaft speed at which
the K value was evalusted, then the actgal threshold speed has

minor
been determined.

For incompressible lubricated bearings the stiffness and damping coefficients
are independent of the whirl frequency ratio, whereas the compressible lubri-
cated bearing coefficients must be obtained et the critical whirl frequency
ratio. In general these gas bearing coefficients may be obtained at v/w = 0.50
with sufficient accuracy since the critical whirl frequency ratid is usually
~lose to this value.

It should Le noted that use of a critical speed map together with values of
‘minor to determine the stability threshold is valid for rotors of itrary
shape and flexibility but does rely upon the bearings supporting the rotor
being quite similar, since the critical speed map is plotted in terms of only
one value of bearing stiffness. However, if the bearings supporting the rotor
are not too dissimilar, the present approach will serve to indicate at least
approximately the critical speed and critical speed ratio by using values of

xminor

then be determined by using the computer program developed for calculating

for any one of the bearings. A more exact value for critical speed can

rotor bearing stability.

An example caiculation of how to determine whirl threshold speed from a crit-

ical speed map is given in the next section.
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SECTION III
EFFECT OF THRUST BEARING STIFFNESS AND DAMPING ON ROTOR-BEARING STABILITY

1. Discussion

Since a thrust bearing exhibits no radial stiffness or radial damping properties,
the threshold speed of a rotor which whirls in the lateral or radial mode will

not be affected. However, if the rotor motion is angular or conical, considerable
restraint can be imposed on the rotor by the angular thrust bearing properties.
Thus, if the lowest critical speed of the rotor is conical, the threshold speed

of the rotor could be significantly influenced by the addition of the thrust bear-
ing coefficients. The computer program described in Appendix I of this report
allows for the inclusion of these thrust bearing coefficients. In this present
section we will consider some simplified relations which enable us to estimate

the effects of thrust bearing stiffness on the conical stability of a symmetric

rotor.

First let us define the axes about which the rotor undergoes angular displacement
while whirling in a conical mode. Consider Fig. 4. The two coordinates which
scrve to define the angular displacement of each thrust berring are the & coor-
dinate, which measures rotation about the y axis and the @ coordinate which mea-
sures rotation about the x axis. Both of these coordinates are shown about point
0 at the center of the rotor bearing system, These angular rotations are defined
by tan & = dx/dz* and tan @ = dy/dz*. The equations defining the angular dynamic

coefficients are:

de do

Mx - Gxx 8 - Dxx T ny ¢ ny at (23)
de do

uy -G 8- yx at "~ Syy ® - Dyy ey (24)

where Mx and My are the dynamic moments acting on the rotor resulting from the
angular displacements and velocities 9,9, d8/dt and do/dt. Mx is in the »-z
plane while My is in the y-z plane.

*For a flexible rotor, local values of dx/dz and dy/dz serve to define the angular
rotations 9 and @ at local points along the rotor.
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The computer program written to analyze rotcr-bearing stability accepts the eight
angular stiffness and damping coefficients ka’ wax, ny,etc.,directly as bearing
input data along with the translatory coefficients KXx’ wﬂxx’ Kx » etc. However,
in order to gain an estimate of the effect of thrust bearing angular stiffness on
rotor-besaring stability, it is convenient to try to use the critical speed map ap-
proach for determining whirl-instability that was described earlier in the report.
To use this approach, it is necessary to relate the thrust bearing angular coef-
ficients to effective translatory stiffness and damping coefficients of the journal
bearings supporting the rotor. For a symmetrical rotor-bearing system this can be
accomplished by the following geometrical considerations. Referring to Fig. 4 we

B

ing in response to a static angular displacement © about en axis through the point

see that the restoring moment (Hx) in the x-z plane exerted by each journal bear-

0 parallel to the 6 axis is
M), = -K _ L9 (25)

Similarly, the restoring moment (Hy) due to each journal bearing is

j’

2
M) -xyxl.

2y U] (26)

On the other hand, the restoring moments (Mx)T and (Hy)T exerted by each thrust
bearing due to the angulsr displacement 8 are given by Eqs. (23) and (24),i.e.,

(Mx)T = -G _© (27)
(Hy) = -G _© (28)

Therefore, we see that for angular displacement in this symmetrical system, the
restoring moments of rhrust bearings can be represented simply by adding the
"effective" stiffness coefficients Gxx/L2 and ny/L2 respectively to the existing
coefficients Kxxand ny of the journal bearings. This applies as well to all of
the stiffness and damping coefficients. This, for angular displacements about
axes through the point 0, the restoring moments can be determined by assuming

that each journal bearing has effective stiffness and damping coefficients (Kxx)e’

20



(Bxx)e’ (ny)e,etc.,given by

®_ ), = K, +G /1
K)o = Kyt ny/Lz
®,), = K, +c N’
U ;yy/l.2

(29)

2
(Bxx)e Bxx + Dxx/L

2
(B..) Bxy+ny/L

2
B = B _+D /L
(yx) vX yx/

(Byy)e = Byy + Dyy/l.z
The approach of taking account of thrust bearing effects on conical motions of
symmetrical systems by means of adding effective stiffness and damping to existing
journal bearings permits one to use the critical speed map method for estimating
whirl instabilitv as described in the previous section. This would be accomplished
by using the total effective values of stiffness for conical motion of the rotor,

as defined in Eqs. (29) to avaluate Km and overall damping B as defined by

inor
Eqs. (18), (19) and (%.j. Note that this procedure is valid for conical whirl

instability only. Thrust bearings would have no effect on the translatory whirl

mode and their angular coefficients should not be included in the evaluation of

K and B if this mode of instability is being determined.
_minor

Some sample calculations were performed by the critical speed map methra to ex-
amine the effect of independently adding principal angular stiffness, Gxx and ny
and principal angular damping Dxx and Dyy on the conical stability of a symmetrical

rotor. The conclusions reached were that:

21
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(1) Addition of principal angular stiffnesses Gxx and ny does not change
the critical value of frequency ratio Vc for instability but can in-
crease the threshold speed ©, for instability by fucreasing the natural

frequency of the conical mode.

(2) Addition of principal angular damping, Dxx and Dyy’ does not change the
natural frequency of the rotor-bearing system, but does decrease the
critical frequency ratio for instability (i.e., the frequency ratio at
whichk damping B goes to zero) thereby increasing the threshold speed u%
at which instability occurs.

In the sub-section below are discussed various specific design examples for which

the effect of thrust bearings on rotor-bearing stability are investigated.

2. Sample Calculations

The basic tool used in computing the threshold speed is computer program PN40O.
With this program it was pussible to obtain the threshold speeds exac:ly with

and without the thrust tearing effects. However, since much time searching for
threshold speeds is generally required when using this program alone, the shorter
critical speed map technique for locating threshold speeds, outlined in this re-
port, was first used to obtain an approximate value of threshold speed with an

exact solution being then obtained using the computer program.

Two rotors will be analyzed to determine their threshold speeds with and without
the addition of a thrust bearing system. These two rotor models are shown in

Figures 5 and 6.

The first rofor, Figure 5, weighs approximately 7.2 lbs. and is supported by two
gas-lubricated hrdrodynamic jouranal bearings. The load is identical on each bear-
ing. Air at 100°F and ambient pressure (14.7 psia) is supplied to each bearing.

Thrust bearing surfaces are available at either end of the rotor.

The second rotor, Figure 6, weighs approximately 18.75 1lbs. and is supported by

22
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tvo gas-lubricated hybrid journal bearings. The losds are different for each
bearing. A thrust bearing is shown at the left hnaq end of the rotor. This
particular model was designed as a high pressure (P} spocl for an actual high
temperature turbo-compressor but the design was rejected based on its threshold
speed. No consideration was given to the thrust besring effects on the rotors'
stability behavior. 1In this example the thrust bearing effects will be computed.

Tables X and IIlist the nondimensional dynamic coefficients for the hydrodynamic
and hybrid gas-lubricated journal bearing designs respectively. Table I lists
the eight stiffness and damping coefficients as a function of eccentricity (or
load), bearing number A and whirl frequency ratioc v/» for a length-to-diameter
ratio of 1.00. For a constant load on a bearing diconstant) and varying speed
the coefficients must be obtained by double interpolation on A and load in Table
I since A changes with speed. Although data are shown for v/o = 0.3, 0.5 and
1.00, only the v/w = 0.5 data was used in the first example.

The data for rotor No. 1 are given below

Rotor Model #1
D = 1.50 in.
L = 1.50 in.
C/R = .00l in/in.
P = 14.7 psia
3.62 lbs. (each bearing)
W = 2.7 x 1077 lb.sec/in® (air at 100°F)

R = 1.00 in.
(e}

Ri = 0.333 in.

Pa = 14.7 psia

Ps = 73.5

C = .00l1 in.
Inherent compensation
A, = 1.0

s
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Dimensionless Operating Parameters for Journal Bearings:

2
R
12miN o
A P (C)

12n(2.7 ¥ 10" ()
14.7 (.001)°

-3
= 6.95 X 10 "(N) where N = speed, rps

= 1.16 x 10°*(§') where N' = speed, rpm

T o. W_
Y * ?Ip
3
- 3.62
(14.7)(1.5)(1.5)
= 0.11

Values of journal bearing stiffness and damping coefficients were obtained from
Table I for various pertinent values of A an v/o = 0.5 for W=0.11. Corresponding
to these values of journal bearing coefficients, values of Kminor were calculated
for tne journal bearings from Eq. (22) neglecting thrust bearing effects.

the critical speed map for rotor #1 is given in Figure 7. This figure shows the
tirst two critical speed curves as a function of support stiffness. Also shown
ir o carve of the minor stiffness for the bearings calculated in the manner des-

cribed above.

wWwhirl thresbold speed 1s obtained from Figure 7 in the following way. First, if

wo Wdraw an apprepriate vertical line on Fig. 7 it will intersect both the first
critical speed curve and the curve of Kminwr vs. speed. Let us denote the values
1N

cboopeed o these antersections as v and w | respectively. Now, corresponding to
<

r
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these values of Ve the natura! frequency of oscillation and Wps the rotor speed

at which Ko inor 13 calculated, there will be some value of whirl frequency ratio
¥ = v/» calculable from Eq. (14). If this calculated value of Y i3 exactly equal
to vc/mT, then we have determined the whirl threshold condition and m& will be our
whirl threshold speed while vc/w& will be our whirl frequency ratio. If, say,
vc/u)T should prove to be less than our calculated value of v, then we must try
drawing another vertical line slightly further to the right and redetermine Vc/w&.
If vc/m& is less than the value of ¥ calculated from Eq. (14) ther our new ver-
tical line should be drawn slightly further to the left. Usually Y = 0.5 so we

would first try drawing a vertical line such that Vc/w& = 0.5.

In the example shown, neglecting thrust bearing effects, the whirl threshold speed
is found to be Wy = 3300 rpm while the critical whirl frequency ratio is ¥ = Vc/w& -
0.457. |

1t should be noted that in using this critical speed map approach, the curve of
xminor was calculated for the condition V/w = 0.5 rather than for the condition

v/w = 0.457. For greater accuracy, one could recalculate K at the predicted

minor
critical whirl ratio cf 0.457 and redetermine the whirl threshold. Usually, how-
ever, this would result in only a very small change in the value of threshold

speed and is not necessary.

Nexr let us consider how we would determine the threshold speed of rotor No. 1l in
a more precise manner using the computer program PN40O. In using the program, we
can take advantage of the fact that we have already determined the threshold speed
in an approximate mdnner by the critical speed map approach as described above.
Therefore, with the computer program, we look for the roots of the real and imag-

tnary parts of Eq. (10) in the vicinity of w = 3300 rpm and VvV = 0.457.

Ihe resalts obtained from the computer program are shown in Fig. 8. The straighter

line represents the locus of roots of the imaginary part of Eq. (10),i.e.,represents

rosts ot Eg. {(12),while the more curved line represents the locus of roots of the
vl part ot Ea. (10),1.e ,represeats roots of Eq. (11). The intersection of these
arves represeats rthe condition at the thresheld of whirl instability. As can be
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TS

seen, this occurs at s running speed of approximately 3570 rpm and at a freque
ratio of ¥ = 0.460.

For comparison, the whirl threshold solution obtained by the approximate criti
|
speed msp approach is also shown in Fig. 8. Agreement with the more precise ¢

puter solution i{s quite reasorable.

We can now proceed to investigate what change in the calculated value of whirl
threshold speed for our example rotor No. 1 will result if we consider the thr
bearing angular stiffness and damping in our calculations. The thrust bearing
for this rotor are hydrostatic with dimensions listed on page 25. In the case
hydrostatic thrust bearings, stiffness is the only bearing characteristic one
usually needs consider in determining the influence of the thrust bearing on ¢

ical mode of whirl instability. This is so for the following reasons:

(1) Damping, being the result of hydrodynamic forces rather than hydrosta
forces,is a very much weaker force in externally pressurized bearings

than is the stiffness.

(2) The "effective" angular damping in hydrostatic thrust bearings tends
zero at ¥ = 0.5 much the same as does the effective radial damping 1in
plain cylindrical journal bearings. Hence, for whirl frequency ratic
near 0.5, hydrostatic thrust bearing damping will be quite ineffectiy
in increasing the threshold speed for conical whirl instability.

To determine the effects of the hydrostatic thrust bearing stiffness on our ci
culated value of whirl threshold speed, we will first do a rough calculation t
the critical speed map approach and then do a refined calculation using comput
program PN40O. Data for the angular stiffness of hydrostatic thrust bearings
given in Figs. 13 through 16 in the next section as a function of the dimensic
feeding parameter As. As discussed in the next section, this data is for stat
or steady state displacement of the bearing. However, in most cases this is &
plicable to dvnamic displacement of the bearing if the frequency v of dynamic

oscillation is low enough. To determine if steady state data is applicable, v

36
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calculate the dimensionless squeeze number ¢

RR
. G = 12uv _o {
P. cz

L 120.7x107) v (.333)

14.7(.0011)2
= .605 x 10"y

At
Nt = 3570 rpm
® = 373 rad/sec

N
B v = (v/m)n
’ = 187 rad/sec
Therefore

o = .ll4

From Fig. 18, we see that squeeze nuwmber of o = 0.114 is sufficiently low such
that steady state values for bearing stiffness apply (see discussion of Figs. 17

and 18 in the next section).

To determine the angular stiffness G from Fig. 16, we must determine the dimension-

less feeding parameter AS. Our approach is to set As at the value yielding maximum

stiffness i.e..A8 = 1.0 . (This optimum value for AS can be achieved for our bearing
. by the proper choice of na2 in Ab‘) The maximum value of dimensionless angular

stiffness E is
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1 4 82
1+ 2/3 8

~
=

c 12

Now, our bearing is inherently compensated, so § = azlcd is sufficiently large

(d

o

2a and ¢ << i) that the factor

1+ 8
1 +5) (See References 7 and 8)

(1 +2/3 89

as & - = becomes approximately

<+
8 . 3
1, 2 2
-—+—
g2

Solving for G from the expression given on Fig. 16 we have

2

1+ 8% = 2 2, 2 )

[}1 L G:]n R -ROIRS (R -P)
3

on

2

1
¢ + 5 2) c
14+2/3 %

12 n {(1)2 e 33)21 (1)2 (73.5 - 14.7)
(3/2)( 00110)

=1 15 x 10'4 1n-lb/radian

As descrived carlier, this angular stifiness may be converted to an effective
17cr=3s5¢ :n journal bearing stiffness AKe which can be added to the existing

journal bearine sti1ffasss for purposes of determining whirl threshold speed
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G

AR. " LZ
4
- 1.15 x 10

- 1.15 x 10 1b/1n.

For a hydrostatic thrust bearing, the cross-coupling terms are zero and the stiff-

ness in the two principal planes are identfcal. Since K is increased directly

minor
by increases in ka and xyy’ the equivalent increase in stiffness AKe may be added
directly to the Kminor obtained previously and the resultant curve for Kminor is

plotted in Fig. 7. Using our graphical approach for determining whirl threshold
speed, i.e.,vc/aqT must equal y calculated from Eq. (14), we find that the threshold
speed with thrust bearings turns out to be et approximately 6900 rpm. Bearing
stiffness and damping coefficients were therefore obtained for the hydrodynamic
Journal bearing at this value with We=0.11 using the v/m = 0.50 data. The journal
bearing coefficients were then submitted along with the actual angular thrust bear-
ing coefficients into the computer progran. The results are shown plotted in Fig.

9 which yields a threshold speed of 7170 rpm at v/w = 0.477.

Rotor model No. 1 is an idealized model which serves as an example zalculation of
how thrust bearing stiffness may significantly improve the stability of the rotor
to fractional frequency conical whirl instability, and how this improvement may be
calculated. In rotor model No. 2 we have an example of an actual prospective de-
sign for a high temperature turbocompressor which was rejected on the basis of its
poor stability characteristics. A simplified drawing of the rotor is shown in
Fig. 6 and a brief description of the rotor was given earlier in this section. Due
to the overhung nature of the design, the lowest mode of fractional frequency
whirl instability was conical in nature. However, since the aralytical tools were
not available at the time this design was proposed, no account was taken of the
effect of the thrust bearing in possibly enhancing the rotor stability. We shall

examine the stabilizing influence of this thrust bearing in what follows below.
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The data for rotor Mo. 2 are as follow:-:

Rotor Model #2

o it - ——————

y Journal Bearing Design (Hybrid) }
; D = 3,00 in. R = 2.472 x 10° 1n0.%/sec?°R |

' L = 3,25 in, n = 32 holes

C = ,0026 in, a = ,012 in, (orifine radius)

Pe = 18 psia Crifice compensatior

P. = 72 psia Single Planr dmission

W = 6.95 1b, (No. 1 bearing), 11.80 1b. (No. 2 bearing)

b o= 3,40 x 10~ 1b. sec./in”

T = 760°R

Thrust Bearing Design (Hydrostatic)
3.35 x 10~ 1b.sec./in.>

Ro = 2,53 in, M=
{ Ri = 1,55 in. C= ,0015 in.
: Pa = 18 psia n = 40 holes
Ps = 30.6 psia a= ,030 in. = d/2 (inherently
compensated)
T, = 1150°R § = al/cd = 10

Table 1I gives the hybrid gas-lubricated jorrnal bearing data for an L/D = 1,08

with v/w = 0,50 at Pa/Pa = 4.,0. The hydrostatic effect parameter‘As for the

journal bearing design with orifice compensation (6§ = 0) and single plane admis-
-

sion is given by:

6una2 V RT

s P8C3 1+ 6%

6) (3.4 % 10°9)(32)(.012)2 V2.472 x 10° x 760
(72) (.0026) >

= 1.025
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The data in Table Il are applicable for As = 1.0 with the only variables being the
hydrodynamic effects A and load capacity W. Again double interpolation is required
to obtain the necessary stifiness and damping coefficients at a constant W value.

The E:' values fcr rotor No. 2 are

Journal Bearing Data

£}
]

6.95
18(3.25)(3)

.0396 (bearing 1)

!
o

x
[
; l

11.8
18(3.25)(3)

.0672  (bearing 2)

"

The relationship between bearing number A and rotational speed N is:

.. ooy [
H
i
_ 1m0y [1s00 )2
8 0026

- 2350 1077 N (where N = rps)

-5
= 3.96 « 10 7 N' (where N' = rpm)




PSS,

The bearing data shown in Table II1I are obtained from Table II, by interpolatiom,

for Wl « ,0396 and w2 = ,0672. The values of Kminor

lated from Eq. (18) or Eq. (22). The values of v = v/w, the frequency ratio at

given in Table III are calcu-
which effective damping gces to zero, are calculated from Eq. (14).

The critical speed curves for rotor No. 2 are plotted in Figure 10. Also pletted

is the curve of K vs. speed. 1In this case Km varies hardly at all with

minor inor
speed, which makes calculation of the whirl threshold speed Dy, very easy. Noting
that for instability vc/wT must equal ¥ (which in this case is very nearly exactly
0.5) and noting that v, can now be given by the intersection of the curve of Kminor
with the lowest critical speed curve, we have

v, = 14,750 rpm (from Figure 10)

@, = vc/0.5 = 29,500 rpm

To obtain a morz exact calculation for w,, we use computer program PN&Od with
bearing input data obtained from Table III. The results obtained are shown in Fig.
11. The approximate solution obtained above from the critical speed map approach
is shown as a circle in Figure 1l. The solution curves for the real and imaginary
parts of the stability determinant being equal to zero (ﬁhe solution curves for
Eq. (11) and (12)) are very nearly parallel for this example, making exact deter-
mination of the whirl threshold speed quite difficult. As can be seen, the whirl
threshold speed lies somewhere in the range of 29,000 to 29,375 rpm and the whirl
frequency ratio is between 0.499 and 0.504.

Next we compute the effect of the thrust bearing on this whirl threshold speed.
Using the thrust bearing design data, the squeeze number ¢ evaluated at the pre-

vious calculated value of Vs the oscillation frequency at whirl threshold is

P 2

5 = 12uv ‘ RiRo)
a c

12(3.35 x 10°7) (1540) (2.53) (1.55)
18 (.0015)2
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The restrictor coefficient A. equals:

A - Suna?Ver
* o’ Viss

. £03.35 x 1079 (40) (092 V2.472 x 105 x 1150
(30.6)(.0015)3 V141

= 11.80

This value of Ao is significantly higher than the optimum value for maximum bear-
ing stiffness (see Figure 15). This is because the operating condition being
analyzed is the one at which stability of the rotor is poorest and is not the
operating condition for which the bearing was designed. The curve of dynamic
stiffness shown in Fig. 17 pertain to a value of As = 2.5 which is optimua for
a thrust bearing of radius ratio of RO/R1 = 1.5. From this curve we see that
such a bearing, operating at a squeeze number of g = 6.0 would be well within
the range where steady state stiffness data apply; i.e.,is operating at an os-
cillation frequency which is well below the frequency at which squeeze film
effects become important. Physically, there is no reason to expect that this
situation would be altered significantly when the bearing is operated at higher
As (1.e.,lower supply pressure). Thereiore, we would readily expect that our
example bearing at As = 11.8 and 0 = 6.0, would be in tke "steady state' region
where Fig. 15 could be used to calculate bearing stiffness. From Fig. 14, at

'Ps/Pa = 1,70, we determine that

2-
L8 6 507
1+2/3 62

g2 )
- 2
G = (.07) l_i_:zé_é_ = (o7 Llx2/3 g;oz
L+2¢ 14+ (10)
= .0469

47




‘ — T e 5 # et T e i e e T o e e en e e e e e

2 2 2 -
ﬂ(R0 - Ri ) R0 (Ps- Pa) G

c

= 72.53)% - (1.55)%1 (2.53)% (30.6 - 18)(.0469)
0015

3.02 x 104 in.1lb/rad.

]

Since we have only one thrust bearing, we must appropriately divide its effect
among the two journal bearings to use the effective stiffness - critical speed
map approach for approximately calculating the effect of the thrust bearing on
whirl threshold speed. The distance of jouinal bearings 1 and 2 rrow the c.g.
of the rotor are L, = 4.72" and L2 = 2,78" respectively. By analogy with Eq.
(29), which gives rhe relationships for adding an effective stiffness of one
thrust bearing to on2 journal bearing, we can infer that a correct approach for

~dding an effective stiffness of one thrust bearing ot angular stiffness G to

two journal bearings of spans L1 and L2 would be by the relationship

Thercfore, the effective radial stiffness to be added to each journal bearing

would be
K =
e 2 2
Ll + L2
4
0 3.02 v 10
- 30
= 1010 1b/in
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This value is seen to be negligible compared with the values of stiffness
agsociated with the journal bearings themselves., Hence, in this case, the

thrust bearing would have negligible effert on conical motions of the shaft.

The above conclusion reached for rotor No. 2 probably pertains to most rotor
designs. In general, such rotors will be designed so that the span between
journal bearings is efficiently great that these bearings will exert a much
greater restraining force on corical motions of the shaft than will the thrust
bearings. However, this need not always be true, It {s egsy to conceive of
systems where the thrust loads dominate and where journal bearings are needed
only to locate the shaft. In such systems a designer could take advantage of
the now available technology for including thrust bearing effects in whirl
threshold speed calculations, and design the rotor such that the thrust bear-

ing could assume the responsibility of restraining conical motions of the rotor.
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SECTION IV
ANGULAR STIFFNESS COEFFICIENTS FOR HYDROSTATIC THRUST BEARINGS

The hydro<tatic bearing data presented in this gection are based on an analysis

by Lund described in Reference [5]. Basically, the analysis involves the assump-
tion thar discrete feeding holes arranged in an annular thrust bearing (see Fig.
12) can be represented approximately by a continuous "line source' of feeding as
if the bearing were fed by a continuous circular slot rather than by discrete
toles. fhis approximation tends to be absolutely correct {n the limit as the
namber of feeding holes approaches an infinite number, but tends to somewhat over-
estimate bearing load and stiffness for bearings Laving a finite number of holes.
A line scurce correction factor to account for this overestimation has been worked
out by comparing a detailed discrete feeding analysis with the simpler line source
analvsis The correction factor to be applied depends on the product n¥ and d/%D
where n 13 the number of feeding holes, € = 1/2 10ge(Ro/Ri)’ d is the diameter of
tiie: feeding holes, D = 2 Rokx’ R0 and Ri are the outer and inner vadii of the
thrast bearings having a practical number of holes, the correction factor to be
applied is 2/3,i.e., the line source analysis overestimates the stiffness by 50%.

Thisz correction factor has been built into the design curves presented in this

section. Figure 19 shows a curve of n? vs. d/%D giving the recommended size and
aunmber of feedings for which this correction applies. If more feeding holes are
wsed, stiffness will be higher than that predicted by the design charts in this

swctren and conversely.

Ihe stifinzss of compressible hydrostatic bearings is dependent upon the frequency
of excitation v of the bearing if this frequency 1< high enough. This is because,
at. large values of v, the gas in the bearing film tends to be droppad ana cowm-
pressed rather than squeezed out of tue film. and this contributes to a higher
level of bearing stiffness. This effect is illustrated in figures 17 and 18 where
diwensionless stiffness G = CG/E?(RC? - Riz) RO2 (PS - Pa)] is plotted vs. the

drsensionless excitation frequency ¢ (known as squeeze number)
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Fig. 12 Sketch of Hydrostatic Thrust Bearing
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as can be seen, for small o, the stiffness remains constant at its steady state
value independent of excitation frequency. However, once v becomes large enough,
the bearing stiffness begins to increase with v due to the above mentioned squeeze

film effect.

In general, for rotors supported on hydrostatic bearings, the running speed will
be in the range such that an excitation frequency v = /2 will lead to squeeze
numbers sufficiently low such that steady state bearing stiffness data will apply.
This is generally so because if shaft speeds are high enough such that compress-
ibility hecomes significant in the squeeze film effect, then the shaft speed will
tend to be high enough such that hydrodynamic bearings could be used for load
support. Figures 17 and 18 will be used, therefore, primarily to define the lim-

its below which steady state bearing data apply rather than being used as a source

of dynamic stiffness data.

In Figures 13 through 16 are nresented dimensionless angular stiffness G vs. the

feeding parameter AS

2~/ .
A _ 6,ina RT (31)

s Psc3 \/1 + 8

tor radius ratios of RO/Ri = 1.25, 1.5, 2.0, and 3.0. The dimensionlecs stiffness
C 1s pre-multiplied by the factor 1 + 62/(1 + 2/3 62) where § = azcd, known as the
inherent compensation factor, gives the ratio of orifice area ma“~ to inherent re-
striction area mcd (see Figure 12). Curves are provided for different values of
pressure ratio Ps/Pa' Usually, ﬁhe hydrostatic thrust bearings are des.gned for
4 value of A: which provides near maximum stiffness; i.e., AS is in the range 1.0
to 4 0, depending on radius ratio. Hence, the dynamic curves in Figs. 17 and 18

are presented for near optimum values of A .
$

Only stiffness data is provided for the hydrostatic bearings. This is for the

tollowing reasons:




M

@)

Damping in hydrostatic bearings results, esseantially, from hydrodynamic

forces which are usually much weaker than the hydrostatic forces produc-

ing bearing stiffness.

More importantly, in hydrostatic thrust bearings, "effective" bearing
damping tends to zero for wobbling or nutating modes of motion which
occur at half the rotational speed of the thrust runner. In examining
the stability of rotors, it is invariably the influence of precisely
this kind of thrust bearing motion on rotor dynamics that we are at-
tempting to calculate. Hence in such calculations, it is quite reason-
able to presume that the effects of thrust bearing dawping will be zero
or near zero and only consider the effects of thrust bearing stiffness.
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Fig. 19 Minimum Number of Feeder Holes
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APPENDIX I
: COMPUTER PRUGPAM .
THE THRESHOLD GF INSTABILITY OF ‘A FLEXIBLE ROTOR IN FLUID FILM BEARINGS

This section describes the rotor stability computer program PN40O: "The Threshold
of Inatability of a Flexible Rotor in Fluid Film Beariangs". This program is quite
similar to the computer prcgram PNUOOl7 given in Reference 1.

The new program described in this volume is a modification and extension cf the
previous versior. The amount of plotting has been significantly reduced in that
a quadratic interpolationl routine now automatically performs much of the plotting
previously required to find the zero point solutions for both the real and imagin-
ary parts of the complex determinant. This program also now accepts the angular
thrust bearing properties and is also set up to handle both liquid-lubricated and
gas-lubricated bearings. In addition a more refined rator model is employed which
describes the rotor in terms of stiffness and mass diameters, lengths, concen-
trated values of mass, and mass moments of inertia. The new rotor model is dis-

cussed in Reference 3.

Analysis

The rotor analysis is described in detail in Reference 3, Appendix VIII. Con-
sider the rotor shown in Fig. 3 and assuming the two ends of the rotor to be

free, the bending moment and the shear force av one rotor end are directly pro-
portional to the unknown amplitude and slope at the opposite rotor gnd. The
proportionality coefficients are the dyna;ic influence coefficients which*are‘
computed by the program, and the final equation is given in the following matrix
form (see Eq. (H.51) in Appendix VIII of Reference 3 neglecfing magnetiz influence

ccefficient matrix).

1 Second-order polynomial interpolation. See Reference 6.
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Y

1]
Vikm 11 %12 %13 94 1
]
Viyn L 81 %2 %3 %y Y1 k
(= ? < ( (32)
1]
M 831 433 333 3y, 9

M'
o) L% %2 % % ) (%)

Here, V'xm and v'ym are the shear force components at one rotor end (station m),
M'xm and M'ym are the bending moment components at the same location, and X1s Yo

91 and 9, are the unknown amplitudes and slopes at station 1. The a's are the

dynamic influence coefficients which depend on the whirl frequency ratio and the
rotor speed. They include the effect of rotor inertia, rotor flexibility and

the dynamic bearing coefficients. Since the ends of the rotor are free, v'xm =

' = M! = M! =
v ym M <o M vm 0. Thus, Xys Y 91 and 9, are only different trom zero

when the determinant of the matrix of influence coefficients is zero which, then,

determines the threshold of instability:

a1 %12 %13
81 %2 %3 94
=08 +i8 = =0 (33)
331 83; 933 934
81 %2 %3 %

For each given angular speed, w, of the rotor, the program calculates Az and A
s

for specified values of the whirl frequency ratio v = v/@ and determines the

zero points of AE and Ag within the given range. The results can be plotted

direc:tly to find the threshold of instability.
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COMPUTER INPUT

Card 1 (724
Any descriptive text may be given to identify the calculation.

Card 2 (1415
This is the "control card" whose values control the rest of the ifaput. The con-

trol card has 10 items:

l. NS, the number of rotor stations, see '"Rotor Data" (1 < NS < 100)

NB, the number of bearings (1 < NB < 10)

lto

3. NPST. The program provides for including the response characteristics of
the bearing pedestals. When it is desired to include this effect, set NPST = 1
and give the required input data as explained later. When NPST = 0, the pedes-

tals are assumed to be rigid and no pedestal data are required in the input.

4. NANG. The dynamic forces of the fluid film in the journal bearings resist
both radial motion and angular motion. In most cases, only the radial forces
are significant in which case NANG is set equal to zero. However, long jour-
nal bearings and especially thrust bearings may exert considerable constraint
on the snguliar motion of the rotor. When it is desired to include this effect,

set NANG = 1 and give the required input data as explained later.

5. NFR is the number of whirl frequency ratios specified in the input list

below, see explanation later (3 < NFR < 50).

6. INC. 1If the bearing lubricant is compressible (gas bearings), set INC = 1
in which case the dynzmic bearing coefficients must be specified for each whirl
frequency ratio in the input. If INC = 0, the lubricant is incompressible and

the dynamic bearing coefficients are independent of whirl frequency.
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1. NIT. As discussed previously, the program searches for the zero points
of the instability determinant. To do this, the instability determinant is
computed as a function of the whirl frequency ratio. ‘fhe {nput gives NFR
values of the whirl frequency ratio in sequence, and the determinant i{s cal-
culated for each of these values. 1In addition, each interval is subdivided
into NIT increments and the determinant is also computed at these intermedi-
ate frequency ratio values. Whenever the program detects a changze in sign
of the determinant between two consecutive calculations, it uses quadratic

interpolation to find the accurate zero point.

By subdividing the intervals in the given frequency racio list, the list can
be shortened without loss of accuracy. Furthermore, when the bearing lubri-
cant is a gas it is necessary to provide the dynamic coefficients for each

specified frequency ratio. Thus, to minimize the input data it is desirable
to keep this number low. Then the program automatically calculates the coef-

ficients for the intermediate points by quadratic interpolation.

NIT should be equal to or greater than 1. When NIT = 1, no subdivision takes

place.

8 METR. This item should always be zero. It is included for diagnostic

purposes which, however, is of no value to the general user of the program.

9. NCAL, specifies the number of rotor speed ranges. For each speed range
it is necessary to give input data for the dynamic bearing coefficients.

There is no limit for NCAL.

10. INP. 1f INF = 0, the present set of input data {s followed by a new set,
starting from Card 1. If INP = 1, this is the last set of input.

Card 3 (1F6EL12.3)
1. YM 1s Youngs modulus E for the shaft material in 1bs/inch2. If E actually

changes along the rotor it should be noted that the program only uses E in the

product EI where 1 1s the cross-scctional moment of inertia of the shaft. Since

04




I = .6% [:(d )4 - dil‘] where (do) is the outer shaft diameter and di is
© stiff stiff
the inner diameter, any variation in E can be accounted for by changing (do)

(see "Rotor Data"). stiff

2. DENST gives the weight density of the shaft material in lbs/inch3. The pro-
gram converts it into the mass density o = DENST/386.069. If the density actually
changes along the rotor it should be noted that the weight of the shaft per unit

length is p g [}do)z - 312:] where (do) is the outer shaft diameter (see
mass mnass
"Rotor Data'). Thus, (do) can be changed to absorb the changes in density.
mass

3. SHM gives the product oG where G is the shear modulus, lbslinchz, and o is

the shape factor for shear (for circular cross-sections: o = 0.75).

Rotor Data (8E9.2

The rotor is represented by a number of stations connected by shaft sections
of uniform diameter. Thus, rotor stations are introduced wherever the shaft
diameter changes (or changes significantly). Also, there must be a rotor sta-
tion at each end of the rotor, at each bearing centerline and at any thrust
bearing. Furthermore, a rotor station is introduced wherever the shaft has a
concentrated mass which cannot readily be represented in terms of an inner and
outer shaft djameter (impellers, turbine wheels, alternator poles, and so on).
In this way the rotor is assigned a total of NS stations (card 2, item 1) which
are numbered consecutively starting from one end of the rotor. There can be a
maximum of 100 stations. Eacl: station can be assigned a concentrated mass m
with a polar mass moment of inertia Ip and a transverse mass moment of inertia
IT (any of these quantities may, of course, be zero). Also, each station can

be assigned a shaft section with which it is connected to the following station.

This shaft section has a length £, and outer diameter (d ) , an outer diameter
stiff
(d ) and an inner diameter d,. The outer diameter (d ) is used to spec-
mass 1 stiff
ify the stiffness of the shaft section such that the cross-sectional moment of
4
inertia of the shaft is: 1= é%- [(du)a - d, and the shear area is:

stiff
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% [:(do)2 - diz-] . The outer diameter (do) i8 used in calculating the
stiff mass
2]

mass of the shaft such that the mass per unit length i{s: o [}do)z - d1 J ;
mass

where 0 is the mass density (see card 3, item 2). 1

Lo ~ ]

In the computer input there must be a card for each rotor station (NS cards).

Each card specifies the 7 values for the station:
l. The concentrated mass: m, lbs. (may be zero),

2. Tne polar mass moment of inertia of the station mass; Ip lbs-inchz (may b2

zero).

3. The transverse mass moment of inertia of the station mass; I,r lbs-inch2 (may

be zero).

4. The length of the shaft section to the next station: £, inch (may be zero).

For the last station, set § = 0.

5. The outer diameter, (d ) of the shaft section, inch. (do) is used
® stiff stiff
1n calculating the stiffness of the shaft section, (do) # 0. For the last
station, set (do) = 1.0. stiff
stiff
6. The outer diameter, (d ) of the shaft section, inch (may be zero).
° mass
(du) is used in calculating the mass of the shaft section. For the last
mass
station, set (d ) = 0.
mass

7. The inner diameter, di of the shaft section, inch (may be zero). di is used
both in calculating the stiffness and the mass of the shaft section. For the

last station, set di = 0.
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Bearing Stations (1415)

The rotor station numbers at which there are bearings, are listed in sequence.

This includes both 3curnal bearings and any thrust bearings. There can be up

to 10 bearings.

Pedestal Data (1PAE12.5)

The program provides for the option that the pedestals supporting the bearings
may be flexible. In that case, data for the pedestals must be given and NPST
must be set equal to 1 (card 2, item 3). If the pedestals are rigid, set NPST

= 0 and omit giving any data for the pedestals.

When NPST = 1, each bearing is supported in a "two-dimensional' pedestal. The
pedestal is rcpresented as two separate masses, each mass on its own spring
and dashpot. The one mass-spring-dashpot system represents the pedestal char-
acteristics in the x-direction, (the vertical direction) and the other system
represents the y-direction (the horizontal direction). There is no coupling
between the two systems. In the computer input there must be one card for
each rotor bearing and each card contains the 6 items necessary to specify the

pedestal characteristics:

The pedestal mass ior the x-direction, lbs.

1.

The pedestal stiffness for the x-direction, lbs/inch.

>

3. The pedestal damping coefficient for the x-direction, lbs-sec/inch.

(Note: For the bearing films the damping is given in lbs/inch, whereas the
dampirng coefficient in lbs-sec/inch is used for the pedestals). =

The pedestal mass for the y-direction, 1bs.

o

5. The pedestal stiffness for the y-direction. lbs/inch,
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6. The pedestal damping coefficient for the y-direction, lbs-sec/inch.

When the bearings also nave angular stiffness (i.e., NANG = 1, item 4, card 2)
and the pedestals are flexible (i.e.sVNPST = 1), the above NB cards must be
followed by additional NB cards, one for each bearing, on which are specified
the dynamic model cf the pedestals for angular motion. Each card contains six

values:

1. The pedestal mass moment of inertia in the x-plane (around the y-axis),

lbs’inchz.

2. The pedestal angular stiffness in the x-plane (around the y-axis), 1lbs.
inch/radian.

3. The pedestal angular damping coefficient in the x-plane (around the y-axis),

lbs-inch-sec/radian.

4 The pedestal mass moment of inertia in the y-plane (around the x-axis)

lbs-inch2

5. The pedestal angular stiffness in the y-plane (around the x-axis), lbs.

inch/radian .

b. The pedestal angular damping coefficient in the y-plane (around the x-axis),

tbs-inch-sec/radian.

Whirl Frequency Ratios (1P6E12.5)

When the rotor becomes unstable it whirls in a closed orbit with an angular
frequeucy v which normally is equal to approximately one half the rotational
frequency w. However, the exact value depends on the rotor and the supporting
bedrings, dand to determine this the program searches for the zero points of
the stability determinant. The presen*t input list gives NFR values (card 2,

item 5) in sequence of the whirl frequency ratio v/® and these values are used
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directly by the program in computing the stability determinant. Thus, the
program is unable to detect any possible solution outside the specified range.
Furthermore, a zero point of the determinant is only detected when the determ-
inant changes sign from one calculation to the next. Hence, if there are two
zero points between two consecutive frequency ratios, the program is unable to
find them. It is, therefore, necessary to make the increments sufficiently
small (approximately 0.0l or less). This is most readily dome by giving, say
5 or 6 frequency ratios in the present input list, and then specify an addi-
tional subdivision of the intervals by meane of NIT, item 7, card 2. As an
example, the present list may give 6 valuee for the frequency ratioc: 0.7,
0.6, 0.51, 0.49, 0.4, 0.3 (NFR = 6). 1In addition, NIT may be set equal to

5. Thereby, the stability determinant is computed at the following 26 fre~
quency ratios: 0.7, 0.68, 0.66, 0.64, 0.62, 0.6, 0.582, 0.564, 0.546, 0.528,
0.51, 0.506, 0.502, 0.498, 0.494, 0.49, 0.472, 0.454, 0.436, 0.418, 0.40,
0.38, 0.36, 0.34, .32 and 0.30. Whenever the determinant changes sign, its
value is also computed at the mid-point of the interval and these three values
are then used to compute the zero point by quadratic interpolation. A second

quadratic interpolation is employed to get a more accurate solution.

Speed Data {1P6E12.5)

This data and the following bearing data must be repeated NCAL times (itexm 9,

card 2). The speed data is given on one card with three values:

l. The initial speed of th2 speed range, rpm

The final speed of the speed range, rpw
The speed increment, rpm.

Thus, the first calculaticn is performed at a rotor speed equal to the initial
speed. Thereafter, the speed is incremented by the speed increment, and this
is repeated until reaching the final speed. The zero points of the instability

determinant are found for each speed and by plotting the results as previously
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discussed, the rotor speed can be determined at which instability sets in., The
selected speed range should, therefore, be sufficiently large that it includes
the threshold speed.

Bearing Data (8E9.2

Each bearing is represented by 8 dynamic coefficients for radial motion such
that the dynamic bearing reactions can be expressed by means of Eq. (1) (or

more correctly, by Eq. (5)). The 8 coefficients are given on one card:
y &q

K . ny ny Kyy wB_ way mByx mByy 1bs/inch

where ® is the angular speed, radians/sec, and the 8 coefficients are computed
from the lubrication equation (Reynolds equation) as described in volumes IIX
and VII. When the lubricant is incompressible (INC = O, card 2, item 6) the
coefficients are independent of whirl frequency and only one set of values
should be given. When the lubricant is compressible (INC ¥ 0), the coeffici-
ents are frequency dependent and one set of coefficients must he given for
each of the whirl frequency ratios in the input list, i.e. a total of NFR
cards (card 2, item 5). The cards must be given in the same sequence as the

values in the frequency ratio list.

When, in the search for the zero pcints of the instability determinant, the
program performs calculations at frequency ratios different from the specified
values, the proper dynamic coefficients are obtained by quadratic interpolation
of the input data. Hence, a minimum of 3 sets of coefficients is required when
INC # 0, which neans NFR > 3. When INC = 0, interpolation is, of course, aot

necessary and only one set of coefficients is required.

If NANG = 0 {(card 2, item 4) the above data is repeated for the next hearing

until the coefficients are specified for all NB bearings. If NANG # 0, the

‘above data is followed by a similar set of datz of dynamic coefficients for

angular motion. Let the dynamic moment acting on the rotor have the components

M‘ and b& where Mx is in the x-z plane and My is in the y-z plane (z is the
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coordinate along the rotor axis). The rotor amplitudes are X and y and the cox-

responding rotor slopes are: @ = dx/dz and 0 = dy/dz. The equations defining

the angular dynamic coefficients are:

- - -d-:’- - {3 - -dsg

“x Gxx ® Dxx dt bxy @ ny dt
(34)

de do

My -G _9 Dyx T ny - Dyy dt

where t is time. These equations are completely analogous to Eq. (1). The 8

coefficients apply to a given bearing geometry, & known static bearing load and

are functions of the rotor speed. For compressible lubricents, the coefficients

also depend on the whirl frequency ratio such that Eq. (34) more properly should

be written:

Sy
i

Mk =7 Txx @ - ny ®
(35)
M = -Y_08-%Y '
y vy ?
where:
(36)

V
Yxx Gxx + i((b) I.DDXK

and similarly for ny, Y and Yyy Eq. (35) is analogous to Eq. (5) and is de-

yx
rived in the same way..

In the computer input, the 8 coefficients are given on one card:
¢ G G G _wb _ wh wd WD 1bs.inch/radian
XX Xy yx yy ~ ¥x Xy yx 7YY

In complete analogy to the input for the radial dynamic coefficients, only one
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set of coefficients is required for an incowpressible lubricant (INC = Q) where-

as NFR cards are required for a compressible lubricant (INC # 0).

When all the required input, both the radial coefficients and the angular coef-
ficients, has been given for one bearing, the input is repeaced for the next

bearing until all NB bearings a:e specified.

Whereas a journal bearing usually has both radial and angular coefficients, a

thrust bearing has only angular coefficients and its radial coefficients should

el it A i ot

be set equal to zero. In general, the angular coefficientc for a journal bearing |

are of minor importance and may be set equal to zero except in unusual circum-

stances.

COMPUTER OUTPUT

Referring to the sample calculation given later it is seen that the first couple
of pages of computer output lists the input data. Thus, any mistake in the input

data is readily found.

The listing in the output of the bearing data gives the 8 dynamic bearing coef-
ficients for radial and angular motion. The angular coefficients are identified
as "ANG.KXX", meaning G s "ANS .W.BXX", meaning ab , and so on. The first column
in the list gives the whirl frequency ratio at which the coefficients apply. For
an incompressible lubricant, the coefficients are independent of frequency but to
simplify the output routine a value of the frequency ratio is still given although

it has no particular meaning.

After the listing of the input, follow the results of the calculations. There is
a list of output for each rotor speed. The list is preceded by a title giving

the rotor speed in rpm, and then follows a four column list of results. The first
column gives the whirl frequency ratio v/w, the serond column is the corresponding
frequency ., radians/sec, the third column is the real part of the instability de-

terminant, and the fourth column is the imaginary part of the determinant.
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The purpose of the calculations is to determine thrie frequency ratio values at
which either the real part or the imaginary part of the instability determinant
are zero. The program does this in the following way: to illustrate, assume

that the real part is positive at a frequency ratio of 0.51 but Lecomes negative
at the next frequency ratio in the sequence, say 0.50. Then the program cal-
culates the determinant at the midpoint of the interval (i.e. at v/o = 0.505)

and through these three values of the determinant (at v/o = 0.51, 0.505 and 0.50),
it passes a second order polynomial and calculates where it becomes zero. Let

this Be at v/o = 0,5024230. This represents a "first soluticn'. To improve the
accuracy, an additional calculation is performed with v/w = 0,5024230, and the
corresponding determinant value is used together with two neighhoring values to
compute a "second solution' which, then, is taken as the final solution. Obviously,
the corresponding determinant is not exactly zero but it is usually 10-6 to 10-8
of the neighboring values. To spot the solutions in the list of output, simply
go through the column of frequency ratios and each time the results show that an
interpolation takes place, the finally obtained freauency ratio is a solution.

By checking in the columns for the real part and the imagiaary part of the insta-
bility determinant, it i{s readily found which part has a zero point.
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INPUT FORM FOR COMPUTER PROGRAM

PN40O: THE THRESHOLD OF INSTABILITY FOR A FLEXIBLE ROTOR IN FLUID FILM BEARINGS

Card 1 (72H) Text

Card 2 (1415)

1. NS = Number of rotor stations (1 < NS < 100)
2. NB = Number of bearings (1 < NB < 10)
3. NPST = 0: rigid pedestals '

= l: flexible pedestals
4. NANG

0: no angular bearing stiffness
= l: bearings (and pedestals if NPST # 0) have angular
stiffness
NFR = Number of input values of frequency ratio (3 < NFR < 50)

w

INC = 0: bearing lubricant is incompressible (liquid)
= 1: bearing lubricant is compressible (gas)
NIT = Number of subdivisions of frequency ratio intervals (1 < NIT)
8. METR = 0: no diagnostic METR = 0 1l: diagnostic
NCAL = Number cf speed ranges
10. INP = 0: more input follows, starting with card 1
= 1: last set of input data

Gard 3 (LP6E12.5)

1. M = Youngs modulus for shaft material, lbs/inch2
2. DENST = Weight density of shaft material, lbs/inch3
3. SHM = oG, where G is shear modulus, lbs/inchz, and o is shape

factor for shear
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Rotor Data (8E9.2

Give NS cards with 7 values on each card:
1. Weight at rocor station, lbs.
2. Polar mass moment of inertia at rotor station, lbs.inch2

Transverse mass moment of inertia at rotor station, 1bs.inch2

. Length of shaft section to next station, inch
Outer shaft diameter for cross-sectional moment of inertia, inch

Outer shaft diameter for shaft mass, inch

~N Oy W

. Inner shaft diameter, inch

Bearing Stations (1415)

List the NB rotor stations at which there are bearings
Pedestal Data (1P6E12.5

This data only applies when NPST # O (card 2, item 3). Give NB cards with 6
values per card, one card per bearing:
1. Pedestal vibratory mass, x-direction, 1lbs.
Pedestal stiffness, x-direction, lbs/inch
Pedestal damping coefficient, x-direction, lbs.sec/inch
Pedestal vibratory mass, y-direction, lbs.

Pedestal stiffness, y-direction, lbs/inch

[= ANV R S I

Pedestal damping coefficient, y-direction, lbs.sec/inch

If also NANG # 0 (card 2, item 4), give additional NB cards, 6 values per card
1. Pedestal vibratory mass moment of inertia, x-plane, lbs.inch2

Pedestal angular stiffness, x-plane, lbs.inch/radian

Pedestal angular damping coefficient, x-plane, lbs.inch.sec/radian

2
3
4. Pedestal vibratory mass moment of iu2rtia, y-plane, lbs.inch
5 Pedestal angular stiffness, y-plane, lbs.inch/radian

6

Pedestal angular damping coefficient, y-plane, lbs.inch.sec/radian
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Whirl Frequency Ratios (1P6E12.5)

List NFR values of the whirl frequency ratio in sequence, 6 values per card
Note: The remaining data must be repeated NCAL times

speed Data (1PHEL2.5)

1. 1Initial speed, rpm
2. Final speed, rpu

3, Speed increment, TP

Bearing Data (8E9.2)

Give NFR cards if INC # 0, or 1 card only if INC = 0, with 8 dynamic translatory

coefficients per card:

K X K _K wB wB @B wB 1bs/inch
xx Txy Cyx yy  xx  xy yx ¥Y

1f alsn NANG # 0, this data is followed by NFR or 1 card with 8 dynamic angular

coeffrcients per card:

n G GG _wDh D aD wD 1bs.inch/radian
«x Cxy Cyx Cyy oxx Xy yx Y

Theoo is one set of coefficients per bearing, i.e. the above bearing duta is

repeated NB times.
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DIMENSION 24( s0)omIP{ RU) oRIT( 80) erL( B0) oRS( 80)oHW( B0) s
PNGOOSSTARILITY TmrESHOLU UF FLEAIBLE ROTOR

LRO( HO) eRJ( 6] eOVA{ ~A0) sDMAL 80D eUMI( BU)sAL( 301 0A2( 8O)»

2A3(C B0) cAal BuleaSl Au)eat{ Bu)esal( BO)eAN( BU) etsN( BUrsUNL H80)
JFRQI(QO)'XL(“’05L(“)0~L(“)OIL(“)OKR(“)OSR(“)Oaﬁ(biOVﬂ(“)OLB(lo,
DIMENSION PMX(CelU) sPRALLr10) sPDA(Ze10) ePRY (201U)sPRY (2910}
IPDY(2410) ¢SB(248)

DIMENSION DC(Hea0e]l0)eDAIBI40elU) oV (Z2e8e10)

COMMON AC(Gok) oaS(4e4) 20T TS

200 READ(Se100)
READ(S5e101) nSetire s@N 1 ofpr GonF s INCoNIToMETRINCAL e INP

READ(S5e1U2) Yt eDEnSTevnM

wWeITE (061 0U)

AITE(OelU )

WRITE (60100} NSonNcteivPs ] sMARGoNF o INCoNIT9METRoNCAL « INP
wRITE(6el0%)

WRITE(Beldn) Y aelittvaTy ann

WRTITE (bein )

WRITE (nelnd)

DO ¢d1 J=lens
READ (Be]uy) W () e lP (W) aRrIT (Y)Y oL {J) o RS (J) sk (J) 9RO LD)

201 WRITE(bell0)de~vitudontir(G)onll (I} ol (J)9RS(J) oRu(J) oHU(J)
REAL(Se101) (1 (d)edz]aenNs)
WRITE(B11L)
WRITE(GalUL) (Lrt{u) ed=]aninn)
202 AMY=350.0AY
AMSL=0.000001

204 RS{NS)=140

DENST=UrAST/ZaM
DO 210 Jv=lenS
RM{J) =M (J) 7A0S
RIP(J)=wlP(J) /a2y
RIT(J)==IT(JY/7A¥S
Ce=w)(J)
CA=ks (J)
RS (J) 20 va IR Inseywd ((L39R4)=((c?%0))
Ca=xu(J)
RWIJ) S0 TR 39ALAG (LatLa=(g9C2) vDENS]T
IF (Ca) 209420%¢2uh
209 RJ(J)I=0.V
G TU ¢#07
206 RJI(J)=(CastCaslrPo(z) /400t
207 C2=1,57079€385rm¥ ((( 3¥(C3=-C#C2)
IF (Le) 2uts203e2u+
208 RD(J)=NnStI)/C2
GO Tu ¢lv
209 RIV(JI=VLY
210 CoOnTIwuk
IF(wPSY) 21142150711
211 WwrITE(6eLL2)
WRITE (nelld)
DO 212 J=lens

REAU(S102) Pha(loed) oPKALLeu) sPOX(LsJ) oPMY (L) sPKY (Lod)s
1PDY (1)
WRITE (601 10ILR () sbPAllad) sPRACLIU) oPDX (1o J) sPMY (19 J) oPRY (19J)s
1PDY (1o )

PMX (Jed)=HMX (]eJ) /ANy
212 PMY(1ed)=PuY (led)/amy

IF(NANG) 2134215213
213 wRlITH (6ellw)

00 214 J=]1en™

READ(S+102) PMAI20J) sPRA(CeJ) sPOX(29J) 9PMY (290) sPKY (29J) s
1PDY (240} -
WRTTE(OeL10ILRU) erMELZad) s FRA(LoJd) sPDX(20J) 9PMY (2eJ) oPRY (20J)y
1PDY (20 d)

PrK(gad) =Pax(Pad) zavs
214 PMY(2.0)PUY (PeJ)/zary
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14

19
20
r3}

2%

27
28
29
30
31
32
33
34
25
36
37
3s
39
40
4l
42
43
44
45
46
47
48

51
52
53
54
55
56
57
58

60
61
62
63
64
65
66




215 READ(S0102) (FROL1{J)sJI=LoNFR)
WRITE(6s115)
WHITE(O0106) (FrUILIJ) eJ=)oNFK)

I1C=1 70
301 REAU(Se1U2) SP3TeSrbMeSPNC

Kl=NFiR 72

IF (INC) 303430240303 ‘ 13
302 x1=1 74

303 wklTK (6ell6)
ARITE(0e100)SESTeSEFrNedPNL
wRITE (el ] )

D0 310 K=1en8 78
WRITE(6sL1M)LH(K)

wRITE(6ellYy)

DO 306 u=1eK]) 81

READ(S5e¢1U9) (NC{TeJdex)al=)0d)
06 WRITE(HIZ21IFwE1{0) e {uC(1ladsR) el el)

IF (NANG) 3u7+e310e307 84
307 sRITe(bel2V)
VO 30w u=lekl 86

HFAD(SelUY) (N (Ta Jen) e i=]ed)
308 WhITE{oel?1)Fwdl () atla(lodeR)o]=)en)

310 CONTINUE ‘ 89
SPh=Sks| 9¢
320 ANSP=0.1047]197eb2s2y 91

WARITE (6e122) 50
Wikllt(6el2d)

10=1 94
FRuzFROLLL) Yy
KR=0 96
KE=0 97
Ki=1} 94
K?2=0 99
K3=v 100
DF 4= T ’ 101
DFw=(FRIL(2)=Fww) /i 102
325 FROSANSPYF«w 103
FRQ2=F RUPF ) 104
DU 3¢b Jslend 105
DVA(U)SF RO %P () 106
DMA(Y)==F el T (L) 107
326 DMR(Y)=FRO®ANSPER[r () 108
330 DO 375 u=lenb 109
IF(INC) 33243310332 110
331 l1=1 i1l
GO TU 34« 112
332 IF(R2) 33503340 1 113
333 Ii=1u 114
334 60 35k [=len 11%
SH{le1)=ClloT1le) 116
IF (NBNO) 3320335 555 117
33% Se(2el)=Al]olieu) 118
335 CONT fwur, 119
GO 16 3oy 120
338 l1=1lv 121
[2=2 122
[13=0 123
IF(R3) 340e340033 124
339 Il=luel 125
340 [F(NFPeTl) 345643500341 126
341 Ca=Fm@llI]) 1217
Clz=FRu1(I11+})=Cu 128
Cz=Ca=FwiLl(]l=~1) 129
Ciz=CisLe 130
CysFrw=Cu 131
DO 355 1-=1+8 132
C5=DC(Tefled) 133
Co=(DC(Tellele)=C5)/7(C18CI) 134
CA=(DCtIeIl=1eud=Co)/1C28C3) "13s
78
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C7=C6+CB

. L6=C2%C6~-C1oC8

J42

343
44

345
347

348

349
350

352
355
356

357
3ss8

359
360

3ol
62

kX3
364

365

366

kLY

364

C8uCS+CO*(CH+CINCT)
IF(I1=12) 34343424343
SB(le1)=C8

IF (NANG) 3aT7+355¢367

IF(13) 34693669345
SB(leI)=CR/ZC2* (FRA=FRUL(Ii=1))
IF (NANG) Q4743550347
SB(1+1)=SR(Le])+CB/CI*{FRQL(I]e])~FRin)
IF (NANG) 34743554347
CS=0A(lelley)
Co=(DA(LosI1eled)=CH)r(CL1#CI)
CB2(UA(leIl=14J)=CH) /7 (C20CI)
CT=C6+CH

C6h=C24(6~C18CH
C8=C5¢CY*(CH+CYRCT)
IF(J1=12) Jeveldarmeisy
SH{(2+1)=CH

GO Tu 355

TF(I3) 35093500352
SQ(2e1)=CH/C2* (Fiu=FRUL([1l=])}
60 TQ 355
SH(2e])1=58(2e1)0CE/CIFRL(]12])=FKRW)
CONT INUE

IF(13) 359635775y

IF(I1=12) 35943599350
11=11~1

[2=NFur=1

13=1

GO TO 3«1

DO 360 islen

DV(leled)=0,0

DV(2e]leu)=0,0

Ii=1

00 362 [=5¢R8
SH(Ilel)=FRrRYBSH(ILs])

IF (NPST) 3653639365

DO 364 I=]l.8
DV(Ileloeu)=38(IV.1)

GO TO 370
Cl=PKX(Iled)=FrcorMx(1)ed)
CozFRUPLA(TIL V)
CI=FKY(T1ed) =FrRUZHFMY ([1eJ)
C4=FRU*POY (11U}
CS=Sd(11s1)4C1
Co6=Sn(1led)eC2
C?=Sn{fles)+C3
CazSH([led) ¢Ca

D1=CORCT=CA®CA=Su(lls2) 25 (11+3)+SB(11+56)%SB(11e7)
D2=CHOCR+CARCT=SH{L192)®Sr([197)~58(1193)%SH([1+6)

IF(ASS(D1)~A8S (D2} ) JnTe366s300
03=0Le/01

Da=01+0) 3002

Dl=1e0/0s4

D2==D3*n])

GO TO 368

03=0170¢

Da=u2+03%01

D2=~1.0/0u

pls-D3%)2z

D3=CleDI-Ceou2
Da=Clep2+C2%*D1
DS5=1.0=03¢CT+Du®(H
Dh==D3*CH=~LL®CT

DY (Ilelyu)=Civ%=C2%00
DV(IleSeu)=CleeeCo®US
05=CI*SH(1is2)~Cursd(1146)
D6xC4*SH(1142)+C3%SB(il,6)
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136
137
138
139
140
161
142
143
144
1645
146
167
148
149
150
151
152
153
154
15%
156
157
156
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
179
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
1291
192
193
194
19%
196
197
198°
199
200

-1}

202
203

T 20




370
371
372

375
381

kLY

ell

el

4la

1>

OVI(Ile2eu)=N3IM)n=i0®n
OVIIlebeul=03%0heuudy>
DS5=C3ieSH(11e3)=Ca®y(llel)
DHaCeesdt]leI)eCi9o=(]lel)
DV(Iledeu)=pl® b=n1ue yn
DVIIleZeu)zp3un6enusy>
D3=CJ*Ul~Cauvt)?
Du=C3®D2+Cauepl
DS=140-1)3%CoeDunCe
Dez=03#Co=Du*(CYh
DVIillessu)=Ci%)5=Cua¥pon
DVvi(lleBeu)=C32p6eCu®*)>

IF (NANG) 3716375371
IF({I1=1) 372¢312¢31%

I1=¢

GO 10 361

CONT INLE

ITF (METH) sl eddg,y 3n2
I1=]ARS (MF W)

ARITr (Dol IFrre(viliofollol=lesd
GO TU wrn

ConTINnue

| S ELTT !

D0 420 J=1.11

Cl=RS (V)

Ce=Fruz*myw ()

C3z=ru(J)

Clo=swJty)

Cou=Cg/C1

Co=S0KT (Ca)

Co=5urT (CH)

CT=RL(J)

IF(COH®CI=UebI) wllealicbic
Ca=Cre(C7?

Dl=C7eC7%(a

D2=C7=D1

D3=C7e%02

De=N1*(C3=-C10)

D3a=CT/Cd

De=CI9>/77.0

D7=Clesunsi.u

DA=C3-Clu

DE=Prepde3aCli)

Al (J)=leUs)3/P4,1)

A2 (J)=n]l (U) =Dw
AF(J)=(let)=G/ 3,003/ 1cUeV)*&C/
Aa(JY=ters7bh,0
AS(u)=Cl*au ()

AR/ (J)=C2eA 3 ()

AN{U)=(ledegeCuu 34« 10¢L3/1CUa0)*0S5

WP (J) ) eumda/~aNe 8700040
A7 (U =Ca%mN{) se. v CH
BN (J) =yn® ()

M(II=(le0sa,0dCav, b)) 7=(C3=Clu)*2,0%D5

1Y T w0

P Cmz( % ((L e ) e22)

Cu=Che(Cu~C])
IF(C=0euling) wiidesd]lSewla
Cil=lsuettyrati =
Chz]aUsuenelx

G0 Ty w1y

CHr=SurT (] 400eC=)
Cll=stw T (011)

DE=CHe (LA~ )

Da=Che (Ces( )

DI=05+0%
[FanS(Cy/CH)=u.0002) 4lbralbebl?
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205
206
207
208
209
210
211
212
213
2lé
215
216
217
218
219
220
221
222
223

225
226

‘221

228
229
230
231
232
233
234
235
236
237
238
239
240
241
262
263
264
245
246
267
248
249
250
251
2s2
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
2€9
270
271

e e o o




212

416 D0R=6.5/CueCy
N3zCeClia(l.n=D8) 2713
DuzConCli®(loueNK) 274
GO TU «le ) 275
417 DI=SCRT(CS) ] 276
D&z=SURT (D6) 2mn
418 D7=D3+D5 278
Dazpe*s 2719
Di1=3«C7? 280
D2=z=DaeC? a6l
vC=CosS (D2) 709 282
vS=SIN(D2) 709 283
BMC=E X (1) 264
Bias=] 40 /e MC 285
D1=205% (cMCerdMS) Uy 286
D2=U e B (oMC=trMy) /Uiy 287
Al (J)=DA*D] eNL YL 288
A2 (J)=US*Dl +linBve 289
A3(J)=0IvD2e0nVd 290
AR (J)=CeeAl (D) 291
BN(J)=(D]=-vC)/C] 292
AT(J)=C2¢()]=-v() 293
AL (J)=Ca® (Pat)P=( 3¥yS) 294
AS(J)=Cl%*A4 () 295
Ca=Cl*C5 296
ANCI) =(DE®Y2enToyS) /(0 291
DN(Ji=(T8#ye=Nrdvy)/Cr 298
420 CONTINUE 299
D0 470 1=1.4 300
DO 4592 J=le4 301
KL(J)=00 302
SL(J)=b.0 303
BL(JY=V.U 304
452 VL)) =0,.0 305
Il=l+1~1 306
IF ([=2) 493e453e45 307
453 XL(J1)sapsy 308
GO TO «5% 309
4S54 [1=11-4 310
SL(Il)=aAmSL 311
455 11=1 312
12=Ln(l) 33
DO 465 JU=1enS 314
00 456 L=leu 315
BRL)=HL L) eDMa(J)2SL (L) Jle
Nz

VRL)Y=svL LY shva (U 4xpL (L)
AR(LY=xL (L) 318
456 SR(L)=sL (L) 319

BR{1) =R {1) =D (U) 2SL (4) 320
BR(2)=2BR(2) QM= {9) 2S5 (3) Jel
BR(J3) = (3)+HM (V) #SL(g) Jz22
BR{Y)zrr(4) =DM () #SL (1) Ja3a
IF(12=J) 460¢45T7+400 324
457 AR(1)=pR(1) +SLILI*DVIzels 1) =3L(2)%VI295¢]1)+SL () *DV(2s2e]I1)~ 325
ISL (&) %DV (2eb0aT]) 326
BR{2)=8R (21 «5L 1) #UV (L2591} oL (2)20V(2e1el)l)+SLI3)#DVY(2969]1) 327
ISL(&)eDV(Z2e¢201 1) 328
RR(3)=4Rr{3)+SLIL) %DV (20391 L) =3L(2)*DVI(2eToI1)+SL{3)*DV(2e4s]l)~ 329
1SL(4) =DV (2e8sT1) ) 330
BR{w)=AR(4) +SLIL) UV I2eTy11)eSL(2)20V(293¢11)SLI3)2DV(2580e11) 331
1SL(@) 2DV (2ea0(]) 332
VRIL)I=VRII) =X (1) 20V (Tolell) AL (2)#0V (1 eSell)=XL(3)#0V(1e2eIl) ¢ 333
1AL (@) #DV(lebyI1) 334
VR(2)Y=Vr{2)=XL (1) 1V (LleSell)=AL(2)*DV(1olell)=XL(3)2DV{1e6s]1)) = 335%
IXL(G)e0V(1e2011) 336
VRI3)=VR(3)=XL (1) 40V (Le30l1)¢XL(2)*DV(1eTsl1)=XL(3)*DY{loboIl) 337
1XL (@) #DV{Llende1l) 338
VR(4)=VRIG)=XL(L)*CV (1T oLl =AL(2)%0V (1930 I1)=XL(3)*DV(le8BoIl)~ 339
340

IXL(4) oDV {letoll)
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458
459
w60
L L)

62
“65

«70

L80
enl
“H2

4n)
w84

LYo
LT

w87
488

LHY

L0

v}

LA

Y5

496

Iis]lel

1F (NH=1l) 4584990459
12aNSe2

60 Ty «60

12z 011D

IF (NS=)) wbnebrmnewn]

DO @n? Lxlew

XLILISA2(J) o tm (L) o3 () 9*5n (L) *saN{J) PR (L) sDNLJY *YR (L)
SLELIRAG(JI @ (L eal {o) Sk (L) saniJ) P (L) +BNJ)#VYR L)
BLILISAZ (U ®Xm (L) oAt ) 9or (L) eal (J) R (L) ¢A3(J)*VRIL)
VLILISAAR( I ® 8= (L 10al i )oKk (L) *ad{g)oBr(L)*A2{J)*VRIL)
COMT INUF

AC(leD)=vr ()
AC(2el)syr(y)
AC(Jel)zmm ()
AC(4al)ankiy)
AS{lel)zvw(2)
AS(Pel)zvmta)
AS(3el)zriv(2)
AS(uel)=nv(w)

CONT Jea,h

CALL Cutlw

SRITH (Belus)IF~asF e iLeuly
IF (MK Gyhew ) otyy
{F(REY) wNDleunloentn
IF(R]) wrdevrsenpy

Kl=0

pCl=u1C

TClzrtwen

ue TO e

IF(UTC®ICL) Gvceuvaeuna
DCI=0TC

TC1=FRwm

IF(LTSRUST) SUneunpessd
DES LB

TS1zkrw

IF (NP R=JL) DDVeaD0eb4n/
[FIN]T=1=x3) wavYeanqeann
K3=n3+1

K2=1

FEa=pFuene s

GO Tu Jse>

Kis=0

Krz=u

10=1ue}

FRest LY (IW)

IF(virwelL) wusbYydety)
DFwz(,1

GO T a2

DFv=ivll
PFEw=(Frgl (] 3sl)=bra)/ubw
GO T e

Kz}

JCH=uicC

1C 4=Fw

(AR ESTE A1

TS I=Fww

Fruz (FrasTCl)/2.0

K2=1

G 1o 325

Kk=-]

A1=7C1

A2=Frw

x3=7C3

¥y1=0C]

Y 2=0T0

Y3=NCy

GG TO se20 .
IF(KNe]) S01es97 44%7

82

kL3
Ja2
343
344
345
346
kY
348
349
350
351
352
353
354
355
356
as7
k}-1.]
359
360
361

364
365
366
367
368
369
370
371
372
373
374
315
376
3717
378
379
380
38l
382
383
3864
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
475
406
407
508
409




497
498

499
S00

501

505

506

507
508

Su9

S10
511

512

<0

521

523
S52a
52%
550

562
553

554

KR==2
IF (FRw=X2) 4994498¢4%0
X1=x2

Yi=Y2

G0 YO 500

X3=X2

Y3zY2

X2=FRwW

Y2=pTC

GO TO %20

KR=0

0TS=pS3

FRW=TSJ3

bC1=pC3

TC1=1C3

GO TO 4nsS

KE=1

DS3=0UTS

TS3=FRw

FRWZ (Fra+TS1)/72.0
K2=1

60 TO 32%

KE==1

X1=Ts1

X2=F Rv

X3=TS3

Y1=DS1

¥2=pTS

Y3=pS3

GO TO 52v

IF(KE+1l) 512+5084¢508
KF==2

IF (Few=X2) Sltieou~eSUy
Xl=x2

Yi=Ye

GO TO %11

X3=x2

Y3i=YZ2

XO=F Rw

Y2=uTS

G0 TO »év

KF=0

DTS=pS3

Frw=TS3

GO TO 4w~

Cl=xrxid=us2

C2=al=nl

C3=x3-x1]
Cu=(Y3=Ye) /7 (C1%C 1)
Chz(Yl=Yc)/ (Lr¥Cy)
Ch=(2#Cu=Cl*Cn
Co=CusCh

IF(C4) Hel2e9d]lebe2
Co==Y2/CH

GO T0O S57-
Ch=0,5/Cu2Co
Ca=8HS(CHRCo=Y2/7Cn)
Caz=sSturT (Cu)

IF(CY) 2234524524
Cu==C4

CAz=fu=Co

FRv=x7+(Ck

60 Tu Jd2>
SPR=%rDesPHC

1F(SPFN+0. 0000 =3rFU) D9295224320

IF (NCAL=1C) 59549554553
[C=1C+1

GOy Tu 391

IF CINP) 9924200599

430
411
412
413
414
415
Wl6
417
418
419
420
421

422
423
424
“25
426
4217

428
429
430

431

432
433
434
435
436
437
438
439
4490
441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
Lb4
465
466
467
468
469
70
@71
472
473
474
479
476
417
478



555 CALL Fx17
100 FORMAT (Ichk
1 )
101 FORMAT (leln)
102 FORHAT (bE1Z2e9) :
103 FORMAT (AYHOSTATTIONY  WUembuy FEUGFLEX ANGLFLEX NOJFREY  ITNCUMPR

IsuRDIvs e TwIC SkekbS Lwrul)
106 FORMAT(lbev]Y)
105 FOUWRMAT (1 3H0 YOUNDES MOUDAeonUENSITY (SHE AR FALT)®0)

105 FORMAT (AE 19 eh)
107 FORMAT ([ L1rnumaTaw ata)
108 FORMAT (JUanoSTAT O mANS POLAR MO4, 1IN, THANSV MUl IN L
LENAT A CuTevlal(sTlFr) il ula(MASS) INNER OAG)
109 FOWMAT (4r9,2)
110 FORMAT(Ioer b, ,ne b LG n)
111 FOruAT (] 7R048 anInt STaTluny)
112 FowbaT (lanupbir Q1AL oaib)
113 FowsaY (ogrusTwl [, St =X STIFFNESS=X NDAMP ING~X MA
15S=Y ST1R® e ay=Y LAAr [inG=Y)
116 FORMAT(IuHUSTATION Mot INERT=X  ANGSSTIFFN=X ANG DAMP =X MOM .
LINEWT=Y  ArGesilibfivey AR e JAMP=Y)
115 FORMAaT (23~uTrladL FrkuikNLY RATIOS)
1io FORMAL (vt Il floL Serel Fliank SPLED SPEED INCR,)
117 FORSAT(/Zz9=g ey o drar]he (utfr ICIENTS)
113 FOwMAT(/earumr av v as =ulax STal fuNT3)
119 FORMAT (|4 Prb oA PUAASPFKARLURIHAKATLOXIHKYXLUXRIHKYYOXOHW*HXXBAS
JHE LAY K oA JY 4= A aptb YY)
120 FORAAT (13m0 FobLoaNal JURATRNAND o RAXDATHANG K XYHATHANG+KYXOXTHANGWKY
LYSRIRAN sy b Bl o Ay al g P AYGA SRANL S WY XS XIYHANG oW *HYY)
121 ForRval (Pela,5e k] 205
122 FuRMaT (/771 3~0=<0lur areeustl S oewr kPM)
123 FORMAT (9940 FwbtiemAal Ly P REGUENCY RE (LETERM) IM(DETERM))
EnD
SUrOU) [ANE CoObTw
SUneuUl e PO PANLY0
Dlarasion Tant(aes)
COVMPMON AC(wes) eAS(wea) ol esDI>
INITIALIZATION
N=4
BTC=1.v
DIS=0..0
DG 10 JU=len
10 INDA(Je 3=V
CHFCK FUR LEw0 MATKIA
00 15 I=len
Inw=1
IcL=1
DO 16 J=]eN
[FlarS(aClieJ))ea=s(as({[e0))) 12412911
11 IRw=0
12 IF(ARS(AC (U1 ) +anD(AS(Uel))) Laelbel3
13 IcL=v
14 CONTINUE
IF(lwweCL) 1ol 046
15 ConTInue
SEARCH FOR PIVOT ELEMENT
DU 41 1=lexn
TST=0.0
U 29 J=]len
IFCINOX(Ue3) =) Llelael?
17 D0 ¢3 K=l
IF(INDA(ReI)=1) 14423046
18 Cl=%uKRT (AC(JeK)®aC{UeX) +AS (U]} ®AS(VeK))
IF(TIST=Cl) 22+234+23
22 lIww=y
ICL=n
Ts1=Cl
23 CONTINUE

480
481
452

484
LY-1.
486
“87

489
“90
491
492

494
495
496
497
498
499
500
501
502
503
S04
505
506
507

510
Sil




26

25

26
29

30

3l

32

33
36
37

38

42

43
o

45

46

a7

CONTINUE
INDX(ICLe I SINUX(ICL 03)¢])
INDX(Tol)=[RW

INOA(Ls2)m[CL

INTERCHANGE ROwS TU PUT PIVOT ELEMENT ON OLAGUNAL
IF (IRW=1ICL) 25+29+¢25
DTC=-DTC

DTS=-DTS

DO 26 L=leN

Cl=AC(IRwsL)

C2z2AS(IRweL)
AC(IRWeL)I=AC(ICLSL)
AS(IRWeL)=AS(ICLWL)
AC(ICL+L)=C]l

AS (ICL+i.) =C2

DIVIOE PIVUl ROw HY PIVOT ELEMENT
Cl=aC(ICLeICL)
C2sAS(JICLICL)

TST=07C

DTC=CleTST=C2*0TS
DTIS=C2#TST«Cl*DTS
AC(ICLsICL)=] 0
AS(ICLsICL)=0,0

IF (ABS(CL1)=ARS(C2)) 31030030
TST=C2/Cl1

Cl=1,0/7(CleTST*CZ)

C2=TST+Cl

GO To 32

IST=Cl/C2

C2=1.0/7(C2+TST*C1)

Cl=TST#*Ce

DO 33 L=1+nN

TST=AC(ICLWL)
AC(ICLL)=CL®TST+Ce®as{iCLL)
AS{ICLL)=Cloaas (ICLeL)=C2*IST
REDUCE NON=-PIVOT &Uwd

DO «] Li=leiN

IF(L1=ICL) 374414937
Cl=AC(L1s]ICL)

C2=AS(LlsICL)

AC(L1+ICL) =040
AS(L1esICL)=0,0

DO 3m L=1leN
AC(LLIL)=SACILI L) =CleaC(ICLoL)+C2%AS(ICLWL)
AS(LIeL)=AS(Llebl)=CevaC(ICLsl)~=CloAS(ICL L)
CONT INUE

INTERCHANGE COLUMNS

DO 44 [=1eN

L=zNel=]
IF(INUDA(LL)=INDXK{L2)) wzob4942
IRw=INDX (L e])

ICL=INUXILy2)

DO 43 K=1uN

Cl=AC(KeIRW)

C2=AS (K IRw)
AC(hyIkw)=aC(KsICL)

AS (KyIWw) =asS (KeICL)
AC(KsICL)=C1

AS(KReICL)=C2

CONT INUE

CONTINUE

DO 45 K=]leN

IFCINDA(Ka3)=1) 46s45446
CONT INUF

1D=1

GO TO 47

I1D=2

DTC=0.0

D1s=0.0

RE TUKN

END
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w2
43
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L1
47
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49
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52
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S4
55
56
S7
58
$9
60
61
62
63
64
(-]
65
67
68
69
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71
72
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15
76
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78
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b2
83
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