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ABSTRACT

Several heats of a Boeing-recommended alloy (alloy 21) were cast by Reynolds and
fabricated by Reynolds and Wyman-Gordon into die forgings. hand forgings, plate, and
extrusions, All the wrought products were forwarded to Boeing for lieat treatment and
evaluation of mechanical. fracture. fatigue. and stress-corrosion properties.

Heat-treatment studies were performed on specimens of from 3-in.-thick plate of the new

alloy. The degree of overaging required to achieve a 25-ksi smooth-specimen threshold stress
wis determined using stress-corrosion crack growth rate data from precracked double
cantilever beam specimens. Based on these data, a T6 + 35 hr at 325°F treatment was
finally selected. Metaliographic studies on failed and unfailed smooth stress-corrosion
specimens verified that the selected heat treatment was adequate to meet the stress-
corrosion goal,

The wrought products ot alloy 21 were heat treated in Boeing production facilities
according to the heat treatment selected. Mechanical. fracture. and stress-corrosion proper-
ties for die forgings of alloy 21 and several other forging alloys may be seen in the following
table.

Short-transverse stress- |
corrosion threshold
Minimum longi- (ksip
tudinal properties | Longitudinal| 3.5 NaCl |
Thickness Ftu 0.2% Ftv ch range alternate Industrial
Alloy (in.) (ksiy [(ksi) ° | (ksiy/in.) immersion atmosphere
Alloy 21 6.75 69* 1 60* RIVEERT. B > 25%
7049-T73 | 5.0 70 60 30 38* 45 )
X7080-T7 | 6.0 05 57 27 30 25 15
7075-T73 | 3.0 606 56 27 38 >47 >47
7075-T73 | 6.0 61 51 27-38 >47 >47
T175-T736| 3.0 max 76 60 2738 ~ 3¢ "
7075-To 3.0 max 75 65 25-32 [} 14
7079-T6 (».O_¥ ! 72 | (’3_ 1 g§ ~3_3 | 7 6

* Estimated values

The mechanical properties of wHoy 21 are comparable to those of 7049-173. The
fracture toughness of allov 21 is as good as or better than that of the other aloys listed.
The smooth-specimen short-transverse stress-corrosion threshold appears to be greater than
25 ksi. Test data also indicate that the smooth and notched axial (tension-tension) fatigue
properties of alloy 21 are conrparable to those of 7075-T6o and 7075-T73.
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SECTION |

INTRODUCTION

The majority of in-service stress-corrosion problems in today’s high-performance struc-
tures occur in 7000 series alloys such as 7075-To6, 7178-To. and particularly 7079-To.
Although the overaged alloy 7075-T73 offers significant stress-corrosion resistance, use of
this alloy can result in weight penalties because of its lower strength, particularly in thick-
section applications. The recently introduced 7175-T736 alloy can offer good stress-
corrosion resistance and exceptionally high strengths. but this alloy is not available for thick-
section applications.

The 707S-type alloys in thick sections have low strength because these Al-Zn-Mg-Cu-
Cr alloys are highty quench sensitive. Thus, strength properties drop off rapidly with decreas-
ing quench rate (or increasing thickness). Quench sensitivity can be reduced by minimizing
the concentration of the recrystallization retardant. chromium., or by replacing chromium
with other recrystallization retardants such as manganese and zirconium, waich have less
effect on quench sensitivity (1,2,3.4). Reductions in copper content decrease quench
sensitivity (2.5), but may also decrease stress-corrosion resistance, Reductions in magnesium
and zin¢ content decrease quench sensitivity (2), but also lower strength properties,

One recent alloy, X7080-T7. was developed to provide stress-corrosion resistance and
good thick-section mechanical properties, This alloy. by virtue of low copper content and
replacement of chromium with manganese, maintained attractive mechanical properties in
thick sections even though it was boiling water quenchable, The boiling water quench was
particularly useful in minimizing residual quenching stresses and subsequent distortion
during machining, This alloy also showed adequate stress-corrosion resistance when tested
by 3.577 NaCl alternate immersion, having a short-transverse threshold stress of 25 ksi.
Subsequent testing in outdoor industrial environments, however, showed that stress-corrosion
failures in short-transverse specimens oceurred at stresses as low as 15 ks (6). Since those
results were published, less interest has been shown in X7080-T7 for thick-section forging
applications,

Work aimed at developing a high-strength. thick-section alloy with adequate stress-
corrosion resistance has continued at Alcoa. Reynolds, Kaiser. and Boeing.

The Boeing program reported here is based on an alloy composition recommended as
the result of previous contract work on the effects of silver, horon, cerium., vttrium, and
zirconium (5.,7) on stress-corrosion resistance. The nominal composition of the recommended
alloy (designated alloy 21) is shown in Table 1. The nominal composition and composition
range for alloy 21 are plotted in Fig. 1. Alloy 21 is essentialty a 7075-7178-type alloy that
contains low copper and in which zirconium and manganese replace chromium. Saveral
ingots of this alloy were cast by Reynolds Metals Company and were fabricated into hand
and die forgings, extrusions. and plate by Reynolds and Wyman-Gordon. The material was
sent to Boeing for heat treatment and evaluation. The stated contract objective for this
alloy was: . . .a minimum tensile vield stress of 70.000 psi, a minimum short transverse,
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A. Magnesium-Zinc Plot

Figure 1. Chemical Compositions of Thick-Section Experimental and Convmercial Alloys
m Relation to 7079, 7075, 7178, and 7001
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stress-corrosion threshold stress of 25,000 psi, good toughness and fatigue properties, and a
quench sensitivity such that the properties can be maintained in thick piate and forgings.”

Although minimum property goals for thick sections have bzen lowered in the more
recent Alcoa and Reynolds contracts (8.9), these contracts are nevertheless aimed at the
saime goal as the Boeing program. The stated objective for the Alcoa and Reynolds programs
is: **. . .the development of a high-strength, general purpose forging aluminum alloy. The
alloy shall be capable of production using presently available commercial processes and
heat treatments, and it shall have the following properties (minimum values, not typical
values):

A minimum longitudinal 0.27 yield stress of 72,000 psi in 3-in. thick plate.

A minimum longitudinal 0.27 yield stress of 63,000 psi in &-in. thick forgings.
A minimum short transverse stress-corrosion threshold stress of’ 25,000 psi (as
measured in alternate immersion salt solution tests).

A minimum toughness, Kj.. of 35.000 psi y/ in.

A minimum fatigue strength equal to that of 7075-T6.™

WIJ:—

D b

The Reynolds approach is to utilize a base composition very similar to the Boeing alloy
but with just slightly higher zinc content and lower iro and silicon contents (Table 1 and
Fig. D). Manganese, zirconium, and chromium additions are being studied by Reynolds
(9.10).

Alcoa is investigating a much broader range of zine and magnesium contents, and most
of the Alcou alloys contain medium to high copper (Table | and Fig. ). Vanadium, zirco-
nium, manganese, nickel, and chromium additions are being studied by Alcoa (8.11,12.13.14,
15).

Kaiser (16) has recently introduced another candidate for the thick-section alloy mar-
ket designated 7049-T73 (Table | and Fig. 1. This alloy has high zinc content, medium
copper content, and chromium additions.

The current Boeing program on alloy 21 was divided into three phases. In Phase | the
effects of quench rate and room-temperature delay time before artificial aging were investi-
gated to select a room-temperature delay time for use in subsequent work. In Phase 1] the
effect of quench rate and degree of overaging on mechanical properties and stress-corrosion
resistance were studied to select the final heat treatment for hand and die forgings, extru-
sions, and plate. All wrought products were then heat treated in Boeing production facilities
using the selected heat treatment. In Phase I1I the mechanical, fracture, fatigue, and stress-
corrosion properties of the alloy were determined.

Because of the similar objectives of the Boeing, Reynolds, and Alcoa contracts, avail-
able information on all these programs is presented in this report. In addition, some com-
parisons are made with data reported by Alcoa under Contract NO0OO19-68-C-0146 (6). This
contract was also aimed at the development of high-strength, stress-corrosion-resistant
aluminum alloys. Data for X7080-T7 (17,18), 7049-T73 (16.19), and 7175-T736 (20,21)
are also compared. Based on these data, some perspective on the mechanical properties of

6



the various contract and commercial alloys can be achieved. Complete comparison of the

relative stress-corrosion resistance of the Boeing, Alcoa, and Reynolds contract alloys must
await further testing,



SECTION 11

EXPERIMENTAL MATERIALS

I, CASTING

All plate. forging, and extrusion ingots of alloy 21 were cast in the experimental
foundry, Metallurgical Research Division, Reynolds Metal Company. Richmond, Virginia.
The Reynolds patented Controlled Cooling casting process. used at their Massena plant to
cast torging quality ingots, was employed.

The metal was melted in a 2,000-Ib-capacity, gas-fired, open-hearth furnace. All melts
were chlorine tluxed for approximately 1 hr until the Straube-Pfeifter vacuum gas sample
showed no bubbles. The molten metal was laundered to the casting station through a pre-
heated alumina ball filter to remove nonmetallic inclusions. A final chemical analysis button

was taken haltway through each cast. The ingot analyses are shown in Table 2.

After casting, the ingots were stress relieved at 650°F for 16 hr and subsequently
homogenized for 24 hr at 870° to 880°F. lach ingot was checked ultrasonically for cracks
or other defects. Metallographic studies of the ingots showed them to be of sound quality,
with a unitorm cast grain size of about 0.002 to 0.003 in. Some porosity and zirconium-
bearing intermetallics were present (Fig, ),

2. FABRICATION

Two I4-in.-diam ingots (one 28X in. long and the other 45 in. long) and three 6-in.-diam,
00-in. long ingots were shipped to Revnolds’s Phoenix extrusion plant for processing accord-
ing to the standard practice for 7178. Prior to extrusion. the ingots were scalped and soaked
48 hr at solution temperature. Figure 3 shows the extruded products produced.

Two [4-in.-diam, 60-in.-long forging ingots were scalped to 13 in. and then sent to
Wyman-Gordon, Worcester, Massachusetts, for die and hand forging fabrication. Figures 4
and 5 show the landing gear and Navajo die forging contigurations, respectively. Figure 6
is a schematic representation of the hand forging configurations produced. Details of
Wyman-Gordon’s processing of the die and hand forgings are listed in Table 22, Appendix I.

Two &-in. by 24-in. by 60-in. plate ingots were scalped to 7-in. thickness and sent to
Reynolds’s McCook plant for rolling according to standard rolling practice for 7178.
Figure 7 illustrates the plate products produced.

All final fabricated materials, including an extra 13-in.-diam, 19-in.-long scalped ingot
were shipped to Boeing for evaluation.
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Large. Gray, Zirconium-Bearing Intermetallic Particles in C and D. There Is Little
Difference in Grain Size from Surface to Center of the Ingot.

10



T
2
1

f—— § ]

\

ANGLE (0.1x 0.1 IN. x 140 FT)

ANGLE (0.25x 0.25 IN. X 84 FT)

BAR (1 x 1 IN.x 40 FT)

PANEL (2 x 6 IN. x 38 FT)

Figure 5. Shapes and Dimensions of Alloy 21 Extrusions



Figure 4. Landing Gear Die Forging of Alloy 21. The Forging Is 6. 75 Inches in Diameter
by 33 Inches Long (Three Each).



Figure 5. Top and Botiom of Navajo Die Forging of Alloyv 21, The Forging Is 55 Inches Lo ng
and Ranges in Thickness from 0.02 1o 4 Inches ( Three Fach)



6 x 10 x 45 N, 6 x 9.5 x 30 IN.
(ONE EACH) (ONE EACH)

Figure 6. Shapes and Dimensions of Alloy 21 Hand Forgings



i 3 x 20 x 43-IN. 3x 18 x 18IN.
' (TWO EACH) (ONE EACH)

Figure 7. Shapes and Dimensions of Alloy 21 Plates
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SECTION 11

SELECTION OF THE HEAT TREATMENT FOR ALLOY 2|

I. PHASE |
4. Effect of Quench Rute and Room-Temperature Delay Time on Mechanical Properties

Since it is known that quench rate and room-temperature delay time between quench-
mg and artificial aging can have significant effect on mechanicul propertics, these variables
were studied first, Material from 3-in.-thick plate of ultoy 21 was used for this study.

An outline of the heat-treatment schedule to evaluate the effects of quench rate and
room-temperature delay time is shown in Fig. 8. To achieve the different quench rates, the
block sizes and quenching conditions of Elkington and Turner (22) were used. as shown in
Table 3. After a prior T6 treatment (24 hr at 250°F). ali blanks were overaged at 320° to
325°F to an electrical conductivity of 3877 TACS. This was done to ensure that the mechan-
ical propertices to be determined would be representative of material that had been sufficiently
overaged to provide fairly high stress-corrosion resistance (7075-T73 has an electrical con-
ductivity of 387 to 4277 1ACS). Hardness aid electricul conductivity data were obtained on
the variously quenched blanks as a function of aging time at 320° to 325°F by removing
the blanks from the furnace after each 6 to 8 hr of aging. These data are plotted in Fig. 9
and histed in Fables 23 and 24, Appendix |,

The reason for the stight irregularity in hardness at 36 hr (Fig. 9A) is not clear. Figure
9B shows that a total of 46 hr of overaging after the ToO treatment wis required in the most
slowly quenched blanks to achieve 387 IACS. For the more rapidly quenched blanks, a
total of S4 hr of overaging was required to reach 387 IACS. This behavior is quite different
from that of 7075-T6. in which an electrical conductivity of 387 to 427 is reached after
only about 24 to 30 hr of overaging at 325°F, To determine the effect of 10°F and 30°F
Increases in aging temperature on aging behavior, additional aging data at 320°F, 330°F, and
350°F were obtained. These results are shown in Fig. 10. Even at 350°F. 13 hr are required
to reach an electrical conductivity of 38/ TACS. For 7075, only about 6 to 8 hr at 350°F e
after a prior To treatment are required to reach 3877 TACS,

The short-transverse mechanical-property data obtained from the blanks heat-treated
in Phase are fisted in Table 25, Appendix 1. and plotted in FFig. T'E. The results show that
room-temperature delay time had very little effect on mechanical properties, The cffect of
quench rate on mechunical properties was as expected, with strength being highest for the
most rapid quench rate (180°F/sec). Elongation and reduction in area values were signifi-
cantly higher for the most rapid quench condition.

b.  Effect of Quench Rate on Ductility
The ditference in elongation and reduction in area for the variously quenched speci-

mens was also evident from an examination of the fractured tension specimens. Specimens
from the slowly quenched blanks had macroscopically flat fractures normal to the tensile

16



QUENCH RATES

9°F/SEC
36°F/SEC
180°F/SEC

l | l R

ROOM-TEMPERATURE DELAY

1 HR 8 HR 5 DAYS 11 DAYS

| l l .

AGE 24 HR AT 250°F + TIME AT 320°F UNTIL

ELECTRICAL CONDUCTIVITY OF 38% IACS
ISACHIEVED

MECHANICAL PROPERTIES

OPTIMUM ROOM TEMPERATURE DELAY
FOR EACH QUENCH RATE

Figure S, Outline for Phase I of the Heat-Treat Schedule to E valuate the Effects of Quench
Rate and Room-Temperature Delay I'iime on Mechanical Properties of Alloy 2!



Table 3. Block Sizes and Ouenching Conditions for Achieving Various Quench Rares ¢
(From Ref. 22)

Quenching rate Block size
(°F/sec) (in.) Quenching conditions
I.8 IN2-1/2x 1-5)/8 Celd air blast
a 3n 2-0/2x 1-1 /4 Boiling water
36 IN2-1/2x 0-1/4 Water at 194°F
90 IX5/8x5/8 Water at 194°F
180) 3IX5/8xS5/8 Water at 140°F

YQuench rates are m the range 779° (o 383°F .
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S QUENCH .
= RATE
9; (°F/SEC)
- A 180
2 ® 36
5 0 9
D -
2 AGING TEMP = 320°F UP TO 36 HR,
9 325°F THEREAFTER
5-DAY ROOM TEMP DELAY
BEFORE ARTIFICIAL AGING
25 | i L1 L1114 ] ] 1 1 LpL1ll 1 1 |
1 2 5 10 20 50 100 200 500

B AGING TIME (HR)

Figure Y. Effect of Quench Rate and Aging Time on Hardness (A) and Electrical Con-
ductivity (B) of Alloy 21 after T6 Treatment (24 Hr at 250°17)
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30
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5 L1111l L L L)1t L1 |
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AGING TIME (HR)
(B)

Figure 10, Effect of Aging Temperature and Time on Hardness (A) and Electrical Con-
ductivity (B) of Alloy 21 after T6 Treatment (24 Hr at 250° )
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axis, whereas the most rapidly quenched specimens showed 45° shear fractures (Fig, 12).
Additional optical and electron microscopy studies on failed tension specimens from the
stowly quenched blanks showed 3 tendency toward intergranular fracture {Fig. 13), with a
high density of intermetallic particles present on the fracture face (Fig. 14). These particles
are probably equilibrivm M (MgZn~) phase. Other unidentificd and larger intermetallic
particles also played u role in initiufing fracture in these specimens (Fig. 15). but there is no
evidence that these lurger intermetallics did not also aid in initiating fracture in the more
rapidly quenched material. Fractures in specimens from the more rapidly quenched blanks
were more transgranular (Fig, 16), and fractography of these specimens showed both trans-
granular and intergranulyr dimples and brittle intergranular fracture (Fig. 17).

An additional and less frequently observed type of intermetallic particle noted in ten-
sion specimens from blanks quenched at all rates is shown in Fig. 18. Microprobe analysis of
these particles (Table 4) showed them to have a composition approximating that of ZrAl3.
Itis believed these particles are the same as those shown in the etched micrographs of the
14-in.-diam as-cast and homogenized ingot shown in Fig. 2. Although these intermetallic
particles had no noticeable effect on the properties of alloy 21, they are certainly not
desirable. Further casting technology could undoubtedly eliminate the occurrence of these
intermetallics.

Transmission electron micrographs from aged blanks of alloy 21 that had been quenched
at 9°F/sec and 180°F/sec were similar except for a higher density of lurge rod-shaped particles
in the slowly quenched material (Fig. 19). These larger particles may be the same ones that
appear as smull dots on the micrographs of the stowly quenched, unetched material in Fig.

I5. Such particles may be responsible for the darker etching response of the slowly quenched
material compared with that of the more rapidly quenched material (Figs. 13 and 16).
Attempts to identify this phase by transmission electron microscopy techniques were
unsuccessful.

2. PHASE 1]
a.  Effect of Quench Rate and Overaging Time on Mechanical Properties

After it was determined that room-temperature delay time between quenching and
artificial aging had little effect on mechanical properties (Fig, 11), a study was conducted
to select a heat treatment for alfoy 21 that would provide the highest mechanical properties
and at the same time meet the stress-corrosion goal of the contract. In particular, the degree
of overaging was to bhe selected on the basis of stress-corrosion crack growth rate data; that
is, the strength of alloy 21 wus to he governed by the umount of overaging required to
achieve the stress-corrosion resistance goal.

For this study, blanks from 3-in.-thick plate of alloy 2i were machined and quenched
at four different rates. These blunks were for short-transverse tension and tension stress-
corrosion specimens and for double cantilever beam stress-corrosion specimens, which will
be discussed later. After quenching, all blanks were aged at room temperature for | hr, then
aged to the To temper (24 hr at 250°F). The blanks were then given a second aging treatment
at either 325°F or 350°F for various times. This heat-treatiment schedule s shown in Fig. 20,
along with the outlined test program for Phase 11,
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SPECIMEN 1A SPECIMEN 59

3- X2-1/2- X 1-1/4-IN. BLANK 3- X 5/8- X 5/8-IN. BLANK
212°F WATER QUENCH 140°F WATER QUENCH
(9°F/SEC QUENCH RATE) (180°F/SEC QUENCH RATE)

I'racnire Profiles of Short-Transverse Tension Specimens from Quenched
Blanks of Alloy 21 Slowly Quenched Specimen 1A Exhibited 1. tter
Iractiwre and Lover Ductility Than More Rapidly Quenched Specimen 59,
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Figure 13.

Fracture Profile of Tension Specimen 1A (Shown in Figure 12), Hlustrating a
Tendency toward Intergronular Fracture. Keller’s Etchant (200X )



Figure 14 Tvpical Electron Fractograph of Tension Specime
A High Percentage of the Fracture Surface Is Covered with itermetallic

n L (Shovwn in Figure §2)
Particles (Probably Equilibrivem Al Phase P

recipitates on Grain and Subgrain
Boundaries) (6100 ),



A. UNETCHED (500X)

B. UNETCHED (700X)

Figure 15, Fracture Profiles of Tension Specimen 1A (Shovn in FFigure 12), Hlustrating
the Influence of Intermerallic Particles on the Fra-ture Behavior
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Figure 16. Fracture Profile of Tension Specimen 59 (Shown in Figure
Specimen 1A, a Larger Portion of the
Keller's Etchant (200X ),

12). Compared with
Fracture in Specimen 59 Was Trausgranular
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Figure 17 Typical Electron Fractographs of Tension Specimen 59 (Showi in Figure 12).
I'racture Ieatures on This Specimen Shovwed Small and Large Transgranular
Dimples (A and B), Intergranular Dimples (C), and Intergranudor Fracture (1)
(6100X).
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Figure 17 (Concluded)
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Figure 18. Typical Zirconium-Bearing Intermetallic Particles Observed in Wrought Products
of Alloy 21. Unetched (500X).
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Lable 4. Llectron Microprobe Analvsis of Intermetallic Particles Observed in Alloy 2]

.

| /n Mg Cu Fe Si Mn Zr Al Total

CPartcle 2200 048 049 191 ND* ND* 425] 54.93 102.18
Matiin 7.1 i) 0.91 0.01 N.D.* 0.06 0.08 91.60 101 .88

* None Detected
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B. SPECIMEN 59

19. Tvpical Transmission Electron Micrographs of Tension Specimens 1A and 59
(Shown in Vigure 12). Note the Lare Rod-Shaped Particles ( Arrow) in the
Stowlv Quenched Material () (415,000.X).
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The effects on herdness of quench rate and of aging time at 325°F and 350°F after a
prior T6 treatment are shown in Figs, 21 and 22, As expected, hardness decreased with
decreasing cooling rate, The effects on short-transverse yield strength and elongation of
quench rate and of aging time at 325°F and 350°F after a prior T6 treatinent may be seen
11 Figs. 23 and 24, The general trend toward decreased elongation as quench rate decrcases,
noticeable in Figs. 23 and 24, was also observed during the Phuase | study on the effect of
room-temperature delay times on mechanical properties (Fig. 11). Hardness and mechanical-
property data for this study are tabulated in Table 26, Appendix II.

Note in Figs. 23 and 24 that the most rapid quench rate, S00°F/sec, generally resutted
in lower yield strength than the 100°F/sec quench rate. This was certainly not expected.
and the data points for the S00°F/sec quench were considered suspect. To check that
possibility, hardness data obtained on the original tension specimen blanks were plotted
against the yield strength data for alt Phase II tension specimens. This plot, shown in Fig. 25,
indicates that the tensile properties in question are probably in error. An upward correction
was made in the yield strength of the specimens quenched at S00°F/sec, based on Fig. 25.
These adjusted data are also plotted in Figs. 23 and 24. The reason for the low yield strengths
of the most rapidly quenched specimens is not clear. It is possible that these specimens,
machined as a batch and at a different time than the other specimens, were overheated dur-
ing machining.

The temperature selected for the second step of the two-step aging treatment of alloy
2t was 325°F rather than 350°F because overaging kinetics are slower at 325°F. (The more
rapid rate of overaging at 350°F would make furnace times during aging more critical and
would require much closer furnace control during the aging cycle.) Thus, the short-transverse
mechanical propertics for any given quench rate and degree of overaging of alloy 21 may be
determined from Fig. 23.

b.  Effect of Quench Rate and Overaging Time on Stress-Corrosion Crack Growth Rate
Properties

To obtain stress-corrosion crack growth rate data for alloy 21 as a function of heat
treatment, bolt-loaded double cantilever beam (DCB) specimens were used. The configura-
tion of the DCB specimen used in this study is shown in Fig. 26. The DCB specimens were
machined from the center of the 3-in.-thick plate material of alloy 21. The longitudinal
direction of the DCB specimen was taken in the plate rolling direction. Notch orientation
in these specimens was such that the cracks propagated along the midplane of the original
plate (short-transverse loading).

Stress intensities for this DCB specimen can be calculated using a curve of compliance
versus crack tength and Eqgs. (1) and (2) (from Ref. 23):

L _P-ode
"7 b da 2
Kl= GE (2)
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AGED 24 HR AT 250°F
BEFORE AGING AT 325°F
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Figure 21, Effects of Quench Rate and A ging Time at 325°F on lardness of Tension
Specimen Blanks from S-Inch-Thick Plate Evaluated in Phase Il



AGED 24 HR AT 250°F
BEFORE AGING AT 350°F

HARDNESS (Rg)

70 | | |
0 10 20 30 40

AGING AT 350°F (HR)

Figure 22, Effects of Quench Rate and Aging Time at 350°F on Hardness of Tension
Specimen Blanks from 3-Inch-Thick Plate Evaluated in Phase 1]
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AGED 24 HR AT 250°F
BEFORE AGING AT 325°F

SHORT-TRANSVERSE YIELD STRENGTH (KSI)

I I 1 l L 0
0 10 20 30 40 50 60 70

AGING AT 325°F (HR)

ligure 25 Effects of Quench Rate and Aging Time at 325°F on Short-Transverse Yield
Strength of 3-Inch-Thick Plate Evaluated in Phase 1]
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AGED 24 HR AT 250°F
BEFORE AGING AT 350°F
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Figure 24.  Effects of Quench Rate and Aging Time at 350°F on Short-Transverse Yield
Strength of 3-Inch-Thick Plate Evaluated in Phase I1



SHORT-TRANSVERSE YIELD STRENGTH (KSI)
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TEMPERATURE | RATE TEMPERATURE ,/
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Figure 25. Correlation of Hardness and Short-Transverse Yield Strength
of 3-Inch-Thick Plate Evaluated in Phase I1
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Figure 26. Double Cantilever Beam Specimen Used to Determine Stress-Corrosion Crack
Growth Rates as a Function of Heat Treatment in Phase Il Evaluation
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where: G = crack extension force or strain energy release rate
P =load
= specimen thickness
¢ =specimen compliance (reciprocal stiffness) when the crack length is a
= crack length measured from load point (centerline of loading bolt)
E = modulus of elasticity (10.3 x 100 for aluminum alloys)

Or, an approximate analytical expression for compliance as a function of crack length
can be obtained using beam theory. However, Mostovoy, Crosley, and Ripling (24), by per-
forming experimental measurements of compliance on uniform DCB specimens, showed
that in addition to the bending and shear deflections that may be calculated from beam
theory, some deflection also occurs because of rotations at the assumed built-in end of the
beam. By treating this contribution to compliance as an increase in crack length, Mostovoy
et al. (24) arrived at the following expression for compliance:

“
c=§'—] (a+ao)3+h2a (3)

where: I = moment of inertia of one of the arms = bh3/l2
a, = an empirical rotation correction equal to 0.6h
h = 1/2 specimen height

They determined the value of a, to be approximately 0.6h from calibration bars of
heights from 4 to 1/2 in. over 10 in. of effective crack length. By differentiating Eq. (3)
with respect to a, substituting into Eqs. (1) and (2), and noting that

p=2 (4)

where v is the total deflection of the two arms of the DCB specimen at the load point, the
following expression for K} was derived:

1/2
_vEh [3h (a+ 0.6m)% + 3"

4 [(a+ 0.6h)3 + h2a]

K, (5)

To perform a stress-corrosion test using bolt-loaded specimens, the loading bolt is
turned until a crack is introduced at the end of the machined notch. For fixed displacement
conditions at the bolt, K| decreases rapidly as crack length increases (Fig. 27). Thus, the
initial pop-in crack runs only a very short distance before arresting. By measuring the crack
lengths and corresponding v values for subsequent pop-ins, a series of K]c values can be
calculated using Eq. (5). Hoagland has used a similar specimen with Instron loading to
obtain many K. data points from a single DCB specimen (25). For some alloys, crack
advance during pop-in is extremely short. Thus, the stress intensity at the crack tip is almost
continuously at K. during crack advancement by pop-in. For these alloys, a crack length
and v reading at any point during crack advance by bolt loading will give a Ky, value.

41



= mj

8oe-|
o 3515t

o
o
4
#

2000

1500

1000

TIME (HR)

500 * a/b = GROWTH RATE (IN./HR)

AT K| =4 KSI\/IN,

—L 0

2000

1500

1000

LOAD, P (LB)

500

ulJ.ill

25

20

15

10

T — . —— — —

K, (KSI\/TN.

Kiscc = 3 KSIV/TN,
5 Iscc

K, =4 KSIy/IN. _E

D 1 L1 I 1 Ll

04 1.0 20 }

CRACK LENGTH a (IN.)

Figure 27. Effect of Crack Growth on Load and Stress Intensity under Constant Crack
Opening Displacement Conditions (v = 0,010 Inch) ina |- by 1- by 5-Inch
Aluminum-Alloy DCB Specimen (From Ref. 26)
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After the crack has been advanced about 0.1 in. beyond the end of the machined notch
by bolt loading, the bolt end of the specimen is masked with a vinyl coating to prevent any
galvanic action. The specimen is then placed in the test environment. The environment used
in this study consisted of the intermittent application of several drops of a 3.5% NaCl solu-
tion to the machined notch of the specimen. The notch serves as the reservoir for the NaCl
solution, which is applied three times each working day at 4- hr intervals, Crack length and
time are monitored and a curve of crack length versus time is prepared. The slopes of the
curve at different crack lengths provide crack growth rate data as a function of Ky. The
crack length at which growth ceases (if this occurs) is then used to calculate KISCC' The pro-
cedure is illustrated schematically in Fig. 27. The bolt loaded DCB specimen and the outlined
test technique have been used by one of the authors in a number of studies on stress-corrosion
cracking in high-strength aluminum alloys (26, 27, 28, 29, 30, 31).

A summary of the crack growth rate data obtained for several aluminum alloys using
this specimen (26) is shown in Fig. 28. Note the exceptionally rapid growth rates for
7079-T651 at the higher K| levels. The outstanding attribute of this technique is simplicity.
All that is needed are the DCB specimen, a bolt, a wrench, calipers to measure deflection,
and a scale and hand lens to measure crack lengths.

The Kj-rate data for the different quench rates and aging treatments for alloy 21 are
shown in Figs. 29, 30, 31, and 32 Generally, as aging time at 325°F or 350°F increases,
crack growth rates decrease.

For the specimens quenched in i40°F or 212°F water, the maximum stress-corrosion
crack growth rates for each amount of overaging at 325°F and 350°F are plotted in Figs.
33 and 34. For comparison, the maximum growth rates obtained (from Ref. 26) for
X7080-T7,7178-T76, 7175-T736, AZ74.61. 7049-T73, and 7075-T73 are indicated along
the ordinate. Based on the data in Fig. 33, an aging time of 35 hr at 325°F was selected for
the second step of the two-step aging treatment for alloy 21. It was expected that this
amount of overaging would give stress-corrosion resistance comparable to that of 7178-T76
and 7175-T736 and better than ihat of X7080-T7.

The alloy X7080-T7 is a low-copper, chromium-free alloy which in this regard is similar
to alloy 21. It was considered essential to overage alloy 21 sufficiently to achieve a maximum
stress-corrosion crack growth rate less than that of X7080-T7 because it is well known that
low-copper-content alloys in general and the low-copper-content, chromium-free X7080-T7
in particular exhibit lower smooth-specimen threshold stresses in an industrial environment
than in an alternate-immersion environment. For example, X7080-T7 has a smooth-specimen
threshold stress of 25 ksi in an alternate-immersion environment, but of only 15 ksi in an
inland industrial atmosphere (6). Even 7075 in the susceptible T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>