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I 
ABSTRACT 

A mathematical model   for  the delivery  of conventional  bombs  by 

stick  bombing   has  been developed.     This  model considers  bomb  type, 

number  of  bombs,   pilot  miss-distance distribution,  and dimensiokis 

of a  rectilinear  target.     It  may be  used   to estimate  the effects  of 

bomb  interval and approach angle  upon the  single  pass  destruction 

probability of a   target. 

The significant variables  of thevstick bombing operation are 

identified,  and   functional  relationships  are developed  among   these. 

The model  is  used  to examine  the  problem of determining  an  optima? 

approach angle  and bomb interval  for stick bombing bridges  and 

railroads. 
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I.     STATEMENT OF   PROBLEM 

During   the   Vietnam  conflict   the  U.   S.   Navy was  given  the   primary 

responsibility  of  slowing   the   flow of  supplies   from North Vietnam  to 

South Vietnam.     This   task was   partially accomplished by cutting   rail- 

roads,   roads,  and  bridges   on all North-South avenues  of travel  In 

North Vietnam.     The  major weapons  systems  used were   light  jet air- 

craft* carrying conventional general  purpose  bombs.* 

Since  this   type   of combat bombing had   last  been utilized during 

the  Korean War and   in  fact  had only been practiced as  a  secondary 

missio'   (the   primary mission  of the  squadrons   Involved had been 

nuclear strike)   limited knowledge and know how existed  on how best 

to attack  these   targets.     Furthermore  the available  publications at 

that   time   failed  to provide  adequate answers.     In many cases  the 

publications discussed  targets  of vastly different dimensions and 

construction than those encountered  In North Vietnam and  the  recom- 

mendations advanced  In these  publications  failed   to fully Incorporate 

the advantages  of stick bombing.* 

The pilots,   therefore,  had to develop  their own estimate  of the 

best   tactics   to use.     These   tactics were   largely based  on "seat  of 

the   pants" estimates and had   little   If any analytical evidence  to 

support  them.     It   Is   the  purpose  of this   thesis  to  provide   the 

necessary analytical  techniques. 

*A11  terms with asterisks  are defined  In Appendix E 

PRECEDING Ml BUNK 
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In  order   to discuss   the   tactics  developed,   the  variables  available 

to   the   pilot   must   first   be   delineated.     Once   the   target  has   been 

selected  the   pilot   has  some   control  over   the   following  variables: 

(1)   the  number   of airplanes   used  to attack   the   target,   (2)  the  actual 

order and   interval  between airplanes   in  the  attack,   (3)   the   number  of 

passes   per airplane   over   the   target,   (4)   the   number  and  type   of weapons 

that   the airplanes  carry,   (5)  the approach angle* to the target,   (6) 

the   interval* between weapons  and hence   the   stick   length*,   (7)   the 

maximum and minimum altitudes  of releasing  the  weapons,   (8)   the  dive 

angle* and  speed  In the dive. 

Although  tactics varied  somewhat   from alrwlng* to alrwlng and 

even squadron* to squadron,  an accurate  description of the generally 

accepted typical tactic  used to cut either a  road,   railroad,  or bridge 

Is as  follows:     for a given target 3 or 4 airplanes   loaded with 4 to 6 

500  lb. general  purpose  bombs* were  sent as a   flight*.    The aircraft 

proceeded  la  formation to  the  target  vicinity whereupon the  flight 

leader Identified  the  target and rolled  In*,    followed   In approximately 

3 seconds and with a different approach angle by  the second airplane 

and  then In a similar manner by the  third airplane,  etc.    Fach pilot 

made an Individual  tracking* dive attempting to dive at a  predeter- 

mined dive angle and speed.    At a preselected altitude each pilot 

released all of his  bombs   in a  stick  of  fixed and  equal bomb  inter- 

vals and then departed  the   target area. 

Joint Munitions  Effectiveness Naaiuil  (Air to Sur'   ce) Weapons 
Effectiveness,  Selection,  and Requirements,   1A-4,  Jnclasslfled, 
5 April  1968. 

10 
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The  questions   immediately  raised  when examining  these   tactics 

are:     for  a  given bomb   load,  what  are   the  effects  of changing   the 

approach angle  on  the  probability of a  single  pass hit* (Psph)? 

What  does   the   interval  between bombs  depend  on and how can  it  be 

set  so as   to maximize  the Psph?    What  effects  do target dimensions 

have   or;  the   tactics  developed?    And   lastly  since   pilot   sUll varies 

from pilot  to  pilot,  how does  changing  the  pilot miss-distance 

distribution* affect   the  overall   results? 

In attempting  to answer these  questions,  several of  the  pilot 

controlled  variables  are assumed   fixed  throughout  the  investigation. 

In the  first  place   it  is assumed  that  the  airplanes attack  separately 

and make  individual  tracking  runs;  the dive angle,  release  speed, 

maximum and minimum  release altitudes  are   invariant  for all  tactics 

investigated; and   lastly all weapons are dropped on a single pass. 

11 
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II.     DEVELOPMENT  OF THE  GENERAL MODEL 

To answer  the   above  questions   relating   to   tactics,   an   operational 

model  of   the  weapon  system will  be  developed   In   the   following   se- 

quential  manner:     analyze   the  operation and   then   translate   these 

results   Into a  mathematical model. 

In analyzing  the   operation of   the  weapon  system  (light   Jet   d'. Lack 

aircraft   carrying  conventional general  purpose  bombs)   It   seems 

appropriate   to address   the   following   topics : 

a. What are  the  significant   parameters   of weapon system 

performance   in   its   operational environment? 

b. How  is system  performance   related  to  these  parameters 

(.•hat  functional relationships)? 

c. Parameters  used  in any mathematical model subsequently 

developed should be capable  of being estimated with 

empirical data. 

The above  operations analysis will be  used  to generate a 

mathematical model.     This model will be  used   to gain  insight   into 

the  performance  of  the  system and  determine  how to optimize  system 

effectiveness according to the criterion of single  pass destruction 

probability. 

Thus,  we  must  start with an analysis  of  the  bombing operation. 

The entire   sequence   of operations   from target  detection to munition 

detonation was  considered.     System performance was   partitioned  into 

the  following subsystems: 

12 
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a. Acquisition 

b. Delivery 

c. Effects 

Acquisition was  not considered  further   since    it  is  a   factor  held 

constant   in this   Investigation.     System delivery capability was   further 

subdivided  as   follows: 

a. from detection  to bomb  release, 

b. from bomb   release  to detonation. 

The  first  aspect   Is discussed  in Che section,   "Analysis  of Aircraft 

Attack   from Roll-in to Weapon Release", while  the second  is discussed 

in the  section,   "Analysis of Pilot Miss-distance Distribution",     These 

various  aspects   of the  bombing attack will  now be discussed.     It should 

be  noted   that  the  analysis was  based  not   only upon  the author's 3-1/2 

years   in a   light   jet attack squadron during which time many missions 

were  flown against   targets of this   type but also upon discussions with 

many pilots  of similar backgrounds. 

A.    ANALYSIS OF PILOT MISS-DISTANCE DISTRIBUTION 

In  the   first   place,  miss-distance was  defined as  the  error between 

the actual  point  of Impact  of the bomb center and  the  intended  point 

of impact  of the bomb center.    An orthogonal coordinate system was 

defined along and  perpendicular to  the  flight  path of the aircraft 

with  its   origin at   the   intended  point   of  impact   of the bomb  center 

or stick  center  if more  than one weapon were dropped.    The  error was 

then decomposed  into two components:     range error  (R) along  the 

flight path and deflection error  (D)  perpendicular to the  flight path. 

It was assumed that  range error and deflection error were statistically 

13 
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independent  with  a   Joint density   function   of   the   bi-varlate   normal 

- 2 form, 

f„ „  (R,D)  - •=  exp 
R D 0R0D (HCV)'-^ 

For a   random variable   such as   range  error   which   is  composed   of  many 

factors   (wind,   target  acquisition,   bomb   release,  etc.)»   a   postulated 

normal distribution  is   reasonable   in   light   of  the Central  Limit 

Theorem.     This  assumption was   also  consistent  with available   empirical 

data. 

Since  all pilots kesp extensive   records   of bomb hits made  during 

practice  bomb runs  on  instrumented  targets,   pilots were assumed  to 

know their expected  range error and deflection error and   to be  able 

to correct   for  it,   that   is |i    ■ i-L. ■ 0.       This  assumption  is   obviously 

optimistic but   it guarantees   that  all   results   obtained  for Psph are 

upper bounds and   it certainly  is   the   ideal   toward which pilots work. 

Defined  in this manner,   the   pilot  miss-distance distribution can 

be characterized  by  two parameters,   namely  a    and on,   and by varying 
R D 

a. and o  ,   the effect   of the  pilot miss-distance distribution on 

Psph can be  observed. 

B.    ANALYSIS OF AIRTRAFT ATTACK FROM ROLL-IN TO WEAFON RELEASE 

The  parameters  that affect  the attack   from roll-in to weapon 

release are: 

2 
Anderson,  T. W. ,  An Introduction to Multivariate Statistical Analysis, 
p.   11,  Wiley,   1958. 
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Dive Angle 

Release Speed 

Maximum Release Altitude 

Minimum Release Altitude 

Approach Angle 

Bomb  Interval 

In   order  to examine different   tactics  available,  a   standard bomb 

run was  defined and used  throughout   the   investigation.     That   is  to say 

dive  angle,   release speed,  maximum and minimum release  altitudes were 

all  held  constant.     The  purpose  of defining this standard bomb  run 

was   to maximize   Psph for this   standard.     Furthermore,   these  parameters 

actually control  the pilot miss-distance distribution.     Hence,   if the 

examination of different  types   of bomb  runs  is desired,   only the 

relationship between these parameters and  the pilot miss-distance 

distribution need be determined before  the analysis  is  performed. 

Approach angle was defined as  the acute angle between the  center 

line  of the  target and the horizontal projection of the   flight  path. 

During  the  investigation the approach angle was allowed  to vary from 

0 -  90   .     It was  assumed  that   the  approach angle was selected  prior 

to the  bombing  run and that  the   pilot attempted  to make  his attack 

using   this approach angle.     In  order  to account  for pilot error  in 

this  parameter, a known probability density function, gQ(0);   of 

approach angle error  (AAE) was  assumed. 

Lastly the  only constraint   placed  on the  selection  of bomb 

interval   (INT) was   that  for any bomb stick   the  .Intervals  must be 

equal. 

15 
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With   these  assumptions,   It   Is   possible   to mathemfltica Uy describe 

the  attack   from  roll-In  to weapon  release   by three   parameters:     the 

number  of bombs  to be dropped   (n),   the   preselected approach angle 

(9  ),   and   the   bomb   Interval   (INT). 

C.    ANALYSIS   OF MUNITION EFFECTIVENESS 

The  weapons and  the weapon  release mechanisms were  assigned a 

reliability  factor of  1.     For a  comparative evaluation  of  tactics 

this   Is   reasonable,  however,  an analysis  of the effect  of  relaxing 

this  assumption was made  and a  discussion of it can be   found   in 

Chapter  IV. 

A convenient method of describing weapons effects   Is   to define 

a   lethality   function,  L(d), where   the   lethality  function   Is a 

description of  the  probable damage  caused as a  function  of miss- 

distance.     For example,  fo*- a  one dimensional target  the   lethality 

function might   take  the  form of Figure   1. 

Kill probability 

t Target ^ 

Typical one dimensional   lethality function 

FIGURE   I 

For  this model a  "cookie cutter"  type   lethality  function was 

assumed.     Although  it has  been  noted   the   lethality of a   fragmenting 

16 
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munition   obeys  an exponential  decay with  radial  mlss-dlstance   ,   the 

exploratory  nature  of this   investigation seemed  to  justify the simpler 

model.     Thus   the probability of killing* the  target   is   1  if  the mlss- 

distance   is   less  than or  equal  to R and 0 otherwise.     See Figure 2  for 

the   one  dimensional  case. 
Probable damage   factor 

One  dimensional  "cookie  cutter"  lethality function 

FIGURE 2 

By  using  this  type  of   lethality function the weapon effectiveness 

can be  characterized by one  parameter.     In this case  the  parameter is 

defined as   the effective miss-distance   (EMD) and  is  the maximum 

distance   from any target dimension that  the center of impact  of a 

weapon may be  and still produce a  kill. 

D.     MATHEMATICAL FORMULATION 

The  problem has  now been  reduced  to  investigation  of  the effect 

on   Psph  of  6  parameters,  namely 

n ■ number of bombs dropped, 

aD ■ standard deviation  in range error, 

CL. ■ standard deviation  in deflection error, 

INT - bomb  interval. 

Ballistics  Research Lab Report  697,  Justification of an Exponential 
Fall Off  I^w  for Numbers  of Effective  Fragments,  by H.  W.  Weiss, 
February,   1949. 
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9     ■  preselected  approach  angle, 

EMD ■ effective miss-distance , 

and  one arbitrarily defined   probability density   function,   the approach 

angle  error density,  g_(0). 

In  the   first  place,   the  number of weapons   (n)  was  assumed known 

and  given  for any attack.     Hence   for a given n 

r 
max  Psph =        J J L(R,D)   fR D(R,D)  gQW  dRdDdO, 

all space    all  9 

where   L(R,D)   is  the   lethality  function set equal  to   1 when   (R,D)€A*(9) 

(0 elsewhere) and A*(9)   is   the area,   in the R,ü plane,  depending upon 

the approach angle,  9,   over which the  stick center may range and still 

achieve  a   target kill.     Obviously A*(9)  is also a   function of EMD,  INT, 

and  target dimensions.     In  order  to describe A*(9),  however,   the opti- 

mum bomb  interval must   first be determined. 

As  seen  in Appendix A,  by examining the geometry  of the  situation 

and  the characteristics   of  the  normal density function,   the  optimal 

bomb  Interval can be developed and   is a  function of EMD,  9 and  target 

dimensions.     It is  shown  in Appendix A that  the  optimal bomb  interval, 

INT     . ,   is given by: 
opt 

INT        -  [2 EMD + Wl/sin 9. 
opt 

In order to perform the   integration,   it is   now necessary to 

determine   the boundaries  of A* in terms  of the  optimal bomb  interval 

or  in other words  in terms   of EMD,   target dimensions  and 9   .     This 

can be done  but due   to  the  complexity of the development and  the 

differences   in target shape,   the details appear  in Appendices B and 

C.     Once   the boundaries   have  been determined,  however,  and  represented 

18 
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in  the   R-D coordinate   system 

r 
MAX  Psph  - / 

J 1 

R.DeA* All  0 

j      8e(e)  fR D(R.D)   dRdDdO 

may be numerically integrated by the method discussed In Appendix D. 

Thus, optimal tactics may be determined by varying the parameters on 

which   Psph depends. 

19 
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III.     APPLICATION  OF MODEL IN THE DETERMINATION OF  OPTIMAL TACTICS 

A.     RAILROAD/ROAD TARGET 

I.     Form of  the  Model 

In this case   the   length of the   target   is assumed   to be  so 

great   that  it   is  effectively  impossible   to miss   the  target along   its 

length dimension.     This   is   equivalent  to assuming  that   the  railroad/ 

road   is  an infinitely   long  rectilinear  target.     A straight  segment  of 

roadway approximately   1800'   long   is an example   of a   target which  may 

be considered  to be   infinitely  long.     In order  to show this  suppose 

that   the   approach angle   (9)   is  0'   ?nd  that  only one weapon is  to be 

dropped.     Since  the  range  error  is always assumed to be   larger than 

deflection error,   this  approach angle causes   the   length of the  target 

to be most critical.     Because  99.64^ of  the  probability of a normal 

distribution lies  between + 3o,  6aD will  include  essentially all  the 

possible errors   in the  range  direction.     The   largest value  of o«  used 
R 

in this  investigation was 300 feet; hence any target   1800  feet or 

longer will produce  results   that do not  vary significantly  from 

results  obtained when a   target of  infinite   length  is   used. 

Suppose   that   the  target has width  (RRW) ,   length  (L > «>), 

that  the distribution  is bi-varlate normal with known o„ and o    and 
R D 

^ ■ ^D ■ 0' 

WR>D> " 2^5: «P [" lÄ + ^ ] : TTD V 
Define  two coordinate  systems, a X-Y coordinate  axis  parallel and 

perpendicular to the   target dimensions and a R-D coordinate system 

20 
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(used   to measure   pilot  error)   parallel and   perpendicular  to  the 

flight  path. D Y R 

Coordinate axes  in railroad/road  problem 

FIGURE 3 

In order to  reduce   the  notation assume   that   n - 2   (i.e., the  stick 

consists  of  two weapons).     Furthermore,   for  any given approach angle 

(6),  set the bomb  interval  (INT)  for these weapons at  the optimal 

value 

INT -  (2 EMD + RRW)/sin 0. 

Now,  there  is a  target kill if the CS  fails within certain limits. 

See Figure 4. 

Limits  of position of stick center  needed 
produce a  target kill 

FIGURE 4 
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where  y    ■ upper   limit   for CS and 

y    -   lower   limit   for CS. 

These limits of integration can be computed and expressed in 

the R-D coordinate system. See Appendix B, hence A* is well defined 

and 

r 

MAX Psph - fR D(R.D) g0(e) dRdDdQ 

R.DeA* All 0 

can be numerically evaluated  for each 0n,   n,   EMD,   target size,  and 

0R'   V 
2.    Sample Results 

The results   presented  in this  section depict  only several of 

the many possible combinations  of parameters  available.    The  results 

are  presented  in order to illustrate  the possible   functional depend- 

ence  of angle and bomb Interval.    For  this   computer run the   following 

values of the  parameters were used:     (1) bomb load - 6  (2) EMD ■ 12.5* 

(3) railroad width - 5'   (4)  100' < 0R < 300'   (5)  50' < C^ <  150'. 

Since  no data was available   to estimate  the probability density 

function of approach angle error,  the author assumed a discrete density 

function that,  based  on his experience,  seemed  representative.     It was 

defined as   follows   for every preselected approach angle 9 

ge(0) -  .1       00 - 9° 

-.1       9,-6° 

-.2     e0-3o 

-  .2       ^ + 3° 

-.1       90+6O 
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where  9    s  pre-planned  approach angle. 

The   optimum approach angle was   found  to be  8.62     but   Psph   for 

this  angle   did   not   vary appreciably   from   the  value  obtained  when 

0 = 10  .     Notice   that at   10   ,  the   rate  of change  of the bomb  inter- 

val  is  relatively   large;  hence,   the assumption about  proper  function- 

ing  of  the  bomb release equipment  might  be  critical.    On the  other  hand, 

when this   particular distribution   for Approach Angle Error   (AAE) was 

assumed,   the   results  obtained at  9    ■ 10    are not  too different  from 

those when  no error was  assumed.     The  same  type  of results  could have 

been obtained  by assuming  that  there were  no approach angle  errors 

but  that  •'tick  length was governed by an error distribution since both 

types  of errors cause essentially  the  same   results   (i.e.  a bomb Inter- 

val is being   used   that   is  not optimal  for  the  particular approach 

angle).     Furthermore,  notice  that  by assuming  that stick   length and 

approach angle are   free  from error although not necessarily causing 

erroneous  results   tend   to inflate   the values  of Psph and to cause the 

maximum Psph   to occur at too shallow an angle. 

It   is  most   important  to remember  that  the values  of  Psph were 

all determined by calculating and  using  the   optimum bomb  interval  for 

the approach  angle   or  the E   (Approach Angle)   in the case  of AAE and 

these values  would  be considerably different   if for example^ the bomb 

interval  for  ö -• SO    were used  in calculating  the  Psph for 6 ■  10  . 

Notice   that   Psph is almost   constant   for any given O    through- 

out  the  investigate«     ange  of oD.     It  is  only when a_ ■ 50'   that 
R D 

appreciable   fall off     ;curs as a_  increases.     This  indicates   that  if 
K 

the standard  deviation of pilot error  in deflection is greater  than 

23 
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50',   effort   should  be   expended   to  reduce   it   prior  to attempting   to 

reduce o   .     For example,  suppose a    ■  100'   and o_  ■ 300'.   then  if 
R D K 

O    is  reduced  hy   50^,  oB held  constant,   Psph  increases   from  .60  to 
D K 

.83,   but   if aD   is  reduced by  50^,  an held constant     Psph only increases 

from   .60  to   .62. 

Also  it  should be  noted  that approaching the  target exactly 

along  the  center   line of the  target produces   the  lowest  Psph.     This 

of course   is  caused  by the   fact  that at  0 - 0    all advantages  of 

stick tombing are   lost.     Finally when 0 is   larger than 45   ,   two 

interesting  facts appear:     (1)  the bomb  interval is almost  constant 

and   (2) when EAA is assumed  to be   present,   the results  compare almost 

exactly to those  obtained when EAA is  assumed absent.     These results 

can be  interpreted   fco mean that  if errors   in approach angle/bomb 

Interval are  thought  to be  large and unpredictable  (i.e.,  the error 

distribution cannot be estimated)  perhaps more consistent  results  can 

be  obtained by using approach angles greater  than 45   . 

B.     BRIDGE TARGETS 

1.     Form of  the Model 

Because  of  its  finite   length,   the  area  over which a kill 

occurs  is somewhat different  than the  infinite strip  involved in 

the  railroad  problem.     In order to examine  this area,   define an 

X-Y coordinate  system,  parallel and  perpendicular to the  target 

dimensions. 

24 

■L   

,  ■ 

' -'    -    ' - - ■---—- 



" 
■ 

GRAPH  I 

to 
0) 

00 c 
m 
>, 

JQ 
CO 

O 

E 

X 

Maximum Probability Single 
Pass Hit vs.  Approach Angle 

n « 6    Railroad/toad Target 
5' wide 

  Approach angle error 
presant 

.0.1 
80        90 

Approach Angle  (degrees) 

25 

MHteM.AMM imiMlaMi 



GRAPH  II 
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GRAPH III:     Optimal Bomb  Interval vs. Approach Angle 
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Bridge  target 

FIGURE  5 

Now Increase  the  target dimensions  by a quantity representing  the 

effective miss-distance  for the weapon  in question.    Call  the  new 

dimensions effective bridge   length   (EBL)  and effective  bridge 

width  (EBW). 

T 
EBW 

— 

^i 
r 

Jr 
L*. f?T .1 r ^i 

Effective bridge dimensions 

FIGURE 6 

Notice that the shaded areas are approximations to the actual dis- 

tance away from the target, that the centers of impact may be and still 

produce a kill.. The small increase in accuracy obtained b/ requiring 

the boundaries to be exact is, however, far outweighed by the com- 

plexity introduced in the mathematics involved; hence, the approxi- 

mation is used throughout the development. 
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By defining  the   target  in  this manner,  a  target kill   is 

produced whenever the  center  of  impact  of a weapon  falls within the 

rectangle  defined by EBL and  EBW, 

The  first  problem  Is  to recognize that  there are   two basically 

different  approach angles  available  in attacking  the   target:     (1) 

less   than  the  critical angle,  and   (2)  equal  to or greater  than the 

critical  angle where  the  critical  angle  is  defined as: 

Critical angle  - 0 ■ tan 
-i TEBW] 

LEBU •. 

^-x 

Critical approach angle 

FIGURE 7 

Both types  of attack are developed but since they differ only in the 

description oi the  Integration  limits  only the case when 0 > (3  is 

discussed below.    For ease   In notation assume  n " 2.     The  optimal 

bomb interval is determined  in exactly the same manner as   for the 

rail  Dad/road problem.     That  is 

INT -  (2 EMD + BW)/sln 0 - EBW/  sin 3. 

Next,  the question of where  the center of the stick an fall and 

still produce a kill must be answered.    Once  this has  been deter- 

mined and transformed into the R-D coordinate system,  see Appendix 

C,  the  problem is essentially the  same, that  is 
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MAX  Ps ph  -      J J       fR D(R,D)  dRdD, 

proper 
polygon 

Since  the distribution of approach angle error  produced  only 

minor variations   in the  results   in the railroad  problem.   In this  case 

ga(8) was assumed to have all of  its probability mass at  9   ,  hence  its 

effect  does  not appear in the   integral  for Psph. 

By using the  numerical method of Appendix D to evaluate  the 

above   integral,   the maximum Psph   for any target dimensions,  o  ,  a   , 

n,  0 can be determined. 

2.    Sample Results 

Results are  once again presented  for  only one  representative 

combination of parameters and all comments made apply only to this 

set  of parameters.     The  parameters used are   (1)  n  - 6 bombs,   (2) 

EMD - 5',   (3) 40' < bridge  length    <   200',   (4) bridge width - 

10' and 20',  (5)  100' < oR < 300',  (6) 0D - 50',   100'. 

The graphs are rather self-explanatory but  perhaps several 

facts are worthy of comment.     In the  first place  until a bridge 

length of approximately 100'   is  reached,  Psph is relatively unaffected 

by approach angle.    Remember,  however,  that  (1) each Psph is computed 

using the optimum bomb interval for the approach angle  in question, 

and  (2) selecting a bomb interval that is not compatible with the 

approach angle will produce  lower results.    Once again stick length 

and bomb interval change rapidly at the shallow angles  and are 

relatively constant  for 0 > 45°.    These two facts  point  toward 

approach angles  in excess  of 45    if large approach angle error or 

bomb interval error is anticipated. 
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Notice  also  that as   the bridge  dimensions   increase  the 

difference between  the  Psph  for a  pilot miss distribution of 

oD -  150',  an - 50'  and a  pilot miss distribution of a_ - 300', 

o    ■  100'   increases.     For example when  the   bridge   length  Is   Increased 

from  100'   to 200*   Psph,   for  pilot oR -  150',  G-  - 50',   increases  66^, 

while   Psph   for a  pilot  oD ■ 300',  a    -  100'   Increases   orly 59^. 
R D 
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GRPAH IV:    Maximum Probability Single  Pass Hit  vs. 
Approach Angle 
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GRAPH V:    Maximum  Probability of Single  Pass  Hit vs. 
Approach Angle 
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GRAPH V.  Maximum  Probability Single Pass Hit vs 
Standard Deviation in lange 
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GRAPH VII:    Maximum Probability Single  Peas Hit 
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GRAPH VIII:     Optimal Bomb  Interval vs. Approach Angle 
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IV.     CONCLUSIONS 

In conclusion  it   is  evident   that   for any given target  dimensions, 

bomb size,   number  of bombs, and  pilot miss-distance distribution, 

there   is  definitely an approach angle  and bomb   interval  that  maximizes 

the  probability of a  single  pass  hit. 

Furthermore  it  has   been shown  that  for all  targets  considered: 

(1) the optimal bomb interval is independent of the pilot 
miss-distance distribution snd can be computed by the 
formula : 

INT -   [2  EHD + W]/aln 9 

where       EMD - effective miss-distance  of  the weapon 

W    s target width 

0    = preselected approach angle, 

(2) optimal stick  length 

SL -  (n-1)   [2 EMD + Wj/sin 9 

where n ■ number of bombs dropped, 

and 

(3) although,   in general,   no closed   form exists   for  the 
optimal approach angle,   for all cases  investigated 
the  optimal angle was   in the  neighborhood  of  10o-30o. 

This   latter angle,  however,   is  critical,   since  Psph is quite  sensitive 

to it.     For example   in the  railroad   target  problem, while  approaching 

the  target   from approximately  10    produced a  maximum Psph,  approaching 

from 0     produced a minimum.     Likewise   for  the bridge  target  problem, 

approaching  the  target   from an angle  slightly greater  than  the diagonal 

produced a  maximum Psph,  but when  the  approach angle became   less   than 

the diagonal,  the  Psph was greatly reduced. 
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It was also shown  that  the  rate  of change  of  the  optimal  bomb 

interval was much   larger for small approach angles   than  for approach 

anglea greater  than 45  .    In  fact   for approach angles greater than 

45°,   the  optimal bomb  interval was  almost  constant.     These   facts 

indicate  that   it may  be better  to use a  non-optimal approach angle 

greater than 45    if  large approach angle/bomb  interval errors are 

anticipated. 

For the railroad/road problem,   it waa  shown that  the  optimal 

approach angle also depends  on the maximum and minimum release 

altitudes and the dive angle   (a) by  the relationship 

,  -ir<AIJmax - AIJ
min> Cot  <a)l 

opt - 8ln    L(n-l)   (2 EHD + RRW) J 

where a ■ dive angle, 

RRW - railroad width. 

Once again, however,  approach angle  is  Independent of pilot miss- 

distance distribution.    Furthermore  for the cases  investigated, 

Psph waa  relatively constant  for all values of o  , when o    was 

greater than 50'.    This  indicates  that effort  should  first be 

expended to reduce  the error in the deflection direction if on is 

greater than 50*.     Lastly,  it was  shown that  if approach angle error 

was  Introduced,  only minor variations of the  results were  produced, 

and for 0 > 45  , thla variation was negligible. 

In  the bridge problem,  it was  shown that  for bridges   less  than 

100 feet  in length,  Psph is not sensitive  to approach angle as  long 

as the  optimal bomb  Interval  is used  for  the  preselected approach 

angle.    As  the bridge  length  increased the results asymptotically 

approached  those of the railroad problem.     It  should be  noted, 
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however,   thai   it was  impossible  to calculate the optimal approach 

angle  prior  to performing  the  numerical  integration,  but   in all cases 

the  optimal approach angle was   slightly greater than  the  angle   formed 

by  the  diagonal. 

One   last  comment must  be made about  the  results  derived  from the 

models  and  the  conclusions drawn therefrom.     It has  been assumed  that 

a  pilot will use   the optimal bomb  interval  for the  preselected approach 

angle  or expected approach angle.    Either the derived  results and/or 

the conclusions drawn therefrom may cease  to be applicable  if the bomb 

interval and approach angle do nut satisfy the equation: 

INT -  [2 EMD + WJ/sin OQ. 
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APPENDIX A 

OPTIMAL BOKB  INTERVAL 

Before  the   fornnlatlon of an optimal bomb  Interval can be 

developed,   some discussion as  to how stick bombing affects   pilot 

error  Is   In order.     Stick bombing  Is based upon the  fact   that 

during   the   tracking dive,   the  pilot  la able  to release   his weapons 

at   programmed   Intervals.     These weapons,  at   least  theoretically, 

fall  In a  "straight   line"   (as modified by gravity) and,  except   for 

wind  and ballistic effects,  directly along  the  flight   path.     Implicit 

In  this assumption is the  fact  that any wind or ballistic error affect 

all bombs  uniformly and thus do not disturb the "straight   line" effect 

of  the  tactic.    Furthermore,  since during  the tracking   run   the  pilot 

attempts  to maintain an essentially straight  line   dive   at   least 

during  the release of the weapons,  any deflection error will affect 

all weapons  uniformly.    It  Is evident then that stick bombing does 

not affect deflection error but does have  an affect on range error. 

In other words, by changing  the stick  length (i.e.,  the bomb interval), 

for any given pilot miss-distance distribution the probability of a 

single pass  hit  (Psph) changes, and  this  change depends  upon the 

relationship between a.,  stick  length  (SL), bomb interval  (INT),  and 

of course  target size and bomb effectiveness  (END). 

Although bomb interval and oR are needed In order to calculate 

Psph,  it  is possible to show that development of  the  optimal bomb 

interval  (criteria:    maximize  Psph) does  not in fact depend on aD 
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but   only on  the  target dimensions,   bomb type   (i.e.,   Effective Miss 

Distance,   EMD) and approach angle. 

From  the definitions  of Stick  Length  (SL) and Bomb Interval  (INT), 

it   is  clear  that 

SL - INT  (n-I) 

where  n m number of bombs dropped.     Now suppose   that   the  target 

(either  railroad,   road,   or bridge)  has width   (W) and   length   (L),  and 

that   the  EMD of each weapon   is M feet.     See Figure   8. 

t 
k- 

Target and EMD of bomb 

FIGURE 8 

Assume furthermore that  the approach angle  (9)  is known.    This 

ass^-ption can be viewed  in two different ways:     (1)   it applies  if 

the  pilot  preselects his approach angle and makes  his approach at 

that angle without error or,   (2)  it applies if the  pilot  preselects 

his approach angle and attempts  to approach the  target at  that angle 

but has an error of approach angle   (EAA). 

Now let us assume  that  the  number of bombs   in  the  stick   is 2, 

(n - 2).     Once  the development  for two bombs has  been completed  the 

results  can readily be extended  to sticks of 2,  3,   ...,  n bombs. 

See  Figure  9. 
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Angle  of approach and stick 

FIGURE 9 

Define    CS - geometric center of  the stick with coordinates 

d ace  from CS  to Center of Impact   (CI)  of the 

first weapons on either side  of CS 

Clearly 2d - IHT 

and  (n-l)(IWr) - SL - INT. 

Now suppose that CS  falls  upon the  center line of the  target.    See 

Figure  10. 

Bomb stick superimposed on target 

FIGURE 10 
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Define  a X-Y coordinate  system along and  perpendicular  to  the  center 

line  of ttw  target.     Then a  necessary condition  for a  kill  is  to 

require  the CI of either weapon to be within +  [EMD + W/2]   (as 

measured  in the  Y-dlrectlon)   of the  target  center  line.     See Figure 
Y 

11. 

e^jp- 

^-x 

CI limits needed to produce a  target kill 

FIGURE II 

It  Is  not a sufficient condition because  the error In  the X-direction 

may be  so large as  to place  the entire stick off  the  target area. 

This  fact, however, does  not affect  the development of  the optimal 

stick   length because  the expected aim point  Is  the geometric center 

of the  target area. 

Define:    b - M + W/2, 

then the  necessary condition  for a kill is 

-b <  lYcs + d] sin 9 < b 

or 

-b <  [Ycs - d] sin 9 < b. 

The  first  inequality produces 

d < Y„„ < sin 0 -    CS - sin 0 d. 
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and  the  second  inequality produces 

b 
+ d < Y„„ < sin 6 -    CS - sin 0 + d. 

There are  two possible  conditions  to investigate, — ~< d, and r sin  6 ' 
b 

sin 0 > d. 

In the  first  place,   suppose < d.     See Figure   12.     For this sin 0 

case  two bonbs  never simultaneously hit the  target and   the  probability 

of a  single pass  hit   (Psph) ^.n  the range direction is given by 

d + sin 0 d + 
sin 0 

Psph fR (R) dR + fR  (R) dR. 

- d   - sin 0 sin 9 

Stick, b/sin 0 < d 

FIGURE 12 

Since  f.  (R) — NORMAL (0,  o_),  normalizing this expression produces 

Pa h - I (- <Hfa/,lp0V) - *(- d-b/glpgN) + k ^<m>/sinCr\ _ ,# /d-b/stntfN 

which because of the  symmetry of the  normal distribution reduces  to 
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p8ph - 2 [♦ (J&tesS) . i ^d-b/slnff^ 

Now suppose d increases,  then Psph decreases because 

when a'  > a. 

See Figure  13. 

a'-K: 

Normal density function 

FIGURE  13 

When-r—-   <  d, the Psph decreases as d Increases, 
sxn v 

Now suppose b/sin 0 > d. Se-> Figure 14. 

Stick, b/sin 8 d 

FIGURE 14 
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Now 

Psph -    I 

d -I- b/sin  6 

r 
fR(R) dR 

- d  - b/sln 0 

and by normalizing 

p.!* - 2 [. (uiZsiaJf)., (0,]. 

Clearly as d increases Psph increases. 

.'. When b/sin G > d, Psph increases as d increases. 

Since when b/sin 9 > d, Psph T as d T 

and when b/sin 9 < o, Psph i as d T , 

the Psph must reach its maximum when d - b/sin 9, or when 

d - [EMD -I- W/2]/sin 9. 

This argument is readily extended to sticks containing more than two 

weapons by arguing that each interval should be set so as to 

produce the maximum Psph, hence each interval between weapons should 

be set so that 

INT - 2d - 2[EMD + W/2]/sin 9 

and 

SL - (n-1) INT - 2(n-l) [EMD + W/2]/siu 9 

or 

INT - [2 EMD -I- W]/sin 9 

SL - (n-1) (2 EMD + W)/8in 9. 
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APPENDIX § 

LIMITS  OF  INTEGRATION RAILROAD/ROAD TARGETS 

In order  to discuss   the   limits  of  integration define  two co- 

ordinate systems, a X-Y coordinate axis  parallel and perpendicular 

to the  target dimensions  and a R-D coordinate  system (used to measure 

pilot error)  parallel and perpendicular to the  flight  path.     See 

Figure  15. 

Coordinate axes  in railroad/road problem 

FIGURE  15 

Once again in order to reduce  the notation assume  that n ■ 2   (i.e., 

the stick consists of two weapons).     Furthermore,   for any given 

approach angle   (9),  set the bomb interval  (INT)  for these weapons 

at  the optimal distance, 

INT - (2 EHD + RRW)/sin 9. 

Now,  there  is  a  target kill if the OS  falls within certain limits. 

See Figure   16. 
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Limits of position of stick center 
needed to produce a target kill 

riGURE 16 

where y ■ upper limit for CS and 

y - lover limit for CS. 

The question then is what is the mathematical representation of these 

limits. 

Prom Figure   16  it   is apparent   that  y    <■ b + d sin 6 and that 

y    ■    y   .     Prom Appendix A 

b -  (EMD + RRW/2) 

d -  (EMD + RRW/2)/Bin 6 

hence 

yu -  (EMD + RRW/2) +  (EMD + RRW/2)  sin e/sin 8 

- 2 EMD •(- RRW 

and 

yj  - -   12  EMD + RRW]; 

however,   the  pilot ulss-distance   is measured   in the R-D coordinate 

system and must  be  rotated  into the X-Y coordinate systen before  the 

integration can  take  place.    Therefore,   introduce a  change  of variai 
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R - X cos  0 + Y sin 9 

D - -X sin 0 + Y cos 6. 

The Jacobian of this transformation is 

Ic^R.D)!   m Tcos  6    sin  01 m . 
|ä(X,Y)l   * L-sln 0 cos eJ " 

and   the 

[2 EMIH-RRW] 

Psph - I       j fx Y(X,Y) dXdY 

-   (2 EMD+RRW] 

where 

and 

fx Y(X'Y) " F^ exP [" J ^ A © J 

/cos 9 .   sin 9    -COS0 sind   .   cos9 8in9     \ 
' T + '-T'  2 + 2  

2 2 
cos9_8ln9  .  cos9 sing    sin 9 .  cos 9 

2 2       ' 2 2 
0R CTD aR aR 

The double   Integral, although havins  limits  of Integration  that 

are easy to evaluate,  has an integrand   that  precludes a closed   form 

evaluation.     However,   this  integral does  provide  some  insight  into 

the  problem.     Notice  that  the   limits  of integration are  independent 

of the approach angle   (9).    This,  of course,  means  that  no matter 

what value  9 takes  on,  the  infinite  strip over which the  integration 

will  take  place will be  the same.     Furthermore,   if this  infinite  strip 

is  represented  by cooroinates  in  the  R-D coordinate system,   it will 

remain unchanged as  far as size and shape  is concerned.    These  facts 

are true because  the  transformation involved  is simply an area 
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preserving  rotation  of axis.     This  can be  seen by evaluating  the 

Jacoblan  ?f the transformation 

X - R cos  0 •»- D sin 0 

Y • -1 sin 0 + D coa  0 

^(X.Y)I m r cos e sin e"| m 
ä(R,D)|   ' L-sin 0 cos OJ " 1 

and recalling  that   if the absolute value of the Jacobian of a  trans- 

formation equals  1,   then the transformation does not change  the  scale 

4 
of any dimensions. 

The  problem now then is to find  for a given bi-variate  normal 

distribution the orientation of a  fixed dimension infinite  strip 

so as  to sweep out  the maximum probability.     See Figure  17. 

Contours of equal probability of a 
bi-variate normal distribution,  o_ > a„ 

R       D 

FIGURE  17 

Obviously,  the maximum probability is  swept  out if the  infinite  strip 

lies along the major axis of the elliapes  of equal probability with 

its center line coinciding with the R-axis.     See Figure  18. 

Kaplan, Wilfred, Advanced Calculus,  p.  201, Addison Wesley,   1957 
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Infinite  strip sweeping  out  maximum probability 
for a given bl-varlate   normal distribution 

FIGURE   18 

However,  when 0 " 0    Is  used   to evaluate  the bomb  Interval where 

INT -  [2  EMD + RRWJ/sln 9 

the   Interval  > <*>, 

The meaning  of   this  result  Is   that   the   Interval should  be   Infinitely 

long.     This,  of course,   Is  impossible   to achieve  but   It  does  point  out 

that   the  bomb  interval should  be  as great  as  possible,  while  still 

satisfying   the  conditions   for  Interval  optimallty.     Recall  that   there 

has  been defined a maximum and minimum  release altitudes.     These   two 

constraints   limit  the bomb Interval.     See  Figure   19. 

Clearly SL max [ALT max ALT   ,   )  cotan a where a ■ dive angle, min ^ 

and  since 

INT - SL/(n-l) 

INT 
max 

(ALT         - ALT  .   )  cotan a 
max min  

(n-1) 
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MAX RELEASE ALT 

MIN RELEASE ALT 

-   " ^ 

approx.'l l£— SL P «ppr( 

Maximum stick length, n - 4 

FIGURE 19 

When n  - 2  this expression  reduces  to 

INT        -  (ALT - ALT ,   ) cotan a. max max min 

Now the  interval must also satisfy the expression 

INT        -  (2  EMD + RSH]/sin 9 max 

in order to produce an optimal stick   length.    Hence  it is  possible 

to determine  the best possible approach angle: 

(ALT         - ALT  .   )  cotan a max min  
n-1 

-INT        -  (2 EMD + RRW)/sin 0 max 

or 

sin 8 
(ALT        - ALT ,   ) cotan a 

max min  
(n-1)   (2 EMD + RRU) 

or 

0        - sin opt 
-1 [ALT - ALT .   ]  cotan a max mln 

(n-1)   (2 EMD + RRW) i 
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In  order  to  provide  specific   results and  to satisfy  the   requirements 

of   the  computer programs  the  value  for     (ALT - ALT   .   ) cotan a K K    0 L max min J 

was  arbitrarily  set equal   to   1000  feet.     This  corresponds   to a  maximum 

and  minimum  release  altitude  difference   of approximately   1000'   if  the 

dive   angle  ■ 45   . 

Although  it   is  now possible   to determine what   the   best appr-i«ch 

angle   is,   it   is  not   possible   to determine what   Psph   is   for any 

specific  value  of 9 nor  la   it   possible  to evaluate  how much  the  Psph 

is  degraded  oy varying  from  the  optimal conditions.     To achieve  these 

results   it  is necessary to evaluate Psph  for all 9. 

Since  rotating  the  pilot  miss-distance distribution coordinate 

system  into the  target  coordinate  system produced a  difficult inte- 

grand,   the  reverse  procedure  might  produce  better  results.     That   is, 

rotate   the   limits  of  Integration   Into the R-D coordinate  system. 

Recall   that  the  Integrals   Involved are 

and 

where 

~    2EMW-RRW 

Psph -   f     j 

-» -[2EMIM-RRW] 

fx y(X,Y)dYdX 

Psph - // fR D(R,D)dRdD 

appropriate 
strip 

fX Y <X'Y> - 2^ exP [- I ^ A  Q  ] 
R D 

ind 

  R D \Qn        o^ i 
R D 
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1 

consider  the   transformation 

X  -  R  cos   6 + D  sin   0 

Y  -  R  sin  0 + D cos   0 

once  again 

ö:R,D) 

The   problem then   is   to  use   this   transformation  on   the   limits   of 

integration.     Recall what   the  area  of  integration  under consideration 

looked   like   In   the  X-Y coordinate  system.     See  Figure   20. 

Y 

"> 

* -f- 

_ !i-   J:  _ 

Area  of  integration in X-Y coordinate  system 

FIGURE 20 

Since  the  transformation  used  is area   preserving all  that   is 

necessary is  to represent  this   infinite strip  in the  R-D coordinate 

system. 

Define  points 

"2  ■  (X2,  Y2) 

P3 -  (X3.  Y3) 

P4 ■ (x4. V 
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. 

Then use the transformation 

P1 (X1( Yj) - ?l   (Rl,   D^ 

P2 (X2, Y2) - P2 (R2> D2) 

P4 (V Y4) "  P4 (R4' V- 

Now since (P " P,) defined a line in the X-Y coordinate system, it 

defines a line in the R-D coordinate system and the equation for this 

line has the form: 

DR - m^ + b1 

where   the subscript  R refe.s   to  the  right  hand  line  in Figure 21, 

and 
R2  - Rl mi "slope " v^ 

R2   "  RI b.   ■  intercept — 
)2       ^ 5r>i 

Likewise   the   points   (P     -   P  )   define  u     .milar   line 

DL - m2R + b2 

where 

m 
R4-R3 

2   ' D4  " D3 

R,   - R, 
b2   .R3 " Cl,4

4  -  Dp 

These  equations  produce  an area  of  integration of  the   form seen  in 

Figure  21. 

Sisam,   C.  H.,  College Mathematics ,  p.   185,  Holt,   1957. 
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Then 

Area of integration in R-D coordinate  system 

FIGURE 21 

"    ?L"m2R+b2 

Psph 

- DR - m1R+b1 

1 xp [.!(*! +0L)]dDdR. 
R D CTR aD 

This   integral  is  easily evaluated on a computer by a   numerical 

integration technique   (see Appendix D) allowing R to range   from 

-oo   to +=0. 

It  is  now possible  to evaluate Psph at any approach angle  (0), 

dcterml te  the  optimal approach angle, evaluate   the   optimal bomb 

interval  ^nd  furthermore,  determine  the effects   on Psph of changing 

from the  optimal tactics. 

Although  this development was  performed when n a 2   it   Is easily 

extended  to n ■ 3,  4,   . ..,  n.     The  only portions  of the development 
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^hat   change   are  the   formulae  for determining  y    and  v..     Recall   in 
u I 

the  case  n  ■ 2 

y    - b + d  sin 9 u 

yl   -  -(b + d  sin  0] 

and 

b  - EMD + RRW/2 

d  -  fEMD + RRW/2)/sin 0. 

For a stick  of greater  than n - 2, 

y    - b +  (n-1)  d  sin  9 

This   is  most  easily   seen by determining geometrically   just where 

the stick center must  be  positioned  in order  to J'ist  produce  a 

kill  (yj   is depicted   simply  for ease  of construction).    As 

illustrated  in Figure  22  there  is  a kill when 

y,   < CS < v   . 

The distance   involved   Is  clearly  - Afc.U    (iNT)/sin  9    + bl , 

but 

and 

- 2d 

I (n-1)  d/sin  9    +  bi 
J 

-(n-l) d/sin  9 + b. 
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Lower  limit  of CS  producing a 
target kill n »  6 

FIGURE 22 
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APPENDIX C 

LIMITS  OF INTEGRATION BRIDGE TARGETS 

For ease   in notation assume  n ■ 2,  and  0 > P.     The  optimal  bomb 

interval   is   then determined   in exactly  the  same manner as   for  the 

railroad/road   problem.     That   is 

INT -  (2 EMD + BW)/sin 0 - EBW/stn 0. 

Next,   the  question of where  the center of   the  stick can  fall and 

still  produce  a  kill   is  answered.     Clearly until  the  EBL becomes  a 

factor,  y    and  y    are   the  same as   for  the   railroad/road  problem, 

nanely 

y    - TT1 + EMD + d  sin 9 
u       2 

_ EBW      EBW sin 0 „ 
2    +    2    sin 0       "** 

y    " -y    ■ -EBW. 
l u 

However,  the effective  bridge   length affects  the area  of integration 

by defining  right and   left hand   limit   points   In the X-direction. 

Consider y   ,   the   left and  right hand   limits are determined  by the 

most extreme  position of CS when the  forward most weapons  just kills 

R        R P the  target.     See  «igure 23.     These  two points,   namely  P.     (X,   ,   Y.   ) 

and  P,     (X.   ,   Y.   ) where   the superscript denotes   left  or  right  hand 

limit,  can be   represented by 

XiL .  . [ML + d co8  e] 

[■"EBL      EBW cos  9 
L 2 2    sin 0^ 

[ EBL  .   EBW 
—r- + --r- cctan  0 
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„   R       EBL        , a       EBL       KBW   .   tan  a X        - —5—   -   d   cos   6  -  —r—   -   —r-   cotan   Ö 

R       ..   L 

^X 

CI  of  bomb 

Right  and  left   limits   of y.,   n - 2 

FIGURE 23 

R L 
These   two  limits   in the X-direction,  X     ,   X      are   t^en active  until 

the CS coincides with the  center  line  of  the   target.    The  limits   of 

integration then change.     See Figure 24. 

^-x 

Limits  of  integration, CS coinciding with 
center  line of  target 

FIGURE 24 
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Now 

v    L l"EBL  ^    J J 
X -   "      "T" C0S 

EBL      EBW       ,.        -"] 
—r- + —~— cotan  9 

Y2
L - 0 

EBL 
+ d   cos  0 

EBL l   EBW 
"2" + ~Y~ cotan   0 

Y3
L - 0 

Y R      EBL      EBW 
X-     ■ —j-  - —z~ cotan  0 

Y2
R - 0 

R      EBL      EBW       H       Q X-     ■ —r- + —j- cotan  0 

Yj« - 0. 

R L 
The   limits   X3   .   ^    hold  until CS  falls   on yu and   this  completes   the 

polygon.     See  Figure  25. 
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Area  of  integration  in X-Y coordinate syst ystem 

FIGURE  25 

P, consists   or   X.     - X»   ,   Y.     - y    ■ EBW; and  P.     consists  of 

X.R • X_R,   Y/' - y    - EBW. 4 3 4 u 

The  polygon is  now well defined  by  the  eight  points   (P.   ,   .«.,   P,   , 
R R 

P.   ,   ...,   P,   ) and  by using the  transformation 

R » X cos  6 + Y sin 6 

D - X sin 9 + Y cos  0 

represented  In  the R-D coordinate syst 
the same  polygon can be 

See Figure 26. 
i 

The  problem is   now 

That  Is  to say 

ystem. 

ess entially  the  same  as  the  railroad  problem. 

Ps ph" ^ ^vö e'p f-K^j ] 
area of        R D O,        a_ 
polygon R        UD 
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and   can   be   easily   integrated   by   numerical   techniques.     See   Appendix  D. 

However,   the   limits   of  integration   need   to  be   systematically  defined. 

Aicd   of  integration  in R-D coordinate  system 

FIGURE 26 

The  procedure   used   is  to define   the   right  and  left hand  limits   of 

integration  for  the  deflection error   (D)  by 

DL - n^R +  bj       j   -  1,   ....  4 

D
R " V1 + bi      1 - 1,  .... 4 

where n^ and  b    are   the appropriate  slope  and  intercept  for  the 

portion  of  the  boundary of  the  polygon  involved  in the   integration. 
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The   values   of   m„ and   b     can   be   calculated   from   the   same   formulae   as   in 

the   railroad/road  problem. 

There fore , 

D -m R+b 
^    J       J 

Ps ph   -J I 
-0° D^-mR+b, 

R     i       1 
R n o_       o_ 0R        0D 

I  -   1,   ....   4 

j  -  i,      ^; 

and   the  appropriate m    and  b    are   used   for  the  value   of   dR during   tlu 
Ix Iv 

numerical   integration. 

One   interesting  note   is   that  when 0 ■ P  the  polygon collapses 

somewhat   since 

cotan 9 ■ cotan p  ■ EBL 
EBW 

Hence 

L TEBL       EBW EBL' 
I    '  " L   2 2     EBW. 

EBL 

See  Figure  27. 

R      EBL      EBW EBL 
1    '    2     '     2     EBW 

EBL 

x2
R - 0 

L EBL      EBW EBL 
A3    " '     2    +    2     EBW " U 

Y R „ Mt + EBW EBL _ __. 
X3 2    +    2     EBW      EBL 

X.1 - 0 4 

X4
R - EBL. 
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Area  of  integration X-Y coordinate   System, 
approach  angle   equals   critical angle 

FIGURE  27 

Now suppose   that   the approach angle   is   less  than p,   this   type  of 

attack   is  exactly the same  except   the   roles  of EBL and  EBW are 

reversed.     The  optimal bomb   interval   is   now 

INT - 
EBL 

cos   9 

and   the   formulae  for  the  8 points   in  the  polygon are  exactly  the  same 

except  EBL is   replaced by EBW and  vice  versa and due  to  the  manner in 

which  0  is  measured cotan 0  is   replaced by tan 0,  see  Figure  28. 

Y 

I 

Area of integration, 9 < 0 

FIGURE 28 
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Once   the   polygon  has   been  described   the   remaining   development   Is 

exactly   the   same  as when  9   >  P   and,   therefore,   Is   not   discusaed. 

Notice,   however,   that  when  0 " 0   the   formulae   reduce   to   those   obtained 

previously when  0 ■ g   (as   they  should).     One   Implicit   assumption   In 

this  development   Is   that   the   target   Is  assumed   to  be   only  of   length 

BL.     That   Is   to say craterlng   the  approaches   to  the  bridge   Is   con- 

sidered  a   miss.     This   type   of damage   can easily  be  accounted   for 

however  by  simply changing  BL,   or  changing  the   lethality   function. 

The  next   problem is   to extend   this development   to an arbitrary 

number of weapons.    Suppose  0  is greater than 0,   note   that   for each 

weapon  in  the  stick  there  are 4   limit  points,  directly analogous  to 

the   four corners of the  target.     The   polygon over which   the   integration 

is  performed  then must have 4n  corners   for any n.     Note   that   the  opti- 

mal  bomb  intervals are  equal   for a given 0.    That   is 

INT - EBW/sin Q 

and  y.   and  y    are defined  in the  same manner as   in the  ral iroad/road M 'u 

problem 

where 

hence 

y    - b +  (n-1) d sin 6 ' u 

.        EBW     . EBW 
b "I"'  d " 2 sin 0 

EBW J   .     ,x  EBW sin 6 
yu - —+ (n-1) -5- 2    sin 9 

Ü 

and 

-y. 
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Now the right a I left hand limit points for y must be determined 

They are defined by th^ most e I reme position of CS when the most for- 

ward   bomb   just   produces  a  kill.     See  Figure  29. 

1 

-     -+ 

4 

Limits  of  integration for y   ,   n ■ 6 

FIGURE 29 
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Clearly 

and 

[5fi + ((J  -   l) INT +  d) cos   ö] 

L
Ir + (CiLTI)I2dl + d^co8 e 

■' [^+ (n"l) d co8 e] 

X^R _ E|L _   (n   ^ d co8  e 

In a   similar manner each   point   of  the   left and   right  hand   limits  can 

be  constructed,  using   the   following   formulae: 

Xi+1  - X 
L JEBL  .   ,       ..   EBW .1 

- - '""ö- +   (n"8) "T- cotan 0^    , 8"1,   3,   5 2n-l 

1-1,   3,   5,   ..,,  2n-l 

Y^-f EBW 

Yi+i-Yi -fEI,w' f-:(n:z)' ■(n;'); 1-2,   3,   ..., 2n-l 

Y,L - ^ EBW 
2n      2 

_ R        v R     fEBL       ,       x EBW -1 
1+1 t    " L~2~ '   ^n_U) "2" C J' 

R L 
Y.    — Y.   ,     1—1»  2,   3,   •••, 2n. 

.   -2,  0,   2, n-2. 

8-1,   3,   ...,   2n-l 

1-1,   3,   ...,  2n-l 

See  Figure  30. 

The  formulae when 0 < 0   once again are  identical except   for the 

replacement of E3W by EBL and vice versa and cotan 6 by ta- 9.    Once 

the  polygon for an arbitrary n has  been defined  in the X-Y coordinate 

system the  remaining development   is   identical  to  the  case   for 0 > 0. 

The only problem arising being  the "bookkeeping" of  the  proper left and 

right hand  limits  in  the  numerical  integration. 

( 
« 
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Area of integration for n ■ 6 

FIGURE 30 
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APPENDIX  D 

NUMERICAL EVALUATION OF THE   PROBABILITY INTEGRAL 

In  order  to discuss   the  numerical   integration method   for a  given 

set  of parameter values   (i.e.,   target  dimensions,   o   ,   a   ,   0,   n,   EMD, 
K        L) 

g   (9))   the  optimal  stick   length and  uomb  interval   is  determined.     The 
w 

area  of   integration  in  the X-Y coordinate  system  is   then defined 

using  the   formulae developed   previously.     This   polygon  is   then 

rotated   into  the  R-D  coordinate  system by  the  appropriate   transform- 

ation and   the   following   type  of  numerical   integration   is   performed. 

Recall  the   integral   to be approximated 

.r D    R 0„ 0_ area  of 
polygon 

This  integration  is approximated by 

BT _L 
8a„/3 *i ri 

0R 0D 

Ps 

ib bR R   0D 

i    i 

dDdR 

8aR/3 

where      E    represer.ts  the addition of small  strips  of probability and 
c-1 

8c_/3 determines   the number of strips.     For example,  suppose  the 

area of integration  Ir. the R-D coordinate system is as  seen  in Figure 

31. 

First, the lower limit R of integration is determined and R  is 
L 1 

set equal  to R 

R 1 '■ V 
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Area  of  integration In R-D coordinate system 

FIGURE 31 

The  b denotes   lower value of the  AR    interval and  1 denotes   the   first 

interval   in the  summation.     The  upper   limit  of AR,   is  then defined by 

RT
1 - Rb + 3. 

Next   the  center  point R*    of AR,   is  determined by 

R* 1 2 

and  the  right  and   left hand end  points   of D are determined 

D1R - miR* + bi 

D.     - m R* + b   , 

using  the  proper equation for  the boundary of  the  polygon. 
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h T 
Next   R       and   R       are   normalized  and   the 

PROB 
rRi Ri 1   <  R <       Is   computed 
Lorj   -     - o„ J K by 

R1
T/aR 

PROB   (1) /   k 
u 
2" 

du. 

R1 /aR 

R L 
Next D.     and D.     are  normalized and 

R 

PROB f   1                     1 1   < D <       is  computed  by 

D>D 

PROB   (2)  - /   f. du, 

n   R/ 
Dl/aD 

Next   [PROB   (2)]   x   [PROB   (1)]   is  computed  and saved. 

H T 
The  program  then sets R-    equal  to R      and  repeats  the  process 

adding  the  increase  in probability to  the  previous  total.     This  pro- 

cedure   is  repeated  until  the  uppermost   limit  of  R is  reached  at which 

time  the  total value  of  the   probability accumulated  is   printed.     The 

entire  procedure   Is  repeated  for each 9. 

One   further  comment,   in the  railroad/road  problem,  since  R 

theoretically varies  from -00 to +<«>,   the  Integration Is  limited  to 

±4oR. 

The  procedure   is exactly the  same when EAA Is  present but  the  area 

in the X-Y plane   Is  slightly different.     No problems are encountered 

when 9 < 9   .     That   is as   long as  the  bomb  Interval used  is   less  than 

or equal  to  the  optimal bomb  Interval  for  the 9  in the  integration; 

however,  when the  bomb   interval  used  exceeds   the  optimum bomb   Interval 
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(i.e.   9  > 9n)   areas  appear where   the  CS  may   fall and   no kill  occur, 

Figure   32   illustratea   this   condition   for   n  - 6, 

VA\\T     Areas  where  CS 
produces  no 
kill 

Area  of integration EAA present,  9 > Qn 

FIGURE 32 

Formulae   for  the  construction of this area  are  easily determined  but 

since   the  computer  program developed   is  a  special case,   that,   is   the 

number of bombs   is  constant at  6,  general  formulae are   not   included. 

The  problem was   investigated  only  because  questions arose about   the 

validity of  using  errorless  approach angles  but  since   the  results 

obtained were  not  greatly different   than when 9 was  assumed   perfectly 

known  the   investigation was discontinued. 
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APPENDIX  E 

AIR WING: 

GLOSSARY 

Tactical   unit   aboard aircraft   carrier made   up of 

approximately  6 squadrons.     Normally,   the   largest 

unit   of aircraft   that   operate   together. 

APPROACH ANGLE: Acute  angle  measured   from center   line   of  target 

to horizontal   projection of   flight   path  during 

dive . 

BOMB  INTERVAL: Horizontal distance measured along  flight   path 

between the  centers  of liipact  of  two adjacent 

bomb?. 

BOMB STICK: Line  of bombs  dropped at  programmed  intervals   in 

a single  dive.     Normally falling   in a  straight 

line. 

DIVE ANGLE: Acute angle measured  in vertical   plane between 

the horizontal and  the  flight  path during  the 

dive. 

EFFECTIVE 

MISS-DISTANCE: 

Maximum distance any target dimension may be from 

the center of impact of the weapon and still pro- 

duce a kill. 

FLIGHT: Several airplanes  operating  together as a 

tactical  unit. 
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GENERAL  PURPOSE 

BOMBS : 

KILL THE  TARGET; 

Conventional   ordnance   constructed   of  high 

explosives   and   iron alloys.     Produced  in different 

weights  and   used  on ordinary targets. 

With   respect   to a   railroad/road   target,  kill 

implies   cratering   the   road   so as   to make   it 

temporarily  impassable;   for a  bridge,   collapsing 

the  bridge   is  considered a kill. 

LIGHT JET ATTACK Turbo-jet  aircraft  designed  primarily  to carry 

AIRCRAFT: air   to ground weapons.     Much  smaller   in size   than 

strategic bombers  such as B-52,  B-47. 

PILOT MISS-DISTANCE    Probability distribution describing   pilot  induced 

DISTRIBUTION: errors  between the  intended  point  of  impact  of a 

weapon and   its actual  point  of  impact. 

ROLL-IN: Initiation of the tracking dive in a bomb run, 

SINGLE PASS HIT:    Killing the target in one pass. 

SQUADRON: 

STICK BOMBING; 

STICK  LENGTH; 

Tactical  unit  aboard aircraft carrier made  up of 

approximately  15 aircraft  of  the  same   type. 

Smallest  organizational unit. 

Tactic  involved  in dropping  several  h imbs during 

a  single dive  using  programmed  intervals. 

Horizontal distance,  measured along  horizontal 

projection of  flight path,   from center  of impact 
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of  the   first  weapon  released   to  center   of   impact 

of   last  weapon   released  during a   single   run. 

TRACKING DIVE: Dive   In which  bombs  are   Intended   to öe  dropped. 

Pilot  attempts   to correct   for all known errors 

and  to  place   the  geometric  center  of   the  bomb 

stick   on  the geometric  center   of   the   target. 
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t.  V**TRACT 

X AA mathematical model  for  the delivery of conventional bombs by  stick 
bombing has been developed.     This model considers bomb  type,   number of bombs, 
pilot miss-distance distribution, and dimensions  of a  rectilinear  target. 
It may be  used  to estimate   the  effects  of  bomb Interval and approach angle 
upon the single  pass destruction probability of a target. 

The significant variables  of the stick bombing operation are   identified, 
and  functional relationships  are developed among these.     The model  is used 
to examine  the problem of determining an optimal approach angle and bomb 
interval  for stick bombing bridges and  railroads. 
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