<table>
<thead>
<tr>
<th>LIMITATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>Approved for public release; distribution is unlimited.</td>
</tr>
</tbody>
</table>

| FROM: |
| Distribution: Further dissemination only as directed by Army Aviation Systems Command, St Louis, MO, JAN 1970, or higher DoD authority. |

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAAVSCOM ltr 12 Nov 1973</td>
</tr>
</tbody>
</table>
ARMY PRELIMINARY EVALUATION

PROTOTYPE OH-58A HELICOPTER
WITH XM27EI WEAPON SUBSYSTEM

FINAL REPORT

JOHN NAGATA
PROJECT ENGINEER

EDWARD BAILES
FLIGHT TEST ENGINEER

JOSEPH WATTS
PROJECT OFFICER/PILOT

JANUARY 1970

DISTRIBUTION

This document may be further distributed by any holder only with specific prior approval obtained through the CG, USAAVSCOM, ATTN: AMSAV-R-F, PO Box 209, St. Louis, Missouri 63166.

US ARMY AVIATION SYSTEMS TEST ACTIVITY
EDWARDS AIR FORCE BASE, CALIFORNIA 93523
DISCLAIMER NOTICE

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DDC AVAILABILITY NOTICE

US military agencies may obtain copies of this report directly from the DDC. Other qualified users shall request through the Commanding General, US Army Aviation and Missile Command (USAAVSCOM), ATTN: AMSAV-R-F, PO Box 209, St. Louis, Missouri 63166.

REPRODUCTION LIMITATIONS

Reproduction of this document in whole or in part is prohibited except with permission obtained through the Commanding General, USAAVSCOM, ATTN: AMSAV-R-F, PO Box 209, St. Louis, Missouri 63166. DDC is authorized to reproduce the document for United States Government purposes.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

TRADE NAMES

The use of trade names in this report does not constitute an official endorsement or approval of the use of the commercial hardware and software.
ARD PRELIMINARY EVALUATION

PROTOTYPE OH-58A HELICOPTER
WITH XM27E1 WEAPON SUBSYSTEM

FINAL REPORT

JOHN NAGATA
PROJECT ENGINEER

JOSEPH WATTS
PROJECT OFFICER/PILOT

EDWARD BAILES
FLIGHT TEST ENGINEER

JANUARY 1970

DISTRIBUTION

This document may be further distributed by any holder only with specific prior approval obtained through the CG, USAVSCOM, ATTN: AMSAV-R-F, PO Box 209, St. Louis, Missouri 63166.

US ARMY AVIATION SYSTEMS TEST ACTIVITY
EDWARDS AIR FORCE BASE, CALIFORNIA 93523
ABSTRACT

The Army Preliminary Evaluation of the OH-58A prototype helicopter was conducted in the vicinity of Arlington, Texas, during the period 26 June to 9 July 1969. Thirteen test flights were conducted for a total of 14.5 hours of which 9.1 hours were productive. The evaluation consisted of limited quantitative and qualitative stability and control tests in the armed scout configuration only. The handling qualities of the OH-58A are satisfactory for the accomplishment of the armed scout mission.
During the conduct of the OH-58A prototype helicopter Army Preliminary Evaluation, the test helicopter with special instrumentation installed was maintained by Bell Helicopter Company personnel. Data reduction support and office facilities were also provided under contract through the Bell Helicopter Company.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Test Objectives</td>
<td>1</td>
</tr>
<tr>
<td>Description</td>
<td>1</td>
</tr>
<tr>
<td>Scope of Test</td>
<td>2</td>
</tr>
<tr>
<td>Methods of Test</td>
<td>2</td>
</tr>
<tr>
<td>Chronology</td>
<td>3</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION.</td>
<td>4</td>
</tr>
<tr>
<td>General</td>
<td>4</td>
</tr>
<tr>
<td>Static Longitudinal Characteristics</td>
<td>4</td>
</tr>
<tr>
<td>Control Trim Characteristics</td>
<td>4</td>
</tr>
<tr>
<td>Static Longitudinal Stability</td>
<td>4</td>
</tr>
<tr>
<td>Static Lateral-Directional Stability</td>
<td>4-5</td>
</tr>
<tr>
<td>Sideward and Rearward Flight</td>
<td>5</td>
</tr>
<tr>
<td>Armament Firing</td>
<td>5</td>
</tr>
<tr>
<td>Dynamic Stability</td>
<td>6</td>
</tr>
<tr>
<td>Controllability</td>
<td>6</td>
</tr>
<tr>
<td>Autorotational Entry</td>
<td>6</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>7</td>
</tr>
<tr>
<td>Airspeed Calibration</td>
<td>7</td>
</tr>
<tr>
<td>Control System</td>
<td>7</td>
</tr>
<tr>
<td>Rotor Characteristics</td>
<td>7</td>
</tr>
<tr>
<td>Sideslip Limitations</td>
<td>7</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>8</td>
</tr>
<tr>
<td>General</td>
<td>8</td>
</tr>
<tr>
<td>Deficiencies and Shortcomings Affecting Mission</td>
<td>8</td>
</tr>
<tr>
<td>Accomplishment</td>
<td>8</td>
</tr>
<tr>
<td>Specification Compliance</td>
<td>8</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>9</td>
</tr>
<tr>
<td>APPENDIXES</td>
<td>10</td>
</tr>
<tr>
<td>I. References</td>
<td>10</td>
</tr>
<tr>
<td>II. Test Data</td>
<td>11</td>
</tr>
<tr>
<td>III. Test Instrumentation</td>
<td>45</td>
</tr>
<tr>
<td>IV. Photographs</td>
<td>46</td>
</tr>
<tr>
<td>V. Handling Qualities Rating Scale</td>
<td>48</td>
</tr>
<tr>
<td>VI. Distribution</td>
<td>48</td>
</tr>
</tbody>
</table>
INTRODUCTION

BACKGROUND

1. In 1967, the US Army Aviation Systems Test Activity (USAASTA) conducted an Army Preliminary Evaluation (APE) of a production Bell "Jet Ranger" helicopter, model 206A. A contract was awarded to the Bell Helicopter Company in 1968 to produce for the US Army a light observation helicopter (LOH) designated the OH-58A. Authority for USAASTA to conduct a preliminary evaluation of a prototype OH-58A was issued by the US Army Aviation Systems Command (USA- AVSCOM) in a test directive dated 29 April 1969 (ref 1, app I). Stability and control tests were conducted in the vicinity of Arlington, and armament firing tests were conducted near Fort Hood, Texas.

TEST OBJECTIVES

2. The test objective was to conduct a limited handling qualities investigation of the OH-58A in the armed scout configuration in order to:

 a. Provide quantitative and qualitative engineering flight test data to serve as a basis for an estimate of aircraft suitability for its intended mission.

 b. Detect and allow early correction of deficiencies, as well as provide a basis for evaluation of changes incorporated to correct these deficiencies.

 c. Assist in determining the flight envelope to be used by US Army pilots for future weapons subsystem development tests, service tests and operational usage.

DESCRIPTION

3. The OH-58A LOH is manufactured by the Bell Helicopter Company, Fort Worth, Texas. The single main rotor is a two-bladed, semi-rigid, teetering type, and the antitorque tail rotor is a two-bladed, semirigid, delta-hinge type. The cockpit provides side-by-side seating for a crew of two (pilot and copilot/observer), and the cargo compartment has provisions for two passengers. Dual flight controls are provided. Cyclic and collective controls are of the hydraulically boosted, irreversible type, and the antitorque
control is unboosted. The main landing gear is a fixed, energy-absorbing skid type. The helicopter is powered by an Allison T63-A-700 free turbine, turboshaft engine with a takeoff power rating of 317 shaft horsepower (shp) at sea level (SL), standard day conditions. The main transmission has a rating of 270 shp (maximum continuous) with a takeoff power limit of 317 shp (5-minute rating).

4. The XM27E1 armament subsystem consists of one XM134 high-rate 7.62mm gun (GAU-2B/A) with mount, feed system, ammunition boxes and an XM70E1 sight for pilot operation. The weapon subsystem is mounted on the left side of the helicopter near the longitudinal center of gravity (cg). The XM134 gun is adjustable in elevation from 5 degrees above to 20 degrees below waterline zero and is operated by either the pilot or copilot/observer.

SCOPE OF TEST

5. The OH-58A was evaluated with respect to its mission as an armed scout helicopter as defined in the detail specification (ref 2, app I) and MIL-H-8501A (ref 3). Thirteen test flights were conducted for a total of 9.1 productive hours. The test was limited to evaluation of the handling qualities in the armed scout configuration. The flight restrictions and operating limitations utilized during this evaluation were provided by the manufacturer and the type inspection authorization (TIA) issued by the Federal Aviation Administration (FAA).

METHODS OF TEST

6. Accepted standard flight test methods were used to acquire data for analysis and evaluation of military and detail specification compliance. During the armament firing tests, the controls were held fixed, and the resultant aircraft motions were recorded.

7. A detailed list of the test instrumentation utilized is contained in appendix III. Photographs of the cockpit and cabin instrumentation are presented in appendix IV.
8. The chronology of testing is as follows:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test directive received</td>
<td>5 May 1969</td>
<td></td>
</tr>
<tr>
<td>Test aircraft received</td>
<td>26 June 1969</td>
<td></td>
</tr>
<tr>
<td>Test started</td>
<td>27 June 1969</td>
<td></td>
</tr>
<tr>
<td>Test completed</td>
<td>8 July 1969</td>
<td></td>
</tr>
<tr>
<td>APE debriefing</td>
<td>14 July 1969</td>
<td></td>
</tr>
<tr>
<td>Draft report submitted</td>
<td>September 1969</td>
<td></td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

GENERAL

9. Within the scope of this limited evaluation, the overall stability and control characteristics of the OH-58A were satisfactory for the accomplishment of the armed scout mission.

10. Although it was not within the scope of the test directive, a cursory qualitative evaluation was conducted on the production OH-58A. The most objectionable characteristics discovered were: Cabin ventilation was inadequate, and the twist grip throttle friction was excessive with no manual adjustment incorporated.

STATIC LONGITUDINAL CHARACTERISTICS

Control Trim Characteristics

11. Level-flight trim curves were obtained to determine the control positions and control margin in stabilized level flight throughout the allowable airspeed envelope. The results of these tests were satisfactory and are presented in figures 1 and 2, appendix II. The control position gradients were determined to be positive throughout the airspeed envelope tested.

Static Longitudinal Stability

12. The collective-fixed static longitudinal stability of the OH-58A was evaluated by examining the longitudinal cyclic control position variation with airspeed at trimmed zero-sideslip flight conditions. Various trim airspeeds throughout the allowable flight envelope were used. The results of this test are presented in figures 3 and 4, appendix II, and are satisfactory. The longitudinal static stability was positive throughout the airspeed envelope tested. This complied with paragraph 3.3.1.0, MIL-H-8501A (PRS 3).

STATIC LATERAL-DIRECTIONAL STABILITY

13. The static lateral-directional stability and effective dihedral characteristics of the OH-58A were determined to be satisfactory. Bank angle and lateral-directional control positions as a function of sideslip angle were evaluated during steady-heading
sideslips. As may be seen in figures 5 through 7, appendix II, the effective dihedral was weakly positive at the low trim airspeed and became more strongly positive as airspeed was increased. In compliance with paragraph 3.3.9, MIL-H-8501A, control harmony was satisfactory for all conditions tested (PRS 3).

14. The handling qualities of the OH-58A in sideward and rearward flight were evaluated and found to be acceptable within the scope of the test conditions (2990 pounds, 1950-foot density altitude (Hp)). The control margin complied with paragraph 3.3.4 of MIL-H-8501A and was adequate in sideward flight in both directions. The maximum allowable speed (30 knots true airspeed (KTAS)) does not comply with paragraph 3.3.2, MIL-H-8501A. The aircraft characteristics in rearward flight were satisfactory with sufficient control margin remaining up to the maximum allowable speed of 30 KTAS. Test results are presented in figures 8 and 9, appendix II (PRS 5).

ARMAMENT FIRING

15. The handling qualities of the OH-58A were evaluated while firing the XM27E1 weapon subsystem and were found to be satisfactory in every mode of flight tested. The most severe aircraft reaction was experienced while firing from a hover (in ground effect (IGE) and out of ground effect (OGE)). This reaction consisted of a strong nose-down longitudinal pitching motion accompanied by a slight right roll with coupled left yaw. Minimum pilot effort was required to correct for this reaction and maintain a constant aircraft attitude. The magnitude of the required control manipulations was not considered excessive or objectionable. Firing the weapon system during transition from a hover to forward flight created no significant problem. After the necessary control inputs were applied to counteract the nose-down, right roll, left yaw tendency, the only noticeable effect was a slight decrease in the forward acceleration due to the recoil effect of the XM134 minigun. No adverse effects were noted when the weapon system was fired during transition from level flight to a hover. The aircraft displayed satisfactory characteristics in level flight. At low airspeeds (below 50 knots indicated airspeed (KIAS), the most adverse reaction was encountered while firing the XM134 minigun weapon system in the fully depressed position (20 degrees below waterline zero). A pronounced right roll, accompanied by a slight left yaw, occurred while the minigun was being fired. However, this condition was effectively damped without undue pilot effort when the firing ceased.
At the higher airspeeds (up to never exceed airspeed \(V_{NE}\)), the OH-58A displayed more stable characteristics with only slight reactions to firing the weapon system. Typical time histories of hover, level flight and high-powered descent, while firing with various degrees of sideslip, are presented in figures 10 through 14, appendix II.

DYNAMIC STABILITY

16. The dynamic stability characteristics of the OH-58A were evaluated by disturbing the helicopter by 1-inch control pulse inputs about all three axes. Examples may be seen in figures 15 and 16, appendix II. Dynamic stability characteristics about all three axes were found to be satisfactory and complied with paragraphs 3.2.11 and 3.2.11.2, MIL-H-8501A. No control coupling and only a slight aerodynamic lateral-directional coupling occurred at all trim speeds tested (PRS 3).

CONTROLLABILITY

17. The controllability of the OH-58A was investigated by disturbing the helicopter from stabilized hover and trimmed level flight conditions by step control inputs. Test results shown in figures 17 through 28, appendix II, were analyzed by examining the maximum rates and accelerations along with the time required to achieve these maximums and were determined to be satisfactory under all conditions tested. The maximum displacements achieved were well in excess of the minimum requirements of paragraphs 3.2.11.1, 3.2.13, 3.3.5 and 3.3.18, MIL-H-8501A. The maximum rates did not comply with paragraph 3.3.15 of MIL-H-8501A but were not objectionable (PRS 4).

AUTOROTATIONAL ENTRY

18. The characteristics of the OH-58A during entry into autorotation were investigated and found to be acceptable. The aircraft reactions following an abrupt engine failure were examined by rapidly closing the throttle and attempting to hold all controls fixed for 2 seconds. Test results are shown in figures 29 and 30, appendix II. Although not shown in appendix II, the rotor rpm decay rate observed during these tests was excessive (approximately 22 rpm/sec). Normal power-on rpm was 354 and minimum power-off rpm was 330. In utilizing a 2-second delay, the minimum operational rpm (330) was exceeded under all conditions tested. The rotor speed at no time fell below the quoted safe transient value (304 rpm).
MISCELLANEOUS

Airspeed Calibration

19. Airspeed calibration tests were witnessed by USAASTA personnel during the FAA certification program. It was not deemed prudent or judicious to expend time conducting an airspeed calibration during the limited APE. The airspeed calibration curve used during this test program was provided by the manufacturer and is presented in figure 31, appendix II. The FAA approved SL V_{NE} is satisfactory for operational use (fig. 33).

Control System

20. The control system was evaluated while the aircraft was on the ground with the rotor stationary and hydraulic power off. Qualitatively, the cyclic control forces were considered acceptable. The longitudinal cyclic/collective stick control coupling was excessive. The collective required a 30-pound force to move it through full travel. Similar tests were conducted in flight with the hydraulic boost system turned off, and the results confirmed the unsatisfactory forces and control coupling. These characteristics comply with the detail specification and paragraph 3.5.8(a)(2) of MIL-H-8501A but do not comply with paragraphs 3.5.8(c) and 3.5.8(d), MIL-H-8501A. This condition is not considered a safety-of-flight hazard, but it would preclude successful mission accomplishment in the event of hydraulic boost failure. With the boost system turned on, these characteristics were not observed.

Rotor Characteristics

21. The manufacturer's recommended rotor-engagement wind limitations are unduly restrictive and unsatisfactory. A 30-knot maximum rotor engagement wind limitation and/or a 10-knot maximum gust spread is recommended. These limitations were imposed to preclude severe rotor mast bumping at low rotor rpm and fail to comply with paragraph 3.5.1, MIL-H-8501A.

Sideslip Limitations

22. The sideslip limitations observed during the APE were provided by the manufacturer. The sideslip envelope presented in figure 32, appendix II, is satisfactory for operational use but does not comply with paragraph 3.4.4.4 of the detail specification.
CONCLUSIONS

GENERAL

23. The following general conclusion was reached upon completion of the Army Preliminary Evaluation of the prototype OH-58A helicopter with the XM27E1 weapon subsystem: The overall handling qualities of the OH-58A are suitable for the armed scout mission.

DEFICIENCIES AND SHORTCOMINGS AFFECTING MISSION ACCOMPLISHMENT

24. Within the scope of this evaluation, no deficiencies were discovered.

25. Correction of the following shortcomings is desirable for improved operation and mission capabilities:

 a. Unsatisfactory rotor-engagement wind tolerance (para 21).
 b. Unsatisfactory boost-off characteristics (para 20).

SPECIFICATION COMPLIANCE

26. Within the scope of these tests, the stability and control characteristics of the OH-58A met the requirements of MIL-H-8501A with the exceptions listed below:

 a. Paragraph 3.5.8(d). The force required on the collective stick exceeded 25 pounds (para 20).
 b. Paragraph 3.5.8(c). The collective stick tended to creep during movement of the longitudinal cyclic with the hydraulic boost system turned off (para 20).
 c. Paragraph 3.5.1. The rotor-engagement wind tolerance is below 45 knots (para 21).
 d. Paragraph 3.3.15. Maximum roll rates exceeded 20 degrees-per-second-per-inch of control deflection (para 17).
 e. Paragraph 3.3.2. The maximum allowable airspeed in sideward flight is less than 35 knots (para 22).
RECOMMENDATIONS

27. The shortcomings, correction of which is desirable, should be corrected on a high-priority basis.
APPENDIX I. REFERENCES

APPENDIX II. TEST DATA
Figure No. 1
Control Positions In Level Flight
OH-58A" BELL 412 "H-90"

GROSS WEIGHT LONG C.G. LAT. C.G. DENSITY
IN. STATION STATION ALTITUDE SKEW
OBS. INCHES INCHES FEET M.P.H.
2950 107.5 -30 5000 804

- Full Collective Stick Travel = 11.5 Inches
- Full Directional Pedal Travel = 5.6 Inches
- Full Lateral Stick Travel = 10.0 Inches
- Full Longitudinal Stick Travel = 12.0 Inches
Figure No. 2
Control Positions in Level Flight
OH-58A IN T. M. 9486996

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>SYMMETRY</th>
<th>LEGS, INCHES</th>
<th>INCHES</th>
<th>ALTITUDE, FEET</th>
<th>VELOCITY, KNOTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>0</td>
<td>3935</td>
<td>106.8</td>
<td>-20</td>
<td>5000</td>
</tr>
</tbody>
</table>

Full Collective Stick Travel = 11.5 inches

Full Directional Pedal Travel = 5.6 inches

Full Lateral Stick Travel = 10.0 inches

Full Longitudinal Stick Travel = 12.00 inches
Figure No. 3
Static Longitudinal Stability
Level Flight
OH-58A Bell 4W-39998

<table>
<thead>
<tr>
<th>GROSS</th>
<th>LONG. C.G.</th>
<th>LAT. C.G.</th>
<th>DENSITY</th>
<th>ROTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBS</td>
<td>STATION</td>
<td>STATION</td>
<td>FEET</td>
<td>RPM</td>
</tr>
<tr>
<td>2975</td>
<td>1074</td>
<td>-20</td>
<td>5000</td>
<td>354</td>
</tr>
</tbody>
</table>

Shaded symbols denote trim airspeed

Full Collective Stick Travel = 11.5 Inches

Full Directional Pedal Travel = 5.6 Inches

Full Lateral Stick Travel = 10.0 Inches

Full Longitudinal Stick Travel = 12.0 Inches
Figure No. 4
Static Longitudinal Stability
GH-58A BELL NO. 59796

<table>
<thead>
<tr>
<th>SYM</th>
<th>GRUPT LBS</th>
<th>LONG.C.G. INCHES</th>
<th>LAT.C.G. INCHES</th>
<th>DENSITY</th>
<th>ALTITUDE FEET</th>
<th>TRUE SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2745</td>
<td>107.8</td>
<td>-2.0</td>
<td>5000</td>
<td>224 CLIMB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2755</td>
<td>107.8</td>
<td>-2.0</td>
<td>6000</td>
<td>236 CLIMB</td>
<td></td>
</tr>
</tbody>
</table>

FULL COLLECTIVE STICK TRAVEL = 11.5 INCHES

FULL DIRECTIONAL PEDAL TRAVEL = 9.6 INCHES

FULL LATERAL STICK TRAVEL = 10.0 INCHES

FULL LONGITUDINAL STICK TRAVEL = 12.09 INCHES
Static Lateral-Directional Stability

Level Flight

Figure No. 5

<table>
<thead>
<tr>
<th>Gross Weight</th>
<th>Long C.G. Station</th>
<th>Lat. C.G. Station</th>
<th>Density</th>
<th>Speed</th>
<th>Calibrated Airspeed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2975 lbs</td>
<td>107.3 inches</td>
<td>-20 inches</td>
<td>5000 ft</td>
<td>354 RPM</td>
<td>32 knots</td>
</tr>
</tbody>
</table>

Shaded Symbols Denote Trim Airspeed

- **Full Longitudinal Stick Travel**: 12.09 inches
- **Full Lateral Stick Travel**: 10.0 inches
- **Full Directional Pedal Travel**: 5.6 inches

Diagram Details

- **Static Lateral-Directional Stability Chart**
- **Measurements**
 - Full Longitudinal Stick Travel
 - Full Lateral Stick Travel
 - Full Directional Pedal Travel

Legend

- **LATERAL STICK POSITION INCHES FROM FULL FORWARD**
- **BANK ANGLE DEGREES**
- **PILOT PEDAL INCHES FROM FULL LEFT**

Data Points

1. **Angle of Sideslip (Degrees)**
2. **Left (LT) and Right (RT) Sideslip Values**

Scale

- X-axis: Angle of Sideslip (Degrees)
- Y-axis: Pedal and Stick Travel (Inches from Full Position)
Figure No. 6
Static Lateral-Directional Stability
Level Flight
OH-58A. BELL 412, 89998

<table>
<thead>
<tr>
<th>GROSS WEIGHT</th>
<th>LONG. C.G.</th>
<th>LAT. C.G.</th>
<th>DENSITY</th>
<th>ROTOR CALIBRATED</th>
<th>CALIBRATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2943</td>
<td>107.3</td>
<td>-2.0</td>
<td>5000</td>
<td>894</td>
<td>76</td>
</tr>
</tbody>
</table>

Shaded symbols denote trim airspeed.

Full Longitudinal Stick Travel = 12.09 inches

Full Lateral Stick Travel = 100 inches

Full Directional Pedal Travel = 5.6 inches
Figure No. 7

State Lateral - Directional Stability

Level Flight

<table>
<thead>
<tr>
<th>GROSS</th>
<th>LONG. C.G.</th>
<th>L.S.C.G.</th>
<th>DENSITY</th>
<th>INPUT</th>
<th>CALIBRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.35</td>
<td>1025</td>
<td>-2.0</td>
<td>6200</td>
<td>STD</td>
<td></td>
</tr>
</tbody>
</table>

Shaded symbols denote trim airspeed

Full Longitudinal Stick Travel = 12.0 in.

Full Lateral Stick Travel = 10.0 inches

Full Directional Pedal Travel = 8.6 inches

Angle of sideslip ~ degrees
Figure No. 8
CONTROL POSITIONS IN SIDECONE FLIGHT
CH-57A BELL 476 3999

<table>
<thead>
<tr>
<th>CLASS</th>
<th>LONG C.G.</th>
<th>LAT C.G.</th>
<th>DENSITY</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROSS</td>
<td>WEIGHT</td>
<td>STATION</td>
<td>STATION</td>
<td>ALTITUDE</td>
</tr>
<tr>
<td>2990</td>
<td>106.8</td>
<td>-2.0</td>
<td>1940</td>
<td>554</td>
</tr>
</tbody>
</table>

- **Collective Stick Position**: Full Collective Stick Travel = 11.5 inches
- **Pedal Position**: Full Pedal Travel = 5.6 inches
- **Lateral Stick Position**: Full Lateral Stick Travel = 10.0 inches
- **Longitudinal Stick Position**: Full Longitudinal Stick Travel = 12.09 inches

TRUE AIRSPEED ~ KNOTS

LT. 40 20 0 20 40
RT. 0 2 4 6 8

19
Figure No. 9
CONTROL POSITIONS IN REARWARD FLIGHT
OH-6A BELL 41 2900S

<table>
<thead>
<tr>
<th>GROSS WEIGHT</th>
<th>LONG.C.G.</th>
<th>LAT.C.G.</th>
<th>DENSITY</th>
<th>Rotor Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2905 LBS</td>
<td>104.3 INCHES</td>
<td>-20 INCHES</td>
<td>1940 FPM</td>
<td>954 RPM</td>
</tr>
</tbody>
</table>

- **Full Collective Stick Travel**: 11.5 inches
- **Full Directional Pedal Travel**: 5.6 inches
- **Full Lateral Stick Travel**: 10.0 inches
- **Full Longitudinal Stick Travel**: 12.09 inches
Figure No. 10
XM-27E-1 Firing Time Histories
OH-58A BELL 412 99996
HOVER

<table>
<thead>
<tr>
<th>GROSS WEIGHT</th>
<th>LONG.C.G. STATION</th>
<th>LAT.C.G. STATION</th>
<th>DENSITY</th>
<th>ROTOR SPEED</th>
<th>TRIM</th>
<th>MAX AIRSPED</th>
<th>MINIMUM POSITION</th>
<th>RATE</th>
<th>SIDESLIP ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2985 LBS</td>
<td>+7</td>
<td>-1.4</td>
<td>2270 FEET</td>
<td>354 RPM</td>
<td>0</td>
<td>MAX UP 40000 RPM</td>
<td>40000 RPM</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Rate of pitch, roll, and yaw — degrees

Angle of pitch, roll, and yaw — degrees

Control position

Pedal

LAT. CYCLIC

LAT. STICK

LONG STICK

TIME — SECONDS
Figure No. 11

XM-27E1 Firing Time Histories

ON-58A B. I.L. SU. 39998

LEVEL FLIGHT

<table>
<thead>
<tr>
<th>Gross Weight</th>
<th>Long C.G. Station</th>
<th>Lat C.G. Station</th>
<th>Density Altitude</th>
<th>Rotor Speed</th>
<th>Trim R/A</th>
<th>XM-13A Rate of Pitch</th>
<th>Sideslip Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBS</td>
<td>INCHES</td>
<td>INCHES</td>
<td>FEET</td>
<td>RPM</td>
<td>KNOTS</td>
<td>INCHES</td>
<td>DEGREES</td>
</tr>
<tr>
<td>2980</td>
<td>1077</td>
<td>-1.4</td>
<td>1860</td>
<td>754</td>
<td>82</td>
<td>82 KCA3</td>
<td>52 B RT</td>
</tr>
</tbody>
</table>

Diagram:

- Rate of Pitch Roll and Yaw Degrees
- Angle of Pitch Roll and Yaw Degrees
- Control Pedal and Lat. C.G. Movement

Legend:

- Yaw
- Roll
- Pitch
<table>
<thead>
<tr>
<th>Gross Weight</th>
<th>Long C.G. Station</th>
<th>Lat. C.G. Station</th>
<th>Density</th>
<th>Rotor Speed</th>
<th>Trim</th>
<th>Lat. Stick 1</th>
<th>Long. Stick 1</th>
<th>Pedal</th>
<th>Rate</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2995 LBS</td>
<td>1077 inches</td>
<td>-14 inches</td>
<td>2280</td>
<td>354 RPM</td>
<td>100 knots</td>
<td>100 KIAS</td>
<td>Stowed</td>
<td>4000 (high)</td>
<td>20.3</td>
<td>degrees</td>
</tr>
</tbody>
</table>

Figure No. 15

X-157FE Firing Time Histories

Level Flight

Rate of Pitch Roll and Yaw

Angle of Pitch Roll and Yaw

Control Position

Time ~ Seconds
Figure No. 14
XM-27E1 Firing Time Histories
OH-58A BELL 54,39998
High Power Descent R/D - 2500 FT/MIN

<table>
<thead>
<tr>
<th>GROSS WEIGHT</th>
<th>LONG.C.G. STATION</th>
<th>LAT.C.G. STATION</th>
<th>DENSITY</th>
<th>ROTOR RPM</th>
<th>TRIM</th>
<th>XM-184</th>
<th>FIRING RATE</th>
<th>SIDESLIP ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>1077</td>
<td>-1.4</td>
<td>2360</td>
<td>354</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RATE OF PITCH / ROLL AT YAW

ANGLE OF PITCH / ROLL AT YAW

CONTROL PEDAL

LONG. STICK

LAT. STICK

TIME ~ SECONDS
<table>
<thead>
<tr>
<th>CALIBRATED AIRSPEED</th>
<th>GROSS WEIGHT</th>
<th>LON. C.O. STATION</th>
<th>LAT. C.O. STATION</th>
<th>DENSITY</th>
<th>ROTOR SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNOTS</td>
<td>LBS</td>
<td>INCHES</td>
<td>INCHES</td>
<td>FEET</td>
<td>RPM</td>
</tr>
<tr>
<td>0</td>
<td>2960</td>
<td>106.3</td>
<td>-2.0</td>
<td>1840</td>
<td>994</td>
</tr>
</tbody>
</table>

Figure No. 17

Longitudinal Control Response

Hover OH-58A BELL 2/19-3998

![Graph showing longitudinal control response](image)
<table>
<thead>
<tr>
<th>LATERAL CONTROL DISPLACEMENT (INCHES)</th>
<th>MAXIMUM ROLL RATE (DEG/SEC)</th>
<th>TIME REQUIRED TO OBTAIN MAXIMUM ROLL RATE (SECONDS)</th>
<th>MAXIMUM ACCELERATION (DEG/SEC/SEC)</th>
<th>TIME REQUIRED TO OBTAIN MAXIMUM ACCEL. (SECONDS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure No. 18

- CALIBRATED GIPPS AIRSPEED
- LATERAL CONTROL RESPONSE
- INCHES
- FEET
- KNOTS
- KBM
- KG
- ft
- m
- IN
- Deg
- SECOND
- NO

- HORIZONTAL HORIZON
- CALIBRATED WINDON
- CALIBRATED AIRSPEED
- CALIBRATED INCHES
- CALIBRATED FEET
- CALIBRATED KNOTS
- CALIBRATED KBM
- CALIBRATED KG
Figure No. 21

Lateral Control Response

Level Flight

<table>
<thead>
<tr>
<th>CALIBRATED A/V SPEED</th>
<th>GROSS WEIGHT</th>
<th>LONG C.G. STATION</th>
<th>LAT. C.G. STATION</th>
<th>DENSITY</th>
<th>ALTITUDE</th>
<th>RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNOTS</td>
<td>LBS</td>
<td>INCHES</td>
<td>INCHES</td>
<td></td>
<td>FEET</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2950</td>
<td>117.5</td>
<td>-2.0</td>
<td></td>
<td>5000</td>
<td>364</td>
</tr>
</tbody>
</table>

Diagram:

- **Lateral Control Displacement (inches from trim):**
 - Horizontal axis: Lateral Control Displacement (inches from trim)
 - Vertical axis: Lateral Roll Rate (deg/sec)

- **Maximum Acceleration:**
 - Time required to obtain maximum acceleration.
 - Maximum acceleration in deg/sec/sec.

- **Maximum Roll Rate:**
 - Maximum roll rate in deg/sec.
Figure No. 22
DIRECTIOMAL CONTROL RESPONSE
LEVEL FLIGHT
OH-58A BELL 412 GH999B

<table>
<thead>
<tr>
<th>CALIBRATED AIRSPEED</th>
<th>GROSS WEIGHT</th>
<th>LONG.C.G. STATION</th>
<th>LAT.C.G. STATION</th>
<th>DENSITY</th>
<th>ALTITUDE</th>
<th>ROTOR SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 KNOTS</td>
<td>2980 LBS.</td>
<td>107.5 INCHES</td>
<td>-2.0 INCHES</td>
<td>5000 FEET</td>
<td>354 RPM</td>
<td></td>
</tr>
</tbody>
</table>

Directional Control Displacement
Inches from Trim

Maximum Yaw Rate
DEG./SEC.

Maximum Acceleration
DEG./SEC./SEC.

Time Required
TO OBTAIN MAXIMUM ACCELERATION DEG./SEC./SEC.
SECONDS

Time Required
TO OBTAIN MAXIMUM RATE DEG./SEC.
SECONDS

2
1
0

40
20
0

40
20
0

30
20
10
0

30
20
10
0
Figure No. 24
Lateral Control Response
Level Flight
OH-58A BELL 412 3999B

<table>
<thead>
<tr>
<th>CALIBRATED AIRSPEED</th>
<th>GROSS WEIGHT</th>
<th>LONG.C.G. STATION</th>
<th>LAT.C.G. STATION</th>
<th>DENSITY</th>
<th>ROTOR ALTIMETER</th>
<th>SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>77 KNOTS</td>
<td>2955 LBS</td>
<td>1075 INCHES</td>
<td>-20 INCHES</td>
<td>5000 FEET</td>
<td>354 RPM</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
- Time required to obtain maximum acceleration:
 - Maximum: 2 seconds
 - Minimum: 0.5 seconds
- Maximum roll rate:
 - Maximum: 30 degrees/second
 - Minimum: 0 degrees/second
- Lateral control displacement from trim:
 - Maximum: 3 inches
 - Minimum: 0 inches

Note: The diagram illustrates the relationship between lateral control displacement and roll rate.
Figure No. 26
LONGITUDINAL CONTROL RESPONSE
LEVEL FLIGHT
OH-58A BELL 44-89922.

<table>
<thead>
<tr>
<th>CALIBRATED</th>
<th>GROSS</th>
<th>LONG.C.</th>
<th>LAT.C.</th>
<th>DENSITY</th>
<th>ROTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRSPEED</td>
<td>WEIGHT</td>
<td>STATION</td>
<td>STATION</td>
<td>ALTITUDE</td>
<td>SPEED</td>
</tr>
<tr>
<td>KNOTS</td>
<td>LBS.</td>
<td>INCHES</td>
<td>INCHES</td>
<td>FEET</td>
<td>RPM</td>
</tr>
<tr>
<td>90</td>
<td>2920</td>
<td>107.5</td>
<td>-7.0</td>
<td>3000</td>
<td>554</td>
</tr>
</tbody>
</table>

![Graph showing longitudinal control response](image-url)

37
Figure No. 28
Directional Control Response
Level Flight
CH-54A Bell 4/2948.

<table>
<thead>
<tr>
<th>Calibrated Airspeed</th>
<th>L.G.</th>
<th>L.A.T.G.</th>
<th>Density</th>
<th>Rotor Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knots</td>
<td>Lbs</td>
<td>Inches</td>
<td>Feet</td>
<td>RPM</td>
</tr>
<tr>
<td>95</td>
<td>2920</td>
<td>107.5</td>
<td>1500</td>
<td>964</td>
</tr>
</tbody>
</table>

Time required to obtain maximum acceleration:
- Maximum acceleration in deg/sec/sec
- Maximum rate in deg/sec

Directional control displacement in inches from trim.

30
Figure No. 31
Airspeed Calibration
Yaw Boom System

NOTE: TAKEN FROM EMC REPORT NO. 206-194-076

Legend
○ Level Flight
□ Climbing
△ Autorotation

Line of Zero Error

Calibrated Airspeed - Knots

Indicated Airspeed - Knots (NAC No. 1192)

Instrument Corrected Airspeed - Knots
Figure No. 20
Simulated Engine Failure
LUNGB

<table>
<thead>
<tr>
<th>GROSS WEIGHT</th>
<th>LONG C.G.</th>
<th>LAT C.G.</th>
<th>ROTOR</th>
<th>DENSITY</th>
<th>TRIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2975 Lbs</td>
<td>1074 Hrs</td>
<td>2-20</td>
<td>354</td>
<td>5000</td>
<td>40 Ktas</td>
</tr>
</tbody>
</table>

COLLECTIVE
CONTROL
THROTTLE
COLL STICK
PITCH
ROLL
YAW
LONG STICK
PEDAL
NATURAL SCALE
Fig. No. 31
Airspeed Calibration
Yaw Boom System

NOTE: TAKEN FROM BHC REPORT NO. 206-194-076

LEGEND
○ LEVEL FLIGHT
□ CLIMB
△ AUTOROTATION

LINE OF ZERO ERROR

CALIBRATED AIRSPEED - KNOTS

INDICATED AIRSPEED - KNOTS (UNST. NO. 144)

INSTRUMENT CORRECTED AIRSPEED - KNOTS

42
Figure No. 33
Airspeed Envelope (Vne)
Model Z06A-1 Helicopter

Note: Taken from BHC report no. 206-194-088
APPENDIX III. TEST INSTRUMENTATION

COCKPIT PANEL

Airspeed (boom system)
Altimeter (boom system)
Outside air temperature
Sensitive rotor speed
Angle of sideslip
Fuel counter
Longitudinal cyclic control position indicator
Lateral cyclic control position indicator
Pedal position indicator
Oscillograph record counter

RECORDING OSCILLOGRAPH

Longitudinal cyclic control position
Lateral cyclic control position
Collective control position
Pedal position
Pitch attitude
Roll attitude
Yaw attitude
Angle of attack
Angle of sideslip
CG normal acceleration
Vertical accelerometer
Event marker
APPENDIX IV: PHOTOGRAPHS

[Image of a vehicle interior, possibly showing mechanical components or a device inside a vehicle.]
APPENDIX V. HANDLING QUALITIES
RATING SCALE
The Army Preliminary Evaluation of the OH-58A prototype helicopter was conducted in the vicinity of Arlington, Texas, during the period 26 June to 9 July 1969. Thirteen test flights were conducted for a total of 14.5 hours of which 9.1 hours were productive. The evaluation consisted of limited quantitative and qualitative stability and control tests in the armed scout configuration only. The handling qualities of the OH-58A are satisfactory for the accomplishment of the armed scout mission.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Army Preliminary Evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH-58A prototype helicopter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability and control tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handling qualities satisfactory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armed scout mission</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>