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SUMMARY

The purpose of this projeci wuas iv review caiating fcrmulaz for the
strength of bevel gear teeth, to select the method that is currently
conaidcred to be the best, to determine what factors in this method
need further study and development, to outline a program for improv-
ing the method, ind to carry out a program of theoretical and experi-
merltal investigation to develop this improved method.

Four methods for analyzing gear strength were reviewed. One of these
was selected as the most reliable starting point for the project, and
six factors were selected for further analysis.

Basic test gear geometry was chosen to be consistent with current-day
practice and to permit fatigue testing on the three major pieces of
available equipment.

Four types of tests were selected that would provide sufficient informa-
tion concerning the fatigue properties of gears.

The conclusions of this report are summanrized as follows:

1. A new, improved method for the stress determination of bevel
gears was found,

2. The basic material strength curve for carburized AMS-6265
was established.

3. A design S-N curve fo'r AMS-6265 was established.
4. An improved formula for effective face width was developed,

5. The correction factor for localing the position of the point
of load application has been modified.

6. An iinproved formula for the load distribution factor was
derived,

7. A new formula for size factor .. been introduced in the
equation for working stress,

8. Lengthwise tooth curvature was found to have the most

significant effect on gear tooth strength and is recognized
for the first time in a gear tooth strength formula,

iii




9. A computer prog am has been provided for the gear designer.

A significant improvement in the formulas for the strength of bevel gear
teeth has been acnieved, which will materially aid in the design of future
bevel gear drives.
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FOREWORD

This is the final report on the Gleason project entitled '"Advancement of
Straight and Spiral Bevel Gear Technology''., This projact was conducted
during the 16-month period from 23 February 1968 through 23 June 1969
for the U. S. Army Aviation Materiel Laboratories (USAAVI.ABS) under
Contract DAAJ02-68-C-0032, Task 1G162204A01401.

USAAVLABS technical direction was provided by Mr. R. Givens.

Outside consultants consisted of Professor Frank Mc Clintock of the
Massachusetts Institute of Technology and Mr, Eugene Shipley of
Mechanical Technology Incorporatsad, whose suggestions were very
useful,

Special ackriowledgement is given to Mr. Charles B. King of the Gleason
Works, who managed the project until his retirement.
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INTRODUCTION

The purpose of tnis project war to review existing formulas for the
strength of bevel gear teeth, to select the method that is currently con-
cidered to be the best, to determine what factore in this method need
further stndy and development, to outline a program for improving the
method, and to carry out & program of theoretical and experimentali
investigation to develop this improved method.

A review of past and present methods was undertaken with the object of
selecting the best method for further study. This method was analyzed
for possible areas of improvement, From this analysis it was apparent
that the complexity of bevel gear geometry made the complete solution
to the problem a formidable task. Therefore, it was decided to select

Ld
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certain specific areas where immediate improvement of the formulas
would result in substantial benefit to the gear designer,

The basic procedure for developing new formulas consisted of the follow~
ing steps:

]c

Derivation of new theoretical formulas to reflect the observed
behavior of the gears under load and to provide stresses that
correlate with the strength of the material.

2, Design of a test program and test gears that would evaluate
the effects cf changes in the gear design parameters, .

3. A carefully controlled manufacturing and testing program to
provide reliable data,

4, Use of previously generated test data for the solution of
problems related to stress distribution in the gear tooth roots.

5. An analysis and evaluation of the test results using the new
theoretical formulas,

6. A final review of the formulas to assure correlation with the
gear test data,

7. Writing of a computer program incorporating the newly

developed formulas for use on the IBM 7090/7094 Computer,
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8. Testing of the computer program on a series of gear designs

incinding aniral havel  7Zerol™ havel, and steaisht bovel goars

to assure the usefulness of the program and formulas.

9. Evaluation of vacuum-melt 9310 steel (AMS-6265) to determine
the endurance limit for bevel gear design.

lRoght:ered trademark of the Gleason Works
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PRELIMINARY ANALYSIS

HISTORICAL BACKGROUND

The first serious attempt to compute the strength of a gear tooth was
the work performed by Wilfred Lewis, Reference 1, in 1892, Lewis
treated the gear tooth as a cantilever beam and attempted to solve for
the bending stress in the root of the tooth, The use of the inscribed-
parabola for locating the weakest section of the tooth, which was intro-
duced by Lewis, is still the basis for present-day formulas for gear
tooth strength, The baaic flexure formula derived by Lewis is still

in use,

In 1922, McMullen and Durkan, Reference 2, proposed a significant
change in the Lewis formula: To consider the load appliad at the highest
point of single tooth contact rather than at the tip of the tooth. This was
first applied to bevel gear teeth and eventually was adopted for analyz-
ing spur gear teeth,

Carl G. Barth introduced the first factor for the consideration of the
dynamic effects of tooth load on aa elastic system. Through his in-
fluence, an ASME Special Research Committee on Strength of Gear
Teeth was established under the leadership of Wilfred Lewis. Much
of tha actual work was carried out under the direction of Professor
Earle Buckingham, Reference 3,

General Motors Research Laboratories, under the direction of John O,
Almen, conducted extensive fatigue tests on automotive spiral bevel
gears and later on transmission gears, which resulted in the first use
of S-N diagrams for gear design, References 4 and 5.

In 1941, Candee, Reference 6, introduced at an AGMA meeting a geo-
metrical method for arriving at the tooth form factor to replace the
graphical method that had been in common use up to that time, At the
same meeting, Messrs. Dolan and Broghamer, Reference 7, presented
a concise review of their photoelastic studies of gear tooth models.
Their work resulted in a combined stress concentration and stress
correction term, which compensated for the inaccuracies in the in-
scribed parabola as 4 means for locating the weakest section of the
tooth, corrected the stress values in the root fillet, and considerec
the radial component of the normal tooth load. This factor is widely
used in current gear strength formulas.




The first attempt at a unique formula for the strength of bevel gear teeth
was the work of Coleinan, Reference 8. Previously, formulas for the
sirength of bevel gears were adaptations of spur gear formulas. In the
method presented by Coleman, an attempt was made to analyze the load
sharing betwcen teeth, to determine the most damaging position of the
load on the tooth, to consider the load distribution along the line of
instantaneous contact and its effect on the root stress by means of the
concept of effective face width, to incorporate a change in allowable
stress with a change in gear tooth size, and to introduce a factor for
the effect of temperature on gear tooth strength. Many of these factors
were introduced for the first time in a gear tooth strength formula,

Wellauer and Seireg, Reference 9, have investigated the effects of load
distribution and effective face width on helical gear teeth using the
cantilever-plate theory, Their work has led to the latest bending
strength formulas for helical gears, Reference 10, Kelley and
Pedersen, Reference 11, have extended the investigation of root fillet
stresses by photoelastic means.

A significant advance in the analysis of bevel gear tooth strength was
made by Baxter, References 12 and 13, in his study and mathematical
analysis of tooth contact conditions between mating gear teeth and the
effects of misalignment on the same. This work is the basis of the
present analysis of load distribution factor.

Work recently performed by Hoogenboom, Reference 14, under the
direction of the contractor in an effort to extend the work of Wellauer
and Seireg, Reference 9, has added much new knowledge to the concept
of effective face width and load distribution. This work also was used
in the present study.

Other workers too numerous to name have contributed to the overall
knowledge of gear tooth strength,

COMPARISON OF BEVEL GEAR STRENGTH STANDARLS

In addlition to the AGMA strength standards for bevel gear teeth,
References 15 and 16, three other methods were reviewed by the
contractor prior to the initiation of, or during, the present contract.
These were the following:




1. German Standard, DIN3990, Reference 17.
2, Kelley-Pedersen Method, Reference 11,
3, British Standard, BS545, Reference 18,

German Standard

This method is based on an adaptation of the spur and helical gear tooth
formulas. A detailed comparisnn of the AGMA standards and the German
standard was made by the contractor and is included in Appendix VII,
From the conclusions it can be seen that this method lacks many of the
features contained in the AGMA standards.

Kelley-Pedersen Method

In 1961, the contractor attempted to incorporate the Kelley-Pedersen
formulas into the AGMA method for bevel gear tooth strength. The
stresses resulting from the combined method were found to be essen-
tially the same as those from the AGMA standards except for a
generally higher stress level (approximately 20 percent higher). Since
no reduction in the scatter of the plotted results over that of the exist-
ing method was found, this combined method was not adopted.

British Standard

This method is based on an adaptation of the British formulas for spur
and helical gear teeth to bevel gears. The method is based on the
original Lewis method with various modifications., However, it has not
been updated over the years and lacks many of the features included in
the latest AGMA bevel gear strength standards. Therefore, only a
cursory analysis was made,

Summary of Existing Standards

Upon completion of the review of the various strength standards in
current use, it is concluded that the AGMA bevel gear strength
standards should furnish the most reliable starting point for improving
the formulas, Accordingly, for the work conducted under the present
contract, the following factors were selected for further analysis:

1. Improved formulas for effective face width, which were to be
based on experimental data,
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Correction of the formula for point of load application to improve
the strength balance between gear and mating nininon,

Improved formulas for load distribution factor, which would
incorporate the effects of lengthwise tooth curvature and mount-
ing deflections on the load distributicn on the tooth.

Transferral of the size factor from the equation for calculated
stress to the equation for working stress in order tc calculate

true stress values more accurately,

Determination of the S-N diagram and endurance limit strese
for AMS-6265 steel,

Establishment of a base line on a bevel gear pulser.
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TEST GEAR DESIGN

TOOTH DESIGN

Selection of Gear Parameters

The basic gear geometry was chosen with two factors in mind. First,
the size and ratio should be consistent with current-day practice in high-
speed power drive line applications such as helicopters. Second, the
gear must be of a size to permit fatigue testing on available equipment
so that the program cost could be minimized.

The gear parameters are shown on the dimension sheets in Figures 1
and 2. The dimension sheets were produced on a computer using the
contractor's Program No. A101, This program is based upon American
Gear Manufacturers Association formulas, References 16, 19, and 20,

Additional data on the output format are in agreement with present
industry-wide standards. The above program is in regular use in the
contractor's engineering department to produce data for bevel gear users
all over the Free World and is also in use at many companies where
bevel gears are used, Therefore, the basic gear tooth geometry is con-
sistent with current-day practice, and no special formulas have been
introduced that could alter the results, except as noted later.

The following items of input to the computer program were chosen for
the test gears:

Gear Size

The gear size was selected to be within the capacity limitation of
the Gleason No., 510 Axle Test Machine and the available test boxes.
It was also selected to be within the range of helicopter power drive
gears. Therefore, a gear diameter of 12. 5 inches was chosen,

Ratio and Tooth Numbers

The gear ratio and tooth numbers were chosen to make the test
meaningful to the helicopter industry. A three-to-one speed-
reducing ratio was selected since this corresponds to a typical
VTOL power transmission application, The numbers of teeth in
gear and pinion were based upon data given in Reference 21, The
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Figure 1, Spiral Bevel Gear Dimension Sheet for the
17/51 Combination, Test Gears Produced
With 12-Inch Cutter Diameter.
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Figure 2. Spiral Bevel Gear Dimension Sheet for the
17/51 Combination, Test Gears Produced
With 7-1/2-Inch Cutter Diameter.
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graph given in this reference indicates that a 15-tooth pinion is
recommended for feneral work; however, for high-speed

......... , ™mcre tooth a6 usually vlusen iu reduce a scoring
tendency and to decrease noise, Thus a 17-tooth pinion was
selected for this design. The reanlting numher of teeth in the
gear was 51. The combination of 17/5] agrees with current
aircraft practice,

Face Width

The face width is generally chosen to be 30 percent of the outer
cone distance or less. In this case, it was reduced to 22 percent
to cause breakage to occur on the available test equipment. This
reduction in face width will not affect the results of this analysis,
A face width of 1.5 inches was selected.

Pressure Angle

A pressure angle of 20* was selected, which is in accordance with
recommended design for a power gear application, Reference 21,

Spiral Angle

The spiral angle was chosen to give a face contact ratio sufficient
for smooth-running gears, Generally, a contact ratio between 1.5
and 2.0 is adequate, For quleter, smoother running gears, a
contact ratio closer to 2.0 is more desirable, but for this test
program a low )r value was selected to permit tooth failure within
the capacity of the test equipment, For the test gears, a spiral
angle of 35° was selected, which resulted in a face contact ratio
of 1,548, See Reference 21.

Hand of Spiral

The hand of spiral was selected to yield an outward thrust on both
members. This was accomplished by consideration of the driving
member and the direction of rotation. This resulted in the selection
of a left-hand pinion and a right-hand gear.

Cutter Diameter

The cutter diameter for spiral bevel gears, which determines the
lengthwise tooth curvature, is usually chosen approximately equal

10
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to, or slightly smaller than, twice the outer cone distance. The
nutar cone diztanze of the lesi gears ie 0. 585 inches, Twice this
value is 13.176 inches. Cutters are made with standard diameters,
and those in the range of this gear set arc of 9-inch, 12-inch, and
16-inch diameters., A l12-inch cutter diameter was selected for
these gears in accordance with the generally accepted standard

gsince it was the next smaller diameter than twice the outer cone
distance.

On the other hand, the use of this cutter diameter results in a tooth
contact that tends to shift toward the heel as load is applied. The
amount of shift is a function of the cutter diameter, the applied
load, and the deflection characteristics of the gear mountings. The
above rule for selection of the cutter diameter yields a reasonable
balance between cost and performance and has been the accepted
method of selection by the gear industry.

For comparative purposes, a second, smaller cutter diameter was
also selected, It has been observed that when the cutter diameter
approaches the product of the mean cone distance times twice the
sine of the mean spiral angle, the tooth contac. tends to resist a
movement to the heel of the tooth as load is applied. As a result,
the contact pattern can be lengthened and more tooth area can be
used under light and intermediate loads. For the test gears, a
second cutter diameter as determined by the above formula was

D¢ = 2(5.838)(0,57358) = 6,697

A cutter diameter that is slightly larger than the calculated value
was chosen. Some earlier observations indicated that if the cutter
diameter becomes too amall, the contact pattern tonds to move
toward the small end of the tooth, which is undesirable, To avold
such a condition, a 7-1/2-inch cutter diameter was selected.

Tooth Proportions

The tooth proportions for the 12-inch cutter diameter design are in
accordance with Reference 19 and are the generally accepted
standard for the given diametral pitch and combination. Long and
short addendume are specified, since they eliminate undercut and
yield the best balance among strength, pitting resistance, scoring
resistance, and contact ratio, The tooth thickness of pinion and
mating gear has been adjusted by the AGMA method of stress
analysis to obtain approximately equal bending stress on both

11




-

members,

The tooih prupuriions for the T-1/Z-inch cutter diameter design
were modified to obtain the optimum pinion point width taper.

Point width taper (frequently called slot width tapcr) refers to the
change in the maximum limit point width (slot width) of a V-ghaped
cutting tool of nominal pressure angle whose sides are tangent to
the two sides of a tooth space and whose tip is tangent to the root
line along the tooth length, The tooth proportions were modified

by altering the depthwise taper until the outer and inner elot widths
of the pinion member were nearly equal. Depthwise taper refers
to the change in tooth depth along the tooth length measured perpen-
dicular to the pitch surface, This change affecta the face angles
and root angles of both the pinion and the mating gear and is
referred to as "'tilting the root lines'. The tooth depth, addendum,
and dedendum of both members remain the same at the middle of
the face width but are smaller at the outer cone distance and larger
at the inner cone distance when compared to a tooth with standard
depthwise taper. The latter refers to a tooth in which the depth of
the tooth in any section is proportional to the distance of the section
from the pitch cone apex.

Fillet Radius

In the roots of the gear teeth, the fillet radius should be as large as
possible, Therefore, the cutter edge radius was chosen by the
computer program to meet the following three criteria: (1) the
maximum radius that can physically be manufactured on the cutter
blades, (2) the maximum radius that can be cut into the tooth before
the clearance side of the cutter blade mutilates the fillet on the
opposite side of the tooth space, and (3) the maximum radius that
can be used before an interference occurs between the root fillet

of one member and the tooth tip of the mating member., The final
cutter edge radius is selected to be approximately 0.010 inch less
than the amallest of the above three values.

Undercut and Fillet Interference

Undercut and flllet interference were checked using another computer

program previocusly developed by the contractor. This program uses
the actual machine settings and cutter specifications, The data

obtained from this program indicate the location of undercut along the

tooth length, tho height of the undercut up from the root of the tooth,
the angle of intersection of the undercut with reference to the tooth

12
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profile, and the location of any interference. Inspection of the data
snowed thac undercut and interierence would not exist ior either tootn
design,

Selection of Gear Quality

The gear tooth accuracy was established in accordance with Reference 22
as AGMA Class 13 by contractual agreement. This is currently the
highest quality obtainable in production on bevel gears and was specified
here in order to assure maximum strength, Generally high accuracy is
neceasary for high-speed heavily loaded gears to reduce detrimental
dynamic effects.

The selection of gear blank tolerances is dependent upon the accuracy
requirements of the teeth, The detail drawings indicate the tolerances
on the locating and centering surfaces that are required to obtain the
specified gear tooth accuracy.

Preliminary Stress Analysis

The bending stresses, compressive stresses, and scoring indexes were
calculated for the test gears produced with both 7-1/2-inch and 12-inch
cutter diameters using the American Gear Manufacturers Assoclation
and the contractor's manuals that are in current use, The stress
formulas contained in these manuals had been previously programmed
on a computer by the contractor and resulted in Dimension Sheet

No. 139,898AB for the 7-1/2-inch cutter diameter design and Dimension
Sheet No. 139, 887AB for the 12-inch cutter diameter design. A summary
of the calculated stresses is shown in Table 1 for the four load levels
used in the dynamic tests and in Table II for the maximum, minimum,
and an intermediate level used in the static test (pulsing tests). (See
Table IX in Appendix I for complete load-stress spectrum used in the
static tests,)

BLANK DESIGN

The gear and pinion blank configuracions werr ~hosen to permit the use
of existing rigid test boxes in the possession of the contractor,

The pinion shank size and length, as well as the front pilot, were identl-
cal on all pinion designs. Pinions used in the pulser contained an
additional 0, 750-inch-diameter hole through the shank at right angles

to the pinion axis. The three pinion designs are shown in Figures 50,
51, and 52 in Appendix I, which includes the pertinent data for each

13
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design.

S!milarly, the gear blanks were made as nearly identical as possible,
No special provision was necesszary for the gears tested in the pulser.
The two gear designs are shown In Figures 53 and 54 in Appendix I,
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TABLE II. SUMMARY OF CALCULATED TOOTH STRESSES*
FOR PIILSER GEARS

Based on Static Loading
Dimension Sheet No. 139,.887AB

Calculated Calculated

Bending Compressive
Test Torque Stress Stress
Number Member (in. -1b) (psi) (psi)

4 Pinion 20,000 66,000 316,000
Gear 60,000 66,100 -

9 Pinion 33,300 109, 900 407,900
Gear 99, %00 110,100 -

21 Pinion 50,000 165, 000 499,700
Gear 150, 000 165, 300 -

See Appendix 1 for complete listing of streeses
for the full range of test loadings.

*Calculated stresses in above table are based on AGMA
formulas,

16
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TEST GEAR MANUFACTURE

BLANKS

Sequence of Operations

Routing sheets indicating the sequence of operations are included in
Figure 55 in Appendix I. Since all of the gear members followed the
identical processing procedure, only one set of routing sheets is shown
for the gear member. Similarly, only one set of routing sheets is
included for the pinion in Figure 56 in Appendix I since the pinions are
also nearly identical,

Inspection of Blanks

During the machining processes, each operation was inspected on the
first piece before proceeding with the balance of the parts. Upon com-
pletion of the blanks to the point of cutting the teeth, each member was
individually inspected 100 percent, end records have been maintained.

TEETH

Data for Gear Manufacturing

Information regarding the gear dimensions, the cutter specifications,
machine settings for cutting and grinding both gear and pinion, inspec-
tion data, and machine sequencing data including speed and feed
information is given on a Summary., Coples of the developed Summaries
for Loth designs are included as Figures 57 and 58 in Appendix I.

The Summaries were calculated using a computer program developed by
the contractor. This program is uved regularly to provide Summaries
for bevel gear users throughout the world, The gear member of the
pair was cut and ground by the ''spread-blade'' method, in which an
alternate-blade face~-mill cutter is used to cut a slot of uniform width
from toe to heel, The pinion was cut and ground by the "'fixed-setting''
method, in which independent control of each side of the tooth space is
maintained by individual machine settings and separate face-mill
cutters for the concave and convex sides of the tooth.

Another computer program, the Tooth Contact Analysis Program,

previously developed by the contractor, provides a kinematic analysis
of the tooth contact between mating tooth surfaces based upon the actual

17




machine settings. This provides the gear engineer with a means to

sa0dily UG LUULL CUstacl WEIULG Culliag UoELEe. 11118 PiUeGuUuic savoH
time and decreases the cost of a cutting development since the proper
cuttar blade angles and point diametars can be specifiad with greater

certainty.

Gear Tooth Cutting

Upoi cdmpletion of the gear blank manufacture, the tooth slots were
roughed and semifinighed in a conventional spiral bevel gear generating
machine,

Heat T reatment

‘Due to the lack of capacity of the carburizing and quenching fac.lities at

the contractor's plant, it was not possible to heat-treat all of the gears
or all of the pinions in one batch, Therefore, it was necessary to
separate the gears into smaller quantities for processing. A schedule
was established whereby the gears were split into two groups for carbur-
izing and four groups for quenching, Similarly, the pinions were also
split into two groups for carburizing and quenching. Each gear and
pinion was serialized before carburizing so that the heat-treat process-

ing group could be identified for each part. The purpose of these records

was to minimize the effect of heat-treatment variation when the gears
were paired for testing.

Heat-treatment batch groupings are shown in Table X in Appendix I,

Gear Tooth Grinding - Contact Pattern Development

Some modificaiions of tooth contact pattern are generally required to
suit the deflection characteristics of the gearbox, Several pairs of
dummy gears and pinions of both the 7-1/2-inch and 12-inch cutter
diameter designs were processed prior to the processing of the test
gears, They were manufactured in the same manner as the test gears,
and their tooth profiles were ground to give a normally acceptable
contact pattern, To verify this, the dummy gears were mounted in the
test boxes and were checked for tooth contact under the range of loads
scheduled in the fatigue test. If the tooth contact pattern ground on
dummy gears was acceptable, the test gears were ground with the same
grinding machine settings co produce the same tooth shape. These
machine settings were recorded o= the developed Summaries shown

18
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Gear Tooth Grinding - Stock Removal Control

After tho completion of heat treatment and process grinding of the
hardened parts, the gears were ready for grinding the teeth. This
operation was performed in a standard spiral bevel gear grinding
machine, Prior to the grinding of the test gear or pinion teeth, tooth
thickness measurements were made at three points along the face width:
one near the toe (inner end of the tooth), one at the center of the tooth,
and the third at the heel (outer end of the tooth) on each piece. In
addition, the tooth whole depth was measured prior to the grinding.
Identical measurements were made after gear tooth grinding. The
difference between before and after values established the amount of
stock removed., On the gear member, since both sides of the tooth are
ground simultaneously, it is not possible to determine the amount of
material removed from each side individually, but every effort was
made to divide the stock evenly. On the pinion, measurements were
made after grinding each side of the tooth., In this manner the stock
removal on each surface can be controlled. Tabulation of stock removal
at mid-face is shown in Tables X! and XII in Appendix I.

Inspection of Test Gears

Inspection of the runout and pitch variation are also shown in Tables XI
and XII in Appendix I.

MATERIAL EVALUATION

Selection and Indpection of Material

The gears were made from AMS-6265 steel which is a consumable-
electrode vacuum-melted material in general use in the alrcraft
industry. This material was specified In the contract, The forgings
were purchased, inspected, and processed in the normal manner for
precision spiral bevel gears., This included metallurgical inspection
of the forgings, hardness checks, and certification of the chemical
analysis. These are recorded.in Table XIII in Appendix L,

R. R. Moore Specimen Manufacture

The contract called for performing R. R. Moore rotating-beam tests
on the same steel used for the test gears in order to establish

19




confidence that the material was comparable with material used for

other tests. The material for these R. R. Moore specimens was

received at the contractor’s iacility, where it went through the same
metallurgical and chemical inspection as the gear forgings. These

bars were sent to the John Stulen Company, located in Pittsburgh,

i Pennsylvania, for machining. A drawing of the part, Figure 59, is

shown in Appendix I. Also included in the appendix is the routing

sheet, Figure 60, used to produce the specimens. .

To duplicate the heat treatment of the R. R. Moore specimens and

the test gears as closely as possible, the carburizing, hardening, and
stress-relieving operations of the specimens for all parts were per- s
formed at the contractor's plant. Upon completion of the manufacture |
of the test specimens, they were inspected. A compilation of the
inspection results is shown in Table XIV in Appendix I,

v e —
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GEAR TESTING

In the following sections will be found a brief description of the test
equipment used on this project together with the test pracedure,

TYPES OF TESTS

Tooth Contact and Deflection Tests

The purpose of a tooth contact test and deflection test is to determine
the suitabllity of the gear and pinion development and thelir mountings.

For the tooth contact tests, the gears are rotated very slowly in their
mountings under various loads from friction load (no load) to full load,
At each load level the teeth of the gear are painted with a gear marking
compound while the gears are rotating. In this manner a true picture

of the tooth contact at the specified load is obtained. There is no carry-
over of the tooth contact pattern from operation at other loads. The
machine is stopped at each load level, and tape transfers and/or photo-
graphs are made of the gear tooth pattern,

For the defluction test, indicators are placed at strategic positions in
the housing to measure the deflections within the housing and to measure
the relative shift of the positions of gear and pinion with respect to one
another,

The data oblained from these two tests were used to determine the suit-
ability of the tooth bearing development when the gears operate under
load. These data were also used to derive the formulas for load
distribution factor, which is described in greater detail slsewhere in
this report.

Dynamic Tests

The purpose of the dynamic tests is to determine the behavior of the
gears at operating speeds and to establish a stress-life curve (S-N
diagram).

The primary reason for this series of tests was to obtain sufficlent
information to:

1. Establish an S-N curve for spiral bevel gears made from
carburized AISI 9310 vacuum-maelt steel.

21
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2, Establish the difference in fatigue life between spiral bevel gears
made with a 12-inch cutter diameter and those made with a
7=-1/¢-inch cutter diameter,

3. Confirm the validity of the new formulas for effective face width
and load distribution factor developed on this project,

Pulser Tests

The purpose of the pulser tests is to cetermine the suitability of gear
tooth pulsing on spiral bevel gears and to establish a base line for future
testing,

On the gear tooth pulser the gear member of the pair is rigidly locked
against rotation. Therefore, the contact between the pinion and gear
tooth is that represented by an instantaneous line of contact during gear
rotation. For these tests, a position of the line of contact was selected
from theoretical calculations, which indicated that only one tooth in the
pair of gears would be supporting the load and that its position would
produce the highest stress in the root of the tooth., No measurements
of root stresses were made on the gears used in these tests to confirm

. this theoretical result. Furthermore, under the high torque loads

imposed on these gears, the instantaneous line of contact spread over
an enlarged area because of the gear tooth and mounting deflections,
Adjacent teeth on the gear wers removed to assure that all of the load
would be carried by a single tooth,

The actual pulsing tests performed in this program serve as a base line
for future testing. It is believed that with further testing to confirm the
theoretical calculations, a practical procedure for testing spiral bevel
gear teeth can ultimately be achieved.

R. R. Moore Tests

The purpose of performing R. R, Moore tests on the material used for
these gear tests is to determine the true material strength and to show
that the particular heat of material is comparable to that usad in other
similar tests,

TEST EQUIPMENT

The test equipment used on this project includes the deflection teltln'g
machine, dynamic testing machine, and bevel gear pulser.
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Deflection Testing Machine

The deflection testing machine is shown in Figure 3, The input shaft is
driven through a universal joint shaft arrangement connected to a reduc-
tion gearbox driven by a 10-horsepower electric motor. The output
shafts are connected to brake units which consist of conventional
hydraulic truck brakes with the master cylinders controlled by air
valves. Lever systems are used to measure the torque reactions of

the brakes in pounds of force on two platform scales,

Dynamic Testing Machine

The dynamic testing machine, Figure 4, was primarily designed and
built for automotive and truck axle testing. The versatility of the
machine makes it ideal for testing any right-angle bevel gear drive
application within the maximum torque range of 300, 000 1b-in. total
output torque and output shaft speeds of up to 1500 rpm,

Figure 5 shows a schematic diagram of the dynamic testing machine,

This machine incorporates a four-square arrangement with two torque
loops, a test gearbox, and a slave gearbox, both gearboxes containing
the same gear ratio and assembled at opposite ends of the machine to
close the two torque loops. The load is applied by increasing the torsion
in the machine shafting by means of a windup mechanism on one of the
corner tranamission units. The windup is actuated from the machine
console, and when the proper torque load has been applied, the windup
mechanism is deactivated; the torque then remains constant in the loop
until a failure occurs.

The drive line is rotated by a center drive motor and transmission unit
incorporating an infinitely variable speed range up to a maximum speed
of 5000 rpm on the input shaft,

A motor-generator unit provides power to the main motor and coolant
motors. All operating controls are located at the machine console and
consist of speed, load, and operating on-off switches, Also included
are Indicators for reading DC current, drive motor speed, and test
gear driven apeed.

A cafety inte ~lock system is coordinated with the console controla to
protect the miachine from serious damage and to insure more accurate
test results. This system provides automatic shutdown of the machine
upon failure of a part of the test unit or for a variety of other causes,

23




Figure 3, Deflection Testing Machine With Test Box,

Figure 4, Gleason No, 510 Axle Test Machine Used for
Dynamic Testing.
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overspeed, underspeed, and loss of il pressure in any of the machine
components.

The vibration indicators attachea to the test boxes and slave boxes are

the primary detection devices for tooth failure. The vibration indicator

unit ie adjusted for the ambient vibration at the beginning of each test

and is then set for some known sensitivity, As the test progresses, and ,
tooth failure begins, even the smallest crack in the tooth is indicated by

a rise in the vibration level, alerting the operator that failure has

occurred. A visual inspection of the unit then follows to confirm the

failure, .

Description of Dynamic Testing Machine Test Box

The test box consists of an enclosed gear drive, Figure 6, having a
right-angle spiral bevel gear set, A sketch of the test box is shown
in Figure 7.

The pinion is straddle-mounted on a double-row taper roller bearing
behind the pinion, which locks this member against thrust in both
directions, and a straight roller bearing in front of the pinion. The
pinion assembly is mounted in an eccentric sleeve which permits the
pinion to be moved in a direction at right angles to the plane containing
the gear and pinion axes. Shims are provided to adjust the pinion
mounting distance to obtain the optimum tooth contict pattern,

The gear shaft is straddle-mounted on straight roller bearings to
support the gear and hub assembly, The hub assembly consists of a
four-pinion differential, which splits the torque between the two side
gears splined to the two output shafts. Shims are provided to adjust
the gear for the proper backlash,

The slave box at the other end of the test machine has no differential, ’
80 torque can be transmitted from each torque loop on the machine
back into the center drive box, thereby completing the closed loops.

The gears in the test box are ldbricated by a splash system in which
the gear member dips into the oil sump in the bottom of the box. The
bearings are pressure-lubricated. Internal channels within the box
return the oil to the sump. The sump oil is circulated to an external
oil reservoir where it is filtered and returned to the box at the required
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Test Box Used for the Gleason No, 510 Axle )
Test Machine for Dynamic Testing. .
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vil temperature, which was maintained at a level of 150°F to 160°F,

Failure Detection Devices

The N-I bearing test set, Model BTS 101, is designed to check and
evaluate the condition of equipment and machinery while in operation.

It detects vibration caused by excessive clearances, ball checks,

shaft galling, and misalignment, The gain control positions of the
switch provide five graduated levels of gain so that successive tests

of any bearing can be conducted under identical conditions, The meter
of the bearing test set provides a numerical indication of relative bear-
ing noise picked up by the probe through an amplified electronic system
of the instrument, Indications are presented on a scale of zero to 100
and are not intended to represent any particular absolute units but to
provide relative measures of bearing noise. The reference gain setting
is established and recorded at the start of each bearing inspection
program., The headset permits a qualitative evaluation of bearing
condition and is especially useful when the operator is familiar with

the different sounds associated with a smooth-running bearing and one
that requires replacement.

The vibra-switch-malfunction detector is designed for protecting rotat-
ing equipment against damage in the event that malfunctions occur,
which may be detected as an increase in vibration, An alarm is acti-
vated which indicates a probable failure, requiring an inspection by

the operator,

Thermocouples are mounted in the test box. The signal ls monitored

on the temperature recorder-controller used to control the oil temper-
ature in the test box, In the event that the temperature exceeds the set
point, an alarm system is activated which shuts off the main drive motor,

Bevel Gear Pulser

The pulser, Figure 8, was designed and built to cause fatigue failure
in pinion or gear teeth by the application of a cyclic load, which has
come to be known as pulsing.

A schematic diagram of the Gleason gear pulser is shown in Figure 9,
Item 1 on this diagram is an 1800-rpm, 5-horsepower electric motor,
which is the drive motor for the pulser. Item 2 is a gear tooth pulley
and belt assembly connecting the motor to the pulser drive shaft. An
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Figure 8.

Gleason Bevel Gear Pulser.
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eccentric cam, Item 3, mounted on this shaft has an adjustable throw
which can be set to apply the proper torque load through the lever arm,
Item 4, to the pinion spindle, Item 5. The applied torque is measured
through strain gages, Item 6, mounted on the pinion spindle. The signal
output of the strain bridge is read out on a digital voltmeter, Item 7, and
visually monitored by the height of the wave form on an oscilloscope,
Item 8. The gear shaft, Item 9, is rigidly supported at each end by the
pillow blocks, Item 10, which provide resistance to torque as well as to
radial and axial movement.

In order to pulse the pinion and gear teeth, the cam is rotated at the
desired speed, and during each revolution the cam applies and releases
through the lever arm the torque load on the pinion and gear teeth.

The phase angle of engagement of the teeth is held the same on each
test by observing the contact pattern under load. A vernier and scale
provide minute adjustments in the rotation angle of the gear shaft,

Failure is detected by a reduction in the wave height on the screen of the
oscilloscope, which indicates a loss in torque in the system and, hence,
the beginning of tooth fatigue failure,

TEST PROCEDURE

Below are listed the test procedures employed on the three machines;
namely, the deflection testing machine, the dynamic testing machine,
and the pulser,

Tooth Contact and Deflection Tests

The test box was assembled with the ground spiral bevel test gear pair,
The pinion bearing preload was 50 lb-in. torque with a backlash of

+ 007 inch to ,008 inch, The assembly was mounted in a deflection test.
ing machine, and tooth contact tests were made on gear sets for hoth
the 7-1/2-inch and 12-inch cutter diameters.

Torque loads in accordance with Table III were applied on the convex
side of the gear (concave side of the pinion). Photographs were made
of the gear tooth contacts at each torque load, See Figures 61 through
75 in Appendix II. Following the tooth contact test, the test box was
disassembled, and holes were drilled in the main housing so that dial
indicators could be mounted to register gear and pinion displacements.
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The unit was reassembled with the spirai bevel gears, and an indicator
anchorage system was mounted on the housing. See Figure 10. All dial
indicators werc mounted from this anchcrage, and their respective
locationn are shown on the indicator diagrams, Figures 76, 77 and 78
in Appendix II. Torque loads were applied in the same manner as in
the tooth contact test. See Table III, Indicator readings were recorded
at each torque load as shown in Table XV in Appendix 1.

TABLE III. LOAD DATA FOR DEFLECTION
AND TOOTH CONTACT TESTS
Load Gear Torque Pinion Torque
Level (lb-in.) (lb-in.)
I 100,000 33,333
II 71,600 23, 867
I 50,000 16, 667
v 35,800 11,933

Test Objectives

1. To provide a grinding development of tooth contact
that would be satisfactory in the test boxes.

2, To observe and photograph the gear tooth contacts
under the specified loads.

3. To record the displacements of the gear and pinion
under the specified loads.

T est Outline
Tooth contact test - 12-inch cutter diameter,

Tooth contact test - 7-1/2-inch cutter diameter.

Deflection test gear sets with 12-inch and 7-1/2-inch cutter
diameters.
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The final grinding developments for the spiral bevel test gears
manufactnred with bath 7-1/2-inch and 12-inch cutter diameters

had a length, position, and shape suitable for the displacements
registered in the deflection test,

The gear and pinion displacements are summarized in Appendix II,
Table XV,

Testing Loads on Dynamic Testing Machine

In order to produce an S-N diagram for gears made from AMS-6265
steel, four load levels were selected, For a satlsfactory S-N diagram,
a range of two to one in the load levels at which tests are to be con-
ducted is required, The highest load level was based on the capacity
of the No. 510 Axle Test Machine, which has a maximum capacity of
300, 000 lb-in, torque on the gear shaft. However, because of the
design of the existing test boxes it was not feasible to use this upper
limit of the No, 510 machine. A limit value of 100, 000 1b-in, torque
was established as load level I for these tests. lLoad level IV was to
be the torque corresponding to the endurance limit of the gears. An
initial prediction of this level was 35, 800 lb-in. gear torque. This
value was 33 percent above the presently used endurance limit for air-
melt steel, The two intermediate gear torques were selected as
71,600 lb-in, (twice the minimum torque) and 50, 000 lb-in. (one-half
the maximum torque), These were tentatively established as load
levels II and III, respectively. This produced nearly uniform spacing
on logarithmic plotting paper.

Testing was initiated at the highest loads and extended downward by
steps, thereby producing a rough S-N curve with single points at the
three upper load levels. By projecting this S-N line down to the lowest
load level (load level IV), it appeared that the 35,800 lb-in, gear torque
would be below the endurance limit. Therefore, the initial test at load
level IV was performed at a gear torque of 40, 000 1b-in, At this load
no faillure was experienced within the 30, 000, 000-cycle limit., Further
testing indicated that the endurance limit was close to a gear torque of
50, 000 lb-in, (load level III), Therefore, the remainder of the testing
at load level IV was performed in the gear torque range of 45, 000 to
50, 000 1b-in.

A new load level Il was established at 60, 000 lb-in. gear torque, which
was roughly halfway between load levels II and IV,
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Tt had haan nlannad to tast all of the geara (aight seta) nrodnced with a
7-1/2-inch-diameter cutter at load level II (71, 600 lb-in. gear torgue).
However, after testing two sets of these gears at this level, it became
apparent that this was too close to the endurance limit for this design.
Therefore, only four sets were tested at this load level. The remaining
four sets were tested at load level I (1000, 000 1b-in, gear torque),

By this means it was possible to establish roughly the fatigue curve for
gears produced with a 7-1/2-inch-diameter cutter,

The load levels finally used are presented in Table V.

The sets of test gears and pinions were paired in such a manner as to
cancel the effect of batch hardening. The heat-treatment pairing is
shown in Appendix II, Tables XVI and XVIL

Openti.n[ Speeds on the Dynamic Testing Machine

Operating speeds for the dynamic tests were selected to be compatible
with the vibration characteristics of the machine and to suit the test
program best,

Load levels and gear and pinion speeds are listed in Table IV,

TABLE IV. OPERATING SPEED FOR DYNAMIC TESTS
Load Pinion Speed Gear Speed
Level (rpm) (rpm)
1 950 317
I 1300 433
I 1900 633
Iv 2600 867

Tests were terminated at 30,000, 000 pinion cycles or when failure was
experienced, whichever occurred first. From previous testing It had
been established that a life of 30, 000, 000 cycles represents a close
approximation to the endurauce limit for dynamic gear testing.
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Testing Loads on the Pulser

In order to produce an S-N diagram for gears made from AMS-6265
steel and to roughly correlate the results with the running tests per-
formed on the No, 510 Axle Test Machine, it was necessary to use
approximately the same range of loads, However, it was decided that
the torque loads applied in the pulser should be higher to compensate
for the absence of the dynamic effects felt in the axle test machine,
The first tests were performed at a load level of 100, 000 1b-in, gear
torque, From here the loads wero extended upward and downward in
an effort to obtain a complete S-N diagram and to establish an endur-
ance limit, No attempt was made to operate the pulser at four
predetermined load levels, as was done on the running tests on the
No. 510 Axle Test Machine., The range of torques covered by the
pulser tests extended from 60, 000 lb-in, to 150, 000 lb-in,

Operat.ng Speeds on the Pulser

The cycle rate of pulsing was selected to be compatible with the
vibration characteristice of the pulser machine, For the high-load
short-run tests, the speed was selscted at 1, 200 stress cycles per
minute to minimize the percentage of error in life when fatigue
occurred, For the light-load long-cycle runs, the cycle rate was

increased to 2,700 cycles per minute to minimize the length of the
tests.

Tests were tarminated at 10, 000, 000 cycles or when failure was
experienced, whichever occurred first. From previous testing It
had been established that a life of 10,000, 000 cycles represents a
close approximation to the endurance limit for pulsing gear testing.

Test Gears Used on the Pulser

The goears used for the pulser tests were produced with a 12=-inch
cutter diameter, Tooth geometry was identical with the gears used
for dynamic testing. However, gnar teeth adjacent o the tooth being
stressed were removed from the gear prior to testing so that the load
would be carried by a single gear tooth.
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TABLE V. TEST RESULTS NO, 510 AXLE TEST MAC

Lead Level 1 n
Gear Torque 100, 000 1b-in. 71,600 1b-~in,
Pinion Spead 950 rpm 1, 300 rom
Cutter Diam, 12 in. 12 in,
Pinion Failure* Pinion
Test Serial Cycles Pinion Gear Test Serial Cycles
1 8-108 89,190 B A 5 6-106 " 401, 000
2 12-112 122, 900 B A 7 9-109 406, 000
8 3-103 103, 400 B A 10 35-135 399, 900
11 21-121 109, 900 B A 27 17-117 485,800
14 34-134 111,700 B A 28 20-120 429, 300
30 26-126 147, 000 B A 31 27-127 421,500
35 37-137 136, 300 B A 34 46-146 442, 900
39 41-141 118,700 B A 38 45-145 368,500
Load Level v 1
Gear Torque 50,000 lb-in. 100, 000 1b-in,
Pinion Speed 1,900 rpm 950 rpm
Cutter Diam. 12 in. 7.500 in,
Pinion Failurex Pinion
Test Serial Cycles Pinion Gear Test Serial Cycles
3 1-105 2,753,000 None B 19 72-172 478,800
4 19-119 2,861,000 None {4 21 78-178 254,900
6 4-104 30,000,000#% None N%ne 23 79-179 173,500
9 10-110 1,981, 000 None B 25 71-171 314, 000
12 14-114 30,000,000 None {%
13 15-115 30,000,000t None None
16 30-130 30,000,000f None None
26 44-144 23,320,000 None A

%* A = Fatigue cracks on profile near root
B = Fatigue cracks in root fillet

/)
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510 AXLE TEST MACHINE

11 I
71,600 lb-in, 60,000 1b-in.
1,300 rpm 1,900 rpm
12 in, 12 in,
Pinion Failurex Pinion Failure*

; Serial Cycles Pinion Gear Test Serial Cycles Pinion Gear
- 6-106 401,000 B A 15 7-107 550,500 B  None
9-109 406, 000 B A 20 31-131 517,500 B A
35-135 399, 900 B A 22 18-118 284, 900 B A
17-117 485,800 B A 24 22-122 884,700 None B

120-120 429, 300 B A 29 36-136 2,244,000 None A
27-1217 421,500 B A 32 32-132 1,756,000 None B
46-146 442, 900 B None 33 39-139 3,083,000 None A
45-145 368,500 B None 37 47-147 1,881,000 None A

I o
100, 000 1lb-in, 71,600 1b-in.
950 rpm 2,000 rpm
7.500 in. 7.500 in,
B Pinion Failure* ~ Pinicn Failure*
Serial Cycles Pinion Gear Test Serial Cycles Pinion Gear

- 72-172 478,800 None A 17 69-169 5,055,000 None B
78-178 254, 900 B A 18 70-170 6,358,000 A None
79-179 173,500 None A 36 73-17310,260,000 None A

- 71-171 314, 000 B A 40 80-180 4,446,000 None A

*% 40,000 lb-in. gear torque
t 45,000 Ib-in, gear torque
£ 47,500 1b-in. _gear torque

—
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RESULTS OF TESTS

From the three series of fatigue tests conducted during the program,
data have been accumulated on the dynamic fatigue life of repr:sentative
gears (dynamic tests), the static fatigue life of the same representative
gears (pulser tests), and the material fatigue strength (R, R, Moore

tests).

DOCUMENTATION OF RESULTS

Dynamic Tests

Table V shows the results of the dynamic tests, This table contains the
data from the six series of tests - four load levels for the 12-inch
cutter diameter gears and two load levels for the 7-1/2-inch cutter
diameter gears. For each series, the test number, the pinion and
gear serial numbers, the pinion life, and the type of failure on both

pinion and gear are listed,

Pulsing Tests

Table VI shows the results of the pulser tests. This table lists the

gear torque the life, and the member on which failure was first

observed.

R. R. Moore Tests

Table VII shows the results of the R, R. Moore tests.
the specimen number, the stress level, and the life to failure.

Tooth Contact and Deflection Tests

Results of the tooth contact and deflection tests were reported in the

This table lists

Test Procedure section. Pictures of the tooth contacts are shown in

Flgures 61 through 75 in Appendix II.

TEST FAILURES

An extensive analysis of the test failures was performed, including
visual and metallurgical inspections, Every effort was made to pinpoint
This section deals

the origin of the failure and to explain the causes,
with the visual inspection of these failures.
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TABLE VI.

PULSER TEST RESULTS

Gear Torque ~ Life
(lb-in. ) {cycles) Failure
60, 000 10,215, 000 None
70,000 10,000, 000 None
73, 500 1,051, 200 Pinion
73, 500 566, 400 Gear
73,500 10, 000, 000 None
76, 500 536, 400 Pinion
79, 500 649, 780 Pinion
100, 000 69,600 Pinion-Gear
100, 000 63, 600 Pinion-Gear
100, 000 103, 250 Pinion
103, 500 48, 290 Gear
103, 500 62,100 Pinion-Gear
111, 000 28, 050 Gear
111,000 47,870 Pinton-Gear
111, 000 50, 250 Pinion
115, 500 45, 450 Gear
120, 000 18, 420 Gear
129, 000 21,210 Gear
135, 000 17,900 Gear
135, 000 20, 850 Gear
135, 000 13,600 Gear
135,000 11,120 Gear
150, 000 3, 540 Gear
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TABLE VII. FATIGUE TEST RESULTS FOR R, R, MOORE
% SPECIMENS

:F E Calculated Cycles to
| Serial Strass Failure
Number (ksi) (x 10'6)
10 100.0 10, 200 *
12 120, 0 29, 340 *
14 130.0 11, 580 *
8 140.0 10,716 *
1 145, 0 12,980 *
5 148, 0 11,330 *

15 150.0 2,905

13 151.0 2,281

2 155, 0 8.678

4 160.0 0. 392

3 160, 0 0.101
11 160.0 11,109 *

16 160.0 4,839

6 170.0 1.156

9 171.0 0. 410

7 172.0 0, 400

*Did not fail (run-out)
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Dynamic Tests

:’ In iho dynamic tests, two types of Lending fatigue failures weie observed: i 1
failures in the root fillet and failures on the tooth profile near the root i .
area, ‘These are indicated in Table V, Figures 11 and 12 illustrate 1

representative bending fatigue failures in the root fillet of the gear., The

cracks extend along the root of the tooth for two-thirds of the distance

from the toe toward the heel. Figures 13 and 14 {llustrate representative ]
. bending fatigue failures in the root fillet of the pinion. Here also it will T
be seen that the cracks extend along the root of the tooth for approxi- S
mately two-thirds of the tooth length, On many parts, several teeth ;
showed cracks when treated with Spot-Check after the failure was first
detected. With two or three exceptions, no failures progressed to the
point where the teeth were physically broken out. One of these excep-
tions is shown in Figure 16,

NIRRT g ey e
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As indicated in Table V, many of the gears failed from bending fatigue
on the tooth profile near the root area. This is illustrated in Figure 15,
; The crack is well above the root fillet and is on the working profile of
' the tooth. A further analysis of these failures is made in the Metal-
lurgical Investigations section,

' P}lslrﬂTelts

1 : On the pulsing tests, only bending fatigue failures in the root fillet were
j ; experienced. See Figures 17 and 18, This no doubt was due to the fact
; that the line of contact between gear and mating pinion did not pass

! through the area of the tooth where cracks were observed on the gears
that were tested dynamically.

Lzt o

Although both gear and pinion failures were observed on this series of
tests, gear failures outnumbered pinion failures by nearly two to one.
In four cases both gear and pinions cracked at approximately the same
time. This would indicate that the lives of pinion and ygear teeth were
nearly equal under the particular test conditions. It will be evident
from an examination of Table VI that the pinions generally failed at the
lower torque loads, whereas the gears falled at the higher torque loads. o
In the middle-load range both meinbers failed. This would appear to be
at variance with the results of the dynamic tests, in which gear failures
were most prevalent at the lower torque loads.

—
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Gear Tooth.

Gear Tooth.

Figure 11, Typical Bending Fatigue Crack in Root of

Figure 12, Typical Bending Fatigue Crack in Root of
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Figure 13, Typical Bending Fatigue Crack in Root of
Pinion Tooth.

Figure 14, Typical Bending Fatigue Crack in Root of
Pinion Tooth.
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JFigure 15. Fatigua Cracks on the Profile of a

Gear Tooth.

Figure 16. Fatigue Fracture Resulting From Cracks on
the Tooth Profile of a Gear Tooth,
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Figure 17, Typical Bending Fatigue Crack in the Root of the

Pinion Tooth on Pulser Test.

Figure 18. Typical Bending Fatigue Crack in the Root of the

Gear Tooth on Pulser Test,
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R. R. Moore Tests

The R. R. Moore tests were used primarily to establish that the
material used in these test gears was of a quality suitable for
comparison with other test resulta.

The R. R. Moore specimens failed in fatigue because of the reverse
bending encountered in this type ¢’ test, The failures experienced in
this test are not representative of failures experianced on gear teeth,
Gears sre seldom subjected to reverse bending. In addition, the size
of the cross-sectional area of the R, R, Moore specimens was selected
to be within the capacity of the standard R. R. Moore testing machine
and was not related to the cross-sectional area of the gear teeth.
Finally, the polished surfaces used on the R. R. Moore specimens
were not representative of the ground fillets used on the test gears.

The failures experienced here occurred in the central area of the
s :imens. The scatter in the location of the failures was about
rormal for this type of test, Tests were run for 10,000, 000 cycles
or until failure, whichever occurred first. Table VII includes the
results of the R. R. Moore fatigue tests.

METALLURGICAL INVESTIGATIONS

Preliminary Examinations of Test Gears

Metallurgical examinations of test gears and pinions were conducted
prior to fatigue testing to insure that the gear sets were properly heat-
treated, One gear or pinion from each of the four carburizing loads was
sectioned. The results of surface hardness and case depth checks for
gear No, 123 are shown plotted in Figure 19, The microhardness
traverse was made normal to the root fillet. The core hardness of the
geer was 38 R.. Similar results were obtained from the other three
specimens.

The heat-treatment requirements were:
1. Case hardness, R, 60 minimum.
Z. Effective case depth at root radius, 0.045'-0,055",

3. Core hardness, R, 34 to 38,
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It was concluded that the test gears and pinions were properly heat-
treated. The metallurgical structure of the carburized case is shown
in Figure 20, The structure consists of martensite and a small quantity
of retained austenite, The core structurs, Figure 21, consists of low
carbon martensite with no evidence of prosutectoid ferrite.

Examination of Failed R, R, Moore Specimens

Two R, R, Moore specimens, No, 3 and No, 16, were fatigue-tested at

the same stress level of 160, 000 pai, Specimen No, 16 ran 4,8 x 106
cycles before it failed, while specimen No. 3 lasted only 0.1 x 10

cycles. A metallurgical investigation was conducted to determine the
reason for the difference in specimen life during the fatigue test, A
microhardness traverse on a Leitz tester under a load of 1 K, was run;
refer to Figure 22. The case depth vs hardness traverse shows the
case hardness, effective depth of case, and the core hardness of each
specimen to be nearly identical,

€0
KX
55
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Figure 19, Hardness Traverse on Test Gear No, 123,
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Figure 20, Photomicrograph of Case Structure in Test Gear ; .
No. 123 (X 500). : |
" . | | L4 '
Figure 2]1. Photomicrograph of Core Structure in Test _
Gear No, 123 (X 500). :
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Figure 22. Case Depth Vs Hardness Traverse for R. R. Moore
Specimens 3 and 16.
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Visual examination showed the two samples to be almost identical in
matalluraicel gtoucturs, Reproscntative pholuuiivrograpns of the case
and core structures are shown in Figures 23 and 24, The retained
austenite in both specimens was estimated to be about 15 to 20 percent.
It was concluded that the metallurgical examination did not reveal any
gross discrepancies that could be held accountable for the difference
in specimen life. It is believed that stress concentration at grain
boundaries and at inclusions, and strength variations due to grain
orientation are the factors most likely to have affected the difference
in life between the two spacimens,

Examination of Failed Test Gears

During the test program, bending fatigue cracks on the test gears were
observed at two locations: one in the tensile fillet and the other slightly
higher on the tensile profile of the tooth. Usually bending fatigue cracks
occur in the tensile fillet and originate at the surface. An extensive
effort was made to determine whether the cracks that occurred higher
up on the profile were initiated at the surface or below the surface
(subsurface).

Gear No. 122 was typical of the test gears that failed because of bend-
ing fatigue cracks in the tensile fillet, The cracked tooth was removed
from this gear and sectioned. Microhardness traverses were made
normal to the convex (tensile side) surface both in the root of the tooth
below the crack and at the pitch line and normal to the concave surface
{n the root, See Figure 25. Photomicrographs typical of the case and
core structure of this tooth are shown in Figures 26 and 27, The case
and core structures are essentially the same as the structures
examined prior to testing.

Gear No. 178 had profile cracks on about half the teeth., One tooth on
this gear that did not show any surface cracks under aither the ''Spot-
Check Technique' or the microscopic examination was removed, A
normal section slice was made near the heel end of the tooth, and the
section was examined for the presence of subsurface cracks. None
were found, An additional 0.010 inch of stock was carefully ground
off the normal section, and the specimen was reexamined. This
process was repeated on this tooth until the area of probable damage
had been completely examined., Another tooth was selected at random
from the same gear, and the process was repeated. In neither caae
were subsurface cracks visible.
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, Figure 23, Photomicrograph of Case Structure in R, R, Moore . i
' Specimens (X 500). 3
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Figure 24. Photomicrograph of Core Structure in R. R. Moore
Specimens (X 500),
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Figure 26,

Figure 27,

Case Microstructure on Test Gear No. 122 (X 500).

Core Microstructure on Test Gear No. 122 (X 500),
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was removed and sectioned. A microhardness traverse was made in
the normal section slightly above the crack; see Figure 28, The plot of
hardness versus depth is shown in Figure 29. This traverse, like all
the others made on failed test gears, showed a reduction in the value of
effective case depth from that measured prior to fatigue testing. This
is explained by the removal of stock during the final tooth-grinding
operation which followed the preliminary metallurgical examinations

of the test gears,

Gear No, 172 also had a few teeth with profile cracks. One tooth with

a profile crack was removed (Figure 30) and a normal section was made
near the heel end, Figure 31 shows where the microhardness traverse
wajs taken. The hardness versus case depth was almost identical to

the plot shown in Figure 29.

Stock was carefully ground off the normal section in successive steps
going from heel to toe. What may have appeared as a subsurface crack
in one section joined the surface crack in another gection. It can be
concluded that no cracks were seen which did not at some point along
the tooth length come to the surface. It was not possible to prove con-
clusively the true origin of these cracks.

X-ray diffraction techniques were used to determine the amount of
retained austenite on the tooth surface both in the tensile fillet and on
the profile approximately where the higher cracks were located. The
concave side of pinion No. 35 and the convex side of gears Nos. 122
and 118 all showed about 8 to 11 percent retained austenite.

Pinion No. 35 and gear No, 122 had fatigue cracks in the root of the
tooth. Profile fatigue cracks were observed on the teeth of gear
No. 118.

There did not appear to be any metallurgical difference between the
gears with root cracks and the gears with profile cracks. The gears
made of vacuum-melt material are able to run longer at higher stress
levels; therefore, it is possible that the tensile surface stresses sur-
rounding the area of high contact stress near the root of the gear tooth
combine with the bending stresses to cause bending fatigue failure on
the tooth profile rather than in the root fillet. No other explanation for
this difference has been found to date.
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Figure 28,

Photograph Showing Location of Microhardness
Traverse on Test Gear No. 178 (X 100).
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Figure 30, Photograph of Profile Crack on Test Gear
No. 172 (X 6).

Figure 31, Photograph Showing Location of Microhardness
Traverse on Test Gear No. 172 (X 100).
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Finally, a high-magnification photograph of a typical profile fracture
is shown in Figure 32, This photograph was taken with the aid of an

electron-beam-scanning microscope,

Figure 32. Photograph From Electron-Beam-Scanning
Microscope on Test Gear No, 120 (X 1105),
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NFRW STRENGTH FORMULA

s

; While gears were being manufactured and tested, an analysis of the
5 existing strength formulas was initiated, and the following positive
\ steps were taken to improve these formulas,

EFFECTIVE FACE WIDTH

Using data generated in a previous experiment, Reference 14, a detailed
study of the stress distribution in the root fillet of several model gear
teeth was performed. This experiment consisted of mounting five
equally spaced strain gages in the root fillet of each model tooth along
the length of the tooth, Point loads of equal value were applied succes-
sively at a series of equally spaced grid points on the tooth surface -
three rows each at a different height above the base of the tooth and
eleven points in each row along the length of the tooth, See Figure 33.
Strain readings from each gage were recorded for each loading point.
Computer programs were established to interpolate between grid points
and between strain gages. By selecting a series of discrete, equally
spaced points in a straight line on the tooth surface, & second computer
program could effectively duplicate the stress distribution produced by
any line of contact. By varving the magnitude of the loads at the various
points, any load distribution could be simulated, The method assumed
that superposition of strains is valid,

Once the strain distribution along the root of the tooth was determined
from the data, an exponential curve was fitted to the data, A regres-
sion program then determined the coefficients of the exponential
equation.

The final formula for effective face width is based on the ratio of the
average stress to the maximum stress and can be expressed as follows:

| Ze - favg (1)
‘ F  Smax
where F, = effective face width
F = actual net face width

Savg = Average stress along root of tooth produced by a
uniform load distribution along the total length of
the tooth at the assumed load height used for sy,
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Smax = Maximum stress along root of tooth produced by
assumed tooth ioading

Values of effective face width given by this new formula are smaller
than the values given by the present AGMA fzrmulas, This results in
higher calculated bending stresses. A detalled and complete derivation
of the effective face width formulas is contained in Appendix III.

POSITION OF POINT OF LOAD APPLICATION

In previous work, Reference 8, it was concluded that the center of
pressure along the instantaneous line of contact on a spiral bevel gear
tooth lies at a point offset toward the heel end of the tooth from the
center of the line of contact. This conclusion was based on the assump-
tion that the center of pressure lies close to the widest portion of the
instantanéous line of contact. An analysis performed by the contractor
prior to the initiation of this project showed that the load will be great-
est at this widest point along the line of contact, but the center of
pressure will lie nearer the center of the line of contact. By replotting
available fatigue test data versus the calculated stresses based on a new
assumption that the point of load application lies halfway between the
center of the line of contact and the widest point, it was demonstrated
that a better correlation existed, The width of the scatter band was
reduced appreciably, The most important effect was an improved
strength balance between gear and mating pinion,

In the present analysis this new assumption, that the point of load appli-
cation can be considered to be represented by a point load acting haliway
between the center of the instantaneous line of contact and the widest
point, has been incorporated in the formula for the geometry factor.
This results in the value of the correction factor, k (given in the
Appendix to the AGMA Strength Standards, References 15 and 16) being
doubled or made equal to 8n+6.4N  The correction factor, k, used in
the present formulas is the 881proca1 of k, and its value is therefore
halved or made equal to T 'Z‘ i This value is used in the formulas

documented in Appendix V.

LOAD DISTRIBUTION FACTOR

It has long been known that the shift in the tooth contact along the length
of a gear tooth will cause the tooth to break at its end even under
moderate loads, In this program a study was made of the effect of

this contact shift.
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When a deflection test is made on a gear mounting, indicators are
placed at strategic positions to measure the relative displacements

of the gear and mating pinion, Using the formulas derived by Baxter,
Reference 13, it is possible to calculate the shift of the tooth contact
position along the length of the tooth under any known relative displace-
ments, assuming that the tooth is a rigid body and does not deflect.
From the experimental data obtained on a Gleason No., 14 Testing
Machine under light loads, measurements were made of the lengthwise
shift in the tooth bearing under various displacements, A correlation
coefficient between the calculated shift and the measured shift was
thereby determined. This correlation coefficient turned out to be
unity, indicating the accuracy of the formulas for adjustability.

Using the same basic data given in Reference 14 and the approach used
to determine the stress distribution .ng the tooth given in the Effective
Face Width section, it was possible to establish a formula for the load
distribution factor, The final formula for load distribution factor is
based on the ratio of the maximum stress at the displaced position of
the contact pattern to the maximum stress at the central position on

the tooth face width, It can be expressed as follows:

Kpm = —shift
*max

(2)

where K, = load distribution factor.

S8ghift = maximum stress along the root of the tooth when
the tooth contact pattern has shifted away from its
central position on the tooth,

8ax = Maximum stress along the root of the tooth when
the tooth contact pattern is centrally located, This
is the same s referred to in the Effective Face
Width section,

The effect of lengthwise tooth curvature (cutter diameter) is reflected
in the adjustablility coefficients, which are used in the determination
of the calculated lengthwise tooth contact ahift. In addition, the effect
of the lengthwise radius of curvature on tooth contact length is con-
sidered., For the first time, the effect of lengthwise tooth curvature
on bending stresses is included in the formulas.

It is the difference in lengthwise tooth contact shift between the test
gears produced with 7-1/2-inch and 12-inch cutter diameters that
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accounts for the difference in fatigue life between the two designs when
tested at the same load level, Figure 34, When an 5-N diagram is
plotted, based on these new formuias, the difference in caicuiated
stress resulting from this new load distribution factor largely compen-
sates for the difference bstwesn the two designs, Figure 35,

A detailed and complete derivation of the load distribution factor is
contained in Appendix IV,

SIZE FACTOR

The AGMA bevel gear strength formulas contain a size factor that
compensates for the size effect of the particular gear. Formerly,
this size factor, for convenience, was included in the formula for
calculated stress; in the formulas contained herein, the size factor
has been included in the formula for working streass. This has the
effect of raising the calculated stresses to a value more nearly equal
to the true stress level.

This change was made to comply with the requirement that the strength
calculations for bevel gear teeth should produce stresses corresponding
to the true stresses in the gear material,

It would be well to point out that this change results in certain disad-
vantages:

1. For the average gear engineer, it increases the hazard of
mistakes. At the present time, the calculated bending stress
in a bevel gear tooth requires only the multiplication of a
strength factor, given on the contractor's dimension sheets
for bevel gears, by the torque, This value is then compared
with a single value for the allowable stress of the material.
With the present change, both a calculated stress and a work-
ing stress must be calculated and compared.

2. When fatigue data are plotted to produce an S-N diagram, the
plotting of true stress vs gear life no longer has meaning,
except when the data are plotted for a single gear design,
Frequently, one wishes to plot data obtained from several
gear designs of varying sizes., This cannot be done., Since
bevel gears are produced in a wider range of diametral pitches
than is common with spur and helical gears, this change results
in a greater hardship to the bevel gear user.




If one is concerned only with infinite life applications, the use of true
stress may have some merit., Otherwise the existing AGMA method
modified by the new effective face width, position of the point of load
application, and load distribution factor would appear to be more useful.

The new formula for the size factor for bevel gears incorporated in the
equation for working stress is given as follows:

K, ZPd'o' 25 for gears of 16 DP and coarser (3)

1.0 for gears of 16 DP and finer

where K' size factor

P4 = transverse diametral pitch at outer end of tooth

This formula for size factor gives values twice the magnitude of those
given in the AGMA bevel gear strength standards.

In the present AGMA bevel gear strength standards, the allowable

stresses have been reduced to a value corresponding with the working
stress in a 1-DP gear. This allowable stress is one-half the working
stress for a 16-DP gear. The size factor for a 1-DP gear was estab-
lished as unity. Therefore, the size factor for & 16-DP gear was 0. 5.

With this new approach to the use of a size factor, the allowable stress
is established on the basis of the strength of the material in a small
specimen (R. R. Moore), which corresponds approximately to a 16-DP
gear tooth, The size factor for a 16-DP gear is now established as
unity. Therefore, the size factor for a 1-DP gear becomes 2,0,

In the plotting of comparative data in the Analysis of Results section,

where it is indicated that a size factor has been included in the calcu-
lated stress values, the size factor referred to is the one used in the
present AGMA bevel gear strength standards and is not the one used

here.

FINAL STRENGTH FORMULAS
The final strength formulas are very similar in form to the existing

AGMA formulas., The basic equation for the calculated bending streass
in the root fillet is given as follows:
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where 8¢ = calculated tensile stress in the root of the tooth, psi
Tp = tranamitted pinion torque, lb-in,
Ko = overload factor
Ky = dynamic factor
Pq = transverse diametral pitch at outer end of tooth
F = face width, in,
d = pinion outer pitch diameter, in.
Kp, = load distribution factor from equation (2)
J = geometry factor

In equation (4), use the face width, load distribution factor, and
geometry factor for the member being calculated. The size factor
no longer appears in equation (4). However, the load distribution
term is evident. The term for effective face width and the change
in the position of the point of load application are incorporated in
the geometry factor and therefore do not appear directly in equation

(4).
The basic equation for the working stress is given as follows:
Sat
By = 5
w KT KR K. (5)

where s, = working stress, psi
8,¢ = allowable bending stress, psi. This is the value of
allowable stress taken from an S-N diagram based on
R. R, Moore tests on a 0, 250-inch-diameter specimen,
corrected for single-direction bending,

Ky = temperature factor

KR = factor of safety
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K, = size factor from equation (3)

The calculated bending stress must be equal to, or less than, the work-
ing stress,

8 = By (6)

The complete llsting of formulas for calculated bending stress and work-
ing stress is given in Appendix V.,

PO
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Using both the new, improved strength formulas developed during this
program and the AGMA strength formulas, plots of the results from the

dynamic tests and the pulsing tests have been made. These plots include
the following:

1, Gear torque vs life in cycles for dynamic tests, Figure 34,
2. Gear torque vs life in cycles for pulsing tests, Figure 36,

3. Calculated bending stress vs life in cycles for dynamic tests
using new, improved strength formulas with the size factor
omitted, Figure 35,

4, Calculated bending stress vs life in cycles for pulsing tests
using new, improved strength formulas with the size factor
omitted, Figure 37,

5, Calculated bending stress vs life in cycles for dynamic tests
using new, improved strength formulas with the size factor
included, Figure 38,

6. Calculated bending stress vs life in cycles for dynamic tests
using AGMA strength formulas with the size factor included,
Figure 39.

7. Calculated bending stress vs life in cycles for pulsing tests
using new, Improved strength formulas with the size factor
included, Figure 40,

8. Calculated bending stress vs life in cycles for pulsing tests
using AGMA strength formulas with the gize factor included,
Figure 41.

TORQUE VS LIFE DIAGRAMS

Figures 34 and 36 present the test data in graphical form; that ls, the
test load in gear torque is plotted sgainst the life in cycles. In Figure 34
the data points have been separated into two groups: those representing
the 12-inch cutter diameter design and those representing the 7-1/2-inch
cutter diameter design. The mean lines for the two groups are also
shown, It can be seen from this graph that the 7-1/2-inch cutter diame-
ter design resulted in a substantially increased average life over the
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12-inch cutter diameter desigr., Since only one design (12-inch cutter
diamaetar) wae testcd on the pulser, oniy one line representing the mean
b is shown in Figure 36,

STRESS VS LIFE DIAGRAMS

Figures 35, 38, and 39 present dynamic test data by three S-N diagramas.
N Figure 35 is a plot of calculated stress by the new, improved method with
the size factor omitted vs the life in cycles, Note the compact grouping
of the data points, outlining & well-defined slope, Figure 38 is the same
plot with the size factor (AGMA method) included in the calculated stress
. formula, The grouping of the points is the same as that in Figure 35
but at a lower stress level, Figure 39 is a plot of the calculated stress
by the AGMA method with the size factor included, There is a much
greater scatter of the points on this graph and a less sharply defined
slope. In addition, the calculated stresses are much lower than those
shown in Figure 38,

Figures 37, 40, and 41 present similar S-N diagrams for the pulsing test
results. Figure 37 is a plot of calculated stress by the new, improved
method with the size factor omitted vs the life in cycles. Figure 40 is
the same plot with the size factor (AGMA method) included in the calcu-
lated stress formula., The grouping of the points is the same as that in
Figure 37 but at a lower stress level. Figure 41 is a ploc of the calcu-
lated stress by the AGMA method with the size factor included. The
shape of the S-N diagram in this last case differs from that obtained in
Figures 37 and 40; there appears to be less scatter of the points, The
apparent difference is explained in the next section.

TORQUE VS STRESS

When Figures 34 and 39 for the dynamic tests are compared, it will be

seen that the torque and stress data points produce identical patterns,
. Only the value of the ordinate differs, This is because the stress is
proportional to the torque with the AGMA strength formulas. A similar
comparison of Figures 34 and 38 shows that the patterns are not iden-
tical. This is due to the fact that with the new, improved strength
formulas the stress is no longer proportionai to the torque, The non-
linear increase in the peak root stress is caused by a shift in the contact
pattern from the central position lengthwise along the tooth as the load
changes. The amount of lengthwise shift is a function of the gear mount-
ing rigidity and the tooth geometry. It can be clearly seen that there is
much less scatter among the data points in Figure 38 than in either
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! % Figure 34 or Figure 39. Only one geometric variable affected the test
gesrs; namcely, ths two culier diameters, This demonstrates quite con-
clusively why gear performances cannot be measured by the load alone, ’
This is why the K-factor, commonly used to compare and rate spur and :
helical gears, is a very inadequate tool for comparing bevel gear designs,

Similarly, the comparison of Figures 36 and 41 for the pulsing tests

shows identical patterns for the torque and stress data pointa. This {s ‘
for the same reason explained in the preceding paragraph. A compari-

son of Figures 36 and 40 shows a greater scatter of the data points when

the stresses are calculated by the new, improved mesthod, This can be
explained primarily by the fact that the mounting displacements were ‘
assumed to be the same on the pulser as in the dynamic test boxes.

Since no deflection test was performed on the pulser mountings, the true
displacements are not known. In addition, every effort was made to

maintain the tooth contact in the same position on the tooth for all pulser

tests, which would effectively reduce the mounting displacements to zero i
and would therefore cause the actual stresses to be proportional to the !
applied torque,

R. R. MOORE ANALYSIS

Ideally, the calculated gear tooth bending stress should correlate directly
with the basic strength of the gear material, To provide a basis foxr this
correlation, R, R. Moore tests were performed in order to obtain stress
data pertaining to the material., These data in turn were modified to

' reflect the differences between the R. R. Moore test specimen and the
gear tooth and between the R. R. Moore test and the gear tooth action,

Figure 42 provides this basis for reference. It is an R. R. Moore S-N
diagram for 9310 vacuum-melt steel (AMS-6265), the material used in
the test gears, in which the original test data, Figure 44, have been
modified to incorporate the effects of

1, Single-direction bending as experienced by the gear tooth,

' 2. The difference in surface finish of the gear tooth fillet as
# ' compared to the R, R, Moore test specimen,

The effects of temperature, speed, and hardness remained constant for
the duration of the R, R, Moore and the gear testing.
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The true slope of this modified S-N curve is not known because there
were ng fallures below o fatious 1ife of 3 102 cveles, but there are
a sufficlent number of data points to confidently establish the basic
endurance limit of the material,

Effect of Single-Direction Bending

In the R. R. Moore test, the specimens are beams which rotats about
their longitudinal axis while subjected to bending in a plane of the axis,
Thus, the stress at any point on the surface is completely reversed
during each revolution of the beam., This variation of stress is illus-
trated in Figure 43a. However, the loading on a gear tooth is in a
single direction, as illustrated in Figure 43b, To provide the proper
basis of comparison, the original R. R. Moore S-N diagram for
reversed bending, Figure 44, was adjusted for single-direction bend-
ing with the use of the modified Goodman diagram, Figure 45, where
the maximum stress, the ordinate, is compared to the mean stress,
the abscissa.

A value of 335, 000 psi was used as the ultimate strength of the material,
Reference 23, This value is based on a case hardness of Rockwell C 60,
the condition of the tooth surface in the root fillet where the bending
fatigue failures initiated,

The single-direction line in Figure 45 was drawn from the origin with a
slope of 2 since the maximum stress is twice the mean stress for gear
tooth loading.

The steady-stress line in the same figure was drawn {from the origin
with a slope of 1 to the ultimate-stress point of 335, 000 pel,

The stresses at points X, Y, and Z on the ordinate were obtained from
the original R, R, Moore reverse bending curve, Figure 44, which has
been repeated as curve C) in Figure 46, These are the stress values
corresponding to life in cycles of 105 (200,000 psi), 106 (165, 000 pai),
and 10/ (145,000 psi), respectively.

Three straight lines representing life of 105, 106, and 107 were then
drawn from points X, Y, and Z to the ultimate-stress point (335; 335),
The intersection of these cycle lines with the single-direction line
establishes points X', Y', and Z' on the ordinate, which were plotted
in Figure 46 as curve C2, This curve represents the R. R, Moore
data modified for single-direction bending.
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It has been reccgnized that fatigue life is affected by the surfice finish
of the stressed area., In this case, the R. R. Moore specimens were
polished, whereas the gear tooth surfaces were ground., The allowabie
stress for a ground surface is estimated to be 95 percent of the allow-
able stress determined for a polished surface,

Other Effects

While it is recognized that variations in temperature, speed, and hard-
ness have an effect on fatigue life, these factors were closely controlled
during the manufacture and the testa and are considered to be constant.
Therefore,these factors had no effect on the test data, and their value
was set at unity in this analysis,

Final Stress-Cycle Diagram

The resulting R. R. Moore S-N curve is plotted as curve C3 in Figure 46,
It is obtained by applying the surface-finish effect, 0,95, to the allowable
stress curve C3,

Curve C3 ia the final S-N curve and represents the value o mean perform-
ance; i, e., for any stress value on this curve, 50% of the parts will have
failed at the corresponding life, It is duplicated as Figure 42, the basis

of reference of the gear tooth material, From this curve a mean allow-
able atress for the test material, AISI 9310 vacuum-melt steel (AMS-
6265), was established at 192, 000 psi.

COMPARISON OF R, R, MOORE AND DYNAMIC TESTS

In Table VIII the mean allowable stress from the R. R. Moore tests is
192, 000 psi, Figure 42, and the mean working stress at the endurance
limit will also be 192, 000 psi. For the dynamic tests, Figure 35, the
mean working stress at the endurance limit is 156,000 psi. However,
the mean allowable stress for the test gears must be calculated using

equation (5), It is rewritten here iz a form for direct solution:

Uat = 8w KTKRKg (5a)
where s, = working stress, psi

Kg = temperature factor

5.0 o




TABLE VIII,

ALLOWABLE STRESS V3 WORKING STRESS
FOR AISI 9310 VACUUM-MELT STEEL

Allowable Stress(psi)

Working Stress(psi)

f—

Specimen Mean Design Limit Mean Design Limit
“{Re R. Moore* 192,000 160, 000 192, 000 160, 000
Dynamic Test
Gears*x 221, 000 160,000 156, 000 115, 000
! Pulsing Test
i Gears¥* 275, 000 - 194, 000 -

surface-finish effects,

**Values for working stress taken from Figures 35 and 37,

*Mean allowable stress corrected for single-direction bending and
Values taken from Figure 42,
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KR = factor of safety

Kg = size factor

The temperature factor and factor of safety are both equal to 1, 0 for the
dynamic tests, The size factor for the test gears from equation (3) is
1.42, Substituting in the above equation,

sat = 156,000 (1.0) (1.0) (1.42) = 221,000 psi mean
allowable stress

It will be noted that this value is somewhat above the value obtained from
the R. R. Moore tests, but shows reasonable correlation between the
new strength formulas and the actual stresses in the gear teeth, The
difference may be partially due to the small size of the R. R, Moore
specimens,

COMPARISON OF R, R. MOORE AND PULSING TESTS

The mean working stress for the pulsing tests, Figure 37, is 194,000
pei. Since the temperature factor, factor of safety, and sise factor
for the pulsing tests are identical with the dynamic tests using equation
(5a),

8¢ = 194,000 (1.0) (1.0) (1.42) = 275,000 psi mean
allowable stress

It will be noted that this value is approximately 45 percent higher than
the R. R. Moore or dynamic test values for mean allowable stress,
The explanations for the higher calculated stresses for the pulsing
tests are given as follows:

1. The gear and pinion were positioned in the pulser to produce a
line of contact between the gear and mating pinion, which was
assumed to duplicate the position of the load in the dynamic
tests when the root stress would be a maxtmum, It is probable
tha: the load position selected did not produce the corresponding
maximum bending stress in the root of the pulser gears. Thus,
the calculated stress was undoubtedly higher than the actual
stress.

2. The calculation of bending stress includes a dynamic factor.
For both the dynamic tests and the pulsing tests a value of unity
was used for the dynamic factor, Although it was assumed that
the dynamic effects were negligible on the dynamic tests, this
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can be proven only by running more extensive tests on the pulser t

with the poaition of the load varicd lu produce the maximum static
root stresa in the teeth.

EFFECT OF CUTTER DIAMETER

It was previously pointed out that when running the dynamic tests on the
12-inch and 7-1/2-inch cutter diameter designs, Figure 34, there was

a pronounced difference in life between the two designs. With the present
AGMA formulas, there is no difference between the stresses for the
12-inch and the 7-1/2-~inch cutter diameter designs, Figure 39, But
because the life of the 7-1/2-inch design greatly exceeds the life of the

12-inch design, it should be concluded that the stresses in the two designs
should not be equal.

Figure 47 is a replot of Figure 35 showing only the comparative tests
, between the two cutter diameter designs at the two upper load levels,
. Also shown in Flgure 47 are the mean lines for the two designs. It

should be apparent that with this new, improved method of stress calcu- |
lation, the difference in stresses between the 7-1/2-inch and 12-inch l
cutter diameter designs has resulted in bringing the two mean lines '
nearly into coincidence, For the first time, the effect of cutter diameter -
on gear tooth stress has been successfully incorporated in a bevel gear '

strength formula. :

ENDURANCE LIMIT FOR AISI 9310 VACUUM-MELT STEEL

, From Table VIII it can be seen that the mean working stress for the
dynamic test gears is 156,000 psi. From Figure 35 a design working
stress of 115,000 pei has been established. It is now necessary to

relate this design working stress to a design allowable stress, The same
procedure that was used to relate the mean working stress to the mean
allowable stress can be used. Again, equation ( 5a) will be used with the 1
temperature factor and factor of safety equal to 1.0, and the size factor ¢
: equal to 1,42, Then,

o 8¢ = 115,000 (1.0) (1,0) (1.42) = 163,000 psi design
allowable dtress v

In Table VIII this value has been rounded to 160, 000 psi., This, then,is
the endurance limit for AISI 9310 vacuume-melt steel,
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FATIGUE TEST DATA FROM PAST DYNAMIC TESTS

Dynamic fatigus tesl daia accumulaied by the contractor prior to the
i{nitiation of this project are plotted in Figure 48 using the new, improved
strength formulas, Figure 49 shows a plot of the same data using the
AGMA strength formulas. In both cases the scatter of points is consid-
erable. There appears to be little choice between the two methods.

There is one fairly apparent reason for the wide scatter shown by the
new formulas using these previous data, These formulas are based on
a rewsonably precise knowledge of the gear displacements under load,
These gear displacement data were not available for these earlier tests.
Therefore, the displacements were based on the approximate formulas
contained in the computer program. Also, less attention was paid to
control of variables in many of the prior tests, For these reasons,
these data have limited usefulness.

ENDURANCE LIMIT FOR AIR-MELT STEEL

The data plotted in Figuru 48 are for gears made from air-melt steel.

A line representing the design limit for this material is included. The
design working stress is approximately 45,000 psi, based on the stresses
having been corrected for a 1-DP gear. This means that with the new
method, a size factor of 2.0 rust be used. Assuming a temperature
factor and a factor of safety each equal to 1.0, the design allowable
stress can be solved using equation (5a):

8¢ = 45,000 (1, 0) (1.0) (2.0) = 90,000 pli design
allowable stress

This, then, is the endurance limit for air-melt steel when used with the
new, improved strength formulas. However, as pointed out in a preced-
ing paragraph, the data for air-melt steel are not as well defined, and,
therefore, this value of 90,000 psi may be on the low side,

By comparing this value with the value of 160, 000 psi obtained for

AISI 9310 vacuum-melt steel, it can be seen that the vacuum-melt steel
gives a 78 percent increase in strength over the present design limit
for normal air-melt gear steels, This is a significant improvement,

SLOPE OF THE S-N DIAGRAMS

In all three series of tests, an attempt was made to determine the slope
of the 8-N diagramas.
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For the R, R, Moore specimens it was difficult to obtain = rgliakls S-N
diagram due to the limitations of the test equipment, With the specimen
size used for these tests, the peak stress that could be attained was
approximately 170, 000 psi, This is not too far above the endurance
limit of 145,000 psi, Figure 44. For this reason, the portion of the S-N
diagram below 3 x 105 ¢ycles cannot be deﬂnad from the test data, and
the portion between 3 x 103 cycles and 3 x 10° cycles is not well defined
from the data because of the relatively wide scatter in the results,
Therefore, the slope of the S-N diagram is unknown,

For the dynamic gear tests, Figure 35, the gnean slope is shown extend-
ing from 10% cycles to approximately 5 x 10° cycles, This line has a
slope of approximately 8,5, By statistical means, using log-normal,
Weibull, and Weibull-hazard techniques, a 1-percent line was established.
This line has a slope of approximately 6.6.

For the pulsi g gear tests, Figure 37, the mean slope is shown extending
from 1,7 x 10% cycles to approximately 106 cycles. This line has a
slope of approximately 10,3, which is somewhat flatter than the mean
slope obtained during the dynamic tests.

PEAK STRESS

Up to this point the emphasis in this analysis has been on the endurance
limit for the gear material, However, a look at the peak stress should
be taken to determine whether the values are reasonable.

For the R. R. Moore specimens, it was not possible on the existing test
equipment to perform tests at the very high stress levels, In fact, very
few tests were performed above the endurance limit. For this reason,
the value of the peak stress was not obtained,

For the dynamic gear tests, Figure 35, gears were operated at stress
levels as high as 275 000 psi. Projecting the line representing the mean
slope to a life of 104 cycles produces a stress value of 325, 000 psi,

This is in close agreement with the established value for this material
of 335, 000 psi, Reference 23,

For the pulsing tests, Figure 37, the plotted points appear to level off
at an upper limit of -.pproximately 300, 000 psi, This level is reached
at a life of approximately 2 x 104 cycles. Agreement between this value
for peak stress and the value of 325,000 psi obtained on the dynamic
tests is quite reasonable. It might be argued that as the load level
increases on the gears, the correlation between the dynamic results and
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the pulsing results converges. This is not surprising, since at the higher
loads the contact will tend to epread out, thereby tending to equalize the
stresses along the tooth root,

An interesting observation can be made concerning the size factor at the
peak stress, At the endurance limit, the mean allowable stress for the
tost gears did not agree with the mean allowable stress for the R, R,
Moore tests until the size factor was introduced. However, at the peak
stress, the mean allowable stress for both the pulsing tests, Figure 37,
and the dynamic tests, Figure 35, was in close agreement with the
established value of the material strength without introducing a size
factor, Between the endurance limit and the peak streas it appears
that there may be a variation in the size factor, which has not been
considered in the computer program, Since most designs are based

on the endurance limit, this omissinn in the computer program should
not cause any inconvenience,

VALIDATION OF NEW STRENGTH FORMULA

This section of the report has attempted to substantiate the validity of the
stress values obtained whon using the new, improved strength formulas,
It has been shown that

1. Torque vs lifo is not a satisfactory criterion for design.

2, Since with the AGMA method stress is proportional to torque,
the AGMA method is not a completely stisfactory criterion
for design.

3, The effect of cutter diameter on gear tooth strength is accounted
for by the new, improved formulas for the first time,

4., The stress values resulting from the new formulas are in
close agreement with the basic material strength, both at
peak loads and at the endurance limit.
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COMPUTER PROGRAM

One of the principal purposes of this project was to derive improved
formulas for predicting the strength of bevel gears and to furnish 4
useable computer program which would enable a gear designer to
effectively design high-capacity gear sets.

formulas that have been derived for load distribution factor, effective
: face width, and size factor. These formulas have been complled into a
computer program that will calculate the stresses in bevel gear teeth,

F . In a previous section of this report, & review has been made of new

.j, , STRESS FORMULA DOCUMENTATION

|

1' f The complete set of formulas required for calculating the stresses in a

i : bevel gear tooth comprises a rather lengthy list. These formulas are {

documented in Appendix V along with a complete list of the letter symbolys, )

FORTRAN symbols, and description of each, All formulas are writter. ‘

in terms of the letter symbols, }
1
1
1

Basically the formulas contained in this report include all of the neces-

_ sary items to calculate the geometry factor and the load distribution

¥ factor, These are the two major terms in equation (4) for bending stress.
Other terms appearing in this formula are sither given or assumed and
must be supplied as input to the program, These other terms include the 3
load, the factors for dynamic effects resulting from gear inaccuracies

or from external causes, and the dimensions defining the size of the gears,

-

Finally, the formulas include the complete squations for bending stresses
in gear and mating pinion and the equation for working stress,

INPUT -OUTPUT DATA

. The input data to the program and the output results from the program
are explained in detail in Appendix VI,

Input Data

The Input data are contained on six standard 80-column cards, These in-
¢ lude the basic design parameters, the tooth proportions, the cutter
specifications, the load data and other factors concerning the quality

of the gears, the suitability.of the gear mountings, and the dynamic sffects
resulting from the nature of the external loads applied to the gears,
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Output Data

The output listing includes all of the input items to the program plus the
useful output results from the program. In addition to the calculated
bending stresses and working stress, the output includes such items as
the geometry factors, the strength factors, the load distribution factors,
the contact ratios, the load sharing ratio, and certain additional gear
dimensions and (assumed or given) mounting displacements due to deflec-
tions under load,

PROGRAM LISTING

The complete FORTRAN IV program listing is given in Appendix VI.
This includes the listing of all apecial subroutines used in the program.
It is based on the formulas documented in Appendix V, where an
explanation of the FORTRAN symbols is given,

Open.tixi Instructions

Operating instructions include a list of program stops and the possible
causes and cures for ecach.
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This program has resulted in the following conclusions:

1,

b A e AR -~ b ’ I o 1

CONCI USIONS

A nev, improved method for the stress determination of bevel
gears, which is a modified form of AGMA Standards 222,02
and 223,01, was found to provide better correlation with actual
gear tests and with the basic strength of the material. This
modified form consists of improved formulas for the effective
face width and load distribution factor, and the transfer of the
size factor from the equation for calculated stress to the
equation for working stress,

The basic material strength curve for carburized AMS-6265
was established by R. R. Moore specimens. The strength
cLrve correlates closely with the stresses calculated by the
new, improved bending strength formulas for gear teeth when g
appropriately modified by factors for reverse bending and oo
surface finish. '

A design S-N curve for AMS-6265 was established based on

dynamic fatigue tests on spiral bevel gears. For design pur- .
poses,an endurance-limit stress of 160, 000 psi was established .
for this carburized vacuum-melt steel. ‘

An improved formula for effective face width was developed, -
which is based on an extensive previous study of the strain ‘ 3
distribution in the root fillet of a gear tooth along its entire '
length under many different positions and lengths of the line
of contact, and under uniform, elliptical, and parabolic load
distributions,

The correction factor for locating the position of the point of
load application has been modified to place the load nearer the
center of the instantaneous line of contact. This change results
in increased accuracy of the resulting stresses and in an
improved strength balance betwean gear and rmating pinion.

An improved formula for the load distribution factor was
derived based on theoretical and experimental studies of oAl
the behavior of root fillet stresses under various concen- .
trations of load. The effect of tooth contact shift on a bevel o
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gear tooth as a result of mounting deflections is of vital

imnartancre nn hiochoconaritey casvina
SRS SRR S LR RleimREpsR ity ot 00

A new formula for size factor has been introduced in the
equation for working stress. This ls theoretically where
the size factor shculd appear in the design formulas rather
than in the equation for calculated stress.

The most significant finding resulting from this program is !
the pronounced effect of lengthwise tooth curvature (cutter
diameter) on gear tooth strength, This effect is introduced
into the gear tooth strength formulas through the adjustability
coefficients, which are used in determining the load distri-
bution factor. A cutter diameter approximately equal to
twice the outer cone distance times the sine of the spiral
angle was found to produce a significant improvement over
the '"standard" cutter diameter, which is approximately
equal to twice the outer cone distance.

A workable computer program is included for the use of the
gear designer. This will provide pertinent gear design
information for intelligently selecting the correct bevel
gears for a given application.
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GEAR MANUFACTURING DATA

Table IX Summary of Calculated Tooth Stresses for Pulser Gears
Table X Heat-Treatment Batch Groupings

Table XI Inspection Record of Pinions
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Table XIII Raw Material Examination Records

Table XIV Inspection Records for R, R, Moore Fatigue Specimens
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Pinion Drawing for 12-Inch Cutter Diameter Pulser Gearset
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Gear Drawing for 12-Inch Cutter Diameter Test Gearset

Test Gear Routing Sheets

Test Pinion Routing Sheets
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Drawing for R, R, Moore Test Specimens

R. R. Moore Specimen Routing Sheet
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TABLE IX,

Pen ra s AV E

”~
SUMIMARY OF CALCUL

FOR PULSER GEARS

5

Based on Static Loading

Dimension Sheet No. 139, 887AB (Fig. 1)

Calculated Calculated
Bending Compressive
Test Torque Stress Stress
Number Member (in. -1b) (psi) (psi)

4 Pinion 20,000 66, 000 316, 000
Gear 60, 000 66,100 -

5 Pinion 23,000 75,900 339,100
Gear 69,000 76,000 -

6,8 Pinion 24,500 80, 800 349,800
Gear 73,500 81,000 -

24 Pinion 25,500 84,100 356,900
Gear 76,500 84,300 -

23 Pinion 26,500 87,400 363,900
Gear 79,500 87,600 -

3 Pinion 26,700 88,000 365,000
Gear 80,000 88,100 -

9 Pinion 33,300 109,900 407,900
Gear 99,990 110,100 -

1,2 Pinion 33,300 110,000 408,000
Gear 100,000 110,200 -

10,11 Pinion 34,500 113,800 415, 300
Gear 103,500 114,100 -

12,13,14 Pinion 37,000 122,100 430, 000
Gear 111,000 122,300 -

15 Pinion 38,500 127,000 438,500
Gear 115,500 127,300 -

16 Pinion 40,000 132,000 447,000
Gear 120,000 132,200 -

19 Pinion 43,000 141,900 463,500
Gear 129,000 142,200 -

17,18, 20,22 Pinion 45,000 148,500 474,000
Gear 135,000 148, 800 -

21 Pinion 50,000 165,000 499,700
Gear 150,000 165,300 -

*Calculated stresses in above table are based on present AGMA

formulas,
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TABLE X, HEAT-TREATMENT BATCH GROUPING

Carburizing Quenching Serial
Group Group Number
. 108 - 110
A 126, 127
130 - 132, 134 - 136
' I
: 103 - 107
; B 161,169
Gears 170,171,178
E 119 - 132
A 137, 139
141, 144-147
11
112, 114, 115,117, 118
B 165
172,173,179, 180
1,3,4,6 -10, 12
111 A 14,15,17 - 22
61,62
69 - 73
Pinions
'Y
26,27, - 32, -
v B 7, 30 - 32, 34 - 37,

39. 41. 44 - 47
65
78 - 80
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TABLE XI. INSPECTION RECOR
Pitch Eccentricit
Variation (Runout) Y Fillet Radiu
Load Part Serial Convex Concave Convex Concave|lConvex Con
Level Number Number Side Side Side Side Side Si
1 139887-P 8 , 00015 . 00013 . 0006 . 0006 . 050 .
12 . 00011 . 00011 . 0006 . 0006 . 050 .
3 , 00038 . 00010 . 0005 . 0008 . 045 .
21 . 00015 . 00005 . 0005 , 0009 . 040 .
34 . 00019 . 00009 . 0007 . 0009 . 050 .
26 . 00015 . 00010 . 0005 . 0004 . 045 .0
37 . 00010 . 00013 . 0010 . 0006 . 040 , 3
41 . 00015 . 00008 . 0006 . 0006 . 045 .
139898-P 72 . 00012 . 00018 . 0005 . 0005 . 040 R d
78 . 00010 . 00014 . 0005 , 0006 . 045 .0
79 . 00012 . 00015 .0005 . 0006 . 045 .0
71 . 00017 . 00011 . 0005 . 0006 . 040 .0
11 139887-P 6 . 00011 . 00012 . 0003 . 0006 . 050 . 0
9 . 00019 . 00010 . 0005 . 0007 . 040 .0
35 . 00008 . 00014 . 0006 . 0008 . 050 . 0
17 . 00013 . 00007 . 0010 . 0007 . 045 |
20 . 00018 .00009 . 0006 . 0006 . 040 . 0
27 . 00006 . 00009 . 000€ . 0007 . 045 . 0‘
46 . 00025 . 00008 . 0003 . 0004 . 050 .0
45 , 00013 . 00014 . 0004 , 0006 . 050 ;g
139898.P 69 , 00015 , 00017 ., 0004 .0005 . 040 :
70 . 00012 . 00005 . 0006 . 0005 . 040 .
73 . 00011 . 00016 . 0007 .0006 . 040 .0
80 . 00010 .00016 | .0005 . 0004 . 040 .0
105
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 INSPECTION RECORD OF PINIONS

e e i

ity ) . ottom Girind Stoc oot ckness rind Stoc
Fillet Radius by Blank Checker at Midface onEach Side of
Depth Check After  After Tooth
Total Grind Grind
Concave| Convex Concave | Before After |Grind | Before| Convex Concaver Convex Concave
Side Side Side Grind Grind | Stock Grind Side Side Side Side
, 0006 . 050 , 040 +, 001 -.003].004 . 373 |.368 . 362 ,005 .006
. 0006 . 050 . 040 +.002 -.003].005 .369 |.365 . 361 .004 .004
, 0008 . 045 . 040 +.002 .000}.002 .376 |.364 . 360 . 012 . 004
. 0009 . 040 . 040 +.004 «.003}.007 . 374 |.365 . 362 . 009 ,003
. 0009 .050 . 040 4,003 +.002}.001 .372 |.365 . 363 .007 ,002
, 0004 . 045 . 035 4,002 +.001].00l] .3/3 |.364 . 362 .009 .002
. 0006 . 040 . 040 +.005 .0001}.005 . 372 |.367 . 363 .005 ,004
. 0006 . 045 ,040 | +.003  .000].003 | .372 |.365  .363 |} .007 .002
. 0005 . 040 . 040 +, 004 .000].004 .379 |.368 . 361 , 011 . 007
. 0006 . 045 , 045 +,003 .0001].003 . 379 |.370 . 360 . 009 .010
g 0006 . 045 . 040 +,003 -, 001 |.004 . 380 |.367 . 362 . 013 . 005
., 0006 . 040 . 040 +, 005 +.001 | .004 . 378 |.369 . 358 .009 .01l
. 0006 . 050 . 040 .. 000 -, 003].003 .372 |.366 . 363 .006 ,003
t. 0007 . 040 . 040 +.002 .000].002 . 372 |.368 . 362 .004 006
. 0008 . 050 . 030 +, 001 .000] .00l 372 | . 366 . 364 .006 .002
. 0007 . 045 . 040 +. 001 .000].001 . 373 .367 . 363 .006 .004
. 0006 . 040 . 040 +. 001 -.001].002 . 373 |.366 . 362 .007 .004
. 0007 . 045 . 040 +,003 .000].003 . 373 |.363 . 360 . 010 .003
-, 0004 .050 . 040 +, 001 +.001].000 . 373 | .366 . 366 .007 .000
. 0006 . 050 . 040 +,002 .0001}],002 . 375 |, 366 . 364 .009 ,002
, 0005 . 040 . 040 +. 004 000 .004 | .3'8 |.367 .3 Lol1  .007
. 0005 . 040 ,045° +, 004 .000] .004 . 379 |.369 . 360 ., 010 . 009
. 0006 . 040 . 040 +, 006 -.001].007 . 379 1.369 . 360 . 010 . 009
. 0004 . 040 . 040 +.005 -.001].006 . 379 |.367 . 360 . 012 . 007
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TABLE XI - Continued

Pitch
Variation

Eccentricity
(Runout)

Fillet Radiu

Load Part Serial Convex Concave Convex Concave| Convex Conc
Level Number Number Side Side Side Side Side Si
111 139887-P 7 . 00011 . 00012 . 0005 . 0008 . 040 .0
31 . 00005 . 00009 . 0004 . 0007 . 040 .0

18 . 00012 , 00007 . 0008 . 0008 , 045 .0

22 . 00031 . 00012 . 0005 .000% . 045 . 04

36 . 00010 . 00008 . 0005 . 0008 . 040 .0

32 . 00006 . 00012 0005 . 0010 . 050 .0

39 . 00012 . 00009 . 0005 . 0008 , 050 .0

47 . 00017 . 00010 . 0005 . 0008 . 050 .0

v 139887-P 1 . 00011 , 00010 . 0004 , 0006 , 050 .0
19 . 00008 . 00015 . 0006 . 0007 , 050 .0

4 . 00025 . 00010 . 0006 . 0010 . 050 .0

10 . 00038 . 00007 . 0006 . 0007 . 040 .0

14 , 00010 . 00010 . 0007 . 0010 . 045 .0

15 . 00016 . 00008 . 0004 . 0C0é . 045 .0

30 . 00024 . 00014 . 0007 . 0010 . 040 .0

44 . 00015 . 00009 . 0005 ., 0004 . 045 .0

Pulser 139887-PP 61 , o001 . 00012 . 0006 . 0007 . 050 .0

62 . 00013 . 00006 .0005 . 0004 .050 .0

65 . 00012 . 00005 , 0006 . 0005 . 050 .0

All measurements in inches,
Part Numbers 139887-P and 139887-PP (12" DC)
Part Number 139898-P (7. 5" DC)
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'ABLE XI - Continued
ity Bottom Grind Stock Tooth Thickness Grind Stock
) Fillet Radius by Blank Checker at Midface onEach 8ide of
Tooth
After After
Depth Check Total Grind Grind
oncave| Convex Concave | Before After | Grind | BeforejConvex Concavel Convex Ooncav%
Side Side Side Grind Grind | Stock Grind | Side Side Side Side
0008 . 040 . 040 +,002 +,001 | .001 . 374 . 368 . 363 . 006 . 005
0007 . 040 . 040 +.004 -, 001 },005 . 372 |. 365 . 364 .007 . 001
0008 . 045 . 040 +.004 -.004] .008 . 374 . 364 . 360 . 010 . 004
0008 . 045 . 040 +.003 +.001 ] .002 . 374 .368 . 365 . 006 . 003
0008 . 040 . 040 , 000 . 000] . 000 . 374 |, 368 . 363 . 006 . 005
0010 . 050 . 040 +,002 +,001] .00l . 370 . 362 362 . 008 . 000
0008 . 050 . 040 . 000 . 0001} .000 . 373 |.368 . 363 . 008 . 008
.0008 . 050 . 040 +,001 +,001].000 . 373 _.365 . 362 . 008 . 003
0006 . 050 . 035 +.001 -, 0031 .004 .37 . 367 . 363 . 004 . 004
,0007 . 050 ., 040 +,003 -, 002].005 .37 . 367 .362 . 006 . 005
, 0010 . 050 . 040 +,003 -, 001].004 . 375 |[.365 . 362 . 010 . 003
,0007 . 040 . 040 +,003 +,001].002 . 374 |.365 . 362 . 009 ., 003
, 0010 , 045 , 040 +, 001 -.005].006 .373 |.365 . 360 . 008 , 005
, 0006 . 045 . 040 +.003 +.002]) .001 375 |.368 . 364 . 007 . 004
, 0010 . 040 , 040 +.001 . 0001 .00} . 372 |.365 . 362 . 007 .003
0004 . 045 . 040 +.001 +.0011.000 . 373 |.364 . 362 . 009 .002
, 0007 . 050 . 040 +,003 -, 003] .006 . 369 |.365 .363 . 004 ., 002
0004 . 050 . 040 +, 004 -, 003] .007 370 |.366 . 363 , 004 , 003
, 0005 . 050 . 040 +,003 -.002] .005 . 369 |.366 . 363 . 003 , 001
= ———===
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TABLE XII, INSPECTION RECCR

Pitch i
Variation Fillet Radii
Load Part Serial Concave Convex Eccentricity Concave  C¢
Level Number Number Side Side (Runout) Side 9
I 139887-G 108 . 00018 . 00011 . 0006 . 080
112 . 00011 . 00011 . 0010 . 080 ]
103 . 00016 . 00011 .0005 . 080 .
121 . 00006 . 00018 . 0006 . 080 q
134 . 00011 . 00012 . 0007 . 085 1
126 . 00016 . 00014 , 0006 . 080 ‘
137 . 00015 . 00017 . 0005 . 080 y
141 . 00018 . 00016 , 0004 . 080 g
139898-G 172 . 00020 . 00020 . 00058 . 080 7
’ 178 . 00016 . 00020 . 0005 . 080 {
179 . 00020 . 00015 . 0003 . 080
171 . 00025 . 00018 . 0005 .075 d
II 139847-G 106 . 00012 . 00015 . 0005 . 080 {
109 . 00012 . 00005 . 0005 . 080 4
135 . 00017 . 00013 . 0006 . 080
117 . 00017 . 00005 . 0007 . 080
120 . 00013 . 00014 . 0007 . 085
127 . 00024 . 00016 . 0005 . 085
146 . 00018 . 00017 . 0006 . 080
145 . 00012 . 00013 . 0005 . 080
139898-G 169 . 00020 . 00021 . 0007 . 080
170 . 00011 . 00020 . 0007 . 080
173 . 00020 . 00023 . 0007 . 080
180 . 00021 . 00017 . 0006 . 075




[. INSPECTION RECORD OF GEARS

Botton Grind Stock

Tocth Thickness

| Fillet Radius by Blank Checker at Midface

Depth Check
: Total Grind Stock
tricity Concave Convex Before After | Grind | Before After Total for
jout) Side Side Grind Grind | Stock Grind Grind Both Sides
106 . 080 . 080 +.004 -.002] .006 , 205 .191 . 014
110 . 080 . 080 +., 005 +. 001 . 004 . 205 . 190 . 015
105 . 080 . 085 +.004 -.003}] .007 ., 206 . 192 . 014
106 » 080 . 080 +.005 .000} .005 . 205 . 192 . 013
07 , 085 , 085 +,003 -.003| .006 ., 203 . 190 . 013
106 . 080 . 080 +.,003 -.004] .007 , 203 . 189 . 014
105 . 080 . 080 +,004 -.001] .005 . 205 . 190 . 015
104 . 080 . 080 +.,004 -, 003} .007 , 20] . 188 . 013
105 . 080 , 080 +.008 +.001 ] .007 . 203 .189 . 014
105 . 080 . 080 +.010 +.001 ] .00¢9 . 204 191 . 013
103 . 080 . 080 +.,008 +.001 | .007 . 204 . 188 . 016
105 .075% . 075 +.008 +.005] .003 . 204 190 . 014
)05 . 080 . 080 +.005 -.003} .o008 . 202 . 188 . 014
105 . 080 , 085 +.004 -.003] .007 . 204 . 190 . 014
106 . 080 . 085 +.002 -.004]| .006 . 203 . 190 . 013
o7 . 080 . 080 +,005 .000] .005 . 205 . 190 . 015
J07 . 085 . 085 +.006 -,003} .009 . 205 . 189 . 016
05 . 085 . 085 +,003 -.001]| .004 . 206 . 190 . 016
106 . 080 . 080 +, 005 -.002] .007 . 205 . 190 . 01%
)05 . 080 . 085 +,007 -, 002] .009 . 205 . 188 . 017
jo7 . 080 —.080 | +.008  +,003| .005 . 205 191 . 014
)07 . 080 . 080 +, 010 +.0ul | .009 . 204 . 190 . 014
)07 . 080 .080 | +.008  +,002| .006 | .205 191 . 014
}06 . 075 . 080 +.008 +,001 | .007 . 205 191 . 014

B
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TABLE XII - Continue

Pitch
Variation Fillet Radi
Load Part Serial Concave Caonvex Eccentricity Concave C
Level Number Number Side Side {Runout) Side

111 139887-G 107 . 00012 . 00010 . 0006 . 085 .
131 . 00023 . 00013 ,0003 . 085 .

118 . 00018 . 00009 , 0005 . 085

122 . 00015 . 00012 . 0006 .080

136 . 00020 . 00016 . 0004 . 085

132 . 00021 .o0o01l . 0006 . 080
139 . 00012 . 00013 .0008 . 085 .

147 . 00012 . 00009 . 0006 . 080

104 . 00015 . 00012 . 0005 . 080

v 139887~ 105 . 00029 . oool . 0006 . 085
119 . 00013 . 00000 ., 0005 . 085 .
110 . 00010 . 00016 . 0005 . 085 .
114 . 00012 . 00011 . 0007 . 085 .

115 . 00017 . 00010 . 0005 . 080

130 . 00010 . 00007 . 0006 . 085

144 . 00020 . 00020 . 0006 . 080
Pulser 139887-G 161 . 00020 . 00020 . 0005 . 085 .

165 . 00014 . 00007 . 0005 .085

All measurements in inches.
Part Number 139887.G (12" DC)

Part Number 139898-G (7. 5" DC)

/C)
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TABLE XII - Continued

Bottom Grind Stock Tooth Thickness
Fillet Radius by Blank Checker at Midface
Depth Check
Total Grind Stock
ity Concave Convex Before After | Grind Before After Total for
} Side Side Grind Grind | Stock Grind Grind Both 8ides

. 085 . 080 +,004 -,002 ] .006 . 203 . 190 . 013
. 085 . 080 +,002 -.003}.005 . 203 .188 . 015
. 085 . 080 +,004 -,002 | .006 . 201 .190 . 011
. 080 . 080 +,003 .00l |.004 . 205 .192 .013
. 085 . 080 +, 001 -,003 ] .004 , 202 . 190 . 012
. 080 . 080 +.003 -,001 . 004 . 203 . 190 .013
. 085 . 085 +,006 -.003 | .009 . 205 . 188 . 017
. 080 . 080 +, 006 . 000 | . 006 . 205 .190 . 015
. 080 . 080 +,004 -,002 | .006 . 205 . 191 ~ .0l4
. 085 . 080 +.004 .000 | . 004 . 204 . 190 .014
. 085 . 080 +,005 -,003 | .008 . 202 . 190 .012
. 085 . 085 +.004 -,002 ] ,006 .204 . 191 .013
. 085 . 085 +,006 -,003 | . 009 . 204 . 187 .017
. 080 . 085 +,005 -,003 ] .008 . 203 . 191 . 012
. 085 . 085 +.003 .-,003 | .006 . 203 . 189 . 014
. 080 . 080 +. 006 .000 { ., 006 . 204 . 191 . 013
. 085 . 085 +.003 . 000 | ,003 . 203 . 190 . 013
. 085 . 080 +.005 . 000 | ,005 . 205 . 189 ., 016

rerae
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TABLE XIII. RAW MATERIAL EXAMINATION RE' ‘ODRDS

e ——— T |

Pinions_
Material Specification AMS-6265B (AISI 9310-CVM)
Suppliers Heat No, 23138
Material Size 90 Weldless Hammered Stem Forgings

Chemical Analysis

G Mn P s Si Cr Ni Mo
.09 .75 .010 0.006 .¢8 1,35 3,34 )

Hardness BHN 196-228

Grain Size 6 -8

Forging Lines O.K.

Hardenability 1/38 6/37

Jerkontoret (JK) rating
Inclusion Type A B C D
Inclusion Size Thin Thick Thin Thick Thin Thick Thin Thick

0 0 0 0 0 0 1 n

Inclusion Content Material conforms to AMS 2300

Magnaflux F-O, S$.0

Gears

Material Specification AMS-6265B (AISI 9310-CVM)

Suppliers Heat No, 23138
Material Size 90 12-5/8" OD x 8" ID x 1-7/8" thick
Chemical Analysis rings

C Mn P S Si Cr Ni Mo
.08 .66 .007 .006 .30 1.34 3.42 .13

Hardness BHN 196-217
Grain Size 6-8
Forging Lines O.K.
Hardenability 1/39 6/38%8 Quenched from 1500°F
Jerkontoret (JK) rating
Inclusion Type A B C D
Inclusion Size Thin Thick Thin Thick Thin Thick Thin Thick
0 0 0 o] 0 0 1 0

Inclusion Content Magnaflux F-0, $-0
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TABLE XIV. INSPECTION RECORDS FOR

| R, R. MCCRE FATICUE SPECIMENS# ;
i : :
P — ]
if Gage Section ?
: % Support ‘
’ i Bearing
: E Diameters*»* Deviation Surface ¢
{ Serial Right Left Middle From Finish St
; Number End End Diameter** 5" Radius®*  (rms) ) o
| 10 . 4796 . 4793 . 2060 +. 0010 1.5
f 12 . 4798 . 4793 . 2071 +.0010 1.5
14 . 4796 . 4795 . 2080 +.0015 2,.0-2.5
8 . 4797 . 4797 . 2085 +.0010 1,0-1.5
- , 1 . 4797 . 4790 . 2084 +.0010 1.0
| 5 . 4797 . 4796 . 2085 +. 0015 1,0-1.5
| 15 . 4790 . 4790 . 2084 +.0010 1,0-1.5
; : 13 . 4800 . 4795 . 2085 +.0010 1.5-2,0 |
! ; 2 . 4798 . 4795 . 2085 +.0010 1.0-1.5 ‘
. ! 4 .4795 . 4793 . 2085 +.0010 1.0 -
' : 3 .4790 . 4790 . 2076 +.0010 1. 0-1.5 |
[ | 11 .4800  .4795 . 2085 +.0015 L5
) 16 . 4790 . 4790 . 2090 +.0010 1,0-1.5 '
| ; 6 . 4810 . 4796 , 2085 +.0010 1.0-1.5
! : 9 . 4794 . 4793 . 2085 +.0010 1.0-1.5
: 1 7 . 4797 . 4792 , 2084 +.0010 1.0-1.5
i %
|
i
| ’
s .

*part Number FESP-1
**Dimensions in inches
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INSPECTION DATA
AGMA QUALITY NO. 13
RUNOUT TOLERANCE — . . 0007
PITCH TOLERANCE 0002

GROUND

SPIRAL BEVEL PINION

AIRCRAFT QUALITY
100% INSPECTION REQD

S * oy
NORMAL CHORDAL ADDENDUM IMEANL 26 D AME T RR & OND, B ST BEs
NORMAL CHORDAL TOOTH THICKNESSIMEAR) 356 -3¢ WiThiN 0805 T.ATAC i
L ASH AT TIGHTEST SURFACES X" AND"Y” MUST BE PAl
O P AT A e T ER WiTH EACHM OTHER WiTHIN 0002
MOUNTING DISTANCE 008 -008 SQUARE WITH DIAMETERS'A” anND
WHOLE OEPTH 42| - 424 WITHIN 0002
6.8685 M.D._(CUTTING)
6.5625 M.D._ (HOLD)
» o9
VIBRO PEEN SO 400 [REFR) Bl
PART NO Ro sss-397.o] [ 2eFn 2 »
_\ valng o n @ 531 DR 1250
@y Nplmo ) - _%zs.-u NTTAPR|,<
o|l= 5N ) ' 0° CENTER |
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Figure 50. Pinion Drawing for 7-1/2-Inch
Cutter Diameter Test Gear Set. 4
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N

RIRCRAF T QUALITY |
)% INSPECTION REQ'D

v‘#?f EaliSoraEn

NQ. Yo MUST BE PaRAL
"2r " w) HIN. 0002 AN
, DIAMETERS'A™ aND g

531 DR. 1.25 DP

BEVEL GEAR DATA

NUMBER OF TEETH 4

]
PITCH (DP) {REF) 4.080
PITCH DIAMETER (mconsncm.u 187
PITCH ANGLE 18°2¢
SHAFT ANGLE 9026

PRESSURE ANGLE_ (REF) 20

lb - SPIRAL ANGLE — _(REKE) ___ 35°

HAND OF SPIRAL L.H.
ORIVER OR DRIVENe———— . DR|VER

OIRECTION OF ROTATION c.w.
TOOTH FILLET CURVE 040 MIN. RAD
PART NO. OF MATE 139898-G

NUMSER OF TEETH IN MATE__ 5|
SUMMARY N0 (td0d |39 g9s
MATERIAL: AMS 6265 B

COPPER PLATE THDS. AS SHOWN

625-11 TAP 100 DP CASE 045- 083 EFFECTIVE ~ROOT

REMOVE I¥ 2 THDS. DRAW 330°F

CORE HARDNESS Re 34 - 38

2

[-J

~

- 60" CENTER 89 DIA. REHEAT 1550, °F
-]

~

CASE HARDNESS Re 60 MIN,
TEST PIECES REQD
FORGINGS TO TEST BRIN. 228 MAX.

STRESS RELIEVE AT 323°F AFTER
FINISH GRINDING TEETH

EXTERNAL SPLINE DATA
FILLET ROOT sms FIT
NO. OF TEETH
PITCH (REF) a/ls
PITCH OIAMETER___(THEQ) 3 2sp
PRESSURE ANGLE__(REF) 30°(Nv
MEASURING PIN, DIA. e 240
DIM, OVER 2 PINS. 2616-2.819
HOB NO HO 882-)

as NOTES ON MACHINING

ERA. LIMITS ON FINISH EIMENSIO E
10 INCH *UNLESS™ OTHERWIS

P: IF)

2. BREAK ALL SHARP CORNERS
3. ROUND ALL TOOTH EDGES

FOR 1319060)

. NO.4 ROUND ALL KEYWAY AND SPLINE ENDS

BLACK OXIDE COAT PER AMS 2483D

[FARY & TI5833 7]

S} MANUFACTURE AND INSPECT TO STD. BLANK
TOLERANCES FOR GLEASON BLANK CHECKER

MAGNAFLUX INSPECT
NITAL ETCH
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GROUND SPIRAL BEVEL PINION

AGMA QUALITY NO, EIRCRATT  GQUALTTY
nuuou19 TOLERANCE _'é’om 100% INSPECTION REQD
PITCH TOLERANCE 0002 " anp
NORMAL CHORDAL ADDENOUM WEANL_ ¢ 69 DIAMETERS A" AND"E ' MUST BE
NORMAL CHOROAL TOOTH THICKNESS.SMIANI3sg- 361 WITHIN 0002 T.ILR.
RMAL BACKLASH AT TIGHTEST RFACES x" AND Y " MUST PARA
. '3%;# o EER- AT SPECHIED it En ovven Ywitiy 8007 A
MOUNTING DISTANCE 006 - 008 SQUARE' WITH 'DIAMETERS'A™ aND “E
WHOLE DEPTH 463- 486 WITHIN 0002
& 6,8688 MD_ (CUTTING)
€562% M.D.  (HOLD)
L ] n
VIBRO PEEN so 409 mep® | Rlo
PART NO bt L R o
L% o ¢ 531 DR 1.25 DR
gw «.‘,;,ém;“ , = 623-11 TAP 100
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(=11 "2 [¢d
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Filgure 51,

Pinion Drawing for 12-Inch Cutter

Diameter Test Gear Set.
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E

1ON

P

L BEVEL GEAR DATA

ARCRAFT QUALITY NUMBER OF TEETH 1

bo-/. INSPECTION REQD PITCH (DP) (REF) 4.080

PITCH CIAMETER (THEORETICALL 4 167

D €' MUST _B PITCH ANGLE 18°26'

! '1» EEAC“ oTRER SHAFT ANGLE 90:%

LR PRESSURE ANGLE_ (BEF) _ 20°
of .&n wiviv. %% P““&'b"" SPIRAL ANOLE..._ (REE) _  35°

ru olmzrsns'n HAND OF SPIRAL L.H.
02 DRIVER OR DRIVEN ] . DRIVER
DIRECTION OF ROTATION.. c.W,

TOOTH FILLET CURVE ————_ 040 MIN. RAD.
PART NO. OF MATE . 139887-G
NUMBER OF TEETH IN MATE__ %)
SUMMARY NO.____(120¢) . )39 887
MATERIAL! AMS 6265 B
531 DR. .25 OP COPPER PLATE THDS. AS SHOWN
623-11 TAP 100 DP CASE 045 -08% EFFECTIVE-ROOT
60" CENTER .69 DIA. REMEAT usso F
REMOVE 14 2 THDS. DRAW 350°F
CORE HARDNESS Rc 34 -38
CASE HARDNESS Rc 60 MIN.
TEST PIECES REQ'D
Q3R FORGINGS TO TEST BRIN 228 MAX.

STRESS RELIEVE AT 325 F AFTER
o FINISH GRINDING TEET

1.785-1.795

R

[
]
1

T\

vs EXTERNAL SPLINE DATA
o & FILLET ROOT SIDE FIT
A NOOF TEETH e |
» PITCH (REM °/|s
“ PITCH DIAMETER__LTHEQ) 2 2.230
& PRESSURE ANGLE__(REF)__ 30°INV.
UL MEASURING PIN. DIA. —___ 240
OIM, OVER 2 PINS, 2616-2.6819
HOB NO, HB 582-)

NOTES ON MACHINING
. LIMITS ON FINISH glM!g¥0 $ Asv

sl N

2. BREAK ALL SHARP CORNERS
AMP. 3 ROUND ALL TOOTH EDGES
ENT. NO.4 ROUND ALL KEYWAY AND SPLINE ENDS

& Y

DIA.C"
TR. 1.931-1933

BLACK OXIDE COAT PER AMS 24850

[PART_NO._i39887-# ]

% MANUFACTURE AND INSPECT TO STD BLANK
TOLERANCES FOR GLEASON BLANK CHECKER

- MAGNAFLUX INSPECT
NITAL ETCH




GROUND SPIRAI RFVF

I PINION

Figure 52.

Pinion Drawing for 12-Inch Cutter

Diameter Pulser Gear Set.
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{ PULSER TEST)
AGMA QUALITY NO. 03 AIRCRAFT QUALITY
RUNOUT TOLERANCE 0007 100% INSPECTION REQ'D
BITCH TOLERANCE 0002 “
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ASH AT TIOHTEST SURFA s"x" N
:§umm£ EE}TA“T whEHES 11 TH l;‘l«:m or HER wil 5 o
NCE 006- 008 QUARE WITH OIAMETE s AN
WHOLE OfPTH 463- 488 WITHIN 0002
JO3 DR. 738 RM THRU
a‘.%ﬁué“..o %6
88 D. UTTIN L BE ON
. — 0 (GUITING) ¢ OF PINION WITHIN
vngaonpssou so_409 (ReR™ Ble
KD. .404- 4086, 2¢|¢w © o
- enNT S o 2 531 DR 125
IER Nnlmes ) = 625-11 TAP
|28 e m L 60" CENTER
i N OeleDy " @ REMOVE Iu
1r——‘ s [ Jodd ¢ laN Ll ~
Qm (N INg 9 ~ P
vian N
. ol-n 12R %S @ x
| el ) - @ = - O3 R
3 #»* & 34 wlx ‘ [
E' c ~|o@ 0398 30R -~ Y
2 MAX. “ . ""': R ikl ==
g T ~ S >
(] .d . "V < ] o
: s, ¢ ‘w iy ~ o a a /l“l“ anw
. d' < == .y - A
¢ = = s L Il
Y ‘.‘ by - inini
1 ¥ M
1Y} " :
80 Y S ____JE::::, vy
NO3 x 45° . <Z
- CHAMFER - ( : -
~2 L 06 R
31 /
81 RELIEF "2y
4\ 14 -
\sunucr‘x*
\ —yn S
SURFACE"Y o9 ]
o€ TR, 2.812-2.0822
v g 85 7] R Xq' -2819 68l L
~_F E.GE.')Q"RER Z.EIG = - PLAT
noQ- H.GR'Y"REF 2.803-2813
8es
. g.-.u_ag TR 3978 TR. 7.556
; noZu ¢ H.GR. 3,969 REF H.GR. 7.562 REF.
H 3.;‘03
; cS%8 - n.ssi REE
. smocx




VEL PiNION

BEVEL GEAR DATA

S AIRCRAFT QUALITY NUMBER OF TEETH 17
'03007 100% INSPECTION REQD PITCH {OP) (REE, 4.080
a—t+ 4 ., PITCH DIAMETER (THEORETICALL 4187
INEAN) ) 8T PITCH ANGLE 18°2¢
aness R 356 - 34, O TR A SHAFT ANGLE 20,
. X R, RED
BT SUNCACRE X" ANDL Yo MUST Be eanaLie. FRESSURE Anae 29,
i Ehc oTw R ILIL IR 0% A SPIRAL ANGLE ____IREPS). 35
p—— 006 -.008 SYARE MiTH. DIAMETERS‘A” aND ¢ HAND OF SPIRAL L.H.
p——— 463 - 488 WITHIN 0002 DRIVER OR DRIVEN ORIVER
703 DR..735 RM, THRU DIRECTION OF ROTATION c.w.
CROUND WOLE 15 BE ON
TING) TOOTH FILLET CURVE 040 MIN. RAD.
b‘_~"‘ § s P JVON wiThiN PART NO. OF MATE 139887-¢
‘ » : P : NUMBER OF TEETH IN MATE.. 8
409 (REF) §g o SUMMARY NO____ (2051 (39 a87
.40 4- 406, b ~ o MATERIAL: AMS 6265 B
velng o ” 2 531 DR 125 OP COPPER PLATE THDS, AS SHOWN
Nplme ) T 62311 TAP 100 0P CASE 045-088 EFFECTIVE- ROOT
wSlmoy " w SO'CENTER .69 DIA. REHEAT 1880°F
oelval, ~ @ REMOVE 1M 2 THDS, DRAW  1380°F
NOY Vo ~ ~ CORE HARDNESS Re 34 -38
vEle e « CASE HARDNESS Re 60 MIN.
goloZo & & TEST PIECES REQD
PIE o3r FORGINGS TO TEST BRIN. 228 MAX.
s Y Y STRESS RELIEVE AT 325°F AFTER
e P — e — FINISH GRINDING TEETH
= <
: ® ,'.','Fgg EXTERNAL SPLINE DATA
< < - 0|8 FILLET ROOT SIDE-FIT
3 a A ,T|ZR NC.OF TEETH _______ 1)
- - ] Pal¥a piTen —REF) %6
*f ST ” PITCH DIAMETER__(THEQ) 2 as0
3 °; Vag r::sssunu ANGLE__REE) _  130° 1Ny,
] . 2u MEASURING PIN, DIA. 240
) T Ty = DIM.OVER 2 PINS..___ 2416-2.619
o HOB NO. HB 552
-3
~ O6 R AR TNOTES ON MACHINING
L LIMITS ON FINISH DIMENSIONS ARE
B! RELIEF . 918, NCH UNLESS B
, ~surFace x* 2 BREAK ALL SHARP CORNERS
- STAMP: 3 ROUND ALL TOOTH EDGES
ACE*Y —— IDENT. NO.4 ROUND ALL KEYWAY AND SPLINE ENDS
8i2-2.822 BLACK OXIDE COAT PER AMS 2483 D
£F T8 68 P
d a1 D ' ’
EF 2.803-2813 AT
s _ ' TR 7.958
$ REF e H.GR. 7.562 REF ¥ MANUFACTURE AND INSPECT TO STD. BLANK
TOLERANCES FOR GLEASON BLANK CHECKER
- nes REF MAGNAFLUX INSPECT

k

NITAL ETCH
s

iZ. Pinion Drawing for 12-Inch Cutter
Diameter Pulser Gear Set,

d
]
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b
| y GROUND SPIRAL BEVEL GEAR
é E AIRCRAFT GUALITY
{ AGMA QUALITY NO. |3 .
i AUNOUT TOLERANCE 0009 100% INSPECTION REQD
2)TCH TOLERANCE 002
NORMAL CHORDAL ADDENDUM_IMEAR E?
NONMAL CHORDAL TOOTH THICKNESS! 486 -9
H AT 1GHTEST
S e
— . 006-.008
WHOLE DEPTH 421-424
»*
- 12.569-LREF — OUT DIA ]
: [
i - - o !
I i
—~ \ - :
£z  viero PEEN: -
=1 PART NO
£1Q {
§ =
dia *_ a
ila T
| olw Ul -——-L ©
@~ b= I ®
| ] hd olm <
TSk :
3 a 1
»w I .
| SURFACE * X
STAMP. “IDENT NO.
80. 7.970 -7 .97
S. GR. 7. 9850 - nass DIA"AY
r.-uss - SEE VIEW A ! H GR 8.0000- 6.000%
. —42.939 45° CHAMFER e 128 DA
VIEW A
l0.000 REF_BC DA
71
<
; v - = MANUFACTURE AND INSPECT TO STD BLANK
H 1 TOLERANCES FOR GLEASON BLANK CHECKER
. v 562 OR. .94 DP
" 25-18 Tap 81 DP
90° C'SINK .69 DIA.
- 10 HOLES EQ. SP
) LOC. WITHIN 008 OF TRUE POS,
i

Figure 53. Gear Drawing for 7-1/2-Inch
Cutter Diameter Test Gear Set.
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GROUND SPIRAL BEVEL GEAR

BEVEL GEAR DATA

1 AIRCRAFT QUALITY | NUMBER OF TEETH 6/ g
w0009 100% INSPECTION REQOD] PITCH (DP) REE) 4080 H
: ooo PITCH DIAMETER m-n iamcau 12,5
PITCH ANGLE 7" 34
@ 186 -.19) SHAFT ANGLE . . eo'.:sd
i PRESSURE ANGLE _{REEL 207
| SPIRAL ANGLE. . REB) 58
0086 -.008 HAND OF SPIRAL R.H.
Fm -824 DRIVER OR DRIVEN — DRIVEN
? DIRECTION OF ROTATION c.cw
TOOTH FILLET CURAVE 080 MIN. RAD,
PARY NO. OF MATE 139898

NUMBER OF TEETH IN MATE_. 7
SUMMARY NO ... AT Do) 39898

MATERIAL. AMS 62858

CASE: 0495-055 EFFECTIVE-ROOT
REMEAT 1880°F

DRAW 3S0°F

CORE HARDNESS Ra 34-38

CASE MARDNESS Re 80 MIN.

TEST RIECES REQD
coaawcs T0 TEST BRIN, 228 MAX.
TRESS RECIEVE AT 328°F AFTER
FINEH RNENG TEETH
SURFACE *X" MUST BE SQUARE
WITH DI WITH‘N 0%%! T..LR
} SuRFACE “x* MAGNAFLUX INSPECT
NT NO
r 80. 7.970-7 97!
s . 8. GR. 7.9850 - 7.9888 oarar AL ETCH
! SEE VIEW A H GR 8.0000- 8.0003 '
|
; 45° CHAMFER DIA.
i ‘L——‘——‘g e.128 NOTES ON MACHINING
LLIMITS ON FINISH DINENSIONS ARE
; 15,8 INSH eSS OTHERWISE
REE 8.C. OIA S$PECIF
» - 10,000 D 2. BREAK ALL SHARP CORNERS
! ¥ 3 ROUND ALL TCOTH EDGES
i © 4 ROUND AlL KEYWAY AND SPLINE ENDS
) MANUFACTURE AND INSPECT TO STD
« * TOLERANCES FOR GLEASON BLANK CHEGRER BLACK OXIDE COAT PER AMS 24850
3 562 DR. 94 Op -
[PART WO,
o 25-18 TAP 81 OP ART HO 139096

S0°C'SINK &9 DIA.
10 HOLES EQ. SR :
LOC. WITHIN 005 OF TRUE POS. ;

\

P. Gear Drawing for 7-1/2-Inch
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; GROUND SPIRAL BEVEL GEAR

INSPECTION DATA AR T —GIAD
AGMA QUALITY NO.___ 3 .
::"’ru&%o r%wécc___ ooos [100% INSPECTION REQD
L
NORMAL CHORDAL Aouuwum_.l_u 4
NORMAL CHORDAL TOOTH rmcxnzss.uhlm

w LSWWANGE T”Egﬂ!r. 006 -.000

WHOLE DEPTH 463-466

»>
12.578—{REFL OUT Dia

11 = - -
: _ -
; Zlz wviero Peen: T
= PART NG 12 R —
3 g
ala
s *m j
W 3 }
Qn [ 3 M
@~ -y
" §le °
3 g
I [ 3 0 .is
: SURFACE * X .
STAMP: TDENT. NO.
7.970- 79
S OR. 7 9850 - 79855
j r—mns - SEE ViEw A s H GR 8.0000- 6.0003
|
L ]
—{2.939 L 48 cHanrER 125 DO
VIEW A
10000 REE B.C DIA

M MANUFACTURE AND INSPECT TO STD BLANK
TOLERANCES FOR GLEASON BLANK CHECKER

562 DR. .94 DP
28-18 TAP 8 OP
90° C'SINK .89 DIA.
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¢ 4.045

Figure 54. Gear Drawing for 12-Inch Cutter
i : Diameter Test Gear Set.
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54, Gear Drawing for 12-Inch Cutter
Diameter Test Gear Set.
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DIACA*

BEVEL GEAR DATA
NUMBER OF TEETH

PITCH (OP) {REF) oeo
PITCH DIAMETER (THEORETICAL) 12,30

MTCH ANGLE 71's

SHAFT ANOLE o:,'s
PRESIURE Anm.c__.!__d.__.zo

SPIRAL ANGLE

HAND OF SPMRAL n u

DRIVER OR ORIVEN ORIVEN
DIRECTION OF ROTATION cecw
TOOTH FILLET CURVE —._______ D80 MIN, KAD.
PART NO. OF MATE . 1398873,

NUMBER OF TEETH IN MATE.. 17

SUMMARY NO.

139.887

MATERIAL. AMS 682638

CASE: .045-055

EFFECTIVE~-ROOT

REHEAT 1850°F

DRAW 3s0°r
CORE HARDNESS
CASE HARONESS

Re 34-38
Re 60 MIN,

TEST PIECES REQD

FORGINGS TO TE

TRESS RELIEVE
INISN  GRINDING

SURFACE “x°

ST BRIN. 228 MAX,

AT 325°F AFTER
TEETH

BE QUARE

WITH DIA.* *ﬁITHIN 0002 TIR.

MAGNAFLUX INSPECT

NITAL ETCH

NOTES ON

MACHINING

L LIMITS ON FDNI H_DIME

LT SN PR NEON, N

2. BREAK ALL SHARF CORNERS

3. ROUND ALL TOOTH EOGES

4 ROUND ALL KEYWAY AND SPLINE ENDS

BLACK OXIDE COAT PER AMS 24830




sHERY _L _oF_2 _ OPERATION SHEET ‘
A METHODS MUST INITIAL ALL EXCEPTIONS
PART NAME GEAR, GROUND SPIRAL BEVEL CUSTOMER FORT EUSTIS-DAAJ02-68C., "o
NETHODS TINE BTUDY !MNON PART SIMILAR PART ASS PART
3.27-68 N.G. NO
$ pest. | MACK | opga. NAME OF OPERATION TOOL NO. | NAME OF TOOL |¢

AMS 64658 PURCHASEDR FORGINGS U S

89 | 1z 005T MEASURE FORGING
ROUGI!I ANGLES AND FRONT

89 [ 12B | 010 ROUGH & FINISH TURN BORE AND BACK

89 [ 3 015 | TURN SPOTS ON Q, D, & FRONT F2450BDF SPLIT RING |
F122522 BUSHING
52 | 34P| 020] DRILL, TAP & CO'SINK HOLES TAPE T
11518 TAP
532 023] GREEN BOTTOM TP HOLES T

17 025] SPOT FRONT & GRIND BACK TQO CLEAN

89 | 21 030] SOFT GRIND BORE

89 3 0351 DEPT, 89 TO INSPECT FIRST PIECE -
q

ZE OPER, 040
3 TURN BACK ANGLE, FACE ANGLE | Fisc5ZAH BUSHING
AND RADIUS O, D, Fi2252 ARBOR

F 89 0401 INSPECT DIMENSIONS TURNED IN OPER.

035 ON FIRST PIECE BEFORE QIHERS
ARE TURNED

B9 3 1 045 .89 TO INSPECT FIRST PIECE - ]
SEE OPER, 050

NISH TURN FRONT ANGLE, FRONT AND
RADIUS,

53 855] INSPECT DIMENSIONS TURNED IN OPER. ]
OrBERS | [ "7

043
ARE TURN®D,

[ AN IR )

Figure 55. Test Gear Routing Sheets.
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ORDER NO QUANTITY SHEET_ 2 OF OPERATION SHEET
METHODS MUST INITIAL ALL EXC
AT 110898G ' PART NAME GEAR, GROUND SPIRAL BEVEL CUSTOMER FORT EUSTIS -DAK
no. METHODS TIME STUDY MAJOR PART SIMILAR PART -
"::’ 3-27-68 N, G,
87D TINE TINg oEPT. | NACK. | oren. NAME OF OPERATION TOOL NO.
E OF TOOL |¢X [yrrysT im 5| _£8TiMare e
! 89 [ 3 035 | POLISH ALL SURFACES EXCEPT BORE
"AND BACK.
AN N U A I S 89 060 | _VIBRO PEEN PART NG,
f ) 065 | STAMP IDENTIFICATION NO..
' “SEE ORDER FOR NO'S,
) ;:_.,4_7_5__ 89 070 | INSPECT BLANKS 100%
T —— 89 | 924|075 | MAGNAFLUX INSPECT
89 | 635D 080 | ROUGH & SEMI-FINISH CUT TEETH | F24319AG |
M. R _HELDSEE MEMO BY W, COLEMA
89 085 | CHAMFER & BURR TEETH
B9 | 72A (090 | TEST & INSPECT - M. D, HELD T24319AG
——— B9 | 92A 1095 | MAGNAFLUX INSPECT
— 84 | 121 | 100 | HARDEN.DRAW-CLEAN 2750
. S — 2 ON ALL SUBSEQUENT OPERATIONS CARE :
ST_BE TAKEN IN THE GRINDING OF .
AMS,_AND SHOULDERS, ”
- . PIECES MUST NOT BE BURNED
’ 26 | 17 1105 | DEPT. 89 TO INSPECT FIRST PIECE - SEE
OPER. IO
SPOT FRONT & GRIND SURFAGE X TO
LENGTH
o i O 89 110 INSPECT SURFACEGRQUND INOPER, 108 | = |
1. ON FIRST PIECE BEFORE OTHERS ARE. '
GROUND, :
U W | 1
L AR BT T




- OROER NO. QUANTITY ‘
1ION SHEET sHEET 3 oF 3 OPERATION :
ITIAL ALL EXCEPTIONS METHODS MUST INITIAL®
PART
MER FORT EUSTIS -DAAJO02-68-C> |"yo"  139898G PART NAME GEAR, GROUND SPIRAL BEVEL CUSTOMER FG
SIMILAR PART ASD. PARY METHOOS TINE $TUDY MAJOR PART SIMILAR R
NO. 3.27-68 N.G.
$TD. TiME
TOOL NO. |NAME OF TOOL ¢ estarmasa—] cstmare oest. |MACK | opge NAME OF OPERATION
I 26 ] 21l |15 | DEPT. 89 1Q INSPECT FIRST PIECE-
C SEE OPER, 120 GRIND BORE
. 89 20| INSPECT BORE GROUND IN OPER. 115 ON.,
L FIRST PIECE BEFORE OTHERS ARE GROQ
B9 | A4B[125 | NITAL ETCH GROUND SURFACES . . _ .
{2 MIN, ONLY) N -
; .
- 1*‘“‘ T By T 925 T30 AGNAFLUXINSPECT — —  — ™
— B9 135 INSPECT RORE AND BACK e —d
X-PANDISK 4 ——
— §9 | 60C [140 | GRIND TEETH - M, D, HELD -
+ i
: 89 145 ROUND ALL SHARF EDGES B
X-PANDISK ARBO ~
- B9 1 7ZA[I50 | TEST & INSPECT - M. D, HELD .
— ~
DSy N 85 | A48 155 | NITAL ETCH TEETH ONLY, PROTECT |
. —— REST OF PIECE e e
CARE | ] .
OF . . 89 | 92A [160 | MAGNAFLUX INPSECT
- R A R %3 | CB5 162 | STRESS RELIEVE e
I R
CE - SEE | 39 165 | VIBRO PEEN AS SHOWN
TO 50 | B36 (170 BLACK OXIDE COAT PER AMS. 2485D
B SR
D B 89 DELIVER 170 TEST CENTER
108 i .
* i
T
-l _—.———1
PD 18T 10M




vy OROER NO. QUANTITY
T ewer_3_or_> OPERATION SHEET |
: METHODS MUST INITIAL ALL EXCEPTIONS
ART
: PART NAME GEAR, GROUND SPIRAL BEVEL CUSTOMER FORT EUSTIS-DAAJO2-682Q5 |'yo  139898G
METHODS TIME 9TUDY IHAJOR PART BIMILAR PART ASS. PART
3-27-68 N, G. v NO.

870. Timk M
esTATE orer | MASK | oren. NAME OF OPERATION TOOL NO. |NAME OF TOOL |¢x fo—arsrs s esTiare
_EsTvatt L

26 [ 2l 1115 DEPT. 89 TQ INSPECT FIRST PIECE- —
SEE OPER. 120 GRIND BORE F24000 N. ] PITCH_LINE CHU
89 120 | INSPECT BORE GROUND IN OPER, 115 ON ]
FIRST PIECE BEFORE OTHERS ARE GROUND _
:__-_ | 89 [ A4B| 125 NITAL ETCH GROUND SURFACES
T 2 MIN. ONLY) —
1 B9 1924 [130 | MACNAFLUX INSPECT - :
1
] ) 135 | INSPECT RORE AND BACK .. ____ :
T 89 | 60C [140 | GRIND TEETH = M. D. HELD F24000 N. E| BALL SLEEVE| ARIBOR _ :
i FZ4000 NE&- ]
I 59 1i5_ | ROUND ALL SHARP EDGES !
_ (B9 [ 72A [150 | TEST & INSPECT - M. D. HELD F24000 NF_| B4 ; -
l ‘ T

F24000 NE-! BALL SLEEVE

89 | A4y [155 NITAL ETCH TEETH ONLY, PROTECT
REST QF PIECE .

89 1924 1160 | MAGNAFLUX INPSECT

64 | C85 [162 STRESS RELIEVE

89 163 VIBRO PEEN AS SHOWN

90 Jo 1170 BLACK OXIDE COAT PER AMS 2485D

89 DELIVER TO TEST CENTER
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SHEET __!__ OF

4

OPERATION SHEET

METHODS MUST INITIAL ALL EXCEPTIONS

PART

PART NAME piNioN, GROUND SPIRAL BEVEL CUSTOMER rORT EUSTIS-DAAJ02-68-C=003N0

ORDER N

METHODS TIME 8TUDY MAJOR PART BIMILAR PART —P!l PART
3:27-68 N, G O :
oerr. | 4T | oren NAME OF OPERATION TOOL NO. | NAME OF TOOL | ex 15t

AMS 6265B PURCHASED FORGINGS = b . B

89 | 1IB| 005] MEASURE FORGING R - B

EACE END, RQUGH L e e

C, B, A AND SHOULDER X. ROUGH S oy

DIAM, F, BACK ANGLE AND FAVE ANGLE, — U é

CHECK, CHAMFER, DRILL, TAP & CENTER b

89 | 1IB| 010 | FACE FRONT TO LENGTH, ROUGH AND | F24615AC | F oL~ ;“
TURN DIAM, E AND SURFAC e . U DR

UGH FRONT ANGLE AND HUB D. I ) o

RILL, TAP & CENTER, LT g

Lk 0I5 | STAMP IDENTIFICATION NO,. “ 7 — R ]i}

SEE ORDER FOR NO'S, i

59 | 33L[ 020 LAP CENTERS ) o T {

89 | 16 | 025| DEPT, 89 TO INSPECT FIRST PIECE-SEE R 0

OPER, 030 3

SOFT GRIND DIAM, A AND GRIND 1. .1 §

SURFACE X TO LENGTH T i

|\|

L) D30 INSPECT DIMENSIONS GROUND IN OPER. QB5 - | . . i

ON FIRST PIECE BEFORE OTHERS ARE ;

GROUND. *__Q

89 | 3 035] DEPT, B9 TO INSPECT FIRST PIECE -SEE R 3

OPER._040 ;

FINISH TURN FACE ANGLE, BACK ANGLE, 4

DIAM, F ANDRADIUS, =~~~ =~ -

89 040] INSPECT DIMENSIONS TURNED IN OPER. R LT 4

035 ON FI E OTHERS IR ] Ed

AR PR PlEcE R ..m ORE 1 é

893 U50] DEPT. 89 TO INSPECT FIRST PIECE-SEE o

OPER, 035 FINISH TURN FRONT ANGLE | I i

AND HUB, D F246i5AC | "FORM TOQOL :

PO 110104 z

Figure 56. Test Pinion Routing Sheets,
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ORDER NO QUANTITY T )
SWEET_2 _OF _4 OPERATION _‘
'EPTIONS METHODS MUST INITIALS
PART q '. 3
AJ02-68-C~00pB0  139887P PART NAME PINION, GROUND SPIRAL BEVEL CUSTOMERF
) PAAT METHO TINE $TULY NAJOR PART siiLar K
A o  139898P 3oe1-68 NG |
NAME OF TOOL [c* et ope s eariare oerr | MAGK | oren. NAME OF OPERATION ;f' 3
j =T r — :
SE— S - K9 035 | INSBECT DIMENSIONS TURNED IV OPER B
: - 050 QN FIR
S B T ARE TORNED;
I R A ____ 89 [ 3 060 | POLISH ALLSURFACES EXCEPT THOSE §
R R S N TO BE GROUND, )
FORM TOOL || : R 065_]_ VIBRO PEEN PART NQ,
A U B S B89 570 | _INSPEGT BLANKS 100%
T — 16| 52A [ 075 | HOB SPLINES __
18, 080 INSPECT & BURR SPLINES
T 89 T 92A [085 | MAGNAFLUX INSPECT
T B9 | 63D 1090 VGH & SEMI-FINISH EETLH .
— BQTT, SIDE) '
- : SEE MEMO BY W, COLEMAN M, D, HELTEE
B9 | 63D 1095 | SEMI-FINISH CUT TEELH (TOP 8ID
e e . M. D, HELD e e e
- T 100 | CHAMFER & BURR TEETH |
S I I S B3| 73A 1105 | TEST & INSPECT o M, D, HELD )
B DR B9 9241110 | MAGNAFLUXINSPECT
_____________ i 90 | Ale |15 | COPPER PLATE AS SHOWN -'
- 1 T ] e[ J60 1120 | HARDEN - DRIW - CLFAN N
o - SEE MEMO BY W. EMAN v 8
T T o
T - 30 AW 125 | STRIP COFPEK
ORM T00L . |
1] PD t1g1.10u "
1
Z‘D_

WG A




-.‘ HEET ORDER NO. QUANTITY SHELT _-3—-‘ oF 4 _ oPERATlON
ALL EXCEPTIONS METHODS MUST INITIAL

§T EUSTIS=D -68-C. |PMAT . .
AATOZ-68567 w0 139887P PART NAME PINION, GROUND SHIRAL BEVEL CUSTOMERrOR
; ASS. PARY METHODS TIME STUDY MASOR PARY SIMILAR PA
No. 139898P 3-27-68 N, G,
BTD.TiME T 1
TOOL NO. | NAME OF TOOL |cx femrorrnie—  gitiare DEPT | NACK | opgn. NAME OF OPERATION
— ———— = .
j 26 ON ALL SUBSEQUENT OPERATIONS CARE
{ "MUST BE THE GRINDING OF
g ! DIAMS, AND SHOULDERS,
; L PIECES MUST NOT BE BURNED __ _ [
. [ J6 | 33L| 130 LAP CENTERS L
— 26 | 16 | 135| DEPT, 89 TO INSPECT FIRST PIECE - S3EE];
Pk OPER. 140 —
| | GRIND DIA, A AND DIA. E R
USE F LANGE 45 JAGE ! B9 130 | INSPECT DIAMS. GROUND IN OPER, 135 |
L ON FI ECE BEFORE OTHERS ARE |
' GROUND
| " 26 | 16U | 145 ] DEPT, B9 TO INSPECT FIRST PIECE - SEE
. ' OPER. 150 ;
F21246BJ | BUSHING I GRIND SURFACE X TO LENGTH AND GRIND
SURFACE Y TO LENGLH AND BLEND T
: RADIUS
| ! 89 150 | _INSPECT SUREACES GROUND IN OPER, 145 |:
' ON FIRST PIECE BEFORE OTHERS ARE |4
} . - GROUND
| ; 89 | A48] 155| NITAL ETCH GROUND SURFACES
BUSHING : (2 MIN, ONLY)
| CHUCK ;
18 | 27EL 160 DEPT, 89 TO INSPECT FIRST PIECE -SEE
OPER, 165
GRIND THDS. AT DIA, C
_ 39 165 | INSPECT THDS. GROUND IN OPER, 160
P I 8%%&%LEEQE_B_E_EQR_E_ OTHERS ARE 1
89 | 924 170 MAGNAFLUX INSPECT
O 1e1. 084
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S HE ET ORDER O QUANTITY
SMEET _4__ OF
ALL EXCEPTIONS METHODS
< —
ORT EUSTIS-DAAJO2-68-C2 | wo. _ 139887P PART NAME PINION, GROUND SPIRAL BEV]
Pant A8). PART T — AT b
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. B RUNOL) AN 3
- ; 1
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i g9 [ 7241195 I & INSPE
. SEE MEMO BY W
89 A48 200 A L
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89 1 92A 205 MAGNA
: 64 | CRS | 207 STIRE
—_t. A9 210 VIBE
i 90 [B36 [215 | BLACK OXIDE COA
- DA e ALL QVER EXCEPT TIE
N 1) ) L
—— | _JI_
-
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" PO 1IRLIBN
i
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0PERAT|0N SHE ET ORDER NO QUANTITY
METHODS MUST INITIAL ALL EXCEPTIONS
N, GROUND SPIRAL BEVEL CUSTOMERFORT EUSTIS-DAAJO2-68-C- | 130887p
sfuoY MAJOR PART SINILAR PART A8, ’::T 139898P
$T0. TINE TIME
NAME OF OPERATION TOOL NO. | NAME OF TOOL[ex [z tit-TlE | 1Mt
" INSPECT DIAMS. A& E FOR SIZE AND
£ L. PA . f——
RIN _ - _ T 1
GRIND TEETH(ROTTON SIDE) M. D, HELD | F1936]JH _ BALL SLEEVE ¢HUCK o
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D, HELD __| R e e e

D RE EDGES
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ETH ONLY, PROTECT
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PECT

| _STRESS REIIEVE
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| _BLAGK OXIDE COAT PER AMS 2485D
_ALL OVER EXCEPT THDS,

L _DELIVER TO TEST CENTER
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APPENDIX II

GEAR TESTING DATA

DYNAMIC TESTING MACHINE INSTRUMENTATION

.Digital Voltmeter - Hewlett Packard - Model 3439A
- Kutomatic Range Selector - Hewlett Packard - Model 3442A ’
" "Rotating Torque Sensor - Lebow Assoclates, Inc. ~ Model 1241-101
Temperature Recorder - Taylor Instrument Company - Model 91JF
Temperature Recorder - Minneapolis Honeywell - Model K153X .
Vibraswitch - Robertshaw Control Company - Model 66 §

.

Function and Purpose of Each Instrument 3

A digital voltmeter is used to monitor the torque in the system. Direct 3
numerical readout combined with automatic range-changing features

permits monitoring the signal of the torque sensors mounted between

the cornerboxes and the output shafts of the test gearboxes.

The torque sensors are of the in-line rotating type having a Wheats“one
bridge strain gage circuit., Each bridge is connected to slip ring- Ny {
silver graphite brushes on the shaft, which provide the incoming bridge '
current and the outgoing strain signal,

‘A universal multipoint recorder is used to monitor bearing temperatures
of the test box. Points are indicated and recorded by a turret wheel

g mechanism with records identified by various combinations of numbers

' and symbols,

An air-operated temperature recorder-controller is used to monitor an4d
: control the oil temperature in the test box. A preset alarm system shuts
3 off the main drive motor in the event that the test box lubricant tempera-
ST ture exceeds the set point.

source which is interrupted through approximately 120 degrees of »
rotation by a slotted disc. This is used to provide an electrical signal

to a two=digit electronic counter which iriggers a mechanical counter

after each 100 rotations of the gear shaft.

f The stress-cycle counter consists of a photoelectric cell and a light

- 136
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BEVEL GEAR PULSEP INSTRUMENTATION

Oscllloscope - Hewlett Packard - Model 140A
Digital Voltmeter - Ballantine - Maodel 355
Strain Indicator - The Budd Company - Mcdel P-350
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Deflection Test Gear Tooth Contacts on 12-Inch Cutter
Diameter Gear Design - Friction Load at Start of Test

on Gear Convex Tooth Surface,

Figure 61.

Figure 62. Deflection Test Gear Tooth Contacts on 1i-Inch Cutter
Diameter Gear Design - Friction Load at Start of Test

on Gear Concave Tooth Surface.
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Figure 63,

Figure 64.

Deflection Test Gear Tooth Contacts on 12-Inch Cutter
Diameter Gear Design - 35,800 Lb~In. Gear Torque on

Gear Convex Tooth Surface.

Deflection Test Gear Tooth Contacts on 12-Inch Cutter
Diameter Gear Design - 50,000 Lb-In. Gear Torque on

Gear Convex T ooth Surface.
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Figure 65, Deflection Test Gear Tooth Contacts on 12-Inch Cutter
Diameter Gear Design - 71,600 Lb-In, Gear Torgque on
Gear Convex Tooth Surface,

Figure 66. Deflection Test Gear Tooth Contacts on 12-Inch Cutter
Diameter Gear Design - 100, 000 Lb-In, Gear Torque on
Gear Convex Tooth Surface.
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Figure 67. Deflection Test Gear Tooth Contacts on 12-Inch Cutter
Diameter Gear Design - Friction Load at End of Test
on Gear Convex Tooth Surface.

Figure 68, Deflection Test Gear Tooth Contacts on 12-Inch Cutter
Diameter Gear Design - Friction Load at End of Test
on Gear Concave Tooth Surface.
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on Gear Convex Tooth Surface.
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‘Flgure 69. Deflection Test Gear Tooth Contacts on 7-1/2=Inch Cutter
Diameter Gear Design - Friction Load at Start of Test
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Figure 70. Deflection Test Gear Tooth Contacts on 7-1/2-Inch Cutter
f | Diameter Gear Design - 35, 800 Lb-In, Gear Torque on
: i Gear Convex Tooth Suriace. ‘

IR, A

Figure 71, Deflection Test Gear Tooth Contacts on 7-1/2-Inch Cutter
: Diameter Gear Design - 50,000 Lb-In. Gear Torgue on
. Gear Convex Tooth Surface.
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Figure 72,

Figure 73,

Deflection Test Gear Tooth Contacts on 7-1/2-Inch Cutter
Diameter Gear Design - 71, 600 Lb-In. Gear Torque on
Gear Convex Tooth Surface.

Deflection Test Gear Tooth Contacis on 7-1/2-Inch Cutter
Diameter Gear Design - 100,000 Lb-In, Gear Torque on
Gear Convex Tooth Surface.

149




F U L

Figure 74, Deflection Test Gear Tooth Contacts on 7-1/2-Inch Cutter
Diameter Gear Design - Friction Load at End of Test on
Gear Convex Tooth Surface.

Figure 75. Deflection Test Gear Tooth Contacts on 7-1/2-Inch Cutter
Diameter Gear Design - Friction Load at End of Test on
Gear Concave Tooth Surface.
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Figure 76, Side Elevation of Pinlon Mounted in Test Box Showing
Locations of Indicators for Measuring Displacements.
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(t) PLUS ORPLECTION 18 TOWARD AN INDICATOR
MINUB DEFLECTION I8 AWAY FROM AN INDICATOR.

(2) INDIVIDUAL INDICATOR READINGS GIVEN ARE MAXIMUM
YALUES AT 100% LOAD, AND ARE STATED IN
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5 008 7-1/2° CUTTER.
(3) DEFLECTIONS OF THE OEAR AND PINION CENTERLINES

ARE SHOWN AT A SCALE OF 100°s 000"
S0LID LINES SHOW DEFLECTION IN &* QUTTER |

(PINION SHAFT HORIZONTAL}

tion of Pinion Mounted in Test Box Showing
of Indicators for Measuring Displacements.

151

t




{

L

7
0172

1.6

«e 77. Front Elevation of Gear Mouhted in Test Box Showing
Locations of Indicators for Measuring Displacements.
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Figure 78, Plan View of Gear and Pinion Mounted in Test Box Showing
Locations of Indicators for Measuring Displacements.
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This appendix cunsists of a detailed description of the derivation of the
effgctive face width, F,. The concept of effective face width has been

in use for a number of years and was first introduced for use in bevel
gear strength formulas in 1952, Reference B, This concept, as intro-
duced at that time, improved the accuracy of bevel gear strength calcu-
lations considerably, and was based on a simplified theory that has since
been found to be somewhat inaccurate, The derivation of a new formula
for effective face width is outlined below and is based on a thorough straln
gage study of gear tooth models,

The purpose of the effective face width formula is 0 account for the
following:

1.

In the derivation of the formulas for Fg, the following assumptions are

madae:

1.

zl

The ratio of the maximum stress to the average stress can be congidered
as resulting from a reduction in the face width by an amount inversely
proportional to the increase in stress. This decreased face width is
called the effective face width and is defined as:

- e e b AT e R b e e e

APPENDIX III

EFFECTIVE FACE WIDTH

The fillet stress of a gear tooth is a maximum at a point in the
fillet below the instantaneous line of contact and is not uniformly
distributed over the tooth, as many calculation methods assume.
This becomes cbvious in the case of a very long tooth and a
relatively short line of contact,

The pinion member of a pair is often designed with a longer
tooth for increased strength, Calculation procedures assuming
concantrated point loads do not provide for this difference in
gear and pinion face widths ln determining the £final stresses,

Calculations are made in a mean section assuming the load at a
height hyy above the root of the tooth; see Figrre 79,

It is generally recognized that for a glven line of contact on a
crowned gear tooth, the load is not uniformly distributed along
the line of contact, In this derivation it is assumed that the
load distribution along the line of contact is elliptical, This
will result in non-uniform stress along the root of the tooth,
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P = APPIED LOAD
C = INSCRIBED PARABOLA
AB = ASSUMED WEAKEST SECTION IN ROOT OF TOOTH

hy = HEIGHT ALONG TOOTH CENTER LINE FROM THE ’ ;
WEAKEST SECTION TO THE POINT OF LOAD APPLICATION

Figure 79. Mean Section Through Tooth Showing Load Height, hyge |
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! Fo * F(8avg/Smax) (1)

T T

i where Fg = effective face width
F = actual face width

Bax * maximum stress along the root of the tooth
v produced by the assumed tooth loading

Savg = Wverage stress along the root of the tooth produced
‘ by 2 uniform load distribution along the total length
o - of the tooth at the assumed load height used for
8max *

DERIVATION

The derivation of the formulas for F g is based on general formulas for
8avg and smax. These stresses are in turn based on calculations that .
yield the stress distribution in the root of any specified gear tooth, Thus, L
the derivation amounts to finding for a given tooth the average stress R
caused by a uniform load across the tooth at height hy ('lVB) and that
caused by an elliptical load along a calculated line of contact (sy,y) also
by at height hy.

: In 1966, the contractor conducted an experimental investigation to ;
' determine the strain distribution in different curved gear tooth models,

' Reference 14, A certain portion of that work as applied to symmetric

l teeth is applicable in the derivation of the new effective face width

f formulas, A brief description of this prior work is included to give the

L reader a full understanding of how the different stress distributions are

I

1 determined, In this analysis, stress is assumed to be proportional to
: strain.
‘Ed

*The actual stress distribution along the root of the tooth resulting from
a uniform load distribution closely approximates a uniform stresas.
However, the departure from uniformity has been considered in arriving
at the final formulas,
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Strain Distributions in Curved Gear Tooth Models

Emor imental Data

Five equally spaced strain gages were mounted lengthwise along the
fillets on both sides of the testh on each of three aluminum gear tooth
models, Considerable attention was given to mounting these gages
at equal heights above the tooth root, The geometric configurations
of the tooth models chosen for this analysis are shown in Table XVIII,

4
TABLE XVIII. GEAR TOOTH CONFIGURATIONS
Pressure Nominal Cutter

Model Angle Diameter
Part Number (deg) (in.)
1 .20 8.00
2 15 8.00
3 25 8.00

Equal point loads were successively applied normal to the tooth

surface on both sides of ench tooth at 33 separate locations, The

loading matrix, shown in Figure 33, consisted of 3 rows of 11

equally spaced points. For each point load, the 5 tensile strains

were recorded. The strain data were refined to minimize any

experimental error. It was intended in this analysis to simulate

a contact line on the model tooth by a series of point loads along

that line. »

Data Analysis Program

A computer program was written for the purpose of analyzing the .
experimental data. The strain gage data for a specified (convex

or concave) side of a tooth, which were used as input to the program,
determine a set of five strain readings for any contact line on that

tooth by superposition of a specified number of uniformly spaced

point loads.
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Input items include:

1. Strain data in the form of a 33 x 5 matrix; i, e., 33 load
points and 5 strain gage readings for sach load point

2, Coordinates of the end points of the desired contact line

3. Type of load distribution along the contact line (uniforin,

elliptical, parabolic)

4, Number of uniformly spaced discrete point loads used to

simulate the line load

5. Coordinates of matrix loading points

6. Coordinates of strain gages

Although it is possible to use any number of point loads to simulate
a line load, it was found here that 1] points were sufficient to

represent any line within the degree of accuracy commensurate
with the experimental data, The location of these uniformly spaced
points is calculated automatically by t. 3 program, For the points
not part of the original loading matrix, a second-order interpolation

procedure was included to calculate the corresponding strains at
each of the gages.

Exponential Curve Fit

It was established for these models that the lengthwise stress
distzribution in the root of the teeth due to both uniform and ellip-

tical loads can be described by the following equation:
Y = A exp B(x+C)% M

where Y = the stress

A, B, and C = parameters describing the gear tooth
geometry, load line geometry, and
the load distribution

x = the lengthwise position along the tooth

Note: All models were of the same length,
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For each of the contact lines applied to these models, A, B, and
C can he calonlated by the corpouter program to yicld & specific
equation Y = Af exp (B; (x+Cy)“). Ay, By, and C{ were found in
practice by fitting a power equation through the logarithms of the
three highest of the five resulting strain readings. A computer
program with a curve-fitting routine was available for power
series but not for logarithmic expressions, It is of interest to ,
note that this equation can be modified to fit & gear tooth of any v { :_
length, provided A, B;, and C; can be calculated, by nondimen- 1
el ... sionalizsing the variable x by a scaling factor that is a function of 1
) the face width F'. The length of the test models was 2. 94 inches, *

2
Thus, Y = A exp B(x ——Lt __ +C 8
’ P B 2.94 cos ¥ ) ®
is obtained as the equation that describes the resulting stress

distribution on any tooth due to either a uniform or an elliptical
load distribution.

_ In practice, the parameters A;, Bj, and C; are found by the same
L procedure that was used to find them for the test models. The
mathematical steps involved are outlined below:

Upon taking logarithms of both sides of equation (8), the .
following equation is obtained: "

. Z :
3 InY=1InA +B(x..__£__+C 9 :
. L N S cos ¥ ) @ !
2 2 2
= (In A{+B;C{“)+ 2By ——E—_ x+B E B

j ———— X
2.94 cosn ¥ (2,94 cos ¥ )

or in general,
InY =W; + sz+W3'xz (10)

where the Wi's are constants for a particular set of A, Bi,
and Cy. Upon back substitution, A4, Bj, and Cj can be
solved in terms of the Wi's as follows:

A= exp (W) - Wp2/aw,) (11)

*The distance between the center of the strain gage on the far left and ' g
the center of the one on the far right was 2,72 inches.
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(2.94 cosy )2 3
By =W3 g2 (12) '

Ci = (W2F)/(2 W3 2.94 cos ¥) (13)

Thus,knowing the W;'s for a given line of contact for a given
model, Aj, B;, and C; can be determined.

v Calculation of Wy

As a first step, it is necessary to determine the values of Wi for selected
contact lines with uniform as well a» elliptical load distributions on the
gear tooth models. To differentiate between the values of W; for the two
load distributions, the following change is made:

1. For uniform loads, Wi will be referred to as Uj,
2, For elliptical loads, Wi will be referred to as Vy. e

Calculation of Ui (sgvg) for Uniform Loads Lot

Three lines of contact were chosen and analyzed on both the convex
and concave surfaces of each of the three models using the data o
analysis program to simulate the loading. The locations of the S
three lines of contact in the axial plane on each of the three models :
are shown in Figure 80. The data analysis program yielded for
each line of contact a set of five strain readings and a set of coef-
ficients U, Uy, and Uj of an exponential equation, which defines
a curve closely approximating the strain distribution along the
tooth root. The values obtained for U; for the 18 load lines are
glven in Table XIX,

Calculation of Vi (smax) for Elliptical Loads

Fifteen contact lines were chosen and analyzed on both the convex
and concave surfaces of each of the three models using the data
analysis program to simulate the loading, Figure 81. These

. contact lines varied in:

1. Length ( [1) in the tangent plane.

2. Angle of inclination (w) of contact line with respect to
pitch line in the tangent plane.
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Figure 81, Sketch Showing Location of 15 Contact Lines Used in
the Analysis for Effective Face Width,
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3. Load height on the tooth (hy) in the axial plane.
Their exact locations on the tooth are listed in Table XX,

For each line of contact, the data analysis program yielded a set
of five strain readings and also the three coefficients Vir V2, and

V3 of an exponential equation, which defines a curve closely
approximating the strain distribution along the tooth root.

- -An example of a strain distribution obtained in this way is given in
Figure 82 for line No., 2, on the concave surface of model No. 1 (20°
pressure angle). The values obtained for V, for the 90 load lines are

Regression Analysis

From the calculated values of U; (Table XIX) and V| (Table XXI),
e general formulas for these parameters can be derived through multiple
regression analysis.

Formulas for U;

Each set of U), U, and Uz values is used to describe s, .., the
strese distribution in the tooth root due to a uniform load distri-
bution across the entire tooth length. The geometrical variables
found to have a significant effect on U are:

1. hy = height along tooth centerline from the wenkest
section in the root of the tooth to the point of
load application.

2, ¢ =normal pressure angle,

3. re = cutter radius.

The height hy; is nondimensionalized by dividing by hy the total
tooth helght in the axial plane, and the cutter radius is nondimen-
sionalized by dividing by FF/2 cos ¥ . The latter results in the .

nondimensional variable 8 = F/2r, cos¥ . The values of two of
the geometrical variables for the nine selected lines of contact

are given in Table XXII. The value of 8 remained constant for
the nine lines, The values of the geometrical variables and the
corresponding values of Uj serve as input to a multiple regression
program. The final form of the equation of Uj is:
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|
TABLE XX, COORDINATES OF CONTACT LINEgZ |
IN THE AXIAL PLANE _ ;ﬁ

l Left Coordinate® Right Coordinate*
Line No. Xy, ¥y, XR Yp
1 1.000 0.350 1,500 0,3%0
v 2 0.800 0,350 1,700 0,350
3 0.600 0,350 1.900 0.350
¢ 4 0.800 0,250 1.700 0.250
¢ 5 0.800 0,450 1.700 0.450
6 1,014 0,433 1,486 0,267
7 1.014 0,333 1,486 0.167
8 0,826 0,500 1,674 0.200
9 0,826 0.400 1,674 0.100
| 10 1.050 0.500 1.450 0.200
11 1,050 0.400 1,450 0.100
12 1,150 0.500 1,350 0.200
13 1,150 0.400 1,380 0.100
14 0,30V 0.350 2,200 0,380
' 15 0.360 0.250 2,200 0.25%0

. *Coordinates are given in the direction facing the surface of the

tooth under study and with respect to the origin of the loading
matrix shown in Figure 81,
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TABLE XXII, GEOMETRIC VARIABLES FOR Uj

Load Height
From the Root

Model of the Tooth X = by e Xpaé
No. * (in,) bt~ (rad)
2 0.4 0. 429 0.262
0.5 0.566 0.262

0.6 0. 720 0.262

1 0.4 0. 403 0.349
0.5 0.563 0.349

0.6 0. 723 0.349

3 0.4 0.376 0.436
0.5 0. 550 0. 436

0.6 0.726 0.436

*For models 1, 2, and 3, ¢ equals 20°, 15*, and 25°, respectively.

**Each value of hy is determined from a normal view layout at the
mean section of the tooth,
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C. R\/.l}y_\ Y o

-Gz +(C32C "’\ht/ 851 Cafilv)
N 2 2
+{Cy + CgB) T) + (Cg+Ciph) (¢} (14)

where C) through C)g are determined from the regression coef-
ficients from the computer program.,

The upper sign is for the concave surface, and the lower sign ls
for the mating convex surface,

The final formulas for U; are:

Uy = (7.29 + 7,21 8) + (1.48 + 2,60 f) (Tl:-t’i)

2
- (20,9 4+ 50,28) ¢ - (0,273 + 2,36 48) (;l:-)

+ (28.0 + 78.38) $2 (15)

- by
Up= -(5.01+11,28) + (0,800 4,608) \&y

2
+(32.0 £ 77.88)¢ - (0.717 % 3, 98#)(;;-)

- (47.1 +1208) ¢z (16)

Ug=(1.85+4.198) « (0,321 +1,618) (Elt“-)
- (11.84+28,88)¢ + (0.28411.39,3)(§?-)2
+ (17,4 + 44, 48) ¢° an
The formulas for Uy, Uy, and U; are included in the computer

program, For straight bevels 8 =0, Uy, Uz, and Uz are the
same for both the gear and mating pinion surfaces,
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Formulas for Vi

Each set of V|, V,, and V3 values is used to describe the stress
distribution in the tooth root due to an elliptical load distribution
along the instantaneous line of contact. The following geometrical
variables found to have & significant effect on V;are:

1. hy = height along tooth centerline from the weakest .
section in the root of the tooth to the point of
load applic: - ion,

2, Fg = projected length of the line of contact in the ’
lengthwise direction of the tooth,

3. w = angle of inclination of the line of contact with respect
to the pitch line measured in the tangent plane,

4, ¢ = normal pressure angle.

5. r. = cutter radius,

The variables hy and Fg were made nondimensional by dividing
them by hy and FRp, respectively; h; is the total tooth height in the
axial plane, and FR is the root line face width, The values of these
variables are calculated for the 45 lines of contact (15 lines on each
of the three models), See Table XXIII. The value of §remained
constant for all lines of contact.

The final formulas for V| are:

h
V) = (5,27 £5.808) + (1.90 + 0,530 8 ) (—‘i)

ht
+ (4,07 +1.848) (.135.) -(0.117 +0.1798) w
- FR v
- (29.6 + 48.08) ¢ + (36.7 + 73.0 8) ¢ (18)

Vy = -(1.0017.485)-(l.slio.smp)(:{i)
~(7.28 + 2.608) (F-K-) +(0,17370.1558) w

+(49.7461.88) ¢ - (66.1493.58) ¢° (19)
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TABLE XXIII. GEOMETRIC VARIABLES FOR V;

Model Contact h,, ** X3=W Xe=9

No. * Line No. X)= st& xl’%% (rad) (rad)
2 1 0. 566 0.170 0.0 0. 262
2 0. 566 0.306 0.0 0,262
3 0.566 0.442 0.0 0,262
4 0. 429 0.306 0.0 0. 262
5 0.720 0.306 0.0 0.262
6 0.566 0.171 0.349 0.262
7 0.429 0.171 0.349 0,262
8 0.566 0.307 0.351 0,262
9 0.429 0.367 0.351 0.262
10 0.566 0.172 0. 660 0.262
11 0. 429 0.172 0. 660 0.262
12 0.566 0.126 0.999 0,262
13 0.429 0.126 0.999 0.262
14 0.566 0.647 0.0 0.262
15 0,429 0.647 0.0 0.262
1 1 0.563 0.170 0.0 0.349
2 0.563 0.306 0.0 0.349
3 0.563 0.442 0.0 0.349
4 0.403 0.306 0.0 0.349
5 0.723 0. 306 0.0 0.349
6 0.563 0.171 0.358 0.349
7 0.403 0.171 0.358 0.349
8 0.563 0.308 0.360 0.349
9 0.403 0.308 0.360 0.349
10 0.563 0.174 0.674 0.349
11 0.403 0.174 0.674 0.349
12 0.563 0.128 1.01 0.349
13 0.403 0,128 1.01 0.349
14 0.563 0.647 0.0 0.349
181
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TABLE XXIII - Continued

Model Contact h, ok XaW X, =®

No.*  Line No. 1°gi- xg’;% (3;:1) (r:d)
1 15 0. 403 0.647 0.0 0,349 ‘

3 1 0,550 0.170 0.0 0, 435
2 0,550 0.306 0.0 0.436 .

3 0. 550 0. 442 0.0 0.436

4 0.376 0.306 0.0 0.436

5 0. 726 0.306 0.0 0.436

6 0. 550 0.172 0.37 0.436

7 0,376 0.172 0.370 0.436

8 0. 550 0.310 0.372 0.436

9 0.376 0.310 0.372 0.436

10 0. 550 0.177 0.691 0.436

11 0.376 0.177 0. 691 0.436

12 0,550 0.131 1.03 0.436

13 0.376 0.131 1.03 0.436

14 0, 550 0.647 0.0 0.436

15 0.376 0.647 0.0 0. 436

*For models 1, 2, and 3, ¢ equals 20°, 15°, and 25°, respectively.

#*Each value of hyy is determined from a normal view layout at the ’
mean section of the tccth.
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+(2.69 +1,018) (;.E. - (0,0727 ¥ 0,06188) w

-(18.5423,88) ¢ + (24.8435,88) ¢2 (20)
The upper sign is for the concave surface, and the lower sign ie
for the mating convex surface, The formulas for Vi, V;, and
V3 are included in the computer program.

Final Formulas for Savg and sygy

As stated in an earlier section of this appendix, the stress distributions
in the root of the tooth for both the uniform and elliptical loads are
descric .by equation (8),

F +c)? 8
Y = Aexp B XW (8

and in general by equation (10),
lnY= W, + sz+W3xz (10)

both of which are repeated here for rsader convenience. Furthermore,
by definition, smax and savg are the maximum values of their respective
distributions and can be obtained by differentiating equation (8) with
respect to x. Differentiation y'elds A as the maximum value of Y,
Equation (11) shows the relationship between A and the parameters Wi
this equation is also repeated here,

A = exp(W; - W22/4W3) (11)

For syygs U replaces W; for s,,,,,, V replaces W,

The final expressions for Savg 8nd 8y, are:
savg = exp (U] - U22/4U3) (22)
Smax = exp (V] - V22/4V3) (23)

Both equations are valid for gears as well as for pinions. However, the
pinion and gear stresses will be different since the expressions for Uj
and Vi are different for concave and mating convex surfaces,
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Equations (22) and (23) were verified by comparing the calculated values
of siress to those oitained directiy trom the data analysis program, For
uniform loads applied to either concave or convex surfaces, the average
absolute error between the stresses is less than 1.0 percent. For
elliptical loads applied to concave surfaces, the average absolute error
between the maximum stresses is less than 3 percent, and on convex X
surfaces the average absolute error is 5 percent. This is well within

the measuring tolerances of the sxperiment, .

Fingl Formula for Effective Fiace Width
The final formula for effective face width is: ‘
Fe = F (savg / smax) (1)

In the previous section it was stated that the calculated stresses compared
{avorably with those obtained experimentally, This comparison also
indicates the accuracy of the effective face width formuls, since Fe is
related to savg and smayx by equation (1). The effect of the new formula
for effective face width is to raise the calculated stresses on both gear
and pinion to a level approaching the true stresses in the teeth.
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APPENDIX 1V
LOAD DISTRIBUTION FACTOR

This appendix consists of a detailed description of the derivation of
the load distribution factor, Km. When a gear and mating pinion are
loaded, the mounting deflections will create relative displacements of
the two members, which will cause the original tooth ctntact to spread
out and shift to a new position on the tooth surfaces. The purposs oi
the load distribution factor is to account for the increape in the siress

due to the lengthwise shift of the tooth contuct from the central length-
wise position.

The following derivation results in a formula for the load distribution
factor as a function of the concave and convex tooth surfaces, In this
program the contacting surface of one member (pinion or gear) is

concave, and the contacting surface of the mating member is convex,

Therefore, the load distribution factors on gear and mating pinion will
generally be unequal,

CONTACT CONDITIONS

The development of the tooth contact on a gear pair, particularly the
amount of mismatch (crowning) chosen and the lengthwise location of
the contact, has a marked effect on gear tooth strength. Therefore,

any set of formulas for calculating gear strength needs to make some
basic assumptions about these items.

It is particularly important to consider the shift in tooth contact along
the tooth due to mounting deflections as load is applied. It has recently
become possible to calculate accurately the rate of this shift as a
function of tooth design and the characteristics of the mountings., This
makes it possible for the first time to include the effect of lengthwise
tonth curvature (cutter diametar) in bevel gear strength formulas.

The basic assumption is that the tooth contact will be developed with the
lea st amount of mismatch that will permit the full range of load, from

zero to maximum, without the contact extending over the ends of the
teeth.

Figure 83 shows the position of the tooth contact under no load, It has

a length ll. and the center of pressure is a distance £ from the center
of the tooth,
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Figure 84 shows the position of the tooth contact under peak load, It
hag a lensth J2, aud the cenier of pressure is assumed to be at the
conter of the tooth; lz will generally be somewhat larger than ll
because of elastic deformation of the surfaces under load,

Actually, the center of pressure does not necessarily coincide with the
center of the tooth contact area. For this reason two coefficients have
been introduced to modify the results, The coefficient ky parmits a,
modification in the length of the tooth contact pattern under load, When
R3-squsls sero, the tooth contact pattarn under load will have the same
length as the pattern under no load ( £ = ll ). When k3 equals unity,
the tooth contact pattern under peak load T, will be equal to the tooth
length ( ,2 = F sec ¥) Under the test conditions used for this
program, a value of k3 equal to unity best fits the test data and is there-
fore used in the program,

The second coefficient, kg, is the ratio of the load at which the center
of contact pressure is located at the lengthwise center of the tooth to
the load at which the center of the contact pattern is located at the
lengthwise center of the tooth. As stated above, when the tooth con-
tact pattern is located at the center of the tooth, the center of contact
pressure does not necessarily lie in the center of the tooth, It is usual
practice to develop the tooth contact pattern to be centrally located on
the tooth under full load. However, there is svidence from previous
teats that the center of pressure will lie toward the inner (toe) end of
the tooth., From the present test data it has been determined that this
ratio should be approximately 1.25. This means that the peak load T,
is 25 percent higher than full load, The computer program has
incorporated this value of kg = 1,25,

With further experience these two coefficients may require modification,
but the values selected did fit the test data,

Derivation of Equations

Referring to Figures 83 and 84, the following simultaneous equations
can be derived:

£ = 1/2Fsecy - 1/2 (24)
f = kjrpy (25)
K = 250/ VB (26)
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Under Pegk Load,

187




- 2
v, = k2 by (27)
where { = shift of contact position under load
tl = length of contact under light load
F secy = tooth length
r_. = mismatch radlus of curvature
D = gear pitch diameter
ky; = calculable factor based on the adjustability
coefficients for the particular design, and
the mounting characteristics

Equation (24) is apparent from Figure 83,

Equation (25) follows from the definition of adjustadility and the factor
klo ’

Equations (26) and (27) are obtained fromn experierce relating the
observed length of contact under light load to the mismatch in the
gear set and the gear size.

Simultaneous solution of these equations yields the following equation
for 1}

1
L = o (\fl+8k1kzr secy -1) (28)

It can be demonstrated that for the limiting case of k) = 0 (no shift of
the contact under load), the value of Y} becomes F secy as would be
expected,

It is convenient to consider the length of contact projected to an axial
plane, and B' is the length in this section:

B' = [1 cosy (29)
The length of the contact under load (corresponding to the dimension

2 in Figure 84) may be expected to be larger than the value for
light load, Provision is made in the computer program for assuming




a factor k3 to allow for this effect as follows:

. |
B = [1 + ki -,Fq'- (—g—, - 1)] B (30)
[ o]

As mentioned above, a value of k3= 1 has been tentatively selected for
v the computer program,

Adj uut&biltty Coefficients

. e modified adjustability coefficients used in the program are as

P follows:
- ? cos ¥ [ siny 1 1 siny
0 App = cosy  [S08¢\Tx — -, Jtten? sinf\Z -, (31)
b 3
; _ sosT sin y 1 - 1l _siny ]
f! _ Apg z = c-_os¢ [cou ¢( reule —rc ) tan niné(‘ re (32)
, = . L goss 3
| AFE T A 8in 3 (33)
i
.
: AFa = - 2in 2 (34)

cos y sin 3

where AFP = rate of lengthwise contact shift due to unit dis-
placement in the pinion axial direction

Aprg = rate of lengthwise contact shift due to unit dis-
placement in the gear axial direction

App = rate of lengthwise contact shift due to unit dis-

. placement in the offset direction between the
two axes

Ap, = rate of lengthwise contact shift due to unit
¢ angular change in the shaft angle

Y = pinion pitch angle

r = gear pitch angle

é = normal pressure angle
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universal use,

78.

P

mean spiral angle
shait angie
mean cone distance

mean cutter radius

Mounting Deflections

The measured displacements obtained from a deflection test on a pair
of gears in thelr mountings must be converted to relative displacements
between the gear and mating pinion, The formulas given here apply to
the rigid test boxes used for this test program, Other test boxes may
be analyzed in a similar manner, but the formulas may require modifi-
cation to suit the individual case. These formulas are not included in
the computer program, since they are not sufficiently general for

In the following formulas for P, G, E, and a , the clrcled numbers
represent the indicator readings listed in Table XV in Appendix II.

The sign convention is shown in Figure 85, and Figures 76, 77, and 78
are the three views of the test box showing the indicator locations. The
lowercase letters are the distances illustrated in Figures 76, 77, and

pinion axial displacement, inches; plus (+) means
the pinion moves out of mesh.

gear axial displacement, inches; plus (+) means
the gear moves out of mesh,

offset displacement, inches; plus (+) means the
pinion axis moves down relative to the gear axis
when the pinion is to the right of the gear center
as an observer looks at the face of the gear,

shaft angle displacement, radians; plus (+) means
an incroase in the shait angle.
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INDICATOR LOCATIONS IN TEST BOY
Letter Designation Distance
a 2,96
c 3.9
. d 4,75
e 2,16
f 1,14
' g 3,38
h 10.97
m 2.90
° 4,18
P 2.69
q 1. 60
t 0.31
w 5.71
x 0.24

The unit vectors i, j, and k are shown in Figure 85. The displacements
P, G, E, and « for the four gear torque levels were calculated and are
listed in Tables XXIV and XXV, The results for gears produced with
both the 7-1/2-inch and 12-inch cutter diameters are included.

When no deflection test data are available to calculate P, G, E, and o ,
the following approximate formulas were used:

P = 40,00000033 Tg (35)
G = - 0,00000020 TG (36)
. E = .-0,00000033 Tg (37)
a = +0,00000006 T (38)

whore T = gear torque, lb-in,
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TABLE XXIV. E. P, G, AND » FOR THE i2-INCH CUTTER
- DIAMETER DESIGN
Standard Displacements ‘I
lGear Torque E P G @ j
(1b-in,) (in.) (in.) (in.) (rad)
38, 800 -0,0053 0.0031 0.0010 «0,-0004( ’ | :
50, 000 -0,0080 0,0041 0.0005 -0, 0004 ;
71,600 -0.0112 0.0056 0. 0001 -0. 00037 <
100, 000 -0.0135 0.0075 0. 0006 .o.ooosq

TABLE XXV, E, P, G, AND a« FOR THE 7-1/2-INCH CUTTER
DIAMETER DESIGN
Standard Displacements
Gear Torque E P G a
(1b-in.) (in.) (in,) (in.) (rad)
35,800 -0.0057 0. 0024 -0,0007 -0,00001
50,000 0.0072 0,0039 -0,0004 -0.000IEH
71,600 -0.0097 0.0049 -0.0008 -0.00011
LLIOO. 000 _ -0,0126 0.0070 0.0000 -0.00034!
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These formulas aiv bused on average values of P, G, E, and a , as
observed in past deflection tests performed at the contractor's facilities
on automotive rear axles, which are typical of most commercial gear-
boxes in this size range (7-inch to 9-inch gear dlametar), and which
are not as rigid as the test boxes used in this program., For other gear
designs it would be best to introduce known or assumed values based on
soma prior experience.

Eguation for Contact Shift

The equation for k; can now be written

kl = PAFP"' GAFG + EAFE + aAFa (39)

This is based on the adjustability coefficients (31) through (34) a.‘xd the
mounting displacements (35) through (38),

The contact shift from the lengthwise center of the tooth at any load level

is dependent upon the displacements at that load level. These are given
as follows:

Tg -k4 Tp

P o

Py (40)

Tg -k T
GG 4 *D

G,y TD

(41)

To ~ka T
E, E G- 4°D (42)
Tp

Tg~-k4 Tp
a) a —-—.ITB———— (43)

n

where Tg

gear torque, lb-in,

Tp = gear torque, lb-in,, which produces a central
tooth contact pattern - usually full load.

ky = ratio coefficient determined preaviously - assume
1,25,

A new equation for k;' can now be written.
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kl' = PIAFP + GIAFG + EIAFE + "IAFa (44)

which is proportional to the contact shift from a central bearing at any
specific load Tq.

The shift can be calculated by solving equations (24) through (27) for £
and using the coefficlent k;' in place of kj. The resulting equation
becomes

o F sec 1
{ = -—-2—1— - W [ﬁ+8k1'kzFlccw - l] (45)

The contact shift was checked experimentally on a testing machine under
light loads. The gears were displaced in many combinations on this
machine, and the contact shift was observed by eye, The correlation
proved to be excellent between the calculated shift and the observed
shift. A similar correlation under load is shown in Figures 86 and 87.

LOAD DISTRIBUTION FACTOR

The data analysis program, previously described in Appendix IIl, was
used to determine the stress distribution in the root of the tooth as the
center of an assumed elliptical load distribution shifts toward the end

of the tooth, In this anulysis it was assumed that the line of contact on
the tooth remained parallel to the pitch line at a constant height above
the root of the tooth and that the total load on the line of contact remained
constant, The procedure of shifting the line of contact to various length-
wise positions was repeated for both the concave and convex tooth sur-
faces on three teeth with pressure angles of 15, 20, and 25 degrees.

The ratio of the maximum root stress caused by a centrally located
contact pattern was found to be nearly identical for the three pressure
angles. The resulting factors for the three pressure angles were
therefore averaged, and one equation is presented. The general form

of this equation for load distribution is:

_ Sshift
Km = som (46)
where K = load distribution factor.

Sghift ° maximum stress along the root of the tooth when the
tooth contact pattern has shifted away from its central
position on the tooth,

196

Bem tma i vae a e B A i e e e




I e

oo’

-udisog Iewey] IIPND YIUI-Z1 ‘BWS
3oeu0) pPIINseIW PUE PIje[mI[e) UIIMa{ ucHe[d3II0D ‘98 axnf g

S3IHONI “133H QYVYMOL 14IHS

oSt 00t 0sc’ 00¢ osr’ oor [13°1¢) 0
R
| gaunsvana
a3ivinowo e P
N .

—< 000'02
T -1 o
\ 1 v
ﬁ&\ ~ S
o -4
- . O
v 1000°0% 2
P C
- m
- —
F :
00009 =

4
v
\7 :
/7
000°08
V4
il
7/
L
000°'00!1
» - *

197

[ e A e




-_lQOaOOO
7
/
80,000 e
o/
z
' /
% 60,000 -
m
= {
o
o
¥ 40,000 / {6/
!
:'; /E
A/
20,000
// © CALCULATED
—
‘A D MEASURED
z |1 1
0 080 100 A50 .200
SHIFT TOWARD HEEL, INCHES
Figure 87. Correlation Between Calculated and Measured Contact
Shift, 7-1/2-Inch Cutter Diameter Design.

198




e - A BT RN

tmax = maximum stress aleng the ioui of the tooth when the
tooth contact pressure is centrally located., This is

the same 8,,,, referred to in Appendix IlI on Effective
Face Width.

By nondimensionalizing the factors used in this equation, it is possible
to develop & general equation from the model tooth data, The tooth
length of the model used in this analysis was 2, 94 inches, and the
lengthwise radius of curvature (cutter radius) was 4 ifiches. Flgure 88
shows the relationship between the face width F and the tooth length for
spiral bevel gears, After plotting the nondimensional contact shift,

{/F sec y , versus the load distribution factor, Xy, (Figures 89 and 90),
a polynomial of the form y = A,x“"® was fitted to the curve. The result-
ing polynomial formula for the load distribution factor is:

Ky, = 1.00 + (14,6 +7.68 ) Xpg? - (66.3 4 17.78) Xpp? ]

6 Concave
+ 105 X 47)
FR Convex ¢
F : ’
where B = 2 v = nondimensionalized lengthwise radius .
Fe cos of curvature
fcosy
XpR = F = nondimensionalized tooth contact shift !

The upper sign applies to the concave tooth surface, and the lower sign ’
applies to the convex tooth surface.
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APPENDIX Vv
STRESS FORMULA DOCUMENTATION

This appendix consists of a complete description of the formulas used in
the program.

DESCRIPTION OF PROBLEM

Given the details of the tooth design and the cutter specifications, these
formulas lead to the calculation of the bending stress in the root fillet of

a bevel gear tooth,

Referring to the New Strength Formulas section in the main body of this
report, the two major unknown factors in equation (4) for bending stress
are the load distribution factor, Km, and the geometry factor, J. The
formulas for these two factors as well as the formulas for the bending
stress, st, are given for both the gear and the mating pinion, The other
factors in equation (4) are either known or assumed,

Also included is the formula for working stress.

METHOD OF SOLUTION

The basic formulas used here are based on those used in the AGMA bevel
gear strength standards, References 15 and 16, Modifications have been
made in the formulas for effective face width and load distrihution factor,
as described in detail elsewhere in this report, In addition, the size
factor has been removed from the equation for calculated bending stress,
and a modified formula for size factor has been incorporated in the
equation for working stress,
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tan y

Pma

Pmx

Gmn

Gmx

oP

l.’c.'»li‘

oG

l

ST

WVASR IS A TLAPILSIAIER L MRS A A

|
&£ WV INW I MIVURRN 4 A AWV
R e e e R e e Y

N

1

- sin &
m0+cos!

S *
2sin D

= F

G'F

P'F

= Fo Fp

= FpoorFyp

= Fpu an

F‘G or Fo

Fg or Fpo

- A, - OBF,,

= hy - 8,
= htP = 8p
= by = 8,

= by, ~ 0.5F, ten 3,

= b, ~ 0.5F,, tan 5;

gear tatio

y = pinion pitch angle

goir pitch angle

outer cone distance

whichever is smallest
whichsver is larger
whichever is smaller
whichever is larger
whichever is smaller

whichever is larger

mean cone distance

circular pitch

pinion addendum at outer end of tooth

pinion dedendum at outer end of tooth

gear dedendum at outer end of tooth

mean pinion dedendum

mean gear dedendum
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ap = 8,, - 05F  tsna«, mean pinfon addendum

a « 8, - 06F, tang, © mean gear addenduin
: (Rbtan g +Wo) A By when W, is | pinion mean circular
mp - _ - thickness assuming
’ cond Ao Boowgoond, iven { zero backlash
A B . S S T
-t ¢ B i when t_ ., is given , L L
* mp + X, _ Boosdoosy, mp b @VOR ] oo
A By
top = bppo =7 pinfon mean oircular thickness y
. ° A, 2cos ¢ cosy, R
t A t A -—B-m-——- ear mean circular thickness 3
mG A, P=tmr = 4, 008 ¢ CO8 Y, ¢

H, = 0,3264546 ~ 0.416695 ¢

5 ~ 0.8318182 — L.52087 & stress concentration constants (¢ ‘- in radians) N
Ly = 02681318 + 0.62087 ¢ S
A, L
P, -t P, mean diametral pitch AR
7 008 .
% o _T_.. mean normal ciroular pitch r
m
?, - Py Py - Py

cos ¢ (cos®y + tan? @) cos? ¢,

ky = 1.0
k, = L2

) T, = TgorkT, whichever is larger '
P = 0.000000 T,

v G = - 0.00000020 Ty when not given; otherwise use given values B
E = -0.00000088 T, S
a = 0,00000006 Ty ;'
P, = 0.00000033 (T, -k, Tp) R
5, = -0.00000020 (Tg ~k, Tp) when P, G, E, and « are not given B
E, = -0.00000038 (T ~k, Ty) .
3 = 0.00000006 (T, ~ k, Ty) ST
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- p. (T, - k, T )
Ty
- a. (Tc. -k, Tp)
D { when P, G, E, and a are given
. B (T, - k"l‘n)
5

(T, k,Tp)
= a

B )
- k_;"'?g"

%
oSy sng _ 1 . 1 _tny

oog¢[°o.¢<T ;:-)'O'tm}"n¢ T-——r;——
. _ Gos r sin 1 1 sin ¢
" cos ¢ cos ¢ A 5 ) taleig A
[+]
¢ ' modified adjustaoility
) flicients
- - l . -Jn— o“
A sin = 008 ¢
8in ¢
"Toon ¢ s X

= (P App + QA +E A, + arAp,) k,
= P APP"’GI'AFG"‘El'AFE*“l'AF-

250

]
,F
—
i
+
! o
=
| _ g
-]
g3
-]
t
[ Il

4|k1|k, cos
F
- 2 ——tih. . + 1
llooup
- Aal1 008
plane

- A° . B tany face contact ratio

A »
- n A

2005 y A,
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length of tooth contact at no load in tangent
plane (when k, <0.00061, 1,=F,)

length of tooth contact at gtven load in axial

pinion pitch radius in mean transverse section (1DP)




M

Npy *8p,

Rygy + 8¢,

R
Ronp, "('Rﬂp—

NP

Rong,
R‘caNGl 1_(R
oNG1

N1 2
—— = m cos? y,

Pq
2 2
mp + mF

Py p, cos ¢

N-~n

8n +8.4N

le

L g i

Py

gear pitch radius in mean transverse section
(1DP)

pinfon pitoh radius in mean normal ahation ( DP)

gear pitch radius in mem nwém #eotion (1DF)

puuon buo mdtul in man umn némn (1 EP)

' 'gw base ndiul ln mean norml uotion (1 DP)
pinion mean addendum 1 DP)
gear mean addendum (1 DP)
pinion mean dedendum (1 DP)
gex mean dedendum (1 DP)
pinion outside radius in mean zormal section

(1DP)

gear outside radjus in mean normal section
10P)

) - Ryp,8in ¢ arc M(‘Wm“h) in mean normal section (1 DP)

reces

) =Ry, 8in & arc of (‘”‘“"h) in mean normal section (1 DP)
recess

length of action in normal section (1DP)

transverse (profile) contact ratio

modified oontact ratio

normal base pitch (1 DP)

load position cotrection factor

normal contact ratio
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% siny, = siny cos ¢ ¢, = base spital angle
r,-] z.‘ - 2,000 lengih of auiion in transverse saction (1 DP)
w FoaPy minimum net face width (1 DP)
. .
= B P, length of tooth contact aren in axial plane (1 DP) f
, T
- ,
« Vi oty Bt g, '

o o '”91# -—g— wheh mb. <.lg} - .

=0 whenm, > £ s
- \’ ,’2 - 4,];
= Vnl-dfe
e . P
b, Z,_ %t . B, Z, nyp k tanyy, Concave 1‘ .
2oos ¢, n? n? Convex -
o 2 )
oy Py L& . Z,fc ; B, Z,n;q k tany,, Concave ;
: : 2 008 Yy 2 9 Convex ‘
F a
(mp)? = mp + k21\/[r,“,’-- 4k, py (kP +21;)]° I
n™ i :
R + fﬁn"p’-lﬂnp)‘ kypy = 2f“,)]s } .
kl-l ! !’
. . }
{ (36" = mg’+ Z: \lny? = 4k, Py (kg By + 26;6)0°
| kﬂ- 1 ﬁ ) ! :
| + Y \Inyg? ~ kg By (kyPy = 26,0 ° AU
3 W kll = 1
; myp (ﬂ&)
1 "JP v
= 1,0 when e = 0
. load sharing ratio ,

3

o (M6

mNG —
e

= 1,0 when 7y = 0 4
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= whenm, < 2

;8
" ; inertia factor

= 1,0 when m, >2

Ry, = BRyp, * Ryg,
1) 1
tan dyp = p + ERy, sin 6 - V(Rongy' = Rpng,')
L] bNP)
+ 3Ry, 8in ¢ - \[Ronn RhNPl )
ten ¢|’IG - R
- bNG1
)
" . BiZ mpkcosy, 3B 1t sy, Concave
P 2 Convex
¢ n
; .
; 5" . By Z gk cosy, 7B 1 f;c 8n Y, Concave
¢ 2 Convex
n
F . B2, nyp conyy
KP 2
n
KG 2
n
tp =t 008 ¢ pinion mean normal circular thickness
A o ¢, Bux
te -p, - tP—T ey TS goar mean normal circular thickness
o o
tp) = Pytp pinion wmean normal ciroular thickness (1 DP)
. to, = Pyt ' gear mean nocmal circylar thickness (1 DP)
frpy = Pylpp pinion cutter edge radius (1 DP)
’ frg; = Pafrg gear cutter edge radius (1 DP)
t
- Pl _ angle in radians which the normal force makes
éLp hr <2RNPl inv dyp + 1V ¢) with a line perpendicular to the tooth center-
line
to oy angle in radians which the normal force makes
$Le = %ne -(ggoo TV he iUV ¢) with a line perpendicular to the tooth center-
Ne1 line
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Rinp,
AR‘N cos &, 1. - Ryp, ’
R,
“’uc 'ﬁ =~Ryg1 ‘
t
%p, ._{.L + by, tan g+, (980 ¢ = tan )

e f’.“g-l”.’:."!';._g'; U -+ by oy (400-¢ ~-taD @)

Xop ~ %p,

“Byp = ¥,p 008 0p ~ X, 8in 6,
Zp = Yp 8infp + x,, 0086,
s
tn {, = LE
Zp
tp = Xgp ~ Ryp, (6, - #in 6,) 1, 0OB(, — 24p
hNP -
' k 'NP M‘P
P
NP
[}
kP L 210

k, must be equal to kp‘ to 8 decimal places. If it is not, for second trial make Xep equal to

1.1Xgp (first trial). For subsequent trials, interpolate.
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AR.NP +RNH(1- cos 0,,)+|-.“,l sin CP + Lp i

distance from pitch circle to point of load
application on tooth centerline

must always be positive

must always be positive

¢p must be greater than ¢




T

xGG (tirst trial) = o, + Y20

b

3G

tan (‘G

k; must be equal to k,; to 3 decimal places. It it is not,

b4
-0
Ryg,

= Xgo =15,
= Yyp 0086, =~Xq 804,
= Voo 8100 +2,. cos 0,

z
16
T3¢

must always be posigive.

must always be positive

¢ wust be greater than @

= Xg ~Rygy (6 ~sin6;) - Frg1008¢; ~ £,

- ARNG *R'ch(l - cosf;) + Ppgq D {G + &g

ty g O
NG CG
hN G

- 2‘0

(firse trial). For subsequent trials, interpolate.

t 2
Xyp - _EE.E_
NP
tyo?
Kyg = e
NG
FRPI - Pd' FRP
FRGI - Pd * Pac,
hlP] - Pd . h!P
thl - Pd . hiG
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for necond trial make Xec equal to 11Xy,

tooth atrength factors

Pinion root face width (1 DP)
Boar root face width (1 DP)

W = angle of inolination of 1ine of oontact
with pitoh 1ine in tangent plane

pinion outer whole depth (1 DP)

gear outer whole depth (1 DP)




f

1P

maxP

UIP

.IV'P

FeP

(8.27 £5.808) + (1.90 + 0.5808) (:"P) +(4.07 £ 1.848) (;ﬂ ) - (0,117 $0.1798) w
tP1} AP1

Concave

) 2
(29.8 + 4.808)¢ + (38,7  73.08) ¢ Convex

~(1.00 £ 7.488) — (1,61 £0.5708) (.P.H.E).. (7.28 £2.609) (.F.Q.) +(0.178 ¥0.1668) w
hp, Fars

Conocave

- 2
+(49.7 £61.88)6 - (66.1 1 98.58) ¢ Conver

(0.885 £ 2,875, + (0.508 £0.284) (rThM) +(2.60 £ 1,018) (,:52.>- (0.0727 70.08188) w

tP1 RP1
Concave

-(18.5 2 28, . 80 ¢?
(18.5 £ 28.88) ¢ + (24.8 £ 85.88) ¢ Convex

v, ’]
V.. - 2P
°[. 1P IT""

(7,80 £ 7.818) + (148 + 2.608) (T:‘_r_«z,

2
)- (20.9 £ 50.28) ¢ — (0.273 + 2.38) _._.h" E
tP1 h

tP1
Concave

1
+(28.0 £ 78.38)% Couvex

. . ]
~ (8.01 + 11,28) + (0.800 T 4.808) (hi&) +(82.0 £ 77.88) ¢ ~ (0.717 7 8.988) (é'ﬂ)
tPY tP1

Concave

- (47.1 + 120.0 :
47.1: B¢ Convex

2
(1.85 + 4.198) - (0.321 T 1.818) (1.:1"_'.’.> - (11.8 + 28.88) ¢ + (0.284 7 1.399) <ﬁ‘_".)

tP1 hip,
. Conocave
- +(17.4 £ 44.48) 032
[U", - Ua: ] Convex
e U,p
Fp Py Javer pinion effective face width (1.DP)
maxpP
h F,
5." 6'80 1.90 45 NG 0 o KG - . 7 .
( * 8) +( +0 805)(.5;_‘)4-(407:184@(?“_;;) (0.117 ¥ 0.1798) w
Concave
- 2906 “o seo aa 2,
(20.6 1 48.08) ¢ + (36,7 £ 73.08) ¢ Goavex
é12

[




N \ s o

Vig = =(10017.488) - (1.51 + o.svop)(i‘iu.) - (7.28 £ 2.608) (;LG. ) +(0.173 7 0.1858) w
tG1 RG1
Conoave
49.7 1 81, -~ (68, . 2
+(49.7 £ 61.88) ¢ ~ (68.1 + 98.58) &b Convex
h F
Vig = (0.865 1+ R.878) + (0.598 + o.zmp).(-rﬂ-ﬁ)+ (R.69 + 1.01,5)(*);-(0.0737:0.061&#}?_ )
e
- (18.5 £ 23.88) 6 + (B4.8 1 85,88 43 Oonoave
v Coavex
[Vlc - =25 ]
8maxg = © Wy
hN hNG ¢
Ug = (7.20£7.218) + (1.48 £ 2.608) h—ﬁ -(20.9 £ 50.28) ¢ - (0.278 3 2.369) (h——
tG1 tG1
Concave
H
+(28.0 £ 78.38) ¢ doavex
h
Uy = =(6.01£11.28) + (0.800 T 4.808) (‘Tﬁ) +(32.0 £ 77.88) ¢ - (0.717 & a.oa/s)(#.\l)h
tG1 tG1
Conoave
-~ (47.1 + 120, 8
(47.1 £ 120.08) ¢ Goave
hy By g
Uy = (1.85+4.198)-(0.3217 1,618) .h_ﬁ ) ~ (11.8 £ 28.88) ¢ + (0.284 T 1.398) —
tG1 tG1
iy £ (174 £ H48) B g:““
v -Yig vex
16 ‘USG
Savge ™ @
F,, = F, P, avc gone effective face width (1 DP)
¢ ¢ 'mnc
(¥p)?
Pep - +lepy pinion fillet radius at root oircle (1 DP)
Rypy + 0y = Ipp,
(¥44)*
e +tay gear fillet radius at root oircle (1 DP)
no1 + Bgy ~Frg)
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- H, +/&NP\J‘ . /_2_‘!_11\1" |

g h
\ P / \ NP/ stress concentration factors per Dolan and

o H +(it£2>"t . (eth)Lf Broghamer
f . o

pinion face width (1 DP)

gear face width (1 DP)

8Xyp tNp
Styp —Xyptangyp

8Xyg tho

Bty = Xygtangy ¢

2Xp
—
T

B,
LI

B il e ; pinion geometry factor for strength

gear geometry faotor for strength

,, v K, - ofd_ when P, is less than 16
Pd site factor

- 1.0 when P, is greater than 18
pinion strength factor
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Wumm

Q

Xpn

B

KmP

Km('.i

Bip

tG

- ._2_0_1:_..... gear strength faator
m ™ h
r

G‘U‘ﬂc

TH 1 Blk 'k, F tooth bearing shift from center (wheg
= gk:' co’:n¢ - le' kﬂ 1+—‘ 1‘ s -1 k;<0-m1. f= 0)

f i

i..m..! )
cos Y

F

mh
2t cosy

Conocave
1,00 + (148 3 7.68)8; 5% - (88.8 2 17.78) X ' + 108 X & Gonvex | 1oad distribution

factors
100 + (146 £ 788 %, 1 _ (8.8 2 1170 8p + 105558 Conven

]

- T Qe K"’:’“" pinicn bending stress
- Ty Qg -El!:i"-'ﬁ- gest bending siress
v
- Mﬁ- temperature factor
820
- K:‘.“nxs working stress
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APPENDIX VI

COMPUTER PROGRAM

This appendix consists of a complete description of the computer program
and includes the input and output data sheets together with instructions
for their use, the source program listing with operating instructions,

and a sample problem.,

Ths subject program is written in FORTRAN IV language for use on the
IBM 7090/7094 Computer. Computer running time is approximately one
minute per data set.

PROGRAM DESCRIPTION

The program was written to calculate the bending stresses in a pair of
bevel gears given the gear design details, the cutter specifications, the
adjustability characteristics, and the load.

Three lists of symbols are inciuded in the report:

1. A list of all input symbols showing the card numbers, column ;
numbers, letter symbols, FORTRAN symbols, and a descrip- :
| tion of each item, ‘

o 2. A list of all the symbols used in the program showing the letter : |
' symbols, FORTRAN gymbols, and a description of each item,

3. A list of all output symbols showing the letter symbols, .
FORTRAN symbols, and a description of each item. ,

INPUT INFORMATION

Ali but the items on card No, 0 ard the last three input items on card
No. 1 (DRIVE, ROT, and HAND) must be entered in the following
manner: R

1. Each value must have a decimal point. The decimal point
may be placed in any position necessary but must occupy a
column on the card,
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2. A negative number must be preceded by a minus (=) sign,
‘whersaz the

22 the plus {+) siyn may be omitted from & positive
number,

3. All input itams except T, K, K,, C2, Tgs» E, P, G, and
a may be found on a Glesason dimension sheet,

4., The computer program is written to permit multiple sets of
data to be run gonsecutively, Data card No, -0 precedes the

No. 1 data card for-the first set of dkta-oily, “ft ¥ not neces=

sary to duplicate card No, 0 for successive sets of data when

running multiple sets. It is necessary that a blank card follow
the last data card in the last set of data,

INPUT DATA

All data should be placed on 80-column IBM cards. A complete descrip~

tion of each item of input is given on pages 219 through 223, and sample
input sheets are included on pages 224 and 225,

PROGRAM LISTING

The complete program listing is given on pages 232 through 243, All
special subroutines are included in the listing.

OPERATING INSTRUCTIONS FOR PROGRAM

After all input data are placed properly on standard 80-column IBM
cards, the standard procedures for running a program on the IBM 7090
computer should be used,

There are only three subroutines used in this program that are not
standard on the IBM 7090, They are PICK, INTPlA, and ANGLE.
PICK is the subroutine used for picking a maximum or minimum value
from a given set of numbers, INTPIA is used for interpolation in the
Xg loop. ANGLE is used for finding all functions (angle, sin, coe,
and tan), given any one function. These subroutines are included as
nart of the program deck,

List of Stops

There are two program stops that have been introduced. If a stop
occurs, the stop number, along with the key values, is printed out,

e



Stop Number Description

i Gear pitch angle I' greater than or equal to 105°,
This may occur if shaft angle is too high, Reduce
the shaft angle,

2 Iteration failed in Xy loop. This situation will
arise if the input data are not reasonable,
Check the input cards for accuracy.

The output from the program is in the form of a printer listing. Each
line of output contains a brief deacription of the item, its FORTRAN
symbol, and its numerical value. The output list is divided into two
parts: INPUT and OUTPUT.

On page 244 will be found an explanation of the calculated output values,
The letter symbol, the FORTRAN symbol, and a description are given
for each item.

All angles given in the output are in degrees. Linear dimensions are in
inches. Stresses are given in pounds per square inch. The direction
of the bearing shift is dependent upon its algebraic sign: plus means
movement toward the outer end of the tooth (heel); minus means move-
ment toward the inner end of the tooth (toe).

L, SAMPLE PROBLEM

| The sample input and output data listed on pages 245 through 248 are
o for the 17/51 test gear ratio produced with a 12-inch cutter diameter,
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INPUT DATA INSTRUCTIONS

Card Letter FORTRAN
No, Columns Symbol Symbol Description
0 1.3 - T1111 These items are constants
used in the program., This
" 5.8 - Ti1l12 card mugt be the tlm card
_ .o ofthe data.  When ciply. 0. .
910 = TI113" “séts of data are being run,
this card has to be Included
. 13-15% - T1114 only at the very beginning,
and not with every set of
data.
1 1-10 n ZN(1) Number of teeth in pinion.
11-20 N ZN(2) Number of teeth in gear,
21-30 Py PDIA Diametral pitch.
31-40 ¢ PHA9 Normal oressure angle -
decimal degrees.
41-50 3 SIG9 Shaft angle - decimal
degrees.
51.54 - DRIVE Driving member. Enter PIN

for pinion, GEAR for gear,
or BOTH when either
member drives. Must
start in column 51,

61-63 - ROT Direction of rotation of
driving member (when
viewed from back). Enter
CW for clockwise, CCW
for counterclockwise, or
REYV when rotation {s in
either direction. Must
start in column 61,

TSt s B T .. S Trw—— "
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Card Letter FORTRAN
Noo Columns Swvinhal Suvmhnl Descriotion

1 71-72 - HAND Pinion hand of spiral, o
Enter LH for left hand or :
RH for right hand., Leave
blank for straight and

Zerol beavels.

S & T R FACE(l) Pinion pitch line face width.

11-20 Fo FACE(2) Gear pitch line face width,
21-30 v PSM9 Mean spiral angle, decimal

degreee, Use zero for
straight bevel or Zerol
gears.

31-40 tmpP TMP Mean pinion circular thick-
ness., Use for spiral bevels
only when Wg (fifth item on
this card) is not given,

R For straight bevels only:

B _ A ) Bm

tmp = yve (top - 5 cos?d

where

. t op = outer pinion thickness

Ay = outer cone distance

A=zApg-0.5Fg

toP and Ag are given on
Gleason straight bevel gear
dimension sheets. Fg is
second item on this card,
By is eighth item on this
card, ¢ is fourth item on
card No, 1,

41-50 Vg WFG Point width of spread blade
: gosr finishing cutter. Use
zero for straight bevels,
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Card
No,

Columns

2

51-60
61.70

71-80

1-10
11-20
21-30

31-40

41-50

51-60

61-70

71-80

11-20

Letter
Symbol

rp
TG

Bmx

hy
hp
hiq

o

°G

LG

Frp

FORTRAN
Symbol
REF(1)

REF(2)

BMAX

HK
HT(1)
HT(2)

ADD9(1)

ADD9(2)

DED9(1)

DED9(2)

ADO(2)

FACR(1)

FACR(2)

221

sllowsance,

Ducriggton

Pinion cutter tip edge radius,

Gear cutter tip edge radius.

Maximum normal backlash

Outer working depth,
Outer pinion whole depth.
Quter gear whole depth.

Pinion addendum angle,
decimal degrees.

Gear addendum angle,
decimal degrees.

Pinion dedendum angle,
decimal degrees.

Gear dedendum angle,
decimal degrees.

Gear outer addendum.

Pinion root face width;
usually equals Fp. This is
the face width measured
along the root line,

Gear root face width;
usually equals F. This is
the face width measured
along the root line.

e S O e




Letter FORTRAN :

Columna  Symbal _Srmbol Description i
21-30 Ko SKO Overload factor for strength.

This factor takes care of un-
known dynamic loads result- |
ing from shock overloads { ‘
caused by the driving motor :
or driven machine, Refar-

E o ences 15 and 16 provide v
ST TIAr I Lt ' additional informistion. o
31-40 Tp CTD Gear torque, in,-1lb (central . |

tooth bearing). This is the
torque for which the gear has
been designed, Frequently, !
it is the maximum terque. ‘
It is the torque that produces i
a tooth bearing centrally
located on tha tooth in the
lengthwise direction,
l
!

41-50 K, SKV Dynamic factor for sirength,
This factor is dependent upon
the accuracy of the gears and
the operating speed. Refer- ‘
ences 15 and 16 provide
additional information,

e 5160 Ta CTG Gear torque, in.-l1b, for | 1
o which stress data are

required, !

61-70 Te RCN Mean cutter radius, Enter -'

999999999 for straight bevels, 0 {

5 1-10 E AR(1) Offset change due to displace- .
ment measured at torque 4 ‘
level (Tp). If unknown, use
zero. t
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~- level (T - If unkews, e

Card Letter FORTRAN
No, Columns Symbol ‘Symbol

5 11-.20 P AR(2)
21-30 G AR(3)
31-40 a AR(4)
41-50 Sat SAT
51-60 Kr SKR
61-70 Tp STF

223

Description

Pinion axial change duse to
displacement measured at
torque level (Tp)., If unknown,
use gero,

Gear axial change due to dis-
placement measured &f torque

zoero.

Shaft angle change, radians,
due to displacement measured
at torque level (Tp). If un-
known, use zero.

Note: E, P, G, and a will be
approximated for torque level
(TD) in the program when
values of zero are used as
input.

Allowable stress for gear
material, psi

For carburized air-maelt
steel, use 80, 000,

For carburised vacuum-melt
steel, use 140, 000,

Factor of safety., Use 1 unless
extra safety is required,

Operating temperature,
degrees Fahrenheit, If
unknown, assume 160°F,




CARD COLUMNS 1 2 3 45 6 7 8 9 10
No, 0 i-10 RIE]|V G|E|lA|R|R|H
L ClW
CARD COLUMNS 1 2 3 4 5 6 7 8 9 10
NO. 1 1. 10 ZN(1)
l_11-20 ! ZN(2)
21-30 | PDlA
4150 | SIG9
51 - 60 DRIVE
_61-70_ | ROT
L21-80 1 HAND
CARD L 2.3 4 5 6 7 8 910
NoO. 2 1-10 ACE
11- 29 FACE(2)
PSM9
__TMP
WEG
. _REF(1)
REF(2
BMAX
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FTABLE XXVI. LIST OF SYMBOLS

PORTRAN
SYMBOL I;Ha;;: DRSCRIPTION
A2 A, -
ADDS(D %p, 6) Addendum angle
ADM (D) &p, 6) Mean addendum
) bop, ) | Outer addendum
ARG Apg Gear axial modified adjustability coefficient
M. | Ay | Pinton axtal mocitied justability oosMicient
AINCT w Angle of inclination of line of contast with pitch line
AM A Moean cone distance
A0 A, OQuter cone distance
AR(1) E Oftset displacement from no-load position to load CTD (T),)
AR(®) P Pinion axial displacement from no-load position to load
OTD (Ty)
AR(3) L] Gear axial displacement from no-load position to load CTD (Ty)
AR(4) a Shaft angle displacement from noJoad poaition to load
CTD (Tp)
AR1(1) B, Oftaet displacement from position corresponding to load which
produces A centrally looated tooth bearing
AR1(®) P, Pinion axial displacement from position cortesponding to load
which produces & centrally located tooth bearing
AR1(3) q, Gear axial displacement from position corresponding to load
which produces a centrally loocated tooth bearing
AR 1(4) a Shaft angle displacement from position correaponding to load
whioh produces a centrally looated tooth bearing
ARG(1) App Ses BFE
ARS(®) Acp 8ee AFP
ARG(8) Apg See AFG
ARG(4) Ay, 8ee BFALPH
ASK1 - Absolute value of 8K 1 (k)
AK 1P - Absolute value of SK 1P (k')
B B Length of tooth contact area urder given load
B1 \ Length of tooth coatact ares under given load (1 DP)
BETA B -
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TABLE XXVT - Continved

T | s omcnrton
BFALPH - Ape Shaft mgle adjustability coutiicient ,
BFE App Offast adjustability coeffioient . N &
BMAX B, Mazizmum normal basklsah sliowacos N
oR | o | raoterto den bt 00 vkl 04k
ok | Rip.oy | Pltou udml in mexn transverse Beotice aom
oD Ty Qear torque for oeatral tooth contact
cTa T, Qear torque
CTP Te Pinion torque
cx Xp, 0 =
DEDO(I) 25, o) Dedendum angiv
DEDM(I) bp, a; Mean dedendum
DEDO(T) bop, gy | Outer dedandum
DIAP(I) 4D Outer pitch diameter
DRIV - Driving member
DRN Aam.‘ a) | Distance from pitoh oirole to point of load application
measured alang tooth oeaterline
ETA n -
BTAI e, o -
ETAJP N, o -
Fi F Minimum face width (1 DP)
FACE (D) Fee. o) Pitoh line faou width
FACR(D Fa(p,o) | RootLine face width
Fo e (v, 0) Biteotive face width
F fyv,0) =
FR M, 01 Projected length of the line of contact within the ellipse of
tooth contact in the lengthwise direction of the tooth
FMN Fon Minimum face width
FR1 Faitp,0) | Root fsoe width (1 DP)
rxi t Lengthwine shift of tooth contact from centet under given load

o
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TABLEIXIXYI -~ Continved

A DA R e LS
FWUK! NAN

SYMBOL SYMBOL. DESCRIPTION

aaMe(l) wl Pitoh angle

HAND - Hand of pinion spiral

HK h, Outer working depth

BN hy (5, 61 Distance along tooth centerline from the weakest section to the
T L : ‘point of 10ad application

HT'(D h, (p, c) Outer whole depth

HTM1 e o) Outer whole depth (1 DP)

P2 Py -

P3 Py (p, 6) Distance in mean normal sectionfrom beginning of action to
point of load application

PCOIR p Outer circular pitch

PCN Py Normal base pitch (1 DP)

PDIA Py Transverse diametral pitch

PHA9 & Normal pressure angle

PHAQ1 - Involute function of PHAS® (inv &)

PHH L (p, G) Pressure angle nt point of load application

PHIL ®L (P, 6) Angle that the normal force makes with a line perpendicular to
the tooth centerline

PM P, Mean transverse diametral pitch

PN Py Mean normal circular pitch

PSIB ¥y Base spiral angle

PSM9O W Mean spiral angle

PSO9 ¥, Outer spiral angle

QD Q(P. ¢y | Strength factor

RBN1(]) Ryyip, ) | Base radius in mean normal section (1 DP)

RCN Ie Mean cutter radius

REF(I) ' (P, ) Cutter tip edge radjus

RF Ti(p, G) Fillet radius at root circle (1 DP)

RN(D) R, (P, G) Pitch radius in mean transverse section (1 DP)
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TABLE XXVI - Continuved

FORTRAN

LETTER

SVMBoL STMBOL DESCRIFTIUN

RN1(D) Ry, (P, ) Pitoh radius in mean normal section (1 DP)

RONL(D) | Ry (p,c) | Outside radius in mean normal saction (1 DF)

ROT - Direction of rotation of driving member as viewed fiom the back

RT Ry p, 6 Mean transverse radius to point of load applioation (1 DP)

RT1(D Triep,G) Cutter tip edge radius (1 DP) : s

8AL(D 8 p.c) Mean addendum (1 DP)

SAT B, Allowable stress in gear materfal

SAVE Bavg (P, G) Average stress

SB1(I) b, p, 6 Mean dedendum (1 DP)

SP1(D) Fim 6 Pitch face width (1 DP)

) (e]°] p Shaft angle

I J, P, G) Geometry factor for strength

SK kip,c) -

SK1 k, Coefficient for lengthwise tooth contact shift

SK2 k, Coefficient descriptive of lengthwise orowning of the testh

SK3 k, Coefficient descriptive of relative tooth contact length under
load and no load

SK 4 k, Coefficient descriptive of center of contact pressure under load

SK1P k, Coefficient for lengthwise tooth contaot shift

SKF Kip, 6) Combined stress concentration and stress correction factor

SKI K, Inertia factor

SKM(D) Knp, 6) Load distribution factor

SKN k, Positive integer

SKO k, Overload factor

SKP k' Load position cotrection faotor

SKR Ky Faotor of safety

SKS K Size faotor

SKT K. Temperature factor

8KV K Dynamic factor
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TABLE XXVI - Continved

!

i
|
|
i

i p ]

|t oricnprion
SLi 1 Liength of tooth contact area at no load
SMAX - Maximum stress

SMN (D) m Load sharing ratio

ST %5, c) Bending streass in root fillet

ST (D) te, 0) Mean normal ciroular thickness

| 80D | tpc, | Mean nomal oiroular thickness (1 DF)
"~ 8TF T, Operating tempetature of gears

sw 8, Working stress

8Z1 Zy(py6) =

8z2 Zy(p,6) -

THET b, 0 =

TMGP tmc Gear mean citcular thickness (output)

T™P tup Pinion mean oircular thickness (input)
TMPOP tmpo Pinion mean ciroular thickness assuming zero backlash
TMPP top Pinion mean circular thiokness (output)

TN N (P, G) One-half tooth thickness at weakest section
T5 T, Peak torque

vl Uir o -

ve Usp o) -

vad Usp o) -

UHF H, Stress concentration factor constant

UJF I Stress ooncentration factor constant

ULF L Stress concentration factor constant

vig Vi, 6 -

vem Vaip, 6) -

Vi@ Vaip, 6 -

WFG W Point width of spread blade gear finishing outter
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TABLE XX¥T - Continued

FORTRAN LETTER
_sYMBOL SYMBOL DESCRIPTION
X1 5,0 -
X2 %P, 0) -
XFR IrR (P, G) =
XMF L. Faoce oontaot ratio
XMNR m, Normal contsot ratio )
XMO Y " Modified Gontact tatlo )
XMP m, Transverse (profile) contact ratio
XN Xy (P, 6) Tooth strength factor
XNGNP m, Qear ratio
XPP Xp, 6) =
XTHET XO(P. G) =
Y2 Yiem,6) -
YK Yy (P, G) Tooth form factor
zZ1 Z, Length of action in mean transverse section (1 DP)
ZETA 4(?. ¢) =
ZN(D) n, N Number of teeth
ZN1 2y, Length of action in mean normal section (1 DP)
Vot approach
ZP (I) z,' z, Arc of action | yenegg /1N mEan normal section (1 DF)
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V. e~

TABLE XXVII. OUTPUT SYMBOLS

LETTER FORTRAN ~ 1

§
s

SYMBOL SYMBOL DESCRIFTION ;
top TMPP Pinfon mean oircular thickness 3 . |
t,,: o T™GP Gear mean cirvilar thiockness E
v GAMO(1) Pinion pitch angle !
r QAMS(2) Gest pitoh angle i x
m, XMP Transverse contact ratio '
mg XMF Face contact ratio
m, MO Modified contact ratio
A, A0 Quter cone distance
A AM Mean cone distance
P PCI:IR Circular pitch
Myp 8MN(1) Pinion load sharing ratio
my . SMN (2) Gear load sharing ratio
K SKI Inertia factor
Ip SJ(1) Pinion geometry factor for strength
I 81(2) CGear geometry factor for strength
Qp Q) Pinion strength factor
Q Q(®) Cear strength factor ‘

Byp 88T (1) Bending stress on concave side of pinion tooth
LI 88T (R) Bending stress on convex side of gear tooth '
1 i t FX 1 Lengthwise shift of tooth bearing from center
8, 8w Working stress
M
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IR

e e sy

CARD
NO. 1

CARD
NO. 2

DL W

| COLUMNS 1 2 3 ¢ 5 6 7 9
1-10 RIE |V GIE]AJRJR]H
11-20 C|C|W
21-30
3140
41-50
51460
61-70
71-80

LCOLUMNS 2 3 4 5 6 7 8 9]0
1-10 ZNW) 111

L1y -20 ZN(2) 511]-

21-30 | PDIA 4]-jopslo
31 - 40 PHA9 210 {°

L4l - 50 SIG9 940 ]

j2i-60 | DRIVE 1PlI IN

| 6] - 70 ROT RIEIlYV
71 - 80 HAND JLIH

| COLUMNS 1 2 3 4 5 6 7T 8 9 10

L 1-10 | FacEWIL] {-

L.1l1-20 FACE(2) 11 1 - 0

[ 21-230 | PSM9 :

3140 L IMP .0 0

L4l-50 | WFG 1l

| 51 - 60 | {1) * 101 4

61 -70 | REF(2) [: Jol8]0
10-80 | BMAX 1 10]0}8

245




CARD
' NO, 3

! CARD
NO. 4

CARD
NO. 5

[ T e et i e BRI TP 1 -

COLUMNS 1 2 3 4 5 6 7 8 9 10

1-10 | BHK BRI

11.20 | HTW) ~lafzt
L 21-30 | HT(2) c 14 1

31- 40 ADD9(1) I+ |18 |5 ]
{—41-50 | ADD9(2) 1" 13 9

5] . 60 DED9(1) } * |3 |5810

61-70 | DED9:2y |- |als]o

71-80 | apo@) |- J110]9

UMNS ] 2 3 4 5 6 7 8 ¢ 10

1-10 FACRMW I - Fs510

11-20 | racrz)|1 11510
| 21 - 30 SKO 11 la
31 -40 1 cTD 11 olololo |-

4] ~50 | SKV 1110

51 - 60 CTG llo0jlojJojojol:
L 61 - 70 RCN 10

71 - 80

UMNS 1 2 3 4 5 6 7 8 9 10

1-10 | AR(1) E 1lals fo
11 -20 1 AR(2) : 115
| 21-30 [ are) f-loloflolefo
| 31 -40 | AR(4) l:lolofofs|s

41 -50 | SAT 1lslolololo].

51 - 40 SKR 1119
r-é‘l'7° STF 116 .

71 - 80

246

e 1 TR OIS

-3

3
E
|




0%000°
06 00*
0SEI0°-
00000°9
000001
EEECE
00000°1
000001
00020°1
03005"1
0009%°1
0o601®
00058
CoJsE”
0oosg*
0coce*
0012%*
0012%*
ooyle*
¢g800°*
00030°
0oo%0*
ooost®
00000
00000°5¢
0000S°1
00006°1
H
A3y
N1d
00000°06
000200°0¢
092080°%
03000°1%
0co00*Ll

(€ uV
{Zryv
(Tryv
NOY

912

d1d

AAS
ato
o3s

K4 LB F|
(1)¥ov4d
{2)oav
t2)64a3a
(116030
(2160ayv
t1)600v
tZ)1H
(T)1IH
MH
XYWE
12343y
(1)43y
94m

dhWl
6KWSd

A ERLE]
(1)3dv4
ANVH
10¥
3Alya
691S

6 VHd
vidd
(2INZ
(TINZ

R P e

et A ai e ey i At B D e st B9 A2

ININIDVIGSIA 0L 3NC JONYHD TVIXVY ¥VY3IO
IN3IW3DVYIISIQ OL 3N IINVHD IVIXVY NOINId
IN3IWIDOVYI4SIQ 01 ING 3ONVYHD 1354340
SNIgvH ¥311ND

3NDYOL d¥VY3O

3nd¥01 NOINId

HLISN3Y¥LS Y04 HOLOVE DIWVYNAC

ONIY¥VY3IE IVHINID YO4 3INDYOL ¥VID
H19N3¥1S 304 ¥01DV4 AvOTYIA0

H10IM 3Dvd 100¥ ¥V39

HI1GIM 3Dv+4 1004 NOINId

H100L 40 AN3 ¥31IN0C 1Y WNAOGNIQAY AYIO
379NV WNAN3A30 ¥YVY3I9

ITONV ANAN3IA30 NOINLd

379NV WNANIQAQY ¥VYIO

IFTONY WNAN3GAY NOINId

H1001 340 QN3 ¥3INO LV H1d430 3T0HM ¥VIO
H1001 30 GON3I ¥31NO 1Y H1d30 30HM NOINIJ
Hi001 30 GN3 ¥31N0 1V H1d3d ONINYOM
HSYTTIHOVE TYWYON WNWI XYW

¥311ND ¥v39 NO SNIAVY 3903

¥311iND NOINId NO SNIQvVy 39G3

¥311ND ¥yv3ID IAVYIE Qv3YdS J0 HIAI AR INIOd
SSINADIHL YVINDUID NV3IW NOINIdJ

39NV VY1 dS NV3IW

H1AIA 3DV4 d¥v3O

H1QIMm 3OV¥3i NOINId

IVY1IdS 40 ANVH NOINId

HIEBWIN ONIAIHA 4O NOIIVIOM 40 NOI11D3¥IC
Y3GW3IN ONIALNA

ITONVY L4AVHS

JTONY UNSSIAd TVYWION

HO11Id Tvdi3WY1d

dv39 NI H1331 30 HIBWNN

NOINId NI H1331 40 ¥3OwnN

1ndNI

247

s e —_ T Tmm = e e e e o

A




98966
P41 T4 Sl
qlZyLe
estLee
IzLG 2
s%H2€°9
81691
e9902°
L6690°T
00000°1
00000°1
oooLL”
808e8°S
80886°9
1Z698°1
69e2¥°1
22112*1
G069S" 1L
=6%E%°0T
ce1e2°
1809%%*

00000°091
00000°T
oooo%1
€S000°-

AS

IXd
(Z11ss
{1)1SS
{210
{1)0
tzirs
(1irs
I3S
{ZINWS
(TINWS
¥1Dd
wv

ov
OoMX
X
dhX
{2I6NYO
(T3 6HYD
dOM1
ddil

41S
yas
1vs
R4kl

SSIULS ININYOM

131HS 9N13v3g 3STAMHI9N3

¥Y39 NO SS3H1S ONIAN3E

NOINId NO SS3¥IS 9N1AN3IE8
¥O1Jv3 HIONIYLIS ¥YIO

YO1DV4 HIONILS NOINId
HIONIYLS ¥OJ ¥OLDV4 AYLINOID HVYIO
H1ONJY¥1S ¥OJ ¥OLDVH AN1IWOID NOINId
dCiovd vIg¥iINl

01lvy ONIYVHS dvOl ¥V3IO

011V 9NIYVHS AvO1l NOINId
HOLId ¥VYINDHID

3DNVLISIA INOD NVY3INW

3IDNYISIA INOD ¥3ILINO

OILVY 1DVYEINCO QIL41QON

oIivd 1OVINOD 3JOVd

O11VY LOVINOD ISUIASNVYL

3TIONY HOL11d ¥V3IO

JIONVY HILId NOINId

SSIANADIHL HVINOHID NVIN AVIO
SSINNDIHL BYINOUID NVIW NOINId

indLno

38N1VEIIHIL IN11v¥3IdO

AL3d4VS 40 ¥OLDVd4

SS3ULS I18VAOTTY

INIW3DVIASIA 0L 3NG IONVHD JTIONY 13VHS

iR YRR MaRisen

248

N P e T T U reare St et o< N 3~ ~r7=C TEAOA =

R U

.



AFPENDIX VII

COMPARISON OF AGMA AND GERMAN METHODS OF
STRENGTH DETERMINATION FOR BEVEL GEARS

SUBJECT

Comparison of bending stress calculations for bevel gears by American
Gear Marufactursrs Standards ACMA 222,02 and 223, 01 and German
Standard DIN 3990,

PURPOSE
The purpose of this appendix is to point out the differences between the
American (AGMA) and German (DIN) methods for calculating bevel

gear stresses and to show which method will produce the most reliable
results,

CONCLUSION

The following information was obtained from a careful study of the above
two methods:

1. The American (AGMA) Method:
&, Has been engineered to give simple design formulas
that yleld correct values for actual bending stresses

and that permit design to maximum capacity of the
materials,

b, Can balance the strength of gear and mating pinion
to give optimum life,

c¢. Can be used to accurately compare two diffcreat
gear designs,

d, Is backed by extensive testing in the laboratory and
in the field,

e. Is widely used throughout the world,
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2, The German (DIN) Method:

a. Results in stresses which are generally too low when
compared with an allowable stress, thus resulting in
gears which are too weak.

b. Indicates that straight bevel gears are much stronger
than ths corresponding spiral bevel gears, a con-

clusion that is contrary to established fact, ) :
i
: . i3
¢. Is not designed to balance the strength of gear and
mating pinion, ¢

d. Cannot be used to accurately compare two different
gear designs,

DISCUSSION

Meaning of Calculated Stresses Versus True Stresses

The ideal method for stress calculation would result in the calculation
of the actual stresses existing in a machine structure. However,
current design formulas are based on approximations in order to
simplify the formulas sufficiently for uveryday use. In some methods
more attention is given to establishing a correlation between the calcu-~ ‘
lated stresses and the observed measured stresses,

In order to insure a safe working formula for the strength of gear teeth,

it is customary to make a chart showing the relationship between the

calculated bending stress and the life in stress cycles to failure by

fatigue, With sufficient test data it is possible to determine statistically

the reliability of a given gear pair under any given load conditions. It

should be borne in mind that these calculated bending stresses are not

‘ necessarily true stresses, and therefore they cannot be used as a ( ‘
measure of safety when compared with the usually specified allowable

stresses resulting from tensile tests on the standard test specimens.

In the AGMA method, for example, a size factor has been included in
the formula for calculated stress. This size factor is intended to
reflect the eftects of specimen size on the allowable working stress.
Since the size factor is a function of gear geometry, it has been applied
to the calculated stress rather than to the allowable working stress as
& matter of convenience. Because this factor has the effect of reducing

WPV S
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the calculated stress as the npecimen size is reduced, it is necessary
to readnce the valucs of alluwabie working stress, This has been done
in the AGMA publications.

Because the German standard does not make the distinction between cal-
culated bending stresses and the method for arriving at allowable bend-
ing stresses, there is danger that the gear designer will be misguided
by the German formula.

Comparison of Specific Results

Tables XXVIII, XXIX, and XXX show comparative results of bending
stress calculations by both the AGMA method and the German method,

Tables XXVIII and XXIX show a comparison of selected gear ratios from
the AGMA straight bevel gear system and the AGMA spiral bevel gear
system., In these two tables th: ‘ace width was assumed to be equal to
three-tenths of the outer cone di. .ance, and the tangcntinl load was
given by the following formula:

_ 9,000 F
O

where W; = large end of tangential load, pounds
F = face width, inches

P4 = large end of transverse diametral pitch

Comparative Stresses Between AGMA and German Methods

It will be noted in the tabulation for straight bevel gears (Table XXVIII)
that for 2, 5-DP gears the German calculated pinion stresses average

40 percent less than the AGMA calculated pinion stresses, whereas

for 20-DP gears the German values average only 2 percent less than

the AGMA values, This difference between the coarse-pitch and fine.
pitch gears is the result of the size factor included in the AGMA method.

A similar comparison is shown for spiral bevel gears in Table XXIX,
For 2,5-DP gears the German calculated pinion stresses average

10 percent less than the AGMA calculated pinion stresses, whereas
for 20-DP gears the German values average 30 percent more than
the AGMA values.




TABLE XXVIII. STRAIGHT BEVEL GEARS
WITH 20° PRESSURE ANGLE
E
AGMA Method German Method **Stress Ratio
Pinion Gear | Pinlon Gear
Cear Come. Stress Stress | Stress Stress )
| vination  DP| (psi) (psi) | (psi) (psi) | Pinion Gear
17/17 2.5] 39,000 39,000] 22,400 22,400 0.57 0.57 .
35/35% 2,5 29,700 29,700 17,800 17,800 0. 60 0.60
14/28 2.5| 33,700 41,400) 20,900 21,000 0.62 0.51
22/44 2,5] 29,400 34,500 18,200 18,200 0.62 0.53
13/39 2,5 32,700 42,200 20,200 * 0.62 -
18/54 2.5 30,400 36,700 18, 800 » 0.62 -
13/52 2.5| 32,300 42,100 19,800 - 0.61 -
17/17 20 24,600 24,600 22,400 22,400 0.91 0.91
35/35 20 18,700 18,700 17,800 17,800 0.95 0.95
! 14/28 20 21,100 26,0001 20,900 21,000 0.99 0. 81
|
. } 22/44 20 18,400 21,600 ] 18,200 18,200 0.99 0. 84
ll 13,39 20 20,500 26,500 20,200 * 0.99 - (
18/54 20 | 19,000 23,000( 18,800 * 0.99 -
13/82 20 20,200 26,4001} 19,800 * 0,98 - 2
*Values are not available for 9y on the graph with the German standard,
A tooth layout would be required.
German stress
*%St t
Stress Ratlo ="LEMA stress
=
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TABLE XXIX. SPIRAI REVE! CEARS WIiTH
20° PRESSURE ANGLE AND
35° SPIRAL ANGLE
AGMA Method| German Method *Stresa Ratio
Pinion Gear | Pinion QGear
Gear Com- Stress Stress | Stress Stress | Pinion Cead
bination Dp {pai) 7}(?!1) (poi) fpad) e
17/17 2.5 1 43,800 43,8001 29,500 29,500 0.67 0.67
35/35 2.5 | 26,400 26,400 25,600 25,600 0.97 0.97
14/28 2.5 ] 36,500 36,500 29,700 29,800 0.81 0.82
22/44 2.5| 27,000 27,000 26,500 » 0.98 -
13/39 2.5 32,000 32,000 28,400 * 0.89 -
18/54 2.5 25,100 25,100 27,000 » 1.07 -
13/52 2.5] 27,000 27,000 28,400 L] 1.05 -
17/17 20 27,500 ¢7,500| 29,500 29,500 1.07 1. 07
35/35 20 16,600 16,600 25,600 25,600 1. 54 1,54
14/28 20 23,000 23,000 29,700 29,800 1.29 1.29
22/44 20 17,000 17,000 26,500 * 1.56 -
13/39 20 20,000 20,000 28,400 . 1,42 -
18/54 20 15,700 15,700 27,000 > 1,72 -
13/52 20 16,900 16,900] 28,400 * 1,68 -
*Values are not available for q) on the graph with the German standazd. |
A tooth layout would be required.
f#Stress Ratio = German stress
AGMA stress
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Table XXX lists three automotive ratios which were compared by the

two methods. The biggest difference shows up on the 6/41 combination,
Table XXXT gives lifs datz f57 these ihree automottve ratios which were
obtained from laboratory tests under controlled conditions. Figures 91
and 92 show the results of plotting these data, The broken lines in
Figure 91 indicate the width of the scatter band in the standard AGMA
method, It will be seen that these points all lie within the scatter band.
Figure 92 {s for the German method. There are insufficient data to show
the width of the scatter band, and this graph does not show as consistent
correlation as that shown by Figure 91,

Relative Strength of Straight Teeth Versus Spiral Teeth

A further comparison of straight bevel gears and spiral bevel gears in
Tables XXVIII and XXIX shows that the German standard rates the
straight bevel pinions 41 percent stronger than spiral bevel pinions,
whereas the AGMA method rates the spiral bevel pinions 7 percent
stronger than the straight bevel piniona (based on the average of the
tabulated automotive ratios). These resulte by the German method

do not appear to be reasonable,

Allowable Stresses and Strength Balance

The AGMA method tabulates the allowable stresaes for most commonly
used gear materials, Also included is an S-N diagram to show the
relationship between calculated stress and gear life for stress levels
above the endurance limit, With the aid of the diagram one can determine
the required stress levels for gear and mating pinion that will result in
equal gear life.

Determination of Gear Size

The AGMA method is supplied with allowable stress values and an S-N
diagram relating the stress to the gear life, which provides the designer
with the necessary information to determine the gear size that will be
required to carry a sustained load for a given duration of time,

Comparison of Factors Considered in the AGMA and German Methods

Table XXXII gives a list of 16 factors affecting gear tooth strength.
This table shows how these factors z#re treated in each of the above

‘methods,
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% Advantages of the AGMA Method

The AGMA method has been apecifically engineered to give reliable
design formulags for bevel gear teath, It iz backed by the resulis of
extensive laboratory and field testing of gears in their mountings and
shows remarkably consistent results.

of pinion and gear teeth to give optimum life, Various designs may be
easily and reliably compared. )

This method is widely used throughout the world and is used as the
industry standard in the U,S,A. For this reason it has been used as 4

§
It has been shown to give excellent results in balancing the thicknesses
the starting point for further study in the present programn,

TABLE XXX!. LIFE DATA FOR RATIOS
IN TABLE
Pinion Failures Gear Failures
Life in Number of Life in Number of
Combination Cycles Failures Cycles Failures
11/52 147, 000- 4 - None
253, 000
8/33 27, 400- 20 - None
224, 000
{
6/41 24, 000- 8 17, 000~ 3
1 294, 000 29,300
: v
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BENDING STRESS FORMULAS ACCORDING TO THE GERMAN
SCANDARD DIN 3990

The formula for the bending stress is given as follows:

2
o= 2o Pa_ak (Ao (48)
K, F mycos ¥ A

where 8¢ = calculated tensils stress in psi

W, = transmitted tangential load in pounds

o
o
1

= overload factor

Ky = dynamic factor

P4 = diametral pitch at large end of tooth

F = face width in inches

qx = strength factor (see below)

my = transverse (profile) contact ratio
¥ = mean spiral angle
A, = outer cone distance in inches

A = mean cone distance in inches

In order to determine the value for the strength factor, qi, either a
tooth layout is required, Figure 93, or the attached graph, Figure 94,
may be used, provided the normal pressure angle is 20° and the tooth
working depth is 2.0 cos ¥ /P4.* To use the graph, the follcwing
values must be calculated:

*Graph based on symmetrical rack thickness proportions,
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: f+—TOOTH CENTERLINE
]
Figure 93. Tooth Layout Used to Determine
Weakest Section by German Method.
!
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n sec ¥ sec3y equivalent number of teeth in pinion

N
<
w

n

N sec T sec3¥  equivalent number of teeth in gear !

N
<
Q

n

xp =0, 460 (1 - “—12‘) pinion addendum factor (AGMA system)
mgG

Xg = -Xp goar addendum factor
N
mGg= = gear ratlo

n = number of pinion teeth

N = number of gear teeth
Y = pinion pitch angle
' = gear pitch angle

When a layout is made in the mean normal section to a scale of 1 DP
(usual AGMA procedure), load is assumed to be applied at the tip of
the tooth, The weakest section is determined by inscribing an equi-
lateral triangle within the tooth outline such that the two sides are
tangent to the fillet portion of the tooth at the base of the triangle,
Then,

6h cosy cos L
= -— 4
Ik tz cos ¢ (49)

strength factor

where q

load height (radial distance from point where load line
intersects tooth centerline to base of inscribed triangle)
in inches

-
[}

t = length of side of inscribed equilateral triangle in inches
$1, = pressure angle at point of load application (angle between
load line and a line perpendicular to tooth centerline at
point where load line intersects tooth centerline)

¢ = normal pressure angle
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