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ABSTRACT

Naval undersea missions and operations in the 1975-1985 time frame
that require the use of MAN-IN-THE-SEA concepts are delineated. The MAN-
IN-THE-SEA concept i1s broadly defined in this study to include all under-
sea systems requiring man's exposure to the ambient orean pressure. MAN-
IN-THE-SEA missions and operations within the overall spectrum of naval
undersea missions and operations are isolated on the basis of comparisons
of functional performance capabilities of alternative systems. The func-
tional requirements related to the naval undersea missions and operations,
together with the isolated MAN-IN-THE-SEA missions and operations, are
initial results of a continuing study of naval applications of MAN-IN-
THE-SEA concepts.
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PREFACE

A study of the naval application of MAN-IN-THE-SEA concepts in the
1975-1985 time frame is being conducted by the Naval analysis Programs
Group, Mr. J. R. Marvin, Director, in the Office of Naval Research.

Mr. B. L. Friedman is the ONR Project Scientific Officer. The fundamen-
tal objectives of the study are to identify the potential contributions
of MAN-IN-THE-SEA capabilities to the accomplishment of naval missions
and to provide guidelinec for the structuring of a long range MAN-IN-THE-
SEA research program. This research memorandum presents the initial
results of a continuing study effort. The research effort was performed
by the Naval Warfare Research Center of Stanford Research Institute.

Mr. A. Bien of the Naval Warfare Research Center was the principal inves-
tigator. Mr. P. J. McDonough of the Santa Barbara Analysis and Planning
Corporation was the principal subcontractor to the study.
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I INTRODUCTION

A, General

MAN-IN-THE-SEA concepts are defined broadly as those underwater
systems where man is exposed to the ambient pressure in the ocean envi-
ronment. This approach contrasts with those underwater systems in which
man is protected from the ambient pressure by (1) placing him in the
protective shell of a pressure vessel or (2) locating him on the sea's
surface and having him renotely operate underwater equipments.

In recent years, significant advances in the capabilities of MAN-
IN-THE-SEA concepts have been realized. These advances, resulting prin-
cipally from the development of saturation diving techniques, are re-
flected in the extended depth and time man is able to venture into the
sea. The U.S. Navy, recognizing the possible military potentials offered
by man's increasing undersea capabilities, is supporting a MAN-IN-THE-SEA
program. This program is directed toward developing man's ability to
accomplish useful work down to the depth of the continental shelf and
determining man's ultimate depth-time limits in the ambient undersea en-
vironment. The completed SEALAB I and II and the upcoming SEALAB IIlI
operations are one aspect of the total Navy MAN-IN-THE-SEA program,

In light of the demonstrated and promising capabilities of MAN=-IN--
THE=-SEA concepts and the recognized need for expanded R&D efforts to
extend man's ability to live and work under the sea, the U.S. Navy must
establish its long range goals and objectives for the exploitation of
these concepts. An analysis of the potential contributions of MAN-IN-THE-
SEA capabilities to the accomplishment of naval missions is needed to
provide guidelines for the structuring of a long range MAN-IN-THF=SEA pro-
gram. The objectives of this research effort sponsored by the Office of
Naval Research are:

1. To identify and establish how, where, when, and why MAN-IN-THE=-
SEA concepts contribute to the accomplishment of naval missions.

2, To identify the research and development required to implement
systems for the accomplishment of these naval missions.

¢ o b R v
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This research memorandum reports the results of the first phase of
the research effort. This phase concentrated on the definition of pos-
sible and unique MAN-IN~THE-SEA missions within the total spectrum of
naval undersea missions and operations. The MAN-IN-THE-SEA missions
defined during this phase will be the basis for the continuing study of
the naval applications of MAN-IN-THE-SEA concepts.

B. Study Approach

The tasks essential to the study approach that was adopted are out-
lined in Figure 1. The tasks were to: (1) identify navy mission arcas,
related functions and tasks, and the required mission-performance capa-
bilities; (2) define the performance capabilities of MAN-IN-THE-SEA con-
cepts; (3) define the performance capabilities of alternative concepts;
and (4) analyze and compare MAN-IN-THE-SEA concepts versus the alterna-
tives. The study approach was aimed at defining MAN=-IN-THE-SEA missions
based on a critical assessment of the capabilities of man when exposed to
ambient ocean pressure.

NAVY |
UNDi RSEA

MISSIONS PERFORMANCE
CRITERIA

MISSION
PERFORMANCE
REQUIREMENTS

TASK It TASK 1t _NW
o i !
ALTERNATIVES FERFORMANCE COMPARATIVE i PERFORMANCE S i
10 CAPABILITIES ANALYSIS OF - CAPABILITIES

MAN-IN OF MAN IN THE-SEA R OF MAN-IN-THE -SEA !

THE-SEA ALTERNATIVES i AND MAN-IN-THE SEA CAPABILLTAES

| ALTERNATIVES

AR

/
MAN IN
THE SEA
MISSIONS

Figure 1 SUMMARY OF STUDY TASKS

The substance of the study approach lies in Task 4--that is, the

comparative analysis of MAN-IN-THE-SEA concepts versus the alternatives.
The major difficulty in establishing valid missions requiring the use of




MAN-IN~THE~-SEA concepts is that there may be other means that could
achieve the same missions. These alternatives might be tethered remote-
controlled vehicles equipped with acoustic and visual sensors and manip-
ulators or manned manipulator-equipped free swimming vehicles. The major
advantage of these alternatives is that man is not directly exposed to

the extremely hostile ambient underwater environment. The objectives of
the first phase study were to identify those underwater tasks that require
the capabilities of a man working in direct contact with his environment
and relate those tasks to Navy underseas missions. In essence, the study
sought answers to the following interrelated questions:

e What unique capabilities for accomplishing specific underwater
tasks does an unshielded man have?

e Which Navy undersea missions have essential tasks requiring those
unique capabilities?

The spectrum of Navy undersea missions and associated functions and
tasks are identified in Section III. The performance criteria and defi-
nition of mission requirements (Section IV) and a compendium and descrip-
tion of alternative systems, including MAN-IN-THE-SEA systems (section V),
led to the comparative analysis of alternatives that provides the state-
ment of MAN-IN-THE-SEA missions (Section VI). Reviews of the fundamentals
and the performance capabilities of MAN-IN-THE-SEA concepts are provided
in Appendixes A and B. A review of underwater mechanical manipulator
capability is presented in Appendix C. Supporting data for naval under-
sea missions are presented in a classified addendum to this research
memorandum,
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IT SUMMARY

A. General

The naval undersea missions and operations requiring man's exposure
to the ambient ocean environment defined in this study will serve as an
input to a continuing study of the naval applications of MAN~-IN~-THE=SEA
concepts tor the 1975-1985 time frame.

A spectrum of naval undersea missions and operations was identified
through a comprehensive review of total naval requirements in support of
current and future national objectives. This type of review is consid-
ered to be a basic prerequisite for all naval supported, mission-oriented
studies. The method used to identify naval undersea missions and opera-
tions was selected because it could provide requirement definitions that
are related to, and supported by, current naval research planning proce=
dures. As a result of this approach, a more complete and systematic
overview of naval undersea operational requirements was achieved than was
previously available,

The procedure used for identifying MAN-IN-THE-SEA missions and oper-
ations within the spectrum of naval undersea missions and operations was
to compare the underwater performance capabilities of the unshiclded man
with the capabilities needed in those undersea systems that do not require
man's exposure to the ambiert ocean environment. Thus, the MAN-IN-THE-SEA
mission definition study reported here is unique in that the need for

MAN-IN-THE-SEA concepts to accomplish particular naval missions and oper-
ations was not an initial study assumption.

B. Study Results

The criteria used in deiining the functional performance recquircments
related to the undersea naval missions and operations and the functional
performance capabilities of alternative undersea systems were:

Depth capability

e Time capability

Mobility capability

Load~-carrying capability

(9]
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¢ Maneuverability

¢ Manipulative capability
¢ Sensory capability

¢ Cognitive skills

¢ Hardness

¢ Covertness

The comparative analysis of the functional capabilities of MAN-IN-
THE-SEA concepts versus the alternatives based on the foregoing criteria
indicated that the unshielded man is unique only in the following scnsc:

1. He offers a singificant advantage in maneuverability becausc of
his compactness, agility, and physical flexibility.

2. He offers a significant advantage in manipulative capability for
tasks that require a high degree of finger dexterity.

3. He offers extended sensory capability because of his tactile
senses, These senses enhance man's manipulative capabiliiy,
especially in extremely turbid water.

4. He offers some degree of covertness in certain operational
environments.

Tables 1 through 3 summarize the significant results of the present
study and indicate:

1. Naval undersea missions and operations that could capitalize on
the unique functional capabilities of the unshielded man.

2. Naval undersea missions and operations where both MAN-IN-THE-SEA
and alternative systems would perform equally well.

3. Naval undersea missions and opevations where alternative systems
would provide a fundamental performance advantage.

Table 1 identifies MAN~IN-THE-SEA missions if system survivability
during a mission emphasizes the use of covert operations. Table 2 pro-
vides similar information for the case where the usce of hardened systems
is emphasized. Table 3, which is an extension of Table 2, considers the
possibility of designing undersea facilities to minimize constraints im-
posed by the limitations of mechanical manipulat.r equipped vehicle
systems.
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C. Emphasis of Continuing Study Effort

It is apparent that on a functional performance basis, MAN-IN-THE-
SEA concepts and their alternatives are overlapping approaches for ac-
complishing a majority of the defined naval missions and operations, see
Figure 2, The next study phase of naval applications of MAN-IN-THE-SEA
concepts must place more emphasis on the capabilities of the alternatives.
Furthermore, because of the overlapping nature of the undersea system
concepts in performing the same functions, cost comparisons must be the
basis for final selection of the means of accomplishing the defined naval
undersea operations.

¥
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III NAVAL UNDERSEA MISSIONS, OPERATIONS, FUNCTIONS, AND TASKS

A. General

This section describes the review of Naval Undersea Operational
Requirements that was undertaken during the present study. The spec-
trum of naval undersea missions and operations was identified through
a comprehensive review of total naval military requirements in support
of current and future national objectives. This type of review is
considered to be a basic prerequisite for all naval supported, mission-
oriented studies. The method used to identify the naval underseas
missions and operations was oriented to provide requirement defini-
tions that are related to, and supported by, current Navy research
planning procedures, The use of this approach resulted in a more com-
plete and systematic overview of naval undersea operational require-
ments than was previously available.

Detailed undersea tasks associated with the spectrum of undersea
missions and operations were defined as a result of a functional and
task analysis for selected missions., These functions and tasks were
the basis for the comparative analysis of MAN-IN-THE-SEA concepts versus
the alternatives, This analysis determined the naval underseas mis-
sions and operations to which MAN-IN-THE-SEA concepts can directly con-
tribute,

B. Naval Undersea Missions and Operations

+

1., Method of Definition

The method used to cc¢fine naval undersea missions and operations
is outlined in Figure 3. First, a thorough review was made of current
naval warfare operations and applications as described in the NWPs and
NWIPs, This review was accomplished, using the NWPs and NWIPs listed
in Table 4. We used only those documents from the official list of
tactical publications that in our judgment influence undersea opera-
tional requirements,

The planning objectives derived to that point then were reviewed,
together with the General Operational Requirements (GOR), Specific Opera-
tional Requirements (SOR), Tentative Specific Operational Requirements

13



Figure 3
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Table 4

TACTICAL PUBLICATIONS STATUS REPORTS

Classi-

Short Title Long Title fication Last Change
NWP 11-A Naval Operational Planning C 2 12 66
NWP 22-A Doctrine for Amphib Operations U Orig. 7 62
NWIP 22-1B The Amphibious Task Force Plan i) Orig. 6 65
NWIP 22-4A Underwater Demo Teams in Amphib

Ops C Orig. 11 65
NWIP 23-1B Submarine Primary Missions C Orig. 7 65
NWIP 23-2B Submarine Suv-port Operations i C 1 12 66
NWIP 23-9A Submarine Evasion Manual C Orig. 12 62
NWP 24-B ASW Operations C 2 11 66
NWIP 24-1A Antisubmarine Classification

Manual C 2 6 66
NWP 26-A Mining Ops C 1/2 1 66
NWIP 26-1 Minefield Planning C 3 11 61
NWP 27-A Mine Countermeasures Ops C Orig. 1 63
NWIP 27-1A Supp to Mine Countermeasures Ops S 1/1 S 65
NWIP 27-2 Minehunting Procedures C Orig. 7 64
NWP 28-A Nuclear Warfare Operations S Orig. 10 66
NWIP 29-1 Seal Teams in Naval Special War-

fare S Orig. 12 62
NWP 37-A National SAR Manual U 3 10 63
USN ADD 37-A | Sub Disaster SAR Ops U 3 9 66
SUPP 37-A Wartime Search and Rescue SAR

Proc, (o Orig. 8 65
NWP 38-B Replenishment at Sea Y 1/1 12 85
NWP 39-A Base Defense U 1 4 66
NWP 40-A Harbor Defense C Orig. 1 61
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(TSOR), Advanced Development Objectives (ADO), and Technical Development
Plans (TDP). A list of the GORs is given in Table 5.

The GORs broadly define the users' needs and directly reflect
naval missions and operations., Fcllowing down the documentation chain
of requirements for a development effort are the TSOR, a preliminary
stated requirement; the SOR, a stated need; and the ADO, which in-
dicates the direction of experimental development prior to an assumed
military usefulness, which sometimes precedes the SOR.

The SOR, TSOR, and ADO are organized under the particular GORs
listed here. They are indicated on the matrix prepared during this
study (Table 6), when they directly or indirectly indicate a parti=-
cular underwater functional requirement corresponding to the es-
tablished 1list., The number or numbers assigned in each square corres-
pond to a particular referenced document in the Reference Requirement
List,* which states requirements and provides the details supporting
those requirements, These documents, together with the NWPs and the
NWIPs, form the basis of current operational requirements officially
stated from CNO,

Concurrent with the review of the above naval documents, dis-
cussions were held with some potential users in the Navy Department
concerring MAN-IN-THE-SEA capabilities and developments; these discus-
sions uncovered other current and possible future potential undersea
operations that were not described in the listed documents. These pre-
viously cited documents, together with the discussions, provided most
all of the Navy's stated or contemplated requirements for underwater
operations currently envisioned for the near future,

If the time scale for future operations is projected into the
mid-1970s and early 1980s, howcver, the current stated naval under-
sea operational requirements are not complete and it becomes necessary
to detzrinine plausible naval undersea operations and the attendant
technological requirements from other sources.

Future undersea naval requirements that are likely to evolve are
those related to future operations as indicated in the Naval Strategic
Studies, Mid-Range and Long-Range Guidance, Mid-Range Objectives,
and Naval Support Plan. The requirements stated in these studies are
much broader than, for example, the specific requirements as stated
in the SOR., These long range studies (see Figure 3) helped to provide

* The Reference Requirements List is presented in the classified adden-
dum to this report.
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overall documentation for the development of naval underwater opera-
tional requirements of the future.

In conjunction with the foregoing sources, the project team
sought information on possible future requirements concepts from
laboratory personnel working in the R&D phases of naval weapons
systems that are generated elsewhere within the Navy or DoD or by
their respective contractors. Recent studies by Nortronics® and
0p-03° have provided some of the projected requirements data for this
study. One of these studies reported the results of contacting
21 DoD agencies, laboratories, and oceanographic institutes and dis-
tilling their ideas for future underwater operations into 9 functional
operations,

2, Mission Requirements Matrix

Table 6 1s a matrix representing results of the completed mission
and operational requirements review, The naval mission raquirements
in the various documents were interpreted and organized under 10
broad, general underwater mission requirements stated in terms of
functional operations. They are: surveillance, reconnaissance,
mining, navigation, recovery, facilities installation, salvage,
repairs, support, and habitat development,

The list of planning documents and related underwater functional
operations in the matrix provides an immediate cross reference, showing
which planning documents generate and provide specific requirements
and the particular underwater functional operation these planning docu-
ments are concerned with,

The NWPs and NWIPs are broad Naval warfare planning documents;
therefore, checks only have been used for cross referencing. A check
is used to show that a particular planning document indicates either
one or several underwater functional requirements or infers that these
underwater operations will be carried out., The planning objectives,
however, have been assessed differently in relating them to the broad
vnderwater functicnal requirements, Under the planning objectives
and organization are the several GORs, TSORs, and so forth, They
have been reviewed and specific detailed requirements -- as stated
in the documents -- are refcrenced with the assigned reference number
indicated on the particular requirement., The number or numbers
assigned 1n each square correspond to a particular referenced planning
document in the Refercnced Requirement List., These documents
and the previously cited planning documents, the NWPs and the NWIPs,

18
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Table 6 (concluded)

OPERATIONAL DOCTRINE

UNDERSEA FUNCTIONAL
OPERATIONS
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NWIP 27-A Minehunting Procedures
USN Add 27A Submarine Disaster SAR Operations

NWP 22A Doctrine for Amphibious Operations
NWIP 22-1B The Amphibious Task Fr Pl

NWIP 22-4A UDT in Amphibious Operations
NWIP 22-5A The Naval Beach Group

NWIP 23-2B Submarine Support Operations
NW1P 24-1A ASW Classification Manual

NWP 25 Mobile Logistic Support Operations
KWIP 27A Mine Countermessures Operations
NWIP 27-1A Suppori to dine Countermeasures

NWP 358B Replenishment at Sea

NWP 11A Naval Operational Planning
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NWP 26A Mining Operations
NWIP 26-1 Minefield Planning

NWP 24B ASW Operations
NWP 40A Harbor Defense
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form the basis of current operational requirements officially stated
by the Chief of Naval Operations.

C. Undersea Tasks Analysis

1, Analysis Method Used

Undersea tasks associated with the spectrum of navy undersea
missions or functional operations were derived through the following
method. First, two functional operations listed in Table 6 were
selected ss focal points for the task analysis. The functional
operations selected were salvage or recovery operations and the under-
sea logistic transfer aspects of the support operation. The first,
salvage or recovery, was selected because it is a real current navy
requirement and will remain so in the near future. The second,
the undersea logistic transfer aspects of the support operation,
represents a projected requirement or a somewhat negligible current
requirement, The two extremes were selected to focus the task
analysis on uncovering a spectrum of undersea tasks on which to base
the comparative analysis of alternatives., In addition to the task
analysis conducted for the salvage and logistic transfer operations,
the project team reviewed a number of documents generated in the past
that identify undersea tasks, This review together with the results
of the task annlysis effort provided a compendium of current and pro-
jected undersca tasks,

2. Salvage Requirenments and Tusks

a. Reﬂuirement . Much of the MAN-IN-THE-SEA future support for
Naval requirements stems from the possible extension of operational
depths of frece swimmers/divers down to and beyond the continental
shelf depths for possiblc future salvage requirements, The establish-
ment of these future requirements appears to have been originated
by the DSSRG report of 1 March 1964, which was concerncd primarily
with submarine rescue. Other salvage requirements nre also established
within GOR 46, Operational Support, and the relanted TSORs, SORs, and
ADD, although thesc documents were all initinted after 1 March 1964,
In particular, SOR 16-16, Object Location and Small Object Recovery,
and SOR 46-17, Large Object Salvage System (LOSS) are concerned with
recovery of large ohjects, which are defined as having a dead weight
of 1000 tons or more. Included within the LOSS limits are submarines,
Small objects are considered to be larger than a basketball and less
than 10 tons.
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With the advent of nuclear power and atomic warheads, the salvag-
ing of submarines and their missile warheads becomes much more signi-
ficant than ever before, with worldwide political overtones, From
a realistic point of view, the loss of the military personnel and
equipment and their "dollar” costs would appear to be subordinate to
the primary need to salvage all equipment and weapons related to
atomic energy. The worldwide alarm over the potential actuation of,
or radiation from, any nuclear device in the ocean stems from the past
record of the B~52 which crashed in Thule, Greenland, with an atomic
weapon aboard, and a similar accident off Palomares, Spain. This type
or salvage may not have an immediately obvious economic value other
than the cost of producing the atomic weapon, but surely its intang-
ible value is large when most of the world's governments are concerned
when a U.S. military accident involves atomic weapons.

Salvage operations on a nuclear submarine could, and probably
would be, carried out just to determine the cause of the sinking.
This prospect is partly evidenced by the extensive search for any re-
maining structure to indicate why or how the Thresher failure occurred.

Other immediate and very possible salvage requirements would be
concerned with any naval ship sunk, particularly in a harbor or
shallow water, Furthermore, aircraft, space hardware, and maritime
shipping have definite salvag~ requirements. The costs of shipbuild-
ing and reoutfitting versus the salvage costs would necessarily be a
prime consideration ir decisions related 1o salvage of naval ships,
commercial maritime cargo carriers, and harbor barges. This type of
salvage would probably have distinct economic values that could be
easily assessed.

Aircraft salvage and space hurdware, being mucli smalier and
lighter, could have a higher probability of salvage success, but their
tangible value is less significant than the intangible values, such as
learning how well the space hardware did or did not function or what
caused the aircraft failure. It is in this area of anircrait salvage
that a large part of the current Navy salvage participation occurs,
Almost 50% of the salvage operatinons conducted by the Navy during
1966, 1967, and most of 1968 ware for aircraft belonging either to
the Navy, Marine Corps, or the Air Force. A partial listing of recent
and current salvage operations under cognizance of the Naval Salvage
Office is provided in Table 7, The operations listed are extracts
from the more recent hot sheets', which are filed chronologically in
the Office of Supervisor of Salvege, NSSC.
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Table 7

RECENT AND CURRENT SALVAGE OPERATIONS
UNDER THE COGNIZANCE OF THE NAVAL SALVAGE OFFICE

SS Taestus (Italy)
50 ton barge

160 tons of ammo
USAF F-84

USAF F-102

8-man helicopter
USAF F=-105

SS Golden State
MSB-54

USAF EC-121

F-8

SS Daniel J. Morrell
LST-912

MSB-45

Dredge

HU~16 E

USMC F-8-D

USAF F-102

USN A=6=A Intruaer
USAF C-141

Super Connie

Cape Hateras
Harbor (RVN)
0ff a barge (RVN)
Lake Michigan
New Orl-ans
Gulf of Mexico
Gulf of Mexico
Manila

Nha Be (RVN)
Nantucket

San Diego

Lake Huron

Chu Lai (RVN)
RVN¥*

RVN

Gulf of Mexico
Kaneohe Bay
Keohi Pt.

Cape Hateras
Cam Ranh Bay (RVN)
Nantuclket

Geographical Depth, if
Salvage Object Location Known
F-4C Gulf of Mexico
F-100 Coast of Florida
Japan hulk My Tho (RVN)* X
F-8-E Kancohe Bay
USAF F-106 Lake Huron
MS0-493 San Juan 29 feet
USAF C-130 Cape Vorella 300-500 feet

60-100 feet
deep water

180 feet

200 feet

20 fcet

40 feet
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2
15
27

6
11
11

3
18
27
12
15
22
31
12
21

21

[

28
21

13
25

Date

May
Jun
Jun
Jun
Jul
Jul
Jul
Aug
Aug
Sep
Oct
Oct
Oct
Oct
Nov
Nov
Dec
Jan
Jan
Feb

Feb
Mar
Apr
Apr
Apr

29 Mar 66

66
66
66
66
66
66
66
66
66
66
66
66
66
66
66
66
66
67
67
67

67

67
67

¥ Combat Harbor Clearance,
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b. Salvage Tasks. In the general salvaye operations, there are

basic, distinct salvage functions that must be performed. These func-
tions are isolated and indicated in the diagram in Figure 4.

(1) (2) (3) (4) (5) (6) (7)
POSITION PREPARE BREAK LIFT RIG WET OR
T eATE sURVEY | | catvage AND RIG ouT AND TOW [ [DRY DOCK
WRECK SUPPORT | | SALVAGE FROM TO SHOAL FOR
FOR LIFT| | BOTTOM WATER REPAIR

Figure 4 OVERALL SALVAGE FUNCTIONS

Seven subfunctional tasks for the salvage operation have been indicat-
ed in the figure: locate the wreck, survey the position of the salv-
age on the bottom, bring support equipment into the most optimum posi-
tion for support, prcpare and rigz the salvage for lift, break out the
salvage if and when embedded in soft bottoms, 1ift the salvage and

tow to shallow water, and position salvage for either wet or dry

dock repairs.

Each of thewse subfunctional tasks in turn is further broken
down to provide a more detailed description of the requirements
entailed in each function, These breakdowns are shown in Figures
5 through 7, As will be noted frowm the figures, not all subfunctions
require a particular operation from bclow the surface--e.g., the sub-
functions to locate salvage, position the salvage support systems, and
position salvage for wet or dry dock repairs require no particular
diver functional operation and are included only for completeness.

The initial search for the sunken object does not concern the
diver directly. Because of his limited detection ranges relative
to other search systems, he becomes involved in the operation only
after the position of the object is precisely determined. The initial
part of the total salvage operation is not outlined here. However,
the Thresher search, for example, indicates that underwater vehicles
and surface search by dragging hooks, magnetic and acoustic devices,
un..rwater photegraphy, and television cameras all will probably
prevail. Other salvage subfunctions, like position salvage support
systems, will probably require only a few buoy plants and no divers,
Towing and placing salvage in port for dry dock repairs also will not
require divers except for checking the integrity of towing rigs.
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(5) AND (61

s s Frpin el e

BREAKOUT FROM BOTTOM,
LIFT AND RERIG FOR

TOW TO SHOAL WATER P
INSPECT LIFT RIC FOR FOULED MONITOR LIFT OPERATIONS
LINES AND LEAKY PONTOONS, AT VARIOUS HALTS DURING
MAKE ANY ADJUSTMENTS LIFT-OUT AND TOW TO
PRIOR TO LIFT-QUT SHOAL WATER

(7)

WET OR DRY DOCK FOR REPAIR

Figure 7 BREAKOUT FROM BOTTOM AND LIFT FUNCTIONS

The candidate tools to perform the particular tasks designated
in the salvage subfunctions are shown in Table 8, This matrix of
tasks will serve as an aid to understanding the required underwater
manipulations in performing the various tasks to fulfill the salvage
mission,

3. Undersea Logistic Transfer and Tasks

Task analysis for undersea logistic transfer is contained in the
classified addendum to this research memorandum,

4, Task Spectrum

In addition to those tasks identified for the selected salvage
and logistic transfer operations, a compendium of undersea tasks was
put together through a review of various references®™ , The studies
reviewed were conducted to identify current and projected design
requirements for divers' tools and to apply the findings to the study
of deep submergence vehicle and vehicle design requirements, The com-
pendium of tasks resulted from a fairly exhaustive scarch and de-
finition of current and foresceable undersea tasks. While many studies
provide breakdowns of undersea tasks; it became apparent very early
in the review that the referenced studices represented the consensus on
possible underwater tasks. For instance, oceanographic studies will
indicatce that instrument pickup, tronsportation, and placemont are
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Table 8

RELATIONSHIP OF SALVAGE TASKS AND UNDERSEA TOOL REQUIREMENTS
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the required set of underwater tasks. The vehicle manipulator studics
specify torpedo pickup and transportation as a set of underwater tasks.
It is obvious that both sets of tasks correspond to the same geaneral
set of undersea activities. By correlating the tasks described in each
study, including those tasks described in the task analysis effort of
this study (Section III), a list of generalized tasks were generated.
This generalized task spectrum covers nearly all the current undersea
tasks and the foreseeable future undersea tasks. For convenience, the
generalized task spectrum is divided into four classes of activities.
Class I is the general search or location task; Class II includes the
observation, surveying, and measurement tasks; Class III includes the
simple pickup, transport, and placement tasks; and, finally, Class IV
represents the whole group of manipulative activities that include the
attachment, detachment, application, and excavation tasks. These tasks
are described briefly in the following paragraphs:

* Class I: Search

The search task includes activities associated with the loca-
tion of lost objects, wrecks, submarines, mines, bottom fea-
tures, and so forth. The search/location task is conducted
over a large area of the ocean bottom, with visual, acoustic,
electromagnetic, magnetic, or electric sensors.

¢ (Class II:

- Observation

The observation task entails the monitoring of activities
through the use of visual, acoustic, electromagnetic magnet,
or electric sensors, Examples of this task are harbor sur-
veillance, submarine detcction, and swimmer detection.

- Survey

The survey task includes such activities as the inspection of
wracks, recording via photography or sonar, and determination
of general conditions of underseas structures.

- Measure

The measurement task includes such activities as the determi-
nation of bottom slope, bottom hardness, water temperature,

and water turbidity,; the majority of oceanographic data gather-
ing activities might be classified as measurement tasks.

31

i

Av i i

.



Class III:

~ Pickup

The pickup task entails activities associated with the recovery
of small objects. Recovery of torpedoes, space re-entry bodies,
bombs, and the like requiring only simple grappling action are
simple pickup tasks,

- Transport

Tue transport task is simply the moving of an object from A to
B point,

Place

The placement task entails activities associated with the de-
ployment of bottom moored mines, bottom navigation markers, or
oceanographic instruments,

Class 1V:

- Attachment

The attachment task includes a whole range of activities from
the mounting of patch on wrecks, to the mounting of lifting
padeyes to recovery objects, to the hooking up of connectors,
such as air hose or pipelines. The task can be broken down
into the subtasks of drilling, bolting, riveting, hooking up,
clamping, and so forth,

Detachment

The detachment task includes the spectrum of activities frum
removal of scctions of a salvage object through clearing of
lines, to removal of marine growth from undersea objects. The
task can be broken down into the subtasks of drilling, burning,
hammering, chipping, scraping, and the like.

- Apply

The application task includes such activities as the placement
of foam for the flotation of wrecks and the application of
paint on undersea structures.

Excavate

The excavation task includes such activities as trenching,
tunneling, coring, and dredging. The generalized task spec-
trum is summarized in Table 9,
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Table 9

THE GENERALIZED TASK SPECTRUM

B R

Class Task Subtask
I Search/Locate
II Observe
Survey
Measure
III Pickup
Transport
Place
1v Attach e Drill
e Bolt
e Rivet
¢ Connect/Hook Up
e Clamp
Detach e Drill
¢ Burn
e Saw
e Hammer
e Chip
e Scrape
e Wipe
Anply ¢ Hose
e Paint
Excavate ¢ Core
¢ Dredge
e Trench
¢ Tunnel
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5. Functional Operations and Task Relationship

Each Navy undersea functional operation defined in Table 6 has
an associated set of tasks (Table 9), These functional operations and
task relationships are given in Table 10, The Xs identify tasks
associated with each subdivision of a major functional operation--
e.g., small object or large object recovery within the overall func-
tional operation heading of 'Pecovery." All tasks associated with an
overall functional heading, such as "Recovery,” 'Facilities Installa-
tion,"” or "Salvage," are shown in the shaded row.
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Table 10

IDENTIFICATION OF TASKS WITHIN THE NAVY UNDERSEA FUNCTIONAL OPERATIONS

CLASS | CLASS| CLASS CLASS
GENERALIZED 1 11 111 1v COMMENTS
TASK 11
SPECTRUM

NNECT /HOOKUP

353
® w Z &
2 Scbiglis, Bofely EEEEZ
2= 3z E = <g9 = < $_Ert—‘f
AR LRI AR A ]
UNDERSEA - HHHEE A g =3 | E
FUNCTIONAL g u E 7|2 E % E E g E
OPERATIONS » |87 5 al&|& < a e 5
SURVE ILLANCE 3
Landing Beach Area X|X X! X{X
Enemy Harbor XX XiX|X
U.S. Harbor Protection X|X X|X|X
Inshore USW X|Xx X|X[|X
USW All Ranges & Depths XX XXX

RECONNAISSANCE

Beach Area

Enemy Harbor

Mining Environment X

MINING

Mine Hunting and Countermeasures X

Mine Plants

Disarm Mine

Interrogate Mine Fields X
NAVIGATION SURVEYS "

RECOVERY

Small Object

¢ Torpedoes

@ Nuclear Weapons

@ Space Hardware

M| defo

Large Object

FACILITY INSTALLATIONS

X|XExX|x; x
XIX]X]X|X X X X X
XIX]X|X]X
XExpxjxjx N
General Construction Xixixjx|x X X

Foundation & Bottom

|
|
Sonar Ayrav (align & repatir)
Bottom Mounted ULM
Navigation Markers
Cable Laying & Inspection

Tunnelling

Dam Building

Ml [0 |5€ 1ok
#H-E

Well Drilling

SALVAGE See Sec. 111-C-3

Ships

Adrcraft

REPAIRS

In Port (Wet Dock)

Underway

SUPPORT

Occanographic Dats y X]X}X X X L X See Ref. 4

Sub Rescue Personnel

See Sec. 111-C-3

Underwater Logistics
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IV FUNCTIONAL PERFORMANCE REQUIREMENTS

A. Performance Criteria

Ten basic criteria were chosen for evnluating functional performance
in this study. These criteria will be used ihere to provide a general
statement of functional performance requirements--that is, a definition
of capabilities required to perform the undersea functional operations
defined in Table 6. ‘1hese same criteria are used as the basis for de-
fining the capabilities of MAN-IN-THE-SEA concepts and alternatives
{Section V). Finally, the defined functional performance requircments
and alternative capabilities stated in terms of these 10 basic functional
performance criteria are used for the comparative analysis of alternatives
(Section VI).

The 10 basic functional performance criteria are depth, time, mobil-
ity, load carrying, maneuverability, manipulation, seusing, cognition,
hardness, and covertness, The first two--depth and time--were the pri-
mary performance criteria used in the past to assess and select alterna-
tive systems for mission performance. However, in Lhe analysis conducted
during this study, simple, depth~time statements of requirements and
capabilities were not adequate, as will become clear in the comparative
analysis described in Section VI, Each of the defined basic performance
criteria and its major considerations are:

Depth

The depth criterion is concerned with {1) the mean depth requirement
for projected functional operation, (2) the maximum depth capability
of an alternative system, and (3) the excursion depth requircments
of an opuvration and the excursion depth capability of alternative
systems, Excursion depth means the depth range variation about the
required mean operating depth and the depth range capability of
alternative systems,

Time

The time criterion is concerned with (1) the time required to com-
plete a projected functional operation and {2) the reaction time
requirement and the reaction time capability of alternative systems.
The reaction time is the time required to move from staging point to
job site,
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Mobility

The mobility criterion is concerned with (1) the speed of motion
required to complete a projected functional operation and the speed
capability of the alternative system and (2) the range coverage
required to complete a projected functional operation and the range
capability of the alternative systems. In some instances, speed-
range criteria might be combined to form the single criterion of
endurance requirement or capability. In addition to the speed
criterion, which generally refers to horizontal motion, it is nec-
essary to add the vertical rate of motion as a mobility criterion
for the statement of requirements and capabilities,

Load Carrying

The load carrying criterion is concerned with (1) the size and
weight of the object that must be transported to satisfy a projected
tunctional operation and (2) the size and weight that alternative
systems are capable of carrying.

Maneuverability

The maneuverability criterion is concerned with (1) the access
limits associated with a projected functional operation and the
ability of a system to reach tight spaces and {2) the degree of
freedom available in each of the alternative systems.

Manipulation

The manipulation criterion is concerned with all motions and applied
forces that arc associated with hand, arm, and shoulder actions of
man in accomplishing work. A representation division of manipula-
tive criterion is the statement of degree of skill required to ac-
complish a given task. For the purposes of this study manipulative
measures are divided into minimum, moderate, and complex skill levels.

Sensing

The sensing criterion is concerned with (1) the visual, acoustic,
clectromagnetic, and tactile senses required to accomplish funcional
operations and (2) the capabilities of alternative systems for meet-
ing these requirements.,

Cognition

The copnition criterion refers specifically to (1) the cognitive
skills required to make an on-site assessment of a given functional
operation and (2) the on-site assessment capability of the alterna-
Live systems,
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Hardness

The hardness criterion is concerned with {1) the resistance require-
ment to hazards, such as explosion (mechanical), nuclear radiation,
temperature, and marine life, during the accomplishment of projected
functional operations and (2) the resistance capability of alterna-
tive systems to hazards.

Covextness

The covertness criterion is concerned with (1) the required resist-
ance to detection by visual, acoustic, magnetic, and electrical
sensors during the accomplishment of a projected functional opera-
tion and (2) .he ability of alternatives to avoid detection by the
various sensors,

The 10 basic performance criterion are separated into four groups
and summarized in Figure 8.

B. Performance Requirements Definition

The m.ssion, functional operation, and generalized tasks relation-
ship developed in Section II and presented in Tables 6 and 10 are the
basis for the development of the functional performance requirements
matrix shown in Table 11, The functional performance requirements shown
in this table are subjective estimates of future requirements, They are
qualitative statements that tend to set the boundaries for requirements
rather than specific quantitative statements of those requirements. The
latter can only be arrived at through a comprehensive mission and func-
ticnal operations analysis., Such a comprehensive analysis of each func-
tional operation was not deemed necessary in this study. Table 6, which
identifies the sources of naval undersea functional operations, is in-
corporated in Table 11 for the sake of completcness.

in relating the functional operations to a particular subcategory
of the functional performance requirements, some general interpretations
have been made of the particular requirements of depth, travel time,
duration of operation, speed, range, endurance, object size, and object
weight, In all other descriptions of functional performance requirements,
a check in the appropriate row and column of the Functional Operation and
Functional Performance Requirement Matrix indicates only that the partic-
ular functional operation is supported by the indicated functional re-
quirement, Such requirements as travel time and mission duration time
are estimated to be in the order of hours or days. Speed and endurance
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requirements are estimated on a graduated number scale where 1 is very
important to success, 2 and 3 are less important, and 4 is very unimpor-
tant. Range is estimated in two ways: (1) the range is less than
100 miles or (2) the range is relatively short--i,e., the operation is
independent of range. Reference 9 provides an assessment of ranges
under 100 miles for particular strike warfare operations in those world
areas where reconnaissance and surveillance are more probable., Using
hese ranges, it was computed that, in 80% of the areas, the range from
the 33-fathom line (200 feet) to the beach is 40 miles or less., In 50%
of the areas, 10 miles or less is the range to the 33-fathom line. With
respect to the object weight and size under load-carrying ability, only
two categories for estimated weight are used; small, which is 5 tons or
less, and large, which is 10 tons or greater.
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V  ALTERNATIVES TO MISSION ACCOMPLISHMENT

A, General

Man's interest and concern with the sea and his excursions into
the sea date back to earliest recorded history. It was not until recent
years however, that substantial gains in undersea technology and in the
understanding of high pressure physiology have allowed man to make sig-
nificant long term excursions into the sea.

There are two techniques for placing man in the sea. The first,
the MAN-IN-THE-SEA concepts, places man in direct contact with his work-
ing environment and leaves him completely exposed to the ambient ocean
pressure, The ultimate goal of this development is to enable man to
move about the ocean depths with freedom comparable to that which he
enjoys on land. The sccond, the alternatives to the MAN-IN-THE-~SEA con-
cepts, provides a surface atmospheric environment, often within a pro-
tective shell, which shields man from the ambicnt undersea environment.
Free swimming deep submergence vehicles have carried men to the deepest
known ocean areas., The major drawback of such systems is that man is
scparated from the task he must perform. However, improvements are being
made in underwater sensors and mechanical manipulators to provide the
shiclded man with better contact with his work environment.

Advances in the MAN-IN-THE-SEA concepts arc placing man at greater
occan depths and allowing him to stay longer at such depths to accomplish
useful work. On the other hand, the systems that shield man from the
ambienl ocean environment can now penetrate extreme ocean depths and
their work capabilities are improving., The capabilities of the MAN=]N=-
THE=-SEA concepts and the alternative systems therefore are becoming com-
petitive from a functional veiwpoint, The identification of naval mis-
sions that can be accomplished by MAN=-IN=-THE=-SEA concepts must consider
the capabilities of alternatives that can accomplish the same mission,

B. Desceription of Alternatives

1. MAN=IN=VHE=SEA Concepts

MAN=IN-TIHE=SEA concepts are defined broadly as those underwater
syvstems where man is exposed to the ambient pressure environment.,
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Therefore, it is ncihing more than a new name assigned to the field of
diving technology. The development of compressed gas diving technology
progressed from the tethered hard-hat diving techniques, through the
untethered self-contained underwater breathing apparatus (SCUBA) tech-
niques, and finally to the saturation diving techniques,

The development of saturation diving techniques has created a po-
tential for sending an unshielded man to heretofore unattainable depths
and for long term habitation of the sea in the ambient pressure environ-
ment. Long term undersea haktitation and accomplishment of meaningful
work at great ocean depths are the objectives of such research efforts
as: (1) the U.S. Navy sponsored SEALAB test series, (2} the CONSHELF
test scries by Cousteau of France, and (3) the MAN-IN-THE-SEA series by
Link (Ocean Systems, Inc.) of the United States. The requirements of
off-shore oil drilling operations--e.g., well-head completion, drilling
rig and pipeline repair, and equipment salvage--gave impetus to the rapid
transformation of saturation diving techniques from experimental stages
to operational commercial applications. In recognition of Lhe military
potential of saturated diving techniques, the U.S. Navy is supporting a
MAN=-IN-THE-SEA program. This program is directed toward establishing
man's ability to accomplish useful work down to the continental shelf
depth and to determine man's ultimate depth-time limits in the ambient
ocean environment. The completed SEALAB I and II operations and the
upcoming SEALAB III operation are one aspect of the total Navy MAN=IN=-
THE=SEA program.

A comprehensive review of the MAN-IN-THE-SEA concepts ié_provided
in Appendix A. This review considers (1) the basic philosophy of diving
technology, (2) the current status of diving technology, ?3) the direc-
tion or focus of current R&D efforts, and (4) the possibility of advanced
diving techniques, such as fluid breathing. The major classes of MAN-
IN-THE-SFA concepts are summarized here to provide the background for
comparing the capabilities of alternative systems. In addition to re-
viewing the MAN-IN-THE~SEA concepts, the project team reviewed the
reported results of diver performance studies and consolidated essential
data from those studjes, The review of diver performance studies is
presented in Appendix B and is organized into four performance areas:
(1) psychomotor performance, (2) mental task performance, (3) sensation
and perception, and (4) communications,

There are many alternatives in the use of diving techniques. In
general, diving operations can be divided into two basic modes: the
frce swimming man and the tethered man., Tethered diving operations in
turn can be subdivided into the following modes: (1) the direct surface-
tethered man, (2) the indirect surface-tethered man, (3) the fixed
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bottom-site tethered man, and (4) the mobile vehicle-tethered man. These
various modes of diving operation are illustrated in Figure 9, which
clarifies the division of the modes of operation.

2, Alternatives to MAN-IN-THE-SEA Concepts

The alternatives to MAN-IN-THE-SEA concepts include (1) manned free-
swimming vehicles, (2) manned-tethered vehicles, (3) unmanned or remote-
controlled tethered vehicles, and (4) manned fixed bottom stations.

Many vehicle-oriented systems have been designed to accomplish undersea
tasks. A comprehensive list and description of the systems that are
available throughout the world are contained in Reference 10. Selected
examples of these systems are described in the following paragraphs.

a. Manned Free-Swimming Vehicles

The manned free-swimming vehicles constitute the largest group of
alternatives to MAN-IN-THE-SEA concepts. More than 30 manned submers-
ibles are being used in the United States by the Navy, other governmental
agencies, and commercial operators to accomplish undersea tasks. Spe-
cific examples of this class of alternatives that were selected for com=-
parative analysis are the ALVIN, AUTEC, and BEAVER MK IV vehicles.
General characteristics of these vehicles are provided in Figures 10
through 12,

The ALVIN, which is operated by the Woods Hole Oceanographic Insti-
tute under contract to the Office of Naval Rescarch, is performing a
wide spectrum of undersca activities. These activities include (1) in-
spection of underwater instruments and structures at the Navy's Atlantic
Undersea Test and Evaluation Center off Andros Island (2) oceanographic
surveys requiring bottom and water samples; coring; placing and retriev-
ing instruments and markers; photographing; and so forth. The ALVIN was
used successfully during the search and location of the hydrogen bomb
that was lost near Palomares, Spain. This vehicle is equipped with a
mechanical manipulator that can handle specialized tools for accomplish-
ing underwater tasks--for example, the bottom coring tools used in the
oceanographic survey activities. The manipulator has a grapple haid
terminal device that can handle a variety of specinlly designed tools
and instruments. Sensory equipment on the ALVIN includes scanning sonar,
echosounder, navigational sonar, television cameras, and movie cameras.
Communications equipment includes acoustic communications for underwater
use and radio communications for surface use,
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CONFIGURATION CHARACTERISTICS

DEPTH RANGE
6,000 feet 20—-25 nautical miles
LIFE SUPPORT‘ DIMENSIONS
8 hours Length: 22 feet
normal Width: 8 feet
24 hours Height: 12 feet
maximum
SPEED PA:LZ%\D
2 knots G potnds
cruise
6 knots CREW
maximum 2

]

Figure 10 CONFIGURATION AND CHARACTERISTICS OF ALVIN

The AUTEC vehicle is essentially a second generation version of the
ALVIN., Two of these vehicles, AUTEC I and AUTEC II, are being buiit for
the Navy Ship Systems Command., They are intended for use at the Navy's
Andros I[sland operation. The vehicles are to be used for placing elec-
tronic systems on the ocean bottom and inspecting, testing, and retriev-
ing them and for performing oceanographic research. The vehicles also
will be capable of conducting or assisting in salvage operations at
depths to 6,500 feet. As currently visualized, each vehicle will be
cequipped with two mechanical manipulators of more advanced design thlL:an
that of the ALVIN (see Appendix C). Sensory and communications equip-
men. are essentially the same as those on the ALVIN.

The BEAVER MARK IV submarine work boat was constructed by North
American Rockwell Corporation to be used in suoporting off-shore oil ex-
ploration, drilling, and production operations. The vehicle is equipped
with an advanced design manipulator that can handle a variety of tools,
The tools, which can by changed underwater, include impact wrenches,
stud guns, jet pumps, wire brushes, grinding wheels, and cable culters.
The BEAVER also serves as a mobile platform for MAN-IN-THE-SEA operations,
¢ince i! contains a diver lock-in/lock-out capability. Sensory und com-
munications equipmerit are essentially the same as those on the ALVIN and
AUTEC vehicles.
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CONFIGURATION

CHARACTERISGTICS

DEPTH
€,500 feet

LIFE SUPPORT

SPEEU

2 knots
cruise

8 knots
maximum

RANGE

20-25 nautical miles

DIMENSIONS
. Length: 25 feet
Width: 10 feet
Height: 15 feat

PAYLOAD
1,200 pounds

CREW
2

Figure 11 CONFIGURATION AND CHARACTERISTICS OF AUTEC

CONFIGURATION

CHARACTERISTICS

DEPTH
2,000 feet

LIFE SUPPORT
36 hours

SPEED

2.5 knots
cruise

5.0 knots
maximum

RAMNGE

20-25 nautical miles

DIMENSIONS
Length: 24 feet
Width: 10 feet
Height: 11 feet

PAYLOAD
2,000 pounds

CREW
2 operators
3 divers

Figure 12 CONFICURATION AND CHARACTERISTICS OF BEAVER MARK 1V
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b. Manned Tethered Vehicles

Two examples of manned tethered vehicles were selected for compara-
tive analysis durip: this study.

The first, which is shown in Figure 13, is an articulated metal
diving dress. It consists of (1) a body formed of three spherical zones
superimposed with extensions for the top, rrms, and legs; (2) a spherical
dome cover; (3) two articulated arms ccnnected to the body through a
gimbal spherical articulator, which has revolving joints above the elbow
and two pairs of pliers (or other interchangeable tools); (4) two artic-
ulated legs for propulsion; (5) a ballast chamber on the back of the
body; and (6) two compressed air bottles for serving the ballast chamber
and two oxygen bottles for life support. The first metal suit was built
in 1935, Since that time, more advanced versions have been constructed.
The suit is sold commercially by Robert Galeazzi, Ltd, La Spesia, Italy.

CONFIGURATION CHARACTERISTICS

DEPTH DIMENSIONS
600 feet Length:
Width: 4 feet
LIFE SUPPORT Height: 8 feet
3 hours
PAYLOAD
SPEED
CREW
RANGE 1

Figure 13 CONFIGURATION AND CHARACTERISTICS OF ARTICULATED METAL
DIVING DRESS

The second example of a manned tethered vehicle is the Guppy which
is built by Sun Shipbuilding and Dry Dock. This vehicle, which is shown
in Figure 14, is & two-man craft tethered to a support ship or oil rig
by a 3,000 foot electrical cable. Its unique feature is the availability
of 16 killowatts of high intensity light. Although descriptive data on
the vehicle do not specify manipulative capability, there is no reason
to assume that manipulators cannot be mounted on it,.
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CONFIGURATION CHARACTERISTICS

DEPTH CIMENSIONS
3,000 feet Length: 20 feet
Width: 6 feet
LIFE SUPPORT Height: 9 feet
8 hours
PAYLOAD
SPEED
5 knots CREW
2
RANGE
Unlimited

Figure 14  CONFIGURATION AND CHARACTERISTICS OF GUPPY

¢, Unmanned Remote-Controlled Vehicles

Two examples of unmanned remote-controlled vehicles are the CURV
vehicle and MOBOT. CURV (cable-controlled underwater research vehicle)
was developed by the U.S. Naval Ordnance Test Station, Pasadena, Cali-
fornia. CURV weighs about one ton and operates to depths of about
2,000 feet. Advanced versions should be able to reach 6,000 feet, how=
over. The vehicle was designed to recover torpedos and other hardware
weighing a maximum of one ton. The CURV vehicle, which is shown in
Figure 15 is operated by a five-man crew on the surface. This crew
directs, controls, and monitors recovery operation through a closed-
circuit television network, supported by acoustic detection and position-
ing components.,

The MOBOT (MObile roBOT) was developed by Hughes Aircraft Company
and is used by Shell 0il Company o. California as an underwater wellhead
manipulator, MOBOT, which is shown in Figure 16, cousists of an electro-
hydraulic vehicle designed to be lowered into the ocean, land on a track,
and operated to insert or break out screws arranged in a horizontal axis.,
The MOBOT's operations are directed from the surface by means of a closed~
circuit television network supported by acoustic sensors. MOBOT, because
of the nature of the work it must perform, is very specialized and there-
fore is limited with respect to the underwater work it can perform. A
more advanced version of MOBOT has been proposed but to date has not been
constructed. This advanced vehicle called UNUMO is also shown in Fig-
ure 16,
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CONFIGURATION

CHARACTERISTICS

DEPTH DIMENSIONS
2,000 feet Length: 13 feet
Width: 5 feet
LIFE SUPPORT Height: 6 feet
None
PAYLOAD
SPEED 2,000 pounds
2—3 knots
CREW
RANGE None
Unlimited

Figure 15 CONFIGURATION AND CHARACTERISTICS OF CURV
CONFIiGURATION CHARACTERISTICS
DEPTH DIMENSIONS
1,000 feet Length:
Width: 6 feet
LIFE SUPPORT Height: 14 feet
None
PAYLOAD
SPEED
2-3 knots CREW
None
RANGE
Unlimited

Figure 16

CONFIGURATION AND CHARACTERISTICS OF MOBOT
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d. Fixed %“ottom Station

In studies conducted for the U.S. Naval Civil Engineering Laboratory,
Port Hueneme, California, three concepts of fixed bottom stations were
proposed. These studies defined the most suitable configurations and
power supplies for a manned underwater station, capable of supperting
the requirements of five individuals, both in life support systems and
laboratory spaces, Personnel could remain in the station at depths down
to 6,000 feet for 30 days. The three concepts were proposed by General
Dynamics Corporation, Groton, Connecticut;!! Southwest Research [nstitute,
San Antonio, Texas;!? and Westinghouse Electric Corporation, Baltimore,
Maryland.!® The General Dynamics vursion is shown in Figure 17. The
station would provide an atmospheric environment in which men could live

and perform oceanographic research via remcte control sensors, instru-
ments, and manipulators.

CONFIGURATION CHARACTERISTICS

DEPTH DIMENSIONS
6,500 feet Length
Width
LIFE SUPPORT Height
30 days
PAYLOAD
SPEED
CREW
RANGE -]

Figure 17 CONFIGURATION AND CHARACTERISTICS OF FIXED BOTTOM STATION
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VI DEFINITIiON OF MAN-IN-THE-SEA MISSIONS

A. General

The anproach taken in this study to define MAN-IN-THE-SEA missions
was directed toward answering the following questions:

* What are the unique capabilities of the unshielded man in
accomplishing specific underwater tasks?

* Which Navy undersea missions have essential tasks that require
the unique capabilities of the unshielded man?

These fundamental questions were answered (1) by conducting a com-
parative analysis of alternative capabilities that identified the unique
capabilities of the unshielded man and (2) by isolating the functional
operations with associated tasks that require the unique capabilities
of the unshielded man. The resulting set of MAN-IN-THE-SEA missions are
summarized in Section VI,

B. Comparative Analysis of Capabilities

The alternative systems for accomplishing Navy undersea missions
described in Section V are summarized in Table 12, These alternative
systems served as the basis for the comparative analysis of capabilities.
Since they reflect current capabilities, whereas this study addresses
the 1975~85 era, the project team had to project the future capabilities,
Therefore, in the comparative analysis that follows, current R&D efforts
are reviewed briefly and their effects on future systems capabilities
are assessed.

1. Depth Capabilities.

Even by the most optimistic estimates of advanced diving technology,
the depth an unshieclded man can reach is very limited relative to that
which can be reached using the shielded systems approach. Technological
and physiological factors limit the depth an unshielded man can reach
(see Appendix A). There may be some psychological limits as well, but
they are considered to be secondary in importance.
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The principal technological factors affecting man's depth capability
are (1) the limitations i1n life support equipment and (2) the limited
ability to contrnl and monitor critical mixed-gas breathing atmospheres.
The first limitation constrains the depth that a free swimmer can reach
and still have sufficient endurance to accomplish useful work. The pres-
ent solution to this limitation is the use of the tethering technique,
in which man is connected by a hose to a larger gas supply on the surface,
on a vehicle, or in a bottom station. The problem of limited gas supply
might be overcome by such concepts as cryogenic gas storage and the ex-
traction of oxygen from seawater (artificial gills). Development of
improved gas analysis techniques would overcome the second technological
limitation on depth.

The physiological factors that limit the depth to which man can
descend stem from the indirect and direct effects of hydrostatic pressure.
The principal indirect effects of pressure are increased gas density,
oxygen toxicity, and inert gas toxicity effects in breathing. As gas
density increases with increased pressure (depth), the effort required
to breathe increases proportionally. It is quite conceivable that this
effort would be equal to a significant amount of man's work output. A
technological solution to the gas density problem would be to provide a
breathing pump or active ventilation assistance. While the biochemical
effects that lead to oxygen toxicity are still not clearly understood,
they can be minimized by careful control of the oxygen content in the
breathing environment. This control is a technological factor mentioned
earlier. As with oxygen toxicity, the exact biochemical effects resulting
in inert gas toxicity are not understood. The current solution to re-
ducing the effects of inert gas toxicity is to use multiple gas mixtures,
helium-nitrogen-oxygen, and even hydrogen in the breathing mixtures. The
fluid breathing concept currently being explored is a very intriguing
solution to the inert gas toxicity problem. In this concept, oxygen en-
riched fluid is used to fill the lungs, thus eliminating the need for
inert gas. While this concep: is still in a very early research stage,
successful tests have been made with animals.* The direct effzcts of
pressure on the cellular structure of the human body also limit the depth
that man is able to endure. Although data are not available on human
ccllular tolerance to pressure, some effects of pressure on human skel-
etal structure have been indicated and some early experiments on animals

* Recent unconfirmed reports indicate that human velunteers have been

used in successful cxperiments in which half the lung was filled with
fluid.
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have indicated that pressure affects the central nervous system. Loose-~
ness of joints at depths exceeding 500 feet has been reported; divers'
arms and legs slip out of joint rather easily at these depths. At depths
greater than 1,000 feet, there appear to be some effects on the cellular
structures. It has been demonstrated that the direct effects of pressure
include: (1) failure of cell division, (2) failure of ameboid movement,
(3) inhibition of biological luminescense, and (4) inhibition of growth

of bacteria. Bacterial growth is inhibited by the pressures at 1,000 feet
of seawater. To date, man hus reached a depth of slighktly over 1,000 feet.
It is important to note that there is no information on the long term
effects of inhibited bacterial growth at these depths. Conservative esti-
mates of physiologists who have worked with diving technology place man's
depth limit from 1,250 feet to 1,500 feet. The most optimistic estimates
place thc limit from 1,500 to 3,000 feet.

In addition to the maximum depth 1limit, a diver is limited in his
ability to vary depth during the work cycle. This limitation is imposed
by the need for decompression (see Appendix A). The actual excursion
depth limit during a working dive is still not well-defined and is being
investigated by physiologists.

Compared with MAN-IN-THE-SEA concepts, even the current operating
vehicles have exceeded by a factor of two, the most optimistic estimates
of unshielded man's depth limit. In many cases, the depth that a vehicle
system can achieve is limited only by cconomic considerations. With the
exception of the BEAVER MARK IV--which was designed to satisfy the re-
quirements of off-shore o0il operations and is only capable of achieving a
depth of 2,000 feet--most free vehicles are designed for depths around
6,000 fcet. A 6,000-foot depth capability allows these vehicles to reach
about 30% of the ocean bottom. Vechicles that are capable of penetrating
the deepest ocean depths are in cexistence, and more advanced and versatile
vehicles are being designed and constructed. Tethered vehicles, such as
MOBOT, are generally limited by tether length. An advanced design CURV
is being developed that can approach 6,000 feet.

Table 13 provides a summary of the depth capabililies of alternative
systems.,  In the case of the MAN-IN-THE-SEA concepts, some cxamples of
depths reached are shown to indicate the depth penetrated by unshielded
man.

2. Time Capability

The time capability of MAN-IN-THE=-SEA concepts is described in terms
»f total bottos time and water immersion time., Since the development of
sauration diviy, technique, the time an unshiclded man can stay in ambient
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pressure--i,e., the bottom time--was increased by several orders of
magnitude, A pri&ary objective of research efforts, such as the Navy
SEALAB operations, is to determine the exact length of time that man can
exist in a hydrostatic pressure environment. Long term effects of pro-
longed exposure to high hydrostatic pressure are practically unknown at
this time. In the few experiments to date, no i1l effects have been
apparent. The depth-time relationships of long term undersea habitation
experiments, both completed and planned, are summarized in Figure 18.

Water immersion time refers to the length of time a diver actually
spends in the water, which is limited primarily by water temperature and
the effects of water on human skin. The first, the effects of water
temperature, can be avoided by providing heated diving suits for divers.
A nuclear isotope powered, hot water heated suit will be tested during
the SEALAB IIl operations. There should be no water immersion time limit
for a diver who is provided with a heated suit. The effects of prolonged
water immersion on human skin is under study. Although no data on immer-
sion limits have been found, it would appear that man's capabili‘y to
withstand immersion could be enhanced by surrounding him with u protective
fluid.

In comparison, it would appear that the time capability of MAN-IN-
THE-SEA concepts is comparable to the vehicle-oriented systems to depths
approaching 600 feet. More must be known, however, about the long term
effects of pressure at greater depths., Immersion time for the unshielded
man should be unlimited i1f adequate protective dress can be provided;
this factor does not appear to be a technological limitation. The oper-
ating time of free vehicles §{s limited by life support and power source
endurance capabilicies. The primary constraint is in the endurance limi-
tation of conventional power sources. Compact nuclear power package would
clininate current vehicle endurance limits. Similarly, fixed bottom habi-
tat is power source limited.

3. Mobility Capability

Since the wovements of the tethered man and the tethered vehicles
arc canstrained by the tether, the comparison of mobility considers only
the capabilities of the free swimmer and the {ree vehicle, This compari-
son {8 shown in Figure 19. The shaded area in the figurc identifies the
spced=range capabjlity of a free swimmor propelled by swim fins and carry-
ing life support cquipmont equivalent to the size of three, 72-cubic foot
capacity SCUB\A tanks. The upper bound is the endurance capability for a
trained athlete. The curve is generated from data published in Reference
14. In comparison, the published speed-range capability of BEAVER MARK IV
and ALVIN are indicated in the figure. Tho vehicles have a distinct
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advantage over man. Furthermore, since man's speed-range capability is
limited by a physical constraint whereas the vehicle capabilities are
limited by power source technology, the gap between man and vehicle capa-
bilities will increase,

5.0 ()
' BEAVER MK IV
(BURST) \
N\
40 AN
AN
AN
N
£ 304 \
E
ALVIN (CRUISE)
N
a \.  BEAVER MK IV
& \\ (CRUISE)
% 20 (O]
\
MOBILITY CAPABILITY OF MAN
10
0 }
0.1 10 100

RANGE — nmi

Figure 19 SPEED-RANGE COMPARISON OF MAN AND VEHICLES

4. Load-Carrying Capability

On the basis of the in-water weight of loads that must be picked up
and transported, vehicles will always have an advantage over unaided man.
A rough estimate of load-carrying capability is 20 pounds for a man and
2,000 pounds for a vehicle, making the vehicle advantage over man a factor
of 100. If the comparison is made on the basis of using buoyant life de-
vices, the vehicle will again have the advantage. Since the vehicles
have a mobility advantage, they will also have a load-carrying advantage.

5. Maneuverability

No analysis is necessary to state that man has the advantage in ma-
neuverability. Man is very compact and agile and can enter limited
access spaces and mancuver around congested structures. It is difficult
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to visualize vehicles, manned or unmanned, that can approach the compact-
ness and agility of man in accomplishing undersea tasks.

6. Manipulative Capability

The comparison of manipulative capabilities of man and mechanical
manipulators on vehicles is made difficult by the lack of clearly defined
performance measures. There is no quantitative measure of dexterity nor
is there a clear-cut definition of manipulative success or failure. Fur-
thermore, the comparison is complicated by the availability of a wide
range of diver tools and mechanical manipulator terminal devices. The
comparison made in this study therefore is a very general assessment and
results in a qualitative statement of manipulative capability.

As the basis for comparing the capabilities of man and mechanical
manipulators, the level of manipulative skills required to accomplish
specific underwater tasks was defined as shown in Table 14. A review of
available data on diver manipulative performance was conducted and the
results are reported in Appendix B. Available descriptive data concerning
the capabilities of underwater mechanical manipulators also were reviewed,
and a summary is provided in Appendix C. The following conclusions were
drawn from the comparison of man and mechanical manipulators:

a. Manipulative tasks that require minimum manipulative skills can
be accomplished equally well by man and mechanical manipulators.

b. Manipulative tasks that require moderate manipulative skills can
be accomplished by man and by a mechanical manipulator if the
latter is "given enough time." On the basis of very few data, it
is estimated that mechanical manipulators will take 10 to 100
times as long to accomplish a task depending on the complexity
of the task., For example, a simple connecting/disconnecting
task might take a man 5 seconds to accomplish, whereas a manipu-~
lator will require a minute, or, a more complex bolting task
might take a man 10 seconds and a manipulator 5 minutes.

c. Manipulative tasks that require complex manipulative skills can
be accomplished only by man.

For further comparison, the tools and terminal devices avajilable for
accomplishing underwater tasks arc listed in Table 15.

Additional important manipulative advantages of man over the mechani-
cal manipulators are the dynamic range of man's manipulative capability,
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Table 14

SUMMARY OF REQUIRED MANIPULATIVE SKILLS

Degree of
Manipulative Skill Required

é Manipulative Tasks Minimum Moderate Complex

Cutting X

¢ Sawing X
¢ Shearing X
* Burning
¢ Pyrotechnics X

e

Torqueing X
Hammering X

Drilling

Punching

Stud Driving

* Riveting
* Fastening

Sealing

¢ Crimping
¢ Vacuumizing

Eo T -

Welding X
Coring X
Calking/Coating X
Guiding/Positioning X
Connecting/Disconnecting
De-embedding

* Raising
* Dislodging
* Excavating

LT T S

Source: Referencce 15.
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his flexibility, and his reliability. Dynamic range refers to the size

of jobs a man can handle. For example, a man can easily manipulate ob-
jects smaller than 0.1 inch to objects up to sizes measured in feet.
Various sizes of mechanical manipulators are generally required to handle
the range of objects that man can handle. Flexibility refers to the range
of jobs that a man can handle. For example, a man can use an uniimited
range of tools compared with the mechanical manipulators (Table 15).
Furthermore, man has the flexibility to use improvised tools on the job
site when an unexpected situation arises whereas mechanical manipulators
with specialized terminal devices are not as flexible., Reliability refers
to the ability to accomplish a specific manipulative task without error--
for example, dropping components, such as nuts, bolts, and even tools,
during a job. Although reliability is somewhat difficult to measure, it
is generally agreed that man is a much more reliable manipulator than the
mechanical devices.

7. Sensing Capabilities

The principal sensory advantage of MAN-IN-THE-SEA concepts is the
availability of tactile senses. The visual capability of man in the water
(see Appendix B) and that of man in a vehicle are comparable. Because of
the larger payload capability of vehicles, which allows the use of acoustic
and electromagnetic sensing devices, the vehicles would normally have the
advantage in sensory capabilities. The hearing of man in the water shows
some spectral degradation, and at higher frequencies (above 3,000 Hz)
there is a complete loss of sound localization capability.

8. Cognitive Skills

In the undersea environment, the cognitive skills of unshielded man
show some degradation, which is attributed to inert gas toxicity and to
some extent to stress imposed by the hostile ocean environment. If inert
gas toxicity problems can be resolved through the use of advanced diving
techniques, such as-fluid bLreathing, then the cognitive skills or on-site
assessment capability of unshielded man could be equivalent to that of a
man in the protective shell of a vehicle,

9. Hardness
With respect to hardness, the vehicle-oriented systems have the ad-

vantage over the MAN-IN-THE-SEA concepts for protecting man from mechani-
cal (explosions), radiation, temperature (cold), and marine life hazards.
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10. Covertness

A free swimming man has the advantage in covertness because of his
small size and the availability of equipment to minimize visual, acoustic,
magnetic, and electrical sensors. The equipments associated with the

tethered man make this system's covertness factor comparable to that of
the entire range of vehicle-oriented systems.

C. The Unique Capabilities of the Unshielded Man

* The unshielded man or MAN-IN-THE-SEA is unique in that:

- He is compact and agile, which allows him to reach job sites
of limited access and in congested structures.

- He possesses manipulative skills unavailable in underwater
mechanical manipulators.

- He possesses tactile senses that allow him to accomplish
manipulative tasks in extremely turbid waters,

- As a fre. swimmer, he is relatively covert to visual, acoustic,
magnetic, and electrical sensors.

The unshielded man has capabilities comparable to those of the
vehicle=-oriented systems in operating time and in cognitive
skills for on-site assessment of tasks.

The unshielded man is at a disadvantage when compared with the
alternative systems in operating depth capability, mobility capa-

bility, load carrying capability, and resistance capability to
hazards.

D. Task Allocation Matrices

The last step taken during the study in identifying MAN-IN-THE-SEA
missions within the total navy undersea mission spectrum was to generate
a set of task allocation matrices. These matrices, which are shown in
Tables 16 through 32, identify the tasks associated with a single func-
tional operation or a specific set of them. The tasks are then related
to the performance criteria that indicate the unique capabilities of MAN-
IN-THE-SEA concepts. Therefore, the task allocation matrices are the

integrating clement of the comparntive analysig for identifying MAN-IN-
THE-SEA missions,
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Table 16

TASK ALLOCATION MATRIX FOR USDERSEA FUNCTIONAL OPERATIONS:
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TabLle 17

TASK ALLOCATION MATRIX FOR UNDERSEA FUNCTIONAL OPERATIONS:
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TASE ALLOCATION MATRIX FOR UNDERSEA FUNCTIONAL CPERATIONS:
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Table 19

TASK ALJOCATION MATRIX FOR UNDERSEA FUNCTIONAL OPERATIONS:

MINING = MINE PLANTS

“ENERAL1ZED
TASK
SPECTRUM

)

FUSMTT LONAL
PERYOKVANCE
EEQUIREMENTS

|

CLAS® | CLASS | CLASS CLASS
1 1 1 v

—-EXCAVATE

—= = ATTACH
P~ DETACH

i
—d

SFARCH: LOCATE
SCRAPE: WIPE i

OBSERVE
SURVEY
MEASURE
PICKUP
PYROTECHMIC
DRILL

SAW

HUOER -CNIP

OONNECT

CLAWP

PLACE
TRENCH

DRILL

BOLY

RIVET

COVMMENTS

MOBILITY

® SPLke

®  RAMGE

LOAD CARRY ING

@ ORILT SIZE

B B e

® ORILT WEIGHT

MANFUVERAB I LL PY

® Avchsy LINT

® DHUREES FREEDUM

h AREILUNEE R

®  MiIvIMUM SKELL

® WOouLMATE SKILL

o COVPLE!L SKILL

SENSING

e Visty

® Actl ik

® ELECTROMAUNETIC

® WAGNETIC

® ELEUTRIC

4 -4

TACTEL,

VOLNLTLON

& ONCSUENK ASEENS,

X

7
MAN-IN THE 5/{4\’ //

/lmw.'l CAPABILITY 7,
/ 7 !

MAN-IR-THE-SRA
Uyt I.'(‘A;Al;li.l?\‘

BAKDNE 3

[ RTINS § R A

® M HAMIUAL

® PEELagnts
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®  NMNESE TR
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7
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Table 20

TASK ALLOCATION MATRIX FOR UNDERSEA FUNCTIONAL OPERATIONS:

MINING - DISARM MINE

GENERALI1ZED
TASK
SPECTRUM

REQU IREMENTS

|

CLASS | CLASS

m

CLASS
v

b= ATTACH
[~ DETACH
-ZXCAVATE

T
—
—l- APPLY
.—1

PYROTECHNIC

DRILL

SCRAPE/WIPE

MASDER/CRTP

BEARCH/LOCATE
ERVE
SURVEY
MEASURE
PICKUP
CONRECT

DRILL
BOLT
RIVET

HOSE
COAT

COMMENTS

i

TUNNEL

wBILITY

® SPEED

LOAD CARNY [NG

® OBJECT SIZK

® ORJECT WEIGNT

e
Imwvmlu.m )

| o acess Lomr

MAN-IN-THE-SEA

© DEGREES FREEDOM
WMMPCLATION

o MINIWUN SXILL

® MOULRATE SKILL

UNIQUE CAPARILITY

\AAN-IN-TRE-SKA

® COWLEX SKILL
SEXSING

o VIstAL

§ CAPAMILITY

® ACUUSTIC

®  ELLU TROMAGNETIC

® MAGNETRC

® KLKCTRIC
® TACTILE

UL ITION

L3 |

® ON-SUKNE ASSESS.

HARDNESS

HINE HAZARDS

®  MEUMANICAL

¢ EXPLOSIVES

& RADIATION

¢ IEWPLR\TURE

o sARIs LIFE

[ ST 1F 1)

WINL WAZARDS

® VISUAL

A Ui

O WNUITIC IAFIUENE ML

'M\vu(‘mt-su Z
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e AT
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T
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/
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4 s
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‘table 21

TASK ALLOCATION MATRIN FOR UNDERSEA FUNCTIONAL OPERATIONS:

MINIM = INTRRROGATE MIMNE FILLD

‘ENEHALIZED CLASS | CLASS | CLASS CLASS
TASK 1 il (B Y
SPECTRUM
-
) z g s
1= O > <
£ g g | 2
1 E o 1%
< = < =
L . r'J“ |—L‘ COMMENTS
FUNCTLONAL w [ RN | 1] ’
PERPORMANCF S 9 plm
QU IRLALNTS % £ z Bl
T wl e g e & SIS
I Y P Y 2] & xlw = fa
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PACA A EA AR R el L E B zg..‘ Eswplg Z |z
3 EEEEREIEEE 55 RIEIE 12 5 5 E IR R R B &R e
o |B1Z[EIZ|ER|E(ER|Z|B|0|B|RIEIS|2IR|2|8=|2|&|EE
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®  SPEED
®  RANGE X
LOAU CAHRY ING
® OLOE T SIZE
® ORIECT WELGHT i . 3 }
MANELVERABILITY : i %
® ACCESS LIMIT / MAN -IN-THE -SEA
/lnuqur: CAFABILITY
® DEGREES FREEDUM / 7
WAL IPULAT I
® MINIMUM SKILL ,
e . 722277, 2777
®  MODERATE SKILI : ! / MAN- IN-THE-SEA
NIQ'E CAPABILITY
* COVPLEN SKILL i 4)}/%}// W
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®  ELECTROMAGNETIC i i i
+ +
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i
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Table 22

TASK ALLOCATION MATRIX FOR UNDERSEA FUNCTIONAL OPERATIONS:

NAVIGATION SURVEY

SENERALIZED
TASK
SPECTRUM

2

FULCT IONAL
PEXRFORMANCE
REQUIREMENTS

|

CLASS | CLASS | CLASS CLASS
1 11 mn v

MOBILITY

b~ ATTACH
[~ DETACH
b—E XCAVATE

} APPLY

I ] COMMENTS

SCRAPE. WIPE —~—J

SEARCH/LOCATE
HOSFE

PYROTECHNIC
DRILL

SAW
HAMMER. CHIP

TRANSPORT

OBSERVE
SURVEY
MEASURE
PLACE
WELD

PICKUP
CONNECT

CLAMP
BURN

DRILL
BOLT
RIVET
PAINT
CORE
DREDGE
TRENCH
TUNNEL

COAT

® SPEED

®  RANGE

LOAD CARRYING

® OBJECT SIZE

® OBJECT WEIGHT

MANEUVERABILITY

® ACCESS LIMIT

/7

/ MAN 1IN THE-SEA

® DEGREES FREEDOM

WS IPULATION

N\

®  MINIMUM SKILL

® MODERATE SKILL

2077777

® (OVPLEX SKILL

SENSING

® VISUuAL

MAN- IN-THE - SEA
UNIQUE CAPABILITY
L

%

B\ |

>
>
x

& ACOUSTIC

® ELECTROMAGNETIC

® MAGNETIC

® ELECTRIC

® TACTILE

COGNITION

® O\ SCENE ASSESS,

UAKDNESS

& MECHAMCAL

® RANIATION

® TE\PERATURE

O VARIN L'IL

COVERTN s»

¢ VisUAL

T ACMETIC

4
-

MANC IN-TME Sk

o FLY CHROWAGNETIC

INEQUE CARARLEITY

® MWAFFIC

NN

e Luemny

NN

& WSl iE
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Table 28

TASK ALLOCATION MATRIX FOR UNDERSEA FUNCTIONA! OPRRATIONS:

RECOVERY - SVALL OBJECTS
® TORPEDOE:

® NUCLEAR WEAPONS
EIARDWARE

LA

S

CF\FIRALLZED C1ASS | CLASS | cLASS CLASS
TASK 1 1 1 v
SPECTRUM w
= ) =
o 5 - <
m—> £ g £z
[ g & S
< =3 - ”
1 ! e l_"l_.l
COMMENTS
FLSCTIONAL w [ 1 L
PERFORVAM | - v als
REQUIRIHE NS x 9 z =
AQUIREMENTS S b= ] E b
g Blailsl5ia) tsl 3| [Bl4 |2 alz |
::;.:-;m::zﬁ::p-_:;%:ozvz AN
I FE R ] B o R M P Y S A HEREL S
o |Blzld|z|BiZ|REI8)|z5(018 |z ] &l 5|5 = |G &l
MOBILI TV
® SPEED
¢ RANGE X
LOAD L ARRY IMG
® OWIECT S12¢ X
¢ Ob'keT WEIGHT X
MANEUVERABILETY 7//%/////////////
® Ao ESS LiMIT ! / MAN-IN THE-SEA
/u}uquz CAPABILITY
® DEGREES FREEDOM ///////////// 7
WA LATLON
®  MINIMUM SKILL X
P77 7 777777777777,
®  WLERATE SKILL ? WAN- IN-THE-SEA %
¢ COMPLEX SKILL //BNI/QZ/E./C)\P}H}IPX
SENSING
o Vistan X X
® ACUUsTI X X . ! |
®  ELECTHOMAGNETIC I |
T .
o ACAETIC X X l
o ELECTRIC X X )
v (441
o IACTILE Iﬁ_(\( TCAAE-SrAZ/
COGNTTENN
® 0% NCRNE ASSESS, X X !
IARDAE +5
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& RADEATLN @ TR ABEVTEON HAARDS
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o e LI
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Table 24

TASK ALLOCATION MATRI\ fGR UNDERSEA FUNUT1ONAL OPERATIONS:

RECOVERY - LARGE OBGECT

LENERALIZED CLASS | CLASS | CLASS CLASS
TASK 1 11 111 v
SPECTRUM

—

= ATTACH
= DETACH

COMMENTS
FUNCT IONAL

—

=

j— APPLY
}-IX(‘AVATE

PYROTECHNIC
DR11.L
SAW

., WIPE

TRF* ™

PICLUP

TUNNEL

1. 7 ASPORT

PLACE

WELD

SEARCH/LOCATE

OBSERVE
SURVEY
DRILL
BOLT
RIVEY
CONNECY
CLAMP
BURN
HAMMER, CHI?
SCRAL
HOSE
COAT
PAINT
CORE
DREDGE

MEA! | RE

MOBILITY

® SPEED

® RANGE X

LOAD CARRYING

® OBJECT S1ZE X

® IBJECT WEIGHT X

i MANEUVYRABILITY

® ACCESS LIMIT XXX XX XXX XX XXX X (XXX (X

® DEGRYES FREEDOM

AN TPULATLON
® MINIMUM SKILL Xix| X1 (xIxXixixix XX\ XXX (XX XX

®  WOLERATE SKILL D¢ | X XX | | X x o x XX XXX IXXCIXE, was- IN-THE -skA
® COWPLEX SKILL X % UNIQUE CAPABILITY

SENSING

® VISUAL X | Xx|x DX XXX XXX XX XX XX XXX XXX
® ACOUSTIC X | XIXIX
® ELECTROMAGNETIC
®  MAGNETIC X IXIXIX i
® ELKCTRIC X ixlxlx
o TACTILE olejejej0o0joojeooojeofo|ejojole ibuls

COGNITION

® O\ SCENE ASSESS, X X XXX XXX XX XXX XXX

HARDNESS

o -

8 MECUHANTCAL

®  RARATION

® TEVPERATURE

® \O\RINE LIFE

COVERTNESS

e VISUAL

® ACWSTIC VAN -IN-THE -SEA

7
UNIQUE CAPABILTTY 7

”

CTROYAGNETTC 7
/&H;l_ SW IJ\'/\/'JJ'\/«“.‘ LY
o ATIC ’%////%r/ ////,/ ,/;’v’

® LLCTRIC\L .4,2,

® kI

o PrEssUR PV Y

78




Table 25

TASK ALLOCATION MATRIX FOR UNDERSEA FUNCTIONAL OPERATIONS:

FACILITY INSTALLATION - SONAR ARRAY (ALIGN & REPAIR)
BOTTOM MOUNTED ULM
GENERAL CONSTRUCTION

CENER\LIZED CLASS | CLASS | CLASS CLASS
TASK 1 11 I v
SPECTRUM w
= & =
2 z g
[: B B (¥
' < a ] ?
1 1
COMMENT:
" i 11 UL N
3 of | |gfe
REQU IREMENT g ; é E ;
5 ElBlelblsl lal tuldll B4 181 als g
s BEIZEIE S a5 52 =18 5= 5igl s i 12| Bl
3 8185|213 |B|2(8 21535 |E | &l 3| 2| 5l€ |8 5 5| &2
MOBILITY
& SPLED
®  RANGE
LCAD CARRYING
® OBSECT SIZE x
® OBJECT WEIGHT X

MANEUVERABILITY

® ACCESS LIMIT ! XXX XXIXXXX XXX XXX XXX /u:::lzn(:?wfs"/
7

® DEGREES FREEDOM

MAN IPULATION
® XIMMWU SKILL XXXt Xy ixIxixix(x XXX xixixixixix
® WODERATE SKILL X 1X XL XX D XX XX XXXXXX X X, was- In-THE - skA

UNIQUE CAPABILITY
XX 2

® (COMPLEX SKILL X

rssxsmc
o VISUAL X | X DX | XXX | XXELXE X1 XL | x| XX X Xpel X x|

® ACOUSTIC I f

® FLECTROMAGNETIC

@ MAGNETIU

® ELECTRIC
® TACTILE ojojo|0|0|0j0|0|0(0(e(0joi0|0|0 000 rp R gsi
COGNITION
® ON-SUENE ASSESS. X X|X X X XXX

UARDAESS

® \UVANICAL

® RADIATION

¢ TEVPERATLRE

® AMARINE LI

COVTETNL LY

® LAl

® A asre NAN CINCTHE SRA
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/,//////
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”
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1
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Teble 26

TASK ALLOCATION MATRIX FOR UNDERSFA FUNCTIONAL OPERATIONS:

FACILITY INSTALLATIONS - MaVIGATION VARKERS
CARLE LAVING ANMY INSPECTION

’ ¢ ENERALIZED CLASS | CLASS | CLASS CLASS
i TASK 1 1| o1 v
SPECTRUM
-
) g g 5 =
< < <] »
£ & & z
-l [ <
< a < ”~
1 1 i
r‘"" r—"—] COMMENTS
FUCTTONAL w { 1l Il
PEKFORMAS. E = o olw
BIQUIREMENTS g g <z Bl
S ial W = [ - .
g 2EiEEls] sl eBle L Bl |EZ 21315
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5 REIERIESEERIZEREE 255526 E 6
IR IR N N E E B AR EEE S B A EAEE
MOBILIT:
® SPEED
* RANCE X
LOAD CARRY 1N
® UBJLUT SIZE X
|
® OHJECT WEIGHT X

MANEUN ERABILITY

L] :::;:::s"::::zxm %UNIQ(‘I CAPABILI '5\’

MVEPL LA

® MINWUM SKILL X 1X

TI777T777777 7T/,

®  WOLERATE SKiLL NAN- IN-THE -SEA

® COVPLEX SKILL

SENSING
o VISUAL X\x XX
® ACOUSTIC X|x

®  ELECTROMAGNETIC ¥

44—

® WAGMETIC | ! |

® ELYCTRIC

® TACTILE :

COLAITION

® 0N SCENE ASSESS. X|X X

HAKRDAERSS

¢ VRUHANICAL

o INHIATION

®  TEV; I HATURE

® MARINE LI'BE

CON RPN B

¢ ViniAalL

¢ VaNTie

®  Eib THPWLNFTIC

LR TR S (Y

LRI AV (WY

® [ti~stRE

80




o

Table 27

TASK ALLOCATION MATRIX FOR UNDERSEA FUNCTIONAL OPERATIONS:

FACILITY INSTALLATIONS - FOUNDATION AND BOTTOM
TUNNELLING
DAM BUILDING
WELL DRILLING

“ENERALIZED CLASS | CLASS | CLASS CLASS
FASK 1 11 1 1v
SPLUTRUM

-

- ATTACH
- DETACH

COMMENTS

]- APPLY
]—IXCA\'ATE

FUMCTIONAL
PERPURVANCE
REQUIREMENTS

SEARCH/LOCATE
HAMMER,/CHIP
SCRAPE/WIPE —

CLAMP

RN
PYROTECHNIC
DRILL

TRANSPORT
SAW

PLACE

OBSERVE
SURVEY
MEASURE
PICKUP
DRILL
BOLT
RIVET
CONNECT
HOSE
COAT
PAINT
CORE
DREDGE
TRENCH
TUNNEL

MOBILITY

® SPEED

®  RANGE

LOAD CAHRYING

® OBJEUT SIZE

® OBJECT WEIGHT

MANEUVERABILITY

N

MAN-IN-THE ~SD.':\/
UNIQUE CAPABILITY

® ACCESS LIMIT

NN

® DEGREES FREEDOM

WAMIPULATION

o MINIWM SKILL X

| E3
<

® MODERATE SK'LL MAN- IN-THE-SEA
INIQUE CAPABILITY

& (COMPLEX SKILL h

SENSING
® VISUAL XX XXX XX

® ACIOUSTIC

® ELECTROMAGNETIC

® MAGNETIC

® ELECTRIC

® TACTILE Bl

COGNITION

® ON BUENE ASSESS. XX

HARDNESS

O MECHANICAL

® RADIATION

& TEVPERATURE

® MARIME LIFE

Tm\'» RTNENS

®  vist\y

® ACIUSTIC

® KL TROACNETIC

[ RTRIEE (W
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Table 8
TASK ALLOCATION MATRIX FOR UNDERSEX FUNCTIONAL OPERATIONS:

SALVAGE - SHIPS
ALRCRAET

GENERALIZED CLASS | CLASS | CLASS ULASS
TASK 1 11 138! v
SPECTRUM

—

- ATTACH
I~ DETACH
b~ XCAVATE

]— AFPLY

=l

AT DR R I I COMMENTS
FUNMCTIONYL

PERFORMANCE
REQUIREMENTS

SEARCH/ LOCATE

PYROTECHNIC
HAMAER CHIP
SCRAPE. WIPE —d
HOSE

TRANSPORT

PLACE
WELD

OBSERVE

SURYEY
MEASURE
PICKUP

CONNECT

CLAMP

DRILL
BOLT
RIVET
BURN
DRILL
SAW
COAT
PAINT
CORE
DREDGE
TRENCH

MOBILITY

®  SPEED

® RANGE X

LOAD CARRY NG

® OWJECT S1ZE X

® OBJECT WEIGHT X

MANEUVERABILITY

L
o Acciss LiwiT b e e DI e e D D e D o - iw o -sia

ZUNIQUE CAPABILLTY

® DEGREES FREEDOM

WAL TPULATTON
® MIMWUM SKILL Xix| Xl Ixixixixx X\ xixixWaxixixixixuxy o

® WOLERATE SKILL XX\ XXX X DXL XX e X X x x MAN- IN-THE -SEA
® COVPLEX SKILL X X LNIQUE CAPABILITY

BENSING

® VISUAL X X\ X X XXX\ XXX XX x| X el XXX XXX
® ACOUSTIC X |\ X\xX|X Y

® ELECTROMAGNETIC

®  VAGNETIC X

¢ FLECTRIC

v TACTILE ‘ VARBERG

COLNITION

® O\ SCENE ASSESS. X

HAKDSESN

® \lMANICAL

® RUIATION

e TEVPLRATURE

® VARINE LIRE

—
COWTRTN N
e visva,
& Aorstie
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& LV TROMAGNETIC a UNIQUE CARAL®L 7
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Table 29

TASK ALLOCATION MATRIX FOR UNDERSEA FUNCTIONAL UPERATIONS:

REPAIRS - IN PORT (WET DOCK)

UNDERWAY
GENERALIZED CLASS | CLASS | CLASS CLASS
TASK 1 11 111 v
SPECTRUM s
— g g 5 <
g H 2 by
£ g g g
1 1 l I I I (o] TS
FUMCT LONAL E [— ] [ ] MENTS
PERFORNANCE 8 E =
REQUIREMENTS g =3 4 5 5
g Eli2lelBlal.lal (Bl Bl (82 alel2
2 BEZE 8 aE s 5 E R I B |2 =  Blale 5 E [ | Bl
3 Bz|5[ 181218515 3|6 (52 = |5 3| 3|38 B = €| &£
MOBILITY
® SPEED
®  RANGE
LOAD CARRYING
® OWJECT SIZE
® OBJECT WIIGHT

MANEUVERABILITY

o AcEs LT ’ x el xix el el xdx 7 ik S

T /l'llﬁll: CAPABILITY
® UEGREES FREEDOM /,

VAN IRULALT)Y

O  MIMMUM SKILL

® MODERALE SKILL X XIX X\ X XXIXIX MAN - IN-THE -SEA
“ ¢ COVPLEN SKILL x| | X NIQUE CAPABILITY

SENSING

o VISUAL DX || XXX 1 e L | XL I e |x

¢ ACKUSTIC

®  ELECTROMAGNETIC

& MALNETIU

® ELRECTHIC

& TACTILE OO0 OO0 00
COUNITION u
® ON-SUEME ASSESS, XX X| X XXX XX

UARINESS

®  VIECHANICAL

® MADIATION .

¢ TEWEHATURE

o MAKING LIFY

COVERTNESS

o VINUAL
o A USThH
O ELL@RMARTIC 7 LML ARARL D
v, WULANIEL RS )
o MUNITIS 7, /7 //
LECTICAL . ,///",/,’, :, /
® PRESStKY / 5
h— U
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Table 30
TASK ALLOCATION MATRIX FOK UMNDERSEA FUNCTIONAL OPERATIONS:

SUPPORT - OCEANOGHAPHIC DATA

‘ENERALI ZED
. TALY
SPECTRUM

L

FUNM TIONAL
PEYFORVANCE
ItEQUIREMENTS

CLASS | CLASS | CLASS CLASS

k ATTACH
b~ DETACH
L ExCAVATE

COMMENTS

_} APPLY
—
-

SEARCH, LOCATE

SCRATE, WIPE —=d

HAMMFR - CRIP
HOSE

CLAW
RN
PYROTECHNIC

OBSFRVE
SURVEY
MEASURE
PICKUP
TRANSPORT
PLACE
WELD
RIVET
CONNECT
DRILL
SAW
PAINT
CORE
DREDGE
TRENCH
TUANTL

DR11.L

BOLT
COAT

MOBILITY

& SPEED

®  AAMLLL

LOAD CARRYING

® OBJECT SIZE

® OHJECT WELGHT

MANEUVERABILE LY

® ACCESS LIMIT

i MAN - IN-THE SXA

® LDECREES FREEDUM

?UNIQUE CAPABILITY

WANIPITATION

®  MINIMUM SKILL

®  MOUERATE $KILL

3

MAN - IN-THE-SKL <

® COMPLEX SKILL

7 UNIG) CAPABILLTY
777 V.

BEXSING

® VISUAL

®  ACUUSTNI

® ELECTRIMAGNETIC

®  MRGNETIC

& ELEUCTRIU

& TACTIE

o IxXIxIXxIX|[X
e I Ix]x
® D x xx%

COUNETION

® ON SULME ASSES3.

LAKDMSS

& WUIANICAL

®  RALIATION

® TEWLRATURE

& VARIME 118+

OV TN NN

® yrtal'y

® A daTh
S

L {1

WIS THF SEA V7

T RUMNFTIC

USNIQUL CAPABILE DY

LIRS TR I 1

& LuCH A
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e il astn
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Table 31

TASK ALLOCATION MATRIX FOR UNDEHSEA FUNCTIONAL OPERATIONS:

SUPPORT - STBMARINE RESCUE PERSOUNNEL

JENERALIZED
TASK
SPFCTRUM

>

FUNCTIONAL
PERIPORMA N
REQUIREMENTS

CLASS | CLASS | CLASS

u (281

SEARCH. LOCATE

ATTACH
T
DETACH o
‘ o~
< »
/ 17
:}— APPLY
I—(m\un

e els

E z LIS
HAE R RS Sy OIELL (s wle s
giﬁ%?‘qgksglzgg E;-:-En ;E
HHEHNEEEBEE 55:3'§§:§§Ea

COMMENTS

MOBILITY

® SPLED

® RAMGE

LOAD "AKRY I 1,

® OWIECT SIZE

® UHIET WEIGHT

4

x|

MANEUVERABILITY

—

® ACCESS LIVIT

IS
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E. MAN-IN-THE-SEA Missions

The Navy undersea missions that have associated essential tasks re-
quiring the unique capabilities of the unshielded man are defined in
Tables 33 through 35. These MAN-IN-THE-SEA missions, which were selected
because of their undersea functional operations, are stated for two in-
fluencing conditions. The first considers system mission survivability,
which is influenced by the criteria of covertness and hardness. Covert-
ness implies that detection of the undersea mission would be minimized,
which would result in reduced chances of enemy countermeasures. On the
other hand, system survivability might be enhanced by hardening; however,
this approach in genecral, would compromise covertness. Although the
tradeoff between covert operation and hardened systems to improve mission

survivability was not a task in this study, the effects of sich tradeoffs on
on mission allocation are indicated by identifying MAN-IN-THE-SEA missions

with emphasis on covertness (Table 33) and with emphasis on hardness
(Table 34).

In many areas of undersea activities, systems are designed specif-
ically for undersea opérations. The critical question here is: should
a system be designed to optimize the use of vehicle-oriented systems or
should it be optimized for MAN-IN-THE-SEA concepts? This question can
only be answered after a thorough assessment of the costs of the alter-
nutives--for example, the cost of constructing an urdersea system to
optimize the use of mechanical manipulators. The effects on mission
allocation, if an undersea system is designed to optimize the use of hard
systems, are shown in Table 35.
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Appendix A

REVIEW OF MAN-IN-THE-SEA CONCEPTS

A. Basic Philosophy of MAN-IN-THE-SEA Concepts

MAN-IN-THE~SEA concepts are defined broadly in this study as any
undersea system that requires exposing man to the ambient ocean pressure.
MAN-IN-THE-SEA concepts are therefore those techniques associated with
the well-known diving technologies. Diving technclogy has progressed
from the hard hat diving techniques through the SCUBA (seclf contained
underwvater breathing apparatus) techniques, and finally to the prolonged
undersca living experiments such as SEALAB, CONSHELF, and MAN-IN-THE-SEA.

Man's progress toward reaching greater diving depths and duration
is a result of overcoming both physiological and technological problems.
Until the 19th century, diving depth limits were imposed by such techno-
logical constraints as diving helmets, diving bells, and air compressor
design., As the technological problems were solved, divers went deeper
and remained longer, and the physiological problem of decompression was
encountered. Decompression sickness or "the bends,” one of the hazards
of diving, was diagnosed in the 1870s. Under pressure, the inert gas in
a breathing mixture (nitrogen in air) diffuscs into the blood and other
tissues, If the pressure is relieved too quickly, as in a rapid ascent
from working depth, bubbles form in the tissues much as they do in a
bottle of carbonated water when it is opened. Sudden decompression from
a long deep dive can be fatal; cven a slight miscalculation of decompres~
sion requirements can cause serious injury to the joints or the central
nervous system. A diver must thereforc be decompressed slowly, according
to a careful schedule. Slow decompression cnables diffusion of the inert
gas from tissues to the blood and from the blood out to the lungs. Whereas
decompression sickness was diagnosed and a curc {slow decompression) was
developed, other physiological prol:lems were encountered, These problems
are nitrogen narcosis ( inert gas toxicity) and oxygen poisoning { oxygen
toxicity).

In an ¢ffort to solve the nitrogen narcosis problem, the Navy and
the Bureau of Mines in 1924 began to conduct joint experiments with
breathing mixtures consisting of inert helium gas and oxygen. By 1927,
the work had progressed to the point where human subjects could be used,
In 1937, using a helium-oxygen gas mixture, two Navy divers reached a
simulated depth of 500 feet in one of the tanks at the Navy Experimental
Piving Unit.




These dry land experiments were put to operational use in May of
1939 when the U.S. submarine SQUALUS sank in 243 feet of water. The
helium-oxygen diving technique was used in 640 dives to the submarine
without deaths or serious injurv. On the basis of data obtained during
the SQUALUS dives, the U.S. Navy established 380 feet as the new limit
for operational diving with time 1limit of 30 minutes on bottom.

Up to that time, the hard hat technique was used--that is, man was
tethered to a surface air compressor or gas supply. This tether drasti-
cally constrained the mobility of the diver. In the 1940s, the techno-
logical development commonly known as SCUBA or self contained underwater
breathing apparatus allowed new freedom for man working in the under-
water environment. Divorced of the need for the constraining umbilical
to the surface, man was able to move about in the ocean with relative
freedom. However, with the SCUBA technique, his depth-time capability
is still limited by the amount of gas he is able to carry on his back.

The principal limitation in deptl: and duration of dives up to the
late 1950s was still the requirement for decompression. The limit for
U.S. Navy operational dives was 380 feet for 30 minutes on the bottom.
Without complications, a dive of this depth and duration recquires more
than three hours of decompression=--an unfavorable ratio of working time
to decompression time of 1 to 6. This unfavorable ratio of worik-to-
decompression time was solved by the development of the "saturated diving"
technique. Saturated diving technique capitalizes on the fact that at a
given depth the amount of inert gas dissolvable into the body tissue is
limited. A\fter about 24 hours at a given depth the tissues become essen-
tially saturated with inert gas at a pressure equivalent to the depth;
they do not take up significantly more gas no matter how long the diver
stays at that level. For example, a diver saturated to 300 feet requires
the same decompression time {approximately 2-1/2 days) whether he spends
onc day or onc month on the bottom. Therefore, if a diver must descend
to a certain depth to accomplish a time-consuming underwater task, it is
fur more efficiert for him to stay there than to return to the surface
repeatedly, spending hours in decompression each time.

The U.S. Navy's MAN-IN-THE-SEA Program is based on the development
of the saturated diving technique. The first cxperiments in the field
of saturation diving were begun by the U.S. Mivy in 1957 under the direc-
tion of Captain George Bond, using first a standard decompression chumber
and then the climate=-altitude chamber installed at the Naval Mediecal
Research Laboratory in New London, Connecticut. These experiments were
given the code name Genesis [, and the first phases were concerned with
the reaction of animals under long term cxposure to pressure and syn-
thetic gas mixes., Late in 1962, three men were exposed to a helium—-oxygen
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breathing mixture at seca level pressure for six days. There were no
observable physiological or psychological changes in the subjects.

In the next phase of Genesis I, conducted early in 1963, three Navy
men lived for seven days in a two-section pressure chamber at the Experi-
mental Diving Unit. The pressure in the chambers was similar to that
encountered at a depth of 100 feet. The final phase of Genesis I was
conducted at the Naval Medical Research Laboratory Test Chamber, with
three men spending 12 days at a simulated ocean depth of 200 feet, again
breathing a helium-oxygen gas mixture. The Genesis [ experiments were

completely successful and provided the physiological base for subsequent
SEALAB experiments.

Since Captain George Bond's original proposal for the saturated
diving technique, both the American inventor, Edwin Link, and the French
oceanographer, Jacques-Yves Cousteau, have conducted significant work to
advance saturated diving techniques. Their experiments were designated
"MAN-IN-SEA" and "CONSHELF," resnectively.

In the summer of 1964, the U.S. Navy conducted its first in situ
experiment, designated SEALAB I, neai the Oceanographic Research Tower,
Augus Island, off Bermuda. Men lived in a 40-foot long chamber at a
depth of 193 fecet for 11 days. An extensive program of physiological
studies was successfully pursued.

In the fall of 1965, the U.S. Navy conducted the SEALAB II experi-
ment at La Jolla, California, Three 10-man teams remained at a depth of
205 feet for 15 days cach. Onc man remained at that depth for the full
45 days of the experiment. In addition to living underwater and con-
ducting a multitude of physiological cxperiments, underwater work tasks
in simulated salvage, occanography, and construction werc performed. In

all, the three teams achieved more than 300 man-hours of work outside
the habitat,

SEALAB III, the most umbitious saturated diving cxperiment to date,
probably will be conducted during the spring of 1969 at the Navy undersea
range off San Clemente Island, California. In the SEALAB III cxperiment,
five teams of cight men each will live successively in the sea floor

habitat for 12=day periods. The habitat will be placed at a depth of
605 feet.

A summary of saturated diving or prolonged undersea living oxperi-
ments conducted in the U.S. Navy MAN=IN-THE-SEA Program is shown in
Figure 20. Civilian experiments by Edwin Link, Jacques-Yves Cousteau,
and the Westinghouse Marine Contractor consortftium are also summarized in
the figure.
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B. Current Status of MAN-IN-THE~SEA Concepts

The clearly defined needs of the U.S. Navy for salvage and submarine
rescue, and the commercial needs of off-shorc¢ oil recovery operations and
salvage operation, gave impetus to the transformation of the saturation
diving technique from experimental to operational systems. Except in
isolated cases, fully saturated long term undersea habitation and work
have not been fully exploited. The principal reason has been that such
operations have not been required. Notable exceptions have been the
repair of the Smith Mountain Dam and the offshore oil rig salvage opera-
tion in the Gulf of Mexico. These operations, which were conducted by
the Westinghouse-Marine Contractor consortium, are not true undersea
habitation operations since the men were delivered to the work site at
about 200 feet by a transfer capsule pressurized to the working pressure.
After the work period, the men returned to the surface in the transfer
capsule and there entered a chamber that is also pressurized to the
pressure at the working depth. In this system, the men live in the am-
bient pressure environment for up to a week, alternating between work
site and rest cycle in the surface chamber.

The development of the surface decompression chamber in combination
with the personnel cransfer capsule capitalized on the capabilities of
saturation diving. At present, there are a large number of operational
systems with depth capabilities varying from a minimum of 500 feet to a
maximum of a 1,000 feet. Most of these operational saturation diving
systeme are ir support of the offshore oil operations. Although one
diving system differs from another in configuration and dimension, the
basjc system concepts are similar. In support of the U.S. Navy salvage
and submarine rescue requirement, a diving system of the sort described
is being constructed. This system called the Deer Dive System (DDS)
Mark I is similar in concept to all other diving systems in operation.
The following paragraphs describe the major components, the characteris-
tics, and the operational sequence of the DDS MK I.

1. Mark I Decep Dive System

The MK 1 DDS comprises (1) two deck decompression chambers (DDC),
(2) an entrance lock, (3) a personnel transfer capsule, (4) life support
system, and (5) main control console as shown in Figure 21.

#. Deck Decompression Chamber. The Mark [ System was developed
for saturation diving, during which divers rcmain pressurized to their
working depth for long periods and decompress only after completing
miltiple-dive objectives. The deck decompression chamber, which is shown
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in Figure 22, provides a pressurized environment aboard the ship com-
patible with the saturated condition of the divers. The entrance lock,
which is located between the deck decompression chumbers, provides a
pressure lock between the DDCs and the personnel transfer capsule, al-
lowing transfer of divers while maintaining their pressure-saturated
condition.

HOISTING
PENDANT

SPCC
DECK WINCH

LIFE
SUPPORT
SYSTEM (LSS)

CONTROL
CONSOLE (MCC)

Figure 21 MARK | DEEP DIVE SYSTEM

The entrance lock has its own atmospheric system similar to that of
the chambers (it can be uscd as a decompression chamber in an emergency ).
It permits access between the deck decompression chambers and cither the
deck of the ship or the personnel transfer capsule,

The Mark I DDS complex consists of two deck decompression chambers
connected to an entrance lock. The entrance lock is spherical and has

four flanged entry trunks with hatches as follows:

¢ Two trunks attach scmipermanently to the deck decompression
chambers.
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* Another flange permits mating with the personnel transfer capsule
in its normal vertical position.

¢ The fourth flange permits mating with the capsule in the hori-
zontal position, which is required on some ships because of
height limitations. This hatch also permits medical personnel
to enter the complex as required.

b, Personnel Transfer Capsule. The personnel transfer capsule, the
submersible of the Mark I DDS, serves the diving tecam as the transfer
elevator to and froin their underwater work site while maintaining the
required pressurized environment. The configuration of the capsule is
shown in Figure 23.

In its principal mode, the capsule is used to carry divers from the
deck decompression chamber complex aboard the ship to the work site or
the spot from which diver excursions will be made. In this mode, the
capsule maintains the divers in an artificial atmosphere that has a gas
pressure equal to the ambient seawater pressure at thc divers' destina-
tion depth. When used on working dives, it can carry two or three divers
at internal saturation pressures equivalent to 850-foot depths. At final
equipment depth, a diver may leave the capsule through the lower lock and
be sustained on "hookah" lines at distances up to 100 feet.

The capsule can also be used as a diving bell, with atmospheric air
at surface-pressure of about 15 psia. In this mode, it is used only for
observation, and, of course, the occupants remain inside the vessel. In
the diving bell mode, the capsule can make sighting dives to depths of
1,000 fect.

2, Mark I Deep Dive System Operational Sequence

A typical scquence of operation during a saturation dive using the
Mark I DDS is shown in Figure 24,

The surface tethered personnel transfer capsule with the working
diver tcethered to the capsule is constraint from the viewpoint of mobil-
ity. A development designed to increase the mobility ol the diver is
the free swimming deep submergence vehicles equipped with diver lockout/
lockin capability. The deep submergence vehicle can be viewed as a
mobile personnel transfer capsule. As visualized, the diver delivery
vchicle will work in conjunction *ith the deck decompr.ssion chamber,
Transfer from vehicle to the deck decompression chamber might be via a
tethered personnel transfer capsule. This transition step would climinate
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the need to 1lift and attach the deep submergence vehicle to the deck
decompression chamber. Current operating vehicles with diver lockout
capability are the Ocean Systems, Incorporated, Deep Diver vehicle, the
North American Rockwell Beaver Mark IV vehicle, and the Lockheed Decp
Quest vehicle. The Beaver Mark IV vehicle configuration is shown in
Figure 25. The forward operator compartment is maintained at atmos-
pheric pressure throughout an operation. The aft compartment and the

di ver transport compartment are maintained at atmospheric pressurc during
transit to the work site. If divers are needed to complete the job then
the aft compartment is pressurized to ambient pressure, The diver then
opens the bottom hatch and swims out to the job. The diver can ecither be
free swimming or tethered to the vehicle., This choice depends primarily
upon the job duration.

Figure 25 MOBILE PERSONNEL TRANSFER VEHICLE

Current M\N~-IN-THE-SEA concepts can be divided into [ive classes in
terms of the modes of operation: (1) the free swimming man equipped with
SCUBA eruipment;: (2) the direct surface tothered man including the "hard
hat' diver and the "hookah' diver; (3) the indirvect surface tethered man
as described for the Mark [ Deep Dive Systemy (4) the [ixed bottom site
or habitat mode in which the diver is tethered to the habitat during cex-
cursions out of the habitat: and (5) the mobile vehicle tether, such as
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that described for Beaver Mark IV. (The various modes of MAN-IN-THE~-SEA
concepts currently operational and contemplated are shown in Figure 9.)

A more advanced fixed bottom habitat approach has been suggested for
the support of offshore oil recovery operations. One of the more recent
ideas is one suggested by Ocean System, Incorporated. This concept for
offshore 0il drilling and production operation is illustrated in Fig-
ure 26. The basic elcment is a 40-foot diameter, buoyant, double-walled
sphere, which is located between 100 feet and 150 feet. 1In a typical
installation, a capsule would permit drilling and completion of nine
producing wells, eight injection wells, and a spare well slot. The in-
terior of the submerged sphere would be pressurized with mixed gas atmos-
phere to the ambient pressure environment. It would enable men to work
in a shirt sleeve environment on a regular shift basis.

Figure 26 ADVAMNCE OFF-SHORE OIL RECOVERY SYSTEM EMPLOYING MAN-IN-THE-SEA CONCEPTS

C. The Focus of Underwater R&D Efforts

To satisfy the goals of prolonged habitation by man at ocean depths,
ongoing rescarch efforis are seeking a better understanding of the physi-
ological and psychological problems related to exposing man to the ambient
environment. Major R& c[forts are also being directed towird advancing
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the technology associated with supporting the unshielded man. The psy-
chological aspects of MAN-IN-THE-SEA research arc focused toward under-
standing and measurement of diver performance impairment resulting from
ambient environment exposure. MAN~IN-THE-SEA performance capabilities
are reviewed in Appendix B in terms of (1) psychomotor performance,

(2) mental task performance, (3) sensation and perception, and (4) com-
munications. Current physiological research efforts are directed toward
such problem areas as decompression, oxygen toxicity, inert gas toxicity,
pulmonary ventilation, and hydrostatic force effects. Technological R&D
efforts, which are closely integrated with physiological research, are
concerned with breathing gas analysis, long duration breathing gas supply
systems, hecated diver dress, and diver functional support elcments, in-
cluding tools, communication and navigation equipment, and extended sen-
sory aids. The following discussion examines the focus of R&D cfforts
associated with the physiological and technological aspects of MAN-IN-
THE-SEA concepts.

1. Deccompression

Decompression is the most familiar problem related to diving opera-
tions. This problem results directly from the increased solubility of
gases with increased pressure. Exposure to high hydrostatic pressures
during a dive causes components of the brecathing gas to be taken up in
solution by all body tissues. The rate of return to the surface is ahso-
lutely limited by the rate at which excess dissolved gases in the tissues
can be eliminated. The rate of gas uptake or elimination is directly
proportional to the diffusivity and gas partial-pressure gradient at the
tissue-blood and lung-blood interface, Reliable decompression tables
(safe ascent rate) for extended depth-time dives are being developed
through improved computation methods and experimental validation. It is
estimated by diving physiclogists that, regardless of the inert gas used
in a breathing mixture, the rate of ascent following prolonged submcrgence
will never be increased much beyond the ten minutes per foot now achieved,
This means that normal unaided decompression following a saturation dive
to 500 fcet will continue to require about three and one-half days. Inert
gas climination by unaided decompression will remain the primary factor
limiting diving efficiency--i.e., uscful diving time per unit of total
time invested.

Several techniques arce being examined that may provide practical
aids to speed up decompression or to improve the safety of divers, These
aids include: (1) the use of high oxygen tension, (2) the usce of methods
for extending oxygen tolerance, (3) the usce of multiple gas mixtures,

(4) the alternation of inert gases in the breathing mixture, (5) the com-

bining of alternation of inert gases with fluctuation of oxygen tension,
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and (6) the use of drugs to accelerate blood flow. A very advanced
technique that cannot be classed as an aid to decompression is the con-
cept of fluid breathing. This technique is an attempt to circumvent the
whole problem of decompression by eliminating the need for inert gas.
(This advanced diving concept is discussed in Section IV.) The following
is a summary of the techniques being studied as aids to speeding up
decompression.

a. High Oxygen Tension. The usec of high oxygen temsion is probably
the first decompression aid discovered (1935) and will probably continue
to be the most useful technique to speed up decompression. The technique
calls for the use of high concentration of oxygen in the breathing mix-
ture. The physioibgicul principle exploited by this technique is to
minimize the inert gas diffusion gradient (partial pressure diffcrence)
in the lung-blood and tissue-hlood interface during descent and to maxi-
mize the diffusion gradient during ascent. The extent that the high
oxygen tension technique can be used to aid decompression is limited by
adequate definition of human oxygen tolerance. The problems cencountered

with oxygen at high pressures, i.c., oxygen toxicity, arc discussed below.

b. Interrupted Exposure to High Oxygen Tension. A usc of inter-
rupted cxposure to high oxygen tension is an attempt to circumvent the

oxygen tolerance limits. It has becn found that animals cxposed inter-
mittently to high oxygen tensions can tolerate longer total high oxygen
tension exposure time. This approach is being used in a limited way to
treat divers suffering from decompression sickness ( bends).

¢. Multiple Inert Gas. The usc of multiple inert gas in breathing
mixtures to aid decompression has been considered for several decades.
The basic concept is clear, but results from actual trials are not con-
clusive, The fundamental assumption is that cach gas in a gas mixture
or dissolved in body fluids behaves as though it were the only gas pres-
ent.  The principle is that individual inert gas partial pressure will
be decreased proportionately with increased number of inert gases used,
Thus, the diffusion gradient for cach gas is reduced. A hypothetical gas
mixture offered in the First Symposium on Underwatcer Physiology uses nine
gases, including oxygen, nitrogen, hydrogen, helium, neon, argon, krypton,
xenon, and radon. The use at nince atmospheres of pressure with a nine
gas mixture (equal volume) should not result in excess saturation of tis-
sue fluids because cach gas in the mixture is at a maximum partial pres-
surce of once atmosphere, Neveriheless, severe decompression sickness dous
occur alter exposure to miltiple gas mixtures, The explanation for the
effect is that once a cavity or a small bubble is formed, its growth de-
pends upon the sum of the partial pressurces of all gases in the tissue.
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d. Alternation of Inert Gases and Fluctuation of High Oxygen
Tension. A logical extension of the multiple gas breathing mixture tech-
nique and the high oxygen tension technique to speed up decompression is
the combined use of both techniques. The use of alternation of inert
gases in the breathing mixture combined with fluctuation of high oxygen
tension continue to occupy the research efforts of diving physiologists.
Figure 27 is a very simple example of the demounstrated capability of ad-
vanced decompression techniques versus that of the standard decompression
technique. A total of 85 minutes is required for a 300 foot per 60-minute
bottom time dive. This time compares with 455 minutes required by the
standard air decompression table used by the U.S. Navy,

e. Drugs for Accelerating Blood Flow. The use of drugs has been
suggested as a means of accelerating blood circulation in tissues during
ascent to cnhance the elimination of inert gases, The reverse effects--
slowing up blood circulation during descent--would minimize inert gas
take up. Although this technique is possible, no data are available to
assess its possible contribution to the decompression problem.

2. Oxygen Toxicity

Pressurc has a significant cffect on the diver's oxygen requirements.
Too much oxygen (hypeoxia) is almost as dangerous as too little oxygen
(hypoxia). Short term cxposure to high oxygen tension can affect the
central nervous system causing localized muscular twitching and convul-
sions; long term exposurc to high oxygen tension impairs the process of
gas cxchange in the alveoli, or air sacs, of the lung. The actual toxic
effects of oxygen on the biochemical processes of the human body will
probably not be known without many more ycars of research., A more precise
definition of human tolerance to oxygen at high pressures must be known
1) to select the best oxygen level, which varies with the duration,
depth, and phase of the dive, and the muscular cffort rvequired for a dive,
and (2) to maximize the usc of oxygen to speed up decompression.

Lxperience to date indicates that the partial pressure of oxygen
should be kept between about 130 and 400 millimeters of wercury during
the at-depth phase of a long saturation dive., The partial pressure of
oxygen in the air we breathe at sea level is 160 miliimeters of mercury
121 percept of 760). It oxygen is kept at 21 percent of the mixture,
however, its partial pressure incrcases with depth--rising to 1,127 milli-
meters at 200 feet. As a result, the proportion of oxygen in the breath-
ing mixture must be reducced as depth increasces to maintain a partial
pressure range of 150 to 400 millimeters of mercury. The band of tolep-
able oxygen percentagt narrows rapidly with increasced depth as shown in
Figure 28. The need for increasing accuracy in the systems that analyze
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and control breathing gas mixture for long term saturation dive is clearly
indicated in the figure.,

3. Tnert Gas Toxicity

Gases, such as nitrogen and helium, that are biochemically inert in
the atmospheric pressure environment are not so under increased pressure
conditions. Nitrogen, which is physiologically inert at sea level, has
an anesthetic effect under pressure. At depths greater than 100 feet,
the average diver will suffer effects of nitrogen narcosis. The effects
are impairment in judgment and psychomotor ability, which can render a
diver completely unable to cope with emergencies. Helium has been found
to be much less narcotic and is currently used instead of nitrogen in
aluust all deep-sea dives. Some experiments are also being conducted to
determine the narcotic effects of hydrogen since there are indications
that hydrogen has even less narcotic effect than helium. A set of curves
published by Lambertsen indicate some depth limitations imposed by inert
gas narcosis. These curves, which are shown in Figure 29, are not estab-
lished through quantitative assessment of physiological or performance
functions of man. The curves are approximations to indicate the general
characteristics of inert gas narcosis. The curves indicate that serious
impairment--loss of consciousness=--occurs with less than 1 atmosphere of
xenon and with less than 10 atmospheres (300 ft) of nitrogen, but more
than 100 atmospheres ( > 3300 feet) of pressure may be required to produce
severe narcosis with helium. The prediction of helium narcosis limits
is based on the observation that even at an inspired helium pressure of
120 atmospheres (4,000 feet), mice do not lose consciousness. Research
efforts are currently being directed at (1) quantitatively defining per-
formance impairment resulting from the narcotic effects of inert gases
and (2) identifying the exact biochemical effects that result in inert
gas narcosis.

- LIMi S OF CONSCIOUSNESS
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Figure 29 DEPTH LIMITS IMPOSED BY INERT GAS NARCOSIS
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4. Gas Density and Viscosity

Elevation of pressure on any gas mixture increases its density and
viscosity. The increased density and viscosity of breathing gas results
in increased resistance to movement of gas through the small respiratory
passages. This resistance not only interferes directly with pulmonary
ventilation but also increases the work of breathing itself. The use of
helium in the breathing gas mixture reduces gas narcosis effects and
circumvents some of the breathing resistance problems. Since nitrogen
is about seven times more dense than helium at one atmosphere, the den-
sity of nitrogen at about 200 feet of seawater is as great as that of
helium at 1,000 feet. The major method for reducing respiratory resist-
ance at very great depths will be the use of less dense and less viscous
gases, such as helium or hydrogen. A technological solution to the res-
piratory resistance problem might be the development of a respiratory
pump. This pump will provide the necessary assistance in the work of
moving air in and out of the lungs.

=

5. Temperature

The human body can maintain its thermal equilibrium only within very
narrow limits. Both high and low temperatures represent human physiolog-
ical limitations. In water above normal body temperature, fever develops
even at rest and exercise accelerates the onset of fever. 1In water below
normal body temperature, the unprotected man will lose heat about 21 times
faster than he would in normal air at the same ambient temperature. Meta-
bolic heat porduced by exercise extends the tolerance to cold water, and
the combination of insulation (wet suit) and work provides useful periods
of time in water at temperatures down to 55-60°F. Significant improvement
in human temperature tolerance cannot be expected from the use of drugs
or physiological adaptation. Rather, human temperature tolerance must
be achieved by the use of insulating and external heating methods properly
integrated with the understanding of physiological heat exchange.

6. Hydrostatic Pressure Effects (Pressure Syndrome)

If the problems of decompression, oxygen toxicity, inert gas toxic-
ity, gas density and viscosity, and temperature can be circumvented through
physiological research and technological improvements, the final barrier
to man's attempt to go dveper into the sea is the direct effects of hydro-
static pressure. Whereas the effects of pressure on human cellular
structure and the resultant body functional impairments are essentially
unknown, experiments have been conducted with animals and animal tissues
that indicate existence of direct pressure effects. A major difficulty
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in studies of this type is the inability to isolate causes of observed
effects. For example, deterioration of mental performance, which is
ascribed to helium narcosis, might be only the onset of pressure effects
on the nerve cell structure. Tremors, sweating, dizziness, and redness
in the face, which might be ascribed to CO,, could be direct effects of
hydrostatic pressure.

In any case, it has been demonstrated in recent decades that hydro-
static pressure effects include: (1) failure of gel formation, (2) fail~-
ure of cell division, (3) failure of ameboid movement, (4) inhibition of
biological luminescence, and (5) inhibition of the growth of bacteria.
Most of these effects appear to be related to the volume changes in cells.
It is important to diving physiologists that bacterial growth is inhibited
by pressures as low as 1,000 feet of sea water. This effect suggests the
possibility that hydrostatic pressure has some influence at the depths
where man still hopes to live for long periods. Recent simulated and
operational deep ocean dives (greater than 600 feet) have indicated some
pressure effects on bone-muscle structures. Divers working at depths
exceeding 600 feet have shown an increasing tendency toward dislocated
joints. Although the number of incidents cannot support firm conclusions,
there appear to be some bone-muscle effects resulting from high hydro-
static pressures that must be investigated.

7. Technologx

R&D efforts in diving technology can be separated into two categories.
The first is associated with the life support aspects c¢f technology--that
is, the hardware or systems that are needed to maintain the physiologic
environment that is essential to sustain life in the ambient ccean pres-
sure. The second is associated with functional support of man--that is,
the hardware or systems that aid man in accomplishing undersea tasks
(e.g., diver tools, communication equipment, navigation equipment, sonar,
television, and propulsion aids). The following discussion deals only
with life support technology. The identification of the requirements for
functional support technology is, in fact, the objective of the overall
MAN=-IN-THE-SEA program.

The foacus of current R&D efforts in lifc support technology is in
the following areas.

It was indicated in the description of the physiological problems of
diving that increasing diving depth is placing more stringent requirements
on the makeup of breathing gas mixture and monitoring of gas concentra-
tions. The physiological effects of oxygen, inert gases, and contaminants
are generally proportional to partial pressure rather than to percentage
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concentration. Since the partial pressure is the product of concentra-
tion and total pressure, the allowable concentration of any substance
becomes smaller as diving depth is increased. For example, at 100 feet,
the range ol oxygen percentage is 3.75% to 7.50% and carbon dioxide per-
centage is 0% to 0.50%. At 1,000 feet, the oxygen percentage is 0,48%
to 0.97% and carbon dioxide percentage is 0% to 0.06%. Reliable devices
for sensing, monitoring, and controlling the gas environment at high
pressures must be developed. Moreover, methods of detecting and elimi-
nating contaminants, such as carbon monoxide, must be developed. Unless
atmospheric gases can be reliably controlled, full cxploitation of the
diving capabilities of man will not be possible.

Closely related to the development of reliable sensing, monitoring,
and controlling devices for providing a safe breathing gas environment
at high pressure is the continuing development of a reliable and safe
closed-circuit, mixed gas, sclf-contained underwatei breathing apparatus.
Present day breathing devices are limited in depth-time capability be-
cause of the need to exhaust portions of the breathing gas during each
breath. The open or semiclosed SCUBA devices do not fully exploit the
full amount of gas a frec swimming man can carry. The totally closed
circuit oxygen rebreather is limited in depth because of the problems of
oxygen toxicity. The following paragraphs describe briefly the current
devices in the U.S. Navy inventory and in research and development.

a, Standard SCUBA. The demand or open-circuit SCUBA is a militar-
ized version of the commercial device used by sports divers. The system
is open circuit in that expired gases are discharged into the water during
exhalation. Normal compressed air is the breathing gas medium; however,
it is possible to use mixed gases for deep dives. Open-circuit systems
are inherently wasteful of guses. About three-fourths of the oxygen in
each breath drawn from the gis cylinder is discharged into the water.

The principal component of the open~circuit SCUBA is the demand regulator
which releases comprcssed gas to the diver during the inspiratory cycle.
A pressure regulator maintains the breathing system at ambient depth
pressure, the regulator opens to create a slight negative pressure at the
start of inspiration and remains open until the end of inspiration.

b. Mark VI SCUBA. The Mark VI SCUBA is a semiclosed-circuit, mixed
gas breathing device. The gas mixture can be oxygen-nitrogen or oxygen-

helium, depending on the diving depths required. \ volume of gas mixture
flows from storage cylinders through a regulator into an inhalation
breathing bag., Exhaled gas is then lorced through a carbon dioxide re-
moval canister and back into the inhalation bag. As oxygen is used up

in the breathing volume (inhalation bag), a critical level is reached
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whereupon a fresh volume of gas mixture is transmitted from the storage
cylinder to the breathing bag. The waste gas is then exhausted into the
sea. The recirculating breathing apparatus allows a maximum utilization
of available oxygen, thereby increcasing diving duration. However, the
need to exhaust inert gases still limits the useful dive duration.

c. Closed-Circuit Oxygen SCUBA. The closed-circuit oxygen SCUBA,
which is issued primarily to underwater demolition teams and SEALAB teams,
employs a breathing device similar to the Mark VI. However, pure oxygen
is used as the breathing medium rather than mixed gases. The Jdevice can
be used only to depths less than 30 feet because of the oxygen toxicity
problem. The primary purpose of such a device is to maximize covertness;
no waste gas needs to be exhausted into the sea, thereby eliminating tell-
tale bubbles.

d. Mark VIII SCUBA. The Mark VIII SCUBA is similar to the Mark VI
SCUBA in that it is a semiclosed circuit device. The Mark VIII, which
was developed specifically for the SEALAB III experiment, will use an
oxygen-helium gas mixture. The gas can be supplied through hoses from
the habitat or from diver-carried cylinders, 1In the tethered mode, a
maximum duration of 3 hours at 600 feet can be achieved, using a single
charge of baralyme in the carbon dioxide absorbent canister. In the free
swimming mode, two 90-cubic-foot cylinders provide sufficient gas for
1 hour at 600 feet. The Mark VIII breathing system configuration for the
SEALAB III experiment is shown in Figure 30.

All of the breatling apparatus described above is constrained in
depth-time capability Ly the need for a premixed gas supply stored in
swimmer carried cylinders or gas supplied through hoses. A closed-
circuit device where breathing gas is mixed on-site is being developed
to extend Lhe deplh-time capabilities of current breathing apparatus.

The success of such a system will depend on the development of a compact,
rugged, and reliable oxygen sensing and flow control device that can
maintain oxygen content within the narrow safety boundaries. A closed-
circuit mixed gas SCUBA is currently being developed for the Navy. The
depth-time capability of SCUBA might be extended through ihe use of cryo-
genic gas storuge concepts. While cryogenic storage and gas mixing tech-
niques are being developed, no information is available at this time.

Development of hecated diving suits will be essential to the achieve-
ment of extended diving operations. Open-circuit hot water suits have
been used successfully in the past few years. This technique will be
used to support the SEALAB III divers., A battery supplied resistance wire
heat suit was tried during the SEALAB II cxperiments, but it is limited

A
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by the available energy-density of the battery pack. A nuclear isotope
hot water heater combined with the open-circuit hot water suit concept
will be tried during the SEAILAB III experiment. The base of the heated
suit problem is in the development of a compact cncrgy source, which is
a technological area that is receiving major research attention for many
application areas.

Figure 30 CONFIGURATION OF THE MARK VIIl BREATHING APPARATUS

Ancillary eguipmenls that are being developed to support divers in-
clude advanced head gear, depth gauge, and decompression computers. A
"clamshell"” helmet has been developed, which will be used by SEALAB III
divers. It provides a full face mask wit': oral/masal insert and complete
head protection. Most important, the helmet provides the necessary air
cavity for voice communications. The helmet is lightweight because it
does not require a nerk scal and its frec-flooding feature around the
back of the head reducec the requircment for weight compensation,

F. Advanced MAN-IN-THE-SEA Concepts

Advanced MAN-IN-THE-SEA concepts reflect two developments aimed at
soending man to deeper ocean depths for longer duration. These developments
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are the techniques of fluid breathing and the use of artificial gills for
gas exchange. Experimental evidence indicating that the mammalian lung
can function as gills was presented in 1962, It was found that adult
mice, rats, and dogs can live for prolonged periods of time submerged
with lungs filled with fluid=--in salt solutions equilibrated with oxygen
at high pressures. Under these conditions, the submerged mammals con-
tinued making respiratory movements, were apparently capable of extract-
ing adequate amounts of dissolved oxygen from the aqueous environment.
The animals were not killed by hydrostatic pressures of up to 160 atmos-
pheres which is equivalent to a depth in the ocean of one mile,

The potential practical importnnce of this phenomenon is clear. The
problem of decompression sickness would be circumvented since the inert
"filler" gas would no longer be present. No inert gas would dissolve in
the blood and tissucs of a diver with fluid-fill lungs; conscquently, he
would be free to ascend to the surface at any time and as rapidly as he
desired without [ear of bubble formation. The problem of inert gus nar-
cosis would also be avoided. If the fluid breathing concept proves to
be physiologically feasible in all ways, the depth that man can reach as
a diver would be limited only by the effects of hydrostatic pressure on
cellular structure. However, the use of the {luid breathing technique by
humans is still far in the future because the physiologic effects of
fluids on the lung tissues are still not known. Furthermore, gas exchange
in liquid-filled lungs is diffusion-limited, and at least 60 times more
work is required to propel equal amounts of water instead of air through
the lung passages. These factors seriously restrict carbon dioxide elim-
ination in water-breathing mammals. In mechanically ventilated water-
breathing dogs, carbon dioxide elimination was always deficient., The use
of fluid breathing techniques by man will come about only through exten-
sive cesearch into the effects of fluids on lung tissue and through solu-
tion of the problem of carbon dioxide elimination.

Fish obtain oxygen for their metabolic demands by diffusion from the
scawater in which they swim and eliminate carbon dioxide in the same way.
Diffusion takes place in the gills of the fish where water and blood are
in intimate contact, separated mainly by a series of cell membranes. The
same physcial factors that operate to supply oxygen and climinate carbon
dioxide in fish gills--i.e.,, membranes with appropriate permeability
properties==can be used in the design of artificia: gills., An artificial
gill, which could cnable submerged men to obtain oxygen by diffusion from
water, would have obvious advantages. Work on such gills has becn carried
oul in scveral laboratories, and recently a U.S, patent was awaried to
the designer of one.  The provlem of obtaining oxygen by diffusion from
watcer is essentially one of developing a proper membrane, The membranc
must permit passage of the oxygen molecules while restraining the water
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molecules. There are membranes in existence that would satisfy the dif-
fusion requirements.

The ultimate system that would allow man to roam the ocean freely

for long periods of time might come about by the combined use of the
fluid breathing technique with the extraction of oxygen from seawater by
artificial gills. The development of such a system is very far in the
future and can result only through extensive R& efforts.
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Appendix B

REVIEW OF THE PERFORMANCE CAPABILITIES
OF MAN-IN-THE-SEA CONCEPTS

A, Psychomotor Performance

1. Effects of Water Temperature

In general, it has been found that precision of fine-dexterity of
manual performance deteriorate as water-temperature dccreases.1 It has
been noted tihnat the same task performed in SCUBA diving dress on dry land
and in 70°F water shows a performance-time increase in water of 2373,1 as-
cribed simply to the "various impediments . . . incurred” by being sub-
merged. Subjects in the experiments cited performed all tasks bare-handed
and did not wear gloves during any part of the experiment., Thus, their
hands were continuously exposed to the ambiert environment, It was fur-
ther noted that as water-tempercture decreases, performane: decreases;
the experimenters postulate "o . a point somewhere between 517 and
60 F below which c¢hilling of the hands produces a rapidly increasing
crippling of perfurmancc." These resiults were obtained at a single,
shallow depth (25 feet) in a tank, the divers breathing normal air sup-
plied by self-contained underwater breathing apparatus. Thus, the pos-
sible effects of depth/pressure and gas-mixtures were not considered in
these experiments. Bowen and Pepler's!* postulated critical temperature
". . . somewhere between 54° and 60°F . . ." is supported by the carlier
findings of Clark,? in studying the cffects of hand skin temperature
{in air) upon knotting performance ! requiring very fine finger dextcrity),
observed severe degradation at 55°F; he further noted that ", . | perform-
ance decrement at that temperature increased exponentially with exposure
duration, becoming asymptotic after about 40 minutes. Contrastingly,
perlorsiance at 60°F hand skin temperaturs remained uneffecting throughout
the cxposure period” (sic).

In the most definitive study of water-temperacure effects on motor
performance yet rcported,’ finger dexterity deteviorated much morve
markedly than did ability to carry out tasks requiring relatively large

* References appear at the end of each appendix,
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movements of grosser muscle-groups, at the lowest of three temperatures
(70°, 60°, and 50°F). Moreover, fine-dexterity performance tended to
deteriorate earlier during the 1-1/2 hour immersion period; both types
showed a tendency to reach an asymptotic lrvel well before the end of the
period. This conclusion elaborates and probably further supports Bowen
and Pepler's critical-temperature assertion, as well as Clark's observa-
tion. Stang? further shows that performance of all tasks at the other
two temperatures (70° and 60°F), remained relatively stable through time
but were significantly affected by the actual difference between thermal
levels, His subjects worked in a small-volume tank at 8-foot water depth,
breathing normal air from SCUBA. No dry-land data were taken to show
deterioration resulting from the water-immersion effect; practice on all
experimental tasks was provided at 60°F.

2. Effects of Pressure and Water Immersion

To sct a base-line for evaluating their subjects' underwater perform-
ance, Bowen and Pepler had them perform the same tasks on dry land that
they performed in the experimental tank. While the ambient temperature
of the dry-land environment is not reported, the authors note that to a
diver in a wet suit (as their subjects were), 70°F water feels warm. Thus,
the significant decrease in performance found between dry-land and 70°F ‘
immersion is attributed "simply to being in the water,” which was 25 feet
deep (equivalent in fresh water to 1,75 atmospheres or 25.8 psi). Hill?t
in studying the dry-land and underwater performance of enginecer-diver
teams working on "'routine service jobs" replicating oil and gas production
facility mzintenance operations, fcund a highly significant deterioration
of performance at 30-foot depth in a tank of 65°F water, Tasks carried
out apparently included various combinations of finc and gross dexterity
and probably some total-body movement. Since no statement is made about
diver equipment utilized, it i= not possible to assess the encumbering
cffects of wet suits, SCURA tanks, gloves, brcathing gas, and the like.
The author surmises that part of the difficulty cxperienced by his sub-
Jjects in using hand towls, especiunlly a hammer, rosc from visual distor-
tion (due to air-water mismatch at the divers' facc masks) and "poor sta-
biiity in a ncar weightless state,”"’

In & series of experiments designed to stady manual force-production
capahilitics of SCUBA swimmers, Streimer, Turner, and Volkmer® found that
the lack of traction resulting from the swimmers' state of ncutral buoy-
ancy caused a significant decrease in the force applied to the turning of

\ssuming fresh water, the depth at which this experiment was carricd
out would exert pressure cquivalent to 1.9 atmospheres, or 5,9 psf,
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hand wheels of various diameters and in one- and two-handed pushing and
pulling operations, when compared with forces exerted in "the normally
tractive state' (sic; not otherwise described, but presumed to be on dry
land). In another study,6 the authors showed that work underwater was
more time-consuming than the same tasks done on dry land, with a mean
increase of 35%, which is statistically significant. They concluded that
the type of work performed was differentially affected by immersion (12-
18 feet, 62° - 64°F) times for upper-torso work increased 32%, for gross
body "translations' 61%, and for work requiring relatively fine manual
dexterity, 78% to 100%.

With regard to the specific effects of hyperbaric gas-pressures on
performance (dry-land laboratory conditions), Kiessling and Maag7 showed
insignificant decrease in performance (modified Purdue Pegboard, requiring
fine digital-manual manipulations) and that, after an initial decrease in
effectiveness with increasing pressure, performance remains impaired but
relatively constant, improving as pressure diminishes toward sea level,

The experiments were performed in a pressure-chamber at atmospheric pres-
sures simulating a 100-foot water depth, Results were attributed to the
narcotic effect of elevated partial pressure of nitrogen in the atmosphere
(normal air). Subsequently, Baddeley® compared the effects of simulated
versus actual immersion depth-pressures, concluding that manual dexterity
is much more seriously impaired by 100 feet of seawater than by atmospheric
pressure simulating that depth; he warns that it is ", . . unwise to gen-
eralize from pressure chamber experiments to underwater performance.'' Dur=-
ing SFALAB II, a number of strength and psychomotor tests were administered
before and during immersion to individuals and to teams; results showed
systematically increasing deterioration of performance from dry-land to
shallow-depth to habitat-depth.9

To test the effects of depth further, Baddeley, de Figueredo, Curtis,
and Williams'© administered two fine-dexterity tests to divers in bothl open-
sea and pressure-chamber environments, at depths of 5 and 100 feet, using
compressed air as the breathing gas. Performances on both tests deterio-
rated slightly but significantly as depth was increased.

3. Effects of Gas Mixture

Baddeley and Flemming11 compared manual dexterity of divers at 10-
foot and 200-foot depths both in open sea and in a dry pressure-chamber
and breathing compressed air and found that both air-breathing and HeQ,-
breathing divers showed a significant decrease in effectiveness at
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200 feet in the sea compared with their performance at 10 feet. Further,
HeQ, divers were significantly more accurate than air divers. In the
dry-chamber part of the experiment, decrements that were concluded to
stem from pressure alone were found for both types of breathing-gas. The
authors sum up by noting that ". . . 10 percent impairment in manual dex-
terity in a pressure chamber becomes a 30 percent decrement in the open

12

sea, the effect being independent to a considerable extent of both depth
and gas mixture (except that air induces greater impairment than HeOz).

4, Effects of the Nature of the Psychomotor Task

As previously noted, Stang3 showed that fine dexterity performance
is more sensitive to deteriorative effects of immersion than is perform-
ance of grosser character. DBowen & Pepler's data’ analyzed for percentage
performance decrements as a function of tewmperature at the long exposure
values, tend to agree: a relatively gross manipulative test showed 11.25%,
a finger dexterity test 19%, and a two-hand coordination test 100% decre-
ment. The data of Streimer, Turner, and Volkmer® suggest further agree-
ment, in that fine dexterity work suffered 78% to 100% degradation while
gross-movement tasks deteriorated from 32% to 61%. However, their find-
ings suggest that in gross movement work, those tasks that require the
use of larger patterns of musculature may be subject to greater degrada-
tion than those requiring the usc of smaller muscle-groups: time to com-
plete work requiring use of the upper torso only incrcased (from dry-land
times) 32%, while ,jobs requiring whole-body movements took 61% longer. Re-
sults from SEALAB II individual assembly tests tend to agree with the ini-
tial formulation and further suggest that the more complex a manipulative
task may be, the more it may be impaired by underwater working conditions
(Ref. 9, pp. 259-260),

B. Performance of Mental Tasks

1, Effects of Pressure, Gas Mixtures, and Immersion

At an atmospheric pressure simulating 100 fcet of seawater, using
compressed air, Kiessling and Mang7 found that both choice rcaction time
and conceptual reasoning were significantly degraded compared with re-
sponscs at sca level and attributed the result to nitrogen narcosis.
They noted further that when their subjects had been decompressed to an
cquivalent depth of 10 feet allowing 100-foot compression, their per-
formance returncd to "approximatel: normal.” Bennett, Poulton, Carpen-
tes, and Catton®™ tested 80 subjects on a card-sorting task at sea level
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and at 33-foot (2 ats abs) and 100-foot (4 ats abs) pressures, in com-
pressed air and in 20% oxygen in helium. They reported significantly

more errors at the 100-foot depth when subjects breathed air than when
they breathed HeO,; this effect was not found at the 33-foot depth. More-
over, subjects made significantly more errors when breathing air at 100
feet than at surface pressure. It was noted that all subjects worked
faster and less accurately at 100-foot depth, regardless of breathing

gas mixture, than they did at surface pressure. Authors attribute this

to "an increase in the level of arousal at depth." Baddeley & Flemming*®
found that, at 200-foot depths in the open ocean, divers worked more
slowly at an arithmetic addition task than they did at 10-foot depths,
regardless of whether they were breathing compressed air or HeO,, but

that only when breathing air did they show a marked increase in error

rate (at 200 feet). Replicating their procedure in a dry pressure tank,
they fceund evidence to support the conclusion that at 200-foot depth the
HeO, breathing diver works slightly faster and considerably more accurately
than the air-breathing diver,

In another study,10 Baddeley et al. found that a reasoning test using
sentence comprehension showed about the same decrement between open-sea
depths of 4 and 100 feet, and in a dry pressure chamber simulating the
pressures at those depths, the breathing gas being compressed air. The
depth effect was significant, but the change from open sea to pressure
chamber was not. The authors explain the former on the basis of nitrogen
narcosis, the latter on the subjects' lack of apprehension about conditions
surroundiﬁg the open-sea diving pnhase.

During SEALAB 11, arithmetic tests were given to the diver-subjects;
however, they were administered inside the habitat, under 200-foot HeO,
pressure saturation, rather than in the water under diving conditions,'®
The authors report a slight, probably not significant, improvement in
performance compared with pre-SEALAB dry-land trials,

2. Effects of Temperature

Bowen and Pepler1 had their subjects undertake two problem-solving
tests and one memory test, at water temperatures of 72° and 47°F, as well
as on dry land, In all cases, pcrformance after long exposure at the lower
temperature showed deterioration compared with similar exposure at the
higher temperature, although the differences were not tested for signifi-
cance. Stang3 had his subjects perform a choice-reaction procedure while
solving problems in addition as a loading task; his data clecarly show the
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deteriorative effects of diminishing water temperature: at 60°F reaction
times were significantly longer thaa at 70°F, although at both temperatures
they did not vary significantly throughout the 90 minutes. However, at
50°F there was sharp lengthening of reaction time for the first hour, fol-
lowed by a leveling-off at about 1-1/2 times the reaction times obtained

at 70°F. This asymptotic performance at 50°F persisted throughout the

rest of the experimental period and represented a highly significant deg-
radation compared with the 70°F reaction time,

3. Effects of Emotional State

From the available literature, it does not appear that controlled
experiments have yet been performed relating the effects of induced emo~
tional states such as task-induced stress in the form of anxiety. (See
Hecker, Stevens, von Bismarck, and Williams,14 for example.) However,
several observers have reported behavior incidental to performance under
water, which they ascribe to emotional components, Baddeley,8 in dis-
cussing the problems of open-sea diver performance research, surmises
that anxiety about personal safety, the reliability of life-support equip-
ment, and the effect of nitrogen narcosis may interact with eanderimental
variables to contaminate results. Baddeley et al.'® in their later study
of the effects of nitrogen narcosis again cite the probable complications
resulting from emotional (i.e., anxiety) stresses associated with open-
sea diving, rc-emphasizing the point made earlier by Baddeley & Flemming11
in their study of the performance of deep-submergence HeO; divers. In
their assessment of SEALAB Il divers' performance, Bowen, Andersen, and
Promisel®*® summarize results of a self-administered checklist completed
several times by each member of cach team during his 15-day submergence.
Certain of the items were designed to enable measurement of anxiety or
apprehension experienced by the individual; this class of response,
called "fear" by the experimenters, was found to be positively corre-
lated to a significant degrce with another attribute, labeled "arousal,”
signifying reactivity to the SEALAB conditions and manifested by high
variability between hyperactivity and withdrawal (lassitude, unwilling-
ness to make sortics from the habitat, and the like), Further, "fear"
and "arousal” were found to be negatively correlated, at a highly sig-
nificant level, with time spent on diving missions and with number of
sorties made, suggesting that the most active individuals were those who
felt least tense and anxious about the SEALAB situations. In their study
of perceptual narrowing in novice divers, Weltman and Egstrom!® reported
that somec of the subjects' rcaction times to stimuli in the visual periph-
ery were atypically prolonged and surmised that "their behavior appeared
morc closely rclated to diving risk than to other environmental factors."
It is emphasized that the subjects in this experiment were, by the authors'
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definition, inexperienced, i.e., students. This study is unique among
the work reviewed in connection with this project, in that it attempted
to assess the effects of emotional state on divers' performance under
water. While the authors admit that their perceptual-narrowing hypoth-
esis is only partially ''validated" by their results, they append to their
report a bibliography that should not be overlooked in future research of
this nature,

C. Sensation and Perception

1. Auditorz

Included in the sensory testing program of SEALAB II® were audio-
metric tests to determine effects of deep-submergence environments on
threshold hearing acuity. Conclusions resulting from analysis of the
data are that divers' hearing levels tend to resemble those of people ex-
posed to high intensity noise and that very little change in t‘hreshold
acuity occurs for frequencies in the speech-reception range (below
3,000 Hz), although there was a trend of hearing loss at the higher fre-
quencies (above 3,000 Hz). (An experiment intended to assess underwater
audibility of single-frequency tones at 500 and 5,000 Hz, and binaural
localization of tone sources by divers at SEALAB II depth was not con-
ducted, according to the authors, because of insufficiently powerful
underwater sound transmission systems.)

Considerable laboratory work has been performed on the intelligibil-
ity of speech transmitted in compressed-air and He0, environments, both
over direct talker-listener paths and through electrical transmission
systems. Divers' face-masks and breathing apparatus are known to affect
their speech and therefore its reception by other divers and surface sup-
port personnel. Available reports indicate that the severest problems
lie in the areas of speech production rather than auditory reception;
they will be discussed under a specific Communications heading to follow.
However, it is appropriate to note here that aquanauts participating in
SEALAB II (Ref. 9, p. 266) reported that an apparent adaptation occurred
during each 15-day cycle, in which the speaker seemed to become more in-
telligible as time went on; the divers attributed this to the lowering
of voice pitch and a slowing-down of speaking rate., The authors state
that word lists and phrases recorded during the 45-day submersion period
{presumably intended to weasure the cffccts of hypoerbaric ile0, on speech)
were to be carefully analyzed; however, no results of such analysis are
reported in the SEALAB II document.,
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Auditory localization of underwater sound sources (such as homing
devices or sources of potential hazard) is discussed in a report produced
by CBS Laboratories in connection with describing an electronic device
developed to augment human capability.16 ‘Although this discussion cites
no specific experimental evidence or other publications, it argues that
localization of sound sources by unaided underwater operators (swimmers,
divers) is sharply limited compared with dry-land capability because of
the increased propagation-velocity of sound in water, transmission prop=
erties of the human skull, and the effects of reverberation and multipath
propagation prevailing in the underwater environment.

2, Visual

The SEALAB II report also includes descriptions of water visibility
measurements, both physical and psychophysical (Ref., 9, pp. 250-51), A
device for measuring water clarity, developed by Scripps Institution, is
briefly described (p. 251). A program for measuring aquanauts' visual
acuity underwater and an experiment for the detection and identification
of 10 stationary visual targets, rectangular in shape and painted various
colors as well as black and white, to be set at various distances and
viewed from inside the habitat, are described under the heading UNCOM-
PLETED STUDIES (p. 253). However, a study of target form and color visi=-
bility at the bottom was carried to completion {p. 251); results reported
(p. 261, Table 30) show that a black circle 707 squarc centimeters in
area was detected and recognized with significantly higher accuracy than
the other three targets used: a 900 square centimeter white square, a
yellow triangle, and a white cross.

Underwater visual perception problems received increased attention
following completion of SEALAB II in late 1965. The Navy's Submarine
Medical Center has investigated a numter of problems in areas delineated
by Pauli and Clapper;® during the present study, several research reports
were acquired from that Center., They deal with basic problems of human
ability to see in the underwater environment. One of these--the estima-
tion of size and distance of unfamiliar objects!?--concluded that object
size tends to be overestimatcd with increasing distance, both in air and
in water (visual cues normally present were deleted as an experimental
control), and also that in unstructured (i.e., cue-poor) visual ficlde
estimates of distance between observer and object generally exceed the
true diztance. In another experiment!® i+ was shown that viewers' ability
to resolve standard targets (Landolt Rings) was better under water than
on the surface ( distances being identical for both conditions and appar-
ant luminances being equated). Viewers wore SCUBA masks in both situa-
tions. Kinney, Luria, and Weitzman!? examined the visibility of various
colors, both fluorescent and nonfluorescent, in four different bodics of
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water, ranging in clarity from very murky to clear. Targets were observed
both by SCUBA divers underwater and by subjects on the surface looking
down vertically. Fluorescent colors were found to be consistently more
visible than nonfluorescent, but the visibility of specific colors de-
pended on light-transmission properties of the water. The significance
of this study, from both theoretical and applicational points of view,
lies in the careful measurements taken of total and spectral transmittance
of water at the four test locations and in the development of a psycho-
physical color confusion-matrix based on observers' judgments of all
targets under all conditions. Luminance and chromaticity were specified
for samples of all paints applied to targets used in the experiments.

In another study of color perception derived from reports by SEALAB
aquanauts, Kinney and Cooper?® simulated in the laboratory the homochro-
matic characteristics of underwater visual environments. Observers
adapted during the procedure to constant-luminance visual fields of white,
blue-green, and ( for control purposes) red illumination and then made
Judgments on the color appearance of objects displayed within the fields.
In a related procedure, subjects adapted to each of the three homochro-
matic fields, then were given detection-time tests of the colored objects
previously used, The amount of change in the appearance of colors was
highly significant, "o easily accounting for the reports of SEALAB
divers who said they could see yellows and reds when there were none

present. There was however no change in the subjects’' speed of reacting
to the colors.”

To examine the notion that contextual cues may be related to the
visual perception of depth, lLuria, Kinney, and Weissmar?! performed lab-
oratory experiments investigating the nature of the "filled-unfilled
space” illusion. They concluded that, when there was a clear contextual
connection between the observer's viewpoint and a "standard" or reference
object with which another ('variable") had to be compared, the standard
and variable objects appearcd to be closer together than when the connec-
tion was absent. Observers viewed the test objects with both eyes and
one eyc at various times; it was concluded that the results of the exper-
iment could not be attributed to stereoscopic visuai effects.

luria?? studied the ability of divers to equate the distances of
objects underwater. In the first of three experiments, he tested stereo~-
acuity ! visual judgment of relative distances of objects) in air and in
water, finding that viewing the depth-perception apparatus through ap-
proximately 16 feet of water degraded stereocacuity by a factor of 4 com-
pared with viewing over the sam? distance from the surface. In the
second experiment, the effect of water clarity on stereoacuity was studied
at four levels of light-transmissability. It was found that relative
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depth-perception deteriorates as water clarity decreases and that depth-
perception becomes more variable, A third experiment was run to test the
cffect of the loss of part of the peripheval field on foveal (central)
stereoacuity, by reducing the visual angle for each eye to 10° with spe-
cial goggles; this time the observers viewed the test apparatus in air to
isolate the water effect. It was found that restricting the field of
view did not produce the overall degradation produced by viewing through
water, although observers were about as variable as before. Taking the
results of the three experiments together, it was concluded that the loss
of stercoacuity underwater is a function of two possibly intceracting var-
iables: water clarity and peripheral visual cucs.

Weltman, Christianson, and Egstrom?® investigated the c¢ffccts of
tfive different face-masks worn by SCUBA divers on the angular size of the
visual field available., They found that all five masks permitted prac-
tically full use of the upper field (limited only by divers' eyobrOWS),
but that they all imposed considerable restriction on side visibility;
"however, quite a large uscful area remained." The threce standard partial-
miasks used in the study imposed scvere limitation of lower-quadrant visi-
bility, and are considered by the authors to be detrimental in underwater
search tasks or work with equipment at very close range. [t was concluded
that the full-face mask-=-despite the problem of supplying air without im-
pairing vision-=provided the diver with the most cflfccetive sceing copa-
bility under water., A novel visual perimetry apparatus is described, as
developed for use in these experiments,
Andersen® ! reports experiments conducted in the Bahamas, in the open
ocecan, comparing the visual secarch capabilities of SCUB\ divers and sub-
mersible vessel operators in locating and identifying targets laid out
along a lincar course and presented to observers at three viewing dis-
tances.  The working depth was 55 feet, visibility was 30 feet, and the
submersible vessel was operated over the course at three different speeds.
The test targets were designed to combine threce forms ( square, triangle,
circle) with five colors ‘ black, red, yellow, blue, and green). Each of
three subjects scrved both as SCUBA diver-observer and as vehicle operator-
observer CSTAR I was the vehicle used).  The conclusion reached was that
there wepe . L . no significant differences in the ability of SCUBA
divers and submersible operators to discriminate color and form or in
their visual acuity.” The author notes that vehicle operators confused
roed targets with bluce or green, while SCUBV divers consistently confused
red with Llack, From his discussion, {t appears that \nderscen concludes
that black and green were also highly confusable under the conditions of
his <tudy, but that bluce and yellow were casily distinguishable and very
accurately jdentidvied, regardless of viewing distance,
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"/hile not primarily concerned with vision as an independent variable,
the experiments of Weltman and Egstrom!® on perceptual narrowing are
relevant to a consideration of the effects of the underwater environment
on divers' seeing ability. Although their results were anything but
strongly conclusive, they contain a suggestion, underscored by the more
definitive work of others (see for example MacInnis, 25), that heightened
levels of anxiety can reduce divers' ability to sense events occurring at
or near the edge of their fields of vision while they are concentrating
on a fairly demanding task.

3. Tactile

The Mackworth V test has been widely used to measure the effects of
water-temperature on divers' finger numbness, in terms of tactile dis-
crimination. Bowen and Pepler! obtained tactile-discrimination threshold
data on four subjects, first on land then after 12 minutes' exposure to
five water temperatures vanging from 70° downward to 44°F and found sys-
tematic, significant increase in threshold as water-temperature decreased.
They noted that this probably accounted in part for deterioration of per-
formance underwater where fine dexterity is called for, Stang's results?
agree, in fact showing finger sensitivity deteriorating by better than
50% when divers are subjected to 50°F water temperature for 90 minutes,
compared with sensitivity at 70°F for the same length of time. Both
Bowen and Pepler and Stang interpret these findings as explaining divers'
difficulty in hondling small objects during underwater assembly work;
Bowen and Pepler note that their divers reported that as their fingers
became increasingly numb, they had to pay closer visual attention to their
work, diverting attention from routine checking of personal equipwent and
other necessary operations.

Baddeley® administered the V test to diver subjects on dry land and
at two underwater depths in open sca (10 and 100 feet), primarily to
assess cffects of nitrogen narcosis on tactile sensitivity; he found no
significant change in threshold with depth. Water temperatures encoun-
tered during his experiments were not reported.

D. Communications

Since relevant literature considercd during this project related
unly to voice communication under actual or simulated underwater condi-
tions, the following review will discuss only that mode. As previously
noted in the discuzsion of auditory perception, the Project SEALAB Il
Roport described agquanauts' obscrvations of speech under hyperbaric
(200 foot) HeO, atmospherv, but reported no quantitative findings. Most
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of the available publications originated at the reseazrch laboratories of
the Navy Submarine Medical Center, located at the Submarine Base, New
London, Connecticut.

One of the earliest systematic investigations of the effect of HeQ,
atmosphere on speech was reported in 1962 by Beil.?€ He had four male
speakers inhale pure medical helium, then repeatedly utter each of six
English vowel sounds; for each speaker 12 repetitions under helium and
8 under normal air (for comparison purposes) were recorded for detailed
spectral analysis. It was shown that an increase occurred in the com-
ponent frequencies of each vowel sound, but that the ratios between form-
ants remained nearly constant. Sergeant?? made formal word- and sentence-
list intelligibility measurements on the speech of two male subjects prior
to and during a 144~hour He0, test-chamber experiment at atmospheric
pressure. He found that during the first two days, speech-intelligibility
deteriorated significantly, but then improved, returning almost to normal
by the end of four days; this was interpreted as evidence of an adaptive
process in the talker. This finding supports the anecdotal data collected
during SEALAB II in which aquanauts stated that they observed adaptation
occurring among themselves as their 15-day submergence periods proceeded,
specifically mentioning a lowering of voice-pitch and slowing-down of
speaking rate. (Sergeant did not undertake to explain the mechaunism of
adaptation revealed by his data.)

In a somewhat later paper, Sergeant?®:2® reported the results of in-
telligibility and acoustic-specirum measurcments on the speech of five
Navy divers breathing 81% He-19% O, at atmospheric pressure, confirming
the earlier finding of decreased intelligibility. He noted that although
voice quality changed drastically, the fundamcntal voice frequency did
not shift appreciably and could he maintained at or near a given level by
conscious effort on the part of the spcaker. He calculated that the form-
ant {requencies, related to changes in resopant characteristics of the
cavities above the vocal folds themselves, shifted upward by an average
ratios of 1.51, compared with normal-air frequencies.

In an attempt to improve the intelligibility of helium specch,
Sergeant3® cxperimented with a variety of passhand filters through which
tape-recorded samples of HeO, cnd air spcech had been proccssed. ie came
to the conclusion that no condition of filtering would incrcasc helium
speoch intelligibility av compared with the no-filter condition.*

“ 1t is not clear why Sergcant chose to attack the problem of HeO,
spcech-intelligibility restoration in this way, because passive fil-
tering as he employed i{t, does not counteract the upward {requency
shift he had discovered in the experiment discussced proviously.
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In England, Holywell and Harvey®! made detailed measurements of the
fundamental and formant frequencies of speech uttered by speakers breath-
ing air and again He0O,, at both normal atmospheric and four-atmosphere
pressures. In addition to confirming Sergeant's formant frequency-shift
in HeO, of 1.5 times the air frequency at normal pressure, they showed
that four-atmosphere air produced an upward shift in formant frequencies
(compared with normal pressure air), and a slight shift upward in the
voice fundamental. This pressure-induced shift occurred only when air
was the breathing gas; helium under four-atmosphere pressure seemed not
to produce a greater shift than it did at normal pressure. They further
experimented with a simple technique to improve intelligibility of helium
speech by restoring it to its original frequencies--playing back tape
recordings at reduced speed., An average improvement of almost tenfold
was reported.

Brubaker and Wurst3? studied the effects of He0, at simulated depths
down to 300 feet on spectra of speech sounds, generally corroborating
Holywell and Hurvey with respect to the He-induced formant shifts. Addi-
tionally, they noted that at 300 feet, vocal frequencies were 0.5 to
0.6 octave higher than at surface pressure. The authors interpreted this
response to indicate increased vocal effort on the part of the speakers,
in response to the effects of increased pressure on air-conduction hearing
and therefore on the speakers' evaluations of their own vocal ocutput,

Gerstmap, Gamertsfelder, and Goldberger3?® reported the effects on
speech-formant frequencies of various pressures and compositions of HeO,
mixtures, concluding that the relationships were sufficiently complex as
to render restoration of original intelligibility by instrumental means
complicated and costly, with reasonable approximation the most practical
goal. (The paper, incidentally, is an expansion and informalization of
a much more compressed presentation given beforc the Acoustical Society
of America at its 72nd meeting in Los Angeles, November 1966. )

More recently, Sergeant®? constructed a confusion matrix for English
consonants from experimental data as a first step in establishing a
rationale for predicting intelligibilities of special vocabularies that
might be designed for use by HeO,-breathing divers. All data were ob-
tained from four speakers breathing 80% He-20% 0, at normal atmospheric
pressure., It was concluded that ". . . there is a marked similarity be-
tween helium speech and speech in air when intelligibility according to
linguistic classification is observed. However, unaccountable differences
do exist between the two breathing media for ranked intelligibilities of
specific consonants.”
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In a paper given before a recent meeting of the Instrument Society
of America, Sergeant3® reviewed the known and probable causes of speech-
communication distortions in deep diving; this paper presents no original
data, but does provide a useful tutorial overview of certain fundamentals
of speech production as well as practical considerations imposed by the
deep-submergence environment (down to 1,000 feet).

In connection with developmental techniques for restoring intelligi-
bility to helium speech at a simulated depth of 400 feet (13.13 ata),
Sergeant3® utilized a "high fidelity' (characteristics otherwise not
described) system for tape recording standard intelligibility word lists
read by an experienced diver in an atmosphere consisting of 88% helium,
6% nitrogen, and 6% oxygen. When played back at original recording speed
(formant frequencies uncorrected for helium shift), 78.0% intelligibility
was obtained; when playback speed was reduced to one-half normal speed,
intelligibility rose to 96.8%. It was noted that voice quality under
this latter technique was quite different, but that distortions were evi-
dently introduced to the detriment of recognition of the speaker's voice.
A second technique was tried (the Varivox tape-playback, consisting of
counter-rotating tape transport and pickup head assembly) and yielded
intelligibility of 85.6%, which was interpreted by the author as "signi-
ficant."

In a paper to be published as a chapter in a medically oriented book
on diving and performance under hyperbaric atmospheres, Sergeant3” reviews
current knowledge regarding speech communication, pressure, and atmos-
pheric composition, and examines the efficacy of several corrective or
"speech unscrambling'" techniques. This paper makes no attempt to report
new findings, but summarizes adequately material compiled from widely
disparate sources, 38
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Appendix C

REVIEW OF THE PERFORMANCE CAPABILITIES
OF MECHANICAL MANIPULATORS

A. Underwater Mechanical Manipulator Design Considerations

Present-day mechanical manipulators may be categorized as follows:

® Mechanical master-slave type, which duplicates the motions of
the operator's hand by means of a purely mechanical linkage.
Feedback is transmitted back through the linkage, and sensitivity
of feedback is proportional to the inertia of the system.

* Servomanipulator, or powcred master-slave type, which duplicates
the motions of the operator's hand by means of proportional con-
trol links, either electrical or hydraulic.

¢ Rate-controlled, powered manipulator type, which is operated by
an open-loop control system and actuated by on-off switches with
provision for rate control. Feedback is visual only.

The mechanical master-slave is the manipulator used in most nuclear
installations. Its virtues are high reliability, ease of use, and good
dexterity; feedback is automatically supplied through the mechanical
linkage. The servomanipulator has the dexterity and ease of use of the
mechanical master-slave and has the benefit of complete mechanical sepa-
ration of the operator and the manipulator. Unfortunately, the require-
ment for feedback control imposes such complexity on the system that this
type of manipulator has not yet achieved the degree of reliability de-
sired even for land operation.

Neither of the above two classes of manipulators appears practical
for undersea use. The master-slave concept of the two manipulators re-
quires that the operator have the capability of complete arm swing, which
is a space luxury that usually cannot be afforded in the deep submersible.
The mechanical master-slave also is infeasible because of the need for
penetration of the pressurc hull with mechanical linkages, which is dif-
ficult at extreme depths. The servomanipulator does not require such
hull penetrations, but as noted above such manipulators are currently too
complex and unreliable for undersea use.
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For these reasons, all of the manipulators currently in use in sub-
mersible vehicles appear to be either fixed or variable rate-controlled,
Many have small, portable control boxes that may

powered manipulators.
be carried by the operator to the viewport affording the best visual
Although feedback is primarily visual, suggested
aids include a device for indicating the grip force being exerted by the
manipulator terminal device and a small hydrophone mounted near the ma-
of

control of the task.
nipulator arm to transmit the sounds of striking small objects.
course, visual feedback may be obtained directly or by means of periscope

or television.
One manipulator arm would seem to suffice for most oceanographic
missions, but it appecars that two arms are nccessary if the submersible
is to perform meaningful work. The arms are spot-mounted on the hull,
and it appears that the most efficient arm configuration is one resem-
bling the human arm (that is, with universal joints corresponding to the
human wrist and shoulder and arother joint corresponding to the human
elbow).
It is generally recognized that, to be at zll efficient underwater,
a work boat must have the capability of exchanging terminal devices on
the manipulator arm, Although the choice and design of terminal devices
to be carried will depend to a great extent on the particular missica,
in general this capability is preferable to using an "all-purpose’ ter-
minal device to hold and actuate a separate tool, as has been the pre-
Such a capability allows the tool to be mechanically
coupled to a motor

vious practice.
with an impact wrench or drill chuck), avoiding the necessity of either
using self-powered tools or having trailing electrical or hydraulic con-

nections to the tool.

Some of the considerations that must be taken into account in de-
signing mechanical manipulators for undersea use are as follows:
It

¢ Hydrostatic pressure
As mentioned previously, this factor imposes limitations on pres-
sure hull penetrations and, hence, on mechanical linkages.
also affects the design of hydraulic control lines, which must

usually be pressure compensating in some way.
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Corrosion and conduction

The corroding action of seawater has played havoc with some of
the early manipulator models, especially affecting fastenings and
castings and spots where the surface of the manipulator arm had
been scraped. Most manipulators are now being made from stain-
less steel, but still may suffer from corrosion if left in the
water for prolonged pecriods without maintenance, The high elec-
trical conduction of seawater requires rigid insulation standards
for all electrical lines and motors used in the manipulator.

Visibility

Frequent conditions of reduced visibility limit the effective
lengths of the manipulator arm. A six-foot arm reach seems to

be about the maximum useable under normal conditions, although a
12-foot arm has been recommended for a vehicle that will have to
support heavy objects (however, it was noted that the full 12-foot
extension may frequently be of no use because of the poor visi-
bility conditions that can be expected). Even though visibility
may be sufficient to carry out the task, the loss of detail, and
especially of perspective, may be sufficient Lo uffect sevcrely
the time required for task completion.

Relative motion

Excessive motion between the vehicle and the object to be manipu-
lated can make effective manipulation difficult, if not impossible.
The vehicle to which the manipulator is attached must supply gross
positioning ability; but most vehicles cannot maneuver to the

1/4~ or 1/2-inch positioning requirements of many remote handling
tasks and hence cannot be used for fine positioning. Rather the
vehicle must provide a stable platform, through grappling onto

the object to be manipulated, using auxiliary anchoring systems,
trim systems, and the like. According to studies conducted at
North American Rockwell, the maximum tolerable rate of motion
between the outstretched manipulator arm and the object to be
manipulated is 4 inches per second.

A 50-pound capacity scems to be the nominal value for manipulator
arms on work boats (where capacity is defined as the force that the out-
stretched arm can exert in any direction). Some manipulators designed
for heavy salvage work have capacities up to 500 pounds, but a 50-pound
capacity is enough to enable the manipulator to handle tools of a size
that a mun would have to use two arms to support. In general, larger
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capacity arms carry with them the burdens of increased clumsiness and
problems in maintaining a stable platform with the vehicle,

B. Underwater Mechanical Manipulator Characteristics

A comprehensive study of tasks to be performed by five deep submer-
gence vehicles established the required characteristics of mechanical
manipulators.! The following vehicles were considered.

1.

AUTEC Vehicle

The AUTEC is a relatively small vehicle intended for use with
the AUTEC program. It is to be capable of assisting in salvage
operations to a depth of 6,500 feet. It also must be able to
inspect, test, relrieve, and place electronic systems on the
ocean bottom, as well as to perform other oceanographic opera-
tions.

Deep Submergence Rescue Vehicle (DSRV)

The primary mission of the DSRV is to rescue personnel from dis-
abled submarines. The designs specify operations to a depth of
9,000 feet, with visibility limited to 3 feet. The vehicle is

to mate with a disabled submarine and shuttle personnel in groups
of 12 to a surface ship or another submarine.

Oceanographic Submarine (NR-1)

The NR-1 is a large research submersible capable of extended
cruising. Manipulators would be used for such tasks as expler-
ing the continental shelves and maintenance of equipment, search,
and recovery on the ocean floor.

Triecste 111

The Tricste III is a bathyscaph similar to Tricste II; its pri-
mary mission is to reach great ocean depths, to 20,000 feet and
to obsesrve conditions on the ocean floor.

Deep Suvmergence Scarch Vehicle (DSSV)

The DSSV is designed to operate at cruising speed over fairly
large distances, carrying a crew of 3 to depths of 20,000 feet.
It will recover and transport objccts weighing up to 130 pounds
from fts design depth and will assist in salvage at depths to
2,000 ject,
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The manipulators proposed for vehicles 1, 2, 4, and 5 are identical
in specifications; the manipulator proposed for vehicle 3 is essentially
a larger version of the same manipulator. In the following summary,
specifications will be given for the smaller manipulator and specifica-
tions for the large manipulator of vehicle 3 will be shown in parentheses
if they differ.

* Reach

] Minimum active length 72 inches (144 inches)
Maximum retracted length 36 inches (72 inches)

. Cagacitz

Minimum wrist-roll torque 1,500 inches per pound (10,000 inches
per pound)
Minimum force exertable in any direction 57 pounds (250 pounds)

The small manipulator should also be able to exert a 600-pound
force in the horizontal direction 3 feet below the shoulder axis.

* Degree of freedom

Each manipulator should have 7 degrees of freedom, each controlled
by a separate actuator. There is to be no visible backlash, nor
any visible overshoot resulting from the motion of starting or
stopping the manipulator.

* Motion rates

Range of shoulder vertical, horizontal, and elbow motion 1/2 inch
per second to 8 inches per socond.

Range of wrist vertical, horizontal, and extend motion 1/4 inch
per secand to 4 inches per second.

Range of wrist rotate motion 1/2 rpm to 8 rpm.

e Motion locking

Each of the above motions should hold its position when the manip-
ulator is not in action. Tolerated motion drift is not to exceed
1/16 inch per minute with full rated load (cumulitive over all
motions).
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* High force terminal device actuator

Maximm grip force provided, 2,000 pounds through 4-inch stroke
(8,000 pounds through 8-inch stroke)

Range of controllable grip force, 100-2,000 pounds
(400-8,000 pounds)

Accuracy of controllable grip force, + 20%

e High speed terminal device actuator

Range of drive speed, 400-3,450 rpm
Maximum torque, 30 inches per pound (300 inches per pound)

The following terminal devices may be positioned at the end of the
manipulator and actuated by one of the terminal device actuators:
¢ Hook hand

Jaws shaped to fit hexagonal stock and close to zero opening at
the center of the grip.

Maximum grip force, 2,000 pounds (8,000 pounds)
Maximum opening, 2-1/4 inches (5 inches)
Stroke, 4 inches (8 inches)

e Parallel jaw hand

Closes to zero opening; application of full wrist torque will
not permanently distort jaw mechanism.

Maximum grip force, 1,500 pounds (3,000 pounds)
Maximum opening, 5 inches (10 inches)

* Three-jaw clam shell gripper
Formed by three orange peel jaws.

Maximum diameter of object encompassed, 12 inches {16 inches)
Minimum gap between section when closed, 1/16 inch.

e Prosthetic hand
Patterned after the split prosthetic hook design.

Maximum diameter of object grasped, 5 inches (10 inches)
Maximum grip force at knue of hook, 250 pounds (1,000 pounds)
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Gragple hand

In planar movement, 2 tines interleave with 1 opposing tine
Range of diameters gripped firmly, 0 to 12 inches

Maximum grip force, 250 pounds (1,000 pounds)

Drill chuck

Of the standard Jacobs design, but equipped with rotation stops
in the outer sleeve.

Capacity, O to 1/2 inche (0 to 1 inch)

Centrifugal pump

Used either as suction or jetting device, with nozzles exchanged
by divers. The pump should ‘Je driven by a high speed terminal
device actuator.

Impact head

Modification of standard square drive, continuous rotation input
type of impact wrench, using the head portion only and relying
on the high speed terminal device for actuation.

Head size, 1/2-inch square (1-inch square)

Cable cutter
Capable of shearing a 1limp stainless steel cable,

Maximum diameter of cable to be cut, 1 inch (2 inches)

Stud gun

Thickness of plate to be penetrated, 1/2 inch
Maximum shear or extraction strength of stud, 4,000 pounds

The following remarks are general conclusions reached in the study
bearing on the above specifications:

Since weight is generally a critical factor, the smallest pos-
sible manipulator is desirable. About a 6-foot reach is the
minimum length to allow reasonable area coverage by the manipu=-
lator, and the 6-foot length, 50-pound capacity arm is consistent
with the mission and viewing requirements of the smaller vehicles.
The size of the arm for the NR-1 is consistent with vehicle size

149

-
£
2
&
i
:
i




R

and mission, although it should be noted that vision may be poor
for this large an arm in turbid water.

* In general, manipulators should not be used as cranes or heavy
weight lifters, but rather as 'riggers." Many manually operated
tools can be modified for use with manipulators. A 50-pound
manipulator capacity (which is compatible with the 6-foot size
manipulator) will be adequate for handling power tools of the
type that are normally hand-held and have been modified for
underwater use.

* It should be noted that load capacities are specified for the
worst arm configurations and that up to double this specified
capacity may be handled in more favorable manipulator positions.

* At least 6 degrees of freedom are required if the manipulator is
to have full capability of locating and orienting the terminal
device. A seventh degree of freedom, wrist extension, is in-
cluded to speed up many of the manipulator operations.

C. Capabilities of Underwater Mechanical Manipulators

The most satisfactory applications for underwater mechanical manipu-
lators will probably be in tasks related to construction, assembly, or
maintenance since these tasks can be specifically engineered and designed
to accommodate the shortcomings of mechanical manipulations. Such design
considerations should include the following:

* Providing easy access to all nuts, bolts, valves, and the like.
¢ Minimizing the number of different nut sizes.

* Fitting all nuts with conical heads

* Redesigning clamps and other hardware requiring ''two-handed"
operation.

* Utilizing nonjammable threads and large access holes in nuts and
tapped holes.

¢ Making nuts and bolts captive so they will not be dropped.

Manipulators may be less useful in nondesignable jobs, such as sal-
vage tasks, where the limited versatility of manipulator tools may not be
adequate for the job. However, given enough time, even these jobs can
b2 accomplished by mechanical manipulation with the limits of dexterity
and mobility imposed by the vehicle-manipulator system.
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The question of how much more time it will take a manipulator to
perform a given task compared with the time required for manual perform-
ance is still a matter of conjecture. R. C. Goertz, in "Human Factors
in Design of Remote Handling Equipment," notes that on dry land a mechan-
ical master-slave manipulator takes 6 to 10 times as long as a man to
perform a given task, and as much as 10 times as long for a rate-
controlled manipulator compared with a master-slave. Therefore, under
shirtsleeve conditions, an undersea manipulator might be as much as
100 times slower than a man in performing a task. However, in the under-
water environment, this ratio decreases to a factor of about 10 when com-
pared with a shallow-depth SCUBA diver and equals and finally surpasses
a hard-hat diver at his marginal depths.

Unfortunately, actual experience in underwater mechanical manipula-
tion at present is so limited that the above remarks can be considered to
be only educated guesses, It appears that this question will be partly
answered by the performance of the Beaver Mark IV vehicle, to be launched
soon by North American Rockwell. Since the Beaver is the first submers-
ible to be designed as a work boat from the keel up, the performance of
this vehicle in actucl underwater tasks will yield a state-of-the-art
comparison between the underwater capabilities of man and those of mechan-
ical manipulators. So far, no information on the performance of the
Beaver manipulator is available, but several facts seem fairly evident
from the brief view of the vehicle and of a film clip of manipulator
tests:

* The manipulator movements are rate-controlled by the operator,
but it is not known which controls the operator uses to control
the manipulator or what feedback considerations may have been
added to supplement those obtained visually.

* Fine positioning capability of the manipulator arm, as shown on
the demonstration film, seemed limited effectively to motions on
the order of 1 to 1/2 inch, with overall manipulative capability
generally quite clumsy., Although satisfactory alignment of such
tools as drill chucks, stud guns, and impact wrenches may simply
be a matter of taking enough time, the manipulator seems unsuited
for work requiring any appreciable degree of 'dexterity." Com-
plicated patterns of wrist movement appear to be extremely time
consuming to perform with the manipulator, and of course the
manipulator is totally incapable of "finger work'--i.e., those
tasks invelving such small and precise movements that a human
would perform them with his fingers with wrist fixed.
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* The operators of the manipulator seem to have much trouble with
perspective and with the orientation of the terminal device in
the desired geometrical relationship with the object to be worked
on. For example, in using a stud gun the operator had great
difficulty in placing the gun perpendicular to the surface, some-
times being in error by as much as 30 degrees.

Thus, all signs seem to indicate that current undersea mechanical
manipulators may minimize the need for man, but they certainly cannot
replace him, The manipulators are built on too gross a scale to accom-
plish jobs requiring fine dexterity or precision, so at least for the
present man must be available to accomplish such jobs. Although the m- -
nipulators will probably outperform man in trsks requiring the use of the
powered terminal devices, such as the impact wrench, we have yet to see
whether manipulators will be capable of using the general purpose hands
to effectively use other hand tools that may occasionally be needed.
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