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Foreword

The present study is part of the program "An Analytical Study of the
Exhaust Expansion System {Scramjet Scientific Technology)" being conducted
by the Jet Propulsion Center, Purdue University, under United States Air
Force Contract No. F33615-67-C-1068, BPSH 7{63 301206 6205214). The Air
Force program monitor was Lt. Gary J. Jungwirth of the Air Force fero
Propulsion Laboratory. This report presents a second-order numerical
method of characteristics for three-dimensional supersonic exhaust nozzle
flow analysis.

Humerous discussions of the problem with Professor Ellis Cumberbatch
of the Mathematical Sciences Division and Professor Czeslaw P. Kentzer of
the School of Percnautics, Astronautics and Engineering Sciences, Purdue
University, are acknowladged and appreciated. The contributions of Robert
Craigin and Stephen Kissick in the development of portions of the computer
program and the plotting routines are also acknowledged.

This report was submitted by the authors on 31 August 1989,
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the report's findings or conclusions. It is published only for the
exchange and stimulation of ideas.

Gary J. Jungwirth

Ist Lt., USAF

Project Engineer

Ramjet Technology Branch
Ramjet Engine Division
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ABSTRACY

A new method of characteristics numerical scheme for three-dimensional
steady flow hzs been developed which has second-order accuracy. Herstofore
311 such schemes for three-dimensional flow have had accuracies less than
secord-ordar. A complete numerical algorithm for computing internal super-
sonic flows of the type encountered in ramjet, scramjet, or rocket propul-
sion systems has been developed and prograsmed for both the IBM 7084 and
€3¢ 6500 cosputers. The method has been tested for order of accuracy using
the exact solution for source flow and Prandti-Heyer flow. The results of
these tests have verified the second-order accuracy of the scheme. Addition-
al accuracy tests using existing methods for solution of two-dimensional
axisymmetric flows have shown that the scheme produces accuracies comparabie
to that of the two-dimensional method of characteristics.

The computer program has bsen used to generate the flow field for sev-
eral three-dimensicnal nozzle contours and for nonsyseetric flow into an
axisymmetric nozzle. These results reveal the compiex nature of three-
dimensional flows and the general inadeguacy of quasi-three-dimensional
analyses which neglect crossflow.

An operationaliy convenient cosputer program was produced. The pro-
21‘& has the capability to analyze nonisoenergetic and nonhomentropic

lows of a calorically perfect gas or homentropic flows of a real gas in
chemical equilibriim. The initial-value surface cptions include uniform
flow, source flow or axisymmetric tebular data. The nozzle boundary
options include conical nozzles, axisyssetric contoured nozzles and super-
elliptical nozzles.
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S A BT E T

SECTIOR I
IRTRODUCTIOR

1. GENERAL REHARKS

The method of characteristics for two-dimensional axisymmetric,
supersonic internal flew has been used for appreximatoly twenty yoars in
dssign of wind tunnel nozzles, rocket engine nozzles and air inlets for
supersonic aircraft. The most sophisticated design techniques use the
calculus of variations to establish the boundary conditions suck that an
optimezn design for a particular set of constrainis is produced. Subse-
quently the method of characteristics is used to establish the flow Tield
and the nozzle or inlet wall shape. Yhile these methods for two-dimen-
sional problems have become highly deveioped, equivalent methods for three
indepsndent variables are in their infaney, roughly equivalent to the
state of two-dimensional methods some twenly years ago.

The reasons that the development of the three-dimensional methods
has lagged are three-fold: 1) the three-dimensional probiem s fundamen-
tally more difficult than the two-dimensional problem; 2) the required
camputer capacity for three-dimensional calculations has only been
achieved in the present generation of digital computers; and 3) applica-
tions reguiring thres-dimensiarzl supersonic internal flows were not ire-
quently encountered. In fact, the need 0 cCalcuiate the external flow
about supersonic vehicles flying at angles of attack has been the princi-
pal motivation for the existing three-dimensional work.

At present, however, there are several appiications which require
three-dimensicnal supersonic nozzle flow calculations. These include
nonaxisymmetric flow .nto an axisymmetric nozzle, nonsymmetric distur-
bances in axisymmetric nozzles, three-dimensional nozzies for rocket en-
gines having nonsymsetric exit ares constraints, and thres-dimensional
nozzies for scramjet systems where a high degrae of integration of engine
and vehicle structure is desired. The scramjet nozzle application was
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the motivation for this research.

The objective of the present research {s the developmens of & practi-
cal and accurate numerical method. and assoctated Jomputer progvam, Tor
analysis of three-dimensicnal supersonic exhaust nozzle flows. The chro-
nological development of this work is documonted in references (1) and
(2), which are year-end progress repuris for United State. Air Force
Contract Ho. F33615-67-C-1068.

2, THEORETICAL REMARKS

The equations of motion for a steady supersonic flew of an {nviscid
fluid in three independent space variables are well astablished., The
equations can be clascified as a system of quasi-linear, first order,
symnetric, hyperbolic partial differential equations. The number of de-
pendent variables will dapend upon the assumed nature of the flow, {.e.
number of chemical cooponents, whether or not chemical equiiibrium is
assumed to exist, existence of vorticity, presence of condensed nhases,
etc, The mathematicz! character of the cystem does not depend upon the
specific nature of these assumptions and, consequently, neither does the
theoretical method of solution. However, the numerical aigoritam and
the associsted ceomputer progrsm will dspend upon the specific system of
equaiions.

The finite difference integration schemes which hszve been proposed
and/or used for the solutfon of systzss of hyperholic partial differential
equations fall into two categories: 1) schazes based on charscteristic
directions and 2) schemes based on the coordinate directions. Yariations
of both approaches have been investigated both analytically and numer-
ically; however, no one method has been shown to be superior for ali
problems. Humerical stability, accuracy. and time of computation are
the factors of primary importance in svaluating a particular method.
Secondary factors such as ease of programming and ease of {ncorporating
boundary conditions are also important. In the subseguent text, the more
pertinent efforts of investigators in this field are briefly discussed
in an attempt to establish a "state of the art",
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3. SURVEY OF THE LITERATURE

&. Generzl. To a Timited extent the numerical siazbility end ac-
curacy 6f finfte diffarencs schemss can be investigated by theorstical
metheds, These methods provide certain necessary conditiens which should
be sztisfied by any numerical scheme before procesding with its nummerical
implementation.

Courant, Friedrichs and Lewy {3) have shown that a2 necessary condi-
tion for ctability of aumerical methods for solution of iinear hy er-
bolic partial differential equaticas with constant coefficients is that
the domain of dependence of the differential system must be contained
within the convex hull of the differencs system points in the iaftiel-
value surface. For three-dimensional supersonic flow thz zone of depen-
dence of the differantisl system consisis of the area enclosed by the
intersection of the Hach conold, threugh the solution point, with the
itizi-value surface. The convex hull of the differencing schems is
the pelygon formed by connecting the outermost points of the ¢ifferencing
schems in the inftial-value surface. Hahr {3} has shown that the (FL
crite=~fon i both a necessary and sufficisnt condition for stability of
simplicial differencing schemes, f.e., schemes *hat use L + 1 points on
gn L dimansional initiai-vatuc surface to determine 2 new solution point.
The won Heumann condizion, Refs. (5) and {6), is a stronger stability
criterion which regquires that the efgenvalues of the amplification mairix
be less than or equal teo ons in absoiute value. The von Neumann conditi
is 2lso a sufficient conditicn for analytic initial data. It the govern-
ing differential equations have variablis coefficients and are noniinear,
then no axact test for stability exists. Ths usual amproach . to reguire
that the CFL condition be satisfied and to apply the von Keumann gondition
locally after Tinearization of the differential egquations, Ref. (5). &Ex-
perience to date has verified the soundness of this approach. Thus any
numerical scheme which does not satisfy both the (FL and von Heumann cof-
ditions {s regarded as unsatisfactory.
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The absolute accuracy of 2 numerical scheme is difficult ¢

] o
without actually comparing numarical rasults with an exact solution. How-
f s

evsr, & desired order of accuracy, whidh




converges with reduction of the step size, c#n be achieved by using con-
sistent approximations throughout the numerical schawe. For & particular
scheme, the absolute accuracy will increass as the crder of accuracy is
increased. It is reasonazble to expeci that different sthemss having the
samz order of accuracy will have comparable absolute accuracy, although
there is no guarantee of this.

A more accurate scheme will permit the use of larger step sizes and
thus fewer points need tc be computed. In three indspendent variable
problems, increasing the computing interval by a factor of two results in
2 reduc.ion in the number of computsd points by 2 factor of efght  Thus,
& more accurate but mors complex schame mey actually require less total
computer time,

i

=E b. _Hethod af Lharacteristics. The concept of charscterisiic divec-
%‘? tions was first discussed by Hassau {7} in 1889, and since that time ths
a method has been widely appifed fc the solution of two-dimensional prob-
::f:—— lems.* The method of characieristics has been very succassful in two-
% dimensional probimms pecause it provides a means by which & system of
;éé partial diffsrential sgquations is reduced to a system of coupled ordinary
= differential equations along characteristic directions. The utility of

i

the method of characteristics is weakened when three {ndependent variables
2re considared bscause the sysiem of squations can no longer be reduced to

§ & system of ordinary differentisl equations., Instead, ths equations can
;% only be reduced to a system of partial differential equations in & space
§ of one lower dimension, {.8., & characteristic surface, &nd anv integra-
§ tion schems necessarily includss numerical avaluatieon of derivatives ...
% at least two independert directions.

%—; The characteristic surfzces for three-dimensional ctationsry flow
;_%i sre shoewn by Rusanov {8) to be surfaces tengsnt to the local Hrch coneid,
% wave surfaces, and surfaces which are composad of the streamlines, strean

==

surfaces. Thus, two infinite familiu: of characteristic surfaces exist.
The system of differentisl equations reduces to an interior operator,
{.e., & charasteristic coxpatibility relation on these surfaces.

»

urs tor the method of charac
1 not be given here as the v
a5 oniy indirect bearing on

b
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Humerica! integration along 2 system of sucn surfaces is theoretically
less complex than integraion along noncasracteristic surfaces where
derivatives with respect to all three independent varisblies necessarily
appear.

& nuwber of fnvestigators have proposed numerical schemes using the
characteristic compatibiiity relztions for three indspendent variable
problems; hosever, only 2 few have developed complete numsrical algorithas
ard obtained results, Good surveys of the various approaches which have
teen taken are given by Fowell {9}, Thespson {312}, and Strem (11).

711 schames using the mathod of characteristics ars based on the
fact that the original system of hyserbolic partia] differential eguations
can be replaced by an equivalent system of independent differentizl
characteristic compatibiiity relations. Freguently, the gquestion arises
whether or not ..! the giffersntial cospatibility —clations which 2re
used in & particular approach are independent. Rusanov (8) has investi-
gzted both the number of independent characteristi: compatibility rela-
tions which czn exist at & point on a particuiz= caaracteristic surface
ern¢ the nimber of such independent relations <o+ idering all possible
characteriztic surfaces. Two infinits families ¢f differential compati-
bility relations exist whish correspond {5 the two families of characier-
{stic surfaces., Thus, considerable freedeos axists in the choice of dif-
ferential systems,

The nizber of independent characterti $z€ differential relstions at
& peint cannot exceed e nusber of original differsntial equations which
comprise the system. For 3 complete ~ystap this number will be just squal
o the number of dependent variaslies. Rusanov found that a maximum of
thres differential wave surface ceaaatibi?ity relations are independent,
In addition, ze obtained the conditions under which the wave surface and
streem surface differential compatibility relations are dependent. It
is important for the discussien of the
that these criteris for independence appi

arisgs nugerical schemes to note
¥y to differential relations

in the solution space. Sgeciféc 1ly, they do not apply to the
differsnce relztions which are obtained

'“U -ty
g
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wath et

&t & point

d 2
by Tinite differences. This is so because the finite d

are spprorimate integrs's of the squations and are all independent, at
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least to within the order of approximation.

In the application of the method of characteristics vo two indepen-
dent varisble problems, nmumerically stable schemes result and second-
order accuracy is easily achieved. For thres independent variable prob-
lems, stsble schemes do not wecessariiy result and second-order accuracy
is much more difficult to achieve. There is no way z prieri to assure
stat {14ty of a scheme, and the CFL and von Heumann stability criteria
must be applied to each scheme which is devised. With the exception of
the work by Butler {12}, ali schemes which have been propused for zpplying
the method of characteristics to three independent verisble problems heave
had only first-order accuracy. Some of the schemes may be more accurate
than others for z finite step size. However, all share the characteris-
*{c that the local error approaches zerd with the sguare of stap size,
whereas with Butler's scheme, tha local srror approaches zero with the
cube of step size,

1¥ in forming a finite difference scheme, the differentials are sim-
ply replaced by finite differences and the coefficients and renaining
terms in each equation are evaluated at one of the end points of the Fin-
ite difference network, then the accuracy of the resulting scheme {2
first-order in step size, 1.e., the eguivaient of the Euler scheme for
ordinary differential equations. The numder of independent difference
relationships required for schemes having first-order accuracy is equel
t0 the mu=der of independent variables of the system. Some investigators
have ysed more than the minimum number of finite difference relstions
required for a determinate system. The additional relations are indepen-
dent, and as a result, the system is overdetermined such that multiple
solutions are possible. Such an overdetermined system was solved in the
jeast squares sense by Chu, Hiemarsand Powers (13, 14). HMultiple solutions
were obtained and subsequently averaged by Strem {11} and Sauverwein (15},

1 higher.order approximations are used for the differential reia-
tions, then additional unknowns will be introduces ard a grezter number
of independent relations must be used. The additional unknowns wi 1i be
in the form of higher.order coefficients in the power series expansiens
or =quivelently, the derivatives of the dependent varizbies at the unknown
soint. Butler {12) has shown that only two additiunal independent relations
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are necessary for & numerical scheme having second-order accuyracy. Un-

doubtedly even higher-order schemes cuuld be devised; homever, the me=er-
ical complexity would probably increase greatly as the orde: of accuracy
is increased.

It {5 important to note that the aumber of independent finite differ-
ence relations which must be used in a particular numerical scheme is not
snly 2 function of the number of dependent variablies of the differential
system, but is also dependent upon the order of accuracy of the schems.
This fact, as well as the importance of the domain of deprendence for &
point in the solution space te numsrical stability, will help to clarify
scze of the differences between the variocus numerical schemes.

A variety of finite difference schemss having first-order accuracy
have bean proposed. Two schemas, the hexshedral nebwork of bicharacter-
istics and the hexahedral nebwork of general characteristic surfaces,
were proposed by Thornhill {18) in 1948. The resulting networks for these
two schemes are {llustrated in Figure 1. These methods were developad
for an irrctational flow, and in this case, only a single fa=ily of char-
acteristic surfaces, the wave surfaces, are obtained in the analysis.

The envslope of all such surfaces through 2 point is the Hach conoid,
see Figure 1. Later numerical work by Sausrsein (17} with these schemes
showed the first to be unstable and the sscond to be stable. The cause
of the instsbiiity is now recognized as beirg due to the fact that the
CFL stabili{ty criterion is violated, see Ficure 1.

Hoackel {18) in 1949 described z mathod 0F cheracteristics scheme
which was based ca the work of Ferrari {19). This method consists of
pplying the characteristic compatibiiity conditions 2long the intersec-
jons of two characteristic surfiaces with two refersnce plenes and the
intersection of the twe characteristic surfaces with each other. This
scheme is known as the network of interctections of reference planes and
is {ilustrataed in Figurs 2a. Ths major ohjection to this schems is that
the CFL stability criterion is violated, Ref. {5). A further difficulty
in é?p??fﬁg this scheme is that additionzl boundary conditions are re-
ired on the ead reference planes, such &s 2 prane of symmetry, or i
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the finite difference solution between the first and last radial planes.
based on the work of Titt {20} and Colburm and Dolph {21), Holt {22}

E

rew =

acteristic surfaces emenating from two Tines in the initisl-value surface.
s mthed the comoetibilily equations are applied along bicharacter-

istics within the teo characteristic surfaces, see Figure 2b. It has

Seen pointed out by Hele snd Leigh {5, 6} that this schess violates the

has suggasted 2 nebetrk that is fermsd by the {ntersection of two char-

L svapttity critaion, #nd they proaposs Jurther zodificaticn of Holt's
schene Lo producte an “implicit prismatic characteristic surface neteork”
stisfiss the CFL stebility condition. Apparently no attempts o

. .

-

Argther serious shortcoming of the rafarsnce plane msthods s that
differente relstionships used in the soluticen for 2
point iz applisd slong 2 direction vihich lies cooplstely ocutside the
zone of dentadencs of the uninows point., Hile this {s desiradls froz 2
stability standpoist, it is wmdesirsble for accuracy. Accuracy is ¢
eds the d4if-

=y S e — & £ : <3,
=8t when the difference schess zone of dependence just ax s th

ferential systes zone of dependencs. Further, zs peinted ocut by Butler
& & principie direction of propacation of the
shotk is in the dirsction of the ordinary curve used in the {ntegration
characteristic surfzces with 2 single
sar charzcteristics, was developed

(1
i
g
a
o

mmthod
Z34} znd Bolt {75, 25 =nd used for mumericzl computation
ich {29

F Frem
by Saeer (I3, :
= 3 — 1k (- 2 1 Y - . N -
by Horetti {27, 28} and Rakich {22, 30}, This method apnears to be the
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the reference plane contains the velocity vector will the nzar character-
istics correspend to bisharacteristics and define the true zone of de-
pendence of the new point. Rakich {30) has pointed out that this con-
dition helps assure that the CFL stability criterion s satisfied. While
this is true, it also result: in a more rapid error growth due to the
fact that the speed o7 propagation of numerical disturbances can be sia-
nificantly greater than reguired for stability &t high yaw angles. A
second potential problem is the fact that the convex hull of the differ-
ence scheme will depend upon the manner by which the cross derivatives
are evailuated in the fnitial-value surface, and thus, whether o» not the
CFL condition for stabiiisy is satisfied.

Fowel:r (9) in 1951 appifed the haxshsdral method of bicharactavistics
which was proposed by Thornhiil (¥ ), see Figure la. Only hand calcula-
tions were performed for a few pein%s and the fact that the ;icheme is
numerically unstable was not discoversd. The unstable chzracte- of this
scheme was discoverad by Sauerwein ({231, 32, 33) in his attempis to apply
it to two-dimensional, unsteady flows. Sauerwein subsequently modi¢ied
the scheme such thav the CFL stability condition was satisfied and was
able tc obtain useful results.

— Tsung (34} in 1961 used the hexzhedral method of cheracteristic sur-
’ faces r.oposed by Thornhill {18). Figure 1b, which satisfies the CFL
stability condition, for caiculation of the irrotational flow cver a con-
fcal boattail with eliiptic cross-caction and a deits wing at angle of
attack. No aurerical instabilities were encountered and resulis were
cbtained which agreed closely with experimental vesults. Reed {35, 36,

37) also has used the method of hexahedral crarscteristic surfaces for :
calculating rotational flow in nozzies., Humerical calculations were only
made for axisymmetric fliows 'or purposec of checking the program.

ggg

=

%% reference planes can be teken as meridional pianes through the body and

—% ‘he axis points do not enter the calculation. However, it is not clear

:; that this method could be applied with equal success to more arbitrary

%% three-dimensional flows.

%% The near characteristics scheme h:3 two potential probiem arcas.

%% The most significant {s the fact that the near characteristics are in '
%% general outside the zone of Jependence of the unknown paint. Only shen
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Pridmore Brown and Franks (38} in 1965 veported results of numerical
stability studies using & vedundant system of four bicharacteristics
which were solved dr satisfied in a least squares sense. The question
of a preferred nrientation for the difference network was investigated
in which two of the bicharacteristics used lie in 2 plane defined by the
velocity vector and the streamline normel. Chu, Nismarzand Powers (13}
in 1966 repo~ted results which werz obtained using the redundant char-
acteristics schems, see Figure 3b. Apparently, stsbility problams moti-
veted the use of the redundancy method, as it is reported that the re-
gundancy methed showed marked stability improvement. The convex hull of
the ¢ifferencs schems does not satisfy the CFL stabilitv conditien if the
points used are those from previous celeulations. Wnen it is necessary
to intarpolate in the inftial- value surface, the convex hull of the dif-
ference scheme j¢ increased 2'd the CFL condition can be satisfied. In-
terpotation was used in the reported calculations, 4nd it was apparently
sufficient to stabilize the method.

A1 of the methods which have been discuzsed thus far produce a
solution which is accurate to at least first-order in step size. The
method developed by Butler {12} is unigue in that second-order zc .uracy
*- clearly maintained. In addition, the mathod criginally proposed by
Butlar does not involve integration zlong a finite number of directions.
The numarical relztions which result involve integrals cver the convex
hull of the Mach conoid and the intersection of the streamiine with the
initial-valus surface. However. in practice the infegrais are evalualed
by waichted sumation over Four particular bicharacteristics. The net-
work is illustrated in Figure 4. This scheme was programmed for two-
dimensional unstesqy flow by E11{10tt(39) and Richardson {40} and numer-
jcal results wsre oStained. The numerical results compared favorably
with experimental values; howsver, no informatiorn is available on required
cozputing tims or relative step size used. Thus & comparisen with re-
sults obtained using schemes having first-order zccuracy cannot be made.

butler’s propossd approacn for three-dimensionzl steaay fiow is

natagous to the Hart'we {41) scheme for two-dimensicnal flow. The numer-

cz] scouracy is the same order (i.e., second order), and the method for
somputing the location of new points by the {ntersection of streamlines

+1th consecutive coordinate planes is the same. In confrast to the
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variety of first-order net#orks which have besen propossd, the original
: second-erdcr schame prop6sed by Butler dess net allow any freedom 11 the
cholce of network. The compatibility sauation {s integrated over all

bicharacisristics pzssing through & point, i.e., the Mach cone, and in

‘W?
i g
ATESIRE
<,

;
i

5 ) effect all bicharacteristics are utilized. Yhen the intsgrals are re-
% nlaced by suenation cver four pariicular bicharacteristics, one degree
% of freedom s possible in the choice of network orientation.

% 2. Finite Difference Hethods. The use of ordinary finite differ-
%:5 ence methods for solution of the steady flow equstions in three dimensions

‘a’i%i

BN

has &lso received considerzhie attention in the past severz] years, S3ince
the advent of high gpeed digital computers, more and more attention has
= . been given to numerical schemes for integraztion of systems of partial

- differeniial egquations by simpty replacing the derivatives by difference
quotients. The books by Richtmeyer {42) and Forsyth and Hasow (43) treat
the elements of this approach. The major problems whicn are encountered
in applications of ordinary finite difference methods are numerical sta-
bitity and accuracy. The most serious accuracy problems are encountered
in davizing means to satisfy boundary conditions on surfaces which do not
corvespond to coordinate plupes, thus necassitating interpolation or ex-
trapolation. Even whan the boundaries correspond to coordinate pianes,
& loss of accuracy vccurs because the derivatives at the boundaries zan
only be approximated by one-sided difference quotients.

Thoseen D'Attorre and Nowak (44, 45, 46) have recently completed
programs for caiculsting the interaction region of multiple rocket engine
exhaust: using & Lax-Wendrofi (47) type differencing scheme. As & check

Pl

g

oV

2= case, the flow field of an axisymmetric jet has been caiculated and the

= results are in excelient agreement to those obtained by the two-dimensional

% mathod of cheracteristics. Bahenko (48} has also used 3 finite differ-

= snce methoed for camputing the three-dimensional flow over smooth bodies
& with zpparent success.
-
- 4, THE GENERAL KUMERICAL METHOD
o= ) The objective of this ressarch is the development of & numericai
= method for solution of a particuler system of partfal differentizl egus- b
% < tions {{.e., the equations of motion for s steady supersonic flew). :
=
2= T 15 f
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Howaver, the genzral mathod is applicable %o any systems of gquasi-linear
hyparboiic partisl differential equations for which the <haracteristic
equatien consists of & quadratic factor snd 2 repsatsd linear factor,
see Appendix A, Eq. (A-17).

The numerical methed is based on the work reported by Butler in
Ref. {12), with the sxception that an isprovesent {s made to the original
s2thed wnich results in & considerable simplification of the final nimsr-
fcel scheme, The account of Butier's work contained in Ref. (12) is ex-
tremely brief and for this reason Appendix B is a redevelopment of the
ieproved approach with the intersediate steps and theorv included. This
information as well as that in Appendix & {is not essential to 2 general
understanding of the nmimerical schaxe for supsrsonic flow, but is in-
tendad for the resesrchsr who may attesst modification or extension of
the methed to other sysiems.
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SECTION 1!
GAS DYRAHIC HODEL

i. GOYERRIRG EQUATIONS

The supcrsonic motion of most compressibie fluids encountered in
propulsion systess can be accurately desscribed by means of the goveraing
equations for the motion of an idsal fluid. The major assusptions which
censtitute the gas dyna=ic model are: 1. continuum, 2. iaviscid,

3, steady, 4. strictly adiabatic {i.e.,each particle of fluid is cen-
sidersd to be an adiabatic system in addition to the cverall system
being adizbatic), 5. frozen or equilibrium chemical composition, and
6. s=soth {nitial dats and boundaries,

The governing equations for such a system are: the continuity
gquation®

ui(3°/3xi) + o(sui/exf) = 0 (M)

and the Euler mossnti= equations

o uj(au{/axj) + 3p/axy = 0, (1=1,2,3 {2)

where the u, are the velocity cos=ponments, o is the density, p i{s the
pressure and x; Is & systes of rectangular cartesian coordinates. These
equations, Eqs. (1) emg (2), are 2 systes of quasi-linsar parcial differ-
entfal equations which govern the three-dimensicnal motion of an {deal
fluid, Homsver, thay 4o not form 2 ce=plets systes since the nusber of
dependent varisbles excsads the ni=bsr of cguations.

A cosplete syste= for & cospressible flow i3 ebtazined by expressing
the derivatives of density in terms of darivatives of the velocity co=-
ponents and the pressure., This {s acce=slished through consideration of

FRepeated {ndicies {=ply sumation over the vemge 1 10 3 unless stated
gtherwise.
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the first law of thersodynas § Tor & particle of flufd heving continucus

proparty variations, i.s.,

P
i

68 = 3y - &W

where de is & differential change in internal unergy, 26 13 the he .
transfer to the particle and &w is the work done =y the turspwndings.

As & result of the strictly sdiabatic sssisstion, the heat tromsfer sn

is identically zero. Further, as a result of the iaviscid assusption

ng shear forces are prasent and the only fors of werk done Oy the particls
s the volume displacessnt 2ga’nst the -ressure of the surroundings, i.e.,

s = pd{1/p) (4}
Thus the Tirst law for & particle yislds the result
éh = {1/p)op {53

where h is the particle enthalpy (i.6., h= e ¢ p/p). The general therso-

dynamic equation for 2 particie of the Tluid, with the composition either
frozen or in chemical eguilibrimm, {s shosm in Appendix C to be

Tds = dh - {1/s)dp (8}

where 7 s tesperaturs end s is entropy. Using the first law result for
the particle system, Eq. {5}, the general thersodynamic equation reducss
to

ds = 0 (7)

which, when exprassed in terms of spatial derivatives of the entropy,
yigids the result
x;} = @ (8)

the valus detaryined by so== initial condition.
The spesd of propegation of an infinitssizmel =nd {sentropic distur-

bance {i.e., the sound zpsad) 95 given by

Pl e g lﬂﬂ‘MuMI"Iltm}mmu
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where the subscript ¢, or e danotes either f-ozen composition, Cgy OF
chemical ecuilibrium, e. Since the entropy and atomin composition are
constant for a particle of fluid, the partial derivstive in £q. (%) may
bs written as the ratio of propsrty diffsrentials for a psrticle, so
that along any streamline

&% = dp/de (10)
or when the particle differentiels sre expressed in terms of spatiad
derivatives

3

uy (20/3x) = 87° uylap/ax, )

Funl)
wind
e

oo

Equation (11) is used t¢ eliminate the spatial derivatives of density
fro=m the continuity equetion, Ea. (1), znd thus tha ni=ber of dependent
verizbles which appsarsin the system of equations, Eq. {1) and (2}, 1s
reduced by one. The resulting systes of equations can be written in 2
convenient matrix notation using ihe Kroneker delta

¢u€ 0 0 5}5 ; Tx
! i
0 %2
H oU, it 52? 5%,
! 3 b = 0 (12}
i | 2u,
H 3] sl 4., ‘__5_
? 3! : ck‘i H
2, 2 2 bl
ag tig s ‘525 [ 2-1 53{ i.h; i ";x_€



2. THERWODYRAHICS OF HE FLOW

e sdditional reiatienships reguired for solution of the goveraing
equations are obtained by consideration of thz thermodynamic properties
of the fluid. The fluid {s zssu==d to bes produced by the coroustion of
an szidizer and & fuel strezsm, sach of which enters the cosbustor with
unifors cospocition and staonation enthalpy. In this case the stacmation

SRS R

enthalpy is & singl2 valusd function of the oxidizer to fusl rztic {ths
= stagnation enthalpy of the individual strezs includes the hest of forma-
— tion). Generally spatiel variations of the oxidizer to fuel ratio sre
§: present within the comdustion chamder and thus cerresponding varistions
—1 in the cosposition and stagnation enthelpy of the cosbustion products

will result, As 2 result of the inviseid and strictly adizbatic assum-
tions, the atesic cosposition and stagnatisn enthalpy are constant slong
streamlines so that

)

(it

= *t‘i{axjax,;} =0 {13}
=

= . 2

= where H = h + /2 {s=e Appandix {).

% In the general case, particularly in scramjet systsss, the stagna-
— tion pressure after cesbustion will have spatial varistions due to vari-
% ations in pressure and velocity of the individual stresss entering the

{

cosbustor ond in the focal exidizer to fuel ratic. Hewever, in the 2b-
sence of discontinusus preperty variations the stagnatien pressure can
also be sheam, sze Apdencix C, to be constant &long the streamiinmes of
the flow, {.2.,

u,;{;?;exi} = 0 {14}

AR

{
gt

= The sxistence of shock waves within the flow has been implicitly
= excluded in the flow model zs & result of the zssumptfon of continuous
=

= - - . - . - F12y

= proparty variations, When shock waves are included, Eq. {13} for con-
= servation of staonation enthalpy remains valié threughout the fiow; how-
== ever, stagnztion pressure {s mot consarved and the shock must be trestec
= as a discontinuity surface across which the Remkine-Hugoniot conditions
= s

= apply.
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The cosdustion products produced by cosbustion of unifors oxidizer

and fusl streams form z simole systes ir the stagnation state. Thus

pecificztion of any two therssdynasic propertiss is sufficient to Go-
ffﬁ% the stagnation state. The stagnation enthzlpy and stagnztion pres-
surs are the =ost convenient choices for independsat variables to define
the stagnation state, Since both of these propsrtiss are constant aleng
streaziines of the continupus property flow, the remaining properties
are one-dimsnsional funciions and are uniguely detsreined by specifica-
tien of the locel pressure. Thus the global variation of density and
the speed of seurd can be functionslly expressed in terms of the pressure,

sizgnction pressure &nd stagnation enthalpy, (see Appemcix L, f.2.,

(41

s = o{p,P.H) {15}
and
a2 = a{p,P.H} {16}

For & thermslly and calorically perfect ges the relstions for the dencsity
ard speed of sound are analytic 'sncéxoss, For muiticosnonent systes,
having either frozen or squiliktriu= chenical cesposition with real gas
gffects, the density and spesd of sound must bs obtained froe therss-
cha=ical calculations. Im this cizs the relations, Zes. {15} ard {18},
are usually obtained as tabular functions

The g2s dyazmic =>del consists of the stisns for conservation of

=233 and Bs=sntum, Eq. {12}, the equstions for conservation of the stag-
nation pressure and enthalpy, Egs. {13) and {14), and th

stions for the density and spoed of sound, Eas. {15) and
ferentiz] cnustions fore 2 cosolete syste= of fi{rst-order, guesi-linsar,
partia¥ é?fferéatiaﬁ ecustions.
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SECTION IIT

i auies

CHARACTERISTIC RELATIONS

1. AERERAL

The governing equations for the steady flow of an ideai csoressible
fluid in three éimeznsions constitute & system of quasi-linsar
order, partizl 4ifferentizi cguations. ¥hen the fFlow velocity excesds
the Yocel velocity of sound the squations are classed zs hyperbelic and
within the solution space surfuces exist on which the systss reduces o
sn interior operater., These surfaces are called characteristic surfaces
end they have grezt significancs with respect to detersining the condi-
tions “or 2 well pused problem and devisisg numsrical sothods for solu-
tion. Tns thzory of such systess ard the conditions for a well posed
probiem ars discussed iz greater detail in Anpendix A

In Appendix 2 1t {5 shown that ten infinite femilias of character-
istic zurfaces exist for thres-dimsnzional supersonic flow; these are
the zirese surfeces aad the seve zurfzces. The Temily of stream surfzcss
consists of a1l surfaces =ade up of streeslines of the flow. The wave
zurfaces consist of 211 surfaces tangent to the lccal Hach concid. The
systez of cquations reduces to an interior cperetor on each surface of
both faxilies of charzcteristic surfeces {{.e., & lircar codination of
s eguations can be found which involves only directiens of difsrentia-
tien which e within the surfere). The linser ceebimation: of the sgus-
tions which have the charscierisiic property are callsd cospatibility
relstions. Dats cannot be arbitrarily specified on charzsteristic sur-

¥ ‘lgirsi‘

o

]

‘V

Taces since the compatibility relation must be satisfisd,

The original systes of eguations 2an be replaced by an sguivilent
syste= of independent compatability relstions. For systess having &0
indepandent varizblies 2z unigue systes of competibility relations g ob-

. ystes
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Appendix D. Thus many differsnt, but theoretically equivalent, systsys
of compatibility relations have baen propesed and usad as the basis for
nemerical schemss.

Hor=ally a1l such schemss are termsd “"method of
characteristics® schemss.

The numerical scheme which is developed in ¢ latar section uses
certain of these compatibility relations a5 well as one noncharacteristic
relation.

2. CHARACTERISTIC SURFACES

The characteristic equation for the system of eguations for three-
dimensional 7low, Eq. {D-4) of Appendix D, is

a

5 (“k“k)'{“suj - ezaij]nsnj =9 (17}
where n, 1t the unit normal vector io a characteristic surface. Hote
that the characteristic equation has the same general form 2% was assi=ad

in the development of the general numerical scheme in Appendix B, {.e.,
& rapeated Yinear factor timss a quadratic factor.

The characteristic equation is satisfied {f either of the factors
vanish., The first factor yields the family of streasm surfaces while the

quadratic fector yields the family of surfaces which touch a quadrztic
core  the wave surfaces.

The squatisn of ths envelope formad by the wave
surfaces is obtained by inversion of the quadratic factor, see Appendix
A, to obtain the reciprocal conoid

H - 2 2 K =
(uquy - (o - & J8538xdxg = 0
Hote that the
i.a.,q> &,

(18)

surface is resl only {f ths quantity {gz - 2%) 15 positive,

Equation {18) is the equation for ths Hach conoid of super-
sonic flows. The ralation betwsen the two families of characteristic

surfaces and the wave surfacss, is {llustrated

i

surfaces, {.e., the stress
in Figure 5.
=
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<. COMPATIBILITY RELATIONS

The general aumerice! mathod developed in Appendix B utiiizes
certain of the stream surface compatibility relations and the wave sur-
face compatinility relation for systems of equations having more than
three dependent varisbles. Three stream surface compatibility relations
&re requiraed in the nimerical scheme. The indepandent relations of in-
terest are (see Eqs. (D-11), (D-12) and (D-13) of Appendix D)

ug{3P/3xs) = 0 (i9)
uy(3H/3x,) = © (20)

and
pU Uy {aujlaxi) + ui(apiaxi) =0 {21)

Equattons (19) and (20) are identical to the corresponding equations of
the original system. This i{s z result of the fact that these egquations
hevz the characteristic property in their original formm (i.e., different-
{ation in a space of lower dimension, & line in this case). The last
equation, Eq. (21), is the differential form of Bernoulli's equation.

The single wave surface compatibility relation which exists for &
particular wave surface designated by tae unit normal b (see Appendiz
D, Zq. (D-15)) 1is

(n1 - ani)(ap/azi) + °a(asij - ﬁ{uj)fauilaxj) = {22)

The characteristic compatibility relations, Eqs. (19), (20}, (21}
and 122), slong with one independent noncharactaristic relation, corres-
ponding to Eq. (B-39} of Apperdix B, form the basis for the numerical
schema,

25




! . N 4
A Pt
(nkEEA Tt s R R i i
Lo e
anub

GERERAL .

i
R

o
4

In the applicatien of e methed of chavacterissics to éwﬁ»é%maﬁs%aao
a1 byperbolic problems, sscerd-grder scourscy can og g8sily zchd
the use of zny expiicit ssoond-ordur intagrstion scheme, such 3 ph@
moaif ed fuler scheme. 3 is possible becsuse the characieristic com-
patibiiity equatiors invelye ctional d&ffferentiation 9n 2 space of
ore lowsr dimension {i.s8., 2 Therefors, the cespatibility rela-
tions can bz axpressed in terws of directisnal 4iffeventials 2long tals
singls é**&ci such that ¢h fc~?€fc€2 a? she derivetivesz are func-
tiens only of the dspendent varisbles.

In three-dimsnsinongl problemg the situstion {3 mare complicatad.
Soma of the compatibiiity ?eia ang cantzin two ?néepaﬁésﬁz directions
of directional difforentistion. Thus wher the ~mepatibility equatisng
are wriftten in terms of diractions} €ifferentiais a?@ 8 gne of the char-
acteristic directions, seme of the coofficisznits will invariably contain
derivativez of (he depsadsat ?&?i&b?gs. 3zcond-order precictor-sorrector

uh
(3]
B
B
&
e

)

W:

SR

i

£23
R

it

type integrations schesgs, sueh §s the §
evaiuation of the cesfficients at
predicted valuss fer the dspendent ver
gre not kaowm at the ealution point and
eveia ted. Al 5?2?%&&3 iategratd

unsteady fiew,

methed for achieving
83&”“3»?5“ of hfs%fbc‘ic systems of eguations in
E114ot {39} and Richardson
in the present reses

poditied fuler schems, require

n peiat in terss of the
usneraéiy the derivatives
coefficients eannot be

gﬁ%ﬁh bavz bacn develsﬁed

ngye %€m$¥v not evaluated
facal truncetion error is

second-

{40) have E?ﬁ?féd
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the general method of Butler, with certain modifications, is appiied to
the equations for stexdy supsrsonic flew in thres dimensions, ,

In genera’, the schems consists of select’ng the nusber and urisnta-
tion of the bichiracteristic compatibility equations in such & wey that
the terms containing derivatives at the umknown point appear in iwd dis-
tinct groupings which are common to all the equations. The twd commgh
terms, evaluy =4 at the unknown point, are treated as additional unknowng
and sufficient independent differential relations are found (¢ enabie
evaluation, or equivaiently, algebrafc elimination of these terms. The
two additiongl differential relations ars an additional bicharacteristic
compatibiiity relation and an indapendent noncharacteristic relatien which
is zpplied 2long the streamline direction,

2. PARAHETERIZATION OF THE CHARACTERISTIC SURFACE EMVELLPES

In the numerical schese it {is convenient to use z parametric repre-
sentation for the bicharacteristic slemants of the Mach conoid and the
streamline, (i.e., the elemonts of the wave and stream characteristic
surface envelopes), A differential element of a conoid can be repressnted
by the parametric equations

where }i {s 3 vector tangent to an element of the cone and ¢ {5 2 povase<
eter proportional to length 2leong the elument, see Fi
The Hach conoid {{.e., the wave surface snvelope 3 }
¢ircular cone whose axis 1s the flsw velocity vector. Thus ithe cangent
vector to an element, }i’ can be representad zs the sum of the flow velce-
ity vecter, Uss and & velocity of divergence, ¢
in & plane normal to the velocity vector, gses F . A
to the velocity vector is defined by twd srthogonzl unit vectors a
B4 which are mutusily orthogonal to the velacity vector. Uy An arbifrary
verser in this plane, Tis is given by

where 8 is 3n angular parameter messured from the o, dfrection and has
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the range § < 8 < 2=. The velocity of divergence, relative to the flow
velocity, of the conical surface along the dirsction ry is

¢ = [a%¢%/(a? - a9)11/2 (25)

where g is the magnitude of ths flow velocity and 2 is the local speed
of sound. The tangant vector of an element, }i’ corresponding to the
dirsction of r has the sams direction as the vector obtained by summing
the velocity vector u; &nd the velocity of divergence vector cry. Thus
the unnormalized tangent vector is

1 s . 3

1, = uy + cagcoss + caysine (26}
The pasrametric equations for a differential bicharacteristic element of
the Hach cone are thus

1, 2, 3) (27}

oy
by
L]

dxg = (uy + cogcoss + cg sing)dt,

where the parameter t has ths dimension of time and is proportional to
length along the bicharactsrist

A differential element of the streasmline {i.e., the stream surface
envelope and bicharacteristic) is represented parametrically by £q. (27)
{# the velocity of divergence, ¢, {s set snual %o zero, thus

wnts

dx, = u, dt, {1t =1, 2, 3) (28)

Here the parameter t corresponds fo the time of travel of a flyid particie
along a streanmlire.

The form of the parametric squatiens for the wave surface bicharacter-
{stics, Eq. {27), are the same as those sroposed by Butier {12) sxcept
of the reference
teristic curve is
er on the other

vectors a and 3
obtained for & constant val
hand held the ay and B
bicharacteristic.

significant simplificat

that here the remaining dagres of freados in
8 ¢ in such & way that z bicharac
i F 1

ug of 8, seg Figure §. But

reference fixed and alliowed ¢ to vary cleng 2
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The choice of the vectors Uys Cay &nd cs, as the e
parameterization of the Hach congid also satisfies the quadric egusiion
for the conoid, Eq. {18). The conditions which are necaessary for the
guadric equation to be zatisfied correspond to the gareral conditions,
£gs. {B-7) &nd {B-B8) of Appandix B, and for the Hach conoid take the

SO R T TR LTS P T

v
i H

form
2 2 o2 2 2
= cg{&iaj - {&° - sz)ﬁfj}sisé {239}
and
, 2 .2 . = s el _ Al

i’ .
352{“-;*{} - (Qz - 51')5@}5.;5- =0 (35}

These conditions are satisfied for the orthonormal choice for nifq, a4
and g,. Thus the paremstri: equations for the wave surface bicharscter-
{stics, Egq. {27}, satisfy all requirssents 2t & point. Hossver, if the
parm2tric equation is in%sgrated so as to trace out 2 bicharacteristic,
then the reference vector set must be deterained such that the more
fundamsntal definition of & bicharacteristic is satisfied, {.2., the
curve is a2 lins of contact between the characteristic surface and the
conoid. This condition yields the ralation (see £g. [E-1} of Appendix
E)

[ufuj - (qz - az}efj}{ui + Ca 088 ¢ csfsins){az§;ss} = 6 {31)
which is used to fix the resaining degree of freedos ir the choice of
the reference vectors ay and 5,. A numerically useful form of this re-

i

jztion is deveioped in Appen
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satisfactory. However, in the course of numerfcal studies it was found
that sitghtly better accuracy &nd more ronsistent results were obtained
oy selecting the plane formad by ti s prassure gradient and the velocity
A, & reference. In this scheme the vectors ay and By were positionad
such that the network straddled the refasrence plane, see Figure 8. Since
the pressure gradient at point (6) cannot be determined until an entire
solution surface has been generatrd, the press ~e gradient at point (5)
is usec te establish the referer.2 plane. The four intersections with
the initial- value surfacr of the wave surface bichsracteristics corres-
pending to 8 = 0, =/2, = and 3-/2 are next found using the parametric
equations for the bicharacteristics, Eq. (27). In each cese the inter-
section is known to lie on the initifal-valuz surface. The three param-
etric equations are then usad to solve for the two cosrdinates of inter-
section on the surface any the value of ¢he paramster ¢.

Once points (1) tisrough (4) are located in this way, the values of
the dependent variab’=z at these interssctions are found by interpola-
tion. For this purs.ss second-order polynomials are fit locally to nine
neighboring points by the method of lzast squares (see Appandix F).
These nine points consist of the central point, point (5). 2and the eight
nearest surrou. 4ing points ‘n the initial-value surface. Note that the
values of the uepeadent verisbles are known at point {Z and t. . inter-
polation is not necassarily ~equired for these values., However, for
reasons of numerical stability it was found necessary to use interpolated
values at point (5) for the three velocity compongnts and the pressure.

The reference vectors a, and g, at point: (1) through (4) also are
required in the difference equations and thus must bi established rela-
tive 70 the selected reference at poin. (6). The single degree of free-
dom is established io sufvicient accuracy by means of & finite differ-
ence form of tne tangency condition, Eg. {31) (see Appendix E).

5. ITERATION SCHEME

The modified Euler integration scheme is 3 pradictor-correcior type
gcheme {n which the sglutien §s first a;prcxtmatcé by the Euler schems
{{.e., the cosfficients of the difference equations are evaiuvated at the
initial-value surface). This approximate solution i35 then used to evalu
at2 the coefficients of the difference equations =% the unknown point
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and arithmetic averages of the differer eguation coefficients are sub-
sequently used to obtain corrected values for the dependent variables

at point (6). This process is repeated unti! successively obtained
values agree to a tolerance consistent with the truncation error. This

technique yields & solution in which the local truncation error is third
orcer in step size,
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SECTION ¥
OVERALL NUMERICAL ALGORITHHM

1. GENERAL

The global solution for a particular set of inftisl conditions and
boundary conditions is obtuinsd by an algorithm in which the unit inte-
gration process is applisd repetitively. The scheme consists of integre-
tion along & system of streamlines througnout the flow. The particular
streamlines which are used are determ’ned by the network of poiants which
are chosen at the infitial-value sur’ace. These points &re chosen such
that 3 uniform distributicn across the flow and on the boundaries is
nhtained,

The inftial-value surface fs assumed to be & plane normal to the X,
coordinate direction and the intagration process takes place between a
series of planes parallel to the initial-value surface. These planar
surfaces are assumad to be everywhere space-l1ke to the flow (i.e., the
normals to the surfaces are everywhere interior to the local cone of
normals, see Appendix A). These assumptions greatly reduce the cemplexity
of the numerical calculetions while not sericusly restricting the range
of {nternal flow oroblems which can ba solved if the X3 coordinate direc-
tion {s chosen to coincide with the mean flow direction, These assump-
tions are Ziscussed in greater detail in Appendix G.

As e2ach solution surface is completed, & six component thrust in-
tegration and mass flow integration are performed., The mass flow inte-
gration provides some indication of the accuracy of the overall process
since the total mass flow should remain constant from one solution sur-
face to another.

2. INITIAL-VALUE SURFACE

The values of the six dependent varisbles, uy, Uys Ugs Ps P and H,
are assumed to be specified by continuous functions on the inftial-value

e

o b beuty B g e



surface such that values may be obtained at any arbitrary point on the
surface, If the initial values are only known at a set of points, then
continuous <ata must be generated by interpolation.

A un’sue scheme was devised for selecting the points on the initial-
va:ue surface to be used in the integration process. This scheme not
only produces a uniform array of points in the physical space, but also
has the very useful property that the points can be orderad in 2 square
Togical array. The logical array has the properties that the neighbors
of & point in the logical array are, to a close approximation, the
neighbors in the physical space and {n addition that the points on the
perimeter of the logfcal array are boundary points in the physical space.
These properties are used in the selection of points for local interpola-
tion and in the logic for computer programming. The scheme is explained
for both circular and noncircular cross sections in Appendix G.

The inftial-value surface must adjoin the boundaries and the initial

data must satisfy the boundary conditions at the common points. In addi-
tion, if the flow geometry is assumed to have one or inore planes of sym-
matry then the initizl-value surface and data must .1so be symmetric
about these same planes.

3. BOURDARY CORDITIONS

The general character of the sclution is governed by the buundary
conditions as well as by the {nitial data. The boundarv conditions 4re
constraints on the solution which are specified over time-1ike surfacss
which adjoin the inftial-value surface (i.e., the normal to the surface
{s everywhere exterior %o the cone of normals, see Appendix A). Boundary
conditions which eccur in supersenic flow problems are; physical boun-
daries, planes of ;y%ﬁ,‘rvs genstant prassure surfages and shock waves.

xcept for shock wavas the boundary surfaces are stream surfaces of the
flow and the interior point integration scheme is easily ﬁadtffed by re-
placing one of the wave surface bichar ctcrasLic compatibility relations
with the boundary conditiorn. These modifications are discussed in Appen-
ix E.
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algorithm required to include shock weves is considersbly more complex
due to the need to numerically construct the shock surface. This boun-
dary condition is not developasd further herein,

The physical boundary condition consists of the requirement that
the flow be tangent to the spscified boundary, i1.e., the velocity vector
is orthogonal to the outer normal to the surface. In addition a boun-
dary streamiine {is constrained to coincide with the boundary. The in-
terior point integration scheme is modified by replacing one of the wave
surface bicharacteristic compatibilisy conditions with the tangency con-
dition, i.e.,

ugng =0 (45)

where the u, are the velocity components and ny the components of the
outer normal to the surface. In addition the remaining thrae wave sur-
face biet sracteristics are oriented such that the ones corresponding feo
6 = 0 and = are contained in the tangent plane to the surface and the
one corresponding to &8 = /2 is interior to the 7iow. Similar modifi-
catfons to the basic scheme must be made for the constant pressure boun-
dary, excent that he fourth wave surface bicharacteristic comatibiliity
condition is replaced by the condition that the pressure is known. The
final numarical algorithm developed in this research does not include
this boundary condition. These modifications are further discussed in
Appendix E.

The plane of symmatry boundary condition i{s most easily incorporated
into the basic scheme by use of reflaction principles to produce image
goints, see Appendix G. The basic interior point and physical boundary
point scheme can then be used without modification. This technique has
been used with complete success in the numerical algorithm produced in
the course of this research.

4, INTEGRATION STEP REGULATION

*he distance betwsen successive solution surfaces must be regulated
such tnat the Courant-Friedrichs-Lewy (CFL) stability criterion {s satis-
fied at &11 points of the network. The permitted step size is 2z functien
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uf the local flow narameters and point spacing. This rela’ion is devel-

oped in Appendix G znd {s

axy = [/e@)] 01 - (erad(a?nd - Y T r (46)

where g 15 the magnitude of the velocity, ¢ ie dafined by the reiation
2 v4 ‘am
¢ = [q%a?/(a? - a%)]'/2 (47)

and Rﬁﬁﬁ is the distance from the streamline intersection with the
initisl-value surface to the nearest point on the convex hull of the
points used in the difference scheme, see Apcendix 5. Egquation (46) is
used to calculate the step size at each point of the network, and the
point which is most restrictive is taken as the point which governs the
integration step. As the intesration proceeds the governing point is
estzblished on each new solution surface. In practice the step size is
celculated afier the integration has taken place, so that extrapolatien
of the permitted step 1s used with a zafety factor, which is varied ac-
cording to whether the extrapolaiion {s teo conservative or cverly opti-
mistic.

5. OVYERALL ALGORITHH

The overall integration process is illustrated in Figure %, A
typical soint network for the initizl-value surface is shown and the
boundary coenditions for & physical boundary and a plane of synmetry are
{1lustrated. The glgorithm has been programsd for both the IBM 7094
and CDC 8500 computers using the Fortran IV language. The program has
been used for a variely of accuracy tests and for computation of fuily
three-dimsnsional nozzle flows.
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SECTIOR VI

NUMERICAL STABI

The possibility of numerical instaebility is an ever present danger
in any numerical scheme for solution of hyperbol

equations. Whether or not 2 scheme is stable is solely 2 function of
the numerical scheme and does not depend upon the differential system
that it appreximates. Unfortunately, necessary and sufficient criteria
for stability exist only for the case of linear equations and analytic
initial data. However, although no formal proof exists, experisnce has

i}

ic partial differential

(]
3

onhy

shown that these same criteria are appropriate for rnonlinear systems

when applied locally to the linearized form of the equations, Refs. {5,6}.
This hypothesis is supported by the result: of tae presert research in
which the nonlinear scheme was found %o be stable only when the analysis
of the linearized sysiem indicated stability.

The two stability criteria which exist are the Courant-Friedrichs-
Lewy (CFL) criterion and the von Heumarn condition. The ¢7l criterion
is & necessary condition which appiies to both linear and nonlinzar sys-
tems and states that the zone of dependence of the differsntial system
must be embedded within the convex hull of the points in the {initial-
value surface which ars used in the differencing scheme. This condition
ensures that the speed of propogation of numerical disturbances, such as
round off error, everywhere exceeds the speed of propagation of distu=-
bances in the differentis) system [i.e., the spead of sound for compres-

sible fiow). Thus the numerical disturbances diffuse throughout the net-
work and do not accumulate.

The von Neumann cundition states that in order for & numerical scheme
to be stable & finite 1irit must exist for the ampiificarion of any Four-
ier component of the initial data, Ref. (5). The criterion which must be
satisfied in order to ensurg this condition is

A9
(78]



Af?:é)‘ < i Q{éﬁg} {E‘SE
where i, s the largest efge value of the smplification matrix for the
numerical scheme and G(éxs} denotes the quantity (sx,) multiplfed by
& finite constant. When the von Heumann criterion is applied to & scheme,

the condition, Eq. {48), is usually replaced by the more severs require-
ment that

<1 {48)

because of the somewhat arbitrasy ~ature of the term 0{ax,). Hote that
Eg. {49} is not a stronger conditics from the point of vie& of beinc suf-
ficient for stebility, but it is simply easier to appiy.

In the numerical schese v ich is developed herein, the CFL condition
is used to regulate the intsgration step size during the numerical inte-
gretion and s an intsgral part of the overzll al¢orith®m.  The von Neu-
mann condition, on the other hand, is used to analyze the effect of var-
{ous modifications on the numericai stability, but doss not play an sctive
role in the actual numerical calculations.

Although the CFL condition was satisfiued by an original difference
scheme in which interpolztisn was not used at peint (5), it was found in
the course of developmant that this schess exhibited a neutral stability
characteristic. This result prompted 2 more thorough stability smalysis
using the von Heumann condition for the basic difference scheme end sev-
eral permutations, which eventually resulted in tne stable scheme in
vhich interpolation was used for the values of the velecity componsnts,
Uys and ihe pressure, n, at point {5). The details of the analysisz are
{ncluded as Appendix H,

tion of small perturbat r
ferential operators by first difference operators. In doing this the
terms containiag partial derivatives, in particular aia:{augf;x{} &nd




3 gfsxiéx are trested as unknown cusntities at the point under con-
{ ” i ¥

The form of the two tarms containing derivatives in the sysiem of
is & direci result of the scheme for maintaining

second-prder accuracy and the stabilify analysis must include comsider-
ation of these terms. If these terms were not considered, as is the
case {n stability analysis for first-order schemes then an overdeter-
mined system of eguations would result and either, Lo 2quations would
have to be eliminated from consideration or “he system must be solved in
& Tezst sguares sense.

The analysis is simplified {f the terms containing derivatives are
aigebraically eliminated to reduce the system to four independent dif-
ference squations. The system thus obtainsd is

R - < -—- - - Py - b ¥ _ - - . # -A" ':'
5;,.5 ; pc:‘ié;_ ‘35 = {521? sCa ;‘;g_ﬂgx) {2 t/ég-*.} {50)
i i K 3 3
. n, :EE e ~ = .e T - Q'E - ~, \ :‘- ;’ - ’;'\_ ~
b D ¥ oC8i87 Uy (Li p - oll.8; U} (g5 'léi,"’ {51)
Z A 4 é 2 3
8% = (Bs D + 5Ca.: (5-2/8- £)
§§ (5215 *+ aCags; af) utlézg“'
i
A T N
+ aézpﬁ * pCBA; ui) (aw“/$£ t) {52)
Z Z 2
" - ~, \
F 2 e nll. A= 3
839 oU; 4zl {53)

whare the bar denotes constant mean values and tilde denotes a2
fon. The difference operators apply aleng the segment ¢f the bichar-

{at

acteristic network {1lustrated in Figure 7 and the subscripts : and U
dencte the wave surface bicharacteristics and the streamline directions
respactively (see Appendix H).
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3. APPLICATIOR OF THE YON REUMARN CORDITICHN

The anaiysis for stability in the von Heumann sense must include
consideration of 21} the ni=msrical operations of the basic integration
scheme. In particular, %he intarpolation process for datz in the inftial-
value surface must be included.

It {5 assumsd that the analytic solution of the system of iinear ¢if-
ference equatiens can be obtained by separation of variables, Ref. (&},
Thus the gensral term of the Fourier representation of the solution is

g = ei;ﬁzg/L esz23/L 3(x,) {54)
whare U {s the vecto* whose elements are the dependent variabies of the
problem, i(x]} is a correzaponding vector function of the directior of
integration, Xo and Xy 873 the rectangular cartesiar coordinates of the
{nitial-value surface, L is a charactsristic dimension and ¥ and N are
the frequency factors Tor an arbitrary component of the solution.

For purposss of the anaiysis, data on the initial-value surface are
assumed to be known &t the points of a uniform rectangular grid in an
X534 X3 plane with spacings 8%y and x4 respectively. Thus the indepen-
dent variables X and X3 in the general Fourier term are only permitted
to have values which are {ntegral muitiples, m and n, of the grid spacings,
8%, and X3, The values of the dependent variazbles at these points,
given by Eq. (54), are thus

= M A(xy) (55)

where ¢ and o are detined as the complex guantities

{zMax, /L .
s =8 2/ {58}

and
X = MbXy, (m =0, 21, 22, +++) {58}
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Xy = NbXgs (n=0, 1, 22, «+}
In the numerical scheme the solution {s advanced aleng the stream-
Tines passing through sach of the points of the network. The centrai

streamline point and its eight nearest neighbors are used for locel in-

The analysis is simplified, without loss of generaiity, if the

f the local mesh is chosen such that { = 13(33 =,
Thus the nine points used fer interpolation corr25§end to vajues for
the integers m= 0, +1 andn =0, 1. The second-order bivariste in-
terpolating polynomial is fit to these nine points by the least sguares
method developed in Appendix F. The resulting polynomial has the general

U= (A + AX, + ARy + AXpxs + Asxz + nsx-} a(xy} (60)
where the coefficients are found to be {seze Appendix H)

Ay = [(5/9)(:

{3 e+ 2 NntaT)] {61}

by = L/BYe - ¢ Mm + =70+ DY, (82)

Ay = LO/B)e + <7+ 1in - 7))/ exg (63)

Ay = LO/8Me - 7 M = o7 )W expexy {54}
A= [- (1/3)c+ ¢ Dn e a4 1)

+ (/2)z + ¢+ 2T e DY (53)

4n
o)

it




i

Ag = [+ (/3 c + <7+ Do+ 07
S+ D e nhi})/axg {38)

+1)

The dependent variables at the intersections of the four wave sur-
face bicharacteristics with the initial- value surface must be evaluated
hy means of Eq. (60) since these irlsrsections do not generally covras-
pond %o points of the inftial-value surface network. Even though the
streamlineg intersaction cofiicides with & network point, and thus {inmter-
polasion {s not necessarily required, it wes found that interpolation
had z significant effect on stability.

The system of differsnce equations, Egs. (50) through (53), com-
stitute 2 recursion relation for the values of the depandent variables
at point (6) in terms of values in the init{al-value surface. For the
case xz(s) = x3(5} = 0 and the interpolating polynomial, Eq. (60), is
used to determine the values of the dependent variables at the points in
the initial-value surfzce, the recursion relatisn hes the following form

Ulx (5) + axy] = &[xy(5) + axq] = A [x,(5)] (67)

in which A is called the ampiification matrix. Here A {s & fourth-order
matrix in which the nonzero coefficient:z are

Ayq = £(5) (88)
Ayg ® {172 £(4) -~ f(Z)](E/ﬁ]) {70)

Mg = {751 - Q2 + #(2)

+ £(3) + £V (71)
b

p -3
L]

2p = (1/2)[F(1) + £(3)] (72)

i
4
LN

L—

T
{]

0 = (1/2)[F01) - £()1/(52)

43
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A3y = (V2)IF(2) + £(4)] (74)

Ryg = - (1/2)[812) - £(8)]/(58) {75)
Rao = (172)[£01) - £(3)1(58) (76}
Ry3 = (172)[1(2) - £(8)1(52) (77)
Agg = Q72)[201) + £{2) + £(3) + £(4)] - £(5) (78)

and the notation f{I) denotes the polynemial portion of Eq. (60) evaluated
at the point (I). These results are developed in Appendix H. The re-
cursion relation which results when interpolation at point (5) is net
included is aiso developed in Appendix H.

The von Neumann 3tability criterion states that the absolute mzgni-
tudes of the eigenvalues of the ampiification matrix A should not excesd
the value 1 + 0(3/¢x}}, whers Q(TJax}) denotes some finite constant times
the quantity (3iax}). The bound for the efgenvalues of the matrix A %as
irnvastisated nueserically by choosing z characteristic length L and mesk
spacings &%, and £Xq, censistent with physicel problems of irterest, and
subsequently calculating the magnitudes 6F the eigenvalues for 2 rangs
of the frequency factors ¥ apd X Yalues of 10 3nd 1 were assumsd for
L and ooth 4%, &nd a1y rassectiively. The range of M and H was then se-
lected so that the srgumente of tha ¢ireular functions rangad frem 0 to
2z; this resylts is & PERET Yrom D te 2¢

.
»
1

7or Soth M snd H.  Ths eigen-

61 3

value having the maximum masniiude was caleulatsd as 2 funciy &
7¢ K Tess than or squal to I were gesrch.

frequency indax 1 whercin si} M

ed for the maximm eigervaiys,

found that the results were compietely ssmwiric about iz va
10

T, thus caly the =esuits for ] less than 10
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te unity are cbtained. The maximm asSeclute value of an eigenvalue,
approximately 3, occus for I equal to 10, which corresponds to a Fourier
componant having a wave longth twice the mesh spacing. This result is
not surprisicc since, »~= . or*. ° - points in the initial-value surface
are used (the four wave surface bicharacteristic intersections and the
streemliine intersection) the convex hull of the four outermost points is
& square lying entirely within the circular differential zone of depen-
dence. Thus, the CFL necsssary condition for stability is rot satisfied.

#hen interpolation using nine points is used only at the bicharacter-
{stic intersections, a2 marked improvement in stabiiity characteristic
rasults, but the maximum magnitude of the eigenvalues is still everywhere
equel to or sxcesds unity, see Figure 10, Rumerical tests of this schems,
using the nonlinear second-order algorithm, revealed that numerical in-
stebilities did occur after 20 to 30 integration steps.

Yhen interpolztion is used at all five points ir the fnitial-value
surfzce a sufficiently stable scheme resultc see Figure B. In this case
efgenvalues greater than unity occur only for low fregquency components
and sven these are only slightly greater than unity. Numerical tests
with this scheme have revealed no evidence of instability even after 60
integration steps and in the presence of severe disturbances which would
result in shocks in & real flow. Results of the efsenvalue analysis for
rgductions in the xy step size and for rotation of the natwork are given
inn Appandix H. Only for the case of zero X step size were all eigen-
valuas less nzn ov zquel to unity., Howaver, the numerical results which
heve deen obtained using the nenlinear scheme cleariy 3ndicate that the
schems using interpoiation &t 211 points is sufficiently stable if the
CFL condition is satisfied,

W
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SECTION VII
ACCURACY STUDIES

1. GERERAL

In order to test the order of ths numerical error of the schere,
the numerical solution was compared «#ith the exact solution for &
spherical source flow and a Prandti-Heyer or simple wave flow. Specizl-
ized computer programs were written which ge 2. 3ted an exact initial-
value surtace and subsequently generated both the numerical end oxact
solutions at the points of each subsegquent soluilsn surface. The point
spacinrg on the respective initial-value surfeces weve successively halved
in order to study the error behavior for reductions in step size,

As an additional tast of the accurscy, thoe threz-dissnsionz] nuger-
{cal results for two axisymmatric nozzles were compree! with the neer-
fcal solution obtained using the two-dimsnsional m2thed of cherecteris-
tics. The two nozzles used for comparison were & cenizl nozzle having
& 15 degree half-angle and & contoursd sxisysmetric noiz's.

2. SOURCE FLOW RESULTS

The lozal truncation error in the numerical scheme wes ssumed to
b~ third order in step size; thus, for {ntegration toc & fixes point in
the fiew for which the nuesber of steps is of the ordsr {?iéxiﬁ, the sc-
cumulated error is second order in step size. The order of the actual
error can be established nussrically by successively reducing the step
size and comparing the ratio of ascumulated errors to the ratic of step
3izes raised to the assumsd order of the error. This process is §1lus-

-

i
are in a1l cases less than the ratios of the step size squared., Simi
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results were obtained for circular point nebworks and for higher gradient
flows, i.e., large source angles and Mach numbers near unity, ses Appsndix

: I. ¥hen a very ccarse mash was used for the nigher gradient flows {t was
found that less thien second-grder error characteristics resulted. How-
ever, as he mesh spacing was reduced the schems did exnibit the proper
second-o der characteristic. One possible explanation for this phence-
enon is that at large mesh spacing the second-order {nterpulation schese
is no more accurate than first-order interpolation and *hus the accuracy
characteristic is reduced. Hore detailed results of this study are in-
cluded in Appendix I.

3. PRAKDTL-MEYER FLOW RESULTS

Although a Prandii-Heyer flow is only 3 one {ndependent varisbls
flomw, 1ike the source fiow, the flow has @ two-dimensional spatial char-
acter. Unlike the spherical source flow the streamiines are curved and
thus should provide a more severe test for the numsrical schess,

Similar results to those obtained for source flow are presentad in

igure 12. Here sgain 2 second-order srror characteristic is clearly
indicated. Evror studies similar to those prasented in Figure 1Z have
been made for variztions in the initial Hach nusmber and for rotatiens

of the plane of curvature of the stres=linss, ses Appendix I. Although
considerable variatisn in {he zbsolute ascuracy occurs, the second-order
characteristic is retainad., As 2 result of the studies for rotation of
the plane of curvature, it wss decided to use the pressure gradient,
which if{es in the local plane of curvature, as 2 reference for oriesnts-

3 % > > 3 - - = 4 £ Tms 7_
tion of the local difference nebwork. These studies {adicatsd that the

= loc2l error was 2 minizss when the systes of four bichsracisrisitic ses-

newd é ] £ &} 1 T Arzams T skmnatd by sefieas
= pents just straddled the plane of tu-vature. It shoy:d b= =mphasizs
3 > 33 e - 3 ol =
= that this sffect was small, but was &5 convernient o e=pl~y 33 3 2ore
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two-dimensional method of characteristics progrem. The two cases con-
sisted of a 15 degree half-angle ccne 2ad an axisymmetric contoured noz- :
zle having & maximum wall slope doimstream of the throat of 35 degreses

and an exit half-anyle of 13 degrecs. Ir all c3ses the initial dats

were generated using & 10 degree spherical source flow. The results of

these comparisons are shown in Figures 13 and 14 for the cone and con-

toured nozzle respectively. Both the rozzle wall and centerline pres-

sures are plotted in esch case. The agreement {s exceedingly good except

at points of discontinudus rates of change in flow properties, The point

on the nozzle axis at which the first eéxpansion wave fram the wall

reaches the axis is such 2 point. This point is jabeled by & in Foth

Figures 13 and 14. The two-dimensional soiution, which caleulates along
charactsristics and does not require interpolation, shews the true char-

acter of the solution, while the thres-dimensional sclution s=ocths out

this point. This diffusive characteristic is {nherent in &ny three-

dimensional calculation schems because of the necessity to interpolate

and becawse of the need to satisfy the CFL stability criterion which

raquires that numerical disturbznces be propagated at & velocity greater

than the infinitesimal disturbance propegation speed, {.e., the spesd of

sound,

Wl

=

;

tﬁﬂﬂh

{
Al

Al

(3]
(44]

i

s

nl.

Hugayg 00

Al




ATZZON TTVOINCD HOd4 NOILNT0S "€! 38Noid "_

(Ld /7) HLON3T  371ZZON
0L 09 06 Ov 0¢ 02 0 0

e w

y Q.ﬁvG_nX\ . i

oy, {170 |

Q-¢ o v - |

a-2v ANITHILNAD " 1e0 \ | _
1d/d

TTIvmM Y |

SA] 1€°0 olLvy |

e . 3UNSSAU _

{70 ﬂ_

G0 _

b

I
{



; (1d /77) HLONZT 3JI1ZZON

a-¢ o
a-¢ v

0L 09 06 Ov 0O0¢ 027 Ol O

1ZZ0N J34NOLNOD ¥0d4 NOILNTIOS ‘bl

1’0

20

€0

40

G0

34N914d

(1d/d)
Ol 1lvy
JHNSS3Hd

58




SECTICN VIII
THREE-DIMENSIORAL FLOW RESULTS

1. GENERAL

At the prasent time no exact solutions for three-dimensional super-
sonic internal flows exist nor does any standard numerical calculatien
technique; consequently it is not possible to make any comparison with
existing results, Several solutions for ?lrws having three-dimensional
character are presented here simply to illustrate the general capabilities
of the technique. These results were generated using the CDC-€500 ver-
sion of the computer program which was produced.

The cases presentad are not directad toward any specific applica-
tion, but are typical of the types of nezzles which might. under special
constraints, be used as either rocket, ramjet or scramjet nozzles.

2. ELLIPTICAL ROZZLES

These nozzles have ellipitical cross sections normal to the Xy co-
ordinate axis. The X, and Xy intercapts of the cruss sections are func-
tions of the xpcoordinate such that the contour is initially circular
at the throat and &1liptical beyond. The intercept varfation is describad
by 2 ¢ircular arc in the throat region which is joined tangentially to
a general parabola for the diverging section.

The cross sections and boundary streeslines for one guadrant of the
first nozzle are plotted isometrically in Figure 15. In this case the
{ntercept of the contour with the Xy = %q coordinate plane was held fixed
wnile the Xy = X, intercept was 2llowed to vary. Aunifora parallel
flow was usel to establish Tlow conditions at the initial-value surfaca,

The nozzle cross ssctions and corrssponding polar wall pressurs con-
tours &t sach solution surface are shown in Figure 16, The polar pres-
surs piote are constructed such that the pressur: is the magnitude of
the radius vector to each point on the curve and the polar angle
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FIGURE 15. ELLIPTICAL NOZZILE
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H>te the pronounced three-dimencional character of the pressure field.
Even though the contour 4s s =mooth and relatively gentle transition,
significant transverse pressure gradients are present. Clesrly a psuedo
thrae-dimensional calculation technique, which neglects cross fiew,
could not adequately represent such a fFiow,

The second elliptical nozzle is zlso circular at the throat, but
has variation of bioth the Xy - % and Xy = Xg intercepts in the diverging
section. An isometric plot of the nozzie cross-sections and the boundary
streamlines s shown in Figure 17. The corresponding cross-sections and
polar pressure contours are shown in Figurs 18. 7his nozzle has less
deviation fron axial symmetry than the first nazzle, and consequently,
the three-dimensional character i3 less prunounced.

3. SUPER-ELLIPTICAL ROZZLE

The term super-elliptical is usad here to dencte a nozzle having
¢ross-seciions given by the general eguation

zz/}-z) + (231"5‘*3} Y= (79)

where Xy gnd Xy are e pactanguiar csrtesian coordiratas of the cross-
section, Az and As are the respective intercepts ard Z, anc E3 are ex-
ponents winich ar> greater than or ecusl 20 2.0. The perameters Az, ﬁ3,
E2 an’ E3 are assumed to be differentiable functions of the axisad
ordinate Xs . As the szpoments are given vaiues greafar tian 2.9 the
crogs-sections approach & rectangular shape #ith & smeoth fiiist at the
puter corner,

The super-elliptical nozzle contour used ¥or illusiration nevein
was generated using the same intercepts as for the second eiliptica:
nozzle, but letting the super-eilintical axpsnanis vary from 2.0 at tha
throst station to 10.0 2t thes nozzle exit so that the contour is imitially
circular at the throat and becomes super-eliiptical in the divarging sec-
tion. One quadrant of the resulting contour with boundary streamlinas
is shown plotted isometrically in Figure 18. The corresponding cross-
sections ¢nd poier wail pressures are shown in Figure 25, Hers gazin,
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Tre angle of thrust misalignment, a, {5 presentad in Figure 23 as
& funciion of ruzzle length, Ths resulis show the Jarped pariodic vart.
ation. Although the results show one thrust reversal, the period of
such reversals increases greatly with the degree of expension and & con-
siderably longer nozzle would be required to obtain a null misaligmment.
The frequency of such revarsals is a functiun of the cone angle or the
rate of expansion.
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A method of characteristics numerica) integration schems for the
governing equations of moticn of three-dimencionsl supersonic flow has
been developed and shown ¢0 produce results having second-osder accuracy,
The technique has been appi‘ed to several thrust nozzle prcblems and has
produced highly satisfactory rzsuits. The culmination of this research
{(i.e., the theoretical development nf the schemsz, development of the
necessary numerical techniques and the integration of these into an ai-
gorithe for internal supersen'c flows) s a production type computer
program suitable for application to & wide variety of supersoric nezzle
probiems. The succass of the method ta this application {ndicatas that
the mathod could be profitahly applied to & wide range 5¢ other super-
sonic #low problems, such as supersonic a’reraft inlets, superscu’e ex-
ternal flow around yawad axisysmetric bodies and supersanic flow around
bodies of arbitrary cross-ssction.

The results of this rasearch indicate that the extra camplexity re-
wiired to maintain second-~order zccuracy is entirely justified. The ease
with which voundary cond’tions are incorporated into the numerical ai-
gorithn  1s § definfte advantage, unigue to characteristic methods, over
ordinary finite difference schemzs. The development of a method of char-
atleristics scheme 15 sertainly more costly in time of development and
complexity: but the resuits justify the efforss.

Although & general study of tires-dimensiona’ supersonic flows was
not a part of this resesrcen par se, the sample cases which were co¥puted
permit one gensral conciusion. The structure of three-dimensional flows,
even modastly three-dimensional. {s quite complex, and in none of the
cases anslyzed would & psueds trrep-dimensional technicue which neglects
ernss flows have been adequate to predict the true nature of the flow.
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1. GEHERAL

genaral solution,” 1.e., the totality
of all sclutions of 2 system of partial differential squations, hardly
every occurs. Usually a specificz solution is singled out by imposing
further conditions which the solution must satisfy, For three indersn-
dent variables these conditions usually refer to two-cimensional surfaces
on winich the solutien is further constrazined. These constrainis can ap-
pear as physical boundaries, initial data, or as discontinuity surfaces
wnich bound domains within which the solution is o be found. The in-
{tial-value problem ic known as 2 "Cauchy probles” and the theory of such
problems has been developed by Hadamard {49}, Cauchy and ! owaiﬁﬁs ¥ {5?),
and more recently bv Titt {290).

If a mathematical problem is to correspond to physical -eality, the

following basic requirements should e met, Ref, /50):
1} The solution must exist,
2) The solution shoult e unigqiely determined.
3) The solution shoul: di:perd continuocusly on the initial
and boundary data _vajuirements of stability).

Any problem which satisfies :~sse thr:@e requirements is considereg
properiy posed. The probiem of o>taining it solution for a system of
aralytic hyperbolic partial differential equations is properly posed when
aralytic data are specified over 5 space-1'ke initial-value surface and
& propriate boundary data are specified over {ime-like surfaces which
ncjoin the initial-data surface. Uniqueners and existence of the solution
are, in general, only guaranteed in the smili even under the excessively
~gstrictive condition of analyticity. Thic is due to the fact that the
pessible occurrence of discontinuities (shocks) cannot be excluded a
3+fori. However, in the event that discontizuities do appear, it is
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specified arbitrarily on such & characteristic surface since they must
satisfy £q. {A-8), which is called a copatibility conditisa.

Let n denote the normal vector ito a characteristic surface, then the
condition that all the vectors gvi i{e in this surface is

n.H

A . =0 {v =1,2,..n} {#-8}

Haking use of £q. {A-7}, these equations can be written in term: of the

FY-X1

cosfficients of the original sysiem of differential equations

nwa .o=f{a ngw =0, (v=1.2,..n] {4-10}

where n, and W, ere to be determined. The eguations, Egq. {A-10}, are 2
system of himmdgensous linear algebraic equations for the components of
the system left efgenvector, w . The condition that a nontrivial solu-

i d nt of the coefficients vanish,

eterming

tion exists for the w_is thet the

by

=
L3

.y

te satisfied by a2 normal, n,, to 2 characteristic surface. If the length
H
of the normel vector is tsksn to be unity, then
b} 12 _%19
ﬁi,zi = i ;n*:{}
which together with Eg. { . provides twp conditions for the thres com-

ponents of the normal. The remaining component of the normal is arbitrary,

-

and Egs. {A-11}) and (A-12) do not uniguely determine a particular nommsl
= but rather determine 2 family, or femilies, of characteristic pormals.
== _
% The number of independent solutions for the w in Eq. (A-10) cor-
= responding to a particular sormel, ny, is f*stsrrm..- by the rank of the
& coefficient mazrix. In goneral, the number of independent nontrivial solu-

S=hn -p {A-13}
81
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where n is the order and p the rank of the coefficient matrix. Corres-
ponding t5 each independent solution for the W, there exists & compati-
bility relation. Thus there exist s independent differential compatioil-
ity relationships for each characteristic surface., The diffarential
compatibility relatinns have the form

dgij)g 2 B(j)dt (J=1, 2,..5} {A-164)
9 v
whers
2 {4
Hﬁ;) = w:3> a4 (A-15)
and
4 ”
“§") ...,.ng) . {J=1,2,..5) (A-16)

A4 TR

are the s linearly independent solutions of Eg. {A-10} for the systemof
left aigenvectors corresponding *o a particuisr normal, n..

Any characteristic compatibility relation is & linear combination
of the n original differential equations and thus the rumber of indeper-
dent differential relationships corresponding to one or several normais
cannot exceed the number of original equstions, n. How many and which
of the multitude of possible compatibility relations sre {ndependant may,
in theory at least, be clarified by writing out the matrix of rumbers,
wﬁj), where the range of j is such that ail independent solutions for
garh of the several normals to be considered are included. The rank of
th» matrix renders %he number of independent relationships and the rows
3. che highest order nonzero determinant show wnich relationships are
independent. .\

The matrix of numbers H£3’, may pertain to che or several charascter-
istic normals., It may turn cut that the sams differential compatibility
relationship will correspond to two or more normais. and it 1s &iso pos- P
sible that any of the original equations, Eq. (A-1), may be clharacter- 2
istic to begin with (i.e., all LI for some y 1ie in one pleanej. i

The two questions which are relevant to the formulation of numerical s
schemes can be summarized as follows: E

82




b

} Can there exist n rea’ and indsperdent compatibility relation-
ships for the sysiem of equations, Eg. {A-1},which can be used to replace
the system 3t a point?

7} Given several characteristic normals, which of the corresponding
cempatibiiity relstionships are rdebeﬁdeni?
These cuestions are “nvestigetad Sor the equations of motion for station-
ary suparseaic fiow in

o
<

pendix D,

had

CONE OF HORMALS ARD CHARACTERISTIC CONDID

The left side of the characteristic sguation, Eq. {A-11), is the
determinant of an mth order matrix, and thus is an nth order polynomial

in the three components of the unit normal, (“I’ fos rq) Equation (A-12)
provides one conditien for deterninatisn of the two degress of freedom

of the novmal. One degrez of freedom remsing such that an nth order
family of normals {5 obteined. The elsments of the family of normeis se
obtainad define a conical surface called the cone of normals.

The case in which the cone of normals degenmerates {nto two noninter-
3ecting cones is of particular inte?est in gas dynamics. The character-
istic detseminant, Eg. (&-11}, in thic case factors into the product of
¢ symmetric quadratic factor and 2 linear factor repsated n-2 times, i.e.,

X = 2,m,5,0,0)"2 =0 {4-17)

shavs Aij = gj% 177 4s satisfied if either of the factors
varish. The first factor yieidsthe equation for a family of normels
whese sndssints 112 on the surface of a quadratic cone, while the ssecond
faetor yieids the equation for & family of normals whose 2ndpoints all
1ie i1 2 plane noimal to the direction Ly-

In gas dynamics the cone of normals is usually defined as only the
qusdratic cone generated by the elements corresponding to a1l the unit
rormals which satisfy the guadric squatien

The charzeteristic surfzces which correspond to each of the elements of

-~

this cone of normals form g curved coniczl snvelope which 15 called the



characterisyic concid. The curves of contact batween the characteristic

surfaces and the conoié are called bicharacteristics. The tangent planss

to each of the characteristic surfaces form 2 conical envelope consisting

of straight elements which is called the characterictic cone. The gec-

metric relationship beiweszn These conical surfaces {5 {llustraied in
Figure A-1.

The equation for the characteristic ¢one, which {s regquired for
development of numerical methos {

d 2
to the cone of nomals. In grger to OBt

¢ 4. .

where x, (i ¢ 1,2,3) are the
1

normsls and o is an arbitrary lenoth along the normal. 1T the componsnis

of the urit normal, n 1

{A~19}. the cguation

Gty

wrrd

.
b
1

agent to the cone of normals at any point x
f
i

~ E3 z -~
{81}, iz given by
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where the ¥ (i = 1,2,3) are the components of any versor of the cone.
The parametric eguations for an eiement of the cone can be written as

(6, = %% =2vy s (1=1,2,3) (A-24)
where ¢ i3 an arbitrary length. Any verzor, ¥,, of the cone 4s by defini-

tion proportional to the dirsction ratios of the normal to the corres-
ponding tangent plane of the cone of normals, Eq. (A-22), Thus

¥ F eifjizi! B xfc) (A-25)
where 8 s a constant of proporticnality., Substitution of Egq. {A.25)
for the ¥y ints Zg. (A-23) and the fact that the point x,’ iy an arbitrary
point on the surface of the cone of normals yields the resuit
Y= 0 {#-28)

; Oy, .
aijﬁaiﬂ‘;nj(xa o Hxg - 2y

When this result is compared with the wquation for the come of acrmiils,
A-20), an identity is cbtained

1)
=)

L

—

P 13737
agshoifng T Am (A-27)

This idantity is satisfied since the matriz A i3 symmetric 1§ the matrix
2

iuse

"

ﬁ "f ix =on
I EreTr ER lgr“":fg;
LY
where A denctes the adjoint metrix, and Al donots: the detsrminsat
of the matrix A, Thys the metrix [e.,] is simply the inverse of the
S D .
matrix {éij} and {s denotad iﬁgj ‘1. The equation Tor ihe cheracteristic
cone can nde pe writiten
= “i [+ 2% 2] - sa




-1 _ -
Aij dxsdxj 0 (A-30)

This result will be of further use in the development of a numerical
technique for solution of the system of equations, Eq. {(A-1).

4. GENERAL FORM OF THE COMPATIBILITY RELATION

The system of equations, Eq. (A-1}, reducesto an interior differen-
tial operator on a characteristic surface. Data may not be prescribed
arbitrarily on a characteristic surface since the intcrior operztor, or
compatibility condition, must be satisfied. The compatibility relations
involve directionsl differentiation in a space of one lower dimension
than the original system of equations and, therefors, are very useful in
the development of a numerical scheme.

Consider a transformation of coordinates by simple rotation from the
coordinates x; to 2 new system x; with direction ratios (3x%!ax5). The
xé direction will be chosen as the direction normal to 3 charecteristic
surface, so that

(axé/axi) = ny
The system of equations, Eq. (A-1}, under this transformation becomas

anvj{sxglsxj)(auv/ex%) = bﬁ, (v = 1,2,..n) (A-31)

If Eq. {A-31) is multiplied by the ieft eigenvector, W {v = 1,2,..n),
defined by Eq. (A-10), then an equivalent form of the compatibility con-
dition, Eq. (A-6}, is obtained.

Haaﬁvj{sngax.){au /ax3) = W b (A-32)
The x§ direction was chosen as the direction normal to a characteristic
surface so that Eq. (A-10) is satisfied, i.e.,

/3%;} =wa .n

H
- D, =
S 1 PRRTACS B

»

"
Low]

{A-33)

wa .{3x

o e
¥ Vi

Q.
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Thus Eq. {A-32) {s seen to reduce to differentiation with respect to
only two independent variables, x; and xé, and can be written

i sy 7 : # ¥ ~ P | ; TS
Wi eu axg) +wal o(eu /3xg) = Wb (A-34}

where
i T 8,5(8%3/3x4) (A-35)

Equation (A-34) is the generz] form of the compatib‘iity relation whicn
mist be satisfied by the values of the dependent veriables,

u {v = 1,2,..n), en a particular characteristic surface having unit
normal ; gy and corresponding left eigenvector W {v = 1,2,..n). The
compatibility relation car be more simply writtan as

. 3 - 'Y = (B
EV(BJvfcxi) + Fv(suv/axz) b {R-36)

where the coefficients E, and F_ {v = 1,2,..n) will depend upon the
particular choice for the x{ and xé directions, the oniy restriction
being that they be two independent directions within the characteristic
surface corresponding to the unit normal, L
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The normaifization conditions, Ec. {B-7}, which are assumsd for the refer-

ence veitor set, oroduce 2 particularly simple canonical form for the

¢te
transformed quadric eguation

”~
iE A

o
4
g
-

— 7
: 1L g
- _ﬁ,};?; -

"
iy
o,
|
St

~

=0 (B-12)

iy

»

This is the equation for 2 real cone cosplietely enclosing the E} axis,
i.e.,the 3, cirection, Thus the conditions, Eg. {B-7), ensure that the
vector i, 1ies interior to the quadric cone., Thers a&re &n infinity of
transformations which will reduce the eguation of 2 quadric cone to ex=-
onical form and, thersfore, ‘3 is permitied to be any vector interior to
the cone. This degree of fresdas in the choice of Ay will be required
at a latter -tage of the nimerical development in order o ensure that
the compatihility relations for the systen of differential egustions can
be placed in a particular form.

3. GEXERAL FORM OF THE COMPATIBILITY RELATICHS

The compatibility relations which exist for characteristic surfaces
corresponding to the quadratic factor of the characteristic determinant,
Eg. {A-11} of Appendix &, can now be expressed in terms of tne parzastiza-
tion for the bicharacteristics, Eq. (B-5). The equation for a differ-
ential eizment of the plane tangent %o the quadric cone and corresponding
z particular bicheracteristic direction, £q. (B-5), ic obtained from

th

£q. {B-3} for the guadric cone, Ref. {51}, and has the form
-1 . .
Ary o (ay +ugcose + vysing)de, = 9 {8-13)

L)
[A)

"
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where N is the magnitude of the normal to the differential element
‘} N '.{ \‘*51'*2
3 SR . i + 5 + .88 JA, i ¥ u 5 + vy Bl
R {gig {*i 4 €056 u3-%n,}ﬁ g (,2 + uy €058 + vy sing)]
{B-15)

The bicharacteristic direction, Eqg. {B-5}, lies in the characteristic
surface element ané is orthogonal to the unit normal. A second indepen-
dent direction, which lies within the characteristic surface eismaznt, is
selected in order to obtain a particular form for the compatibility re-
lation. The second direction is

Mg = v;C088 - y.sing {8-18;
The orthogonality of this direction to the unit normal, Eq. (3-14}, can
be verified by direct calculation and the use of Egs. {B-7) and (B-8).

The directione x; and xé in the generszi compatibility relation, Eq.
{k-35) of Appendix A, are any two independent directions in 2 character-
istic surface. Therefore, if the xi direction is chosen as the bichar-
acteristic direction and the xé direction as the independent direction
defined by Eq. (B-16), then the partial derivesives of the general com-
patibility relation cmpewrittenssdirectional derivatives in terms of
the partial derivatives with respect fo the original coordinate systesm,
i.e.,

RCRS | i v
=3 +g (»icese - ,?sins}{ée?/ax‘) {B-17}
k3

i*

where the coefficients & , B and C_ are functions of 8, u_ and x,
} obtained the functional dependence of the coefficients A
f=]

“

-, On 8, by first considering the case for n = 3 (i.e., three de-

v g
pendent variables and a system of three egquations) and writing out Eg.
{8

-y

LY
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Av(ﬁ/Z}(Ai + ui)(euvlaxi\ B{x/2) - Cv(ﬁ/z)ui(auv/axi) (B-19}

1}

Av(ﬁ)(lf - ui)(auv/axi) 8{x) - C“(:)vi(auv/axiE {B-20)

ﬁv(3ﬁ/2}(k* - vi)(auv!321) = B(3n/2) + Cv(3ﬂ/2)§§(30v/3X1) (B-21)

Eachi of these equations can be considered to be formed by taking linear
cesdinutions of the original n equati~ns. Therefore, there exists a
Tinear combination of the four equations which is an idertity. Sunpose
o, B, v and ¢ are a set multipliers for Egs. (B-18), {B-~19), (B-20) and
(3-21), respectively, which, when ihe products are sumned, yields the
.dentity. Then since the vectors *i’ My and vy ave independant, the co-
efficients of each of the directional derivatives Ai{EEV/QXi}, u%(auu/axi)
and vi(auu/axi) and the constant terms in the {identity must vanish. This
yields the four relaticns

g

:
2624
Ty

aAv(O) + 5Av(ﬂ/2) + YAv(ﬁ) + 5Av(3ﬁ/2) =0 (B-22;
aAv(O) + SCV(K/Z) -yAv(a) "6Cv(3ﬂ/2) =0 (3-23)

-aCV(O) ¥ BAv(ﬁIZ) + yCv(n) - 5Av(3ﬁ/2) =0 {B-24}

e PR i WG

—— a3(0) + 8B(a/2) + yB{n) + sB{32/2) = 0 (B-25)

é In addition, any three of the equatione, Egs. (B-18) through Eq. (8-21},
; are eauivalent to the orig¢inal system of differential aquations and there-
] fore must have the same characteristic surfaces, i.e., the corresponding

|
!

= compatibility relations must have the same dirvectlions of differextiation
= s Eq. (B-17). Therefore, i1t {s necessary that the ceefficients of the

directional derivatives, (ké * ngcoss + visfne}{auvlaxi) ane

{v52056 - gésine}{auv/axi}; in the {dentity obtainad by summing gaz. {8-18)
through Eq, {B-21) must also vanish., Equation {B-22) ensuve< vaniching

of the coefficient of the first directional derivative, while the reguire-
ment that the coefficient of the second vanish yields the asdditional

!.r

£
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refation

{x’:_){f)} & SC\i{ﬁIZ} + vl {2} + 60 {32V = 0 {B-28})

The relations, fg9s. (B-22) through (8-26}, are net only conditions on
the mu‘tipiiers, @, f, v and ¢, hut alse are conditicons on the dependence
» B and T on the perameter .

~1nce any thrze of the £gs. (B-18) through (B-21) are ecuivaient to

original system of differential sauetions, then an apprepriate com-
b:nation of lhese same equatfions will yield tne general compatibility

relation, Eq. {8-i7). Note ¢hat the sins and coss dependence of the
éi?ecticﬁa§ derivatives in Ey. {B-17) muzt be produced as & result o
the auitipliers vsev in the linear combination of Egs. (B-18) through
(8-21). Butler (52} cbtained tha general compatibility relation and the
functioral deperdenca of Av, B and Cv on 8 by using the multipliers,
a{l + 2 cose), 5{-1-2 sine), v{1-2 cose} and ¢(-142 sine}, for Egs. (B-18)
tarough (8-21) respective?y. This particular combination has the neces-
sary proparty thal, for 8 = 0. 2/2, = and 3x/2, Eqs. (B-18) through (8-21)
are reprocuced and the correct 8 dependence of the directional derivativas
rasuiis,

After considerable rearrangement of terme in the summed equation and
use of Egs. (B-22), {3-23}, (B-24), (B-25} and (B-26), the general form
of £5. {B-17} ?s sbizined in which the coefficients A, B and C have the
following form

(o]

At = A}“ + sz cess + A3v sins {B-27}
= =28}
g 81 + 82 coss + 83 sins {B-28)
€, =8y, # Gy, cose + Ty sine (8-29)
whers
ﬁ?v © a%v{G) - sAv(nIZE % YAU{ﬁ) - GEV{3E/2) {8-30)
- 7 2 = - - (E_a}\
Ay, = 2leA (0) = vA (r)] 18-31;
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5. THE SECOND-ORDER NUMERICAL SCHEME

The two equations, Egs. (B-17) and {B-33). form the hasis for a

numerical scheme which can be used to compute %he values of u  corrset

A
%6 second grder at any ooint X; = oy when the u  are given on some space-
W
1ike surfage f{xi} = {1 ngar the point a,. The solution ¢an then be ox-
¥

tended 26 2 family of surfzces of which ¥ = 0 {s 2 typical messer,

Consider Egqs. (B-17) and (B-39) written in operator netation for tha
/ ;
2

dirgctional gifferentials aiong - bicharacteristic direction, i, and the
A girection
A‘dgu =[5+ {v,co88 - dfs%ne} {au 7ax,)ldt i8~30}
Y v £ .
and
f. d-uy = T8, + 7 SN oY B PRV VRS 2.2
ﬁ}vdl\iv i_ug LngJ.s céu"‘; H ‘q"»‘ ‘Agzja‘jt { LV

w
L
P
3
[~%
e
=
[T ]
e
[
«F
or
[{+]
“ty
o

point ay intersect the space-like surface ¥+ = 0 2
s0 that the bicharacteristic corresponding tc z psr
and starting at x; = oy meets f(xi) =0 at £ = -ti{s}, Equati
written in finite difference form correct tc second crdsr
the modified Euler scheme, is

Y
=

RLue) - u (] = {B+ 3 iS(a) + S(RT} the} = 0(8)) (B-42)
where

S = Qﬁv§6058 - uisine} {agﬁfaxii {8-43;

K= (1/2) [A (a) + & (f}] {3-44)

B = (1/2) [B(a} + 8{f}] {B-45)

The notation uv(c) is used to denote the va' s of the dependent variabies
&

at the point x; = o, and ﬁv{f} to dercie the vailes of th

i




s

!
el

ms Con

te the ge
-423, S{a} now be

LY
1
H

i

(546

s

A

(2}
>

3ut-

>

alon

resdom

-~
T

fiow

&
[ %

eady

£
i for the

onstan

ne referance vector

o
=
i
-~

in the case of
Yo

rom that by

3

£

is degree of

ates

1

2

& how th

dimensional, s

5 -
]
CYy

3

r

hre

-
L2

othly along the bicharacteristics

s ngt stat
for

:

o, anc

2

-

£ s

enerai case, but arbitrarily usas the base co-
present development dey

e second-order accu

34

Tk
o

o
a
o

texer ftarm

Lo

pl

L)

Ly
Lo

o

o

L




equation for 5, Eq. (B-43), contains the partial derivatives of the de-
pendent variables at the unknown point a. In any explicit scheme these
derivatives cannot be evaluated until after an entire solution curface
has been celculsted. Therefore, in order to achieve second-order accur-
acy, the terms containing cerivatives at the solution point, a, must be
eliminated. The fact that an infinite family of bicharacteristics exist
at each point can be used with weighted integration to eliminate the
terms containing derivatives.

Consider £q. (B-42) weighted by the factors [f{a)cossl/t{s) and
[fla)sinsj/t{s) and integrated with respect to s between the limits O to
2= to give

(2% o) ﬁvcossds
S N )

{Zn fla)u (f) A ,coseds  s2x R . )
A t(a) ), f(a) Beossds + 0(f>(a)) (B-47)

and

{21: fla) ﬁvsine
J

v ) .0 tie} de
¢2z f(a)u () A sins 2= . 3
= gc t(e; ds + ée f{a) Bsinads + 0{f”(a))

(B-48)

vhere f(a) denotes the value of the function for the surface f(x,}) = 0
evaluated at the point oy thus the ratio fla}/t = 0{1). Hote that Egs.
(B-47) and (B-48) do not contain any terms involving derivetives of the
dependent variables and the integrals are in terms of xnGwn quantities
on the initfal value surface f(xi) =

& third finite difference relation is obtained from the differentizl

== . noncheracteristic relation, Eq. (B-41) applied along the curve dx X, = 2ct,
= Suppose that the curve dxi = lidi meets the surface ?{zi} Jatt= -hg
gggg zrd denote the value of u, at this point by v {h}. The modified Euler

{ntegration scheme is used to obtain & firite differsnce approximation
for £q. (B-41) which is zorrect to O(h"). This gives

a~




Ay e (a) - u (h)] = {8} +(1/81(C, vy - Cqy pq)iou /3x,)]

Xiga
+ 720G, vy ~ Cqugi(au fox)1,, ] 0+ 0(h) (8-49)
%%%%% where
% P P«Tv = (/2 [Ay (a) + Ay (h)] (8-50)
8y = 0/2) [By(a) + B, (h)] (8-51)

Equation (B-42) is weighted by the factor h/t, which is of order G(1)},
and integrated with respect to & between the limits 0 < 8 < 2x. Subse-
quently, Eq. (B-4S) is multiplied by = and subtracted from the resultiag
integral of Eq. (B-49) to obtain

25 hAde . (25 hu (f) A de

) *
a1 . T IV
uv(d) L jo t EAT\:} jo t ﬂé?vuv(h)

- LGy - Cayug)(au iax )]y y

G *
+ | hBde - =hB, + O(h

3
‘o

(B-£2)

The final three conditions obtained here, Eqs. (3-47), {B3-48) and (B-52},
differ from those obtained by Butler (12) by tie absence of integrals in-
volving S{f). Thiz i{s a direct result of the choice for the reference
vector set Ais vis and vy such that & = constant at all points along a
bicharacteristic,

Equations (B-47), {B-48) and (B-52) are the nacessary three indep2a-
dent equations for the Uv(a) whenn =3, Ifn> 3, it is assumed that
the additional n-3 conditions can be obtained from the compatibility reia-
tions corresponding to characteristic surfaces containing the curve
dxi = Lidt. None of these conditions invoive derivatives of the depen-
dent variables, U at the unknown point, Xy = o4, SO that the modified
Euler integration scheme can oe used to obtain finite difference relations
which can be solved simultaneously with Eqs. (B-47), (B-48) and (B-52)

to obtain a solution locally correct to order 0{t ).
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<3 wg &n¢ o, sxpressed by
s fo v} =] % - - ; P . ~ =z P
tai, (B-7} and {3-8}, the second terem of Eg. {B-5E} vanishes icentically
to yielg
5
=g -a . H a4
A ola, +u,coss + ovosinsdax, /2, =0 {a-58}
R 3 i

by snd v, relzstive to 3 fixed re
snge,
7. SURBADY
“!" -

he finite difference relztions which have been deveioped here for
the general case can be used in a variety of ways to obtain & pumerical
ithm, One method will be outlined here in orcer to illustratie the
application of the equations which have been gdeveloped.
The modified Euier integration schems is 2 predictor-corrector ty;e
schere ir which 2 system of nonlinear ¢?”ference relations are soived
by iteration. The values of the dependent variadles, U, are 255iS ¢ to
be known at discrete oints on the {nitial value surface f(xi\ = 3, and
the solution is to be extended to 2 set of correspending points on & new
surface f‘(xi) = 0 which is sufficiently close to the initial surface.

The integration process is initiated by extending the curve dx, = ‘ﬁt
g L4 i

from a known point on the initial-value surface, f{x ) = 0, to the new
sciution surface, f’{zi} = {3, the intersection being é ignated o. Ths
system of vectors s vy and v, &t the point o are es stabiished so thit
o the conditions given by Egs. (B-7) and {3-3} are satisfisd; and
é}'a consistent selaction for th §

the intersections with ¢ n

family of bicharacteristics passing poir :

Eq. {B-53). The single éegree of freedom for the choice of the reference
f

system orientation at the point a;. The values of the dapendeni variabies,

nd

’4 i
a%s which &ppear in EQ_S. {3'57\ :;S"“'S;

L1

u , and the vectors i, zlong the intersection with f{x

»e
H

4
1

are ysed to evaluate the

?0'1

n

and (B-52). 7Yhe resviting three equations aiong with the additicnal n-3
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APPERDIX €
THERMODYHAMIC RELATIONS FOR A STRIATED FLOW

The working fluid of scramjet and rocket exhaust nozzle expansion
systems is produced by combustion of a fuel and an oxidizer stream, each
of which is uniform in composition and stagnation enthaipy. The siagna-
tion enthalpy of the combustion products {s thus 3 single valued function
of the local oxidizer %o fuel ratio. The oxidizer to fuel ratic will in
genaral have spatial variations within th
stagnation enthalpy and composition of th

and, therefore, the
fluid will have spatial varia-
tions., However, since the flow is assumed to be inviscid and strictly

@
"
]
V)
&

n
t
o
%t

(14

adiabatic, no diffusion of species or ensrgy sccurs and, therefore, both
the atomic composition and stagnation enthaipy are constant along each
streamline.

In & scramjet cosdustor the stagnation pressure of the combustion
products wil! in general vary from streamline to streamline due to vari-
ations in pressure ind valocity of the entering air stresm. In rocket
svstems the stagnation pressure afier comdustion usuaily can be zssumed
to be constant throughout the flow becsuse of the low momentum of the

ot

entering propellants and the fact that the combustion occurs at Tow sub-
sonic veiocities.

The genzrai case of combustion products having vwariations in both
stagnation pressure and enthaipy wiil be considered in the thermodynamic
model. The general thermodynamic relaztion for a mixture of gases in
thermal equilibrium, but chemical noneguili

wi




The system is assumed %o exist in a state of “frozen™ or equilibrium
chemical composition. In the frozen case all the dc in Eq, {£-1} are

. zero, »nd for the case of chemical eguilibrivm, no ﬁe? change in the

chemical potentizl of the system occurs. In both of these cases the
1ast term in Eq. {£-1) is identically zerc und the general thermddynamic
relztion becomes

Tds = ¢h - — dp £ 2}
>
Equation (C-2) is the general th

ermodynamic reiation for 2 simpie system
and the specification of any two thermodynamit. properties fs suf:ic

icient
to determine the state ¢f the system and thus 21! remaining thermodynamic
properties. Equation (L-2) is for a closed system and applies to a par-
ticle of fluid as opposed to a Fixed point {n space. In this sense the
velocity of the system {s not & thermdynaﬁc yvarizble and cannot be
determained Trom a knowledge of the thermodyni.aic stete. Thus, the stagna-
tion state and corresponding properties cannot be determined uniess the
system velocity is specified in addition ¢o two thermodynamic variables.
it foliows that specification of any two thermodynamic variables o

stagnation state, in additicn to the system velocity, is sufficient

-n"
ot

he
&
determine the thermodynamic state of s‘.’-ﬂe system.

The stagnation enthalpy of a Tluid which is gensrated by combust
f oxidizer and fuel sirsams, each having constant en
valued function of the cxidizer tc fuel ratio, If th
variations in the oxidizer to fuel ratio then corresponding var

by
o
(4]
onte
o
ol
w

in the stagnation enthalpy will also be present. For cteady ¥l

‘i‘
L]
-+
[
wi

uid, no diffusion of energy or mass can occur s¢ that the
io

and, ?..fererow, -.agwa:ie enthalpy are constant
5
*

ratio »nd the corresponding stagnation enthalpy are 2ssumed to be constant

L . em . I : & I s tue o R
== at the .alues which prevail after completion of the mixing and cozbustion
%_% orocess. Once expension of the Flow beqgins the dissipative processes
=t Process. UNce E€XPENSICH 07 L4t DEQINS Lhne G¢i1ssipative professes
== - e b1 5 1 i : - § = i --
== very rapidly die out {f.2., the gradients decrease except in a thin layer
= f [y . : s v . . :
= near the boundaries) and the inviscid assumption is 2 good approximation.
= - - . . : o

= ihe fact that the stagnation properties are constant slong the
= straanlin nE eFpari d inaviecid Fimw can alen be shesm by lese
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heuristic arguments. ( .sider the mechanical snergy equation waich is
obtainev by surming the Luler momentum equations after multipiying each
by the corresponding velocity component, f.e.,

uyds(auy/axg) + {uy/oi{ap/axy) = 0 (c-3)
v, in terms of the square of the velocity magnitude, q2 = Uu
(vg/2) (567734, + (uyfo)apiax,) = 0 c-4)

The first law of thermodynamics, appifed to a particle of {aviscid
fluid, yields

du = &g - pd(1/p) (C-5)

whare u s the internal energy and &qthe heat transfered to the system,
The flow is assumed to be strictly adiabatic so that &g = 0. Thus,

du + pd(1/s) = 0 (C-6)
or in erms of enthalpy
dh - 'ifp)dp = 0 {c-7)

When the differentisls of the dependent variables are expressed ir terms
of the coordinates f{or & point fixed in space, Eq. (C-7) becomes

ug(ahsaxy) - (ug/e)(ap/ax;) = 0 (c-8)
Addition of Eqs. {C-4} and (C-8) yields tne result
u1(ah/axi) & {uilz}(aqzisx{) = 0 (C-9)

or in terms of the stagnation enthalpy, # = h + q2/2,

uf(aﬂ/axi} = 0 (£-10)
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Although it has not been shown here, this result {s alz¢c %rue when dis-
continuous changes in the fiow properties are present . ..e., shocks).

In the ab:znte of discontinuities in the fluid properties. the first
law result, Eq. {C-7), can be combined with the general thermadynamic
equation, Eq. {C-2), %o yield

Tds = 0 (c-11)
or in terms of the coordinates of 2 point fixed in space for steady flow

Thus, the entropy is & constant along the streemlines of the flow.

One further property, the stagnation prassure, can &lso be shown to
be conserved along streamiines for continuous propertv variations. This
can be zesn by placing £q. (C-4) in the form of a directional derivative,
along a streamline, of a single property.

u(a/ax)lp + 5 7pd(g?)] ~ 0 (c-13)

If the integral in Eq. (C-13) is taken along & streamline such that the
entropy 1s constant and ths 1imits of integration are from a point on
the streemline where the walocity 4s zero to 2 point where the velocity
1s equal to q, then, by definition, the conservec properiy in Eg. (C-13)
is the stagnation pressure, i.e.,

;x§(q=q) .
P=p+ ; : € /ax,‘)csxi (c-14)
}xi(qﬂﬁ)
and £q. (C-13) bacomes
ui(aP/axi) =0 (€-15)

Thus. the steady. inviseid and strictly adiabatfc assumpuions yisld the
result that the stagnatien enthalpy, entropy and stagnation pragsure are
all constant aleng streamlines for continucus property vartations,
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The fluid gersratsd by combustion at & given oxidizer to fuel ratic
forns a simple system in the stagnation state and, therefore, specifica-
tiun of any two stagnation properties s sufficient to detarmine tha
stagnation state. The stagnation entnalpy of 2 fluid generated by com~
bustion ef constant property oxidizer and fuel streams is a unique funmc-
tion of the oxidizer to fus! ratio. The remaining properties of the
stagnation state depend in addition on the pressure and velocity after
cesbustion. Once the stagnation state §s established, the nroperties
along & particuler streamline are one-dimensional functions and can be
characterized by specification of cne additicnal property such as pres-
sure, density or flow velocity.

For this development of the numerical me.nod 6f charactersitics,
the stagnation enthaipy and stagnation pressure were chosen &s the two
varfables nscessary to define the stagration state, and the static pres-
sure was chosen to further definz the variation of th: system properties
with expansion. Thus, the prepertizs density and speed of sound, ex-
pressed functionally, are

o =olp, P, H) (C-16)

a = afp, P, H) (€-~17)

For a thermaliy and calorically perfect gas the relations for density
and speed of sound are analytic expressions. For multi-component systems,
having efther frozen or squilibrium chemical composition with real gas
effects, the dangity and spsed of sound must be obtained hy means of
thermo-chenical calculations. The relations, Eqs. (C-16) and (C-17),
are usually obtained as tabular functions. Continuous functions must be
generzied either by interpoliation or by fitting empirical expressions to
the tabular data.
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APPENDIX D

CHARACTERISTIC RELATIONS FOR STEADY
SUPERSONIC FLOW

1. GEKERAL

The general theory for the application of the method of character-
istics to systems of hyperbolic partial differential equations ic dis-
cussed in Appendix A. The application of these methods to the system of
equations for z three-dimensional stationary supersonic flow is presentad
herein. The characteristic compatibility relations corresponding to all
families of characteristic surfuzces are devalioped. These include &ll
the characteristic relations required for applicaticn of the general
numerical methoc. The possible combinations of {ndependent compatibility
relations which are equivalent to the original system of partial differ-
ential equations are aiso investigated.

2. EQUATIORS OF WOTIOR

The equations of motion for stationary supersonic fiow in three-
dimensions consist of the three Zuier momentum eguations, the continuity
equation and the conservation equations for stagnation enthalpy and stag-
nation pressure. This system of equations, when written using the Krone-
ker delta and matrix notvation, are easily recognized as having the same
genere] form as the general system of quasi-linear partial differential
equations discussed in Appendix A, Eq. {A-1} Using this notation the
equations of motion are

el
[ ]
(Yxl




i 7 f 392
ouy G 0 6” 0 0 E_;
3&2
au3
4] 4] Uy 631 0 0 3—5
3 p {(p-1)
oazézi ¢52521 °3253i Uy 0 0 %2;- -0
‘ 3P
: aH
; 0 0 0 0 0 tl* E
‘- - \

where uj, Uys Uy are the three comporents ¢f velocity, p is the pressure,
P the stagnation pressure, H the stagnation enthalny, p the density and

2 the speed of sound. The three independent variables are the rectangu-
iar curtesian coordinates Xys %o and X3 and tie repsated indice: imply
summation over the range 1 to 3.

3. CHARACTERISTIC SURFACES

The characteristic surfaces of the system, Eq. (D-1), are obtained
by solving for the left eigenvector which will red.ce the system to an
interior operator in a space of ore lower dimension, which is called a
characteristic surface. Hultiplication of £q. (D-1) by the jeft eigen-
vector, Hu(“ = 1,2,...6), yields the single equation

; J2 , 2 .
plujwy + 2 51iwé)(aui/axi) + o(u,!h2 +a észé)(auzlvxi)
*oplugiy + a%eqm) (Bugfaxy, + (6w + 654w,

T uiwé)(apfaxs) + (uiﬁs)(aP/axi} + (uigs)(aﬁlaxs) = 0
(D-2)




(o]

The coefficients of the derivatives in Eq. (D-2) are vectors of dirs
tional d¢ifferentiation and £q. (D-2) reduces to an interior oparator *f
all the cosfficient vectors are coplanar (i.e., 17 the scalar products
of the coefficient vectors and a unit normal to a characteristic su
a1l vanish). This yields a system of six homogeneous and linear ale
braic equations for the six components of the left eignevector, L

system of equations written in matrix notation ic

4

pa 4550y

where the n, are the components of the unit normal! to a characteristic

surface. A nentrivisl solution for the components of W, exists if the
aoterminant of the coefficient matrix vanishes.
the characteristic equation for the system,

The first factoer yieids the

Equation (D-4) has the same general form as £q. {B-1) of Appendix B
(*.e., & repeated linear factor and 2 quadratic fzctor), and therefore
the general numerical method described in Appendix B can be applied to
this system.

¥hen each of the two distinct factors of Eq. (D-4" are squated to
zerc, the equations for two

This condition yields

éijj ngny = 0

reazl and nonintersecting cones are obtainad.

equation for & desyenerate cone formed by all

normals to the direction of the veloecity, i.e., 2 piane normal to the

-

P}



streamiine, The reciprocal cone, the co-responding characteristic cone,
ts also degenerate and consists of the line segment tangent to the stream-

line.
Hhen the second factor of Eq. {D-4) is equated to zero, a gquadric

equation for & right circular cone {s obtained

The cone is real for q > 2, where q is the magnitude of velocity. This
cone is called the cone of normals. The characteristic surfaces, which
correspond to each of the elements of the cone of normals, form a curved
conical envelope s ich 15 calied the characteristic conoid. The bichar-
acteristics are the curves of contact between characteristic surfaces
snd the conoid. The tangent planes to each of these characteristic sur-
faces form an envelope consisting of strafght elements which is called
the characteristic cone. The geometric relationship between these con-
jcal surfaces is {llustrated in Figure D-1.

The characteristic cone is the reciprocal cone to the cone of nor-
mials and the corresponding quadric equation is obtained by the inversion
process discussed in Appendix A. The resulting quadric equation for a
differential element of the characteristic cone is

[usuj - (q2 - 32) 6133 dxidxj =0 (0-€)

which also only represents a real conz tor q > a. The curved cone ob-
tained by integration of Eu. (D-6) is called the characteristic or Mach
congcid, and it is the envelope formed by all characteristic surfaces of
this second type which pass through each point of the space.

In summary, twe families of characteristic surfaces exist. These
consist of: first, all surfaces containing the velocitiy vector at a point,
which are called stream surfaces; and second, all surfaces tangent to
the characteristic cono’d at a point, which are called wave surfaces.
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4. SOLUTIOK FOR THE LEFT E£IGERVECTOP

The characteristic compatipility relation, Eq. (D-2) is an interior
operator for each system left eigenvector, ¥ , obftained by sclution of
the homogeneous system of equations, Eq. {3-5, The solutions for the
W, are ardbitrarvy to within some constant factor since the system is
homogeneous. Eve> neglecting this degree of arbitrzriness, an infinite
rumber of solutions for the w _are possible since two infinite families
of normals, P exist and each novmal yields a system of equations. How-
gver, no more than six of all the possible solutions for the w_can be
independent, since each fndependent salution yiel_. 3 ccmpatib??ity re-
tation and the total number of independent compatib‘lity relations can-
not exceed the number of uriginal differential ecuations.

The number of independent differential compatib’®iity relations
whica correspond to one particular normal also ‘s ecuzl to the nurder of
independent solutions for the W The yeneral form and number of inde-
pendent sciutions for the w corresponding to a sarticular nommal to
aither of the two types of Eharaczeristic surfaces are estabiished by
consideration of the system of equations. Tha fifth and sixth equations
of £q. (D-1) only involve directional derivatives in the ¢
direction and thus aiready appear in characteristic form {i{.e., interior
operators on stream syrfaces). This fact also is evident from an exam-
iration of Eq. (D-3), because the variables Wg and ¥ have only zero
coefficients on stream surfaces and their values are thus arbitrary.

First consider the solution for W, on the stream surfaces., On any
strezm sur€ace the normal {s ortnogonal to the streamline directior, thus

& 2
i caﬁﬂ -

yn, = 0 {p-7)

[

Equation (D-3) for this case reduces to

- ” = { Y
lo 0 0 caml Dy
; L
H §
. P
: O 1] o Dazﬁz ; ; 2 §
: RN (0-8)
: 0 ] ] pa’hig | Wy
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_hyoom, 3 0 Wy ,
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he coefficient matrix of Eq. {D-8) 13 rank fwo, thus the number of

iy
b}
(8
1]
Y

pendent solutions for the W inclucing the variables ¥ and Wg s is
four. The most obvious four {ndependent solutions incliude two solutions
for L &nd/or e nonzero with Wy Wos W and w, zero {note that Wy = 0
for a1l solutions), and any two independent solutions having Hys Wg and
e zers, with ine components Wi W and vy orthogonal to the norma: ny.

Hext consider the solution of Eg. (D-3) for the wave surfaces which
nave normals defined by the second facter of Eg. (D-4}. The scalar
product between the velecity vector and the uynit normal to the wave
surface is equal to the local speed of sound, i.e.,

ung =2 (0-9)

The unknoxs Ny appears exclusively in the fifth equation and W appears
exclusively in he sixch squation of Eq. (D-3). Thus only the trivial
soiution Wg = We = U exists for these two elements. The system of equa-
tions for the W, again omivting the equations for Wg and We s is

n

r - { M
i 2, | ¢ !
2 i o H : W i
§ c3 0 ) o2 Ny b
[ o cd O oazn, ot |
: t; 1 -g
. 14 t=0 (D-10)
i 0 0 pa pan, i . Ws !
i ~ i i f
an n2 n3 a ; ’\h'd‘

The coefficient matrix {s rank three and, therefore, only one independent
nontrivial solution for the #, exists for each wave surface normal. For
the arbitrary choice w, = -1, the solution for the remaining components
yields Wy = 2Ny, W, = ah, and W3 = ang, whire ny, P and n, are the com-

ponents of 2 particular wave surface normal.

5. COWPATIBILITY RELATIONS

The generail forms of the differertial compatibility relations which
exist on sach of the two famiiies of characteristic surfaces are obtained

)
]
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by evaluation of Eq. (D-Z) for the independent soluviens for v . On
the family of stream surfaces it has been shown that four %ﬁse;enéent
solutions for the w exist for eazcl independent stream surface normal
The two c0mpatib{1§;y relations for tne solutions We OF We 1Ot Zwr( with
&1 other components zaro, are

{
<D

ui(aP/BX{} = {3-11}

.

su/ne b o= 21
Ui{cd,j-ni, 0 (D .2)

The remaining two compatibility relations, corresponding to the solutions
for the W, having Wy Wg and W 210 and two independsnt sets of values
for ¥y Wy and Wy which satisfy the requirement of orthogonality with Ny
are: forwy = Uys W, = U, aNC Wy = U,

3 sy V& y. {3p/3z.) = {0-1%3
ufuj(suj/-xi, + U1(“p/“‘1f 0 {D-13]

which is Bernouliis equation in differential form, and for w, = S,,
2 g = S
Wy * Sy and Wy = Sq

asjui(ag§/axi) + Si(eplaxg = 0 {D-18)

wiatrta the Si are the componentr of any vector orthogonal to the stream
surface normal, ny {.e., ani = O and i3 independent of u.}. Equation
(D-13) contains a single direction of directional differentiation, u;,
while £q. (D-14) contains two such directions. u, and S, a1l of which
1ie within the stream surface corresponding to the particular norma!, ry.
The compatibility relation for a wave surface {s likewise cbtained

from Eq. {D-2) using the single independent solutior for the left eigen-

= vector corresponding tc a particular wave surface normal
===

: { - an, 1{sp/sx,) + pafas - N, su,/3x;) =0 {D-15)
= uj ansztv:/-x}, oalas,; - nyu Hzu, xg) 0 {D-15}
== The fact that this equation only involves directional derivatives within
= - the wave surface can be seen by considering the scalsr product between
= e
D=7
=




vestor ny {re-

e wave syrface having & normal n,.
our cirectional derivatives ir terms of any

in the wave surface, and by so doing, 1o
ation in 2 form which by 2 coordinate SY5tes
rota ion reduses to the form of the general compatibility relation, tq.

In the previon sections the number of independent differential cem-
patibility relztions, for 2 particular characteristic surface of the flow
was established. However, there exists 2 doubly infinite number of char-
acteristic surfaces at every point of the flow and, as noted previously,
the total number of nsep-néen? compatibiiity relztions cannot excesd
originai system. Thus it is necessary to further ,ahifsh which of the
possible combinations of six compatibility re

lationy; are independent
Thaese questionr can b2 ansvered by exasining the matrix whose rows con-

sist of the independent solutions for the ¥ corre esponding to each of th
characteristic surface normels being cons%éereé. The rows of each sixth
order sguare matrix of rank si which can be forﬁed from 533 the solution
for the » will correspond to a system of {
patilild ; relztions. Although a3 wide vari
satisfy this requiremsnt, some general conc
It was previsusly shown that

(o]

n 2 single stream suyrface four in-

dependent solutions for the w exist. Howsver, w, is zero for a2}l solu-
tions and, therefore, any six*h order matrix formed from soiutions for

am surfaces ~i1l be at most ran

= $ ‘! - ) | 4 ~ - 5 -
It was also previously shoen that only one independent solution for
the w_exists for each wave surface normal. In addition w. and w_ are




zero for all wave surface normals. Taus any sixth-order matrix formed
from wave surfacz xolutions for the W, will be &t most rank four and no
more than a total of four independent wave strface compatibility rela-
tions couid pnssibly exist. However, consider the determinant of the
matrix formed by four solutions for the ¥, corresponding to four in-
dependent stream surface normals (ws and Vi which are identically zero,
are omitted since they have no effect on the resulting rank of the matrix):

- s -
an} ar, an; ~3

LS

2
an% ar, an§ -1

(o-16)

3 3 3 -
any  an,  any -

-1

4 4 4

where the superscripts denote the four independent normals. The four
unit normal vectsrs iie on the surfacz of a right circular cone and
therefore the end-points 31l Yie in a common plane. If one row is sub-
trazted from the remaining three, then the thres resulting difference
vectors will be coplanar and therefore dependent. The determinant, fq.
{D-~18), is thus identically zero and at most cnly three wave surface
compatibility reletions are independent,

It is now clear that a complete system of six independent compasi-
bility relations cannot exist for a single family of characteristic sur-
== faces. The remaining guestion to be investigated then {is under what con-
diticns will a combination of relations on the two families of character-
= istics be independent. For this purpose it is again sufficient to examine
the matr{x whose rows consist of the w corresponding te each of the

characteristic relationships Tor the system. If all the rows of such a

matrix are found to be independent, then any cet o six of the w rees of

I"J

the matrix may be used to form a complete system. Each particular com-
bination of cowpatibility relations must bz exazaired in this way. Only
S a few combinations of interest wili be listed nere, and the interested

x
reader is referred to the work of Rusanov {8). If p is the number of
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distinct wave surfaces and g the number of stream surfaces, 3ix indspen-
dent compatibility relations are obtained for

1} p=3, g=1,
2) p>1, q =2,
3) p=2, g=1,

where case 3 is true only if the stream surface normmal is not orthogonal
to the vector defined by the difference between the two wave surface
normals.

It 1s now clear that the original system of differential equations
can be repnlaced by an equivaient system of equations which all have the
characteristic property. In fact, a wide variety of possible choices
exist anc this, pernaps, helps exnlain the rather large number of numer-
ical schames which have been oproposed.

The previous discussion of interdependence and equivalence of dif-
ferertisl systems pertains only to a point in the solulion space., When
the differential system is replaced by a difference system, the nusber
of independent relations required for solution will depend upon the crder
of the approximation. 1In general, first-order schemas require the same
number of inderandsnt difference relations as number of independent dif-
ferential relations. Higher order schwsms wili require additionmal in-
dependent relations. Some difference schemes have been used in which
more than the minimm number of independent first-ordsr differanze rela-
tions are used and 3 soluytion is scught in the least squares sente.

These schemaes have only first-order accuracy. but may visls improved
€

ebsolute accuracy and stabiiity characteristics.
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APPENDIX E

SECOHD-ORDER INTEGRATION SCHEME FOR
THREE-DIMENSIUNAL STEADY SUPERSONIC FLOW

1. GENERAL

It is initially assumed that the dependent varisbles, the threc
velocity components, pressure, stagnation pressure, and stagnation en-
-1walpy, are krown to seccnd-order accuvacy over & space-l1ike surfsce
fix;) = 0 (1.e., a surface whose normal vector is everywhere interior to
the wave surface cone of ncrmals). A numerical method iz required which
zan be used to compute the values of the dependent variables at any point
xiis} near f(xi} = 01, see Figure E-1. The global solution cun then b2
gens~ated by successive appli:ation of the basic scheme to devermine the
values of the dependent variables on & family of surfaces of which
f(xi) = is a typical member.

In Appsndix B a qeneral numerical scheme is developed in which the
infiaity of bichzracteristics passing through a point are used by weighted
integration of zhe corresponding compatibility equations over all the bi-
chgracterisiics. The weighted intesration must be performed numerically,

Tte in 2n sxcessively laborious scheme. In addition, the in-
tegrz2ion over 21! the bicharacteristics is not necessary in order to
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A simpler scheme results whan only the
ainimum auder of sicharacteristics required for seconu-order accuracy
is used. Ther=7%2z¢. the aporoach which {s developed herein uses the

wave surface compatibiiity relation applied along only four particuler
bicharscteristics, which is the minimu™ number compatible with secend-

order accuracy.

2. ORDER OF APPROXIMATION

Before procesding with the developmest of the numerical scheme, the
F-3

meaning of the order of approximation will b
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for this purpose consider a power seriss expansion in one independent
variabls of some function p(x)

oix + ax) = plx; + (dﬁ!dx)x AX + (dzpidxzzgax)ZIZ!

+ (d3p/dx® (a‘;x)3/3§+..%(dnp/dxn)x (3x)"/a1

X

nal,

n n n+} _
AR CAMLTE SRR PRI G (£-1)
where 0 < 3 < 1. If this series is terminated with the nth term, then
the error in the approximation of p{x#c~; {5 defined as the absajute
magnitude of the remzinder, i.e,,

nt] oy |
(ax™ /7 13) {E-2)

accurate to ordsr @ and the order of the
der of the error i{s inriigsated by the ordering

The approximation is =:id to be
& ord
n+ }s .
symbol O{ax which impiies

error, =z, isn+ 1. In

1im £ i

# F.3
— . = K E-

;“.X-ﬂ? i {éx}hﬁt .» ( "}

where K is & f:nite bound for the ratio., Clearly the errvor can be made

as small as desired by reducing 2x {f {r+1) > 0. However, no information

regarding the actual magnitude of the error Tor a given val:we Of 2x can

be deduced from 2 ctatemert of the order of the approximatiia. Yhe order

only establishes how rapidly the error will be reduced a5 the step size,
]

4%, is reduced, Thus 1t iz ;ass§é§e for Swo different numerical schesss,
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; 2
truncation error at a fixed point is second order in step size, 0{(ax"},

and thus the overall scheme is accurate to first order in step size,
0{sx).

3. DIFFERENCE NETHORK

The difference network for the integration process consists of seg-
wents of four bicharacteristics and the streamline through the solution
point. This nstwork is {llustrated in Figure E-1 and the points at which
the bicharacteristics and the streamline {intersect the initizl-value sur-
face, f(xi} = 0, are numbered (1) through {5) respectiveiy. The integra-
tion process consists of the numerical construction of this netwerk and
subsequent integration of the respective differential coapatibility and
ordinary reiations which are applied zlong these diractions.

The family of wave surface bicharacteristic segments through a point
in the flow space are represented by the parametric eguztions

dx; = {ug # coy coss + cg, sins)dt, {31 =1,2,3) {£-4)

where the u; are the comncnents of the velocity, o, and 8, are unsf
vectors such that u,, o, and 2, fore orthogonal system,

t is a2 parameter proportional is

[+

(u.« e
(e
e
1]
::’ e
(e ]
ot
poe )
U T ¢ TR

d
characteristic,
stic and renges |
0 %0 2=, 3nd ¢ i5 a vele ity defined by the relation
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& parameter which is conctan¢ along 2 bicharacterd
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{12} for wvc-dimensional flow in which the remaining degree of freedom
in the choice for ay and B4 was fixed arbitrarily and o was allowad to
vary in order to satisfy the bicharacteristic conditien. The precent
approach has the advantage *nat a considerable simplification of the
numerical schewe results.

The parametric equation, Eq. {£-4), represents an element of the
conoid 1¥ the pseudo "normalization™ and"orthogonality” conditions,
Egs. {B-7) and (B-8) of Appendix B, are satisfied. These relations for
the Hach conoid, defined by Eq. (D-6) of Appendix D, are

- x,-’2-2".:‘ :2{11 - 2-2“1
{“$33 {q 2 )via} ugus = ¢ fugu {a 8738451 ayay
2 f { 2 21 b ~
= - - &, . R.R. -
¢ Lugug - (a7 - 2767 548, {E-6)
; 2 2y, 1 2~ Fi1 1 2 2v: 1.,
< {Qih,i - (q - & )vij“ U{Lj . :_u“hj (Q a )u€j3 diﬁj
= 2‘:‘ € - i 2 - 2 2. 1 ag. =206 [£.7Y
c _\fiu!}» 18 2 }-ijg 3}--':; v LR Sl A §

and are satisfied for the orthoncrmal cheice for the vectors u./q,
and 3.,

The unit normal o ¢ “sch oY
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ny = [y - (o - a )61j}(“j + Cascose + csjsine)/ﬂ (E-9)

where

’
i

N= {{Uiuj - (q2 - az)sij](u1 + Cagcoss + Cﬁisine)x

{”j”k - 1q? - a2)<sjk}(uK + Copc0s8 + caksine)} (E-10)

When the orthoneemal properties of ui/q, a and By are employed, Eq. (E-9)
for the viit normal can be reduced to the form

ny = (a/c)(cui/q2 - @ Cess - 8isine) (E-11)

The condition for tangency between a characteristic surface and the
Hach conoid (i.e., the bicharacteristic cordition) was derived for the
general case in Appendix B, Eq. {B-58). The form of this relation which
corresponds to the parametric form for the wave surface bicheracteristics,

Eq. {E~4), and the equation for the Mach conoid, Fg. (D-5) of Apperdix D,
is

845 ° Q{Uj}{ﬁi * cagcose + czgsing){ax,/3s) = 0 {-12)

An approximate aumerical fore of this relation {s used to establish the
remaining degree of freedom, relative to & fixed reference, in the choice
of ay and PR in Butler's proposed approach this same relation is used
to datermine the -ariation of 5 zione the bicharecteristic, the remaining
degree of fresdos in the vectors 2 and 5, being fixed arbitrarily.

he Jocal difference network is constructed by nuserical extensicn

nex solution surface and the subseguent numerical extension of the fmur
bicharacteristics back from the new point %o the fnitizl-value surface.
Tre orientation of the reference vector set o, and 3, is set 2t the new




i

il
g

e T

i IWWWWWwWﬂ‘m;ﬁWWWWW.

sy P

The paramatric squations for z differential segrert of the streamline
are

dx, = u, 4t ., i=1,2,3 {E-13}

where t {s 2 parameter corresponding to time of travel of a flufi sarticle
along the differential segment éxi. Application of the modified Euler
integration scheme yields

x4(6) = x;(5) = (1/2)[u;(6) + u{8)]e(6) + 0(t%) (1 =1, 2,3)
(E-14)

e nusbers in parentheses refer %0 vaiues at the corresponding points
of the finite differencse netwnrt snown in Figure E-1. The value of
t{6) has been arbitrarily taken to be zero. Equations {E-14) are used
to solve for the valuas of the two coordinates, x2(6} and x3(5), gf tas
new point and the parasster t{5) for &z specified value of the remaining
coordinate of tha new point, x§{5}. Fguations {£-14}involve the uynknowns
ui(ﬁ) and must, therefore, be solved simy’tansously with the governing
difference equations. Since the resui*irg sguations zre nonlinear, the
simuitaneous solution =ust be obtained by fteration.

Thv: paremsird . eguations for ihe bicharactaristics, Eg. (!
next {1 tegrated to obtsin the inlersections of the four bicharac
tics with the initizl-value surface. Applying the modified fuler schems

”m
n
vt

to Eq. {E-4) yields
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tws additional terms must beconsidered as unknowns, since the derivatives
carnot be evaluated, and ars algebraically elisinated from the finite
difference form of the ctepatibility equations. This parmit the

modified Euler integration scheme to be used, and hence 3 solu-

tion sccurate tc second order is obtained.

The cueoanants of the reference vector set which sppear in Eqgs.
{E-15) must be ~etablished at point (6) and at the fsur points ca the
initfal-value surface. The orfentation of the network is established by
the selection of a raference at point {6). In the course of accuracy
studies it was determineG that the best zbsolute accurs:v resulted iF
the reference et point (6) 12s selected so that the vectors o, and F
straddle a plane defined by the velocity vector and the pressure gradient.
The pressure gradient st point (§) is not known unti} 2z co=plete solution
surface {s established; consequently, the pressure gradient 2t poin® {5}
{s used to define the reference plans for the orientztion of Yy and By
at point (6). Although the best arn.uracy was obtained for this choice
of reference, it should be stressed that the effect was very miror and
the choice of any other reference, such as one of the base coordinate
directicons, gave essentially as good 2 result. A primsry consideratioa
in the choice o the pressure gradient as a reference was the fact that
more symmetric results are obtained for cases having axial sys=etry. The
additional relations required to establish 3ll the cosponents of ths
reference vector st 3t point {6) zre the normalization conditions

and the orthogonality conditio

B

order of accuracy. For this purpose it ic necessary to develop & nuser-
11y useful approxisation. When fq. {£-12) {s expanded and the

o




orthonormal property of the vector set ci,'si and “i/q is used, the
following identity results

[aicose + sfsinﬂ - uic/qz} (axi/ae) =0 (E-18)

The gquantities Uiy s 3% and ¢ can be expressed in terms of the param-

eters t and ¢ to sufficient order of accuracy, O(tz), by power series

expansions
ug = u(6) + u (6)t + 0(t?) (E-19)
a; = 0;(6) + ag(8)t + 0(t?) (L-20)
35 = 8;(6) + B,(8)t + 0(t%) (E-21)
¢ = c{6) + c(e)t + 0(t?) (E-22)

vihere numera.s in parentheses indicate values at the corresponding net-
work points ind parameters in parentheses denote functional dependence
of the coefficient of the first-order term of tzhe power series expansion.
In order to 2valuate the derivative (3xi/ao) appearing in Eg. (E-18),
the equation for the surface of the Mach conoid is used in which the bi-
characteristics are the curves for constant values of 6. Such an ex-
pression car be cbtained by integration of Eq. (E-4).

, . (t .
K*\%,t) - X,(6) = {u, + co,cos6 + cB..in8) dt, (i=1, 2, 3) (E-23)
i Yo 1 i i

The integral, correct to O(tz), is obtained by substitution ¢f the series
approximations, Egs. (E-18) through (E-22), into Eq. (E-Z3) and subse-
ruent integration with respect to t. Thus




e =S

x5(6,t) - x,(6) = [u;(6) + c(6)ay(6)coss + c(6)3,(6)sinelt
+ [u1(e) + C(S)Qi(s)cose + c(e)ai(E)coss

+ ¢(6)s;(0)sine + c(e)ai(s)sine](22/2) + 0(t3} (E-24)

An approximate expression for the derivative (axifas) is obtained by
differentiation of Eq. (E-24) with respect to

3%3/28 c{6)g,{6)coss - ai(ﬁ)sanJt

1\

&

{11(0) - Le(8)ay (o) + c(a)ay(6) = c(6)s," (o)

c‘{e}si(e)]sine + [C(ﬁ)ai‘(e) + C‘(S}ci(ﬁ)

+ c(6)s,(6) + clals,(6)Icoss} (£7/2) + 0(t") (E-25)

where the prime denotes differentiation with respect to 6.

In order to complete the expression of Eq. {E-18) in terms of the
power series approximations, an approximation for q'2 is required. Recall
that ¢~ = Uglys and introducz the power seriec approximation for Ugs
Eq. (E-19), When the product is expanded and only tsrms of order less
than O(tz) are retained, the following is obtained

q% = u;(63u;(6) + 2 uy(6)us(8) t + G(t?) (€-26)

Expanding q'2 by the binomial theorem and again retaining only terms of
2
order less than 0(t") yields

g% = (qAeND - 2u; (6)uy (8)t/a%(6)] + 0{t?) (E-27)
When the power series approximations for u,, o, Bis C» q'2 and (axilae)
are substituted into Eq. (E-13), the products expanded and the terms
collected into powers of t, a power series in t is obtained which must
vanish for all arvbitrary values of t. Therefore, the coefficients of
the seriss must individuaily venish. Sufficient order of accuracy is
obtained i7 the coefficients of the terms up through second order vanish,
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The order of wtccuracy maintained in the power series approximations re-
sults in comp'ete coefficients for only the first and second-order terms
in t. Ho zeroth-order terms rasult since the expression for (axf/ae}
is homogensous in t.

The coeficient for the first-order tere in t, equated to zero,
yields

- c(6)(2;{6) coss + 5,(6) stne - u,(6)c(6)/2(6)]

x [ai(é) sing - si(S} cose} =0 \E~-28)

Expansi~n of the product and utilization of the orthonsimal propevties
of ays B4, and u%/q yields the resuls

- ¢(8) [o;(6) o4(6) - 84(6) 8,(6)Isine coss = 0 (£-29)

which is satisfied identice ly. Therefore, no cordition on the variation
f ~he referance vectors ay and 8; is obtained or is necessary in order
that Eg. (E-18) be satisfied to first order in t.
The coefficient for the sscond-order term in t, equated ta zero,
yields
[

{as'(6)cose + 8, (6)stne - c(6)/a%(6)[u, (e} + u, (6)cle)/e(6)

] zui(s)uj(séuj(s)/qz(e}ji (- c(6)a;(8)sins

+ c(ﬁ)siis)cosej + (?}2}{95(6}csse + aiisjsire
&< 2 P ] " WY ”~ {-\
- u(€)c{6)/a(5) ‘f{ui (e} + [- clBlay{e)

+ fe{6ia, {8} * c'{8)a, {8} + c()e, () + c(e)si(s}} cos6}=0
(£-32)

Expansion of the product terms and use of the orthogonality property of
the vector set, a3+ B; and ailq, yields
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c(S}a§{5)c?‘(5}ces“e + c{é}gifé}sﬁ'

eé{s)ui'(e}sine - c(ﬁ}e?{E.

2 -2, Zporn- . .
+ ¢'{slsin"s + c (a}ai{S}lq‘{c;:L-ﬁi‘fez;cééj ~ a,{8}sins
R h!
- 85{e)cose - o, (s)ecose - si‘{e}s*ne}; =5 {E-31}
The power series apsrozimations and

. Egs. (E-19} through {£-22},

the orthenormal property of the vacter set, ui/q, a; and 84s yield ap-
proximste {deatities which can be vsed to further simplify Eq. {E-31}.
Thase {dentitles need only be accurate to zeroth arder in t. since any
term 0{%) in Eq. {E-31) becomss G{tS} in Eg. {E-18}. Consider th2 scalar
aroduct @04, which has the value unity, and expand the product in teres
of the power series approximation for ;s EQ. {£.20}. The

zeroth-order identity is

=2

resuiting

ﬁ?{é) ':,’{‘C‘} = 0+ 0{t) {E-32)
Likewise, for Bys
8:(6) 5,(e) = 0+ 0(v) {£-33)

it
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The scalar products aUyy ag8y and BiU, all vanish due to orthogonality.
Thus, expanding the products in terms of the power series approximeiions,
the following additional zeroth-order identities are obtainad

u!(ﬁ)ui(E) = - ui(s)ai(B) + 0{t) {F-38}
af(ﬁ)si(a) = - 81(5)a1(8) + 0(t) (E-35)
ei{S}ef(e} = ui(ﬁ)si(a) + 0(t) {E-36)

The derivatives with respect to & of the identities, Egs. (E-32) - (E-36),
arz also correct to zervoth order in t. Thus

ai(S)ai'(é) =0+ 0{t) (E-37)
g (6)8,'(8) = 0 + C(t) (E-38)
54 {€)u,(8) = - u(8)ay' (o) + O(t) (E-39)
- (8)84(8) = - 84(6)ay'(8) + O(t) (£-40)
3, (6)u;(6) = - u;(6)6,"(8) + O(t) (€-41)

The identities, Eqs. (£-32) through (E-41), permit great simplification
of Eq. {E-21) to obtain

c{ﬁ)af(s}ai{e) + {cz(s)fQE(S}} {aiis)sine - 51(5}20583 “1(83

i

)
.,lm!nl bl

neju.{e}

= 2 ~ ] yd ~% ' A - ~ Fi
+ {1+ ¢°(6)/9°(6)] [a,(6)coss + 8;(6)s ;

- [c(6)uy(6)/a%(5)Juy () + c'(2) = 0 + 0(t)  (E-42)

The form of Eq. {E-42) is not unigue since it is only correct to zeroth
order in t and the particular form used here was chosen for convenience
since a1l forms are equivalent.




Before tq. {E-42) can be used to numerically determine the remairing

gegree of freedom in the definition of the raference vectors 2 and By
at the initial-value surface, the gquantities ui(e), u{’(s} and ¢'{s}
must be evaluated. This is accompliished by again employing the power
series .rcximations for uy and ¢, i.e.,

v, = ug(6) + uile) t+ 0(t%) (£-43)

¢ =cl6) + cla) t+ 0(tD) (£-44)

Diffzrentiation with respect to t and 2 yields

u,(s} = aui/at + 0(t) {E-45)
c{s} = s¢/3t + 0{¢) {E-45)
and
u'{s) = (euifae)it + 0(t) (=-47)
H
c'{s) = (3¢/38)/t + O(t) {E-48)

Here the derivatives of u, and ¢ with respect to t and 5 may be evaluated
at the fnitial-value surface rather than at point (6) without affecting
the accuracy. This is possible because the relations, _q. (E-45) through
(E-48Y, need only to be correct to zeroth order in t,

The derivatives with respect to the parameters t and ¢ are expressed
in terms of the spatiel derivatives by means of the chain ruie

au /ot (auﬁlaxi}(angat) (E-£2)

[}

ac/st (5c/axi}fax§/eﬁ} (£-50)



(A%
[+%)
[+5)]

X Hsx /3

a2 = fnpf
R 3 oF 4 )
3 3

far

} {E-52}

The derivaZives of the spstiz] coordinates with respect to the paramsters
t and & 2re obtained, correct t5 zeroth order and first order in t re-
spectively, by differentiation of £q. (E-23) with respect tc t and & and
discarding higher-order terms. This yields

3%;/3t = 4y (€) + c(6)ay (6)coss + c(6)s,/6)sins + O(t) (£-53)
and
3x3/3% = ¢(6) [- a,(6)sine + 5,(6)cose It + o(t2) (£-56)

Substituting Egs. (E-53) and (E-54) into the identities, Eqs. (E-45),
{E-47) anu (E-48), yields the desired expressions for ug(s), u;'(8) and
c'{s), i.e.,

ug(8) = [u;(6) + c(6)a (6)coss

+ c(s)sj(s)sina}(auifaxj) + 0(t) {(E-55)
uy'(e) = c(6)(- oyl6)sine + 34(6)cose) (ay; /2 x;) + 0(t) {E-56)
c¢'{8) = c(6}(~ a;(6)sine + siis)case)(aclaxj) + 0{t) {€-57)

Equations (E-55), (E-56) and (E-57) are used to evaluate the quantities
uife), ui‘(e} and ¢'(s) which appear ir Eq. (A-42). Thus one 2quation
{s obtained for the guantities ai(é) in terms of quantities at point {8}
and the initial-value surface. Two additionsl independent relations for
the components of ai(e} are obtained from the orthonormal {dentit
Egs. (E-32) and (E-34). These relations are in terms of the, a
unknowns at point (6) and, therefore,must be evalusted on each ite
of the overail schams.

The equations, fqs. {E-42), (E-32) and (E-34), are used to evaluate
the ai(ek), where the superscript k s used %o denote the four values of
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Once the components aéik} zre established, the cemonents of giik} are
obtained by mesans of the orthonorsal property of the vector set ags 34
and uiiq, sinte the values of u; are knewm on the initial-value surface,

The vaiues of the dependent variables and their derivatives with
respect to two indapendent directions within the inftial-vajue surfacs
are reguired at the intersections of sach of the four bicharacteristics
with the initial-value surface. These zre obiained by moans of second-
order polynomials which are fit locally by the method of isast sguares.
Since the initial-value surface is assumed to be space-like, the system
of governing partial differential eguitions can be used along with the
derivatives within the initiai-v2lue surface to obtain the partisi deriv-
atives of all the dependent varisb with respact to the thres spatial
coordinates. The spatial derivatives of the variabie ¢ 3t the inter-
sections of the bicharacteristics with the initial-value syrface are 2lsc
required in Zq. {E-57). These derivatives zan be sxpressed in terms of
the spatial derivatives of the six 4

of ¢, £3. {E-5}, is differentiated to obt2in

dependent varizbies. The definition

g
[l
i
trr

shown in Appendix { that the spsed of sound, z, is preperly repra-
3 2}

i
L1
w
o
»
e
(3
7
)
Py
[
e ]
(&}
(24
wafln
<
wh
[}
L)
"
Ly
11
“f,
[+ 1]
%
anby
[
[ 4
o
m
in
oy
L

2 = af ERY r_=ht
&= 3‘\3*3&"; {;‘t’sf.’;

5 o & Sirmabimmat A : 5 s T 3
where the hat denctes functionai depandence of b, P, and H, Thus, ths

4
(2 )]




|

.

Ve
¢ o] G

u _ﬁ_

IR TR

Lad

Mt

.

n

b

Y]
L)

-
<

iy
(V=]

had
rpsatt

o

ining Eqs.

in

~
k¥4

lue suyrface

-
=
=

npes

*
"t

1ons

eguat

£
Fferance

o4

ot
>

ference network

dif

fixed point.

ong

£

o
ol
e
a4

Lol

o
"
(28]

"X

Pl
Y

g

W

5
3

“
“

&
b

ke
o
o
el
o
o

3

"<y

!

s B

& H
.F.w L] Jm
[T*] -

A g o,

.......
N
I

o

s e

£
“.9.

e

g @

[
]

v

T8

W e




hossver, it s first necessary to develop the finite difference fors of

the differential eguations whidh apply along the stresmline and the bi-
characteristic secments and thus obtain sufficient difference relations
to Asterming 2

ot
—

i unknown quantities.

. FISITe DIFFEREN(T FORE OF THE GIFFERENTIAL EQUATIONS

rential relations consist of thr wave surface comatibility
£q. {D-15} of Appendix D, applird along the four bicharicter-

neteork, thres of the stream surface ceopatibiiity eguaticns,
Eqs. {D-11), {D-12) and 1D-13} of ;zaaendix D, applied zlong the stress-

t ¢ ¢iffarentia) egquetion, corrssponding

to Eq. {B-41) of Appendix B for the gensral oathod,

The wave surface commpatibiiity equation can b2 expressed in terss
of the parazeters of the wave surface bicharacteristic paramsterization
by substitution of the expression for the wave surface nsrsai, £g. {E-11},

into Eq. {D- 1) of Appendix D. The orthonorsal property of the vector
. set u./q, o and 3, yields the follosing identily
s.a 4::,0{33}\\'!\2;: it g5}
IR B A Lk N U
which can be used to sizpiify the wave surface comatibility relation
to obtain
dan & arfa . znecz & 2 a2id-y. =
gi; ,s{_icss- -ESi“*’éibi
- 22%{z,s%ns - £€CQS%}{:iS‘§§ - sicsse}{;n{fsxi}ét {E-85}

where the subscriot I on the dirscticnal differential operator denote
rresponding to the valuz for s.
laticn, the equivalent of £q. {B-41}

] md st gz .
the bichgracteristic direction
The ont noncharacteri-tic

sche=e in Apnendix B, can Se exrressed in larss
c

< 8

the Jeneral mummerics &
the wave surlace bichzracteristic parareterization by inspsction of the
1

perametric fore for the =ave surface compatability equation, Eq. {E-88}

and use »f the relations, fgs. {B-27}, {B-ZB) and (8-23) of Appendix B,
for the form of the gemsral comatibiiity equation coefficients, ses Eg.

{8-80} of Apnendix B, to estaplish the respective valuves for 4, , 3,
® H
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+ o(8)cP(8)e (8 (O)au fox ()] £(8) + 0(8))  (E-71)

where the notation su, j ‘5‘ means the value of the derivative at the
print {k}, fy = 1, 3 4, 6} and t{6} has been arbitrarily taken to
be zero is bsfors. Berncu?}i‘s squation and the one noncharacteristic
re?st%sn are applied in finite difference form along the streamline seg-
ment fros point (5) to point (6) to obtain

"‘1

+5(5)u,(5)7 uy(6) -y ()] =0+ 0(t%)  (€-72)

and
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U(S)ci‘i){u§(5}3§{53

+5,(5)5,(5)J2u/3x,(5) } £(5) = 0 4 0(8)  (£-73)
.; i

Hote that the six Finite difference equations. £gs. {E-88) through (E-73),
gre nonlinear since the wiknoun quantities at point (6) alse sppear in

the coefficients of the giffersnces. Also note that none of the equations
directly involve either of the dependent variables, the stagnation pres-
sure or the stzgnation enthaipy. The two compatibility relations, Eqgs.
{0-11) and {D-12) of Appandix D, which involve thase varisbles are inde-
pencent of the resaining system of differential cospatibility equations
and yield the simple result that both the stagnation pressure znd enthalpy
are constant aiong 2 given streamline and the sowution for this case is
simply

"

»~ £ afey ~ 1
P(8} = P(5} (E-74;
130



and

H(6) = H(5) {E-75)

6. ITEPATION SCHEME

The nonlinear nature of the system of difference aquations necesi-
tates that an {teration scheme be used to ohtain the solution at sach
point in the flow. The particular iteratior scheme employed here i3
fnitiated by first estimating values for the dependent variabies at the
unknewn point, point (6). The initial estimate is obtained by ef cher
taking a teo term power series expansion about the fixed point, point {5),
or 1f this astimate exceeds the theoretical maximum velecity. by assum-
ing the values at point (8) to be thz same as tho-+ at peint (5). The
estimated values of the dependant var{abies at point {§) are then used
to calculate the coefficients of the difference equations for the stream-
line, Eq. (E-14), which can then be soived for the coordinates of the
intersection of the streamline with the fixed soiution surface.

Next the four bicharacteristics are extended back to the initial-
value surface to nbtain the coordinates of the intersectiens, i.e..
points (1), (2). (3) and (4), see Fiyure E-1 . The paremetric equations
for the bicharacteristics, Eq. (E-15), involve the values of the dependent
variables at the respective intersections with the {nitisl-value surface
and therefore must also be solved iteratively. This 1s accomplished
initially by assuming the values for the dependent var{ables at the four
points to be the same as those at the fixsd point, point (5). Once the
four intersectians of the bicharacteristics &re located, the values of
the dependent variables sre obtained by ¢nterpoiation within ths initial-
vaiue surface. Finally., the values of the dependent variables thus ob-
tained at the intersections of the bicharactsristics with the initial-
vaiue surface, points {1), (2), (3) &nd {4), and the estimated values at
point (6) are used to evaluate the coefficients of the six finite differ-
ence Torms of the differential equations, Eqs. (E-68) through (E-73}.
These equations are linear and can be solved simultaneously to obtain
corracted valuas of the dupendent variables, Uy and p, and the two scalar
quantities, ufajaui/axj and 3$sjau1/axj, at point {6).
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The entire process is successively repeated using the values of the
dependent variables at points (1), (2). (3), (4) and (6) which were cal-
cuiated on the previouc fteration as new approximations. This {teration
process is continued until the values of the dependent variables obtained
on consecutive {terations agree to within a fixed tolerance. Ususlly
less than five iterations are necessary to obtain a fractional differ-
ence less than 0.0001.

6. CONDITIONS FOR A DETZRMINANT SYSTEM

In describing the relaxation scheme for solving the system of dif-
ference equations it was tacitly assumed that the equations were indepen-
dent and the system was determinant. Unfortunately, no precise test for
indapendence, such as that described in Appendix A for differential equa-
tions and linear differencs schemes, exists for nonlinear difference
equations., Normally one would be tempted to reauire that the difference
relztions be independent in the limit as the differences approach zero.
However, thic {3 an overly severs reguir weat since schemes having ac-
curacy higher than first order are meaningless in the limit and tae in-
dependence of eguatiors camprising such schemes must be considared at
finite step sizes. The only conflict betwesen the present scheme and the
results for independence of differential compatibiiity relations cvbtained
in Appendix D {s in the rumber of bichuracteristic compatibility rela-
tions which are indspendent. The results sf the analysis of independence
for differential systems, which {s the same as for iinzar differance
systems, showad that at most only three bichsracteristic compatibility
relations are independent. The present scheme uses four such relations.
The apparent conflict is resolved by the fact that as a result of the
second-grder integraticn scheme the sguations used in the present scheme
are nonlinear and contain two additional unknowns. The presence of the
sdditional unknowns introduces (dditional degrees ¢f freedow. It is in-
teresting tv note that when the approach usine weighted integrations over
all bicharacteristics, which §s discussed in Appendix B for the geners!
case, is usad to elimipaie the terms containing derivatives of the de-
pendent variablies at the unknown point, then only thres independent bi-
characteristic reiations ary found. Howaver, in this case each of the
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three relations involves integrals over the entire family of bicharacter-
istics passing through the unknown paint so that in effect all bichar-
acteristics are used. The scheme using only four particular bicharacter-
istics can be viewed a5 an approximation to the integra! spproach, thus
providing further evidence in support of the indepanderc 47 ine system
of nonlinear difference equations.

A nzcessary condition for a determinant system of equations, even
for the nonlinear case, is that the number of independent ralaticns must
Just equal the rimber of unknowns. That this {s true for tne present
schem2 is shown by & count of the numbder of unknowns and number of equa-
tions. At the s>lution point, point (6), the unknowns consist of the
three coordinates of the point, the parameter t along the stresmiine,
the values of the four dependenrt variables, p and Uss and the six com~
ponents of the reference vectars ay and By for a total of fourtesn un-
knowns. However, the integration stup or distance betwsen the initial
value surface and the solution surface is assumed known, which eliminates
nne degree of freadom, thus leaving thirteen unknowns, At the
four intersections of the bicharacteristics with the initial value sur-
face there are a total of thirty-six unknowns which consist of the two
coordinates on the inftial-value surface, the six components of the refer-
ance vectors ay and By and the parameter t at each of cthe four points.
These thirty-six additional unknowns, the two unknowns involving the
derivatives of the dependent variables at point (6}, and the thirteen
unknowns at point (6). make 3 toral of fifty-one unkntwns,

Next consider the number of availahle equations. Equation (E-14)
yields three conditions along the streamline for the position of point
(6). Equations (E-'6) and (E-17), the orthonormal conditions for u,/q,
ay and By and the dafinition of ays provide six conditions for & sub-
total of nine equations., The three parametric equations for esch of the
bicharacteristics, Eg. (E-15), the equation for the =z, variation, Eq.
(E-42}, and the orthonormal property of ui/q, ay and éf, whish yields
fiva conditions, constitute nine equations for each bicharacteristic or
a total of thirty-six squations for the four bicharacteristics. Ths
finite difference form of the five compatibility equations and the ene
noncharacteristic equatica, Eqs. (E-68), (E-68), (E-70}, (E-7V}, (E-7&)




and (E-73), bring the total numbar of equations to fifty-one. Thus the
number of equations just equals the number of unknowns, and the necessary
condition for the system .o be determinant i3 satisfied.

7. BOUNDARY PGINT CALCULATIONS

&. Cenersl. The properly posed initial-boundary value problem
consists of initial data specified on 2 space-like surface and appropri-
ate boundary data specified or time-like surfaces whichadioin the initial-
Jats surface, The boundary data may take the form of solid boundaries,
constant pressure surfaces, planes of symmetry, cor shock waves {discen-
tinuity surfaces). The first three boundary conditions share the cormon
property that they are stream surfaces ({.e., surfaces composed of stream-
iines and, therefore, tima-1ike). The shock wave is a different type of
boundary condition since the shock surface {s space-like tc the upstream
flow and time-1ike to the downstream flow, thus th= shape of the shock
wave and i1ts position depend on a portion of the downstream flow as well
&s the upsiream conditions. The Rankine-Hugoniot relations are the
boundary conditions which must be satisfied across the shock surface.
Two type of shocks can generally occur; attached shocks originating at
concave discontinuous changes ir slope of the boundaries, ard imbedded
shocks which arise within the fiow due to focusing of infinitesmal com-
praessions. The first type of shock is eliminated from the present prob-
lem by the initial assumption that the boundaries are smooth (i.e., con-
tinuous first derivatives). The presence of imbedded shocks cannot be
a priori excluded and in general wiil be evidenced by steep gradients in
flow properties. This type of boundary condition is not explicitly
treatad ir the present research; however, the presence of shock waves
{11 be svidenced by the formation of steep gradients within the flow.
The formatien of an actual discontinuity is preventsd by the smeothing
proparties of the interpoiation scheme. If the gradients bescome {0
steep {f.e., a shock too strong to be treated in this manner) the aumer-
ical scheme breaks down and the solution cannot be conginued further
without introducing the shock as 2 boundary across which discontinucus
proparties zre permitted,



Only the modifications to the basic interior point numerical schems
to incorporate stream surface boundary conditions will be further de-
velcped harein,

b. Sslid Boundary. The solid boundary conditfon is simply that
the flew be tangent to the boundary. For this purpose it is sufficient
to specify the bounding surface, f(xi) = 0, and {ts first derivatives,
3t/ Xy The tangency condition then replaces one of the conditions nor-
mally satisfied at an interior point ¢f the flow. The gusstion of which
condition to replace is easily answered since initial data exis: only
interior to the boundary. Thus it is not possible to find four bichar-
acteristics through the unknown point on the boundary corresponding to
values for 5 that are muitiples of 2/2, which all intersact the initial-
value surface. In the case 9f concave boundaries, it is generally not
possible to have sven three bicharacteristics which axactly intersect
the initial-value surface, see Figure E-2 . Hovever, the relative cur-
vature of the boundary {s assum=d to be sufficiertly small so that the
error caused by extrapolation beyond the boundary to the intersections
is of order 0(t3). Thus one of the four bicharacteristic conditions of
the intarior point scheme {s replaced by the tangency condition, i.e.,

1] [+¥)

ui(S) ni{ﬁ) =0 (E-7¢}

where ni(G) are the components of the outer normal to the boundary at
point {6)}. In addition, the position of point (6) obtained from the
streamiine integration is adjisted along the direction of the rormal so
that point (6) 1ies on the boundary. The reference vectors ay and By
are chosen at point (6) such that 8; correspends to the outer normal, .
“he vector 3y s subsequently found using the property that the vectors
ui/q, ag and 84 form an orthonormal set. This selection of the reference
vectors has the property that the three bicharactiristics corresponding
to 8 = 0, =/2 and = {ntersect the initial-vaiue surface interior to the
boundary for convex boundaries and intersect most closely to the interior
in the case of concave boundaries, see Figure £-2 . At point (6) the
icharacteristics corrasponding to 2 = £ and = 1ie in the elemental tzi-
gent piane to the boundary,
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Trz points on the initial.value surface which are used for irter-
polation are ugain chosen as a set of nine points which consists ¢f the
streamline intersection with the inftial-value surface, point (5), and
{ts elght nearest neighbors. The eight nearest neighbors are chosen
using an indicfal stencil. The stencil is varied slightly with position
on the Loundary of the array in order to obialn the nearest neignbors
unifarmiy.

Ths numerical calculations proceed in 2 manner almost fuentical to
that for the interior point. The only exceptions are that tre fourth bi-
characteristic is not located and the corresponding compatibility ra2la-
tion is replaced by the tangency condition, Eq. (E-76).

¢. Plane of Symmatry, Whenever the boundaries and the initial datz
possess a common plane of symmetry, the number of point calcuiations can
be greatly reduced, since only cne sector of the flow needs to be cal-
culatzd. The remaining sectors can be found by reflection. This boun-
dary condition is particularly simple since r~efiection of points sbout
the rlane of symmetry can be used to produce a network n which the cal-
culation schems fer an interior point can be used without modification.
The ninz po'nis o' the interpolation 3cheme are selected such that three
points lie on the plane of symmetry (i.e., adjacent boundary points},
three are interior points and the re~aining three are the image points
of the three interior points. This process ensures symmetry in the re-
sulting interpolating polynomials and thus, in the interior point solu-
tion. This technique has been demonstrated to give completely satis-
factory aumerical results. The same logic is also used at the junction
betwgen a plane of symmetry and a solid boundary, except that the solid
soundary point calculatior scheme is used rather than the interior point
scheme,

d. Constant Pressure Boundary. In the ¢a.2 ¢f free jets expanding
inte a quiescent ~tmosphere without mixing, the boundary of the flow i3
& stream surface of constant static pressure. The boundary condition is
simply that the static pressure on the boundary match the specified
value. Along the streamlines the entropy and stagnatiecn enthaipy are
constants and, since the static pressure is known, the magnitude of the
velocity can bo established directly. Thus, the unknown gquantities at
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the calculated point ars the two spatial coordinatss, %o ang X33 and
w0 components of the velocity {the third component of the velocity is
considered known, since the magnitude of the velocity is known).

The reference vector system for the parameterization of the Mach
conz 13 chosan such that g; coincides with the unit outer normal to the
constant pressure surface. The diretction of the suter normal coincides

with the dirsction of the pressure gradient since the gradient is norss)
to a constant property surface. The pressure gradient i3 known st point
(5} on the initial-value surface and this value is used to construct

the reference vectors. see Figure £-3.

Once the system of »eference vectors is establizhed, the calculation
procesds in i manner very similar to that for the solid boundary point
the main difference befng that Bernoulli's equation along the streamline
is not requires since the pressure and the velocity at point (6) are
known. The three compatibility equations along the three bicharacteristics
Ind the one noncharacteristic relation 3long the streamline are used.
These four relations are sufficient to determine the two remaining velos-
1ty components and the wo scalar functions of the velocity derivatives
at point (5).
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APPERDIX F
LEAST SQUARES BIVARIATE INTERPOLATION SCHEME

In the mmerical integration schems the values of the six dependant
verisbles, correct %o sescond order in step size, are required at the
intersections of the four bicharacteristics and the streamline with the
inftigl-value surface. These intersections d¢ not generelly coincide
with known points so that interpolation is required. The interpolation
process is repsated on each iteration of zach point solution in the in-
tegration precess, and thus spsed is &f considerable importance. In
addition to the requirements ¢f computing speed and accurzcy,. the inter-
polation process, in combinstion with the numerical integration scheme,
Fust be numerically stable.

An interpolation schems using locally fit second-order least squares
poiynomizls was salected. In this mesthod, second-order bivariate poiy-
nomials which have six cosfficients are fit to 3 local group of nine
points by the methed of lsast squares. The nine paints are selected as
the intersaction of the streamiine, along which the solution ¢s b2ing
advanced, with the initial-value surface 2nd the eight nearsst neighbsr-
ing points. The giobzl interpolation process thus consists of ths use
of 2 series of cverlapping two-dimensional polynomial fits.

This =athed is relatively fast since & system of six linesr sy=mmstric

¢ equstions only needs to be solved onmce for the polynomial co-
efficients 2t =2¢h point in the numerical integreiion. Once the cosf-
Ticients are obfainsd, iﬁ‘arpa»a*%ans during esch iteration ars made by
simoly evaluating the =0lynssisl. Strict seccaé-srﬁé? gccuracy is main-
{f the minimsm number of a=éﬁts required to obtain the Lagrange
lating polynomial, which {s six, {3 used. However, the los
accuracy dus 30 the ”ﬁéQﬁﬁéﬁcy {ntroduced using nine points is ve

"
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I and {5 more than offset by the eé?éﬁ ages of cte=puting ease and
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The least squares interpolation technigue has an added advantsge in
the solution of supersonic 0w probless. The occurrence of shock waves,
i.e., discontinuities ‘n the solutior surfaces, can generally be expscted
and it is desirable that the numerical method be sble to “tolsrate”
poderats discontinuities without failing. The lzast squares interpola-
tion schems has this property sinte it tends to spread out & discontin-
uity. This approach results in some loss of accuracy, since in reslity
the Rankine-Hugoniot jump conditions should be introduced at the discon-
tinuity as an additicnal boundary condition. The latter approsch greatly
= complicates the numerical calculation and is not warvanted for weak shocks.
In the case of strong shocks, the shack surface should be introduced as
& boundary an; located by simultaneous solvtion for ooth the upstrean
and downstream points on the shock, in addition, indepencent interpola-
tions must be mude on each side of the shock intersection with the in-
{tizl-value surfacse.

The bivariate polynomial which {s fit for the dependent va=iables
nas the fom

itk

"

lﬂmmmﬂ ;hWWWW : IMWWW

= X 2 L2 -
= ES + Agy + ézz + géyz s ésy + §55 {F-1)
where u represents any of the six dependent variab sy p, P and H;

A<, ’*"2’ etc, are the coefficients corresponding to t?:e particu?er depen-
dent varisble, and y and z are rectangular cartesian coordinates on the
piansr initial-value surface., The nine points, the streamiine inter-
section with the initial-value surface and eight surrounding neighbers,
are used %o obtain 1he least squares solution. The mesh points are locatad
{n each initial-value surface in such & way that they can be ordersd in

2 two-dimensional array. The eight neighbors of a point in the two-
dimensional array are obtained. to clioss :graximation, by 2 simple system
of stored stencils {i.e. lists of coordinates for nsighbor isg points},
Thus, the neighboring points used in fitting the interpolating poiynomial
are readily ie’aue‘ without metric information.

":l

ordering scheme. iikeaise, éésignaﬁe the coordinate. of ea ch aoia by
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¥y and z;. The value of the dependent varizbles calculated from the
interpolating polynomial at each of the points, designated by & prime,
is
C R - L A ooo7a z

st Ayt Ay Agzy * Aggtt At Aczy (F-2)
The su=m of the squares of the differsnces batween the axact values 4nd
the values obtained from the interpolating polynomials &t each point is
given by

9 »~
0= 5 {u, -u,')l
DSQ sé}‘ﬁf u{l
- gi’u S Ay = Ay, - Agz, - Az, - Ayl - Bz, 2% (F-3)
R B A - S T A LS 4 6%4

Here the repeated indicies do net imply surmation. The polynomial co-
efficiants are varied in Eq. {F-3) such that & minimum is obtained for
SSQ. The necessary conditions for z minimum are

a(s5Q) . 3(S50) . 3(5313, . gme) g gz agsgg . .
aky 3Ry = L = 0 {F-4)

Writtsn out, thase six conditions %take the form

- FS ko - Ty ¥ - w?‘ -~ 2 - T {
gg'{ + Lyiéz T .’.Ziﬁ3 ha ;__?”-&.idﬁ-é > ?, fés inﬁs {.Hi i?'s)
- Y + T 2: + ;& <+ T 2 )5‘ rs - 3‘& > ™ 2£ -
Iyshy + yghy t IV A Evz A Iyihg + ay TiAg < Ty, (Fe6)
- - 2, -~ 2 rnzn - 35 - =
z;if‘s} u}’iz{.ﬁ? + inég T .’.}'Ezirﬁ&é + ,}i&ifis inﬂs = ‘L‘Jézg {r ?}
P 2.2 3 . -
HYg3ghe T B4Ry T -Yizgﬁs PIYgzA, t IyizAs + 53*’5?“5 = tyyg, (F-8)
Wlr 4 3 2 2, &, 2.2, U P
¥4k Iyjhy + Ty(2iAs Y IpZ A ¢ DygAs 4 TygnA, = tugyy (F-S)
~ 2 i k4 2 ? 4 by
zz?ﬁE + Zyizgiz + :zgiz + zyéz; * Iy ; e * Ezgéﬁ = :dizg {F-14)
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where I implies summation over the same range as in Eg. (F-3). Equations
(F-5) through (F-10) are & system of six simuitaneous linear algebraic
equations for the unknowns AT through ﬁs. The coefficient matrix is
symmetric and deponds only upon the coordinates of the peints used for
the least squares ¥it. 1y the nonhcmogensous tetws depend upon the :
values of the dependent variables. Thus, it %s only necessary to invert
the coefficient matrix once in order te obuain solutions for the noly-
nomial coefficients for all cix dependent varicbles Each soiution may
be obtaincd by multiplication of the respective nonhomyvgenegus veciore

by the inverse of the coefficient matrix. The soiution for the poiy-
nomial ceefficlents i3 obtained using an existing IBH caomputer library
subroutine for solution of systems of sy.aatric simultaneous linsar
algebraic equations.
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APPENDIX G
THE OVERALL NUMERICAL ALGORITAM

1. GENERAL

The global solution is cbtained by an overall numerical algorithm
in which the unit processes of interpolation and single peint intagrstion
are systematically applied to obtain the solution for & particular set
of initial values and boundary conditions. The objective of thiz re-
search 1s to devise an algorithm suitable for the solution of & wids
variety of three-dimensional internal flows, and in particular, fTiows
which are encountered in the desian and analysis of thrust nozzles. At
the present time very few, if any, three-dimensfonal thrust nczzles have
been employed and s¢ not much experience exists which can be used as a
guide for determining the general types cf problems to b2 encountered.

In ordsr to bring the scope of the problem to witnin practical
limits, the following assumptions are made with regard to th2 geometry
of the flow:

(1) The boundaries of the flow space are everywhere smooth such
that the cuter normal {s unique.

(2} The cross section of the flow space is simply connected.

(3) A single direction exists such that the nlare normsl t¢ this
diraction is space-like throughout the flow {i.e., the particular direc-
tien 1is everywhere interior to the cone of normale).

{4) When the flow space pessesses one plane of symmetry, the normal
to the common space-like plane lies within the plane of symmatry.

(5) If the flow has two or more planes of symmetry. the normal to
the common space-llke plane 1s parzllel to the line of intersection of
the planas of sywratry.

Assumption (1) eliminates the sossibility of discontinious ssiutians
at the boundary (i.e., attached shocks or Pranali-Mayer expansions).

Tnis assumption is not particularly restrictive in the case of nozzie
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Tlows since sther design ond fmstruction Vimitavlions usually prevent
the use of sharp corners on the boundary. Assumpt ]
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sult of any Zundamental Timiteticn, byt was mads in erder

the numerinal logic {&n annular flow is & typical example

having a nonsimply cohnected cross-section). Assumptéions 13 }, (4} and

{3} ere again not fupdenental limitations, bus grzetly raouce the numer-
cal zomplexity of the overall zlgorithm while not seriously reducing the

range of practical sweblems wﬁic, can he solved. Thess assumpiions per-

mit the integratien o take place between successive planes normal %o

the Xy coordinate é;recg?eﬁg a ceaﬁit;sﬁ whiich was assumed in the davelop-
meat of both the intarpelatien and integration schemas.

The {ﬁ,, x33 coordinate piare must be averywhare snace-tikz to the
o, swhich means that the 20t} angular variation of the siraamiines
across the flow camnot in the 11l exeeaﬁ ths value 2{90-u}, were »
1s an averages Mich aﬁ,,e. This conditien only becomes limiting for Kach
pupbers nesr unity whare the Mach angle, p. approaches 90 degreses and the
permitied vsristion in angularity epproachss 2ere. The integratisn schems
can only be smpioyed at Hach numbsrs greater than unity so that the
Hmiting case never sccurs, High gnguiar variation between streanlines
a% Yow Mach nushers doszs not ususlly occur in internal fiows, since Hach
numbars near unity oniy sceur et @ minimum in the cross sestional srez
and, thus, at & point whare the boundaries ave nsarly paraliel. These
restrictions are further minimized by choosing the x, coordingte direc-
tion o be the meap Tiow direction.

The nuperical algoritnm could be au3ily extended te cases in which
targe variations of zhe mean Tlow direction occur along the direction of
integration, %y, by periodi cally empioving & coordinate system rotation
3s the iﬂteg*aéfcn proczeds so that in the transformed system of coordine

23

tea the naw Xy diraction more nearly coincides with the mesa Tlow direc-
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2, INTEGRATION SCHEZME

Tha point computational scheme, which is devsioped in Appendix E,
is used repetitively to ohtain ihe solutien at z discrets set of points
an plnes perpendicular to {x,, 4.} coordinate planes. When the flow has




or more planes of symmetry as a result of the initial and boundary con-
ditions, the geometry is assumed to be such that the x
tion is paralle! fg all pi

.1

1 coordinaie direc-
ares of symmetry {i.e., paraiiel to thz line
of intersection of the plsnes of symmetry;.

The point fntegration scheme establishes the location of the sciu-
tion point by locating the intersection of the streamline, which passes
through a prior computed point on the initial-value surface, with the
solution surface. Wwhep thic process is applied successively, & set of
streamiines throughcout the fligs is generated. Th particular stream-
lines whi.n are gensrated will debend upon the points which are selected
on the first initial-value surface. This technique of conszruciing
streamiines {s empioyed {in the numerical process and has the desirable
proparty that the distribution of points, retative to the mass flux dis-
tribution, is the same on each new solution syrfaco. An additional
benefit of constructing streamlines is that points which are initiaily
on boundaries or in planes of symmetry will remain 30 throughoui the
overali integration process. Thus the boundary calculations are simpii-
fied since n0 inierpolation or extrapolation is necessary to obrain the
solution at the boundaries.

3. [IRITiAL-VALUE SURFACE POINT KRETWORK

a. Circular {ross Section. The network of points which is generatad

hrouyghout the fiow in the course of obtaining the solution is primarily

a function of the selection of points on the initial-value surface. There-

fora, & scheme was devised which would select a uniform distribution of

points over the flow cross-section. [t was aiso possible to order the

paints in a two-dimensione) sguare array. The relation of the points to

the square array is such that the boundary points of the fiow iie on the

perimeter of the logical arriy and th

to & ¢l
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ose approximation, neighbors in the physical space. This permits
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s
mpie logic to be uszd for datermining the type of point integra-
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fon schems to be used and Tor locating the pointe to be used in fitting
the local int

gl terpolating soiynomials., The scheme was of furthar benefit
n the computer p
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pointz. There is not, to tha autnoers knowledge, any way to logically
derive the scheme which {3 used. It was simply invented by a trial and
erpror process .13 is described, therefore, without any particular attempt
at justification, except to point out its virtues. The scheme will first
be described for & circular cress section without planes of symmetry.
Subsequently, the axvansions to noncircular cross-sections and cross-
sections having plares of symmetry will be discussed.

Consider a squars arrasy having an odd dimension NT' expressed in
terms of 3 parameter Ng 55 trat

Ny = 2N - 1 (6-1)

The paramater Np is the number of points on a half side of the array.

A typical square array of this type and the corresponding circular array
are {1lustrated in Figure G-1 for ﬁp = 11. In Figure G-1 the rows of
points in the sguare array znd the corresponding peints in the circular
mesh are connectad by selid linas while the raspective columns of points
are conrected by dashed curves. In general the square array will have
S(HT - 1} points on the perimater. If these points are all to cerrespond
to boundary points then the circular arrav must also have 4(NT - 1) points
on tha circumference. Further, the number of circular shells are choosen
to correspond to the number of inner shells of the square array, see
Figure G-1. The radius of =ach circular perimeter is chosen according

to the relation

5 = rox K - e - -2
RK R? S'h'l;_z- -n;‘r-—:—z‘-)-}, (K—], 2, Np }) (G '))

which produces 2 sine distributicn for the RK and has the desirable
property that the outer shells of the circular mesh are spaced more
closely together. This is desirabie because one-sided interpolations
must be made at the boundaries. The c¢loser spacing of points near the
boundaries partially compensates for any loss in accuracy due to one-
sided interpaiation. Closer spacing of points at the boundary is also
desirahle bzcause varfations in the flow are mostly a result of varia-

tiens in boundary conditions. Gradients in the flow due to expansions

o
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at the boundarios are largest in magrt de at the boundaries and become
progressively weaker as they are propagaied into the flew The op-
posite argument can be made for compressions: however, thrust suzzle
flows are generally expansive

b. Planes of Symmetry. The point zllocation schem: 1s ecsily
modified to incorporate the cases of cne or more planes of symmatry.
When the flow and boundaries have one plene nf symmetry, the central
point of the mesh {s chosen such that it 1i{us on the plane of symme.ry.
This case is illustrated fer a circular mesh in Figure G-2, One-hal.
of the mesh for a complete circle s used and, therefora, only one-half
of the square array is required. The dividing line in the mesh corres-
ponds to the nlane of symmatry.

When the flow possesses two or more planes Oof symmetry, the planes
are separated by the angle

¢ 1 g/ N . (H - 2’ 3’ s (6-3)

Each adjofning pair of sectors has a mirror image relation to each
other, thus only cne sector needs to be calculated since all other sec-
tors can be found by reflsction. When the problems possess two planes
of symmatry only one-fourth of the grid {s used. This case is also 11-
lustrated in Figure G-2. For the case of 3 or more planes of symmetry,
only one-eighth of thes grid is used and the grid {s stretched or com-
pressed circumferentially to fit a sector of the flow. The cases of 3,
4,5, 6 and 7 planes of symmetry are illustrated in Figures G-3 and (-4.

¢. Noncircular Cross-Sections. The network 1{liustrated in Figure
G-1 for a circular cross-section can be extended to voncircular cross-
sections by the following technique. A point in the interior of the
cross-section is chosen to corraspond *o the central point of the two-
dimensional array. This point should coincide with the centroid of the
area, although other choices may be used. The series of internal shells
corresponding to the concentric rings of the circular cross-section are
constructed by dividing ¢“e racius from the central point to the perimeter
into segments according to Fg. (G-1;, whersz the parameter RT {s here de-
“ined as the local radius. T H

The resulting shells are (1lustrated in Figure
(-5 for a noncircular cross-se¢iio-
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The locations of the points on esach shell are determined by dividing
the perimster into a nusber of sn%fcrm segments of arc equal tc the num-
ber of points on the shell. & radius parallel to the x, coordinate axis
is selected as a reference such that the initial point of each shell is
placed on the intersecticn of this referance line and the corresponding
shell. The reference is indicated in Figure 5-5 by the line A-B, This
process produces the sumg point network as for the circular case when
the cross-section is circula int of the network is
saction. The extension of the tech-
nigue to noncircular boundaries with planes of symmetry follows directly
from the approach used to extend the circular mesh to noncircular bes
daries for plgnes of symmetiry.

r !
¢chosen 35 the centsr of the circular
i

The peint integration schems requires local interpolztion for the
values of the dependent variablss at the intersections of the bichar-
scteristics with the inftiazl-value surface. Feor this purpose second-
crder least squares polynomials are f1* 10 & group of nine neighboring
points in the initial-value sgrface by the pethod developed in Appendix
F. The nine points are chosen as the {ntersecticon of the sireamline,
along which the solution is heéag agvanced, with the imitial-value sur-
face and the eight nezrest neighbors. The neighbors of 2
poiat can be located by means

z particular
of 3 stencil or patten for the indicisl
coordinates of the points in the scuare array. The stencil of points
must be varied slightly with locetion in the meshk in order %o obtain the
best cholce of neighbors &f 237 points of the resh. In the numerical

schess oight different stencils are required %¢ obtain the :losest

neighbors at 211 points of the mesh, These eight variations of the

stencil are {lluystrated in Figure G6-6, The locations of the correspond-
b A
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time-Tike surfaces adjeining the fnitizl-value surface. The term time-
1ike is used %o denote & surface on which the outer normsl is at avery
point exterior to the local cone of normals. Thase additional constraint
can take the vorm of a physical boundary {i.e., constrained flow dirsec-

. tion), specifiad pressure, & plane of symmetry or conditiens across a
discontinuity surfac2, Only the boundary conditiens corresponding to
& physical boundary and planes of symmetry are discussed herein.

b. Physical Boundary. The specified physica! boundary condifion

-

£
1
is satisfied by recuiring that the fiow be tangent to the surface, f.e.,

ughy = 0 {G-4)

where n is tha unit ocuter normsl to the surface and Uy the flow velocity
vector, In addition the outer-most stresmlines in the network, which
originate frem the jumction betwsen the initial.vaiue surface and the
prysical boundary, must at all points 1ia on the specified boandary sur-
face. Points on the boundary surface are located by obtafaing the solu.
tion for the interseciien of @ line with the surfzce. The line is spact-
fied by the coordinates of & point and the dirsction cosines of tha line.
Hore than one intersection with the contour uzuzlly will exist and the
solution nsarest to the known point on the iine is assumed to be cerrect
{the dire.tion cosines of the line are chosen to closely approximate the
Tocal normal to the surface and the point is chesen in such a way that it
{s near ‘he boundary of interest so that the correct solution is easily
chosen). Once a peint on the boundar’ is located the comprmants of the
outar normal are required {{.e., the partial derivatives of the surface
function must exist). The Heundary surface may be specified as either

an analytic function or & tabular Yunction. However, in the case of a
tabular function some mezang for interpolation and numerical dffferentia-
tion must be provided, since the Tocations of the >oundary solution
points are not known a prieri. This technique for Tocating a point on

% . the boundary is used in conjunction with the solid boundarv point modiTi-
§§§§§ cation of the basic interior point numerical scheme which is discussed

= = .

%g s : in Appendix E.
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c. Planes of Symmetry. The plane of eymmetry boundary condition
is sstisfied by reflection of points with respect to the plane of sym-
metry and -ubssquently appiving the {nterior point computational schems.
Although g speciaiized boundery point scheme, similar to that for the
physical boundary. could have been used, the use of reflection {s much
simpler and i1 was found to give comoletely satisfactory numerical re-
suiis,

A point is reflecied at 2 plane of symmetry such that the plane is
the parpendicular bisector of the Tine jsining 2 point to its image.
iny scalar propertiss at the poini hava the same magnitude and sense at
the image point. Vector guantities, such as the relative position vec-
tor and the velocity, are reflected such that cowponents paralliel to the
plane of symmetry have the same magnituds and sense while components per-
pendicular are reflected such that they rave the same magnitude but op-
posite sense. The reflection relations for the vector quantities, the
rélative position vector and the velocity, for an arbitrarily located
plane of symmetry are

ui’ = Uy - 2ujnjni (G-6)
whewe the reflacted quantities are denoted by & prime, Ty is the position
vectar, r? the positizn vector for a reference point on the planz of sym-
metry, fig the unit outer nowmal to the plane of symmetry and u; the ve-
Tocity vector. These relations reduce to particularly simple forms wien
the plane of symmetry is parallel to a coordinate plane,

At the point where s plane of symmetry Joins & physicel boundary,
reflection is used to ensure symmetry and the ordinary physical boundary
point scheme is used to obtain & solution. Here again speciaiized routines
could be devised, however the logic of the numerical algorithm is great-
1y simplified by the former approach and compietely satisfactory numeri-
cal ra3uits are obtained.

-
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£, STEP SIZE REGUDLATION

The distance botween each of ths successive spsge-iike solv
faces is regulated such that ¢hs Courant-Friedrichs-L {
71

cr us?icw is satisfied af every point of the networ H
zone of dependence 15 in gepara’ an e11ip2ical recion surrounding the

treaniing intersection with the inftial-vaiue surface snd is devined a3
on of the Me-h conoid, originating at the solutien point,
the fnftia vslue surfsce. The convex huil of the dif-
definad by the mesitions of the mesh points used fer
interpoietion in the initial-velus surfece. Both the differentiz
of dependance and the convexr hull of the difrerence scheme are i1lustrated
g typical interier peint in Figure §-7. The CFL eriterion will al-
ways be satisfied 1f the maximum radius of the differentis’l zone of de-
pandance, R . 13 zads less then the distance fron the streamline inter-
secticn w:th the inftia] value surface t2 :he nesrest mesh point on the
coavex hull, Rmin' sea Figure £-7.
The relution beiween the intsgration step, éx, and the meximum
radius of the differential zone of depandence czn bs expressed as 2
functisn of the locs! flow parametzrs. The tangent of the angle which
the streamiine makes with the initial value surface, v, is simply

tan y = u f’qg +udy1/? (6-7)

where Uys Uy anu ug are 2 the respective velocity components. The tangent
of the Hac h cone half-anale, u, with regpect to the streamline is simply

tan p s (M2 - yT1/E {6-8)

where ¥ is the local Hach number. From geomatric considerations, sse
Figure G~8. the ratio of the axial step 2%y £3 Rﬁﬁxg called H, 1s given
By

v ind

= sxy/R... = tan{y-u} tan v/[ten y-tan(y-uj] {6-9)

Applicetion of trigonomatric identities and Eqs. (G-7) and (G-8) yields
& more useful formm of Eq. (G-8), i.e.,
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i = W2/(calll - (e/a)(arel - 12 (6-10)
where o is the magnitude of the velocity
= (u uz +y )3/2 (6-11)
¢ is defined by the relation

¢ = [q2e%/(q? - a%)1'/2 (6-12)

and & is the local speed of sound.

The actual Mach conoid is curved, whereas the relation, Eq. (€-10),
has been derived assuming & linsar cone. The curvature effects can be
compensated for to some degree by using mean properties in Eq. (6-10).
%ﬁ%_;é An appropriste mean is the arithmetvic average of the values between

|

= points {5) and (6) of the overall network, Figure G-7.
g%g%%f The minimum distance from the strezmline intersection with the in-
%%%%%ﬁ ftizl-value surface to the closest point on the convex hull {s determined
gééé%é by a search of tiz eight neighboring points of the difference scheme.

: The permitted step size is then computed from the relstion

g H - \
8%y H Rm{n (6-13;

Hote that the permitted step size given by Eq. (G-13) will be a conser-
vative estimate since in generzl the direction of the distance Rmax will
not coincide with the direction of the distance R ... In addition this
criterion is 2pplied at the most restrictive point of the network at
each solutfon surface. However, numerical experience has shown this
criterion to be vary close to the maximum value permitted from numerical
tability consideritions. The use of arbitrary factors of 1.25 and 1.50
imes the predicied ster in numerical calculations resulted in some
evidence of neutral stability aad unstable behavior,respectively.
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shows the corresponding operaticns for 2
metry. After completion of the calculations on each solutien survsce
-~

the thrust ang masz fioware caicylzted by nuserical integration over the
solution surface.
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1. GERERAL

b1 =

This snalysis was motivated by the occurrence of mmerical instabil-
ty in the original nimsrical

using iattizl-value proble=s failed to revezl the unstable character of

the scheme, thus the instability wes not discovered until thesscltion

scheme, Hizmaricsl tests for stability

2f initiz}-boundary value probless were attempted inm which larger numbers
of {nt=gration steps could be takep.
Tha stability znalysis zhowed the originsl schems i¢ be only moder-

ately unstable. which is the reason that the unsteble characler did not

bscome apparent until aftsr a rather large nusber of integration stoes.

in zddition, the a"s§ysis showed that the scheme could be made suffici-
Y

ently stable by 3 v

2. STABILITY OF LIMEAR DIFFERERCE EQUATIONS

Sumerical stability is 2 proper’y which dos: not depend updn the
nature of “ne system of differential equations, brt s solely & function
of the oifference eguations which are used as asprozimations {0 the gif-
ferential eguations. The stability of linsar di:7erence scheres has

bsan studied extensively by 3 ni=der of investigitors and & good su=mary
of this work as well as u=plicationz of the -*ability criteris to several
difference schemss for t?rée-é;aaﬁsien stezdy flow are given by Hele
and Leigh {5, 6). Stability criteria hive only bsen developed for linsar

difference squations having constant ceefficients

Y]



ying the same criteris as for linear equations %o the linsarized

forz of the nonlinesr system and regarding these criteria

conditions, 1In all cases which are known 36 have beon investicated, in-
1

5 beeyw sufficient o ensure

Re

ing the present work, ihis approach h
§

Two stability criteriz have been developed for systems of iimesr
difference equations. These are the Courent-Friedrichs-Lewy {CFL}
stebility crifterion 2p¢ the ¥oo Neusann condition, The CFL
criterion states thzt the domein of dependance of the differsnce eguations,
defined a3 the convex hyll of the points in the inftial-value surface,
which are used in the difference schems, =must contain the domsin of de-
pendence of the differentis! systes, see Figure H-1, The CFL criterion
iz regerded 25 3 necessary conditfion for 211 difference schemes, both
linesr and nonlinear, 2nd has besn shown to be both necessary and suffi-
cignt for simplicial linear difference scheses, Ref. (5).

The von Heumann condition states that s difference schems is stable
only if there is 2 1imit t0 the extent that every Fourier cozponent of
the initiz] data can be amplified by successive application of the dif-
ference scheme. The von Reumsnn conditien it sufficient for stabiiity
of Vinear difference schames only for the case of analytic inftis] data,
However, the von Heumann condition has turned out to be sufficient for
21l noniinear, as well as linexr, schesss which are known o have been
investigated, Ref. (5).

in the present analysis the CFL criterion is regarded as & necessary
condition and 1t is satisfied in ths nonlinesr difference scheme by
regulzting the integration step size such that the Hach conoid fnter-
section with the inftizl}-value surface is containad within the convex
hull of the initial-value surface points of the difference scheme. The
a{Tference schems, with the CFL condition satisfisd, is then tested for

.tability in the von Reumann sense.

The system of differentiz! squations for

5
three dimensions consists of the wave surface characteristic compatibility
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FIGURE H~I. CFL STABITITY CRITERION
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relation applied along Tour orthogenal bicharacteristics, a stream sur-
face characteristic compatibility relation applir along the streamline
direction and one noncharacteristic relation applied &long the stream-
Tine direction. These six equations written in terms of the uperator
for the directional Jifferential are:

i P« oty dp uy = - pczsisj(auflaxj) dt (H-1)
dgzp ¥ pe8y dizui = - pczaia:(auilaxj} dt (H-2)
digp - oCay d§3ui = - oczsisj(aui/axj) dt {H-3)
d~4p - pCBy di4ui = - oczafuj(aui/sxj) dt (H-8)
dep = - 062(0133 + 5153) (auy/ax,) dt (H-5)
d=p = - pusdztyy {(H-6)

whare the subscripts 219 (1 =1, 2, 3, 4) and u, denote the four bichar-
acteristic directions and the streamline direction respectively. The
network of bicharacteristics and the streasmline along which the system
of equations apply is {ilustrated in Figure H-1.

NHormally %he system of linear differential equations “or use in
stability analysis is obtainad directly from the system of nonlinear
differential eyuations. However, in the present case twy difficulties
are eincountered which require some judicious consideration. First, the
nenlinear system consists of six equations which would vield six linear
differential squaticns for only four dependent varisoles. Serond, the
twe unusual teras, a0y (auifsxj) and Sisi (aL /3x }, that aupesr in
some of the coefficients invoive partial derivat‘ves and cannot he eval-
uated in terms of simpie differences along the bicharacteristic network.

wast
4
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These differences are a diract result of the schems for maintaining
second-order accuracy in the nonlinear numerical algoritim and con-
sequenzly may have a significant effect on the numerical stability of
the scheme, The approach used herein 18 tn consider the quantities

&

aiuj(aui/axj} and s{sj(euifaxj} as unknown guantities of the differ-
ential system, Egs. (H-1) through (H-6), at s point, and to eliminate
these quantities by simultanesus solution. The remaining four indepen-
dent differential relations are subsequently Tineardzed.

In the linear{za.ion process the ¢ezpendent variablas are assumed
to be adequately represented &s the sum of a constant quantity plus z
small variation, {.e.,

u=g+4 (H-7)

where the quantity u represents any of the depender.t variszbles, u is &
constant and U 1s a small perturbation. The corstent value, U, can be
interpreted as a mean value sbout which perturbations occur. When
second-order terms are discarded and differeantials raplaced by finite
difference operators, the following linear system of difference equations
{s obtained

" - W A -—— N ~
b; P+ cCagar U, = (85 B - ofa.a; U;) (azt/a; %) {H-8)
£ i i} H 1.3 1 1.3 1 L’ i3

v —e 4" n s~ ~ ! >
az P+ oCB.a; U, = (8: F - ocreas U,) (a: £/a- t) (H-9}
P = (éi}p + 58 1&51“1) (egt/e; )

(a5 B + 588,85 ug) (e-t/ez T) (-10)
+ {a=- b + 5¢8,8=- u,) (a-t/e-t -1
2s i 22 i 1 £y

where the difference operators are defined by
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N Ay N
b = fl6) - (1), (1=1,2,3,4) (H-12)
i

Y]

n, "
a-f = flg) - £(5) (H=13)
The stability of the system oflinear difference equations is not &
function nf the coordinate orianiation and an orfentation which simpii-
Ties the system of equations can be used without loss of generality.
Thus, & uniform difference network is used in which 7% = 0, so that

¥

d- T2 Ax = p- t = aﬁ?. That this 15 true may be seen by considering

the Tinearized parametric equations for a wave surface bicharacteristic

8 Xy = (B + Gaycose + Bystne) s, (i =1, 2, 3, 4)(H-14)

#nd for the streamlins

~, ~

The reference vectors, &1 and éi’ form an orthcrormal system -{th ﬁf/é.
where § is the magnitude of the constant components of the velocity,
Thus for 52 = 63 =0, 51 and él are identically zero and Eq. (H-14) for
aEE? along the bicharacteristics reduces to

A S‘{} = G, A<t {H-16)

ol

3 i
which i identical to Eq. {H-15) for ;

A v . » 22 :
OF 45Xy &10ng the streamiine direction.
The refere-ce vectors, d; and By, heve one remaining degree of fresdom

which may be fixed arbitrarilv. A conveniert vhoice 1s 52 = §3 = 1 and
53 = §2 = 0. The initiai-value surface s assumed to be normal to the
Xy direction so that, see Figure H-2,

:1; KE S 4= X, = f."' K: = i': p 4 {H“i?)

Thus it is
1ine are equs
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paramater ¢ in Eqs. {H-8) through (4-10) ars all unity.
The final difference equations for the selected network and co-
ordinate orientation are

B(6) - B(1) + 5ELuy(6) - §,(1)] = 5(6) - B(3;

- oe[,(6) - U,y(2)] {}-18)
F——
= B6) - Bl2) + 5EY,06) - Uy(2)] = BL6) - B(4)
= - 5E[,(8) - U;(4)] (K-19)
o
= 5(6) - B(5) = B(6) - B(1) + B(6) - Bl2)
E + 52U, (6) - d,(1) + Uy(6) - Uy(2)] (H-20)
= 5(6) - B(5) = - 0yLH (6) - §(5)] (#21)

i

4. TABILITY OF THE BASIC DIFFERENCE SCHEHME

The ~tzbility analysis must include all operations of the overal:
numerica® algorithm (i.e., interpolation, difference equations, etc.}.
However, in order to more fully !llustrate the stability characteristics
of the individual processes of the overall numerical algovithm, the
basic differance scheme will first be analyzed as though interpolation
was not required. HNext the interpolation scheme will be analyzed. Then
the combination of the difference scheme and the original method of in-
terpolation, and finally the modifications which resulted in 3 stable
scheme, will be analyzed,

Before beginning an analysis of the basic difference scheme without
interpolation, note that the (FL stability criterion is not satisfiad,
see Figure H-2, since the differential zone of dependerce is not imbadded
within the convex hull of the difference scneme. Thus, when the scheme
is anzlyzed for stability in the von Neumann sense an unstable result is
gnticipated.
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It is assumed that the analytic solution of the system of linear
difference equations can be obtainaed by separation of variables, Ref.
{5). For the pyrpose of stabiiity analysis it is sufficient to examine
the solution for only one arbitrary comporent of the half range Fourier
series representation of the inftial data. The complete solution could
be obtained tv superposition of all such terms necessary to completely

represent the inftial data. The form for & genera! term of the solu-
tion is thus assumad to be

= eﬁﬁtxz’i 81H5X3 * 3x.)

alx, (H-22)

where U 15 a vector whose components are the dependent variables Uy, Uy,
u, 2nd 5, 1 i¢ the complex quantity /-1, M and K are Trequency factors
for the particular Fourier component of the initial data, L is a char-
acteristic dimension such that X5 and Xq kave the range -L to L, and &
is a vector function of the integration direction, Xy which has four
components corresponding to the four components of U. The coordinates
of tie points in the differénce network can be represented relative to

the coordinates of point {5) in terms of increments of the respective
coordi..ate directions, see Figure H-2, Thus

%s (1}

L.
it

XI(Z) = X}{3) = x}(é) & xl(S}

Peint {1): x,{1)
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x3{3} = 23(5)
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where By = AXq for the perticular choice of coordinate orientstion, and

they are related to the value of zx; by the parametric equations
bicharacteristic, Eq. (H-14), The assumed form of the solution,
(H-22), evaluated at each of the network points yields

§{5) = eizﬁxg(S)/L ef!HX3(5}f{ é{

wn

Xe!

1 {5) + %)
i i

7

é(é} - eisﬁXz(S)/L Eisﬁ(X3(5) + 5X3)fL §{x}(5)}

5(3) = eigﬁ(XZ(s} - 5X2)/L efi§x3(5)/L 53;3(5}}

6(2) = e%ZHXZ(S)/L ei?R{X3(S) - 5‘3)/L g(xx(s))

5{?} - ef%ﬁ(XZ{S) - éXz)/L efﬁﬁﬁg(S)iL 5(!;(5 }

Equations (H-Z3) through (H-28) ail contain the common factor

o
o0
tad

for 2



and the difference ¢quations, £qs. (H-18) through (H-21), are homogenesus
in the dependent variables; thus the cosmon factor may be eliminated.
Substituting the respactive vaiues for the dependent varizbles into the
difference squations, writing the system ir matrix notation, and sub-
stituting the exporential definitions f. - the circular funciions yields

-~

A

o
e
<

= e 9 0 |
% 2{x, (5} + &x,]
g -1 -1 -V/58 |
55, 0 0 1
= }
0 By 0 By
O 0 By By
+ i a{{;}fsi} =0 {H-28)
i
R L 3
0 By 333 By |
H
|
8y 0 0 By |
; where
% By, = - cos{-Hax,/L) {H-30)
% Big = (1/58)sin{sMany/L) (K-31)

"

823 - tos{gﬁéx3[£} {1-32)

Be = {f/EE}szn{z&ingi} {#-33)
534 x cos{=Max,/L) - {é}sén{:ﬁaxzji} [H 38}




B,y = cos{zHsx,/L) - (i}sin{:ﬁﬁx3ji} {H-35)

(¥4

8yg = {1 (fcosl=Max, /L) + cos{=Nax /L)
- (1} sin{=Max /1) + sin(slex,/L)] - 1} {H-36)
Bay 7 - oYy (H-37)

If £ (H-13} is premultinlied by the inversz of the leading coefficient
matrix, & racu~ion relatisn for the %y cependence of the desendent
varisbles is sbtained which has the ganeral form

Ekxz{S} tax,) = A 5(:;f5)} {H-35)

The matrix A is defined s&s the amplification matrix for the sysiem of
difference equations. The particular form of A is found to be

1 (15/5}}sin¢2 (iE/G])sine3 (1/553)(1-cos¢2-cos¢3)

PV

<

~C0s4, 0 {%/SE}sinez

Xm
L

{r-40)

0 G 054, {i!55)s€n¢3 .

[ s

0 {—156)s€n¢2 (-%56)51n¢3 {CO5¢

wnsre ¢, = sMax, /L an =z L.
Wnere 9 ,,é/ &and ¢3 Rax3i

Thz von Neumann necessa
gnce equations requires that the eigenvalues of the amplification matrix,
A, satisfy the inequality

¥y condition for stability of linear differ-

(7]
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the delerminantal eguation

where i, denotes any of the four eigenvalues of A, f.e., solutions of

A~ fai=3 {442}

Expansion of Eq. {H-42) yields a fourth-order polynomial in

i ox

g

.

Hotas that the determinant is not a function of the coefficients of the
=== _ ) . .
ggg%%g systen of difference equations and, thus, that the stabili

S===

.

ty character-

istics are independent of the local values of the dependent varizbles.
The eigenvaiues of the amplificslion matrix were calculated for aill

combinations of Fouriercomonents, correspending toc the independent var-

{zbles Xy and ¥4, OVEF & rENge of frequency fectors B and B, The range

YKy

|

<

f ¥ and N was selected such that the argumsnts 4, NG ¢ range from

m
[
i

-

o Z=. thus covering one complete period of he circuiar funciions. Vai-
uyes of 10 and 1 were assumed for the characteristic length L and the mesh

,&

.

il

‘

|

spacings £Xy and £%5 respectively, These values generally correspons &

tye mesh densities of interest in the solution of three-dimensicnal noz-
le flow problems. Using these values a range of frequency factors, ¥

Vap i

.

|

i
|

[

~

il
|

:

|
Wl

and N, from 0 to 20 results. This range includes Fowier Jemponents having

il

wave jengths from one mesh length to infinity. The sigenvalues of the

i
i

amplification matrix were calculatec for 311 combinations of the fre-

guency factors M gnd N, The results of the eigenvalue calculations are
shown plotted in Figure H-3., The plot 1s constructed by plotiing the
maximum absclute value of the eigenvalues for a1l combinations of fre-
quency faccors ¥ < I and K < I,

-

hus a discrete set of maximums as 3
function of 1 results. Although the index I was varied frem O to 20, it
was found that the resulls were sym

*aea > &
trd 1t the vaiue 10 so that

zbo
only the results for 80 < I ¢ 10 are shown in Figur
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As expected, the basic difference scheme 1s highly unstable for all
values of the frequency index . This ic due to the violation of the
CFL stability criterion when the points &t which the bicharacteristics
intersect the {nitial-value surfsce are prior computed points, as in the
case of these calculations.

5. STABILITY OF INTERPCLATION SCHEMC

In the general numerical algorithm the bicharacteristic intersec-
tions wiil! not coincide with prior computed points so that interpolation
is necessitated. However, the streamline intersection with the initial-
value surface, point (5) in Figure H-4, is always a prior cemputed point,
Thus interpolation is not necessarily required to obtain tha values of
the dependent variables at this point, although interpolation could be
used for purposes of providing acditional damping. It will be shown in
the course of this analysis that interpolation at point (5) is not only
desirable, but necessary for stability.

The interpolation technigue using least-square, bivariate, second-
order poiynomials, which was developed in Appendix F, must be considered
in the overall stabilfly {nvestigation. The &pproach taken here will be
to first consider the interpolation scheme as a recursive smoothing
operation and analyze the stability of such a scheme. These results are
subsequently incorporated with the difference scheme tc astain the sia-
bility characteristics of the overall numerical zlgorithm , both with
and witnout interpolation at point (5).

The analysis of the interpolation scheme is simpiified, without loss
of yenerality, if the central point of the network, point {5} of the
overall numerical schems, s taken at the origin of the coordinate sys-
tem {i.e., any arbitrary point of the network can be brought to the
origin by a simple transliation of of coordinates;. A rectangular car-
tesian grid is assumed on which an arbitrary Fouriercomponent of the
values to be interpolated {s reprasented by
br éinXEIL eizﬁngi
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Xo = MbXy, {m

and

X

(7% ]

The complex quantities ¢ and n are defined as

r = e*ﬂ“éXz/L

>

n = ei:%ém'g /L

so that the general Fourier component, tg. {H-43), becomes

g = M0 ilx,)

u
L)
L]
‘e
el
-»
1+
™~
-
*

= NoXy, {n =0, 21, 22,

(i1-45)

(H-é6)

(H-49)

The interpolation technique developed in Appendix F uses the central
point and the eight nearest neighbors to fit the bivariate sescond-order
polynomials. These nine points are indicated on Figure H-4, and the
corresponding values for the dependent variables at each of the nins

points are

(s ]
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801,-17 = dgn”)
0{0,1) = 2
0(0,0) = 2

] e 3471

J(g,‘}) = an

PR - =}
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0(-1,0) = &'

G(-1,-1) = 3T
190

[H-50)



ooy, iy i
o (o) Lo
(Y] [Yn) LVs)
w ] u. ) |
g x % X
¥ g Nonaes L L _
o |
b "
(o]
e L — - LS vy
<3 P (3 ™) «wy ¥ e AL
.mu.. (24 <X < «x <L L2
) PR . - g wma im m as e e ;)
- v ]
- g
~y T n - - - - WAL e e owae e m . O
- / ' o
D oy ™ b )
» o o o~ -y
- (SN ap) <) [ (4 V] [4¥] o™y o po— o,
LTS b VRSV o) e ™ > » V5] - g
<1 & Low] < » » + «] ~) vm ) ) '
o] o <) «3 o » .a.. o~ o~ " ” «
oy ~t Ve - e «} LA I Lo .
) ] o~ » ] . g e (o]
et o * e 3 ¢ 4 . o [ »” '
L] [ w— e [} t )
[« 'y o s o o qooson - Lol Ty
2y o8 o ' 1 ) ] + A o~ ey :
wa, oJ o wr O » [ [ [} (& [ 1 ‘ Ll - |
> » ] L St - o [+ oo |
= ~ ~d < [ee) ~J (SN SY] - b 5 ' — » e ' et 4
ap e w 3¢ pomm St o ¢ o + .
) [ —— Ly £ " Lo Laved n
- L s et o S $ R ] ¥ ' Land i
[ w— -~ oy e e (W) ]
L P o e oo prose e L ' [ I
o ' [ l ' ' [ St + i ”
b o [ b W) ) Wy (¥} (] -y k) !
"w » o s [ [ !
] <) + ) + ) 4 + g St Nennt . |
o < < o (3N M AN} [om) < oo oy e et
w » ) ] W) [N ¥, v ) LA o - 7
<} [ ® Noert L Nt S - o ™ , Laed |
[ «t [ ] [ (el '
© & P LI e W’
. o ,
m (SN 4] (% » ] ' + f
“ e
-+ 3 Y W bt |
W Lon] L) ) < [on] < e S L
b (Ve p— oy
a7 g 3 % |
by .
(7] 194 V) P i
£ g e = =
e £ [ [ -
oo o < © o et < wd
o O Vel " I
L2~ % |
- 3¢ ]
PO TN ."w wx! 5 |
) MO o !
(1] o » £n |
W bﬂ... o [ow] [om] < <) 3 [~
- w ] e
Lot ] ’ 2
[T} o o vesain n T — e Laned
LI Dy w
b— e ,
- . "

il



Ay = LO/6)(e ¢ ¢+ 1)(n - 27 ax, (H-62)
Ay = [O/8)( - e - w'])]lﬁxzax3 (H-63)

A OV T LIPS DYCSP R I

-l
"

4

1 . "

+ (1720 + ¢ gin e a7 s 1) 0xS (4-64)

= -1 -1, 1

Ag = [- (/3 Mz + 77 + 12 #8270 +
UL IR ORI} %% (1-65)

The values of the dependent variabies, U, can now be axrressed at any
point of the initial-value surface contained within ®he .onvex hull of
the system of points used to obtain the polynomial coefficfents {the CFL
stability criterion requires thut the interpolated points lie far enough
within the convex hull so that the differential zone of de ondence is alss
imbedded within the convex hull, see Figure H-4). The luast squares
second-order polyncaial for U is thus

= - 2 2. -
= D= (A + A v o Ay 24 Ax2 + B x2)
= (Ry + Agry + Agxy + AuXoXg + Acxy + Acx3) 3(xy)
%%;% = flx,,45) d(xy) {H-86)
=

are relative to point {35).

I
H

where the coordinates X5 and x

il
g

I

ki
Ir order to examine the stability characteristics of the interpola-
2

.
m

tion scheme, consider 2 recumrsive process in which rew values of

]

dependent variabies, U, are calculated at point {5) vsing the polynomial,

b

Eg. (H-66) For this cave x, = 0, x. = O and

1, .y

- - - _ . _] - .
GIS) = a{x, (5] Ay = 3(x,(8}) [(5/2){c #+ ¢ + N)p + 27" + 1)
. ;
-1 -3 -1 -1 .
RV C I L S I A A A B L
{H-57)
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Tre previous values of the dependent varizdles at point {5} are given
Ly Ea. (H-49) withm=n =20, i.e.,

U(s) = 3(x(5)) (H-68)

Thus, since nc change in the Xy coordinate occurs in the process, the
recurssior relation is simply Eq. (H-67), and only one sigenvalue cr
amplification factor results,

S+ T s D s 2T (H-69)

The 3bsolute value of the amplification factor “s shown plotied on Figure
H-5 aleng with the previous results for the basic difference scheme and
for the same range of the freguency index., The ampiification is every-
where less than ane, thus the process is unconditionallv stable for all
Fouriercomponents. Note that the damping > the components is rela-
tively modest
amplification factor has 3 minimum value of 0.956. Because of the modest

t all frequencies, resching & maximem st [ = 10 whare the

o

alteration characteristic., yet unconditional stability, of this recumig.
process, it could well be used . 2 smoothing process for two-dimensional

G3ta,
£D r A Tr ATCE [P s T OLITVYL THTIAOA: ETIAL
6§, STABILITY OF THE DIFFERENCE SCHTME YITH INTERPOLATIY

& numerical schems in which the values of the depsndent variables

3t points {1} througch {4} of the difference scheme zare pbtatned by the

interpolation protess was first used 2nd found to be nimerica
%
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For the purpase ¢f gaining

N I téman -
biiity, & i"psar stabilfity
fxt FA 2 & PN
{1} through {4} of the diffe
S dmnl "~
circumfeorence of 3 circie of




L

j

|

L

| — INTERP ONLY
- —— DIFF SCHEWME e

U
Q

20 ¢

Ix /

MAXIMUM /"
CIGFE N -
EIGENVALUE -

1.0 el

{40 J N

2 2 2 5
-

H ~REQUE M

* < %4 i N,

"

FIGURE H-

o

AMPLIFIZATION FACTORS FOR
INTERPOLATION SCHEME

«ml

WY
dy

Uy gl gl g



Hi

i

MR

of the 2ngle : anu the value for r {the single degree of freedom in choice
for ay and %i is specified by & value of v). The values of the dependent
variables, U, are subsequently obtained by evaluating the interpolating
polynomizl, Eq. (H-66), at each of tha intersection points. The values

of the dependent variables at point (5) are assumed known since point

(5) 2lways coincides with a point in the network of initial-value sur-
fate points. The values of the dependent variables at points {5} and

(6) are expressed in terms of tre ac-umed exponential form of the solu-
tion (i.e., Eqs. (K-23) and (H-24) evaluated for XZ(S) = x3(5) = 0},

which yields

u(s) = Bxy + %) (K-70)
u(5) = 3(x;) (1271

d(1)

{1=1, 2, 3, & {#-72)

]
=ty
)

g
L
1] ]
—
»
ot
~ -
-

where f{I) denotes the polyno=ial function, Eq. (H-68), evaluated at the

designated point of the 4ifference network. The system of differsnce
g I Y

[

equations in matrix form for this cass is the same as Fq. {H-29) for the
basic 4ifference schems, but with the nonzero elements of the coefficient

matrix of a{x,{5)) replaced by the expressions

24 FAYEZA} $I111 Fis =ay
By5 = - {}!’:iif’.ii + “Ai,» HE LK
i£
o e fYsnilefany £{1% £FT Ty z <z
> - T I ™, 7
By, = (1/2;14(3} 1317{cC) 74)
14
A 3 (¥ o T - T

Bo. = = (1/2¥F[4) ¢ #12Y7 fu_751
rx R -5y AT F LW £
23
2 = Y3 T&izes EXE AR T2 D Fi: we
8., = (172} F{L} - 72 i7 {QC) H-751
s
B e FI1% fu_ Ty
S H

L7 < Y £
K ¥4
B = Fi2%
L T ] 1= 5

1< £

KX
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= (172)(f{2) - F(4)}{zC) {H-92)

(172)[£(1) + £(2) + £(3) + £(4}] - 1 {H-93)

Tee results of the eigenvalue analysis for the rznge of fregquency
festors from O to 10 are plotted on Figure H-5. The previous results
&* ine cetic difference scheme and the interpolation scheme are also
snown for coanparison. The scheme {s ciearly unstable since tre maxime
absolute value of the zigenvalues are greater thanm or sgqual ir 1.0 for
ali values of the freguency index. The largest amplification, » = 1.2,
occurs at I = 10 which corresponds to a2 Fourier component having & wave
lergth ecual to twice the network spacing. The relatively smal: value

of the maximss amplification factor accounts for the fact that, in the
numericzl calculations, the instability did not show up unti: 20 to 30
integration steps were taken.

iy

In 2n effort to stabilize the numerical scheme 2z modification ir
which interpclated values of the dependent variables are 23350 used at
point (5) was analyzed for stability. In this case the coefficients
834, 84} and 354 of the system of difference eguations become

Byy = [F(1) + F(2) - F(5)1/(s0) {n.94})
T£ = - Sﬁ}f{'S} {n.97}
Beg = - T(5) (4-36)
211 other coefficients remaining the same., These changes result in 2
Tification matrix, A, in which only the elements 4,,, Ay, and

z &Iz

Pyy T YR30 {1-97)

H

£ - "f" i -t LB Y - - 7 v _ T ~

s VUM RA T2 B (1/230F01) + 7(2; + £(3) + H {n-ca)
AW FTA R -~ - LY f % 4

Aeg = T1/2)IF(N) =+ £(2) + 7(3) « £{4)] - fis {1-93;

g
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The results of the eigenvalue analysis using the revised elemenils,
Eq. {H-97) through (H-99), are shown on Figure H-7, along with the pre-
vious results, for comparison. The revised scheme is ciearly stable at
the higher frequency factors, but nas amplification factors slightly
greater than one at values for the frequency index of 1, 2, and 3, which
correspond to Fourier components having wave lengths of 20, 10 and 7
times the grid spacing. Although the scheme cannct be judged uncondi-
tionally stable because of the amplification factors slightly greater
than one, experience with the scheme has shown it to be highly stable,
The result could be due to the fact that the von Neumann condition per-
mits amplification factors somewhat greater than ora (f.e,, 12! <1+
0{ax)). or due to the stabilizing effect of the ronlinearities of the
numerical scheme.

When interpciation is used, the possibiiity exists of rotating the
mesh and changing the axial step size, 8Xy. The effect of varying these
parameters, on the stability, are shown in Figure H-§. Here the maximum
amplification factor is plotted as a function of the frequency index I.
A 45 degree rotation of ihe Tinite difference network relative to the
initial-value surface grid produced a shift of the point of maximum amnli-
fication from I = 2 to I = 3 with no appraciable change in magnitude.
Reductions 4n axial step size to 0.9 and 0.5 vroduced corresponcing re-
ductions in the maximum amplification; however in each case amplifications
greater than unity were present.

7. SUMAARY

The results of the stability study did not indicate that any of the
schemes investigatau were uncondiionally stable. Hewever, the resuits
dramatically fllustrated the effect of the various modifications on the
numerical stability., In particular the results showed the final scheme
20 be stable at the fundamental freguency (i.e., the frequency corres-
ponding to 2 wave length twice the mesh spacing). The Fouriar compon-
ents corresponding to the fundsmental fregueacy are the cnes which are
normally most amplified by an unstable scheme.

The results of this analysis, and subsequent numericai experience
with the difference scheme, seem to support the general finding that
the von Neumann condition is sufficien® for stalility of nonlinear schemss.
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APPENDIX 1

ACCURACY STUDIES USING SOURCE AND
PRARDTL-MEYER FLOWS

1. GENERAL

The accuracy of a numerical scheme is most easily checked by numer-
ically obtaining the soluticn %o problems for which an exact solution
exists. No exact three-dimensional supersonic flow solutions are known
to exist, but exact solutions do exist for several one independent vari-
able flows which have three-dimensional spatial character. Source flows
and Prandtl-Meyer, or simple wave, flows are two examples of such flows.
Numerical solutions for these two cases using the three-dimensioral al-
gorithm were compared to the exact solution in order to determine the
absolute accuracy of the scheme and also to study the error behavior with
reduction in step size. Throughout the development of the intearation
scheme only numeric 2lations accurate to at least second-order were
used, and consequaentl ‘he accuracy tests provided a means for experimen-
tally verifying the order of the error for the resultant algorithm,

When an ex.ct solution exists the order of the error for & scheme
is e2sily determined by running two cases at different step sizes and
comparing the ratio of the errors to the ratio of the step sizes raised
to a power equal to the assumed order of the error. 1If the ratio of the
errars 13 greater than the ratio of the step sizes raised to & power
equal to the assumed order, then the scheme {s accurate at least to the
order assumed.

In addition to providing tests to detarmine the order of accuracy
for the scheme, the comparisons with the zxact solutions provided a quan-
titative way to readily evaluate the effect of new numerical innovations
on the acguracy of the schems,

e



2. SOURCE FLOW

A spherical source flow was used because of its three-dimensional

geometric character. In such a flow the properties are only a function
of the distance from the source point, and hence, result in only & one
independent veriable flow in which the streamlines are straight lines,
In order to test the numerical scheme a pianar initial-value surface,
for starting the numerfcal integration was generated using the exact
sour

i

flow solution. Successive solution surfaces were genersted numer-

o

al

»c‘?‘ P

he iritial investigations usad a rectangular point network and the
flow was only calculated within the zone of determinacy of the initial-
value surface. Later, circular networks with a conical boundary were
used so that a greater number of integration steps could be taken. At
each sclution point the exact source flow solution was also generated so
that the absoluts e'ror could be calculatad.

Throughout the theoretical development of the numerical scheme the
Tocal truncation error was assumed to be third-osrder in step size and,
since the number of steps required to integrate o 2 fixed point in tne
solution space is the order of the reciprocal of the step size, the ac-
cunulated truncation error at a fixed point in the solution space was
assumed to be second-order in step size. The actual order of the error
in the integration scheme was determined by successively halving the
step size ana integrating to the same fixed point in space. In the limit
as the step size approaches zero the theoretical ratio of the accumulated
errors, for a scheme locally accurate to sacond order, is the square of
the step size ratio.

The static pressure was found to be the dependent variabl: which is
coemputed least accurztsly 2nd thus is the most sensitive error indicator.
The error in pressure &t 2 fixed point in space for three step sizes is

{1iustrations of the process, in Figure 7-1. These
results are for an initial Hach number of 4.0 and a rectangular point
network, as ilijustrated. The results cleariy confirm the second-order
accuracy of the scheme Tor these initial conditions, since tha ratios of
the errors are in each case less than tne ratio of the step sizes squared.

The error along the Zentral streamline is shown plotted versus the

203




N . o P e e
L U A R R R TR Tt P ) ! "

MHOMLIN HVINONVYLO3Y
‘AGNLS ADYMNDOOY MOTZ A0YNOS  'I-1 JHN9SIA

91/ | b/ | | OILYY T¥OILIHOIHL
12/ 1 G/ | (1) 3ISYD OL OlLvY
GOOO0 12000  POIO'O (%) HOMMI AILY INNNIOV
b/ 2/ 1 | 37iS d3LS IAILYIIY
(¢) (2) (1) 3SYD

(2) (1)

d N

3

..I.D’.x

B
BN

NN N
;\/\

el k
I

R ——

I m—.



=
=
-
=
=
=
=

|'|||mﬂIlllllllllﬂllﬂ!l"llﬂ'll'li
“MthMWM$JLWM

1

i

A

the rate of error

nusber of integration steps ir Figure [-Z. Hote tha
=

(73] o

incresse munotonicelly decreasss with th teps, thus indi-
g

cating & bounded error characteristic
h g’

w
*y

ihe effect of the locsl mech numder on the error in 2 source flw
was aiso investigated using the reciangular network and the results are
presented in Figure I-3. The reason tha® high inaccuraciss a2re encounter-
ed 3t & Mach number near um ity is due.at least in part,to the f

the equations aoproach & perabolic character, the fasily of wave sur-
et2s, In addition, the gradients in velocity and pressure are greatest
near a Kach mimder of unity which, undoubtediy zlso contribuies to the
increase in error.

faces Jegenerate to 3 single surface, and the numerical scheme degener-
{

wod
L]

A conical boundary and 2 c¢ircular netsork of points 2a the initia
v2lue surface wore used with source fios initial datz in order to test
the accuracy of the overall schame. In addition, this approach permsits
the solution i6 be calculated beyond the zone of determinacy of the
initial data. This approach is {lluztrated in Figure I-4, Tre result
of this type of error study for an initisl Hach nusber 2qual to 1.05, 2
10 degree source angle, and for three s
function of 2xial length from the in

wbn
o Y )
by

spectivaly. The cosbination of 2 10 degree source angle and 2 Hach
pumber of 1.05 produces 2 in

exists at the throat of 2 i

and I-5 4o not show the expected error reduction between the two largest
step sizes, cases { 4 s he

the two smaller ster sizes, cases {2} and {3}

second-order characteristic. Thes §

have second-order accuracy but that the nonlinear aspects of the scheme
i rel i
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the initial-value surface is partially explained by the large effect of
Mach number shown in Figure I-3. However, nc explanaticn can be offered
for the fact that the accumulated error actually decreases in the direc-
tion of integration. Normally the accumulated error would pe expected

to continually increase {n magnitude with the number ¢f integration

steps as was the case for the higher Hach number results {sse Figure I-2}.

3. PRANDTL-MEYER FLOM

Essentially the same error studies, which were made using & source
flow, were repeated for & Prandtl-Meyer flow. A Prandtli-Heyer flow is
also & one independent variable flow (i.e., the properties of the flow
are functions of the turning anglie only}, However, the Prandti-Meyer
flow differs from the source flow by the fact that the streamlines are
curved, whereas the strecclines of a source flow are straight. In such
a flow the streamiines are plane curves and, at a further test of the
numerical method, & coordinate rotation was usad such that the planes of
curvature could be arbitrarily oriented with respect to the referance
vectors of the numerical network.

Here again & computer program was written in which an exact initial-
valus surface was generated to start the inteyraticn and the exact solu-
tion was calculzted st each solution point in order to obtain the abso-
lute error. In the region of simple wave flow the streamlines are curved
and boundary point calculations could not be convaniently included as was
done in the source flow, Thus calculations could only be made within the
nunerical domain of determinacy.

The networks for successive halvin
accunulated errors &re shown in Figure

of the grid spacing and the

-7. Thesa results were generated
for an inftizl Mach number of 4.0 and a turning angle of 10 degrees.
These results also confirm the second-order ervror characteristic of the
scheme (f.e., the ratios of the errors agree with the ratios of the step
sizes squared). The accumulated error versus number of integration steps
is shown in Firure 1-8 and the accumuiated error at a fixed point versus
the initial Hach number is shown in Figure I-9. These results are gssen-

g
i

tially the same as the corresponding resuits for the source flow.
The studies in which the plane of curvature of the streamiines was

R
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rotated with respect to the base coordinate system produced ihe results
shown In Figure I-10. The error wes minimum when the flow was rotatec 43
gegrees and the bicharacteristic network just straddled the plane of
curvature of the sireamlines. In view of this result, it was deci<ad to
use the plane defined by the pressure gradiart and e velccity vector
as the reference with which to fix the sinale degree of freedom in the
orientation of the Licharacteristic network. Tne network was orientad
so that 1t sysmetiricaliy svraddled the refersnce piane. It should be
noted that the effect of rotation on the accuracy was very small, see
Figure 1-10, and referencing the network to the pressure gradient was not
essential.

The accuracy studies for Prandtl-Meyer flow revealed an additionail
phenomenon of some significance. When the initial-vaiue surface included
2 portion of the uniform flow whi. precesds the region of simple wave
flow, significant increases in error were noted at the junction of the
two regions. This is due to the fact that the derivatives of the fluid
nroperties are discontinuous at that point. Tne interpolation scheme
using second-ordsr polynomials assumes continuity in derivatives up to
sacond order and as & result the accuracy of interpoistion drops to first
order in the neighborhood of the discontinuity. Ths accuracy of the
nimarical scheme at such points could only be improved by locsiing the
discontinuity surface throughout the flow and using one sided interpola-
tion formulas on each side of the discontinuity surface. Fortunately,

<

flows having discontinucus derivatives are seidom encountersd in practice
since sharp corners, in the mathematical sense, do not physically exist,
In sddition, the flow boundsries are usually required to be smooth as 2
result of structural consicerations,
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