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ABSTRACT

A new method of characteristics numerical scheme for three-dimensional
stayflow hus been developed which has second-order accuracy. Heretofore

-- all such schemes for three-dimensional flow have had accuracies less than
second-ordar. A complete numerical algorithm for computing internal super-
sonic flows of the type encountered in ramjet. scramijet, or rocket propul-
sion system has been developed and progrased for both the IW, 7094 and
C3C 6500 computers. The method has been tested for order of accuracy using
the exact solution for source flow and Prandtl-4leyer flow. The results of
these tests have verified the second-order accuracy of the scheme. Addition-
a]l accuracy tests using existing methods for solution of two-dimensional
axisymetric flows have shown that the scheme produces accuracies comparable
to that of the two-dimensional method of characteristics.

The computer program has been used to generate the flow field for sev-
eral three-dimensional nozzle contours and for nonsymietric flow into an
axisymetri c nozzle. These results reveal the complex nature ofl th-.
dimensional flows and the general inadeqiaacy of quasi-tnree-dimnsional
analyses which neglect crossflow.

= An operationally convenient computer program was produced. The pro-
rem has the capability to analyze noni soenergeti c and nonhcxientropi c
lows of a calorically perfect gas or homentropic flows o-! a real gas in

chical equilibritn. The initial-value surface options include unif~orm
flow, source flow oraxisyzmetric tabular data. The nozzle boundary
options include conical nozzles, axisymetric contoured nozzles and sup-er-
elliptical nozzles.
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SECTION I

Z INTRODUCTION

1~~ 1. GENERAL REMARKS

The method of cIaracteristlcs for two-dimensional axisynwtric,
ME_ supersonic internal f low has been used for aproxirnatz1y twsity ynnar." in

__design of wind tunnel nozzles, rocket engine nozzles and air inlets for
supersonic aircraft. The most sophisticated design techniques vuge the
calculus of variations to establish the boundary conditions suck that an

- optimum design for a particular set of constraints is produced. Subse-
-~ quently the method of characteristics is used to establish the flow field

and the nozzle or inlet wall shape. While these methods for two-diman-

Own sional problems have become highly developd, equivalent methods for three
independent variables are in their infticy, reoughly eqivalent to the
state of two-dimensional msethods scqe twenty years ago.

Mail The reasons that the development of the three-dimensional methods
has lagged are three-fold: 1) the three-dimensional problem Is fundanmen-
tally more difficult" than the two-dimensional problem; 2) the required
computer capacity for three-dimensional calcula-tIons has only been

___achieved in the present generation ofl digital computers; and 3) applica-
tions requiring three-dimensinnal supersonic internal flows were not fre-
quently encountered. In fact,. the need to cdiculate thle external flow
about supersonic vehicles flying at angles of attack has been the princi-I pal motivation for the existing fhree-dimuensional work.

EI At present, however, there are several applications which require
___ three-dimensional supersonic nozzle flow calculations. These include

nortaxisyumtric flow into an exisy, ,Itric nozzle, nonsyaametric distur-
___ baces n a~syetric nozzles, three-dimensional nozzles For rocket en-

gines having nonsym~tric exit area constraints, and three-dimensional
nozzles for scraiiet systems where a high degree of integration of engine
and vehicle structure isdsred. The scramijet nozzle application was

.0i



the motivation for this research,
The objective of the present reseacth is t1e deeo1 n ofZ1ra1-

cal and accurate ntamerical irtthod. and associated ,W~iputer prog.rem, -For
analysis of three-dimensional supersonic exhaut. nozzle flows. The chro-
nological development of this work is docwmented in references (1) and
(2), which are year-end progress reportt for United State., Air rorce
Contract Ho. F33615-67-C-1068.

2. THEORETICAL, REM4ARKS

The equations of motion for a steady supersonic flow of an iriviscid
fluid in three independent space variables are well astablished. The
equations can be classified as a system of quasi-linear, fir'st order,I sytinetric, hyperbolic partial differential equations. The number of de-
pendent variables will depend upon the assumed nature of the flow, i.e.
number of chemical cue-onents, whether or not chemical equilibrium is

___ assumed to exist, existernce of vorticity, presence of condensed phases,
etc. The mathematical characte- of the system does not depend upon theIi specifric nature of these assumptions and, consequently, neither does the

theoretical method of solution. However, the numerical ;0gorithm zind
the associat94 computer progra-m will depend upon the specific systemn of
equatians.

The finite difference integration schemes which haye been proposed
and/or used for the solution of syst',-.s of hyperbolic partial differential

I equations fall into two categories: 1) schtes based on charf-cteristic
directions and 2) schemes based on the coordinate directions. Variations
of both approaches have been investigated both analytically and ntumer-

I ff -ically; however, no one mthod has been shown to be superior for all
F_ problems. N~umerical stability, accuracy, and time of computation are

tChe factors of primary im~portance in evaluating a particular miethod.
Secondary factors such as ease of progr&-ming and ease of incorporatiAng
boundary conditions are also important. In the subsequent text, the more
pertinent efforts of investigators in this field are briefly discussed

in an attempt to establish a "state of the art".

2



3. SLWIVFY OF THE LITERATURE

a. General. To a limited extent the- ntgterlcal tability and ac-
curucy VI fintite diffafkence schernaeS can be investigated by ertca
methcds. These w~thods provide certain necessary conditions which should

bsrtisfe by arw numrical schene before proceeding with its nLmerical
irwle-entxtion.

~ - Courant, Friedrichs and Ley (3)1 have shown that a necessary condi-
tion for- stabill-ty of numerical !methods for solution oil linear hv 'er-

kil ic partial differential equaticss vith constant coefficients is that
the dwsain ul' dependence of the differential system qmst be coptained
within the convexA hull of the difference system points in the finitial-
value surface. For three-dimi-nsional sup-ersonic flow the zone of depen-

IU dence of the differential system consists of the area enclosed by thie
WEIsctot of the M~ach coiold, thrauat the solution point, with the

initi al -value surface. The convex hull ofl the differencing scheme is
the polygon formed by conneecting the outemost points of the differencing
schewe in the I niti al-val ue surface. Hahn (4) 1 has shaen that the CIR
c-iterion is both a necessary and sufficient condition for stability ofIsim~lcial differancing sche~res, i.e., schemes that use L + Ipoints on
an L dimensional initidl-vaUZZ surface to determine -, new solution poinlt.

The wn Neumann condition, Refs. (5% and (6), is a stronger st.ability
criterion which revifres that the elgenvalues of the anmplification matrix

be less than or equal to one in absolute value. The von Neumann condition
is also a sufficient conditio.n for analy-ic Initial data. it the govern-
ing differential equations have variables coefficients and are nonlinear,
then no e.-act test for stability exists. The usual approach .to require
that t-he CRLcndto be sati -ed adto apply the von Neumeann condition

__locally afarlnaiaino h ifrn.1leutos e.(5). E-

perience to date has verified the soundness of this approach. Thus any
numerical sche-re which does not satisfy both the CAR and vton Netwiann con-
ditions is regarded as unsatIsfactorty.

The absolute accuracy of a nipperic-0 slchemea is diffi-ult to establish
without actu-Ally comarino numrical results with an exact solution. How-
mvr, a desired order of accuracy, which governs how rapidly the solution

3



converges with reduction of the step size, cut b achieved by us;ig con-

sistent approximations throughout the ntsericil sch.Be. For a particular

scheme, the absolute accuracy will increase as the irder of accuracy is

increased. It is reasonable to expect that different scheimes having the

Ssarne order of accuracy will have comparable absolute accuracy, although

there is no guarantee of this.
A more accurate schem will permit the use of larger step sizes and

thus fewer points need to be computed. In three independent variable

E problems, increasing the computing Interval by a factor of two results in

a ,edu:;on in the nw.ber of con-uted points by s factor of eight Thus,

a ore accurate but more comlex, schee. may actually require les total

comuputer time.

b. Ithod of Characteristics. The concept of characteristic direc-

tions -as first discussed by Massau "(71 in i899, and since that tim the
m-ethod has been widtly applied to the solution of two-di-ensional prob-
lems.* The ,-thod of characteristics has been very successful in two.' -

dimensional problems recause it provides a %mans by whic:i a system of

-artial differential equations is reduced to a system of coupled ordinary
- differential equations along characteristic directions. The utility of

the mthod of characttristics is weakened when three independent variables

are considered because the system of equations can no longer be reduced- to

a system of ordinary diffemential equations. Instead, the equations can
only be reduced to a system of partial differential equations in a space

__ if one lower dimension, i.e., a characteristic surface, and any intepra-

tion scheme necessarily includes nwr.erical evaluation of derivatives
M at least two independent directions.

The characteristic surfaces for three-dimensional stationary flow

are shavn by Rusanov (S) to be surfaces tangent to the local Hc-ch conoid,

M wave surfaces, and surfaces which are cmposa4 of the stream-lines, stream

surfaces. Thus, two Infinite f-li. I- of characteristic surfaces exist.

The syster. of d--ifferenta eQuat1ons reduces to an interIor operator,

i.e., a characteristic co-atibility relation on these surfaces.

•t A r oveif l.e ! i_ raturF ?or the method of characteristics in t o in-
depe .it variableswill not be given here as the voltme of such liter-
ature is enor.ous and has ony indirect bearing on the problsm at hand.

A



Num erical integration along a systM of sucn surfaces is theoretically

less complex than integratIon along nonc:aracteristic surfaces where

-derivatives with respect to all three independent variables necessarily

appear.

~A nuwber of investigators have proposed nnerical schemes using the

characteristic cor-p9 atibllity relations for three independent variable
Mproblems; hoever, only a few have developed complete nLofericai algorithrs

and obtained results. Good surveys of the various approaches which have

Z een taken are given by Fowell (9). Thoson !11,, and Stron (11).

Al sch-e-s usino the meathod of characteristics are based on the

Wfact that the original syst- of hyperbolic partial differential equations

can be replaced by an equivalent system of independent differential

PIN characteristic comoatibility relations. Frequently, the question arises

wtether or not .t! the differential coopatbility -elations wIch are

used in a particular approach are independent. Rusanov (8) has investi-

_gated both the nter of independent characterist- com-patibility rela-

- tions which can exist at a point on a particuir- cnaracteristic surfacer" I . C po s ble

and the nt-'er of such independent relations co'idering all possibl

characteristic surfaces. Two infI-n-e failies cf differential copati-

bility relations exist which co-respond to the two families of character-

- istic surfaces. Thus, considerable f,-ec exists in the choice of dif-

ferential systets.

UThe nmber of independent characteristic differential relations at

a point cannot exceed the na_ber of original differential equations which
W comprise the systz... For a c:mplete system this number will be just equal

to te nu.Aer of dependent varia.les. Rusanov found that a maxi- of

three differential wave surface comatibi-lity relations are independent.
In addition, he obtained the conditions under which the wave surface and
strem surface differen Ial compatibility relations are dependent. It

is iwiortant for th discussion of the various numerical schG-mes to note

that these criteria for independence apply only to differential relations

at a point in the solution space. Specifically, they do not apply to the

difference relations wich are obtained when the derivatives are replaced
by fIn!te differences. ThIs i s so because the finite difference relations

are approximate integrals of the squations and are all independent, at

_
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Eleast to within the order of approximation.

In the application of the method of characteristics 1-o to indepen-

__ dent variable problems, numerically stable schemes result and second-

order accuracy is easily achieved. For three independent variable Drob-

least-, stble scher-es do not ,ecessarily result and second-order accuracy

Sis mich more difficult to achieve. There is no way a prio-i to assure

statility of a schem, and the CFR and Yon Nei-nann stability criteria

must be applied to each schere which is devised. With the exception of

the work by Butler (12), all schemes which have been proposed for applying

the method of characteristics to three independent va-iabie probim-s have

had only first-order accaracy. Some of the schemes may be more accurate

than others for a finite step size. However, all share the characteris-I tic that the local error approaches zero with the square of step size,

lan whereas with Butler's scheme, the local error approaches zero with the
cube of step size.

If in formino a finite difference scheme, the differentials are sim-i ply replaced by finite differences and the coefficients and remaining

terms in each equation are evaluated at one of the end points of the fin-

ite difference network, then the accuracy of the resulting schemt I:

first-order in step size, i.e., the equivalent of the Euler scheme for

ordinary differential equations. The nu-er of independent difference

relationships required for schemes having first-order accuracy is equal
to the inter of independent variables of the system. Soe irivestigators

have used more than the miniwua nmber of finite difference -elations

required for a determinate system. The additional relations are Indepe-

dnt, and as a result, the system is overdetermined such that multiple
S solutions are possible. Such an overdetermined system was solved In the

least squares sense by Chu, Niemarand Powers (13, 14). Multiple solutions

N were obtained and subsequently averaged by Strom ill) and Sauerein (15).

If higher-order approximations are used for the differential rela-

tions, then addItional unknowns will be introduced ard a greater number

of independent relations must be used. The additional unknowns will be

in the form of higher-order coefficients in the power series expansions
or uivalentiy, the derivatives of the dependent variables at the unknown

or~ . v eqniealndlnt reedeivtiions h

Doint. Butler (12) has shown that only two aditinai 5ndependent relations
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are necessay for a nu-rical schene having second-order accuracy. Un-
doubtedly even higher-order schem-s ctvuld be devised; hover, the nier-

ical colexity would probably increase greatly as the order "f accuracy
is increased.

-It is i-mortant to note that the mzt-der of independent finite differ-

. ence relations which must be used in a particlar numerical scheme is not

only a function of the number of dependent variables of the differential
Esystem, but is also dependent upon the order of accuracy of the scheme.

This fact, as well as the imortance ef the domain of dependence for a
M point in the solution space to n"merical stability, will help to clarify

some of the differences between the various n,=merical sch 's.
A variety of finite difference sches having first-order accuracy

have been proposed. Two schemes, the hexahe-dral net-work of bichar-acter-
istics and the hexahedral network of general characteristic surfaces,
were proposed by Thornhill (16) in 1948. The resulting networks for these
two schemes are illustrated in Figure 1. These methods were developedV$..........f ,, I,, .- - -. y of char-
for an Irrot-Wonal flow, and in this case, only a ,igle

acteristic surfaces, the wave surfaces, are obtained in t-e analysis.

The envelope of all such surfaces through a point is the Mach conoid,
see Figure 1. Later numerical work by Saerwein (17) with these schems

ON[ showed the first to be unstable and -the second to be stable. The cause
-- of the instability is now recognized as beirq due to the fact that the

C. stabIlity criterion is violated, see Ficure 1.

Moeckel (18) in 1949 described a method of characteristics scheve
which was based cn the work of Ferrari (19). T-his nethod consists of
applying the characteristic co-npatibility conditions along the intersec-
tions of two characteristic surfaces with two reference planes and the

intersection of the wo characteristic surfaces with each other. This
scheme is known as the network of Intersections of reference planes and
is illustrated in Figure 2a. T"h major obJection to this scheme is that

_ the CR stability criterion is violated, Rif. (5). A further difficulty

in applying this scheme is tAt additional boundary conditions are re-
ouired on the end reference l-.es, such as C Dane of synuietry, or iter-

- a4on is required if the reference planes are chosen as radial planes
throu a fixed axs. The iteration is reaulred to obtain closure of

F 7
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the finite difference solution buetween the first anvd l.ast*% radial Planes.
Based on the w-ork of Titt (20) and Colb-urn and Dolph (21), Bolt (22)1

his suggeste a net*port that is fctr=-d by the Intersection of two ch-ar-
r Atri stl .Ic si.rfaces emnitIng frcn= two lines in the Initial-value surface.

In this method the cc=atibi lity equati-ons are applied along blcharactar-
istics within t'h tw -hrceristic surfaces, see Figure Lb. It has

beenr pointed out by FlMe and Leon (5, 6) that this scheme violates the
CSR. stti'-ity critation, an-dte prnote further rodlflcaticn of Hallt's
sctez to produce an Iclicit Prismatic characteristic surffice r-ittwork3

MW which satisIFies tIne CM. stabtility conition. Apparently no attea--ts to
;me ei ther of these methods have been n-do.£1 MothertiouSs~rccn of Vie reference ptnt methods 'is that
one o f th finite diffear-rze relatiorahi-Ps used in the solutIo-n for a

25ont it a-vlied alorg a direction Aich lies ccoletely outside the
of d~n,~4qrie of te tsnk o orn. ile -. is is desirable fro a:-tab-liftv S, '''sLndsI &

M-__ . .i sods tlblC 'O &cciuiacY. Accuracy is criieat-
-- 4tt~ten tVe di fference- scti.ene zone of deoendece- just exceds Vie U-44-,

sfertnPtiail 5ysst= zone- of depoit-denvce. Further, as P-tiiftd Out by Butler
3(12), diff 4cu'Vtes rsi-Od !:e en-contered at, -boundaries fonnejd by shock

ne wves, particual--ly flmn the princIple diec iof pronc kation of the
shock is in, "ME dIrectionx e the ordi'nar. curve-- usedl ifl th inteV.ratlorn

A ethod urslna fitersection. s of characteristic sur-faces with a single
refeenceplan, caled, the rethod ofI near characteristics, wa eelod

by Sae (23, 2-4) anid hkolt (?S5, 5 and used f r nurer-lcmvtlo
by Harettli (-2, 28)- and Riki di ("29, 30),.-ThIs riethed appears to be the
S4 ~est f'irs-t-order scro-me which has b-en devised and the netror-k Is

41 ~ '~ri - The Nod is3 nYe- simziiar to other reference
wDw inc sdie- exceptv that -1- tet cross derivyatives areI~-4te r the -- s-ae.rp-.e unl 'ie ot.-ar raativtc2 use a

fini1te dfference a-onroxlmation t h-s-- rta derivat-ives Alone4 !L.I rdi r oir a0? -A d -m7c tf n A h M-Dit. Raic .01 .

ha=me- Y-sw-c- hsa.-;CzhfrVAcluil.Iro -;- b

Ewn~ oisAn h slS e t X ~n. .sahe4

areIi~e waotbis f--oo hr .h
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WE rerence planes can be taken as meridional planes through the body and
.he axis polnt . do not enter the calculation. However, it is not clear

SRI that this method could be applied with equal success to more arbitrary
three-dimensional flows,

The near characteristics scheme h_-3 two potential problem areas.
__ The most significant is the fact that the near characteristics are in
WE general outside the zone of Jpendence of the unknown point. Only Mhen

the reference plane contains the velocity vector will the near character-
ME: istics correspond to bicharacteristics and define the true Zone of de-

E pendence of the new point. Rakich (30) has pointed out that this can-
dition helps assure that the CFL stability criterion is satisfied. While
this is true, it also resultz in a more rapid error growth due to the

fact that the speed of propagation of numerical disturbances can be sig-
nificantly greater than required for stability at high yaw angles. A
second potential problem is the fact that the convex hull of the differ-

wk ence scheme will depend upon the manner by which the cross derivatives
__ are evaluated in the Initial-value surface, and thus, whether or not the
__ CFL condition for stability is satisfied.

S r~~oweli (9) in 1961 applied the he-Ahedral method ofl bicharactaristics
which was proposed by Thornhill (10), see Figure Ia. Only hand calcula-
tions were perforrmed for a few points and the fact that the ;chent* is
numerically unstable was not discovered. The unstable characte, of this

__ scheme was discovered by Sauerwein (31, 32, 33) in his attempts to apply
it to two-dimenisional, uns-teady flows. Sauerwaln subseqjuently modified
the scheme such thai; the CF. stability condition was satisfied anid was
able to obtain useful results.

Tsung (34) in 1961 used the hex^ahedral method of characteristic sur-
facMes r.oposed by l1hornhill (16). Figure lb, which satisfies the CR.L
stability conditio, for calculation of the irrotational flov ever a Cori-
ical boatti 1ih4 lipi cross-section and a deltawnatngeo

attack. No nwperi cal I nstCabiIi ties -were encountered and resul ts were
obtained which agreed closely with exper4Mmental results. Reed (35~, 36,
37) also has used the method of hexahedral characteristic surfaces for
calculating rotational flow in nozzles. Nwaverical calculations were only

mde for axis Americ flvws "or purposet of checking the program.



Pridinore ?rowri and Franks 1'381 in 1965 reported results of numerical
stability studies using a redundant systemi of four bicharacteristics
which were solved dr satisfied in a least squares sense. The question
of a preferred nrientation for the difference network was investigated

MINE in. which two ofl the bicharacteristics used lie in a plane defined by the

WE_ velocity vector -and the streamlire nonmal. Chu, Niemarmand Powers (13)

M Al -in 1966 repo'-ted results which were obtained usirtg the redundant char-
E ~actaristics scheime, see Fiaure 3b. Apparently, stability problems mroti-

®R_ vated the use of the redundancy meathod, as i, 'is P'eported that the re-
cundancy method showed marked stability improve-irent. The convex hull of
the differene schene does not satisfy the CFL stability condition if the
points used are those from previous calculations. When it is necessary

to~~~~~~ itroteIteiiial- val ue surface, the Convex hull Iof the di f-

ference scheme -1,( increased a.%d the CFL curdition can be satisfied. In-

terpolation was used in the reported calc~iations, 4nd it was apparently
sufficient to stabilize the method,

A71l of the methods which have been discussed thus far produce a

solution which is accur-ate to at least first-order in step size. TheE l> method developed by Butler (12) is unique in that second-order ac~uracy
clearly inaintained. In addition, Ithe method originally proposed by

bqtlir does not involve integration along a finite number of directions.
The nwimerical relatiois which result involve integrals ever the convex

hull of the Marh conold and the intersection of the stream'sne with the
ini tial -value surface. However, In. practice the integrals are evaluated
b~y weighted swirmatio., over four particular bicharacteristics. The net-.- work is illu st4rated in Figure 4. This schen-e was prograined for two-
dimtnsional unst etciy flow by Elliott(39) aO~ Richardson (40) and n mer-

ical results were obtLained. The numerical results compared favorably
hw!ith experinental values; however, no inforiatior is availlable on required
tomputing time or relative step size used. Thus a comparison with -e-

sults obtained using schemes having fIrst-order accuracy cannot be made.
6 &u 1 1 pr POposed apnroaciI for three-dinmansional steady flow -is

analagious to tChe Hart--..e (41) scheme- for two-dimensional flow. The nioner-

ica-i hccuracy is the same order (i.e., second order), and the method for

comiputinq the iocatVOn of new points by the intersection of streamlines

with consecutive coordinate planes is the same. In contrast to the

;3
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VAr-jetyv of first-order networks which have ba n -oposed, the or.ginal
secand-orda-cr scheme- proposed 5y Butler di-.,;. riot al ilv any I'eedur.,it- the

cho~ce f netwrk. T. copt~ iv squation i s integrated over all
bicharacteristics- passing through a poiflt; i.e., the Mach cone, and in
effect all bicharacteris tics are utflized. When the integrals are re-

placed~~- byse~tion -ver Oorpatcular bich - ct ristIcs, one degre

of fieedwn is Possible in the choice of network orientation.
a. Finlite Difference Methods. The use of ordinary finite differ-

WE ence me~thods for solution of the steady flow equaitions in three dimensions
has glso received considerable attenti on in t.he past several years. Since
the advent of high speed digital c~puters, more and mre attention has
been giv en to ntmnrical schlemes for integration of systems of partial

difrentIal equatzons by sin -y replacing the derivativesbydfencI quotients. The books by Richtmeyer (42) and Forsyth and Wasow (43) treat
tChe elements of this approach. The major problems which are encountered
in applications of ordinary finite difference methods are nmerical sta-
blity and accuracy. The mast serious accuracy problems are encountered
in devising means to satisfy boundary condi'tions on surfaces which do not

correspond to coordinate phnes, thus necessitating interpolation or ex-
trapolation. Even when the boundaries correspond to coordinate planes,

a loss of accuracy occurs because the derivatives at the boundaries -an
kM only be approximated by one-sided difference quotients.

Thore-n.D'Attorre and Nowak (44, 45, 416) have recently completed
programs for calculatIng the interaction region of rwltiple rocket engine
exhaust_ u.sinq a Lax-Wendroff (47) type differencing scheme. As a check

case, the flow flele. of an anxisynirnetric jet has been calculated and the
r-esults are in excellent agreement to those obtained by the two-ditnensional
method of characteristics. Bahenko (48) has also used a finite differ-
en=- method for Caffputing ;the three-dimensional flow over smooth bodies
'44th appa-.ent suc.cess.

TH~.E GENERLAL NUMEPRICAL METHOD

T'he objrjctive of this research is the developmept of a ntmrserca;
method for solutiloo of a particular system of partial differer.tIal equa-
tions (i.e., the equations of mnotion for t steady supersonic flow.

_ 15



HoweTver, the general method is ApplicAble to any systen of~ quasi-linear
hyperoiic partial diffrenti~l equations fo r which the Tharacteristic

__equati". consists of a qudai factor and erepe-ated linear factor,
see Appendix A. Eq. (A-17).

The nuaarical method is based on the work reported by Butler in
Ref. (12), with the exception that an iprevent is ma to the original

__-w-thod which results in a considerable simplification of the final nLMer-
icsal scheme--. The account of Butler's work contained in Ref. (12) is ex-
treme-ly brief and for th.IIs reason AppeMix 8 is a redevelow.ent. of the
iF.proved approach with tN: in*:erme.---dIate steps and theory included. This
information as well' as tbat in Appendix A is not essential to a general
understandina of the nwerical schme for supersonic flow, but is in-

ndond for '-he mesircdw who may attem't modification or extensioni o-F
the method to other systm .
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GAS DYNRA'HC .OEL

1. GOYERNING EQUATIONS

The superonic motion of mo-t comressible f.jics encountered in

S propulsion systems can be accurately described by means of the governing

equations for the motion of an ideal fluid. The major assumptions which
Scnstitute the gas dynamic odel are: i. continuum, 2. inviscid,

3. steady, 4. strictly adiabatic (i.e.,each particle of fluid is con-
MOR sidered to be an adiabatic system in addition to the overall system
Mbeing adiabatic), 5. frozen or equilibrium chemical co-nosition, and
wME6. w-oth initial data and boundaries.

5 The governing equations for such a system are: the continuity

equation'

ui(o/.x) + O(;u1 /ax1 ) = 0 ()

E
Oand the Euler o,tLe.u equati ons

p uj(auI/axi) + Wp/ax, = 0, (1 = 1, 2, 3) (2)

wtere the uI are the vclocity com.nents, o is the density, p is the

pressure and x is a systm of rectangular cartesian coordinates. These
equations, Eqs. (1) ard (2), are a system of quasi-linear partial differ-

ential equations which govern the three-dimensimnal motion of an ideal

fluid. Howver, they do not form a c~lete system since the nuter of
dep.ndent variables exceeds the no r of equations.

A cowlete syst-em for a cm-pressible flow is obtai e by expressing
the derivatives of density in tern of derivatives of tne velocity corn-

_pwntse and the pressure. This is accowlished through consideration of

'Repo-ated Indicies imply usaaion oam there I to 3 unless stated
otherwise.

RawE
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the first law of thermowdyna s for a particle of fluid haAng cortilous 

property variations, i.e.,

MLd--so 60-w 431

where de is a differential change in inte .al .1ery 4 ei is the ht'.
___ transfer to the particle and ft is the work done : . the sur 'vindls.

As a result of the strictly adiabatic &sstption, the heat transfer 6q
is identically zero, Further, as a rult of the inviscid assuptlon
or shear forces are presfnt and the only fom of w"k dor--,e 'y the particlk

is the volu= displacemnt aga4nst the ;ressure of the surro. ings, i.e.,

pd(l/p) (4)

Thus the first lw for a particle yieldis the result

K dh (l/p)p (5)

I.where h is the particle entheIlpy (i.e., h - e + p10). The general therw-
S dynamic equation for a particle of the fluid, with the composition ether

frozen or in chemical equilibrium, is show in Appendix C to be

Tds a dh - (l/o)dp (6)

where T is teu erature and s is tropy. Using the first lew result for

the particle system, Eq. (5), the general therodyna-mic equation rediues

I ds 0 (7)

I which, when expressed in tem of spatial derivatives of the entropy,
yields the result

u1U(siax4) -Q (8)

Thus the entropy is a consta t along each streamline of te flo. with
the value deter-led by saw initial conditi..

The speed of propagaton of an infinitesti l and isentropc distur-
bance (i.e. th sound speed) Is glven by

18



a (p )5 , c1 or e (

where the subscript ci or e denotes either frozen composition, c., or

r chc ical equilibritm, e. Since the entropy and atoaic corposition are

_constant for a particle of fluid, the partial derivative in Eq. (9) may

-be written as the ratio of property differentials for a particle, so

that along any streamline

a2  dD/d 
(10)

or wen the particle differentials are expressed in tems of spatial

Pderivatives

Cu(iaP a U-/phx) (l

Equation (11) is used te eliminate the spatial derivatives of density

from the continuity equftion, Ea. (1), and thus the numbr of dependent

variables which appearsin the system of equations, Eq. (1) and (2), is

reduced by one. The resulting system of equations can be written in a

convenient matrix notation using the Kronekwr delta

PUi o0 6 '

o oui  o 21)

030 (1nu

3 -

A614  oacoa 63 U, ali Oa -3i M X

AlthouCh F.t. (12) is & de-r ina t sr tF of Quasi-Inear dIf"er-

ential aqutp , the dvsity ain the spt o sound tic'i appear in

the coefficient r-!.i-x, m st bIe exressed in ter 0- he dependent var-

iables Nfore. a solution can be attited.



2. THERN'V4UY t!CS OF HE ;LOW

e additional relotionships required for solution of the goveiring

equations are obtained by consideration of the tqermodyna'c properties

of nhe fluid. The fluLid is asst-ed to be produced by the cctustIon of

an o41dizer and a fuel strea, each of wich enters the couyistor with
uniform co--ositici and stagnation enthalpy. In thi,- case tthe stagation

)etapy is a singl-- valtxe function of the oxidizer to fue rai tth

stagnation enthalpy of the individual stre includes the heat -of for%-

- tion). Generally spatiti variations of the oxidizer to fuel ratio are

M present within the cobustion. chaber and thus ccrrespoding variations

in the coepositlon ad stag-natIon enthalpy of the coustion products

will result. As a result of the invIseid arid strictly adiabatic assiW-

tions, the atoic c=osItion and stagnation enthalpy art constant along

* str il nes so that

UH/x-) 0 (13)

-~~ 2 ,5-where H z h + a /2 Isee Apendix C).

In the general case, particularly in scra=Jet system, the staaipa-

S tion pressure after coustion will have spatai variations due to vari-

=! atlons in pressure and velocity of the individual stre= entering the

Off _: cobustor and in the local oxidizer to fuel rato. Hftver, in the ab-

I sence of discontinuous property variations the stagnation Pressure can

also be sh-wn, see Aenrix C, to be constant along tMhe stelifes of

the flow , i.e.,

Iui('P!?x i = 0 (14)

The existence of shock waves within the flow has been illicltly
excudd n heflo ~elu~ aresutlt f the '+'4 ,F cnl rI~

,oer'vva - eo F -o u(P

poerty a ri at. sock waves are included, E... 13 for con-

3ervation of stAonation enthalpy reians vali t,. out the f l o'Iw-

ever. staqn-.tlon re-ssure is not conserve-d and 4-e shc-ck =st be trated

as a dscontinuity sura ce across which t.he L.'in- onIOt conditions
-amply.

r- -
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The cm-mustion. prcd-lcts produc~ed by coutio of unifcrm oxidizer
__ rdfuel stream fortsn a simple syst ii' the stagnation l state. Thus

specificat-Ion of any t--- ther,,,dynau--c propertles is sufficlent to de-
- WIN fine the stanatien, state. The stagnation enthailpy and Stagnation pres-

sure are the tost convenient choices for Independen-ft variables to definea
the stagnatIon state. Since both of these prapertles are constant a~lon
strew-lin-es of the continuou-s Property flow, the reaining nr-oprties

are onte-dImnsiona unctions anrd -are uniquely deternmined by specifica-
r ion of the local pressure. Thus the global variation of densitye and

'the saed of sou.nd cam. be fanctionally expressed in term- of the pressure,

statgnvtioii pressue anM stagnaton enthalpy, (see Akppendix C), i.e.,

w and

__For a W...lyan calorically oe*rfec-?t ges the relations for the density

and speed of sound are analytic functionts.Fowitcvn tsst

having. either frozen or equi1itrit- chmical ceeposwi t ior. with, rea ga
effects, the density n speed of sound otst te obtainted frim t --m-

* chWcal calculations- InP U's caethe relations, ECts. (15) amd (16),
S are usually obtained as tabular fhsrctIons.

The gas dynmmct*e contsists of the eqat-oi for conservation of

r-ass enth--, E-. '12, the equations for conservation of the stag-
nation pressure and enthaipy, ES. (13) and 014), and.he fun.ctiortpl re-
latlons for the density and spec-d of svud Eas. (I5 an d 116). Th dl-

fec-ren ti al ettions fomt a c ete syst-. o f f irst -o rde r, qu as i-Iinrfear ,
partial dIfferentVial eqettons.

p- ME



I CHARACTERi STIC RFIATIONS

I

The governing equations fo-r the steady flow of an ideal cressible

E luie' in U:ree di-isions constitute a syste- of quasi-linear, firsz-
porder martial differenti'I equations. When the flow velocity exceeds

Wthe local velocity of sowid the equations art classed as hyperbolic andIwithI.n the solution sz-acs surfitces exist on whIch the syst- reduces to
s.a interior orator. These surfaces are called characteristic surface-
and the y have g rea t signifIrance .i V: r-..pct to d ete r, ning t e condi-

tims "or a well Posed problem a-nd deisr .umerical w-thods for solu-
tion. The theo-r of such systs arA the conditions for a well .rosed

pre-obie- ere discussed in greater detail in A endix A

In Appendix 4 It Is shown that two infinite faMilits of charactor-
.t ic vrfaces exist for ttree-di _sI al supersonic l-ow; the~se are

the strea, surfaces a. the wave surfaces. The f!tily of strea-- surfaces
-onsists of all surfaces -mde up of srelines of the flow. Tne wave
5tirracas consist of all surfaces tangent to the local Kach conoid. The
syst.s of ,equat4ons redu-ce to an interior operator on ech srface of

both families of characteristic surfaces (i.e., a iirll-ar cottlnatio of

the equations can be found which involves only directions of dif terenila-
ton w hich lIe within the surface). Th2 linear cwniatlont of the eaua-
tions i.ich have Vie ch aracteristic orooery are called cpatibIlitv
relations. fkata cannot be arbitrarily specIfied on chara.teristic sur-

aces since th- - cWatiblity relatIon mist be satisfied.
Th. o'riginal sys:t of e atiemns -- n be reolacedy. an -eoi vent

sE of . . de.. r Al relatIsys having to
a __ - a Sy.Geinentarle unoess- of M cCV t~b y rel atCIons: i ob-

ta.However, Ith lea -t var'ab'es not only is h. st_

ot u-ique, butan -. ; varety of -o-slb-e choices exist, see

Ar,



Appendix D. Thus many different, but theoretically equivalent, syst-12s
___ ~~~~Of coatibility relations have been proposed and used steb.i o

numerical sches. Mormally all such schemes are termed T"mthod of
c-haracteristicsu schemes.

Tenwi*earcal scheme whiCh is developed in. z later section uses
certain of these comatibility relations as well as one noncharacteristic
relation.

2. CKWRCTERISTIC SURFACES

The characteristic equation fer the system of equations for thre-
wfa sonal flow, Eq. (D-4 of A pendix D, is

P %U nk)iuLuj U - 2a,An (17)

M&_ Whr the unit normal vector to a characteristic surface. Note
MW ~that the characteristic equation has the same general for-.- as wa-s assumed

- - n the deyel op ftnt of the general rpmri cal schm i n Appendi x B, i .e..
a raVpeated linear factor tiime-s a quadratic factor.

The characteristic equation is satisfied if either of the factors
vanish. The first factor yields the family of streata surfaces while the
quadratic factor yields the family of surfaces Wich touich a quadratic
corz* the waee surfaces. The equati-a of tht e-.ivelopa forred by the wave
surfaces is obtainead by inversion ef the quadratic factor, see Appendix

Ato obtain the reciprocal cor-oid

C =u (tq2 - &2 )6 j J]& I jj 0 (18)

Note that the surface is real only if the quantity (q2 a'~) Is positive,
I.e. , aq a. Equation (18) is the equaktion ifor tha- Mach conoid of super-
sonic flows. The relation between the two families of characteristic
surfaces, i.e., the str.em surfaces and the wave surfaces, is illustrated
in Figure 5.

23
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QCOMPATIBILITY RELATHS

The general nuMerca1 method developed in Appendix B utilizes
certain of the stream surface ccoi~atibility relations and the wave sur-
face comatl oili ty relation for system of equations havirg more than
three dependent variables. Three strewo surface compatibility relations
Ire Meuired inl the numerical scherie. The independent relations of in-
terest are (see Eqs. (D-11), (D-12) and (D-13) of Appendix D)

aP1aA- 0 (19)

u1a/x) 0 (20)

and

OU 1 U 1 (Ou /axi) + ui(apiaxj) a0 (21)

Equations (19) and (20) are identical to the corresponding equations of
the original system. This is a result of the fact that these equations

_ hava the characteristic property in their original form (i.e., digifferent-
lation in a space of lower dimnsion, a line in this case). the last
equation, Eq. (21), is the differential form of Bernoulli's equation.

The single wave surface compatibility relation which exists for a
particular wave surface designated by the unit normal n, (see Appendix

95W0, q.(0-15)) is

Thezr~Z:Za~t:::: nju )(;ui/axj) a 0 (22)

Mai and 1,22), along with one independent ncharacteristic ..elation, corres-
pondlng to Eq. (B-391 of Appersdix B, form the basis for t~e numrical
scheime.

25
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1-71 In the application o? the mr-t1hed- of _hract-erlstics t Z-o-dirnansion-
&I byperft*ic prebiems, secomA-irder accqrcy canf be easily achieved by
the use Pf ry explicit. second-order integratien sche e, such as the
modifed Muer scheve. 71M- is PossIble because the characteristic com-
patibility equations fInvolve directional differentlatio.1 in a space Of

lzone lower dImension (I ~a lir"). The*r-fore, teccetibllity rela-
tions care be exiwressei in. te-V of d~ MiZectoffal d .fferAwi" along thIsrslncile dI-rectIon, such that t-he coefficIeftts of the derivatives are fwc-
tlonOfs only of th dependent varleable;.

in three-dim~nsional nro~beqMs the Situatjon is -,,re comaplicatied.
Sexii of the corpatijblilty relatimis cantaIn two lnepandrit directions
Of directional differentlation. Thu& vwhen the %tatibilityeqain

e zirj ten in, tenns of dirctional differntlaA aloho one of the char-
acteristic ditect~ons, t~w of the ZoeffIc-leots will Invariably containI'deriiatI yes of the dte:.idont variables. Sacond-order predictor-correctlor
type integratIons scheiis, such -as the wodlied Euler scheme, require
evaluation of the coot Ic ants at tb h sbgto pon.ntrso h

At predicted values fo-r the depondant variables. Generally the derivatives
are not known at the so~lutIon point and thus the coefficient& cannot be

eluatd All -revious Thtegratlon scheme which have been develope

for three-d~mensional t'& stunersoni c flo h-ave siWlv not evaluated
-the terms C I .Uontaining derivatives, and t--us the local truncatCion error is
less. than thIrdi Order in the step size.

WN Butler (12). has developed a general method for achieving second-
-4uracrqi h n~rto f yeb-i yseso ~utosi

firaindJ-41ldent varidotes. ElliottaS) and Richardson (40) have applied
the w-thoad tUo two-dlmnsicnal unsteady fo.In the present research
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the general method of Butler, with certain o-diflcations, is app-lie to

the equations for steady surersonic flow in three dimoensions.

In general, the sche-m consists of select.ng the n.mber and orienta-
tion of the bich-iracteristic con-oatibl!ity equtions in Such a wa y tha

the terms containing derivatives at the unknown point appear in t-.wo dis-

tinct groupings which are cownion to all the equations. The N c f-n

terms, evalu 4d at the unknown point, are treated as additional unknown.s
and sufflcient independent differential relations are found ".o enable

evaluation, or equivaiently, algebraic elimination of these ter -s. TheI two additional differential relations ar an additional bicharact.istic

conpatibilizy relation and an independent noncharacteristic "elation wthichI is applied along the stteamllne directitn.

2. PARAMETERIZATIC l OF THE CHA.ACTERIST!C SURFACE EN ES

_in the n =erical scheme it is convenient to use a parametric rep.e-

sentation for the bicharacterlstic elemnts of the Mach co.rwd and the

streamline, (i.e., the elements of the -wave and streaw characteristic

surface envelopas). A differential element of a conoild can be rpresented

by the parametric equations

dwxi - !dt, ti - 1, 2, 3)l (22/

where Ii is a vector tangent to an elemnt of the cone and t is a pcr&m-
-eter proportional to length along the elh ,nt, see Figure 6.

The Mach conold (i.e., the wave surface envelopt/) is locally a right
circular cone whose axis is the flo velocity vector. Thus the cangent

vector to an element, lit can be represented as the sumn the flow velcc-

ity vector, u.1, and a velocity of divergence, c, of the conical surFace
in a plane normal to the velocity vectr, se-e Figur 6. ae

the velocity vector is defined by two orthogonal unit vectors r nd
witich are rutuatly orthogorial to t". velocity vector; u,. An %r-iltaiy

varsor in is plan.r, is given by

r icose sse

whete e is in angular parameter rebsured from the direction and has
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_the range 0 < < 2r. The velocity of divergence, relative to the flow
velocity, of the conical surface along the direction r1 is

.. 2 2 1/2
[aqi(q2 - a) (25)

where q is the magnitude of the flow velocity and a is the local speed

_of sound. The tangent vector of an element, Ii, corresponding to the

direction of r1 has the sape direction as the vector obtained by suning
the velocity vector ui and the velocity of divergence vector cr i . Thus

_the unnormlized tangent vector is

1 u + cticose + ca~sine (26)

WN The parametric aeuations for a differential bicharacteristic element of

the Mach cone are thus

adx = (u1 + caicose csisine)dt, (i Z 1, 2, j) (27)

where the param-eter t has the dimension of time and is proportional to

-length along the bicharacteristic.

__ A differential element of the streamline (i.e., the stream surface

envelope and bicharacteristic) is repyesented oarametrically by Eq. (27)

i' the velocity of diverence, c, is set equal to zero, thus

dx= u, dt, (i 1, 2, 3) (28)

Here the parameter t correspods to the tilv* of travel of a fluid particle

along a streamline.
The fom of the para&mtric equations for the wave surface bicharacter-

Istics, Eq. (27), are the sam as those orposed by Butler (12) except

that here the remaining d=gre-: of firedm in the choice of the refarenro

vectors a. and gi is use, in such a way. that. a bicharacteristic curve is
obzained for a constant lue o-f see Fiure -6. Butler n t oe

hand held the a and i reference fixed and ailowed e to vary along a

bicharacteristic. Tre Ch.ice of nfrerence used here- results in d
significant simpllficatln of the final u "rical schn.

s tcan- .o

pro-



The choice of the vectors ui , Cai and c21 as the b s - for tke

Mparareterization of the .ach concid also satisfies the qu.dric equation

EM for the conold, Eq. (18). The conditions which are necessary for the

quadric equation to be satisfied correspond to the ger-er al conditions,

Eqs. (B-7) and (8-8) of Arpendix B, and for the Mach conoid takd the

I form

2 2 2 '

tU - 2 a )s 1Ou u. cauiui-P'0a)34 jc 2[.uj  (q2
- a)(29)

U -C2 .. ,A2 J (29

C[U iUj - iq2 - a2) 1i)ulaj = CCUiU, . (q2 - 2)6

M c2ruu . (q2 
- 6 = 0

These conditions are satisfied for the orthonornal choice for ui/q, ai

and Si. Thus the paru-tri-: eouations for the wave surface blcharocter-
!sticS, Cq. 127), Sa4.,e",. *,,

'7 aisftv R1lrequiresents at a point. However, if the
pa-prtetric equation is intigrated so as to trace outt a bicharacteristic,

then the reference vector set mst be determined such that the. Wre

funda-mental definition of a bicharacteristlc is stl;fi.d, i.e., the

curve is a line of contact bet'een the characteristic surface and the

conoid. This condition yields the rmlation (see Eq. (E-.) of Appendix

E)
2 . a 2) ij(u IN +, Ca,- ,^

[Uu -( - ( + ciIcoss + csisine)x/) = 0 (31)

-ich is used to fix the r-aining degree of freedcr ir the choice of

the reference vectors a1 and ! A niaerically useful form of this r=-
lation is developed in Ap ndix E.

3. SYSTE. OF nw iFF._RE EKQELATIORS

ine systw; of differential equations, w,,ich is the b-sis of the

rFfnite diffence inte-ration sch , consis-of the wave sace Cw-

patibilIty relation a.,ied a*ong four Dartlcuier bicharactr stics,

------ __
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rthrete of the sre-m surface co-matibililv relacions and the cmne mnn-
-- characteri stic relation applied alog the streav l... The2 SySte0; of

dNfference eQuations is ob-tA-'i by f57rst wrIting the dif-ferentIalre-
tlnsIntreofntial-s alwig Ite ~rca dir-c-

0'ht-4a dif t frr.?asa ube
"0 tO wic the aply. These dire-4411mm difeeti' Sre sub_

quentiy replaced -by first-dlftleence opertors .

in terms of the -rremte-s of the bIcharcacterlstlc par trtonv
develop!-; an expression for the wav-e surface nommai which appears in

mcq. ().Teunit nrczral to the wave sflacis exoremsSed in tarms Of
m r t ., parnts o z0f t' i wve surface blchOaracteritl-c parte-riation is

(see Appndix E Q. L

TjN a/cCcuh /0 azCOS5 - 1 l 2. 3

__When this expression is usd for the ccomonts of ttie* nonvrial inr ter.--,
o f the paranieter s, the wave Wurface comiatibility eaquagto Eq. (22), -
beccmes

- a 1

where the operator d; denotes a dIfferentil alonea the wave surface h-p caracterisi .. d' Im-to
The strew surface c-oatibliitv neatlnts wich are- useid hi the

i nieca1 s ch e C as. () (210 ) an (MILf 2 arei no t 9fec ted by th e bI
cnarcteistc oramfeterizAtlonm, andA in term of2 the notation for the

MINdirectional -difernta v~rator ar

W dP =0(33)

UEA
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S- ~~~where tesubscrIpt U oa 'the- c Mf~rnitaioeardeotstetea

Hrxediret~on(i.e,. the r-,tt s--rfCe~ b5;haracteristl41c d~rectiont.

TPhe one ftonctiapracterist.lc difeenil ation which is used i
theheneics t' ru hat ..o?4~->i to Eq. (541 o'r the oeneral

r-urmecal w-thod dsytcoedl in. b5-tendix 3- is obtaine ifl r offth
-iatm-ers f bc; acri s p-r~:tpri-:ation by comart s,%.of

MWI the2vp~rai iwtchaa&c*oi. reato -~~l w-general wave scurfa-ce
MYte-1- .usl ?'~ 13-41 wit&h t7

rZCA.. 52- ;M ~ eutos are_ reolated by Los. (R-'17" &I'r-cnmo-

(18-2911. :yvab-atv o fkw cOteffc-nts byv invspectlon Yields

Ia. - (Rl

The 1local d iffe reon ce rie $ir k co n si.stes of- et stlflI Srnt afP
jr vye-.*urfa -0lcarce

"_ he --our waea&;tc lhr e tl c seg-nts, see -1 re , -web
j characterstlcsar selectea- 5n- s'-'k W:Oy th &at the tnin 1";te c -

Mt~I~tye~utinEq. '3), 'rd tree nocaatristlcreaio, q
(46), trfich contain martflal de-rivatlyves a -feukiw ,Crb

evaluated. Note that for- values of eqeual, to nfIo-les of 4/2, the

relation are of t-he sae orn as those lwhich azi-ar in the nonc-haracter-

Iislc relat'on, Eu. (36), (I.e., two scalear termsan
Al 4te inj-di4. -ja-4 dr4ae Aa1ha1

eyaluated, orily these tq iee- ~'

KThe system of differential feain fr' C0. 42, &M 1 are

K7U S U .

S C . . 4U f
p t ca~d u 4 .c 4 tu 4 /xjdt(37

I-~A A1 ' 3 '
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wnere the Subscripots 7-- ano - de.ota the bic-hanracrerlstic 44rec.

or cnev,-dI i to vilus -3? eo. of 0, T/ arid4 Sri?.
The mdified Euler predlctor-co--ctor ntgto schme In, ittth

arit4h-etic averace~s of the ceffIC-4ents !if thae dl~ffereoti.ls are wsed
between the moints of t-4e r*trk can ncw be- used to obt-ain a system of

S dlffer-eite eoatlons cor-rect to second ordler in1 the steco size. see Apr;e-m
Aft Esincee all the coeffIcieants of the differentials can be-- evaluiated1 at e' urnr oInt.

Phe differEce networ k-xslst.in of the Four wavre surface bichar-

acterlstle, sei-ets anmd the st.Irez--ire- is cstuedby easo 1 the
P- am L 1 c di ff erent Al1 rel1atiowas1, ;Ecs. (%2 7) ari ($ rtwectimiyey. T he

-rr1uilat In14tetarals of these relatIonsm are also obtzijr: usn the
B md~fedEuler sch-. The rnaarica process beafins fr- oin (5)th

*stremllne Isnterlsectlon. with t:?he lnlitiab-yall*ve surface, See FiureB
wa"!c is Oessta- tz--, 6A Is knr. oint adIs held fixed. The !pint o

inte-mectfIon of the strzae-l Inwit*sslioe thrcM-xgh oIn't ()w t th sb
tlonm surface IS fIrst- foun-d usInga the svreim-ii-e armetricepitos
w- Eu 26.TeSpatial lo0catIon of the souIn surflace is aSSLOte- fixe

~-~ ai~t4rareus-d '~soVe ' two 'ordinates

on~ ewar-eFtee a,, C.7" A~ thel strealmne.

D-eIore the Intersectdons of th-e foumwve surfc blcharact-Istlo4s

ran t-- 
t
'.'--A ist-cssary t t h n e--i-4m -e- Wt -nt

art riry s--eection for th oient1atno oeo tevctr oudb
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satisfactory. However, in the course of Ftwoerical studies it was found
ED that sihtly better accuracy and more 'ronsistent results were obtained

by selecting the plane fonrad by tli pr~ssure gradient and the velocity
VERB[ aI,~ a reference. In this scherme the ve-tors aiand Biwere positioned

such that the network straddled the r'eterenice plane, see Figure 8. Since
the pressure gradient at point (6) carnote be determined until an entire

1WHE solution surface has been generatoii, the press--e gradient at point (5)

is used to establish the referer.- plane. The four intersections with

the initial- value surfacr of t%-_ wave surface bicharacteristi-s corres-
ponding to 9 0, w/2, w and 3n/2 are next found using the parametric

FEW ~ equations for the bicharaCteristics, Eq. (27). In each case the inter-

section is known to lie on the Initial-value surface. The three paran-
etric equations are then j~ed to solve for the two coordinates of inter-
section on the surface an. the value of t"he prmtrt

Once points (i) t'tijugh (4) are located in this way, the values of
iffi-M-2 the dependent variab 4 at these intersactions are found by interpola-

tion. For this Dur ,se second-order polynomials are fit locally to nine

neighboring points by the lmthod of least squares (see Appzendix F).
These nine points consist of the central point, point (5). and the eight

nearest surrou~ fing points In the initial-vallue surface. Note thst the
values of the cependent ver 4ables are knowni at point (_1 and t, . inter-

polation is not necessarily -equired for these values. However, for

reasons of ttuerical stability it was found necessary to use interpolated
values at point (5) for the three velocity componktnts and the pressure.

The reference vectors aand aat pointU (1) through (4) also are

required in the differencc equations and thus must bt established rela-

tive ;ao the selected reference at poin, (6). The single degree of free-

dom is established Wo sufficient accuracy by means of a finite differ-

ence foi of tie tangency condition, Eq. (31)1 (see Appendix E).

5t 1TERATION SCHEME

The modified Euler integration scheme, is a predictor-icorrect"or type

Schein "wIch the solut-ion i s firot approximalted Nyth Euler scheoref
(i.e., the coefficienitt of the difference equal-ions are evaluated atthe
Initiai2-value surface). Whs appro-imlate solution is then used to evaiu-

ate the coefficients of the difference equations the unknown point

0 FA 36



anI arithi,.tic averages of the differer equation coefficients are sub-
Msequently used to obtain corrected values for the dependent variables
MW- at point (6). This process is repeated until successively obtained

values agree to a tolerance consistent with the truncation error. This
I HIS technique yields a solution in which the local truncation error is third

order in step size.
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- SEICTION V

ME OVERALL NUMERICAL ALGORITHM

1. GENERAL

The global solution for a particular set of initial conditions and

U boundary conditions is obtained by an algorithm in which the unit inte-

gration process is applied repetitively. The scheme consists of integre-

tion along a system of stre&amlines throughout the flow. The particular

__ sttxralines which are used are deteffm0ned by the netw'ork of points which

are chosen at the initial-value surf'ace. These points are chosen such

that a uniform distribut-n across the flow and on the boundaries is

obtai ned.

The initial-value surface is assumed to be a plane normal to the x
coordinate direction and the integration process takes place between a*I series of planes parallel to the inItial-value surface. These planar
surfaces are ass umd to be everywhere space-like to the flow 'i.e., the

normals to the surfaces are everywhere Interior to the local cone of

normals, see Appendix A). These assumptions greatly reduce the complexity

of the numerical calculations while not seriously restricting the rangeI of internal flow problems which can be solved if the x, coordinate direc-
-~ tion is chosen to coincide with the -mean flow direction. These assump-

tions are dIscussed in greater detail in AppodxG

WIN ~As each solution surface Is coimfpleted, a six component thrust in-

El ~ tegration and mass flow integration are performe-d. The mass flow inte-
gration provides some indication of the accu-Nacy of the overall process

___ since the totCal mass flow should remain constant from one solution sur-

face to another.

2. INITIAL-VALUE SURFACE
Thevales F the sIx denen!'ant variables, ul,, u up P and H,

areassmedto be specified by continuous functions on the iniakl-value

are asum.,1 38



surface such that values may be obtained at any arbitrary point on the

surface. If the initial values are only known at a set of points, then

_ continuous 'ata must be generated by interpolation.
__A unique sche was devised for selecting the points on the initial-

MUM, value surface to be used in the integration process. This scheme notM
only produces a uniform array of points in the physical space, but also

_has the very useful property that the points can be ordered in a square

logical array. The logical array has the properties that the neighbors

of a point in the logical array are, to a close approximation, the

neighbors in the physical space and in addition that the points on the

perimeter of the logical array are boundary points in the physical space.

These properties are used in the selection of points for local interpola-

tion and in the logic for computer prograining. The scheme is explained

Sfor both circular and noncircular cross sections in Appendix G.

The Initial-value surface must adjoin the boundaries and the initial

data mzst satisfy the boundary conditions at the corn. on points. in addi-
Mtion, if the flow geomtry is assumed to have one or inore planes of sym-

_metry then the initial-value surface and data must _Iso be symmetric

Wabout these same planes.

3. BOUNDARY CONDITIONS

The general character of the solution is governed by the buundary

conditions as well as by the initial data. The boundary conditions dre

constraints on the solution which are specified over time-like surfaces
hich adjoin the initial-value surface (i.e., the normal to the surface

=is everywhere exterior to the cone of nomals, see Appendix A). Boundary

conditions which occur in supersonic flow problems are; physical boun-

darles, planes of synetry. constant prissure surfaces and shock waves,

__Except for shock waves the boundary surfaces are stream surfaces of the

flow and the interior point integration scheme is easily ,mdified by re-

placing one of the wave surface bicharacteristic compatibility relations

with the boundary conditon. These r-dificatons are discussed in Appen-

-dlx E.
_The shock wAve boundary condition conssts of a discontinuity sur-

face across which tne Rankine-Huqoniot cor.drtons apmpy. The numerical

39



algorithm required to include shock waves is considerably .more comlex

due to the need to nuerically construct the shock surface, This boun-

dary condition is not developed further herein.

The physical boundary condition consists of the requirement that

the flow be tangent to the specified boundary, i.e., the velocity vector

is orthogonal to the outer normal to the surface. In addition a boun-

dary streamline is constrained to coincide with the boundary. The in-

terior point integration scheme is modified by replacing one of the wave

surface bicharacteristic coapatibility conditions with the tangency con-

dition, i.e.,

Sujn i  0 (45)

where the u, are the velocity components and nI the components of the

outer norral to the surface. In addition the remaining three wave sur-

face blci4racteristics ae oriented such that the ones c^rrePsp^onjn to

e a 0 and r are contained in the tangent plane to the surface and the

one corresponding to e = t/2 is interior to the flow. Similar modifi-

cations to the basic schem- must be made for the constant pressure boun-

dary, except that the fourth wave surface bicharacteristic compatibility

KEP condition is replaced by the condition that the pressure is known. The

final numarical algorithm developed in this research does not Include

this boundary condition. These modifications are further discussed in

Appendix E.

The plane of symmetry boundary condition is most easily incorporated
into the basic scheme by use of r{flection principls to produce image

paints, see Appendix G. The basic interior point and physical boundary

point scheme can then be used without wdification. This technique has

been used with complete success in the numerical algorithm produced in

the course of this research.

4. INTEGRATION STEP REGULATION

The distance betwecn successive solution surfaces must be regulated

such ty;at the Courant-Friedrichs-Lewy (CFL) stability criterion is satis-

._ fied at all points of the network. The permitted step size is a function

qU



NOW_ of the local flow pararaters and point spacing. Thh relon is devel-
oped in Appendix G and is

Ax, [u2 'cq)lJ L (c/q)(q 2/u 1 )46

where q is the magnitude of the velocity, c is d fined by the reliation

-q2a2 /(/2 - a2 )]11 2  (47)

and Rmill is the distance from the streamline intersection with the
initial-value surface to the nearest point on the convex hull of the
points used in the difference scheme, see Ap!,%erdix G. Equation (46) is
used to calculate the step size at each point of the network, and the
point which is most restrictive is taken as the point which governs the
integration step. As the integration proceeds the governing point is
established on each new solution surface. In practice the step size isIcalculated after the integration has taken place, so that extrapolation
of the periYtted step is used with a safety fictor, which is varied ac-
cording to wh1ether the extrapolation is too Conservative or overly opti-

~mistic.

-5. OVERALL ALGORITHM

PER The overall integration process is illustrated in Figure 9. A

typical point network for the initial-value surface is shown and the
%boundary conditions for a physical boundary and a plane of s,.1mtry are

illustrated. The algoritui has ben programed for both the IBM 7094I and CDC 6500 computers using the Fortran IV language. The progranm has
Wbeen used for a variety of accuracy tests and for coputation of fully

three-diansional nozzle flows.

U
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____t. SABILITY CRITERIA

The possibility -of numerical in~s* bility is an ever present danger
___ in any numerical scheme for solution of hyperbol ic partial differential

____equations. Whether or not a scheme is stable is solely a IFunction of
the nwmerical scheme and does not depend upon the differential systeln
that it approeximates. Unfortunately, necessary and sufficient criteria

-~ for stabilit) exist only for the case of linear equations and analytic
initial data. However, aithou-h no forral proof exists, experience has
shown that these same criteria are aDpropriate for nonlinear systems
when applied locally to the linearized fonii of the equations, Refs. (5,6,.
This hypothesis is supported by the results of tae presert research in

which the nonlinear schemie was found to be stable only whep -the analysis
of the linearized system indicated stability.

The two stability criteria which exist are the Courant-Friedrichs-

Lewy (UEL) criterion and the von Neumnarn condition. The C'criterion
-is a necessary condition which applies to both linear and nonlintar sys-
__, tems and states that the zone of dependenCe of the differen1tal system

NO must be embedded within the convex hull of the points in the initial-
M_ value surface which ar^e used in the differencing scheme. This condition
-- en~sures that the speed of oropogation of numerical disturbances, such as
- round off Error, everywhere exceeds the speed off propagation of distur-

bances in the differential system. ( i.e. ,the speed of sound for compres-
sibie flow). Thus the ntrlerical disturbances diffuse throughout the net-
work and do not accumnulate.

The v.on Neumann condition states that in order for a numekrIcal scheme
to be stable a finite limit must exist for the annpiiricadion of any Four-
ier component of the initial data, Ref. (5) The crit.erion whIch must be

smtisfied "in order to ensure tChis conditirin is



.here i, is the ladrgest eigef valuIe of th e amplification matrix for the
nuerical schemi and O(&xl 11 denotes %t*he q ua n t ity (-Axl) multiplie8 by
a finite constant. When the von Neimmann criterion is applied to a scham,
the condition, Eq. (48), is usually replaced by the more severe require-

___~~ methat

ci (49)

__because of the swift-hat arbitrary ature of the term 0(&x,). Note that
Eq. (49) is not a stronger cond~tion from the point of view of being suf-

ME; ficient for stability, but it is sit,-ply easier to apply.
In the nutnrical scrieme wi-ich is developed herein, the CFL condition

is u-sed to regulate the integration step size during the numerical irte-
gration and is an integral part of the overall dlforith-ms. The von Neu-
mann condition, on the other hand, is used to analyze the effect of' var-

-~~ iouis modifications on the nLmerical stability, but does not play an active
role in the actual nu-nerical calculations.II Although the CFL condition was 2atisfi6-d by an origInat difference

IM schehme in which interpoletion was not used at point (5), it was found inl

the course of develomment that this scheme- exhlibitedia neutr.Al stability
___ characteristic. This result ;romopted a more thorough stability analysis
___ using the von Neumann condition for the basic difference schemne And sev-I eral permutations, which eventually resulted in tne stable scheme in

'hich* int"rpolation was used for the values of the velocity con ori nts.
-fM u1, and 1.ne pressure, ri, at point (5). The details of the analys!3s are

Mm included as Appandix Hi.

2. LIEAR DIFFERENCE E'QUATIOS

A sys vw w If lIna r ff ~ uaot CiM teSaem

___of nonlinear di-fe niai m~ations, Etqs. (37) through (42), by appli-a-
__tion of small Perturbation theory end reolacement of the directional dif-

f erenti4.al oera t ors b-viy1 fs t di1ff erent.Ce opera to rs. I n do Inga th is th e

__terms containing parti-al derIva tIves, in pa-rtic-ular a .a. ax~ ara
44X



at re treated as unknown ouantities at the point under n-

siderator. Using .this aDpr-,-h the retsuiTinOn six linear equations are

just sufficient to evaluate these too ters -is we!l as the four dependent

_variables.

The form ofWthe two te.ms contaning derivatives in the systm of

dffferential equations is a direct -esult of the scheme for m aintaininM

second-order accuracy and the stability analysis must include consider-
Mation of these terms. If these ter3m w-,e not considered, as is the

case in stability analysis for first-order sche-.es then an overdeter-
WMmined system of equations would result and either, t: equations would

3 have to be eliminated from con.deration or 'the system rust be solved in
a least squares sense.

The analysis is simplified If the terz containingo derivative; are

r algebraically eliminated to reduce the system to four independent dif-

feence equations. The system thus obtained IsI J) " 5o
(A; - ;c - ' ) (-/A- + (501

_ 1~t'

_ *p - uiau

12121 4 z14 2 Z-4

tr6 (h: 0 + DocKA4  ' (41Th *EI

U6 (A 6/L.I 2 2E1 A u2

-P = UA-ui (53)

where the bar denotes constant mean values and tilde denotes a small var-
latlon. The difference ooerators apply along the se-ent zf the bichar-

acteristic network illustrated in Figure 7 and the subscripts i and 5
de te .,ze surfac bicharaCteris tics and the stre line - fect0onS
riespectively (see Appendix W).

,4ntMfaJblbUERII. sj~T~~Uf~



3. AFLICATION OF 'THE VON NELLN {~ZI~

The ana'sysis for stability in the Yon Nev.-nn sense must include

consideration of all' the ntmricall op~erations of the basic integration
scheme. inl particular, the Ilnter.pol ation procrss for data in the initial-K value surface must be included.

7it is assumd that the analytic solution Of'the systmn of linear ciif-

___ference equations can be obtained by separation of variables, Ref. ()

Th us the general term of the Fourier representatIon of the solutior, is

5 e1 21  eiN /L (xI

AaereU is the vecto' whose elerents are the dependent variabies of the
pi-oblmsn, i(xl1) is a cor-3ponding vector function of the directior of

Mft ~ intcgration, x., and the rectangular carteslar coordinates of the

___inPitial-value sirface, L is a zhardcteristic dImension and M and N are
te fr-quenicy factors for an a itray o netfthsluin

- For purposes of the anallis, data on the initial-value surface are

assum- to e -no". at te point of a unl. retnua0gi na

x2, x3 plane with spacings &x2 and Ax3 respectively. Thus the indepen-

deMnt variables x, and x i the general Fourier tem. are only pemitted

toj have values which are integral muiples, P and n, of the grid 3pacingy,

&2and -Ax. The values of the dependent variables at these points,

given by Eq. (54), are thus

2 rmn (55)

SM ere and n~ are defined as the couple) cuantities

and

X9 ML~X 2 , :'! z1 i, , DO1(58



X 3 -Knx-, (n - 0, ti, 2, .

In *he nLnericai schme the solution is advanced along the stream-

lines -essing through each of the points of the network. The central

.trea.l... point fld its eight nearest neighbors are used for local in-

terpol ati on.
he analysis is simplified, without loss of generality, if the

ce;tral oint of the local mash 'is chosen such that x2(5) = x3(5)

rnus the nine points used for interpolation correspond to values for

the integers m = 0, ±1 and n - 0, ±1. The second-order bivariate in-

terPolatinq polynornIal is fit to these Mne points by the least squares

method developed in Appendix F. The resulting polynonial has the general
form.

U - (A, + *2 + A + A + A A xI) ( l (60)

"1A e Ax x3r.r. 2 n6x3, x

where the coefficients are found to be (se Appendix H)

- A! = [(5/9o~)( + + n + n i)

K - (l/3)(4 + 7)( +- +Il)

* - (l/3)(c + 1 + i) + + l) (61)

A2 = [ii6)(c - c -"- + " + l)]/tx2  (62)

K
O F 3( / ) l ( ) ! .2 x = 4

Ii-

r (!3)I,* -

+5 "+
-v /) ((c . + .ij n + l)

(4



A6  -- [- (1/3'(4 + -I+ l)(n + + )

+ (1/2)(0 + i)(n + n- )

The dependent variables at the intersections of the four wave sur-

face bicharacteristics with tie initial-value surface must be evaluated

by means of Eq. (60) since tese irtersections do not generally corres-

pond to points of the initial-value surface network. Even though the

streamline intersection coincides with a network point, ane thus inter-

pola';ion is not necessarily required, it was found that interpolation

Khad a significant effect on stability.The system of difference equations, Eqs. (50) through (53), con-

stitute a recursion relation for the values of the dependent variables

at Point (6) in terms of values in the Initial-value surface. For the

case x2(5) = x3(5) = 0 and the interpolating polynomial, Eq. (60), is

used to determine the values of the dependent variables at the points In

the Initial-value surface, the recursion relation has the following form

[xl(5) + 6Xl] - i[xl(5) + Ax,] - A ![x!(5)] (67)

in which A is called the amplifi:ation matrix. Here A is a fourth-order

matrix in which the nonzero coefficient- are

SA 11 - (5) (68)

A12 = (1/2)rf(3) - f(l)](EfI) (69)

A13 -(l )rf(4) - f(2)](E/l1 ) (70)

Al4 { f(5) - (I/2)[f(l) + f(2)

+ f(3) + f(4)]/(PUl) (71)

A (l/2)[f(l) + f(3)] (72)
22

A24 = (l/2)[f(i) - f(3)]/( E) (73)

--- 4
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A +. f(4 )

_____A

33  (l/2)Cf(2) + f(4)) (74)

A34  - (/2)[ft2) - f(413/UZ) (75)

-.-= A42 -- ())(l) - f(3)JGE) (76)

_____ A43 = (l/2)(2) - f(4)J(5) (77)

A44 = +i f(2) + f(3) + f(4)] f(S) (78)
-- __ and the notation f(I) denotes the polynomial portion ff Eq. (60) evaluatedat the point (I). These results are developed In Appendix H. The re-EP cursion relation which results when interpolation at point (5) is not

included is also developed in Appendix H.
The von Neumann stability criterion states that the absolute magni-

tudes of the eigenvalues of the aplification matrix A should not exceed_--_ the value I + 0(iixQ), where O(I/Axl) denotes some finite constant times
_the quantity (1i/Ax 1 ). The bound for the eigenvalues of the matrix A "as

investiated nu-merically by choosing a characteristic length L and mesh
spacings ax2 and tx,, consistent w1th physical problenm of Iterest, and
subsequently calculating the magnitudes of the elgenvalues for a range____of the frequency factors M and N_ Values of 10 and 1 were assumed for
L ani tth ax2 andx s t. telyv. The range of M and N was then se-lected so that the nt- .- c' t cular functions ranged from 0 to
2r;. this results in a ra.wc from .to 2 for both - ,0nd , . i-n. ,- . n N . T g e i g e -
value having the maX-il m nr.,ttude was calculated as a functionw sf a
fruency index I wherci, -il and N less whan or equs. to ! -ere search-a- fo," the maxinrm-u eigeiwalue. In tne course of the 4nvestigaon it 14.

feund that the results were coroiettly sy7w-tr ic about tt- value
i, thus c-My the -esu ts for I less than i0 are reprtec.

T h e re;Ui"t.s&--tf the awte analyis are shosr1 plotted in Figu.-e-% W+ ror thr ca. s "- s4.0.. a- --- -r--dif;rrnce ch ra tho-t intern lr
nterpO1 tin,-- exceo t the strenmdle vont and i ero--a I-or t all

G Z' .I- ' - - a-..cirts .. .. A -- ndiv H ,or the +t. ! diOveopme!,8. fl r cases .thout
ntorpol atfor), When intruitSn i zt '-Aod th-h . I ce-

unc;oodiIonal .n s c e
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to unity are obtained. The maxmuL atsolute value of an eigenvalue,

_approximately 3, occs for I equal to 10, which corresporri to a Fourier

___ compor.2nt having a wave 1ength twice the ffesh spacinq. This result is

not surprisi - since, - or. points in the initial-value surface

-are used (the four wave surface bchiracteristic intersections !nd the

streamiline intersection) the convex hull of the four outermost points ;s

_a square lying entirely within the circular differential zone of depen-

dence. Thus, the CFL necessary condition for stability is rot satisfied.

When interpolation using nine points is used only at the bicharacter-

istic intersections, a marked improvement in stability characteristic

results, but the maxinnm magnitude of the eigenvalues is still everywhere

_ equal to or exceeds unity, see Figure 10. Numerical tests of this scheme,

using the nonlinear second-order algorithm, revealed that numerical in-

stabilities did occur after 20 to 30 integration steps.

_When Interpolation is used at all five points in the initial-value

surface a sufficiently stable scheme resuitc- see Figure D. In this case

__efgenvalues greater than unity occur only for low frequency components

____and even these are only slightly greater than unity. Nwerical tests

with this schem have evealed no evidence of instability even after 60

integration steps and in the presence of severe disturbances which would

_result in shocks in a real flow. Results of the eicenvalue analysis for

reductions in the x, step size and for rotation of the network are given

_ in Appondix H. Only for the case of zero x, step size ire all eiger;-

_values less t-Aan or equal to unity. H"_ever, the nrierical results which
_ have 6een obtained usino the nonlinear schem clearly 4ndicate that the

____ scw, using Interoolation at all oints is sufficiently stable if the

__CA condition is satisfied.
N-
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SECTION VII

ACCUQIACY S"JDIES

@1 ! . GENERAL

In order to test the order of the numerical error of the schare,
the n mrical solution was compared s1thi the exact solution for a

Ispherical source flow and a Prandtl-eyer or single wave flow. Special-U ized com- uter proorms were written which gt P, fted an exact initial-
value surface and subsequently generated both th-q numerical and exact
solutions at the points of each subsequent o o'rn surface. The point

spacing on the respective initlal-valke surfaces were successively halved

in order to study the error behavior for reductions in step size.

As an additional test of the accuracy, the three-dimensional nt mr-
ical results for two axisy-_atric nozzles -re comaee 14 with the r--er-

ical solution obtained using the two-dimensional mtnod of chaeacteris-
- tics. The two nozzles used for comparison were a coni:O nozzle havingp a 15 degree half-angle and a contoured xisymotric nozz'e.

2. SOURCE FLOW RESULTS

The local truncation error in the numrical scheme was ssumd to

!- third order in step size; thus, for integration to a flxec oint in

the flow for which the nt-ber of steps is of the order (1/iAx 1 ) the ac-
cumulated error is second order in step size. The order of the actual

error can be established numericaily by successively reducing the stepI size and co-aring the ratio of acculated errors to the ratio of step
sizes raised to the assume order of the errow This process is illus-

trated sch aticaiiy and the results si Hrized in F! gue 11. These
results were obtained for a Mach numter of four on lthe initial-value
surface and a atlvely smIi source angle. The results verify the

asst second-order error characteristic since the ratios of the errors
al cases less than the ratios of the step size squared. Similar

-t
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results were obtained for circular point netvworks and for higher gradient

flows, i.e., large source angles and MaCh numbers near uIty, see Appendix

I. When a very coarse mesh was used for the higher gradient flors it was

found that less tin second-order error characteristics resulted. How-

ever, as The mesh spacing was reduced the schm did exhibit the proper

second-o-der characteristic. One po-sible explanation for this phenom-
enon is that at large eh spacing the second-order interpolation schem

_ is no more accurate than first-order interpolation and 4hus the accuracy

characteristic is reduced. More detailed results of this study dre in-

- cluded in Appendix I.

__ 3. PRAMDTL-MEYER FLOW RESULTS

Although a Dran6zl- eyer flow is only a one independent variableU flow, like the source flow, the flow has a two-diensional spatial char-

acter. Unlike the spherical source flow the streamlines are curved and

thus should provide a m ore. evere test for the nwerical sche me.I SimilAr results to those obtained for source flow are presented in

Figure 12. Here again a second-order error characteristic is clearly

___ indicated. Error studies siilar to those presented in Figure 12 have

been made for vari!tons in the initial Mach n--er and for rotations

of the plane of curvature of the streamlines, see Appendix I. Although

_considerable variation in !he absolute accuracy occurs, the second-order

characteristic is retained. As a result of the studies for notation of

Ethe plane of curvature, it was deI-dee to use the pressure oradent,

which lies in the local plane of curvature. as a reference for orieita-

tion of the local differrce net t-o r. T-hsese stU-!ies indica-tted a theI local error was a mini-- when te syste. oif four kichzracterist~c seg-

=-nts Just straddled the pia-e of .-vat re. .t suiI - 2v sized

that+ tsefect was small 1 u was !-S Conyli ent Wo am' ~S a ZOreI arbitrar reference, see Apendix 2.
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to-divensional method of~ characteristics program. Thc t-wo cases con-
W-ME sisted of a 15 degree half-angle cc-ne and an axisytmm-tric contoured noz-
MRzle having a maXimun wall slope dowrnstrewm of the throat of 35 degrees
____and an exit half-angle of 13 dpqretts. Ir all cases the initial data
____were generated using a 10 degree Spherical source flow. The results of

_=E these comparisons are shown in Figures 13 and 14 for the cone and con-
toured nozzle respectively. Both the nozzle wall &Mi centerline pres-
sures are plotted in each case. The agreement is exceedingly good except
at points of discontinuous rates of change in flow properties. Th~t pointI on the nozzle axis at which the first expansion wave from the wallE reaches the axis is such a point. This point is labeled by A in 1-oth
Figures 13 and 14. The two-dirensional solution, which calculates along
characteristics and does not require interpolation, shows the true char-
acter of the solution, while the three-dimnsional solution smooths outthis point. This diffusive characteristic is inherent in any three-dimensional calculation scheme because of the necessity to interpolate

rnand becae of the need to satisfy the CFL stability criterion which
requires that nomericai disturbances be p'-opagated at a velocity greater

V-4-CM than the infinitesimal disturbance propagation speed, i.e., the speetd of
somid.
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- SECTION VIII

_____THREE-DIMENSIONAL FLOW RESULTS

1,~ GENERAL

_____At the present time no exact solutions for three-dirtenslonal super-
-~ sonic internal flows exist nor does any standard numerical calculation

technique; consequently it is not possibtle to make any coaparison with
existing results. Several solutions for 'lr~ws having three-dimensional
chiaracter are presented here simply to illustrate the general capabilities
of the technique. These results were generated using the CDC-6500 ver-
sion of the computer program which was produced.

Thii. cases presented are not directed toward any Specific appl ica-
- tion, but are typical of the types of nozzles wh ich migh-t. under special

- constraints, be used as either rocket, ramet or scramjet nozzles.

_____2. ELLIPTICAL MOZZLES

These nozzles have ellipitical cross sections normal to the x, co-
ordinate axis. The x. and x3 intercepts of the cross sections are func-
tions of the ) -coordinate such that the contour is initially circular

____ at the throat and elliptical beyond. The intercept variation is describe
by a circular arc in the throat region which is joined tangentially to
a general parabola for the diverging section.

The cross sections and boundary streamlines for one quadrant of the
first nozzle are plotted isomtrically in Figure 15. In this case the
intercept of the contour with the x, - x 3 coordinate plane was held fixed

____while the x, - X, intercept was allowed to -,ry. A uniform parallel
flow was used to establish flow conditions at the initial -value surfac--,

____ The nozzle cross sections and corresponding polar wall pressure con-
____tours at each solution surface are snown in Figurt 16. The polar pres-

sure plots are constructed such that the pressur-. is the magnitude of
the radius vector to each point on the curve and the polar angle
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crresp- nds t3 the oar a~ioie of the wall point in the physical plane.
IF-te the p"onounced three -dimlensiorkal character of the pressure field.
Even though the 0ontour is a -moth and relatively gentle tr-ansition,
significant transverse pleessure Gradients ar.e presen~t. Clearly a psuedo
three-dimnsional calculation technique, w*hich nieglects cross flow,
could not adequately represent such a 1- 1 w.

Tesecond elliptical nozzle is also circular at the throat, but
has vtriation of both tha x, - and x3 Inrcpsithdirgg

section. An isometric plot of the nozzle cross-sectlis and the boundary
streamlines is sho~n in Figu~re 17. The corresponding cross-sections and
polar preslsure contours are showr in Figure 18. 1hIs. nozzle has less
deviation firg. axial swivtry than the first n'izzle, ard consequlyI
the th ree-dimnsional character is less pronounced.

~.SUPER-ELLIPTICAL NOZZLE

The terr, super-elliptical is used here to denote a nozzle having
cross-sec-11ons given by the general equation

2/pA2) + (;r3 1 3 ) =(9

whe re x 2 and x 3 arr Ae rectangular ;.srtesian coordiirate; of the cross-
section, A2 and A 3 are the respective i t~rcepts ard Eand E 3 are ex-
ponents which am~ greater than or equnl to 2.0. The paramneters A 2, A3,

Eanf E 3 are assumd 6o be diferentlable functions of the A-'a' co-
lin~ate x,. As the exponents are giv'en values greatar titan 2.0 the

cross-sections approach a "ectangular shape .4ith a s.mooth fIlta h
outer corner.

The super-elliptical nozzle contour used f-:7 illustrat~lon nei-ein
was generated using the sal intercepts as for the second elliptlcai
nozzle, but lettng the super-ellipticai exponents vary from, 2.0 at the
throit station to 10.0 at the nozzle exit so that the contour is initially
circular at the throat and becomies super-elliptical in the diverging sec-

__ tion. One quad~ant of the resulting contour with bounidary st.eaminfres
is shown plotted isoetrically in Figure 1t. The corresponding cross-
sections enid polar wall pressures are shown in F'gure Mi. Mer.- &ain,
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____ Dre-ssU-Vr-s Occur at tl-e z~v Ws in-ao-. . ~ ~
____ ~~~~~~ ~C iastai-d suaernonaaraI aid roflua Lts t the

- eoosite result. A^Azr te ato r wda *h-pet Aim sn~at! chrter

o the ow is edent,

Invstoaedinorer toilsrt the colctorf the rethbod to a
-- currant eineinc. br'_-_ 'ic~fsnejnetr- i v Inlet it frequenc iv e-

____coutered In stlid rc~ckc -w torss a vin,'~i t' gmi cniaIon
or m5itj-Die nozzle aft6 closures. The as y,-t=4 Inle-t fwrslsIn

nisa~crent f te thustax~sandis asouce f dispers~on in igie

roc-Kets.

WE Anonsgr~t~c I-letflo wasqe atje:. for the- oro,-Tose of these
RCAicIous o-y 5iiD#.;mOsing twoo source los oe

___ bcate-d svivetr'rt'flv ae te oe of-W fr- the axis. The twr

soujrce, flows wit suoerimose-d on the initIall-valuz', surface by using.
peri odlc wIgteiri: ftmcti ons . The sy.rztrtfc soum- was weqhe _w itt-,-

fa~~~torTJ Ji7(/% I c te iisvy-mtric source w-as weiqhted by

irtM IPI-4t3 wher . the r-ad~al dIstance fris the P_-
I w te_-m xim m 7adi J 4s 2 .rxc;Ius of th e fn-,zzleI wall at, the init-ai-

yallu The tnf f thedoube source model is Illinn!trated!
-gr 1. The roer"l' 4 'l"l' thcirs %ic kecesirabie

muf -).f f wi - ?k aaant, oY[I , ,t%~ei_ it tO ?%'Cfl -l! boundaryAr

has the character of theor e Mjsorce at the cen-ter mo hfhlao.... etr fteIfL-sraewas S

the ntozzle was 1-3.3. 7~ur 2 shows the D~tIressure ratios f-klcua'1

vim-ar Init aac-mr wa:: aI% t4& r u -4 h4 -I -c -t-- - - t - nee~2- 0l-mjt-
-- c - -- 1-o'a?#a fnctrion oft flo-ZeZi il-h Not %-- cts m

CUM I l-.-v 0' d--7 down the e.
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The angle of thrust misalignnent, a, is presented in Figure 23 as
Ztunction of i&ze lengthl. Tlv: rtsuits &4o the ,YarsFidi mri-
ation. Although the results show one thrust reversal, the period of
such reversals increases greatly with the dogree of expansion and a Aon-
siderably longer nozzle would be required to obtain a null misalignment.
The frequency of such revarsals is a function of the cone angle or the
rate of expansion.
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SECTION 1X

-~ CONCLUSIONS

Amethod of characteristics nuvperjc~i integrotion schee for the-
governing equations of i~tiL-n of -three-dinensional supersonic flow has

_____been developed and shown to produce results having second-or-der accurac.
The technique has been appiled to several thrust nozzle problems and has

MMM produced highly satisfactory, results. The culmination of this research
(i.e., the theoretical developmepnt of the scheff-e1 davelopment of tbe

____necessary numerical techniques and the integration of these into an al-
_____goritn~ for- internal supersenWc flows) is a production type conputer

program suitable for application tCo a wide variety of supersotic nozzle
_____problems. The succqss of the method in this avplication indicatw; that

the method could be profitably applied to a wide range Vf other super-
sonic flow problems, such as supersonic aircraft, ints, supersci(~c ex-
ternal flow around yaw..d axisymmetric bodies and auper~inlrc flow around
bodies of arbitrary cross-section.

The results of this rasearch indicate that the extra complexity re-
_____ ~'lred to maintain second-order accuracy is entirely Justified. The ease

withwhih bundry ondtios ae incorporated into the numerical a!-
gori ti, is a definite advantage, unique to characteristic =ethods, over
ordinary finite difference scheffx!s. The developrmant of a method of char-
aCterlstics scheme is :ertainly mare costly in tinte of development and
tomplexity: but the results Justify the offorts.

Although a general study of ttiree-dimensiona. supersonic flaws was
not a part of this research ppr !:e the sampl,-e cases which were coputed

____ ermit one general concluslon. Th-e structure of three-dimensional flows,
_ even modestly three-dimensional . is quite complex, and in none ofl the

- -~cases analy.-ed would a psuiado trree-dimiensional technique which neglects
cross flows haye been adequate 'Co predict the true nature of the flow.
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____GENERAL THEGRY D-; OUArTI-LINEAR HYPERBLI PAtAL

__G .GEERAL

The problem o obainina the 2generai solu!tion, i.e., the totality
of all solutions of' a svste- of oartial differential ecu~tions, hardly
every occurs. Usually a specific solution is sinwgled out by imposing

___further conditions which the- solution nzust satisfy. For three lnde-

dent variables these condit~ons uvsually refer to tw-r -d41rensional surfaces
-~~ on which the solution is furtlher cOnst-,alne. TeeConstraints can ro
___pear as physical boundaries, initial da;ta, or as discontinuity sur-faces

which bound domaiMns within which the solution ~s to be found. The In-
Ie.ial-value problem -s .knowr as a- ICauchy Dobim" and the theory of such&.

____problems has been developed -by Hadamard 1,49), Cauchy arid klowalewskv (50O),
_____and mocre recently Ily Titt (20).

____If a mathematical P oble.. is to correspond to physical -eality, the

following hasic requirements should 3e met, Ref. '50):
1) the solution must exist.

___2) The solution shoult IX uniqtely detenined.
_____3) The solution shou[; iz.pend continuously on the initial

andboudar daa 'r-qu remn4ts of stability).

_____Any oroblem which satisfies :"ese three requirements is considered
_____properly posed. The probiem~ of otfaining i solution for a system of

aralytic hyperbolic partial diffi~rvntlal ezuallio.1- is properly posed when
_____avalytic data are specified over - space-11*ke initiai-value surface and

- ,:propriate boundary data are specified over tir,-like surfaces which
~jon he niialdaa surface. Uniquemes and existence of th e solution

____ iiie, in general, only guaranteed in the smi.ii even under the excessively

istrictive condition of analyticity. This is due to the fact that the
MOM_ pcssible occurrence of discontinuities (s~icks) cannot be excluded a

_____ ,'ori. However, in the event that discont'iuitles do appear, it is
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specified arb trarily on such a characteristic surface since they m st

satisfy Eq. (A-6), which is called a cc-atibtlity condition.

Let ni denote the normal vector to a ha-ractreistic surface, then the

condition that all the vectors Wvi lie in this surface is

n IW i -- 0 ( 1,2,..Pn) (A-9)

S-Making use of Eq. (A-7), these equations can be written in term; of the

___coefficients of the original system- of differential equations

__ niw a [4 (auo nl )w = 0, (v - ; ,2,..n) (A-10)

where n,, and w are to be determined. Tne equations, Eq. (A-la), are a

system of hcrogeneous linear algebraic equations for the compcinents of

the systen left elgenvector, w . The condition that a nontrivial soiu-

tion exists for the w is tmt the determ--inant of the coefficients vanish,

det r& *n 1= X(I. = n "0 (-l)

5where Xini is an nth order Folyn=m-al in the ni  Equation (A-li) is

called the characteri :tic ecuation and it yields a cc-di ion which zust

ce satisfied by a normal, n1  to a characteristic surface. If the le-no

of the normal vector is taken to be unity, then

,which togetner with E. ( provides two conditions for the three ca-

ponents of the normal. The remainIng ccm-onent of the normal is aritrary,
a and Eqs. (A-li and (A-12) do not uniquely determine a particular normal

but rather deter-ne a fanily, or f-.ilies, of characteristic normals.

*The nt-mer of independent solutions for the w in Eo. (A-iO) cor-

responding to a particular normal, n , is determined by the rank of the
coefficIent natri. A i n gcneral, the n ter o- rdependent nontrial so-

tions, s, is given by

san-p aA-i3n
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where n is the order and p the rank of the coefficient matrix. Corres-

ponding to each independent slr~tion for the w there exists % compati-

L.-Ility relation. Thus there exist s independent differential compatloil-
____ ity relationships for ench characteristic surface. The differential

comoatibility relatinns have the form

dJ) _ (J)dt (j (A-14)

where

W(4) (j) a (A15Vi u avl

~and

________ - are the s linearly independent solutions of Eq. (A-IO) for the system of
left nigenvectors corresponding ti a particular ncrmal, ni.

Any characteristic compatibility relation is a linear combination

of the n original differential equations and thi,-z the r!mber of indeper.H ident differential relationships corresponding to one or several nomal.
cannot exceed the number of original equations, n. How many and which

of the multitude of possible compatibility relations bre independent may,

in theory at least, be clarified by writing out the matrix o' rmbrs,
S,(J), where the range of j is such that all independent solutions for

ea.h of the several normals to be considered ere included. The rank of

t1- matrix renders the nuwmber of independent relationships and the rows

a. ;he highest order nonzero deterimnant show which relationships are

independent.

The matrix of numbers w , may pertain to ne or several character-
istic normals. It m~y tur , cki. that the sam. differential compatibility

relationship will correspond to two or more norals, and it Is .iso pO-

sible that any of the original equations, Eq. (A-I), may be cfaracter-

._- Istic to begin with (i.e., all a, for some P lie in one plene).

F-! The two questions which are relevant to the formulation of numerical

schemes can be swr.inarzed as follows:
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shipsar,~f there exist nreal and indt~verdent compatibility relation-

7)Given several characteristic normials,, which of the corresponding
C patibiiitY relati onships are independent'?

These Questions are Thyestigat~d for the equations of motion for station-

~,CMN OF NORMALS AND CH ?ARP S1 CNI

___The left side of theo characteristic equation, Eq. (A-1i), is the
determinant of ani nth order matrix, and thus is an n~th order polynomial
in the three components of the unit norfral1, (ni . n2  -0). Equation (A-12)
provides one condition for detenniinatlon of th w egrees of freedom

_____of the normal. One degree o'! "reedom. remains such that an nth order
ftynily of norma's is obtained. The eemants of the family of normals so
obtainad define a conical surface~ called she cone of normals.

The case In Allch the cone of normall degenerates Into two noninter-
secting cones is of articular interest in gas dynamics. The character-
istic determinant, Eq. (A-411), in t-h4S case factors into the product of
d Symnetric quadraftic factor and a linear factor repeated n-2 tirres, 'I.e.,

Th~rt i either of the factors
-j I

v~nsh.Th*firt fcto yildshe quaionfor a family of normalsIm woenpitliontesraeoa quadratic cone, while the second
fturyild~s th-euto o a-lv fnorfials whose endpoints all
'lei aplane mnal to 1:he directlon Lk

Igas dynramics the cone of norimals is usually defined as only the
quaratc-one geerated by the ele~temts corresponding to all the unit

Prr?als which satisfy thaa quadric equation

n n[A- 18)Vi
The characteristic surfaces which correspond to each of the elements ofIthis cone of normals forrm a curved conictl envelope which is called the
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- characteristic conoid. The curves of contact between the characteristic

surfaces and the conoid are called bicnaracteristics. The tangent planes
___ to each of the characteristic surfaces form a conical envelope consistIng

~of straight elements which is called the characteristic cone. The gee-

___metric relationship be'ween these conica' surfaces is illustrated in
~Fi gure A-I.

-The equation for the characteristic coneC) which is required for

developmntn of num:.rlcai. mthods for soiuto,,,'-- Is the rec .procal Cone

Sto the cone of normals. I, oroer to obtaIn, the re tca oe"cnie
| the particular unit normal vectar, ni,

I where xi (i -1,2,3)- ar the coodnte of th vertex. of the cone o

n.... ls and is an arbitrary le:ngth aiong the nor. al if the awisponents

o f t ,ni oral: n are eliminated fr ., Eq. (A-1 byman f q

(A-19), the r;9uation for the suriace of the cone of no !as i.s obtained

4 ~(xi a x10)(xj - xP), = 0 (A-2O0

?~he equation of a plane tangent to the Cone of nor mals at any point x

lying on the surface of the cone,._Ref. (SI,,q is given. by

.jtXl - Xi ~ ( xX -- A *. -i

~~~The directior num-e of the norma- to the t'angent plan,ef,ned .= by Eq.

i (A-21); are

'WHO'

The recipr ocal: ccihe is_ .er e-atec _, tie nor.-al s to all possible-

p: lanies tangent to tree cor.: of -"m~ at- t.=ver-- t -e....ios s__faor recip o W rl Cc

meticreatoshi betw e ren -.eec na sunrasi l lsrte in

2 . 311 (A-23 ,)

whr 4( -1231atecodnae fte-el fVecn: -

-_aal. -'n- is an .ritrr ..mt ;n th n a . 'if th I I i I I I I
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1where the " 1(1- 1,2,3) are the components of ary versor of the cone.
-__ The parametric "quatIons for an elemint of the cone can be written as

(x, - . = r i , (1 i 1,2,3) (A-24)

where 1 is a,, arbitrary length. Any verzor, ' of the cone is by defini-

tion proportional to the diractIon ratios of the normal to the corres-

pondlng tangent plane of the cone of no.ials. Eo. (A-22). Thus

;= A%% - x (A-25)

where e is a constant of proportionality. Substitution of (A.25)
i Subt i uti n ofEq. '-5

for the Y into Eq. (A..23) and the fact that the point X,, is an arbitraryTi/Poin ME or he surface of the cone of normals yiTelds the result

i A A (xn xo) 40,

When this result is cmpared with the equation for the cone of nornis,

Eq. fA-20), an Identity is obtained

U n(A-27)

This identit, is satisfied since the matrix A is symntric if the mntrix

a has the values

C .- i(A-28)

where At denotes the adJoint matrix, and dates the d-eterrnnt
of the mtrix A. Thus the matrix rauj] is simiy the inverse of the

matrix Aj) and is denoted t.A- ,. The equation for the characteristlc
co.wIe can mmw be wrltten

" "IAI x4
0j(x- - x,°) 0 (A-2)

A differental elemt of this come coincides w ith he -haracteristic
cotioid tnd his tha equation
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A dx4 dx~ 0 (A-30)

This result will be of further use in the development of a numerical
technique for solution of the system of equations, Eq. (A-1).

4. GENERAL FORM OF THE COMPATIBILITY RELATION

____The system of equations, Eq. (A-1), reducesto an interior differen-
_____tial operator on a characteristic surface. Data may not be prescribed
_____arbitrarily on a characteristic surface since the interior operator, or
____compatibility condition, must be satisfied. The compatibility relations
_____involve directional differentiation in a space of one lower dimension

than the original system of equations and, therefors-, are very useful in
the development of a numerical scheme.

Consider a trarnsformation oc coordinates by simple rotation from the
coorlinates xito a new system xi' with direction r&tios (ax!zx~) The
x3 direction will be chosen as the direction norinal to a charac-teristic
surface, so that

- (Xaxix) =ni

_____The system of equations, Eq. (A-1l), under this transformation becomes

a (ai; )(a /a; - .i ,2,-.n) (A-31)

If Eq. (A-31) is multiplied by the left eigenvector, wV (u=
____ defined by Eq. A-),then an equivalent form of the compatibility con-
____dition, Eq. (A-6). is obta'ned.

____i . 1a(x,03)~/xi'l w Vb P (A-32)

-he x direction was chosen as te direction normal to a characteristic
Surface so tZhat Eq. (A-10D) is satis-frIed, i.e.,

MEw a (.ax-'i-xJ w a n. (A-33)
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Thus Eq. (A-32) is seen to reduce to differ'antiation with respect, to

monly two independent variables, ^xi and xand can be written

w (uaja wa' ;(u /ax) w b (.-3C~

where

Iaj a (ax!Iax.) (A-35)

iequation (A-34) is he general form1 of the coinpatibliity relatii-n wicln

rmst be satisfied by the values of the dependent veriables,

___u V v = 1,2,..n), en a particu~lar characteristic surface having unit
riorimal, n,, and correspondin~g left elgenvector w 1,2,..n). The

commatibility relation car be mre simply writtan as Z

E~ (au /axj) + Fv(A-uv/axj) D (A-36)

where the coefficients E and F (v =l,2,.nr) wil1 depend upon the

___particular choice for the x' and x' directiops, the only restri tilon
being that they be two independent directions within the characteristiC.

surface corresponding to the unit normal, n.

IMUN



APPENDIX B

THE GENERAL NUNERICAL METHOD
AE

",,, REMARKS

D. S. $utler (12) hNs develoDad a .iethod having second-order accur-
S 069acy for integration :f splcial systs---- of quasi-linear hyperbolic partsl

differential equations. T nethod, as devaloped, is restricted to sys-

tem of equations for which tie cnaracterisnc ceterminant redurs to a
quadratic factor and a repeated linear factor.

The original developre-nt: by Butler, reported in Ref. (12), is very

-_o_ abbreviated and for this reason the development, is repeated here in

g eater detail. In general, Butler's approach conains several very
___ lever and unique ideas which make it not only academically interesting,

but also £ very promising nuznerlcal Leieme.

____2. PAIRATERIZATION OF THE BiCHARACTERISTICS

It is asswed that the characteristic det3rminant of the system-, Eq.

(A-11) ,f Appendix A, factorizes into a sym~ntric quadratic factor and

a repeated linear factor, i.e.,

det [a.ini " (J-I)

where nv, 2)re the c omonents of the n-i normal to charactPr

_ istlc surface and A i. Ftho.-r f ectors of En (Rfl ran ha

require- to vanish In order to satisfv t - characterisic condition an-

thus two fuilles of characterIstic surfaces result. The flrst fniv
011consis t of alI surfaces having a unit norma. orthcqcnal to the dIr ctlon

d.-.. .1 , 1s n a
,2,), ,3e., all surfazes for -'h is a t-0oent ve r. The

second fr iay- or-cfaractltstlc surtaces consist-s of al- sraes ravlna

u -ni cr"ls c atis'fy t.:h e.uto Ai ua 4
e uatIn.g-the seconO factor of -E. (-i) tc zero ,- i



___n, A U= (B-2)

___In Appendix A it was shown that, the cl e- ~ tir:"c surfaces of this
second tynhe fci?- a curved conical envelope called a characteristic conold.

-n qaion fo r a diffearentIal' eleuent of h ooi a h oh
£ . h.o- asson6ob

M CX~ux. = 4 (B-3)

___Bicharacteristics are Idefined asit the lines of contact b-atween the
____characteristic surfaces and the characteristic conoi-i (1 ae., the elemnts-

ofl the conoid). The famly of characteristic surfaces corresponding to
the linear factor of Eq. (B-i)1 can be cons-dre toneaeadgenerate

___conical ervelope which siutorly consists of the l ire segxnt, ha4ng the
____direction rv-atios L,1 The -blcharacteristics o-F this ftnly of Character-

istic surfaces all coincide with this line segzent- The blcharacterlstlcs
___of the family of characteristic surfaces corr-espon-rdi ng to the quadratic

____ factor of Eq. (B-I) are the eiements of the quadric conold, E.(-)
ifferentIal1 segm-nts of the bicharacterls~ stk iyet can oe exor-essed

Parazetrically in tenns of the direction rato ofteeeenso4o
___ respecti-ve cones. For the l1inear factor th e de *r;ratecoehsnl

__one di stinct elemnt aMteefr he pritrcecquatlons for all hi
characteristics of this typ e re

41 ' - h

CTFO the cre
.-h h,11rceiitc ol ce..rd 6' 0 n a , crpnin to the

cjadric- fa ctor of E-. (B-i)-, can b--e i"kee-ise expressed Par 4,1"Ca;lv

exceptt. a a sinole -- n q-- lU~rft con a-
4

: -7: + - .. U

Ier Mr 15 a mm.an m(f~ apItcir ei4- he cn
'tnI Mlactn e-Anft-' Me?-. -.- 4o-eetc vcorse f



oaraetiatlo, x, ~and vi. mst satisfy the quaan C equatiol, q
k__ Subs i -jiO -- -Fa ~ ub~ituionor he ara-mtrhc representation, rq. (-Si i

-Eq._ (5H31; xrlle the re su

fl 2 e + - 'Sir

__-_s z Zp 1c + 7-- coSesfl

22

SS i AIfd

whi ch is satis f i ed i dentl calv if fth e vectors, arv1 ~ld .,; are chosen

sucn. that

-~ ' A - A
fl. . A;A; -7)

-ho Co I. th ?-s thj

Thecoditlons expresed by Eq. '8-8 produce te reslt thtte refe-
eince vector :-et-, tit, and v. are m tui conljuw-xato diareters of the

E:driccoe Rf. '51~ If ad are chosen as the coordinate

axes for a rect-illlnear transform-tntonp ofci t.- thnte fact th!-at

thav anre v'oAut- ceztjuau dia -m-te rs is sufficintnl to,- ensu re tha t te
Quadric equatilon for te cone is reduced to calnonlical fors-, h

ir(JO -Qr X . (-9

N MF vwte thea bar deno0tes valw'cs refeanro t et~ fre coordin.12ates.

ad as unit DrO:nts are

oIx; A.LLX. T tiju I' x- uR X

and h co - od, rane ec-vation fhor th e quac~frlc cc-ne, E. (B-3-%

-tS



__ 2

fljj A1 JaJJ + A )ti 2'x~ + .. 1iAd)2 = 0 (B-11)

the normallzation conditions; Eq. (B-7), which are assume 4 for the refer-

ence vector set, produce a particularly simple canonical form for the

transfo-d quadric equation

( ) 12 7 -2

This is the equation for a real cone coWpletely enclosing the T1 axis,
KI---K - I.e.,the I direction, Thus the c-d 1- ,,, Eq. (B-7), ens.re that Vic-

vector Ii lies interior to the quadric cone. There are an infinity of

transfor-mations wh ch will reduce the equation of a quadric cene to to-

onical form and, therefore, i is peritted to be any vector Interior to

the cone. This degree of freian in the choice of xI will be required
at a latter -tage of the n,-_rical develo -mnt in order to ensure that

the c -patitility relations for the syst- of differential equations can

.... be placed In a particular fom.

1: 3. GENERAL FORM OF ThE C@IPATIPILITY rIE.ATIOAS

The coatibliity relations which exist for characteristic surfaces

corresponding to the quadratic factor of the characteristic determinant,
WEq. (A-1l) of Append'x A, can now be expressed in terms of the parm*tiza-

tion for the bicharacteristics, Eq. (8-5). "he equation fr.r a differ-

ential eleent of the plane tangent to the quadric cone and corresponding

to a oarticuiar bicharacteristic direction, Ea. (B-5), is obtained ;r

Eq. (B-3) for the quadric cone, Ref. (51), and has the form

CS V -- sin)d z 013)

r-,Te unit -sor miaI to this differential tangent plane elerent coincides with

Sthe characterisi c nom i so flat

A 4A r1, as + v s ,- .;/. i , --



2Wwhere N( is the magnitude of the normal 1;0 the differential ele----en -.

N-- [Aj-- + visin-)A Csi ) '2
N ( + k N

-- (B-is)

fir The bicharacteristic direction, Eq. (B-5), lies in tne characteristic

___ surface elejnt and is orthogonal to the unit normal. A second indepen-

S dent direction, wh ch lies within the characteristic surface ei-sant, is

selected In order to obtain a particular form for the compatibility re-

MO lation. The second direction is

Mr vicOSC- in(

=M The orthogonality of this direction to the unit normal, Eq. (B-14), can

be verified by direct calculation and the use of Eqs. (8-7) and (8-8).
The directions xI and x. in the general compatibility relation, Eq.

(A-36) of Appendix A, are my two independent directiorns in a character-

istic surface. Therefore, if the x dire..tion is chosen as the bichar-

acteristic direction and the x' direction as the independent direction

defined by Eq. (B-16), then the partial drtnt ves of the general com-

patibility relation ca Nwrittenadirectional derivatives in te-at of

the partial derivatives with respect to the original coordinate systi,
i.e.,

A (x- + picose +vsn); a 1

H = 9~~ + VC ose,s lr)a
* V

E-m where the coefficients A, B and C_ are functions of e, u Vand x -

Butler (52) obtained the functional dependence of the ccefflclents A,

B and C on s, by first considering the case for n = 3 (i.e., three d. -

.Dendent variables and a system of three equations), and wrltino out Eq.

(B-17) for thie values A 0, z/2, s and 3.z/2, ie.,

- A ,, i + 1Rx- v , u x

m
Ma3V-V

ME



- - - a--- -... ..W fO . -A--=-

4 7Z

Av(T)(xl - ui)(auv/axj) = !30r) - C,,(r)vi~auvlix1) (13-20)

A (3w/2)( I - v /(ahx1 ) B(3w/2) + C (37/2)p(au/;x1).  (B-21)

PEach of these equattons can be considered to be fonmed by taking linear
cWebl"itons of the original n equati^'n. Therefore, there exists a

linear combination !f the four equations which is an identity. Suopose
s, -- and are a set multipliers for Eqs. (B-18), (819), (B-20) and

_(3-21), respectively, whiuh, when the products are sutuud, yields the
.dentity. Then since the vectors xi , Vi and vi a-e independent, the co-

W efficients of each of the directional derivatives x 4 (2t/axi , up;uV/ax )
and vi(auj ax) and the constant terms in the identity must vanish. This

yields the four relations

BArA (0) + A (w/2) + yA (7r) + 6A (3T/2) = 0 (8-22)

V CV  V.r ~ ~ ~ ~ d A(0) + SC&(/2) -'A(N-Cw2) =0(B>3

CC-aC (0) + sA (v/2) + (C V(w) - SA(3w/2) = 0 (B-24)M
WE a8(0) + aB(4I21 + yB(i) + 68(3n/2) = 0 (B-25)

In addition, any three of the equations, Eq;. (B-18) through Eq. (8-2l),

are eaulvalent to the oriinal system of dlfferential equations and there-
M fore must have the sae charactristic surfaces, i.e., the corresponding

compatibility relations must have the sam directions of differectiation
as Eq. (B-17). Therefore, it Is necessary that the coefficients of the
dir-ctional derivatives, (x. + icose + visine)(au laxi) an

-vc -f'sine)(au /ax1l, in the identity obtained by suiming Eqs. (- 18)
ELM through Eq. (B-21) must also vanish. Equation (8-22) ensurec vanishing

- of the coefficient of the first directional derivative, while the require-
-m ment that the coefficient of thF second vani~n yields the addtiona
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relation

to!, () "7-4~n21 + yC( + 6C(t3w/2) 03(-~r ~~1 n , .,., 'w (B2'

The e tios, Eqs. (B-22) through (B-261, are not only conditions on

the multipliers, a, P y and ; but also are cowditicns on the dependence
of A B and C on the peraiieer e.

VV

-ince any three of the Eqs. (-18) through (B-2i) are equivalent to
th)e original system of dffferentia equations, then an appropriate corn-

bination of these sai,,e equations wil yield the general compatibility
re- Iat,-i, Eq. (617). Note that 'V te s n and cose dependence of the
direttional derivatives in Eq. (5-17) m.-t, be produced as a result of
the muitiPlle's vseu in the linear combination of Eqs. (8-18) through
(8-21). Butler (52) obtained the general compatibility relation and the
frunctional deper.dence of A , B and C on e by using the multipliers,

V V
a(! 2 cos-), (-1-2 sine), 'r(l-2 cose) and 6(-1+2 sine), for Eqs. (B-18)
through (B C-211 repectlyiely. This particular combination has the neces-
sary prorerty that, for e = O; ./Z, 7r and 3/2, Eqs. (B-18) through (B-21)

are repracu:ed and the correct e dependence of the directional derivatives
resvits.

After considerable rearrangement of terms in the su-maed equation and
use of Eqs. (B-22), (3-23), (B-24), (B-25) and (B.-26), the general form
of 1. ,B-, is obtained in which the coefficients A B and C have the

following form
A, + -A, cose : sine (B-27)

AV .V 6V 3v

8 2 Bl1 + B2 cose + B 3 sine (B-28)

C + C2  cose + sine (B-29)

where
AI A (0) - 3I )

A A )- A (w2 + -A () -6A (3 /2) (830)~V V V V

a 2A (0) = yA,(i)] %8U3I

2V V

]MM ME95



;tK A3  4(A ) , &A ( 32. ) (-32)

PE. [ ---- r , (-,

I EI ,-yi.n- .p '.-T

3  
)

I

(1 i2: 52) emp~loyed the pa T~;c Tonn, of & particula nonchracterist~c
~~linear combination of the system. of differentlal equations. This rae-
~tior is obtained by the sa~ e chnIques which .were used to obt&ai. , tne

Sgeneral fonn for Eq. (3.-iT). Equations (Bo8- I .... g (J-l er a"i

" = ..... v : "- ar aginl

£tmed, only this tme using the respective multilIers a, -8, r and -6.

-_-_, ~After rearrangem,ent and us~e of Eqs. (8-22)< through (b8-.6), the follow, ,,<,ngprelation Is obtained; + .r hj) * )

~~Aiv xi(WJ,./x i , S! • C vpd1(./Xl. '3v ,,- vi l'

_ . ~where the coe?ficlen~? 1 %, 02v and 0-3 .. are kJ:e the c*.-rrsiono-._ .

~~~~~ing cefficients ifl Eq. (B-17). The reaon that this pa {, ,: ~r tclar ife-i~ .I

__ential relat~on is requirad will beco.me apparent in the c:ciss" of deeop-
,men: of the numerical Intearation techicue contained ifl the ,o1'?cwng

~secton.

=-5
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.hE SECOhD-ORDER NUMERICAL SCHEME

The two equations, Eqs. (B-17) and (B-39) fopn the basi- for a

nu imrcal schem. which can be used to compute th. values of u currect
to second order at any noint xi = a1 when the u are given on s me stpace-

like surface f(xi) = f near the point a4 . The solution can then be ex-
tended to a Fai ly of surfaces of which f 0 is a typIcal rmeer.

Consider Eqs. (B-17) and (B-.9) written in operator notation for the
di ectional 4ifferen-Ials along bicharacterls tic direction, "i" and the

xi direction

Adu = .D + C,(vicose -usine) (au /ax )dt. . (%g)

wher cathesbc ,I'

SAlvd~u" (8i + C2np - C3"'i v ;".1't f " i; (&.4i)

were the subscript i denotes the bicharacteristic directiont oy -
responding to the value of o at the point u1-ndet consideratio. and the

subsc-ipt i denotes the x direction. The bi2chearcri s1; t'rou the

point ai intersect the space-like surface f 0 at fl te values of t,
so that the bicharacteristic corresponding to a particuiar value of e
and starting at x a meets f(xi ) = 0 at t -t(), Equation 18-7
written in finite difference form correct tc second order In t, usi.o

the modified Euler scheme, is

N Av[uV(a) - uV(f)] {B + rc( ' + S(f)]U t(e) 0Q) (u-4)

where

S C vicosA - uisins) (au/ax) (8-43i

A 1= 12) A A ( !-44

N --
NN ~~~B =(1/2) 1B k - ,j''"(-S

The notation u(a) is used to den ff V-6 va'. as -)f

a"

I9% 7
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tt ufiic 7 lto on nE.{

S.- Are ass.m, correct to nrder lthe
..... v ad 5,f ,..and -be, c irct t ore all)I

set nc ecor )J at,, port can be any directte is dteror to the char-
'hie conths the e of is n- chcsen such tht

.....u u ta xep. a nre a of C I is as en
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f -- repedomi rema n5 in the choice of the reference vector

s.er d t v u.tlcoe i2 mde o' state doa nis degree of freedom
s ou d -i Theg, ffegeneral case, but arbitrarily uses the base co-
ofdinae decons to fix the diret vns o f e i t case of
.:,eerh uin ristedsy flow, and for three-dnehslonal, steady flow
states h e thti 41 s degree of freedo .shouid ;be specified so that a1and P,, enid their derivatives vary smoothly along Vie blcharacterlstlcs

and streamlne u sed in 'the inegrat ien. i Here the i and for the
SPeCov71c Cases dfe onY in magnitda from the u, and viin the general
case. At this pointj, the present development deviates from that by 2ut-
er and an altenate choilce is made for the remaining egree of freedom
In poand o esthis degree of freedia is used to select an orientation
of the reference, vector set such t'hat the value of is a constant alonng

a mg o if 01 a racte ris+tlc. This approach has the advantage that
fewer te-uns rEmain in the final form of the edqations and the
numerIcal -heh for establis-hing the orientation of the ~,and 1  rr-ence vector zis simpaler tha the corresnonding schem rqIre nBte'

Ish h h a ys be possible and mutler u2, 52
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equation for S, Eq. (B-43), contains the partial derivatives of the de-
____pencdent variables at the unknown pain: a. In any explicit scheme these

derivatives cannot be evaluated until after an entire solution Surface
has been calculated. Therefore, in order to achieve second-order accur-

_____acy, the terms containing derivatives at the solution iDoint, a, must be
eliminated. The fact that an infinite family of bicharacteristics exist

_____at each point can be used with weighted integration to eliminate the
terms containing derivatives.

_____Consider Eq. (8-42) weighted by the factors [f(a)coso]/t'a) and
_____ ft a)sin9")/t(O) and integrated with respect to e between the limits 0 to
_____ 2i to give

r2x f(a) A cosede
____u (a)
____ t(e)

.27r f(a)U (f) A cosede r2 zr -

____ f(a) Bcosedes + O(fl(a)) (B-47)
jo t(e) '

_____and

f(ci) A sine

____ u i t(e)
10

r2r f(a)u Mf A sine f 31
tVe V de + f(a) Bsinede + Off 3W)

*0 0 (B-48)

where f(a) denotes the value of the function -'Or the surface f(x4) 0
evaluated at the point ai, thus the ratio f(a)/t = 0(l). Note that Eqs.

____(8-47) and (8-48) do not contain any terms involving derivatives of the
dependent variables and the integrals are in tetns of kxIown quantities
on the initial value surface f(x,) = 0.

A third finite difference relation is obtained from the differential
nonCharacteristic relation, Eq. (B-411 applied along the Curve dx~ i Xdt.

Suppose that the curve dA-1  A idt meets the surface fix) 0 at ta h

maw and denote the value of u at this pOint by u (h). Tha mod,-fied Euler
Integratien scheme is used to obtain a finite41 ifeneaorox ato
for Eq. (8-4l1 which is :orrect. to 0(h?-'. This A.Ive'

Q9



AlV[Uv - uV(h)] {B1 +(l/ [(C2 vVi - C3vi)'Bu V /xi]x

+ !2[(C 2vi - CI (?u /xi)]o} h + 0(h3) (B-49)
2v_ ivY a v 1 )]-h

where

A IV / [A(c) + AIV(h)) (B-50)

B1 (/2) [BI(c,) + B1(h)] (B-51)

Equation (B-42) is weighted by the factor h/t, which is of order 0(1),
-- and integrated with respect to e between the limits 0 < e < 2r. Subse-

quently, Eq. (B-49) is multiplied by i and subtracted from the result'ig

integral of Eq. (B-49) to obtain

(uV) r (2r hA de , f2 huv(f) A do *

L o Jo Au(h)

_ _[(C 2-vi " C )u
3v2-( ,'x~t-

+ h2de - .hg + O(h (B-2)
-- I(

-The final three conditions obtained here, Eqs. (3-47), (B-48) and (B-52),

differ from those obtained by Butler (12) by tihe absence of irtegr.ls in-

volving S(f). T-hz; is a direct result of the choice tor the reference

_ vector set xI, ,i, and vi such that e = constant at all points along a

bi characteristi c.
Equations (B-47), (B-48) and (B-52) are the necessary three indep2.n.-

dent equationr for the u (a) when n = 3. If n > 3, it is assuined that
the additional n-3 conditions can be obtained from the compatibility re)a-
tions corresponding to characteristic surfaces containing the curve
dx idt. None of these conditions involve derivatives of the depen-

dent variables, u , at the unkaown point, xi  , so that the modified

Euler integration scheme can je used to obtain finite difference relations
which can be solved simultaneously with EQs. (B-47), (B-48) and (B-52)

r2
to obtain a solution locally correct to order O(t 2

Y/-Vi
Go0
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6. SYSTE$r REF'REI-NE iVEU-.S

Thne reference vector set, Km ad Ist be es :ablished in

order to evaluate tLhe Thtecrais apearing in, £45.s (8-47). ( 8-48) and

-(B-52J. Asrtatc. prvi-usiy, is Chosen such that the clc.-'ieant

__vanishes throughout the lx, X x3) space. In addition --he vctorfc.s

are reUi red tobe "mtually -orthoconaP' in the sense that the 4'scaiarr-

prodlu cts AI4j I e" vanish, Eq. (B-ax. Oat ee of

- reoi rmains in thr-e cnhoiceor w- d v, and this isz used to satsf

____the requirement that the inte;ri

for a consan value of eA define a bicharacitersi cuv asa1-nt~

of the parameter t-. The characteristic surface element through te
-~direction ix1 -cos + Visine

-~ - .e)at any point is given by

A1'(A +u 1 5 + v-isine)dX. 0 f8-54)

which is the equation fIor an element of the tangent plane in
nona fnr.If the integral of E-q. (8-53) satisfying Eq. (8-54) is

-X 1 x4 , )t then a differential elemrent tangent to this surface can also

be expressed as

dx1 a,/ed d ( 4/ tt(-)

-~Subsit u ti on ofI t;-hIs expression into Eq. (8-54) imust, Yield an identity

since the two elemvents colnc4de-. Thus,

+ cose + it.Ad

+4.coseA+ v45tnOff4(X /ld (-6

H-owever, a curve ofcotn sa bichararterislic so that

+ ~~coe + v4 iflO (57)



arvA Ths n view o f h e re-i u~ret on * ~ anP.4eese.b
t (-7 an ,(8-8), the second tern of Ea. I.S-5f.) vanishes 7dentlcally

i yield

his relation is sufficient for the deterrnination of the rei.aining degree

of freedm in the refe-ence vcctors ui and v relative to a fixed refer-

ence.

S7..S-MAY

__ The finite dilffererce irelpions which have been developed here for

th e general case can be used in a vaziety of ways to obtain a nwmerical

MM aloorith m. One -ethod Wil be outlined here in oroer to ilustrate the

application of the equations which have been develoued.
The modified Euler integration schese is a predictor-corrector type

FEW scheme in which a system of nonlinear d fference relations are solved

by iteration. The values of the dependent variables, u., are asixed to

be known at discrete aoints on the initial value surface f(x1 ) 0, and

____the solution is to be extended to a set of corresponding points on a new

surface f'(x i ) = 0 wich is suffIclently close to the initial sur-ace.

. T~he integration pmroess is initiated by extending the curve dx1 = Ldt

ME fr-;Fi a known point on the initial-valve surface, f(x!) 0, to the new

solution surface, f'(x 1) = 0, the intersection being designated a,. The

- system of vectors 1!, i and v, at the point a1 are established so tint

... =0, the conditions given by Eqs. (B-7) and (B-8) are satisfiEd. and

by a consistent selection for the one remainino degree of f'.edr=. NE-t

the Irtersections with the initial-value surface, fxi) = of the
crmndly of biharacteristcs assing through the Point a. arc found using

PON E. (8-53). The single deoree of freedom 'or the choice of the reference

-vectors X4 , ui and v. along th1e intersection is chose, to satisfy a

finite difference approximation for E . 8-58) relative to the vector
Ssyste-.- orientation at the ooint a. The values of the deoendent varIables,

, and the vectors x, i and vi along the intersection with f( x,) 0

ame used to evaluate the integrals which appear in Eqs. (8-47), ,B_8)

and (B-52). Yhe resultinu three equations along with the addItl-nal n-3
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. Vi curve L.=J ' cAn be used to solve for -he
_ _ _eo~uat ,on-  iong the curie dx.i  ,U h

values of u(s).
The vaIues of u (=)thus obtained are r.:garoed as t-he predlct--

=value; in the modified Euler interatlon sch- and these values are sub-

--- sequently used to repeat the entire process, using averaged coefficients
to obtain the corrected values for u(a). I i Iteration process i s uu-

___ally a-ppiied successively unti ve vauso h" eenetvralsapp, en values4 O edpndent va les,

u ,..:. obta-ined on successive iterations agre to withi.n some nlernce
consIstent. with the ste size.

tg ;
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APPENDIX C

MPThE DYNAMIC RELATIONS FOR A STRIATE FLOW

The working fluid of scrwajet and rocket exhaust nozzle expansion

systems is produced by combustion of a fuel and an oxidizer strem-,, each

of which is unifom ifn comosition and stagnation enthalpy. The stagna-

____tion enthalpy of the combustion products is thus a single valued function

of the local oxidizer to fuel ratio. The oxidizer to fuel ratio will in

general have spatial variations within the co=-ustor and, therefore, the

K stagnation enthalpy and co.position of the fluid wil have spatial vara-

tions. Hoftever, since the flow is assuned to be inviscld and strictly

adiabatic, no diffusion of species or energy occurs and, therefore, bothIthe at=mic corposition and stagnation enthaipy are constant along each

streamline.
in a scr- jet combustor the stagnation pressure of the coid.Austion

products will in general vary from. streamline to streamline due to vari-

ations in pressure and velocity of the entering air strea . in rocket

syt the stagnation pressure after coabustion usually can be asszm

to be constant throughout the flow because of the iow wentm. of the

entering propellants and the fact that the cocbustIon occurs 4t low sub-I- sonic velocities.

The general case of cobustion products havlnc variations in both

stagnation pressure and enthaipy wil be considered fin the thenodyna.,ic
md. ei. The general theY*dyndmic relation for a mixtur of cases in

them-a. l equilibriau,, but chemical noneullibriu, is

nITds =dh - .Ldp - 7 c (C-i)
a1-

where s5 absiute temperature, s, h and are te - -i ptrtiesI of entropy, entaipy and cheical pote-ntial of -[ Sa spec'eSrespectivly,

pis the densi;, p is the pressure and c is the mass fraction of the aI
specj .es.
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- The system is iss, ed to exist in a state of "frozen" or equilibrit

chemical composition. in the frozen case all the dc 'n Eq. (C-I1 are

_____ zero, -nd for the case of che.mical equilibrium, no net change in the

_chemical potential of the system occurs. In both of these cases the
_-_ last tern in Eq. (-i) is identically zero *tind the general ther.k.ynemic

_-__- relation becomes

ids = dh-- dp C1.2)

-Equation (C-2) is the general thenmodynamic relation for a simle system

and the specification of any two hermoWdyna'li'. properties is % ,A [.icient

to detemine the state of the system and thus -ll remaining thermrdynamic
properties. Equation (0-2) is for a closed syste. and applies to a par-

tie of fluid as opposed to a fixed ooint in space. In his sense the

velocity of the system is not a the,-'odynamic variable and cannot be

detemined rom, a knowledge of the themodyriu.aic state. Thus, the staona-

tion state and corresponding properties cannot be determined unless the

system velocity is specified in addition to two thermodynamic variables.

It foliows that specification of any two thermodynam c variables of the
WE stagnation state, in additicn to the system velocity, is sufficient to

detemine the thermodynam nic state of the system.

The stagnation enthalpy of a fluid which is generated by comustion

of oxidizer and fuel streams, each having constant enthalpies, is a single

valued function of the oxidizer tc fuel ratio. If the fluid has spatial

variations in the oxidizer to fuel ratio then correspondirg variations

in the stagnation enthalpy will also -be present. For :ady flaw of an

inviscid fluid, no diffusion of energy or mass can occur so that the

oxidizer to fue rAtio and, therefore, stagnation erna!py are C-on sta.t

ailfl- the stramlines of the fl,q. The values of the oxidizer to fueF

ratio ?nd the corresponding staqnation enthaipy are ass med to be constant

at the .diuCs whi ch orevauil after copletion of the mixing and c-bustion

-process. Oc-me expansion of he flow begins the dissipative Processes

ivery raidly die out (e e. ; the gradients decrease exceot in a thin layer
EMS -- layer
W near the boundarIes) and the inviscid &sstsDtion is a good marox t on

The fact that the s-tagnation properties are constant alonq the

streamlines :f a s+ady and invlscid fI. can also U- shown by less

a
UEM
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heuristic arg.finm-ts. .. asider the mechanical znergy equation which is
obtained by surmiiig the Culer momentum equatio.s after multiplying each
by the corresponding velocity component, i.e.,

U.}Uj (U /ax + (ui/P;(3p/;xI) 0 ("-3)

2or, in terms of the square of the velocity magnitude, q = u

(u)/2)(aq /3-Y + (u/)(On/,X4 ) 0

The first law of thermodynamics, applied to a part .... of inviscid
fluid, yields

du aq - pd(l/p) (C-5)

where u is the internal energy and Sqthe heat transfered to the syst-e.
The flow is assumed to be strictly adiabatic so that aq 0 O. Thus,

du + pd(l/p) = 0 (C-6)

or in erms of enthalpy

dh . 'I/p)dp = 0 (C-7)

When the differentials of the dependent variables are expressed in terms
of the coordinates bor a point fixed in space, Eq. (C-7) becomes

ui(hjax I) - (u1/p)(ap/ax I) = 0 (C-8)

Addition of Eqs. (C-4) and (C-8) yields tne result

ut(ah/x i 0 (C-9)

or in tenTrs of the stagnation en1halpy, R h + q /2,

0 (C-)
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Although it,. has not been shown here, this esult Is alac true Ahen dis-
g' -continuous changes in the flow properties are present ..e.,t shocks).

-In the ahfence of discontinuities in the fluid properties. the first
-- law result, Eq. (C-7), can be combined with the general therm~dyl8fic

____ equationi, Eq. (C-2), to yield

IBM_ Tds aC-li

or in term of the coordinates of a point fiXed in space for steady flow

U1 5A3/X4) 20 (-a

____ Thus, the entropy is a constant along the streamlines of the flow.
_____One further property, the stagnation pressure, can also be shown to

be conserved along streamlines for continuous property variations. This
can be 3w, by placing E.(C=41 in the ft",i of a -ect6ional derivative,

- along a streamline, of a single property.

-IM u1(a/ax1)[p + 1 ,pd(q 2)j_ 0 (-3

Ali If the integral in Eq. (C-13) is taken along a streamline such that the
entropy is constant aW thi limits of integration are from a point on
the strecmine where the wiocity is zero to a point where the velocity
is equal to q, then, by definition, the conservec property in Eq. (C-13)
is the stagnation pressure, i.e.,

___ J~(PO /ax,)dxi (C-14)

and Eq. (C-13) bacoms

uj(aP/axj) 0 (-5

____Thus. the steady, Inviscid and strIctly adiabic assumptions yisld the
Fisult that the stagnation ehthaipy, entropy and stagnation pr-.ssure ame
all constant along streamlities for continuous property variatimis.
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____ Te fluid gernrnrated by coi-bustion at a given oxidixer tofuel rttio
forris :4mle system in the stagnation state and, therefore, specifica-
tltn of any twn stagnation properties is sufficient to determine thea
stagnation stalte. The stagnation entnalpy of a fluid generated by cw,-
bustion, of constant propeartyv oxidizer and fuel strtaits is a u.i ue func-
tion of the oxidizer to fuel ratio. The remainin~g properties of the

M stagnation state depend in addition on the pressure and velocity after
combustion. Once the stagn~tion state Is established, the properties
along a particular streamlipte are one-dimensional functions and call be

____ characterized by specificetion of one additional property such as pres-
sure, density or flow velocity.

- For this developaent of the nufferical -We.nod of charactersi tics,
the stagnation enthalpy and stagnation pre.sure were chos,;i as the two
variables necessary to defire the stagnalor, state, and the static pres-
sure was chosen to further define the ,ariation of tht system properties

MWEV with expansion. Thus, the propertias density and speed of sound, ex-
____MU pretsed functionally, are

-~ c(pP, H) (C-16)

a a~,P, H) (C-17)

____For a thermally and calorically perfect gas the relations for density
and speed of sound are analytic exp'essions. For multi-component systems,
having either frozen or equilibrium chemical compsition with real gas

____effects, the dani'ty and speed of sound must be obtained by means of
-~theto-che-ni'sal zalculations. The relations, Eqs. (C-16) and (C-17),

____ are usually obtained as tabular functions- Continuous functions must be
____ generated either by, interpolation or by fitting empirical expressions to

the tabular data.
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APPENDIX D

CHARACTERISTIC RELATIONS FOR STEADY

SUPERSONIC FLOW

1. GENERAL

SThe general theory for the application of the method of character-

istics to systems of hyperbolic partial differential equations is dis.

_cussed in Appendix A. The application of these methods to the syste, of

equations for a three-dimensional stationary supersonic flow is presented
herein. The characteristic compatibility relations corresponding to dll

families of characteristic surf&ces are developed. These include all

the characteristic relations required for applicaticn of the general

numrical method. The possible combinations of independent compatibility

relations which are equivalent to the original system of partial difter-

ential equations are also investigated.

2.EQUATIONS OF NOTION

The equations of motion for stationary supersonic flow iii three-

dimensions consist of the three _'uier momentum equations, t;e continuity

equation and the conservation equations for stagnation enthaipy and stag-

nation pressure. This system of equations, when written using the Krone-

_ker delta and matrix notation, are easily recognized as having the same

general form as the general system of quasi-linear partial differential

equations discussed in Appendix A, Eq. (A-1) Using this notation the

equations of motion are

ZORN=



0 0 6 0 0

0 PU1  0 6~ 0 0 1

0 0 Pu1  63 0 01 IU
1 31 a i

I 2 2 2 0;0

I0
4 j 0a2  0a3  01  0 L=

__0 0 0 0 01  o

4where ui 1, u, u3 are the three comiporents of velocity, p is the pressure,
P t:he stagnation pressure, H the stagnation enthalpy, p the density and

190 a the speed of soun~d. The three independent variables are the rec';.anau-
OWN lar cartesian coordinates xl, x2 &nd x3and thle repeated indices. imly

sutmation over the range 1 to 3

3. CHARACTERISTIC SURFACES

The characteristic surfaces of the system, Eq. (D-1), are obtained
by solving for the left eigenvector which will red--ce the system to an
interior operator in a space of one lower dimension, which is called a
characteristic surface. Multiplication of Eq. "D-1) by the left eiqen-

vector, w =1,2,...6), yields the sIngle equation

IN+ -2 61 w )(au /ax1) + + a26thwA)+ a xi)

4 + -p(I 1 1 + a' 3 W4)( u Iax 1, + (61 w W+ 62 w.

MIND- + 6,w3 + Uw 4 (px) + (uW )(aP/;x1  + (uw)(/a) 0

(D-2)
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Mi The coefficients o~f the derivativeS in Eq. (D-2) are vectors of dlsyac-
tional differentiation and Eq. (D-2) reduces to an interior operator f
all the coefficient vectors are coplanar (Af.e., if the scalar productrs

____ of the coefficient vectors and a u~nit normal to a characteristic 3ueface
all vanish). This yields a system of six homogeneous an~d linear alqe-
braic equations for the six components of the left elgnevector, w. . The
system of equations written in matrix notation is

L. r. 0 0 Pa 2 6 n 0 fw1

0__ O uin~ 0 pa 2 n, 0 0 I w
21_ 21

0 0 Ou n a61 n 0 0 1I
__ 1 1p 3

0 (D-3)
__ 6 1n1  6 1n1  6 1n1  u n1  0 0

0_ o0 0 0 u n1  0 l W!

________________ 1

___where the n 1 are the components of the unit normal to a characteristic
___surface. A noftrivial solution for the components of w Vexists if the
____ citerminant of the coef-Ficient matrix vanishes. This condition yields

the characteristic equation for the system, i.e.,

P_3 P(U n 4 ru u-a 2 6 1  njnj 0 (D-4)

___Equation (D-4) has the same general for-, as Eq. (B-1) of Appendix B
fC.e., a reoeated linear factor and a quadratic fco) n hrfr

the general numerical method described in Appendix B can be applied to

MIN this systef.
When each of the two distinct factors of EQ. (D-4' are eauated to

zero, the equations for two real and nonintersecting- cones are obtained.
The first factor yields the equation for a degenerate cone 'form-ed by all
normals to the di recti on of the vel ocity, i.e. , a p! ane normal to the



-streamline. The reciprocal cone, the cocresponding charactsristic cone,

is also degenerate arid consists of the line segment tangent to the stream-

line.

iWhen the second factor of Eq. (D-4) is equated to zero, a quadric

equation for a right circular cone is obtained

a2 6
(u~u - a n~ nn 0 (D-5)

The cone is real for q > a, where q is the magnitude of velocity. This

cone is called the cone of nomals. The characteristic surfaces, which

correspond to each of the elements of the cone of nomals, form a curved

conical envelope %. ich is called the characteristic conoid. The bichar-

_ acteristics are th, curves of contact between characteristic surfaces

__ and the conoid. The tangent planes to each of these characteristic sur-

_faces fom An envelope consisting of straight elements which is called

the characteristic cone. The geontric relationship between these con-

ical surfacei is illustrated in Figure D-1.
-The characteristic cone is the reciprocal cone to the cone of nor-

mals and the corresponding quadric equation is obtained by the inversion

process discussed in Appendix A. The resilting quadric equation for a

differential element of the characteristic cone is

[UiUj (q2 .. a2 ) 6 dx dx 0 (D-6)

_which also only represents a real co'Z Tor q > a. The curved cone ob-

tdined by integration of Ea. (D-6) is called the characteristic or Mach

Wconoid, and it is the envelope fomed by all characteristic surfaces of

this second type which pass through each point of the space.

In summary, two families of characteristic surfaces exist. These

consist of: first, all surfaces containing the veiocity vector at a point,

which are called stream surfaces; and sec3nd, all surfaces tangent to

the characteristic conold at a point, which are called wave surfaces.

==
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4. SOLUTiON FOR THE LEFT EIGENVEC7TOP

-- The characteristic compatibility relation, Eq. (D-2) is an interior
_____ operator for each system left elgenvector, w,,, obtained by solution of

the homogeneous system of equations, Eq. (D-3, The solutions for the
___w Vare arbitrari to within some constant factor sinlce the system is
_____homogeneous. Eye,, neglecting this degree oil arbitreriness, an infinite

i'umbe-z of solutions for the w are possible s;ince two infinite families
ofl normals, nexist and each no-'rnal yields a system of equations. How-

____ever, no more than six of all the possible solutions for the w can be
independent, since each independent snlution yie'l- ai compatibility re-
lation and the total nlumber of indepstadent compatiIity relations can-
not exceed the nurter of uriginal differential equatons.

_____The number of independent differential conipatib' lity relations
____wnicA correspond to one particular normal also ',s e%-.ual to the nurber of

___independent solutions for the w .The general form and number of inde-
____pendent so~etions for the w. corresponding to a particular normal to

either of the two types of characteristic surfaces are established by
consideration of the system of equations, The fifth and sixth equations

_____ ~of Eq. (D-1) only involve directional derivatives 1i thie r&,1
___ direction and thus already appear in characteristic form (i.e., interior

operators on stream surfaces). This fact also is evident Irom an exam-
MMMM ination of Eq. (D-3), beCdUSe the variables w 5 and w 6 have only zero

oeficients on stream surfaces and their values are thus arbitr.
___First; consider, the solut'lon for w Von the strewn surfaces. On any

stream sur'-Ace the normal is ortnogonal to0 the streamline direction., thus

U~n, 0 (0-7)

____ Equation (D-3' for this case reduces to

0 0 0 Ca~f

2

1 (D-8)
__0 0 0 Pa2

n n2 n.W



ihe coefficient matrix of Ea. (0-8) is rank two, thus the number of
independent- solutions for the w including the variables w. arnd w,. is

___0 four. -he most obvious four independent solutions include two solutions
for wand/e-r w6 nonzero with w, 2  3.and' w. zero (Note that w4  0

for all solutions), and any two independent solutions having w4, w5 and

W6 zero, with th cmponents wi 1 Ee o w2 and w3 orthooonal to the norma i n.
Next consider the solution of Eq. (D-3) for the wave surfaces which

VIM have normls defined by the second factor of Eq. (D-4). The scalar

product between the velocity vector and the unit normal to the wave

surface is equal to the local speed of sound, i.e.,

u n1  a (0-9)

The unknowi w, appears exclusively in the fifth equation and w6 appears

exclusively in T sixch equation ofl Eq. (D-3). Thus only the trivial

solution w, = w, 0 exists for these two eleq~nts. The system of equa-
tions for the w UT aoain omItting the equations -for w, and w,, is

a 0 0 ~ 2

'0 0 0 Pa' n,

0 (D-10)
0 a oacr, w

n, n, n,

The coefficient matrix is rank three and, 4.therefore, only one independert

t~ontrivial solution for the -w exists for each wave surface normal. For
____the arbitrary choice w. -1, the solution for the rtanaining cormponents

yields w, an,, w an w = an *whare n, , n- and n. are the cC_,-
aim 2 -e 2an 3 3 3

___ponents oz a o-artlicular wave surface norlal.

____5. COMPATIBILITY RELAT!ONS

___The general forms of Ithe differeptIal comoatibility relations which
exist on each of the two families of characteristic surfaces are obtained

Kim



OF__ by evaluation of Eq. (D-2) for t[he independent soluxions for t On

the family of streami surfaces it has been shw that four 41iependent

solutions for the w Pexist for eact independent strearn surface normal

H___ T1he two comipatibil ity relations for the solu-tions w, or w . not z- rc with

____ all other components zero, are

and

ui(;H/;_x~i) =0 (D-12)

____ The remraining two compatibility relations, corresponding to the solutionis

for the w having w4,w and w6 zero and two independent sets oil values

____for w,,~ w, and w3 which satisfy the reouiremnt of orthogorality with i

are: for W, - u,' w.- = u2 and w = u3

uiu (;iujAx1  +U1(p~ 1  0 (-3

___which is Bernoullit equation in differentia"! forn, and for w., Sit

w2 * adw3  '3

____D Su1 (au,"/-x 1  + Si(--pf-x 1i 0 (-4

___wi,.re the Siare the componentr of any vec-tor orthogonal to the strea-Km

surface normal, n~ i.e., S n1  0and is independent of uA. Equation

(D-13) contains a single direction of directional differenciatlon, u1,

____while Eq. (D-14) contains two such diirectioos. u, and Sit all of wh'-ich

MOMlIte within the stream surface corresponding to the particular normai, n1.

The compatibility relation for a wave surface is likewise obtained

irom Eq. (D-2), using the single independent solution for the left eigen-

vector corresponding tc a particular wave surface normnal

EU. - an 4 )(;oI;xil + -aao n .);u/.i = 0 (0-15)

The fact that this equation only involves directional derivatives within

-the wave surface can be seen tbY considering the scal ar product between



the coefficients of tte derifativ-s and the unit noral vector n1 (re-

rall that the scalar product between the wave surface normal and the

velocity vector is the speed o' ni- = .

Equ--t.tio (D-15) contan fu ,, drectons of directional differentia-

_ _tion, all of which lie within the wave surface having a normal n. it

is possitle to cxpress all four directional derivatives ir terms of any

.independent directions within the wave surface, and by so doing, to
Mj,=obtain the copDatibility relation in a form which by a coordinate Syst8r

Aoff rotation reduces to the form of the general conpatibilty relation, Eq.

6't Of Append'x A.

6 EQUIVALENT DIFFERENTrIAL SYSTYLS

_i In the previous sections the number of independent differential c--

pat b lity relations, for a particular characteristic sarface of the fl.ow
-was established. However, there exists a doubly infinite minter of char-

acteristic surfaces at every point of the flow and, as noted previously,

the total number of independent compatibility relatlns cannot exceed
the nurer of independent dIfferen't-al equations which comrse the
original system. Thus it is necessary to further establish which of the

_possible co.binatIons of six compatibility relation:; are independent.

These questionr can be answered by exiarning the matrix whose w con-

sist of the independent solutions for the w corresponding to each of the

_characteristic surface normais being considered. The rows of each sixt-

order square matrix of rank six which can be fo from all the solutions

___ for the w will correspond to a system of ind Dendent differential m-

patti lity relations. Althouqh a wide varIetv of combinations will

satisfy this requirem-nt, so aeneral conclusions can be dr& .
It was previously shown that on a single stream surface four in-

depend~nt solutions for the w exist. H -ver, w. is zero for all solu-

---_ tions and, therefore, any sixth-order m.trix formed f ,, solutions for
the w on strea surfaces ;I be at mist rank five. Thus no more than
-five independent cc-mp.atibility relations exist for any two or more In-
dependent strea-, surface norma 1s.

It was also previously sh,>n that only one independent solution for

the w exists for each 1ave surface noa. In addition w- and W are

"-"



zero for all wave surface normals. Thus any sixth-order matrix formed

-from wave surfars 5olutions for the w will be at most rank four and noI more than a total of four independent wave st-rface compatibility rela-

tions could possibly exist. Howevev, consider the determinant of the
matrix formed by four solutions for the w corresponding to four in-

dependent stream surface normals (w5 and w5 , which are identically zero,

are omitted since they have no effect on the resulting rank of the matrix):

- an1 an an 3

-2 2 2
an are an3

__ 3 3 ,

an 3 an 2  an -

14 a 4  a 4  1-an an an -
a1  2 ~3!-~

where the superscripts denote the four independent normals. The four

_ unit normal vectors lie on the surface of a right circular cone and

therefoie the end-points all lie in a conon plane. if one row is sub-
tracted from the remaining three, then the threee resulting difference

vectors will be coplanar and therefore dependent. The determinant, Eq.

_(D-16), is thus identically zero and at most only three wave surface

compatibility reletions are independent.
- It is now clear that a complete system of six independent compati-

bility relations cannot exist for a single family of characteristic sur-

faces. The remaining question to be investigated then is under what con-U ditions will a combination of relations on the two families of character-

istics be independent. For this purpose it is again sufficient to examine
__ the matr x whose rows consist of the w corresponding to each of the

char-cteristic relationships for the system. If all the rows of such a

matrix are found to be independent, then any set ol six of the w .c-.s of

the- matrix may be used to form1, a cor.plete system. Each particuia- con,-

_____ bination of c=atibililty relations aist be exa.nired in this way. Only

a few co.mbinations of interest will be listed here, and the interested

reader is rtferred to the work of Rusanov (8). if p is the numnter of
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distinCt wave surfaces and q the number of stream surfaces, iix indspen-
____ dent compatibility relations are obtained for

1) p 3, q =11

2) p q 1,= 2,

___3) p 2, q~l

where case 3 is true only if the stream surface nonrmal is not orthogonal
to the vector defined by the difference between the two wave surface
normls.

7 it is now clear that the orinal system of differential equations
____can be replaced by an equiYallerit system of equations which all have the

characteristic property. In fact, a wide variety of possible choices
J

exist hn this, Perhaps, helps explain the rather large number of numer-
ical schzMas which have been proposed.

Trhe previous discussion of interdependence and equivalence of dif-
ferential systel. pertains only to a point in the solution space. When

___the aifeential system is replaced by' afr difference syste--m, the rai--er
of independent relations required for solution will depend upon the order
of the approximation. In general, first-'order schemies require tfle salie

___number or i nder'-ndent difference re-lat1ions as number of indeppenden't dif-
ferential -,_eons Hloher order sch- T~es vil i require additional in-
dependent relIa t ionis. Some difference schefmens nave been used in wh~ch

re~-: than the miim nu-nber ),F -noerendent fir:st-o-der diffeit - -Wa-
tions are used and a solution is soucht in the least squares sent-.
These schemes have only first-order accurnzy but may Yield4mroved
albsolute accuracy and stabhilit4y ckaract ristics.

32I



APPENDIX E

____ SECOND-ORDER INTEGRATION SCPEME FOR
i THREE-DIMENSIONAL STEADY SUPERSONIC FLOW

_ 1. GENERAL

_It is initially assurmed that the dependent variables, the three

_velocity components, pressure, stagnation pressure, and stagnation en-
-lalpy, are known to second-order accuracy over a space-like surface

f(x 1 ) a 0 (i.e., a surface whose normal vector is everywhere interior to

the wave surface cone of nermals). A numerical method IL required which

___ can be used to comute the values of the dependent variables at any point

xI(6) near f(xi ) = , see Figure E-l. The global solution can then b2

__generated by successive appli :ation of the basic scheme to de)cmine the

_ values of the dependent variables on a family of surfaces of which

fixi ) = 0 is a typical member.

In ADvnpedix B a general numerical sche-re is developed in which the

inf nIty of bicha;rac --tristics passing through a point are used by weighted

_ W:5 integration of the corresponding compatibility equations over all the bi-

cht;racteristcs. The weighted inte7ration iwjst be performed numrically,
9 Pwhic* results in an -- cessively laborious scheme. In addition, the in-

._, teg.son ov er a the blcharacteristics is not necessary in order to

mainta!K second-ort accuracy. A si.m ler scheme results when only the

mlnimA h .m r of 'icharacteristics required for secor-order accuracy

____ is used. Ther&: . the approach which is develoued herein uses the

w wave surface conpatIbiiity relation appIied along only four particulir-- iin-- u~zrcomatil-, with second-
bicharacteristics, which is the mini nu er a when

order accuracy.

ORDER OF AP PRO , X N

Before proceeding with the develo.me-it of the numerical schwe, the

eanino of the order of approximation will be reviewed and clarified.
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___ !or this purpose consider a power series expansion in one independent

variablr of sore function p(x)

-px Ax) = pux; + (dp/dx)x Ax 4 (d p/dx4 AX) 2 !

+ (dxp/dx 1', (. x)313/ ..-dn/dxn) x

S+ (c~'+ p/dx' n ' (Ax)n/I(f+l ! (E-i)

where 0 < 9 < I. if this series is terminated with the nth terrm, thon

the error in the approxination of p(x+c J Is defined as the absilute

magnitude of the remainder, i.e.,

(d px x. r,- (d l'- (E-2)

_ =_ The approximation is ld to be accurate to order and the order of the

error, , is n + 1. The order of the error is i-Aicated by the ordering
symbol 0(x which i .ies

l- im r_____ K (E-3)

where K is a f;nite bound for the ratio. Clearly the er-or can be made

as small as desired by reducing Lx if r-1) > 0. However1 no infomation

regarding the actual magnitude of the error fror a given val 5e -AT tx can

be deduced from a state.-rt of the order of the approximiat!-.. The order

only establishes how rapidly the error will be reduced a3 the step size,

Ax, is reduced. Thus it Is possible for wdIferent numeriAl sheVes,

_____ each havina the same order of aDDroximratIon (i.e., accu-ate to the sa--e

order), to have diferent errors for equal and finite values o. tx.

7-he modiied- EUler predictor-corrector nL--r-rical integration scheg,

Swhich is used in the numerical re-hod develop in Appenix B, has a
loca tr+-ncation error thIrd order in step size , eouvaientlv. is

%.acud-t secod-t-er. i er of tnteqration steps r -u.red to

d ac-nce to - r-xea coit. int s 1ssmed to be of t-h order of
.... 4ri j0 Th u.,s, thf-. - i a .ethe =e P o e Step size ..e., -tx y.
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_truncation error at a fixed point is second order in step size, O(&x
- and thus the overall scheme is accurate to first order in step size,

-- - Q(6x).

3. DIFFERENCE NETWdORK

The difference network for the integration process consists of seg-

-,nts of four bicharacteristics and the streamlIne through the solution

point. This netwrk is illustrated in Figure E-1 and the points at which

the bicharacteristics and the streamline intersect the initial-value sur-

face, f(xi) 0, are numbered (1) through (5) respectively. The integra-

1 tion process consists of the numerical construction of this network and

subsequent integration of the respctive differenti co~natibility and
ordinary relatlons which are applied along these directions.

The family of wave surface bicharacteristic segments throuqh a Doint
in the flow space are represented by the paraetric equations

dxi = (ui  ca cose + csi sine)dt, (I 1 1,2,3) (E-4)

where the u, are the cotlnents of the velocity, a, and -i are unit
40 vectors such that u., ai and s fo,.- a right handed orthogonal syste,

t is a para.n-eter prcportional to length along a bicharacteristic, a is

a paraeter whlch is con:tanc alona a b'characteristic and rang-ces fro

-0 to 2Y, and c is a velt-tv defined by the relation

r !: F 2 21( 2 a.2)-1/2

The parameter c can be 0 aetrical y interpreted as the velocity of
Sdverence, relat4ve to the flow velocity, of the s-fa of the Mach

Sconoid away fr--i the strea-mHne- e~ fon_ o- Eq. (E-4), is identical infor.* to that proposed by

Butler (12). W ever, here the vectors a1  nd ann cne parameterI ; - 4 n r 4 - la f t n n s. A
a.. defined such that e is a constant alon a blcharact-ristic. The
degre-e of freedom in the choice r.-F the r em a anu . ,5 I

used to satisfY the reuire entthat the bicharacteri stic be a 1if, of
contact betreen a cs racterietic surfac and tse Macn con-oid, see Apoan-

dIx B, . (B-S). Tis i in contrast to the approac used by Buthir

asas eapy-aeu



(12) for Z'.No-dlmenslonal flow in which the remaining degree of freedom

in ths choice for a. and ai was fixed arbitrarily and e was allowed to

vary in order to satisfy the bicharacttristic condit1r. The present

approach has the advantage that a considerable simp.1flcat.on of the

nurerical schef- results.

The parametric equation, Eq. (E-4), represents an element of the

__conoid I-f the pseudo "normalization" and"orthogonality" conditions,

__ Eqs. (B-7) and (B-8) of Appendix B, are satisfied. These relations for

__the Mach conoid, defined by Eq. (D-6) of Appendix D, are

[uiu j- (q2 -a)dl 1 ] uiuj c2  -6 _ a
.U . Uj 2 (q a Jolj] alaJ

C22 aE j

=ru u~ (q2  a !Ai(E-6)

n2 2 J- 2
_____ c [uju4  ai6 1  U. - (q~-a). u.

I__ 'I- _i a 3 ).J

and are satisfied for eh, ortonci-m1 OtoIce for the vectors u,/q, a,

and
The unit "rmal ? t -i zK ?:ch c&'oio can be expressed in termns of the

Da r&-netri c reor- e nttz3on f or Vt-f bC" ha racteeis ti cs ( I. e. Eq . B- 14 of
E wPnd.ix B for thoe -Q. a ?. care' Thz uatiro for a differential elent

of a plane, which is tarneit tn- t-ie cer;Id at t e apex ard cories-onds

__to a particular bicvaracteristic -'ot' by a.is ob ta ined fra-m h e

E- .4 EC;.; W; W. i- - 36. -e-

,U4  . - 26. -. ', + . + s--= --- dx = 0 ---8)

eff y'. rn, -ftS

1- 4r a vector n o' bat Nthe i3e. The u tv a vt s1-



2 2
N = j~u -q - a)()( 1 + -coe9)C1Sn)n a )6i.](Uk + CajCOSe + csjsine)/NE-O

N tr a/)(c 2 / 2  
-( a cmcse C -. CSn& (Eli))

We.n~) n the Em- uprpti e ofo the q ach c ni re~ld, Eq. ((E)o-9)enix
isi

--~~~ ~o An e a ; oImte nrlcan b oreduof t h reatonrsuemoeals h

_____n -iin degree( ofq are~ relati e toa ied; reeeceE-hoic

____Th ofonditi n foutec betweend aocharatrisic releatind shue
tach conoid tihe .,alto ao the bicharact~eitccniin a eric te fr thei

Thnera cae ifeencex nEq.(-8 h ork i ofstuce ti rus e atio whies ch
corSost the steauin rampetra knon or the wnavvle surfce t thes

Eq._ (E-4), pin and the '-intion the cheencd Ea.(t6)ors ineni the

An__ appriaae ur a is m e oft his relatio i e to es~tablis oithey

to__ t mm e th serat of an --Ionamet ther bihretritc the reE-i2).

degee f r-=,-b=-in ~e ecersa, rvl ;Z i!>inafixd rbirarly



The parametric equations for a differential s-g r Pt of the streamiline

are

-dx I - u, dt (i 1 I 2, 3) (E-13)

where t is a parameter corresponding t time of travel of a fluii -)artlcle

along the differential sevment dx!. Application of the wodified Euler

integration schem yields

- xi(6) - xi(5) r-(1i2)lui(6) + ui(5)]t(5) + O(t 3) (i 1, 2, 3)
__ (E-14)

____ The nters in parentheses refer to Wues at the corresponding points

of the finite difference netw.-k snown in Figure E-1. ,The value of
- t(6) has been arbitrarily taken to be zero. Equations (E-14) are used

to solve for the values of the to coordinates, x2(6) and x3 (6), of t;

new point and the parameter t(5) for a specified value of the remaining

U coordinate of the new oint, xI1 (6). Equations '-1""involve the uncnowns
ui(6) and mst, therefore, be solved sir&taneously with the governing

difference equations. Since the resu'1irig ecpuat&ns are nonlinear, the

simiitane-ous solution must be obtainsd b~ iteration.STh paraetri- equations for the bi characteristics, Eq. (E4), are

,-.m-xt it teorated to obtain the intLrsections of, the four bicharacterls-

Stics with the inItial-yalue surface. Appi -'ng n -mdified Euler schl-

MEN to Eq. (E-4) yields

^- L 41- I IIV J
£p~I- x~c, ~(i2)(u()+ C(6)aS)~COS ,..,+L6A()~e6

§-+u- + X t ( - -(k)

__ to denote0 value at the Pnts* () 2(z
- i, .--e e r k -d .. .- . . .r n r .-t .. y v il -v t o f 9 t k ) J. e a ' .. o10 ya,.,- A== =1 -- al

, sf2,, - anw t1/ ,'flA.:til-y-- ! - _---oict fore(k) %-uiW I .

ca- theM ceqve -a. ti ons.. theerivatives of h epfun
- yaa-les atE the 31'---jW poft pa -r in niv tvo sca.l ar te r. These

=I



_two additional terms must beaonsidered as unknowns, since the derivatives

cannot be evaluated, and are algebraically eliminated from the finite

_ difference form of the ccupatibility equations. This mit the

modified Euler integration scheme to be used, and hence a solu-

_tion iccurate tc second order is obtained.

The ctmm-nents of the reerence vector sst which appear in Eqs.

(E-l-) must b ;.etablished at Foint (6) and at the f.ur points 'n the

__ initial-value surface. The orientation of the network is established by

_the selection of a reference at point (6). In the course of accuracy

__studies it was deternih.ed that the best absolute accura Y' resulted if

the reference et po 4nt (6) ties selected so that the vectors i ard s,

__straddle a plane defined by the velocity vector and the pressure gradient.

The pressure gradient at point (6) is not known until a coplete solution

surface is established; consequently, the pressure gradient at point (5)

is used to define the reference plane for the orientstion of i and s i

___at point (6). Although the best acxuracy was obtained for this choice

of reference, it should be stressed that the effect was very m.-r an-

the choice of any other reference, such as one of the base coordcnate

directions, gave essentially as good a result. A primry consideratio-i

in the choice o- the pressure gradient as a reference was the fact that

=--e sy-etric results are obtained for cases having axial symmtry. The

=additional relations recuired to establish all the c.onents of th.E

_referzence vector set at point (6) are the normalization conditions

___ (6)ui(6) = j(S)Bj(6) = 1 (E-.16)

and the orthogonality conitons

SThe cronents of the reference vectors a,(k' -. d ak-, (k = ,,2A 4;

at the intersectiors of the four bicharacteristics dt1 , the initial-value

s -rface are deter-ined relative to the choce of a, and at point (6)

____ such that the tange cy condition, EQ. (E-12), is satisfied to sufficient

order of accuracy. For this purpose it is necessary to develop a numr.

Icaily usehiM ap-rnx~iatlon. han 'o. (E-12) is expanded and the

__- _ 127



____orthonormal property of the vector set ai, 6i and u./q is used, the

following identity results

____M [C' cose + $s i 1, - u c/q I O~x /30) =0 (E-18)

_____The quantities us., ai, 3 arnd c cani be expressed in terrm of the param-
- _ 1 2eters t and c to sufficient order of accuracy, 0(t ),by power series

expansions

2a_ =u( 6) + ui(6)t + 0(t) (E-20)

-i = i(3 z(3) ( 2  L0

3i B(6) + Bi(O~t + 0(t) (E-21)

c c(6) + c(O)t + 0(t2) (E-22)

where nunera.s in parentheses indicate v.Aues at the corresponding net-

work points ind parameters in parentheses denote functional dependence

of the coefficient of the first-order term of the power series expansion.
In order to evaluate the derivative (ax /30) appearing in Eq. (E-18).

1
the equation for the surface of the Mach conoid is used in which the bi-

characteristics are the curves for constant values of 8. Such ant ex-

pression car be obtained by integration of Eq. (E-4).

X1(Olt) - k~6) (u. + ccE Cosa + Cai3inO) dt, (i 1, 2, 3) (E-23)

2
____ The integral, correct to 0(t ), is obtained by substitution of the seriesE lapproAimations, Eqs. (E-19) through (E-22), into Eq. (E-23) and subse-

quent integration w.ith respect to t. Thus

UN
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_x 1(e,t) - xi(6) = Eui(6) + c(6)ai(6)cos6 + c(6)si(6)slne]t

+ [ui(e) + c(6)a!(e)cos6 + c(e)ai(6)cose

+ c(6)8i(e)sire + c(e)F 1(6)slne](t
2 /2) + O(t')  (E-24)

An approximate expression for the derivative (;xl/;e) is obtained by

differentiation of Eq. (E-24) with respect to e

ax l/ae = c(6)[ 1i(6)cose - aj(6)slne]t

+ '(e) - c(6)c(e) + c(q)ai(6) - c(6)8i'(6)

c'(ey( i 6)]sine + Cc(6)a i'(e) + cl(eai(6)

+ c(6)B (e) + c(e)Bi(6)]cose} (t212) + Oft3) (E-25)

where the prime denotes differentiation with respect to e.

in order to complete the expression of Eq. (E-18) in terms of the

power series approximations, an approximation for q- 2 is required. Recall

____ that q2 = uiui, and introduce the power series approximation for uI,

Eq. (E-19). When the product is expanded and only terr.s of order less

___ than O(tL) are retained, the following is obtained

q ui(6)ul(6) + 2 ul(6)ui(e) t + G(t) (E-26)

-2
_.-_ Expanding q by the binomial theorem and again retainitiq only terms of

Morder less than O(t ) yields

AWE q = (q2 (6))[I - 2ui(6)ui(tq2(6)] + (E-2)

When the power series approximations for u i, ai, BI  c, q -2 and (x/ae)

are substituted into Eq. (E-l3), the products expanded and the terns

_collected into powers of t, a power series in t is obtained which must

Svanish for all arbitrary values of t. Therefore, the coefficients of

the series must individually vanish. Sufficient order of accuracy is

obtained if the coefficients of the terus up through second order vanish.

129

44 MG MR,



The order of c~ccuracy maintained Inl the power series approximations re-
_____ sults in Comip' eta coefficients for only the first and second-order tearms

in t,. No zenioth-order terms result since the expression for (ax1/ae)
is hornogeneow; in t.

____The coefdticient for the first-order term in t, equated to zero,
yields

-c(6)1ai(6) cose + sj(6) sine - u1 6c6/ 2

Ea1(6) sine -si(6' cose) = 0 'E-28)

Exansi-A of the product and utilization of the orthononiial properties
Amof 0 pSi and u4/q yields the result

_N M

___-C(6) L'ci(6) ai6) - s4(6) 84,(6)j51n0 cose 0 (E-29)

______which is satisfied identicC'ly. Therefore, no condition on the variation
of Lhe reference vectors a, and ais obtained or is necessary in order

WIN that Eq. (E-l8) be satisfied to first order in t.
The coefficient for thre second-order term in t, equated to zero,

yields

__{ca' (el/cose + s.(e)sine - c(6)/q 2(6)Cu,(e) '-u,(6)c(e)I/c(6)

____-
2 u (6)u (6)u (a)/(6))1]', c(6)a4, 6)sine

____ +c(6)si(6)cosei + (i/2)cx1 (6)cose + a,1(6)sins

- u(E~(6)q~6J 4~ 'e) + F- c(6)a4(O

-coe)a(s) + c() 4 ()+ rA(s)st(6)) sine

+ fc(6)a4 O() m'( ia() + c(6)1 (e)+ c(3)s1i(6)) cose i0

M.aso f h rdctt~~ n use of the orthogonality property oF
___the vector setl, a 8 and u1/q, yields

130



C6a()cj(rxsinacosa + c(--)s4). eco- I ()i(is(~i

+ C! (O6P,(e'sinecose + c2  6 1?()rajt i'eOsi

- &(6!u 4(e'-)C0Sej (1/2% laq 4();(eos

- 2

c()U1a,S-'efl -- +()~c~e5f 4-

+ c6 .6 1 (s1c(6)8 ~~si~cs

+ 1'(6)si(6)o1'(e)si nec'ss + ci'iges

- + c fai'e)sin etis +c(5)u1 (6)fqd(')>jn 8~~~s

* - 51(Oe)cosg - c.116)lcose - 5 (C)sifl9J C (E-311

The power series approximat-ions.. Fos. (E-191 through (E-22), andp the orthonom. al Property of the Ni3ctor set, u /q, a, and Bjyield ap-
_____ Proxlrnmattg 1dentles which can be used to further simplify Eq.(E3)

These Iden'tias need only be accurate to zeroth mrer in t. since aFny
___ te~ 0(e)in Eq. !E-31) -eors0t)I q E1) onside- Uh2 sca~ar
-product aji which has the value unity, and expand the product in te1 is

of the power series approximatinor ,Eq IE2) Sh %.ulIn

NOW 4zeroth-order idsntity is

a(%i6) a',e) 010) (E-32)

Likewise, for 8~

Msf 6) i() 0 + 0(t) (-3

I g w



The scalar products a~i as and sj~u1 all varish due to vrthogonality.

Thus, expanding t1.he products in teriis of the power series ar1 An, ns,

the following additional zeroth-order identities are obtained

-i6u e u1(6)aix(O) 0(t) (F-34)

a= (6a (a) 8(6)ci (e) + 0(t) (E-35)

~~-u (u'- 6)s,(e) + Oft) (E-36)

The derivatives with respect to 8 of the identities, Eqs. (E-32) -(E-36)1

are also correct to zeroth order in t. Thus

afs )aj'(e) 0 + 0(t) (E-37)

i()'() 0 + 0,(t) (E-38)

rciI%.)up8O) -u1(6)aj1(ei + 0(t, (E-391

(68~e) - j()a'()+ 0(t) (E-40)

ij6u(e) -ui(6)s 1
t (e) + 0(t) (-1

The identities, Eqs. (E-32) through (E-41), permit great simplification

of Eq. (E-31) to obtain

c(68i(1-a~s)+ c (,/ o61 ra(6)sine ai6cse -e

___ +£ c (6)/q (6)] 'La(6)cosoe + B()slnOJu (A)

9W(6)-(L)I q(6))u1 '(e) + c'(e) =0 + 0(t) (E-2

___R The frm~ of Eq. (E-42) is not unique since it is only correct to zeroth

order in t and t'he particular form used here was chosen for convenience
Ad __W:_ -hce all flomii, are equi val ent.
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Before Eq. (E-42) can be used tCo numerically dater~mine the meiring
de ree of free(Aum i n the defi nion of the reference vectors aiand s

-at the initial- value surface, the ouantltiles ui (e), u1(& and c'(9)
ist be evaluated. This is accomplished by again eimploying the powr

____series t - -nimat ior.-t for u. and c, i.e.,

u 1U(6) + vilta) t + 0(t) (E-4311

c c(6) + c(e) t 4 Ot2) (E-44)

____Diff-arentiation with respect to t and a yields

____ au~lat + 0(t) f-S

___c(6) ; c/a-t + 0(t (E-46)

and

____ u(e)= ( /a)/t+ 0(t) (E-47)

____ c(e) (c/ae)/t + OMt (E-48)

Here the derivatives of uand C with respect to t and e my be evaluated

____ at the initial-value surface rather than at point (6) without affecting
_____the accuracy. This is possible because the re'iationb, Lq. (E-45) through

(E-48), need only to be cor-rect to 7eroth order in t.
RM The derivatives with respect to the parameters t and e are expressed

in tents of the spatial derivatives by means of the chain ruie

;uj/at (auj/ax )(ax21' at) (-~

M ac/at (ac/ax1 )(a-x/t)E-)

;u,;/:; = (lu /.X, fE-S/I)e

13



_The derivatives of the spatial coordinates with respect to the parameters
t and e are obtained, correct to zeroth order and first order in t re-

C spectively. by differentiation of Eq. (E-23) with respect to t and e and
"_ discarding higher-order tetws. Thih yields

___ ;x3/at = u1(6) + c(6)a,(6)cose + c(6) '.6)sine + 0(t) (E-53)

Wand

___ilA = c(6) a *,i6)sine + si(6)cose ]t + 0(t 2) (E-54)Ni
___= Substituting Eqs. (E-53) and (E-54) into the identities, Eqs. (E-4),

(E-47) ana (E-48), yields thp desired expressions for u1(e), ui '(e) and
__c'(Ce), i.e.,

_ u1(e) = ru(6) + c(6)a(6)cose

+ c(6)sj(6)sinei(aui/x j ) + 0(t) (E-55)

U u1 '(e) = c(6)(- a1 (6)sine + As(6)cose)(aui laxj) +O(t) (E-56

c'(e) = c(6)- j(6)sine + -(6)cose)(ac/xj) + 0(t) (E-S)

Equations (E-55), (E-56) and (E-57) are used to evaluatw the quantities
u1(e), i'(e) and c'(e) which appear ir Eq, (A-42). Thus one equation

AM__- is obtained for the quantities ai(e) in terms of quantities at Doint (6)
and the initial-value surface. Two additional independent relations for
the co-nonents of .ai(e) are obtained from the orthonormai identities,

___ Eqs. (E-32) and (E-34). These relations are in terms of the, as yet,

unknowns at point (6) and, therefore,niust be evaluated on each iteration
-- of the overall schere.

5 The equations, Eqs. (E-42), (E-32) and (E--34), are use 4 to evaluate
the ai(ek), wnere the suoerscript k is used to denote the four values of

--__= i34
aI



_ o (l~e,, 0, --/2, a- nd 3---2) Thus the reference vectors and s.at
the inte.section- of the four bicharacteristlcs with the initial-value

__-_ surface, relative to he selected orientation of these vectors at the

solution point, can be established to su-ficient order of accuracy by a
two term- power series expansion

aM, ..... At_ =; ia 2- 3) (E-58)

Once the conponents ajk, ere established, the components of s1 (k) are
obtained by means of the orthonornma property of the vector set ai i

and ui/iq, sin:e the values of u, are knon on the initial-value surface.
The values of the deoendent variables and their derivatives with

respect to two independent directions within the initial-value surface
are required at the Intersections of each of the four bicharacteristics

with the initial-value surfacp. These are obtained by -eans of second-
order polynomials which are fit loally by the method of least squares.

Since the initIal-value surface is asstrd to be space-like, the syst
I of governing pertial differential eoi-tionss can be used along with the

derivatives within the initlal-vlue surface to obtain the oartlai deiv-
atives of all the dependent variables with ruspect to the three satial

coordinates. The spatial derivatives of the variable c at the Inter-

sections of the bicharacteristics wt the initial-value surface are also

__ required in Ea. (E-57). These derivatives :an be exp-esse d in term of

the spatial derivatives of the six dependent variables. The definition
M of c, Eq. (E-5), is differentiated to obtain

mom 1_1 14 I /aX1-- " (1 = i 2, 3) (E-59)

It is shown in Aoendlx - that the spsed of sound, a, is properly repre-
__ sented as a function of the variables -p, P and H, i.E.,

-n 0 --I(E~-

Awel-" the hat denotes functional dependence on o, P, and . Thus' the
spatial derivative of'a-ay ie expanded by the cin ri t e btai

M-
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___+ (;!R _~X.1 , jI7 )(-l

___The mapp;ltude of the velocity, r,. :an be_ expresse-I as a scalar Dodtict

___so that, the soatial deriva'a of a in tere;. of theL derilvatives of thez
vc1 U loctyi 'c-monen's ar-a

___ = u4/j(u,/xj 1  *1 2, 3' (E-953)

Octiin Eqn (E-9) (Ei an ( Z43) tc eliminate the derivatifees of

____- and q, yIselds a5~ expresslion for (;c/3x,) on tlhe InitIal-alue surface
in terms of krown quantities

ME 4'

Th or~troequations for th stra a. iI ne a:d te blicharacter-istlos,

IIe" rgec conditIon, Eq. aov Wt

for te loctionOf th moits lfcat iofen o ewrfreaie OAn

sfce, ,oit (_) itfxdn~-~ion

th jnt--a -P ~ 1z)ptr~ 4u;; fir T* :- I

___tcnfor thle poWin l oa-+ .ts is exorestse oilivn terms of the

rx vaues of the dependent vtilaI at 1 soi..4sn poilnt point "C) as

.neeorr at Sys~ciratris

&efw-r__ 4,r~ssn- t"m
.aneous nonlinar PSt~c ~- . .-CIQ;uLR C~~t.;l



hay-ver, it is first necessary to develop the finite difference form- Y;
_____the differetial equations ti& apoly along the streanline and the bi-

___characteristic sem-ents and thus obta-"-in sufficient difference relations
ME_ to 4ester-mine allI unknown quantities.

P141UN T nIFFERE'E FO1W OFF THE &!FFERENTIALP EJ1atis

The- differer-4'a' relations consist of thr. wave surface comatibili ty

equation, Eu. (0-15) of Appendix D, aoolied4 along the four blcaracter-

istics of t-he rfet1.ork, three of the s*raas sturface ctmatDl-i44.. ecqgations,

_ _EqIs. (D-li1), (D-l211 amd (0D-13)1 of AD-perdix D, aplIed along the stear

lfine, anwd the one noirharacteristic differen'tial eouati on, ctrrespnding
to+ Ea. (B-'o AzD-endlx B for the cenrerai method.

The wave sur-face coatibility equation can re- expressed In ter=
Sof the p arareters of the wave surface bicharacterlstic oaraet-eiiZation

by substitution of the expression for the wave surface norwal, EuG. (E-lI),

____into Eq. (D--'j of Ape D0. The orthonorrmal property of the vector

5.set Ui1 , -a and 2 jyields the following identity

.0;~ * Uv.

which can -be used to slcplifvi the wave surface ccrmatilIty relation

to obtadIn

- ~ ~~~~~d-p-' Jcccse+ssnsdu

cC zs~n -F se(e - s' Co e ~oe(u/xd (E-)

- wh~vere the susr-tton the dir-ctlcnai differentiai operator denotes
the bicharazteristACic e o correspondlno to the vale for a

TMy- ont no-ncharacteri tic relation, the equivalent of E.(4)o
the 7 enerai nrrrcal s-chme in Ap-endix B, can -!e extressed in terms of

SEthe wave sur~ace- bchercteristic nrarrerlzation by bisectIon of the

-pare-tric form for '-Ne e surface cc=- atabf 11w equation, Eq. 1 56

and use of the 1ea~ns q.3(-27), (8-28) and (85-29) ^of Apjperdlx Ow,Ufor the fornm of the o--e-~ra' --pati bi I ty eouation. coefficients, see tr.

(B-40.1 of7 ALOP-A4l P to est*a"i'i. th repet values frA.,



2,,_ ad H. M~ tne indentity, E.(-),is used- to s4f lify te
resutimexpre-ssion to otin-

d- -
--C~ 

7,

u 
-u

___ rerte the- stbscript uon the dIrect-4onal dlfferetia #1 cerator depotes
the streamln-a dIrectcon.

____ The wavesurface c ptbiiyeqUatIo , when placedz n finite dif-
___frece Or-- usine the wdlfied Euler integratimon sch cr4 coltuted ai on;
____thefou.r MCM-rarterjstics yields:

for A = 0,

___2[pD(6) 
- pl) + fp-(6)9c(6)aj(6) t p1ic(l 1(f (uj(6) u

____- £o6)c'6)s (6)4(6)u./;4(s

____ c42 c2(Zk(2 .(2 ); I~ x 42 il t(2) + 0(t3)( -9

ME for sr

2r!1- pn2)]i rp4;)J:),(;1 + .o3(f2t.t)l;u6)4i.J -I LAi--jj )-

= D()C (o)IFS b) 6t I"

0( 1 (2)J' 0 - -'

for- s''

EE-



=++ and k~r H - 3:12,

Zrp(S) _ p(4)) - (o(6)c( j ,(6) + o(4 )c((4k (41 " ru (5) -uj+j]

=_L( (6)J 04 %6)-t 5.U ) ri(JOU 4ICj (6)

+ (4)c2 (4)-,4)_.(41Au,/;x (4)1 t(4) + O(t3) (E-71)

-ntre the notation au k) mn-ans the value of the derivative at th

-pv n (k), 1k = 1, 2, 3, 4, 6) and t(6) has been arbitrarily taken to
he zero as bfore. Bernoulli's eouation and the one noncharactoristic

-relation are applied :;n finite difference form along the streamline seg-
mrint from point (5) to point (6) to obtain

(E 2r,:,,,6t, -p(+ r.. (6)Ul 6
21(()

+ o(5)uj(5)3 .u(6) - u1(5)] = 0 + O(t3) (E-72)

- - and

2[D(6) - p(5)J - () 0 (6)a1 (6)a (6)
{ o ,(6)a Px( ZI

+ )(s)J]u1 ax(6) + o(S)c )[ ai 5)c3
-- = ,; l/X~ ' O't3-- i jn, x5) 1 t(5) 0 0(t ) (E-73)

Note that the six Finite difference equations, Eqs. (E-68) through (E-73),

are nonlinear since the w-iknm- quantities at point (6) also appear in

the coefficients of the differences. Also note that none of the equations
directly involve either of the dependent variables, the stagnation pres-

sure or the stagnatio . enthalpy. The two co.atibility relations, Eqs.

(D-li) and (D-i2) of Appendix D, which involve t hese variables are inde-
pendent of the reminlno systa, of differential co=atibilIty equations

and yield the s -imple result that both the stagnation pressure and enth-ipy

are constant along given str'amiline and the soltion for this case is

P(6) r P(5) (E-74),
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and

H(6) V(5) (E-751~

I 6. ITEPATION SCHEME

The nonlinear nature of the system of difference equations necesi-

tates that an iteration schem e be used to obtain the solution at each
Point in the flow. The particular iteratlot scheme e.mployed here is

initiated by first estinating values for the dependent variables Xt the

unknown point, point (6). The initial estimate is obtained by either
taking a two term power series expansion about the fixed point, point (5),

or if this 2stimate exceeds the theoretical maximum velocity, by assum-
ing the values at point (5) to be the sare as tho-i at point (5). The

estimated values of the dependent variables at point VS) are then used

to calculate the coefficients of the diffenence equations for the stream-

line, Eq. (E-14), which can then be solved for the coordinates of the

Intersection of the streamline with the fixed solution surface.

Next the four bicharacteristics aye extended back to the initial-

value surface to nbtain the coordinates of the intersections, i.e.,
points (1). (2). (3) and (4), see Fiure E-1 . The parametric equations

for the bicharacteristics, Eq. (E-15), invo~ve the values of the dependent

variables at the respective intersections with the Initial-value surface

and therefore must also be solved Iteratively. This Is acco.plished

initially by assuming the values for the dependent variables at the four

points to be the same as those at the fixed point, point (5). Once the

four intersectiotis of the bicharacteristics are located, the values of

the dependent variables are obtained by interpolation within the initial-

value surface. Finally, the values of he dependent variables thus ob-

tained at te intersections of the bicharacteristics with the initial-

value surface, points (1), (2), (3) and (4), and the estimated values at

point (6) are used to evaluate the coefficients of the six finite differ-
ence forms of the differesntial equations, Eqs. (E-68) through (E-73).

These equations are linear and can be solved simultaneously to obtain

corrected values of the d.pendent variables, u, and p, and the two scalar

quantities, al aj u4/ax and 6 slaui/,xj, at point (6).
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The entire process is successively repeated using the values of the
____dependent variables at points (1), (2),, (3), (4) and (6) which were cal-

-~ culated on the previour iteration as new apprzximations. This iteration
process is continued until the values of the dependent variables obtained
on consecutive iterations agree to within a fixed tolerance. Usually

MOOMW gless than five iterations are necessary to obtain a fractional differ-
ence less than 0.001.

6. CONDITIONS FOR A DETERMfINANT SYSTEM

__ Inl describing the relaxation scheme for solving the system of dif-
_____ference equations it was tacitly assumed that the equations were indepen-

dent and the system was deten-iflant. Unfortunately, no precise test for
independence, such as that described in Appendix A for differential equa-

_____ tions and linear differenc2 schemne, exists for nonlinear difference

equations. Normally one would be tempted to require that the difference
relations be independen~t in the limit as the differences approach zero.
Hysever, this is an overly severe requir, rent since schemes having ac-
curacy higher than first order are meaningless fin the limit and tnie in-
dependence of equatlors conprising su~ch schemes rust be considered at

flaite step sizes. The only conflict between the present scheme and the
results for in~dependence of differential coffatibility relations oibtained
in Appendix V fs in the numb~er of bicharacteristic corv-atibility rela-

tions which are independent. The results *f the analysis of independence
for differential systems, which is the isxire as for iir.ear diffe.ence
systems, showed that at most only three bicharacteristic copatibility
relations are independent. The present scheme uses four such relations.
The appare t conflict is resolved by the fact that as a 'result of the
second-Order Integratio-n scheme the equations used in the present scheme-
are nonlinear and contain two additional unknowns The presence of the

addiional unkon i0rdcsLdtoa degrees of freedom. It is In-

____teresting to note that when the approach tusinC weighted integrations over
X all bicharacteristics, which is discussed in Appendix B for Wh general

case, is used to eliminate the terms containing derivatives of the de-
pendent variables at the unknown point, then only three independent bi-
characteristic relations ari found. Howver, in this case each of the
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three relations involve integrals over the entire fa.iAly of bicharacter-
_____istics passing 'khrough the unknvwn point so that in effect all bf char-
_____acteristics are used. The scheme using only four particular bichar~cter-
_____ istics can be viewed as an approximation to the integral aPproach, tt'us

providing further evidence In support of the independerc' to' ie systerf
_____of nonlinear difference equations.

A necessary condition fcr a determiinant system of equations, even
for the nonlinear case, is that the numnber of independent relationis must

____ just equal the r~niber of unknowns. That this is true for the present
___scherme Is shown by a count of the numdber of unknowns and number of equa-

tions. At the s~lution point, point (6), the unknowns consist of the

three coordinates of the point, the parameter t along the strewiline,
the values of the four dependent variables, p and u,, and the six COMn-
ponents of the reference vectors ai and s,, for a total of fourteen un-
knowns. However~, the integration stop or distance between the initial
value surface and the solustion surface is assumed knomn, whith eliminates
one degree of freedom, thus leaving thirteen unknowns. At the

____ four intersections of the bicharacteristics with teinitial value sur-
_____face there are a total of thirty-six unknowns which consist of the two

= -coordinatei on the initial-value surface, the six components of the refer-

____ nce vectors aand s. and the parameter t at each of che four points.

These thirty-six additional unknowns, the two unknowns involving the
_____derivatives of the dependent variables at point (6), and the thirteen

unknons at ttoint (6). make a total of fifty-one unknowns.

Next consider the nunmber of available equations. Equation (E-14)

____yields three conditions along the streamline for the position of point
(6). Equations (E-16) and (E-17), the orthonornal conditions for u4/q,

____ and s V and the definition of ai, provide six conditions for a sub-

total of nine equations. The three parametric equations for each of the

-bicharacteristics, Eq. (E-15), the equation for the a, variation, Eq.
___(E-42), and the orthonotmal property of uf/q, ai and si, which yields

five conditions, constitute nlre equations for each bicharacteriwtic or

_____a total of tChirty-six equations for the four bicharact*eristics. The

___ finite difference form of the fIve caapatibility equations and the one

____ noncharacteristic equatioti, Eqs. (E-68), (E..69)t (E-70), (E-71), (E-72)
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and (E-73), brina the total numiber of equatiops to fifty-one. Thus the
_____number of equations jiust equals the ruriber of unknowns, and -the necessary

condition for the system ~o be deteirinant is satisfied.

7. BOUNDARY POINT CALCULATIONS

a. General. The pronerlyv posed initial-boundary value problem
consists of initial data specified on a space-lKe surface and appropri-
ate boundary data specified or time -like surfaces which-doi th Iiil

"iata surface. The boundary data may take the formi of solid boundaries,

constant pressure surfaces, planes of sy3raetry, or shock waves (icn
tinuity surfaces). The first three boundary conditions share the coann

prpry that they are stream surfaces (i.e., surfaces composed of stream-
lines and, therefore, time-like). The shock wave is a different type of
boundary condition since the shock surface is space-like to the upstream

flow and time-like to the downstream flow, thus hL- shape of the shock
wave and its position depend on a portion of the downstream flow as well
as the upstream conditions. The Rankine-Hugoniot relations are the
boundary conditions which must be satisfied across the shock surface.

~ Two type of shocks can generally occur; attached shocks originating at
concave discontinuous changeF ir slope of the boundaries, anid imbedded
shocks which arise within the V~ow due to focusing of infinitesmal com-
pressions. The first type of shock is eliminated from the present p-ob-
lem by the initial assumption that the boundaries are smooth (i.e.., con-
tinuous first derivatives). The presence of imrtedded shocks cannot be
a priori excluded and in general will be evidenced by steep gradients in

____flow Properties. Thrfis type of boundary condition is not expli.-itly
treated ir the present research; however, the presence ofshcwae
-44l1 be evidenced by the fomation of steep gradients within the flowe.

____The form a L-on of an actual discontinuity is prevented by the snoothing
properties of the interpolat-ion s chee. If the gradients become too

J.step (Iea shock too strong to be Itreated in this imanner) the nurier-
ical scheve breaks down and the solution cannot be Contin~ued further

withut nduci'ng the shoc!, as a boundary across which discontinuous

pr-operties are permitted,
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_Only the modifications to the basic interior point numerical scheme
to incorvorate stream surface boundary conditions will be further de-

_veloped herein.

b. Solid Boundary. The solid boundary condition is simply that
the flow, be tennent to the boundary. For this purpose it is sufficient

_to specify the bounding surface, f(xi) = 0, and its first derivatives,
_Afx. The tangency condition then replaces one of the conditions nor-
mally satisfied at an interior point of the flow. The question of which
condition to replace is easily answered since initial data exist only

__ interior to the boundary. Thus it is not possible to find ftur bichar-
__-_ acteristics through the unknown Point on the boundary corresponding to

R values for e that are multiples of -/2, which all Intersact the initial-
value surface, in the case if concave boundaries, it is generally not
possible to have Even three bicharacteristic which exactly intersect

_ the initial-value surface, see Figure E-2 . Hoever, the relative cur-
vature of the boundary is assumred to be sufficiertly small so that the

-error caused by extrapolation beyond the boundary to the intersections
is of order O(t3). Thus one of the four bicharacteristic conditions of
the interior point scheme i~s replaced by the tangency condition, i.e.,

ui(6) ni(6) = 0 (E-76)

where ni(6) are the components of the outer normal to the boundary at
point (6). In addition, the position of point (6) obtained from the

___ streamline integration is adjjsted along the direction of the rormal so
that point (6) lies on the boundary. The reference vectors ai and 8
are chosen at point (6) such that s1 corresponds to the outer normal, ni .

_-_-_ T e vector a1 is subsequently found using the property that thp vectors
uIq, ui and s fori an orhono,,al set. This selection of the reference
vectors has the property that the three bicharactristics corresponding
to n O , r/2 and n intersect the initial-value surface interior to the
boundary for convex boundaries and intersect most closely to the interior
in the case of concave boundaries, see Figure E-2 . At point (6) the
blcharacteristics corresponding to e = C and - lie in the elemental tai-
gent plane to the botndery.
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_Tn, points on the initial--value surface which are used for irter-

polation are again chosen as a set of nine points wich consists cf the

_streamline Intersection with tha initial-value surface, point (5), and

its e!ght nearest neighbors. The eight nearest neighbors are choseh

using an indicial stencil. The stencil is varied slightly wit'i Position

on the Loundary of the array in order to obtain the nearest neighbors

__ unif 1rmi y.
____ Th nu merical calculations proceed in a manner almost icentical to

that for the interior point. The only exceptions are that tne fourth bi-

characteristic is not located and the corresponding compatibility r.!la-

tion is replaced by the tangency condition, Eq. (E-76).

__r_ c. Plane of Symnetry, Whenever the boundaries and tht initial data

possess a conmon plane of syuuetry, the number of point calC latons can

be gr ;&tly reduced, since only one sector of the flow needs to be cal-

_ culated. The remaining sectors can be found by reflection. This boun-

dary conditiot. is pirticularly simple since .efiection of point; about

the rlane of syi-ntry can be used to produce a network n wh ich the cal-

-culation scheme fer an interior point can be used without modification.

The nlne pont: - the interpolation scheme are selected such that three

points lie on the plane of symmetry (i.e., adjacent boundary points),

three are interior points and the remaining three are the image points

of the three interior points. This process ensures synnetry in the re-

Nsulting interpolating polynomials and thus, in the interior point solu-

___ tion. This technique has been demonstrated to give completely satis-

factory numerical results. The san* logic is also used at the Junction

_bet- een a plane of synm etry and a solid boundary, except that the solid

boundary point calculatior scheme is used rather than the interior point

scheme.

d. Constant Pressure Boundary. In the ca.a c free jets expanding

___into a quiescent ,,tmosphere without mixing, the boundary of the flow is

a stream surface of constant static pressure. The boundary condition is

simrpIy that the static pressure on thL boundary match the specified

value. Along the streamnlines the entropy and stagnation enthaipy are

constants and, since the static pressure is known, the magnitude of the

velocity can bz established directly. Thus, the unknown quantities at
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te calculated point are the two spatial coriaes a x3 an
____twa coa~ponents of the velocity (the third copovnt of the velocity is

considered knmm, since the magnitude of the velocity is knovi).
___The reference vector system for 4%-.e paramreterization of the iach

cone is chosen such that a- coincides YWIh ah unit oueter normal to the
=constant pressure surface. T1he dirsction of the outer normal coincides

with the direction of the pressure gradient since the gradient is normal
to A constant' Prope-rty surface, The Dressurea gradient is knowT at point
( -o he lnltial-'yelue surface and this value is used to construct

___the refeece vector-s, see Figure E .3.
Once the System of r-eference vectors is established, the calculation

_____ rocedS in a manner very simillar t6o that forcthe solid boundary point
_____ ne main difference being that Bernoulli's eauatlon along the streamline

iS not requime since the pressure and the velocity at point (6) are
_____knowin. The three compatibility equations along the three bi characteri sties
____ 3 the one noncharacteristic relation along the streamline are used.
____These four relations are sufficient to determ~ine the two remaining velom--
____ity conponents and the two scalar functions of the velocity derivatives
_____at point (6).

_____ 
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__APPEhDIX F

SLEAST S(.JARES BiVALPATE INT ERPOLATION SICHEMIE

In the nunerical integration schwes the values of the six dependent
-- variables, correct to second order in step size, are required at the

intersections of the four bicharacteristlcs and the streamline with the

_ initial-value surface. These Intersections do not r9enerally coincide
with known points so that interpolation is required. The interpolation

Sprocess is repeated on eac, iteration of each point solution in the in-

Stegration process, and thus speed is - considerable irortance. In
Oaddition to the requirments of cocuting speed and accuracy, the inter-

S-M polatlon process, in cotination with the nwrerical integration scheme,
S must be nt-rIcally stable.° An interpolation sch using locally fit second-order least squares

polynomials was selected. in this method, second-order bivariate poiy-
nomials which have six coefficients are fit to a local group of nine

points by the rsthcd of least squares. The nhrze points are selected as

5the intersection of the streamline, along which the solution is being

advanced, with the Initial-value surface and the eighot nearest neighbor-

aing points. The glotal interpolation process thus consists of the use
___-- of a series of overlapping two-d-vensionai polynomial fits.

This method is relatively fast since a syst., of six inYear s-etric

algoebraic equations only needs to be solved once for the polyn cial co-

efficients a ach Dofilnt In the nw.efrlal integration. Cce the cc-ef-
r",ientCs are obtarined, initerpolations during each iteration are Made by

simoly evaluating the "!ynoici. Strict second-order accuracy is Win-

tamed only If 'he mininzw, ntaer of Points required to obtain the Lagrange
interpolating "olynomial, which Is six, is used. Ho.ever, the loss in

accuracy due to the -edundancy introduced by using nine points is very
small and is rmore than offset by the advantages of cmputine ease and
stabilizing effects.
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i_ he least squares interpolation technique has an added advantage in

_V"the solution of supersonic flow problis. The occurrence of shock waves,

i.e., discontinuities 4n the solution surfaces, can generally be expected

and it is desirable that the ntmerical mthod be able to "tolerate"

erat discontinuities wthout failing. The 1east squares intrpola-
tion scheme has this property since it tends to spread out a discontin-
uity. This approach results in som- loss of accuracy, since in reality

the Ranki ne-Hugoni ot j"ip conditions should be introduced at the discon-
_ tinuity as an additional boundary condition. The latter approach greatly

complicates the nusmerical calculation and is not reak shocks.

In the case of strong shocks, the shnck surface should be introduced asI a boundary anj located by sirltaneous solution for oath the upst-ew
and dc-tstream points on the shock. in addition, Independent interpola-

tions rust be made on each side of the shock intersection wit ..he In-

Itial-value surface.

The bivariate polyniIal wdhich it fit for the dependent va-iables

ME has the focm

u = Ai + A+A z + A4yz+A~ y'+A 6 z2  (F-I)

where u represents any of the six dependent variaLes, i1, p, P and H;

A1, A2, etc. are the coefficients corresponding to the particular depen-

I dent variable, and y and z are rectangular cartesian coordinates on the
planar initial-value surt ;,,. The nine points, the streamline inter-

section with the initial-value surface and eight surrounding neighbors,

are used to obtain the least souares solution. The mesh oints are located

flI in each initial-value surface in such a way that they can be ordered in

= a two-dimnslonal array. The eight neighbors of a point in thr two-

dimensional array are obtained, to close approximztion, by a simple system

of stored stencils (i ltsof co iates for neighboring points).

Thus, the neighboring points used in fittin: the interpolating polynomial

a"e readily located without ietric Infortation.

Let the values of a particular dependent variable at the known ooints

be designated by u., where the subscript ranges from one to nine and is

used to de s 4gnate any group of nine points within the two-dirmansional

ordering scheme. Likewise, designate the coordinatz-. of each point by
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Yand zi. The value of the demedent variables calculated fr-w- the
___ interpolating polyncnifal at each of the points, designated by a pri-ms
- is

A~4  ~~+ A y2  2 F 2
u A z Aai A~i(F2

MINE The sL-i- of the squares of the differencesc between the exact values -md
M-M the values obtained from; the interpolatlnq polyrmlals at each pbint. is

given by

tu A y 2  A Z4 2)2  (F3
Ai -A1 -A. 1  71 -A 4yj zi i F3

_____ 6~

Here the repeated indicles do not imply swrma-tion. Trhe polynomiial co-
efficients are varied in Eq. (F-31 such that a rmininxm is obtaIned f ar

_____SSQ. The necessary cond8itions for a minimm are

a(SSQ) a(SSO) (SSQ) LSM aSS) CISQ
cA2  03

___Written out, these six conditions take the for-

9+ -.y1 2 + zz, + zyiZiA. + Y ?A C (z2AIF-5)3-' 1 " 5 1 i-6 j

2 yzA + VyZ2 3 2AF-6

rzyA 1 ' yz1iA2 + ry 7 A2.YzA + Z'A5  L LUiZy F4
3 i Z~3  L +Z'ii4

2 £ ~ ~ ~ -+ - z LyZA5 yzp =

V 3
y2  2 2yzA 9 Zyj 1A + Y (F-

_____~IYii" + y 4 Z 1 +i? ZrYzl 3 + :A, r~j 5 ' _ s .~ F.

2A 3 4. 2 2



whre z implies summation over the same range as in Eq. (F-3). Equations
(F-5) through (F-11O) are a sysznT, of six simultaneous linear algebraic
equations for the unknowns A1 through A6. The coefficient matrix is

___ symmnetric and dep.Nnds only upon the coordinates of the points used for
the least squares fit, Only the nonhe-iogeneous te,,s depend upon the

va.ues of the depel.t -iar~ables. Thus, it Is only necessary to invert
the coefficient matrix once in orJe- to obtain solutions for the 3olyo
nomial coefficients for all six dependent var-icles Each solution may
be obtained by multiplication of the respecti-ve nonhomogeneous vectfr
by the inverse of the coefficient matrix. The solution for the poly-
nomial coefficients is obtained using an existing IBM cnputer library
subroutine for solution of systems of syi..vatric simultaneous linea,

_algebraic equations.
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APPENDIX G

THE OVERALL NU?"ERICAL ALGORITHM

i.GENERAL
The global solution~ is obtained by an overall numiricai algorithm

in which the unit processes of interpolation and single point integration

are systematically appl'ed to obtain the solution for a particular set
of initial values and boundary conditions. The objective of thi_. re -3 search Is to devise an alaorltl'm suitable for the solution of a wide
variety of three-dimensionial internal flows, and in particular, flows
which are encountered in the design and analysis of thrust nozzlses. At3 the present time very few, if any, three-dimensional thrust nozzles have
been employed and so not much experience exists which can be used as a
guide for determining the general types of problems to be encountered.

In order to bring the scope of the problem to within practical
limits~, the following assumptions are made with regar-d to th:? geometry
of the flow:I ~ (1) The boundaries of the flow space are everywhere smooth such~
that the outer normal is unique.

(2 The cross section of the flow space is simply connected.
(3) A single direction exists such that the plane normal to thiis

__ I.Wdirection is space-like throughout the flow (i.e., the particular direc-
tion is everywhere interior to the cone of normals).

(4) When the flow space ptssesses one plane of syi'ztrtenrl

to the cormon space-like plane lies within the plane of syre.try.

(5) If the flow has two or more planes of syiuetry, the normal to
thec~n sac-like plane is parallel to the line of intersection of

the planes of sy m. ry.
5-Assumption (1) eliminates the -aossibility of dlcnilu ouions

at the boundary (i.e., attached shocks or PraWoI-Meyer e^xpansions).
This assumption is not particularly restrilctive in the case of nozzle

~ Ua



-~flows since other desig- and construjctf on l'tmltathDns usually pm'event
the use of shm :irners on the boundary. A sumtp-ion ('2) Is not a re-qsuit of avy argamenzel fimitationi, but was m~ade in order to simplify

atthe nurnricaif loguic (an annul ar f iow is a typical example of a flow
havng !;nsI$y onncted cross-section). Assmpt-4nst (3), (4) and

(5 re agai n niot funda-entAi limitations.. but greatly recluce the nmmr-
icaI scmplexIty of thr overall 41horitM. while not seriously reducing tne
range of practical problems which can be s-olved. These assumptiops per-

'i he inte gration to take place betnxen successive planes noniai to0
the x1 cordina-te dIrectiHon, a conditlon, which was assumd in the develop

ment of both the interpolation and integration schemes.
The Cx. 3 coordinate1 Diar-e murst be everytwhere space-like to the
t~~~vg,% whc men httettal angular variation of the streamlines

ac, ss the flow, canot in tL - I mit zxceeti theS Value 9O~ 90 !!More 1:
is an average Mich angle. Th'is condition onlyr becomes Ilmiting for Mach

nuaers near unity whare the MachI- angile, approaches 90 degrees and the
per1tted vmration ifl angulait approaches zero Thje inegaInche
car, o0l beployed at Mach numbers greater than unity so th-at the
limitling case- never occurs, High angular variation betwo-en streamlines
at low Mach irtg-*ers do-?s not usually occur in internal flows, since Mach
numbers near unity only occur atl. minimumi in the cross-sectional area
and, thus, at a point wherae the boundaries are nearly parallel. These
restrictions are further minimized -by choosing the x, coorInate direc-
tion t'o be the mear flow direction.

The nmerI-cal algorItim could be easily extended t.C cases in which
lare aratons "ttema low direction occur along the direction of

intgrt~o. ~,by perically employing a coordlinate systev. rotation
ashe Inertion oroceeds so that in the transformexd system -f oo-din-

ate te nw ire.." ore er ~fC des with the mean flow direc-

2. INTEGRAION SCHEME

The point computational schene, which is developed 'in Appendix E,
V ~ is used repetitively to obtain tihe solution at a discrete set of points

on D -es perpendi cular to (x,, x, coordinate planes. When the flow has



_____or more planes of syiwie.try as a result of the initial and boundaryv con-
ditions, the geometry is assumecd to be such that the x1 coordinate direc-

____tion is parallel t all plares of syTuietry (i.e., parailel to the- lfine
of intersection of the planes of 5ymmantry).

The point intea-ation scheme establishes the location of thE SON-

tion poit by locatino the intersection of the streamline, which passes
_____throu~gh a prior comI~uted point on the initial-value surface, with the

solution surfa3ce. When' this process is applied successively, a set of

strea-rlines throughout the flow is generated. Tlh particular streimi-
lines whi-,n are generatea will ieoend uroon the points which are selected
on the first initia-value surface. This technique of constructin
streamilnes is employed in the nunericat process and has the desirable
property that the distribution of points, reiative to the -mass flux dis-
tributionn, is the same on each new so'ution surf.acc. An additional
benefit of Constructing streamlines 'Is that points which are initilly

on Ltoundaries or in planes of symaetry will reain so throughou' t :-

overall! integration process. Thu% the boundary calculations are simpli-
fled sinc- n'o interpolation or extrapolation is necessary to obtain the
solution at the boundaries,

_____ 3. INI 1L-YALUE SURFACE POjINT NETWORK

___a. Circular Cross Sectio0n. The network of points which is generated

throughout the flow in the course of obtaining the solution is primarily
function of the selection of points on t.ie initial-value surface. There-

fore, a schene was devised which would select a uniform distribution of
___points over the flow_ Cross- section. It was also oossible to order the

po il s in a tuo-dilrensional square array. The relation of the points to
____ the square array is such that the bowndary poinlts of the flow "fie on the

oerimater of the logical arrs.y and the neighboring points in the array are
to a close approximation, neighbors in the Dhysical space. This pe I.i ts

_____very a1i~ple loi cto be used for determ~ining the type of point integra-

d__ton schem to be used and for locating the points to be used in fitting
the local iterpolatinc: ooync-4-iials. The scheiie w~as olf 1Uzrth'a b-neit

- in the computer -imrn~ing of Ve al Qorithr since the Mints can be
Stored ill t o-iimenslonal arrays and indicial manipuiation used to select

MEW



pit. There is not, to the # Lutnors knowledge, any way to logically

derive the schemie which 'is used. it. was sinioly invented by a trial and
er~ror process ;~id is described, therefore, without any particular attempt

at JutifiAton, except to point out its virtues. The schem will first

be described for a circular cross- section without planes of synetry.

Subsequently the ext~ensions to noncircular cross-sections and cross-
sections haeving planes of symnatry will be discussed.

_____Consider a sqwtra array having an odd dimension NT, expressed in
terms of a paramreter N,, so t~a

-1OR (G-1)

The paramter N~ is tne number of points on a half side of the array.

A typical square array of this type and '%-he corresponding circul-ir array
are illustrated inl Figure G-11 for N =11. In Figure G-l the rows of

p
points in the square array and the correspondig p-Ants in the circular
imesh are connected by solid lines while the respective colums of points
are connected by dashed curves. In ge.4eral the square array will have

4 ~~~(N~ - )pit n h ei er. If these points are all to correspond

___to boundary points then the circular arrav must also have 4(NT - 1) points
on the circumference. Further, the number of circular shells are choosen

to correspond to the nuffber of inner shells of the square array, see

Figure G-1. The radiu~s of each circular perimter is chosen according

to the relation

RKsn1 (K 1, 2, -.N -1) (G-2)

___which produces a sine distributirn for the R K and has the desirable

SEEK pDroperty Ithat the outer shells of the circular miesh are spaced More
_____ closely togeather. This is desirable because one-sided interpolations

W011 rmust be imade at the boundaries. The closer spacing of points near the
am ~boundaries partially compensates -for any loss in accuracy due to one-

sided interpolation. Closer spacing of points at the boundary is also

_____desirable because Yariations in the flow are mostly a result ofl varia-

tions in boundary conditions. Gradients in the flow due to expansions

i 56
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_____ at the boundaries are largest in magihl de at the boundaries and become
progressively weaker as they are propagated ito the fit. Tile op-
posite argument can be made for conTressions,- however, thrust *iL~zle

1110flow are generally expansive.
b. Planes of Syma-etry. The point allocation schei. Is e slly

modified to incorporate the cases of one or more planes of symmtry.
When the flow a~,d bounddries have one plene nf symmietry, the central
point ol' the mesh is chosen such that it 1i, -s on the plane of sym-ir-.

____ This case is illustrated for a circu.1ar mesh in Figure G-2. One-hial.

_____or the mesh for a complete circle is used and, therefore, only one-half

_____of the square array is required. The dividing line in the mesh corres-

___ponds to the nlane of synty

_____ When the flow possesses two or more planes of symmnetry, the planes
_____are separated by the angle

____ 4N , (N -2, 3, ')(G-3)

Each adjoining pair of sectors has a mirror image relation to each
other, thus only one sector needs to be calculated since all other sec-

_____tors can be found by reflection. When the problems possess two planes

_____ of symmnetry only one-fourth of the grid is used. This case is also il-

_____lustrated in Figure G-2. For the case of 3 or more planes of syrixtry,
only one-eighth of the grid is used and the grid is stretched or com-

-- pressed circumferentially to fit a sector of the flow. The cases of 3,
-~4, 5, 6 and 7 planes of synmry are illustrated in Figures G-3 and (-4.

____ c. Noncircular Cross.-Sections. The network illustrated in Figure

_____ G-l for a circu'lar cross-section. can be extended to ooncircular cross-

sections by the following technique. A point in the interior of the
_____cross-section is chosen to correspond to t~he central point of the two-

_____dimensional array. This point should coincide with the centroid of the

area, although other choices nay *!)e used. The series of internal shells

____corresponding to the concentric rings of the circular cross-section are
constructed by dividing t-e raolus from tne central point to the perimeter
into segments according tCo Eq. %"U-1), where the parameter RT is here de-

____ lineei as the local radius. The resuieing shells are illustrated in Figure
_____ ~C-5 for a noncircular CS-C~
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The locations of the points on each shell are dete,-lned b.y dividing

_ the perieter into a nutmer of unifor.n segiments of arc equal to the mn-

ber of points on the shell. A radius paralle! to the x, coordinate axis

is selected as a reference such that the initial point of each shell is

-----_ placed on the intersection of this reference line and the corresponding

shell. The reference is indicated in Figure G-S by the line A-B. This

process produces the same point network as for the circular case when
__the cross-section is circular and the central point of the network is

chosen as the center of the circular section. The extension of the tech-
o_ nique to nonc!rcular boundaries with planes of sy,,ietry follms directly

from the approach used to extend the circulhr imesh to noncircular bo-m-
daries for no planes of symetry.

___ INTERPOLA TION SCHaE

_The pclnt inteoration schem, reouires local interpolation for the

values of the dependent variables at t-he intersections of the bichar-

_&cteristics with the initial-value surface. For this purpose second-
order least squares polynomials are fit to a group of nine neighborirg

points in the infltial -value surface -by the rre'hod developed in Appendi~x
F. The nine points are chosen as the intersecton of the strearm4Ie,
along which the solution is heing advanced, with the initial-vaue sur-

-face and the eight nearest neihborS. The neighbors of a particular

point can be located by -means rf a stencil or oatt-e'n for the indicial

coordinates of the points in the square array. Thr. stencil of points
_mst be varied sliohtiv -tlth locatIon in the riesh in order to obtain the

- best choice of neighbors at i oints of the nesh. In tie n-merical
5.schem- eight different stencils are reouir-d to obta-in the :losest

neighbors at all Doi ts of the r-mesh. These elqht variations of the
stencl Ar illustrated n Figure G-6. The locations ofr the corrn-spon-

Smy points in cIrcular flew cross-section am also iiustratC.

j CM BKJNARY CODIION

a. General. The character Cf t e sct'on is govened by the

"ntiai Co1d tions a e bound;;w r-nodions. The boundty fond rns

take the -form of constraints on the soiutmion wiicn specified ove-

N
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timie-like surfaces ad~oining the Initial-value surface. The 4eni tim-
like is used to denote a surface on which the outer nornel is at every

0 point exterior to the local cone off normals. *rhese additi z a' constralats
can tak',e the ifom of -a phys 9cal boundaryi "i.e., constrained flow dirac-
tion), specified pressure, a plane of syvfftr-y of odtosars
discontinuity surfaca. Only the boundlary conditions corresponding to
a physical boundary and planes of syinm~netry are discussed herein.

b Th ecifiel physical boundaryv condition

is satisflied by requiring t.hat the flow, be tangent to the surface, i.e,,

u~1 0 -G4)

- where n1 is the unit outer noral to the surface and u, th~e flow velocity
vector. In addition the outer-most streamline% in the network; wtidch

____ originate from the junction betveen the initial-value surface and the
AM__ physical boundary, must at all points lia on the specified boindary sur-

_____face. Points on the boundary surface are located by obtai~ing the sb'iU-
tion for the intersection of v line with the surface. The line is specf-

fled by the coordinates of a point and the direction cosines of the line.
More than one intersection with thie contour usually will1 exist and the
Lolution lettrest to the knoun pont on the line is assumfed to be cor-rect
(the dire;tion cosines of the line arM chasen to closely approximate the
local norinal to the surface and t&-he point Is chosen in such a way that it

_____is near 11he boundary of interest so that the correct solution is eislly
_____chosen). Once a point on the bounda.!.' is located the coi-q-'-nts of the

outer no"al are required (i.e., the partial derivatives of the surface
functIoa must eXist). The boundary surface may be specified as elther

_____ an analytic function or a tabular function. However, in the case of a
tabular function some means for interpolation and numerical differentia-

_____tion miust be provided, since the locations of the oundary solution
____E points are not known a priori. This technique for loca-ting a point on

* the boundary is used in conjunction with the solid boundary point imd-

Sig cation of the basic Interior point nuimrical schemie which is discussed
* in Appendix E.
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c. Plaries ofl Antr. The plane of sy.=etry boundary condition
is Satisfied by reflection of points with respect to the plane of Sym-
mr-etry and :ubsequently applying the interior point computational scheme.Although a specialized bciiidtrM point schem., similar to that for the

physical boundary, could have been usei, the use of reflection is much

-Sipler and it was found to give comletely satisfactory numerical re-
~sults. A A point is reflected at a plane of symetry such that the plane is

the perpendicular bisector of the line joining a point to its image.
Any scalar properties at the polni have the same magnitude and sense at

the image point. Vector quantities, such as the relative position vec-
tor and the velocity, are reflected such that comonents parallel to the

plane of synvet-y have the same magnitude and sense while components per-
pendicular are reflected such that they ,xve the same magnitude but op-

- posite sense. T,, reflection relations for the vector quantities, th;

relative position vector and the velocity, for an arbitrarily located

plane of symretry are

r' --ri -2(rj - r°)njn, (G-5)

and

u' =u i  2ujnni (G-6)

a whre the reflected quantities are denoted by a prime, r i is the position

vector, ri the position vector for a reference point on the plane- of sym-

metry, n the unit outer normal to the plane of symmetry and u1 the ve-

locity vector. These relations reduce to particularly simple forms When

the plane of symietry is parallel to a coordinate piane.
MIN At the point where a plane of syrertry joins a physical boundary,

reflection is used to ensure syri etry and the ordinary physical boundary

point scheme is used to obtain a solution. Here again specialized routines

could be devised, however the logic of the numerical algorithm is great-

ly simplified by the former apnroach and coipietely satisfactory nw-Ieri-

cal results are obtained.

MEN



6 STEP S'ZE REGULATION

The distance botween each of the successive space-like sol ' in sur-

faces is regulated such that th Courant-Frledrlchs-Lev ,CFL) sb

criteon is satisfied at every point of the network. The d fferentIP

zone of dependence is in generl an elliptical r&egon surrounding the

strenilne intersection with the initi-ml-valu surface -ind is defne-d as

the Interscteit(,, of the PTh conold, originatng at the solution poin,

point !6), with the initfa value surface. The convex hull of the df-

-.sence vl-)--mp Is defi-te by the positios of the nesh points used for

inte .olation in the nitia-value surface. Both the different"al zone

_____of dependne and the nv hull of the dlflerence schem e are illustrated

for a typical Intrifor point in Figune G-7. The CFL criterion will al-

ways be satisfied if the mximm radius of tk;e differential zone of de-
psndence, R . is mode less then the distance from the stremlIne inter-
section wIth the InIt Al value surface to the nedrest mesh point on the

covex hull, R% , see Figure G-7.

The reltion between the integration step, 6x, and the maxi mon

radius of the difer-arential Zone of dependence can b expressed as a

function of the local flow parameters. The tangent of the angle which

the steamHIne makes with the initial value surface, v, is simply

tan Y 102 + (6 G-7)

where u1 , u2 and u3 are the respective veloity components. The tangent

of the Mach cone half-a. le, uwith respect to the streamline is simply

tau ( 2 - ) (G-8)

where M is the local Hach numb-her. Frm geomtric considerations, see

Figure G-8, the ratio of the axial step ax, to called H, is given

by

t-xR tanty-u, tan y/Ctan -t~n(y-u)] (G-9)

Application of trigonomtric identities and Eqs. (G-7) and (G-8) yields

a more useful form of Eq. (G-9), i.e.,
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H u/(cq)1 - (c/lq)(q/u A - 1)1/)(-0

____where a is the magnitude of the velocity

____! q u'+u 1/2 (G-11)

c is defined by the relation

___cq 

2 a2 ~ / a2  (G11/2 (-12)

_____and a is the local speed of sound.

_____ The actual Mach conoid is curved, whereas the relation, EQ. (G--10),

has been derived assuming a linear cone. The curvature effects can be

_____compensated for to soine daree by using mean properties in Eq. (G-10).

- An appropriate man is the arithmetic average of the values between

_____Points (5) and (6) of the overall network, Figure G-7.

The minimum distance fran the strearline intersection with the in-

_____itial-value surface to the closest point on the convex hull is determined

by a search of tika eight neighboring points of the differenice scheme.

_____The permitted step size is then computed from. the relation

____ 'Ix PH Rm (G-13)1

Mai ~ Note that the oermitted step si.-e given by Eq. (G-13) will be a conser-

M-W vative estimate since in general the direction of the distance wilx

not coincide with the direction of the distance Rm in adtonti
criterion is applied at the mest restrictive point of the network Ytt

each solution surface. Hwver, ntoerical experience has sh "., this

MW criterion to be very close to the rneximem value permItted from-- numerical

____ stability consldcrations. The use of arbitrary factors of 1.25 and 1.50

wanes the predicited ster :7 n riueicai calculations resulted in sm.
_____ eyidence of neutral stbility and unstable behavior,respect4"ely.
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-- ~. PIERAL ALGOIN hM

The overall niner-rc- inte-aration Process is illustrated in Ficures
G-9 and G-10. Figure G-9 shows tyoicai ;.oundary and inPte r'ior poir nt

computat-iO-nS for ;a fic-i having no plants of symmtryV while Figure GIG.0
___showws the corresponding opera-ticns for a flt, having w#o planes of sym-
____metryv. After comletion. of the c-alculations an each solutior. surface

the tuhnst am mass floware calcula-ted by ntnrical %Jrtaqcrat.'on Over the

solution surface.
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a

This analysis was motivate-d by the occtrrence of nmiCal ntbl

____ ity ~in the original nwmerical schie. Sir~a tet o tablty

___uing inltial-~vaiun urobimm failed to reveal the un-stable character of

the scht's, thus the Inst7,abilIty was not4 discovered until thesoition

I-f ini1ti alI-boundary val ue Drobier were attr-mted in m W eh l argerrntr
of inegaon steps could be taker.

_____The stability analysIs sho-wed the original scheme to be onliy noder-

_____ately unstable. -wWC Is the reas~n that the anstable charactePr ;did not

___become apparent until" after a rather large ntzmer of integration st"-s.

___In addItIon, thec ar-,lysis skownd1 that the schave could be--- made sufflc*;-

FPII_ ently stable by a v' s imple modification.

2.STABILIT11Y OF LWRE&R DIF rRrMC MUJAIMOS

iNLO-ericai stability is a proper'y wbich does not depenrd upon the

nature of *te syst- of dIfferent1ail equations, bu-t is solely a function

a of the oiifference equations wInch are used as amroxlinations to the dif-

,ferential eirguations. 71"e stability of linear diderence scaes has

____bemn studied extensively by a nirter of ir!vestlgistors and a good swr-ay
W-Mof this work as well asn~~ain of the -&abIlity. criteria to several

ifference schmes fo r tredmnic steady flow are given by Heie
an P.~g (5, 6). Stability criteria Mive only been developed 1 f r -ear

___difference equations navina- constaErnt coefficIents and for analyti Initial
___ at. orllea difernc shes aving variable coefficients. the

saie16 stblt rra as fo cosat ofIents are applield locally.
if ~ t th qoenr ifre ~ r s is the case for

stea-v '~ n tree lmaslos. hengenegrlly the correso-onding system;
ofdffre eUat~~i a ls be n -lear and no exact test for

-jif epceosw 1als e.;
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stability presently exists. Te usual aproach consists of locally
applying he sae criteria as for inear equations to the lieari7ed

_form. of the nonlinear systen an d ragarding these criteri, a as necessiry
cond~tTons. In all cases .ich- are knowT.n to have been investloated, in-
c!,dlina the present work, this approach has ben sufficient to ensure

__ stability.

Two stabIlity criteria have been developed for systems of linear
_____ difference equations. These are the r^,tFr-edrich-Lewv (...

S tabIlity criterion a nd t1he vo H eMnn cond ition. The C.L stabIlity

criteri-% states that the domian of dependence of the difference equations,
defined a:; the convex hull of the Dints in the initial-value surface,
which are used in the difference scheme, wast contain the dowiin of de-

- oendence of the dlffervttial system, see Figure .- 1. The CF criterion.- I 'o•l ifrnc ceebt

z r-egarded as a necessary condition f- all difference sch ies, both
linear and nonlinear, and has been shc'n to be both necessary and suffi-

_cient for simlIcial linear difference sch-es, Ref. (5).

The von Netrann condition states that a- difference scheva is stable
only if there is a limit to the extent that every Fourier cogmoent of

____the initial data can be a -lfied by successive application of the dif-

ference schem. The von Netuann condition is sufficient for stability
o linear difference schemes mly for the case of analytic initial data.

A, "o ver, the von Neuwann condition has turned out to bv sufficient for
; M all nonlinear, as well as linexr, schemes whic!h are known to have been
_--_ investigated, Ref. (5).

Sin the present analysis the C. criterion is regarded as a necessary
condition and it is satisfied in the nonlinear difference schenne by

Me regulating the Integration step size such that the Mach conoid inter-

section with the in(tial-value surface is contained within the convex
hull of the initial-value surface points of the difference schem-. The
difference scheme, with the CR. condition satisfd, is then tsted for
Sbility In the von e--ann sense.

3. LINEAR DIFFERENCE EQUATIONS FOR STEDY SUPERSONIC FL3

The system of dIfferentiZl eouxtons for steady supersonc fl in.
three dimnsions consists of the wave surface characteristic cot-atibility

I __
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-;-elation applied along four orthogonal blcharacteristics, a stream sur-
face characteristic compatibility relation applir along the streamline
direction and one noncharacteristic relation applied along the stream-
line direction. These six equations written in terms of the operator
for the directional differential are:

dip pcai diU 1 = - PCaBi 8(au1/axj) dt (H-l)

di P + pc. d- U - ci(aui/ax) (H-2)
i2 2

dP - pc d3 - oc28isj(au /axj) dt (H-3)

di p pcei d u4 - pc2 lx(. ) dt (H-4)- d 4i U = . J , .

d-p (a- i(a + Bi a ) (aul/ax ) dt (H-5)

da p Pui- d (H-6)

where the subscripts yi, (i = 1, 2 3, 4) and U, denote the four bichar-

acteristic directions and the streamline direction respectively. The
network of bicharacteristics and the streamline along which the system
of equations apply is illustrated in Figure H-1.

Normally the system of linear differential equations 4or use in
stability analysis is obtained directly from the system- of nonlinear
differential equations. However, in the present case two difficulties

are ei.countered which require some judicious consideration. First, the
nonlinear system consists of six equations which would yield six lineaio

differentialqu ,~a~si or only four dependent vari-ies. Serand, the

two unusual term, w= (au1iix,) and 8,8, (au/axi), that kppear in
_ som of the coefficients involve partial derivatives ar, cannot be evaO-

uated in terms of simple differences along the bicharacteristic network.
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These differences are a direact result of the scheme for mintaining
second-order accuracy in the nonl ;near numerical algorithmn and con-
sequenzly may have a significant effect on t.he numerical stability of
the scheme. The approach used herein is to consider the quantitiAes

andaj(;L.dY and s as unknown ouantIties of the differ-
ential system, Eqs. (H-1) through (H-6). at a point, and to eliminate
these quantities by simultaneous solution. T'ie remaining four indepen-
dpnt;. differential relations are subsequentiy11% linearized.

In the lineariza,.ion process the dependent variablas are assumed
to be adequately represented as the sum of a czonstant quantity plus a

____small variation, i.e.,

u +' (H-7)

where the quantity u represents any of the dependen~t variables, 5 is a
______ constant and ui is a small pert~urbation. The corstent value, 5, can be

HIMMOPinteroreted as a mean value about which perturbations occur. When
second-order terms are discarded and diffeti2ntials replaced by finite

_____ difference operators, the following linear system of difference equietions
____ is obtained

a__ (8 Pa6 ujI-8)
_ _ _~~x' L l Y_'1 3 1!

224 4 2~£

+ + - D t,4 ; jI(A~-t/t t)(-)

___where the difference operators are defined by
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f V) 1. 2u, , 3 , 4)

f_ f(6) f (5) (H-1 3)

The stabillty of the system oflinear difference equations is not a
___function of the coordinate Ori*-mltion and En orientation which siMP*,f-

fies the system of equations can be used without loss of generality.
___Thus, a uniform differenlce network is used in which Li 0, so thlat

A t= A t A!t At That this is true may be seen by considering2_ 2 4the linearized parametric equations for a whyve surface bicharacteristic

(G_ 1 i + ECLcse + 651 sgine) AI-t (1 1, 2, 3, 4)(11-14)

__end for the streamline

W__1 
2,u 3I I -I I' *

HIM15
W ~The reference vectors, and ii, form an ortheronnal system --ith 514

__where qis the magnitude of the constant components of the velocity.
Thus for 5 = 0, ;and~ are identically zero and Eq. (H-14) for___x along the bicharacteristics reduces to

u1  UAt in-16)

___which is identical to Eq. (H-1511 for A6X i along the streamline direction.
___The refere-~ce vect.ors, d, and w- have one retmaining degree of freaedoim

_____whic~nmay be f x d a b tarilv. A convenierlt choice is 02 = 3 1 n
___= s- 0 The initial -value surface is assup;ed to oe normalI to the

xdirection so that~ see Figure H-2,

___Thus itis clear 'hat the At s aiot-g all bicarcteris-tics an-d the stIreamline are equal, and thus that th1 ifeec rto inkivnc h
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_____paratmeter t in Eqs. (H-8) through (H-10) ar, all unity.
____The final difference equations for the selEcted netw-ork an co-

_____ordinate orientation are

___ i() '(1) + pE~u.(6) d m] = '1 ( 6 - :

____P() - (2) + c;E[^U3(6) 6 1(2)i p(6) - 6(4)

_____ - (6) - u (4)-'H-9

-7f_ 116) i 'f5) ' v(6) 'P'(1) + ^0(6) -1621

____ + Er ,6 -U(1) + U(6) -u 1(2'/]H20

___ (6) - P-(5) 2 G" I U1 ~(6 (511 w21)

_____4. -TABILITY OF THE BASIC DIFFERENCE SCHEME

_____The -trbility analysis must include all operations of the overall

M__ numerical algorithm (i.e., interpolation, difference equations, etc.).

_____However, in order to more fully Illustrate the stability characteristics
_____ of the individual processes of the overall numerical algorithmn, the

basic difference scheme will first be analyzed as though interpDolatio,,

____ was not required. Next the interpolation scheme will be analyzed. Then

the combination of the difference scheme and the original method of in-
terpolation, and finally the modifications which resulted in~ a stable
scheme, will be analyzed.

_____Before beginning an analysis of the basic difference schemwe without
_____ ~~interpolation, note that the CFL stability cItro is no1ais.

see Figure H--2, since the differential zone of dependence is not im~bedded
within the convex hull of the differEnce scnem~e. Thus, when the scheme

_____is analyzed for stability in the von Neumann sense an unstable result is

anti cipated.



It 'is assunfid that the analytic Solution of the systemi of linear

_____difference equations can be obtained by separation of variables, Ref.

(5.For the purpose of stability analysis it is sufficient to examine

the solution for only one arbitrary component of ',he half range Fourier
series representation of the initial data. The complete solution could

R-M --fbe obtained v superposition of all such terms necessary to completely
represent the initial data. The form for a general term of the solu-
tion is thus assuined to be

iJ-e rX2 'L e i :3 If (H-22)

n ~where U is a vector whose components are the dependent variables ul, U2
nd- . istecplxuatt iM and N are frequency factors

for the particular Fourier component of the initial dita, L is a char-
acteristic dimension such that x2 and x3 have the range -L to L, and

____is a vector function of the integration direction, xl, which has four

comroonents corresponding to the four components of U. The coordinates
of ti e points in the difference inetwork can be represented relative to
the coordinates of poin1t (5) in terms of increments of the respective

_____coordi.iate directions, see Figure H-2, Thus

Pon I:xi(l) =x,2 ) x,3 ,4-l5

Point (2): (5)2 = A(5

x3 2 f aX (5)

Point (3): x 213 x2(5 I X

x3() A (5)
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Point (4): x54) e x(51

_____x 3(4) = x3(S) + "x3

Point (6): x!(6) = x,(5) + x!

x2(6) x55)

x 3(6) x 3(5)

-A were tx2 = Ax3 for the pcrticular choice of coordinate orientation and

they are related to the value of tx1 by the paramtric equations for a

_bicharacteristic, Eq. (H-14). The assuwred form of the solution, Eq.

(H-22), evaluated at each of the network points yields

5(6) - eivMx2(5)L i7Nx 3 (5)/L i(x1 5) + x.) (H-23)

____ U(5) = eIxM(S)iL eirNX3(5)/L Vxl(5)) (H-24)

- U(4) a eivMX2(5)/L ri'h(x 3 (5) + Ax3)IL x,(s)) (8-25)

_____ 1(3) a eirM(x2(5) - tx2 )/L e ixNX3(S)/L x 1(5)) ,-26)

5(2) = eIWMX2(5)/L eirN(x3(5) - Ax3)/L i(x (5)) (H-27)

(i) ei! M(x2(5) " tx2)/L ixNx3(5)iL ((S)) (F-28)

Equations (H-23) thruugh (H-28) all contain the co n factor

rWiMx
2(b)/L e! Hx3(5)/L

!13



and the difference equations, Eqs. (H-18) through (H-21), are hoogeneous

in the dependent variables; thus the conn factor may be eliminated-

Substiuting the r-sective values for the deoendent variables into the
differnce equations, writing the syst- ir matrix notation, and sub-

st!tutin; the expovential definitions k the circular functions yields

0 1 0

, rX, 5 + AX ]

.- )

.__ iQ0 0B2 0 1l

___0 8 12 0. 8 14

23 24 .
____if( , ) £ 0 (8-29)

0 B32  33 34.

8B41 0 0 BuJ

fl where

B! - cos(-Hx 2 /L) (-30)

U
A < / i(rttx3L) H-32)

823 = cos(vNAx 3

0 1 (i c)sin(.N x3/L) (--3),

832 Cos(-_,.x 2 /L) - (i)sin(xM.x2iL) (8-34,

U W8A



____ riitz~x./L)_ B 3 cs - (011sint7xri L) M8-351

B~~34 j i . "cOS (.rMLx2/L) -"CoS(m-NL.3L)

" (I)Lsin)MAx' sin(iNLxiL)I - (8-.)

_ _ _ _ _ ( -3 7 )

41 - " (H-38%

_If Eq 8-a) is pr-multiDlitd by the inverse of the leading coefficient
MEN mtrix, a recu,-ion relation for the x, aenendence of the de-endent

variables is obtained which has the general form

itx1 (5) + Ax!) = A a(xJ5); (8-39)

Me.The matrix A is defined as the amplification matrix for the system of
difference equations. The particular for of A is found to be

1:1( (l/d1)sin,, (iE/ul)sin,*3  (I 1)l'cos*,-coes )"I

rr

'u -cost 2  0 (i/e)sin%*3 (l6l)CSin¢2  3

__r(-40)

0 0 coso3 (ibE)sin.3

L ip)sin 2  (-iE)sin6, ((os* 2 + cose 3 -I)

whsrm 2 __IL and ¢3 = 'N"31
Th2 von Neumann necessary condition for stability of linear differ-

n ece equations requires that the eigenvalues of the amplification ratrix,
-A, satisfy the inequality
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-: + Uo6x' (1-41)
_ _ _I -i  "II+ .

ehere A4 denotes any of the f.uir eigenvalues of At i.e., solutions of

_____the determlnantal equatlon

_ Expansicz of Eq. (H-42) yields a fourth-order plynomial in

( A)d-[ 0%, - ,),cns3  - )(cos* 2 + cos 3 - , - x)

- ~i- iL2 0 (H-4311
+ (cos62 - ;sin6.~ + (COSA,~ - 2 . (-3

Me!-D

Note that the determInant is not a function of the ccefficlents of the
__-__ systern of difference equations and, thus, that the stability character-

istics are independent of the local values of the dependent variables.

_The eigenvaiues of the arlificatin atrix w ere calculated for all

cmr-binations of Fourir-comonents, correspeiding to the independent var-

lables X tn v over a range of frequency factors . and X. The raAe

of M and N was selected such that the arguments k2 and ., range f-m 0

__ to -._ thus covering one comlete period of he circular functions. Val-

ues of 10 and I were asswd for the characteristic length L and the mesh

soacinas Ax2 and ax3 respectively. These values generally corespona to

-te -.fesh densities of interest in the solution of three-dIm.ensional noz-

zle flow problem. Using these values a range of frequency factors, M

and N, from 0 to 20 results. This range includes Fowile -np.onents having

wave lengths from one mesh lenoth to infinity. The eigenvalues of the

a.,lification matrix were calculated for all co.-binations of the fre-

quency factors H and N. The results of the eigenvalue calculations are

shown plotted in Figure H-3. The Dlot is rc nstracted by plotting the

n-hxinrx- absolute value of the eigenvalues for all corminatons of Ire-

quency factors m < I and N < I. Thus a discrete set of rmaxi~n-ts as

function of I results. Althouqh the index I was varied f-r 0 to 20, it

was found that the results were sy trc about the vaue 10 so t

only the re-sults or 0 < - < 10 are shorn in Figure H-3.
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EAs expected, the basic difference scheme is highly unstable for all

values of the frequency index ). This is due to the violation of the

CFL stability criterion when the points at which the bicharacteristics

_intersect the initial-value sirface are prior computed points, as in the

case of these calculations.

5. STABILITY OF INTERPOLATION SCHE

In the general numerical algorithn the bicharacteristic intersec-

tions wfiP not coincide with prior computed points so that interpolation

is necessitated. However, the streamline intersection with the initial-

value surface, point (5) in Figure H-4, is always a prior computed pint.IThus interpolation is not necessarily required to obtain the values of
the dependent variables at this point, although Interpolation could be

used for purposes of providing additional damping. It will be shown in

the course of this analysis that interpolation at point (5) is not only

W-0 desirable, but necessary for stability.

The interpolation technique using least-square, bivariate, secord-

order polynomials, which was developed in Appendix F, must be considered

in the overall stability investigation. The approach taken here will beEN to first consider the interpolation scheme as a recursive smoothing

operation and analyze the stability of such a scheme. These results are

subsequently incorporated with the difference scheime to ntain the sta-

bility characteristics of the overall numerical algorith , both with

and without interpolation at point (5).

_The analysis of the interpolation scheme is simpiified, without loss

ef generality, if the central point o' the network, point (5) of the

overall numerical scheme, is taken at the origin of the coordinate sys-
tem (i.e., any arbitrary point of the network can be brought to the
origin by a simple translation of of coordinates'. A rectangular car-

tesian grid is assumed on which an arbitrary Fourier component of the

__ values to be interpolated is repreaented by

Se i MX2I L e!  x3/! L() (H.-44)
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where

X2 rm6xV (m = 0, ±1, ±2, .. ) (8-45)

and

x3  nax3, (n = 0, ±1, ±2, *.) (H-46)

The complex quantities € and n are defined as

_e irMAx 2 /L (H-7)

ne iNa3/L (H-48)

so that the general Fourier component, ;q (11-43), becomes

m rnn a(x) 0H-49)

W The interpolation technique developed in Appendix F uses the central
point and the eight nearest neighbors to fit the bivariate second-order
polynomials. These nine points are indicated on Figure H-4, and the

corresponding values for the dependent variables at each of the nineI points are

U,lI = (8-50)

0(0 ,-I) z i ¢,. o1 (H-52)

I]01)= in- (H-53)/

U(o,-I) an (H-5)

-UL(-I ,0) = iZ; (H-.57)

U(-l,-i) ( - )

S90I ®



The least squaressystem of aquatio,-s in Ppoendix F, evaluated for this
systen. of poiCts, is

1 9 0 0 6tZ..2

I, -

:0 6tx 0 0 0 0 A^

-

-
_ i0 0 6AX 0 0 0 A3IMF--2 2 i :

0 0 4&x2 x 0 0 A
2 34

____2 
4Ax 4X

2
A 2-- _ 6 A x 0 0 0 _ .&62_2 2 3 A

__ ' 2  0 0 0 4LxAx.,~ 6AX4  A53

(4 + + 1)(n + + i)

( -!) -l.+ - + )A

+ r + U)(-N - -

01 M

1_...-i -IA x

14/ -+ +ix)

A- U5/ )+ - .. l . + -)

-I , sI-i,

(!3___ + ) . + ,j(H-60)
J

___f( _ - -
i  

" '

)..___,__* ..I:Y _ ;



___A~. ElC + 1)(n ~ A (H-62)

A4  [(1/4)1~- 1_1(n - (K63

4fJ + 1 Ar2 A + (H-63)

A6  [ (l3)~ r + l( +

+ (112)(r + l)( + )JA 2  (H-64)

The values of the dependent variables, U, can now be excressed at Any
point of the initial-value surfuace contained within the :.onvex hull of
the system ofl points used to obtain the polynonial coefficients (the rFL
stability criterion requires thkt the interpolated points Ile far enough
within the convex hull so that the differential zone of dE.,e"i nce is also

___ imb~edded within the convex hull, see Figure 4-4). The 1sjast souares
second-order polynrt.iai for U is thus

U P,(A + X~2 A~ A x +- X + A x2 x i2"523263'

f(X 4 f '2 A3 ) i(X1) N -66

_ where the coordinates x~ and X._ are relative to point ()

ir order to examine the stability characteristics of the interv3ia-
__tion scheire, cons;ider a recur-sive process in which r.ew values ofth

deedn variables, 11. are calculated at point (5)usn th iyoa,
-- Ea. (H-66) For ticaex 0. =0 and

+ 4-
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Si The previous values of the dependent variables at point ,"1 are given

by Ea. (H-49) with m = n = 0, i.e.,

U(5) = i(x I (5)) (H-68)

- hus, since no change I, the x, coordinate occurs in the process, the

=recurrsI- relation is simply Eq. (H-67), and only one eigenvalue or

amplification factor results.
1 1I

A C(5/91)(4 + i)(n+' + )

---_ - (i/3)( + -l)(n + r + 1)

+- -, (H-691
__- _ - (113)(4 + ~ l + l)( , + -IH- 9

The absolute value of the aimlification factor 's shown plotted on Figure
H-5 along with the previous results for the basic difference scheme and

for the satm range of the frequency index. The amplification is every-

__where less than ne, thus the procoss is unconditionally stable for all

FoWierconmonents. Note that the dampins f the comonents is rela-

tively modest at all frequencies, reaching a axim m- at 1 10 wh-iere the

____ - ilfication factor has a minIr-n value of 0.956. Because of the modest
al tretion characteristic, yet unconditional stabi ity, of this recuroS;

Mprocess, it could well be used ._ a smo thing process for t-o-diensional

- 6. TABILiTY OF THE DIFF .{CE 5r1..-ZE WTIh -NEI r "'TInt

A n~m-rical sch e I which the values of the dependent variables

at points (1) through (4) of the difference scheme are obtained y the

interpolation proc-ess w-.as first used aM four-d to be nurr ricaiiy u.stable.

For the pioirpse Cf galning further insight into the cause of te insta-
____ bi',-ty, A 'n"ear stWbilIt analysis for ts .ase is made belo. Points

-- U thrugh (4) of the d 2"ff-ce sch-ei are: equaii Space: i -.- ,n the

C -;r erece of a circle of radius r and centern-d kout -.-.it (-, see

CND stility ri terin is satisfie -r is
. ___ . ase o - - I considere- in tIs analysis).

_e_- inr-jtes of Vhe t (i Syraunk -4 are Iocate- by specificatic-

14in
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_____of the angle anqz the value for r (the single degree of freedom. in choice
____for a,1 and sis specified by a value of v). The -1alues of the dependent

variables, U, are subsequently obtained by evaluating the interpolating
polynomial, Eq. (H-66), at each of the intersection points. The values

____of the dependent variables it point (5) are asslx.%d knorfin since point
____ (5) always coincides With a point in the network of initial-value sur-
____ face points. The values of the dependent variables at points (5) and

(6) are expressed in tem-ns of tte as~umnd exponential forrm of the solu-
____ ~tion (i.e., Eqs. (H-231 and (N-241 evaluated for x() 3 )=

which yields

U(61 R= +(x L-l 0. %H0)

U(51 i5%)(H1

Lj() 2fQi) Rx,, QI 1, 2, 3, 4) (14-72)

-~where '1(i) denotes the Dolyncmnial function, E. (H-69), evaluated at" the
dVinae -n ;6, "'Adffre nce network. The systoem of diffearence

___e-qations in rnatr~xior for this case is the sam~ as Eq. (H-291 for the

COMbasic lJifferencea schene, but with -the nonze-o elemnts of the coew cin
nari of i(x,(5)) replaced by the expressions

= l/2Af(-i% 4. fl)III.73

___ 
V I - 7 A



8 41 = I (H-So)

Bi 844 -] (4-81)

S The syste m, amplifIcation matrix is cbtalntd by premultiplicat4on by the

inverse of the leading coefficient matrix to obtain

IA A111 A12 A1

0 0 A
A2'24

Ar' (H-82)

Ml A AiN

"42 A43  A44

I where the nonzero eleeents zre

A11 = 1 (H- )

"12 =(i/2)(f(3) - f(1)]EI,1) (8-,,

IA, = 1/2 L(f(4) - f(2)(E!5I) (8-85)48 :

1i/2),fi - 8

-k2 2 -(i }Lf2),II . + V 3.] -.

U00
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A (1/2)(f(2) - f(4)J(-E) (H-92)43 jr

A44 (l/2)[f(1) + f(2) + f(3) + f(4)] I (8-93)

T;e results of the eigenvalue analysis for the ranqe of frequency
fe-tors from 0 to 10 are plotted on Figure H-6. The previous results

f te +:atic difference scheme and the interpolation schem are also
shown for cMnparison. The scheme is clearly unstable since tjre maximm
absolute value of the eigenvalues are greater than or eoual ir 1.0 for
all values of the frequency index. The largest mplification, = 1.2,

occurs at I - 10 which corresponds to a Fourier component having a wave
lergth equal to twice the network spacing. a1ne relatively sma!l value
of the mxi- amplification factor accounts for the fact that, in the
nunerical calculations, the instability did not show up unti: 20 to 30
integration steps were taken.

in an effort to stabilize the nwmerical schem a nc.iflcatlon ir
which interpolated values of the dependent variables are Oso used at

Dint (5) was analyzed for stability. in this case the coefficients

B , B41 and BU of the system of difference equations become

B34= [f(l) + f(2, - f(5)j/ E) , )(-94

_4_ _ - C rf~ ) '- .'r-'
-4 - '1',t --.

'IA (8-96)

all other coefficients remainino the samns. These than-es result in a
* systeo a! lificat1on matrIx, A, in wh ich only t e -%?--4Ael 1,-- ' and

A, ar ange, the new v iues beingI £i
= '.tfr. (8-97)

+.i2[-i + ()+ +(3 ;(3 ft t(4f{i (H-(
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.... The results of the eigenvalue analysis using the revised elemen',

Eq. (H-97) through (H-99), are shown on Figure H-7, along with the pre-

vious results, for comparisorn. The revised scheme is clearly stable at

the hirker frequency factors, but has amplification factors slightly

greater than one at values for the frequency index of 1, 2, and 3, which

correspond to Fourier components having wave lengths of 20, 10 and 7

times the grid spacing. Although the scheme cannot be judged uncondi-

tionally stable because of the amplification factors slightly greater

-than one, experience with the scheme has ;hown it to be highly stable.

The result could be due to the fact that the Yon Neumann condition per-

_mits amplification factors somewhat greater than orz (i.e., Ai - I +

_O(Ax)), or due to the stabilizing effect of the nonlinearities of the

numerical scheme.

When interpclation is used, the possibiity exists of rotating the

mesh and changing the axial step site, Ax,. The effect of varying these

_parameters, on the stability, are shown in Figure H-8. Here the maximum

anplification factor is plotted as a function of the frequency index I.

A 45 degree rotation of -he finite difference network relative to the

Initial-value surface grid produced a shit of the point of maximum ampli-

fication from I - 2 to I n 3 with no appreciable change in magnitude.

_Reductions in axial step size to 0.9 and 0.5 produced corresponitiq re-

durtions in the maximum amplification; however in each case amplifications

greater than unity were present.

7. SUMARY

SThe results of the stability study did not indNicate that any of the

schemes investigate6 were unconditionally stable. Hcwever, the results

_____ dramatically illustrated the effect of the various miifications on the

nlz.erical stability. In particular the results showed the final scheme

.o be stable at the fundamental frequency (i.e., the frequency corres-

ponding to a wave length twice the mesh spacing). The Fourier compon-

_ents correspondinq to the fundamental frequency are the ones which are

- normally most amplified by an unstable scheme.

The results of this analysis, and subsequent numerical experience

_with the difference scheme, seem to support the general finding that

Sthe von Neumann condition is sufficient for stability of nonlinear schemes.
_
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-- ME APPENDIX I

ACCURACY STUDIES USING SOURCE AND

PRANDTL-MEYER FLOWS

1. GENERAL

_The accuracy of a nunerical scheme is most easily checked by numer-

Mically obtaining the solution to problems for which an exact solution

exists. No exact three-dimensional supersonic flow solutions are known

-M __ to exist, but exact solutions do exist for several one independent vari-

able flows which have three-dimensional spatial character. Source flows

_and Prandtl-Meyer, or simple wave, flows are two examples of such flows.

Numerical solutions for these two cases using the three-dimensioai al-

gorithm were compared to the exact solution in order to deterine the

absolute accuracy of the scheme and also to study the error behavior with

S reduction in step s4 .e. Throughout the development of the integration

_ scheme only numeric elations accurate to at least second-order were

Wused, and consequentl he accuracy tests provided a means for exoerifmen-

-ft tally verifyinq the order of the error for the resultant algorithm,

MWhen an ex.ct solution exists the order of the error for a scheme

I R is easily determined by running two cases at different step sizes and

crfparing the ratio of the errors to the ratio of the step sizes raised

to a pcwer qual to the assumed order of the error. If the ratio of the

errrs is greater than the ratio of the step sizes raised to a power

___- eaual to the assumed order, then the sche is accurate at least to the

order assumed.

in addition to providing tests to detrm.-,e the order of accuracy

for the scheme, the comparlsons with the exact solutions provided a quan-

titative way to readily evaluate the effect of new numerical innovations

on the accuracy of the scheme.

N-



____ 2. SOURCE FLOW

____spieri call source flow was used bacause of i ts thlree-dimensional
-- geinetric character. in such a flow the properties are only a function

____ of the distance from the source Doint, and hence, result in znya one
____ independent variable flow in which the streamilines are straight lines.

In order to test the ntsznerlcal schane a pianar initial-value surface,
for starting the nterical inteuration ,was generated using the exact

_____ sourcea flow solution. Successive solut"ion surfaces were generae. tnr

____ Icaily.

____ The Irltial investigations used a rectangular point network and the
___flow was only calculated within the zone of determinacy of the initial-
___value surface. Later, clrcicuar networks with a conical boundary were
___used so that a greater nwber of inteoration steps could be taken. At
-~each solution point the exact source flow solution was also generated so

that the absolutp e,-ror could be calCUldted.
Throughout the theoretical development of the ninierlcal schemne the

__local truncation error was assied to be third-order in steD size and,
___since the niuiiber of steps required to integrate to a fixed point in tne

solution space is the order of the reciprocal of the step size, the ac-
___ cunulated truncation error at a fixed point in the solution space was

-~assumed to be second-order in step size. The actual order of the error
BIRW in the integration scheme was deterinined by successively halving the

step size ano integrating to the sam.e fixed point in space. In the limit
____as te sep sze aproches zero the theoretical ratio of the acc mzulatel

____errors, for a scheffe locally accurate to sacond order, is the square of
S-~ the stein size ratio.

The static pressure was found to be the dependent variablea which is

compguted leat -Acra-l dadVu s the most sensi tive error in..dirator.
____The error in pressure at a fixed point in space for three step sizes is
___shown, along with illustrat.ions of the process, in Figure i-i. These
___results are for an initial1 Mach nix-nber of 4.0 and a rectangouiar point

network, as illustra-ted. T1he results clearl~y confirm the second-order
___accuracy of the schegme for these initial Conditions, since the ratios of
__the errors are in each case less th an ti~e ratio of the step sizes squared.

The error along the zentral streaimline is shown plotted versus t-he
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nt-r of integration steps ir Fiatere -2. Not that rat of eror

Increase O-fnonica53y thcreasei wi the nWer of steps, thus indi-
cating a boLRioed error characteristic

The effect of the local r*c nutner on the error in a source flow
_ was also investigated usino the rectan-qular networK and the results are

_ presented in FIgure 1-3. The reason that high inaccuracies are encouter-

ed at a Mach nln~r near unw is daue,at least in part,to the fact that

_the equations approach a parabolic Character, the famfly of wave sur-

faces degenerate to 4 sinle surface, and the n- "ericai scho degener-

ates In addition, the gradients in velocity and pressure are greatest
near a Mach nter of unity which do -kdiy also contributes to the

___ increase in error.

A conical boundary and a circilar network of points on the initial-

_ value surfacewere used with source filow initial data in order to test

the accuracy of the overall scheme. In addition, this approaci permits

the solution to be calculated beyond the zone of determinacv or .e

initial data. This approach is illustrated -I Fioure T-4. Th e results

of this type of error study for an initial Mach nonber equal to 1.05, a

1 10 degree source angle, and for three step sizes are shown Plotted as a

function of axial length frtzi the initial-value surface in Figures -5

and 1-6 fur the central stre line and a streamlin- at the boundary re-

spectively. The c.zination of a 10 de-ree source angle and a Mach

Wranter of 1.05 produces a flow having a gradient camziarabie to that which

___ exists at the throat of a rocket nozzle. The results in both Figures 1-5

_and 1-6 do not show the exoected error reduction between the two largest

- step sizes, cases (i) and (7. H wever, the red-ction in error between
-E the two smaller stet: sizes, cases (2) and (3), does have tho Droper

second-order caracteristic. These results indicate thattne sciee noes

_ have second-order accuracy but that the nonlinear asects of the scheu'e

lead to increased relative error at larIe stn sie. These results are

not ir conflict since a sta0tsent with res.Wec t , tr h order of accuracy

of a scheaz only applies in the i as spte size bec -es small such

that ti c. ,afiint of te error te.. in the power series rep.%esentaio

of the solution approaches a constant value.

Te "ioh relative error on the aen trlIne, shn in Figu re i near
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the initial-value surface is partially explained by the large effect of

Mach nuber shown in Figure 1-3. However, no explanation can be offered

-for the fact that the accwnul"ted error actually decreases in the direc-

tion of integration. Normally the accumulated error would be expected

to continually increase in magnitude with the number ef integration

steps as was the case for the higher Mach nLznber reslts (see Figure 1-2).

_3. PRANDTL-MEYER FLOW

-Essentially the same error studies, which were made using a source

flow, were repeated for a Prandfl-Meyer flow. A Prandtl-Meyer flow is

---- also a one independent variable flow (i.e., the properties of the flow

____ are functions of the turning angle only). However, the Prandtl-Meyer

a= flow differs from the source flow by the fact that the streamlines are

curved, whereas the: strmlines of a source flow are straight. In such

__ a flow the stream!lne.s are plane curves and, a- a further test of the
nw-erical method, a coordinate rotation was used such that the planes of

__ curvature could be arbitrarily oriented with respect to the reference

vectors of the numerical network.

-Here again a computer program was written in which an exact initial-

- value surface was generated to start the integration and the exact Solu-

__ tion was calculated at each solution point in order to obtain the abso-

lute error. in the region of simple wave flow t' streamlines are curved

and boundary point calculations could not be conveniently included as was

done in the source flow. Thus calculations could only be made within the

numaerical domain of determinacy.

The networks for successive halving of the grid spacing and the

_accenulated errors are shown in Figure i-7- These results were generated

for an initial Mach number of 4.0 and a turina angle of lO degrees.

_These results also confim the second-order error characteristic of the

scheme (i.e., the ratios of the errors agree with the ratios of the step

_ ...sizes squared). The acctoulated error versus number of itegratlon steps

_is shown in Figure 1-8 and the accturuiated error at a fixed point versus

the initial Mach nt-ber is shown in Figure 1-9. These results are essen-

tially the same as the corresponding wesults for the source flo..

The studies in iich the plane of curvature of the streamlines was

WE_ Z211

UQ|



U---

Nu

_v 0
0

- LL

-~j 0

L0 o

Co W ZO (
At w 0 Dl

Wfil LU 0 <
q, -j o i-w I

O-

pl.L
WE&<



Mil 0. 020

__ERROR 0-0I

I N
___ PRESSURE

(PERCENT) 'J0/' r1

___ INTEGRATION PLANE NUMBER

FIGURE 1-8. PRANDTL - MEYER F! -OW ERROR
__ ACC UMULATION

QN-1 01213



A Lii

MAp ONH

-C~

B' 
QZm

Er
M

wijZ

a~ aX

U 0

UU
_ a::

ala



rotated with respect to the base coordinate system produced the results

Sshown in Figure 1-10. The error was minimum when the flow was rotatee 46

dpgrees and the bicharacteristic network just straddled the plarie of

curvature of the sereanlines. in view of this result, it was decied to
gmm use the plane defined by the pressure gradiurt and e veiocity vector

=as the reference with which to fix the single degree of freedom in the

_orientation of the b;charactaristic network. The netxork was oriented

so that it sywietrical;y straddled the reference plane. it should be

_noted that the effect of rotation on the accuracy was very small, see
- Figure 1-lO, and referencing the network to the pressure gradient was not

_essential.

The accuracy studies for Prandtl-Meyer flow revealed an additional

_phenomenon of some significance. When the initial-value surface included

SMa portion of the uniform flow whi " preceeds the region of simple wave

Mflow, significant increases in error were noted at the junction of the

-_-- two regions. This is due to the fact that the derivatives of the fluid

properties are discontinuous at that point. The interpolation scheme

using second-order polynomials assumies continuity in derivatives up to

second order and as a result the accuracy of interpolation drops to first

order in the nelighborhood of the discontinuity. The accura- of the

ntmnrical scheme at such points could only be improved by ,ocatlng the

discontinuity suirface throughout the flow and using one sided interpola-

tion formulas on each side of the discontinuity surface. Fortunately,

__-- flows having discontinuous derivatives are seldom encountered in practice

__ since sharp, corners, in the mathematical sense, do not physically exist.

In addition, the flw bou.d-ries are usually required to be smooth as a

result of structural considerations.
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