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ABSTRACT

~ This report describes methods for the proper design of first-order,
recursive, fixed-weight, linear filters. Expressions are derived and listed
for commonly used design parameters such as noise ratio, transient response,
and truncation error. The performances of critically damped and steady-state
optimum filters are compared. Design curves are given that can be used to
seleét the weights of the steady-state optimum filter from total error

requirements.
¥
ii
] . TR L] AT PN E S PR S NN S RAT T W s

Y



ks

S g

o

g

L T

o eee b

s f dew mememes

WD
P

-3 O Qo

»

REFERENCES .

" Figure

6

16

11

Filter Equations, .. ... .
Variance Reduction Ratio,
Uransient Response L, .
Truncation Error. ... ..
Weight Selection

CONTENTS

DRI SR T S

D N L T T

LR R

« s 3 & 0 s 0 8

Filter Comparigen and Design Curves

Conclusion ... v v v i i vt i n e

g“-'h Planc Stability Tyiangle. .. ... .. e
Smoothing Versus Time Constant for Critically
g-h TFilter. .. ‘

LI O R O N T I S A R Y

{LLUSTRATIONS

L T S T R T T S R S S Y S T T T TS R Y

h Versus g for the Optimum and Critically

Damped FIers o oo v vi v in v i v ieneen i

Noise Ratio, Transient Error, and Truncation Error
- for the Critically Damped Filter. . .. ........
Noige Ratio Transient Ervor and Truncution Error for
Optimum Filter . .. .0 o i v i v il in
" Transient and Truncation Evrors as a Function
of Nolse Ratlo . . . . ..

g and h as a Function of T7 g{

I R e N A I I

Maximum Noeige and Truncation Errors with Bas a

Parameter (.00 00 i i e i e et e e s
Totul Maximum Krror Versus .. .. 6o v v 0 00 s
Totul Maximum Error Versus T?A

g and h Versus

t
mu.x/ )

L T O L I T S B R T B Y )

Damped
the
L3 .« LI ) [

Papge

| S —

~1

-1

i
1 0o &

-~

Page
17
18

1t




S

1. Filter Equations

The first-order linear Tfilters under consideration are theosce of the
form ’

{ m+ 1) "\70 ‘rf/ n)
yomol) oy () (1)

y(n) =§ (n) + wn) [x(n) ~§n)]
y(m) =y () + wyn) [xn) ~§n)] . 2)

In state vector notation, thesce cquations may be written

Y+ 1) = #m) T | (3)
— N PN
Y()=YMm)+W®m)[X{n) -HY )] . 4)

In the preceding equations,

v+ 1)

o :
Y(n+ 1) = ;}m r 1)

is the predieted system state made at time nT for tinie (n+ 1) T givenn measure-

ments.  The equation -

y ()

Y(n+1):= ;(n)

18 the smoothed gystem state made at time nT for time nT given n measure-
ments.  The equation

X(n) = [x(n)]

15 the position measurement corrupted by white Gausgian noise, The teem T
is the sampling interval, and n is the time index, The cquation

1 T

Pyl

is thy state transition matrix for a constant veloeity trajectory, The equation

H:l1 0]
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" "is the observation matrix. The weighting matrix is

wq(n)

- ‘W(n) = | wy(n)

.+ Inthe application considered for this filter, v and y are estimated posi-
_tion and velocity, and x is measured position along one coordinate axis, Equa-
“tion (1) or (3) is called the prediction equation, and Equation (2) or (4)iscalled

" the ‘'smoothing or correction equation. The objective of this paper is the

selectlon of a constant w eighting matrix W to get the best estimate of the predicted
state Y In mo%st of the literature dealing with a constant weighting matrix,

. w, is called g or &, and TW2 is called h or 5. The g-h notation will predominate

m th1s paper.

The overall fllter performance may be described by three factors. They
5(’ .

a) Variance reduction ratio
b) Transient response

c), Truncatlon error.

A fourth and sometimes dommant factor is computional complexity. In tracking

_many targets by use of a,t1me shared computer and radar, this factor limits

© the filter order to first or second, necessitates the use of constant w eights,
and makes smoothmg in one cc'\r(hnate at a time highly desirable.

2. Varicnce'Reducﬁon Raﬁo

The variance reduc’aon ratio is the ratio of the rms noise output
~ from the filter to the rms noise input. It is sometimes more appropriately
~ called the noise. amplification factor, since it may neccessarily exceed unity if
the filter requirement is for good dynamic response. In general, low noisc
output requires small weights, and good transient performance requires large
welghts A mathematical e*<pr0551on can be derived for the first order filter
in which Wl_ gand W, = h/T are constants If equatlons {1) and (2) which
occur at time nT are combined with the ‘same equatlons for time (n-1)T. all
quantities except predicted positions and measuremonts may be eliminated to
v1e1d

§(n+1)={g+h]\((n)—g*((n-l)+f2— h].\\n)

+lg-1ym-1 . . ' (5)
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; ﬁEv'q‘uation (5) gives predicted position in the standard feedback filter form

k J3

yn+ 1) = Za,x(n;i)-z b./y\(n-j) . (6)
. 1 : )
i=0 =0 '

In Equation (5), the output is the weighted sum of the last two inputs and
“outputs.
Since the filter is linear, the Superposition Theorem may be invoked

in caleulating the noise ratio which is independent of any trajectory dynamical
B . - . + . 9 .
errors. If the input is sampled white noise with variance 0‘2 =E[x*], in

whkh E] ] denotes "c§pcctcd value of,* then the output noise variance is
U;;? = E[v%(n+ 1)]. Squaring Equation (5) and taking the e_xpected value of

the result gives
A2 2 b3 ; P 2 e 2 .2+ -1 2 2
«ry. (g + h) o+ gio e (2-g-h) O'y (g-1) o'y

- 2g (2-g-h) E{x(n- 1)ym)]+2@2-g-h)(g-1DE[ym-1)Fm)] .
(7)

‘In 'arriying at Equation (7), it was assumed that the input and output noise
‘distributions arc stationary so that

E[#2(m+ 1] =E[v?m] =E(¥¥n - 1)] = 052

E[x*(n)] - E(x*(n-1}] =0x2 .
"Also, the input noise samples are independent so that
‘ tm\E[:\'(n):\'(n—1)]=()-
and prgdic’(io‘ns aré independent of future measurements so that
: Elxm) ~\A'(n)] = E{x(n) §(n - D]} =E|lx(n-1) §'(n - 1)1 = 0.
The remaining two terms in Equation (7) involve correlated quantities but can be

~evaluated from Equation (5). Writing Equation (5) for §(n), multiplying by
"X (n-1), and taking the expected value of the result gives

E{x{n-1) §(n)] = (g + h) (r\c"’, (8)

- -—
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in i’;’hich use has been made of the same stationarity and independence assumptions
as,:before. Again, writing Equation (5) for ¥ (n), multiplying by ¥ (n-1), and
taking‘the expected value gives

Al a 1 p )

% E[y(n).\y(n—l)]*z_g [(2.-%-11) oL - elgt h) frx:‘ , - (9)
after making the same assumptions as before and making use of Equation (8).
Finally, substituting Equations (8) and (9) into Equation (7) gives

§ : A2

q -

"y 2g*+pgh+ 2h (10)
O'YZ~ g(4-2g-h)

Equation (10) gives the, ratio of the variance of output noise in predicted posi-
tion to that of measurement noise for constant filter weights. This is one
~equation applicable to making a proper choice of g and h. Similar equations
cail be derived for smoothed position and predicted velocity., They are:

.g.;,;-;we‘ ..

2
%7 2g%+ 2h - 3gh 1
7= Y (11)
a\_ g(4-2g-h)
ol
1 2h?
ELZ T g(4-2zg-h (12)

» Equations (10), (11), and (12) can also be derived from the system
~ unit impulse response by using

=) h¥(n) , . (13)
0

in which h(n) is the inverse transform of H(Z) = Y(2)/X(Z), and Y (Z) is
obtained by taking the transform of Equation (5) for predicted position.
Equation (13) can be evaluated from the integral for the sum of a squared
sample sequence [1].

o0

T2y oL -1y -t

%,h(n)_m $H(z) H(z™") 2= dz , (14)
" in which the path of integration is the unit circle in the Z-plane. The mean

square noise ratio then becomes 27j times the sum of the residues of

4
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Equation (14) at the interior poles of the integrand. However, it is felt that
the first method of derivation more clearly points out the assumptions that nave
to be made in deriving Equations (10), (11), and (12). The same assumptions
have to be made in deriving Equation (13).

The assumptions of stationarity shouldbekeptinmind whenapplying equa-
tions suchas Equation (10). Theinput stationarity assumption merely implies that
the root mean square measurement noise does not change significantly during
one sample period. This is entirely reasonable from the standpoint of the
trajectory itself; that is, measured coordinates do not change fast enough
between samples to affect the expected noise, which is a function of position.
The change in measurement noise due to target scintillation is another matter.
In practice, the target's effective radar cross section can vary with time such
that significant deviations i. the svstem signal-to-noise ratio oc ur at rates
close to normally used tracking rates. However, there is evider =c that, for

. periodic variations in signal to noise in the steady state, Equaticn (10) still
gives the ratio of total mean square noise output to total mean szrave noise
input [2‘“]. Even though the input noise is stationary, the output noisc need not
be. There is a transient period following track initiation in the noise ratio
‘itself about which not enough is known at this time. One reference indicates
that Equation (10) gives an entirely erroneous result during this transition
period[3]. Further work is planned in this area.

SEE RS
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,, 3. Transient Response

The specification of system transient response has always been
somewhat of a problem. The classical method is the use of time constant, or
time for the output to decay to 1/e of some initially stored value. Other criteria
such as 10 to 90 percent rise time have been used., These ideas are still
applicable as definitions of transient response in sampled data systems, but a
more elegant approach is to calculate the sum-squared system error output
caused by some input for which the output should eventually converge. As was
indicated in Equation (14), if f(nt) is a convergent series of data samples
whose ultimate value is zero, then the sum of the squares of all the sampies
from zero to infinity is given by

SZ=-2% ¢ F(z) F(z") z~'dz . (15)

In Equation (15), F(z) is the z transform of f(nt) defined by

o0

F(z)= ), f(T)z ", (16)
n=0

[}
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and the path of integration is the unit circle.
The transform of Equzition (5) is

- -1
,g+h-~-g2z . (17)

- (2-g-h)z7!- (g-1)z7"

N\
SL(Z)_1

Since the first-order filter will converge on a position ramp input (velocity
step) without error, a reasonable input to be used as a basis for transient
response calculztion is

x(nT) =nT , (18)
whose transform is
; X (Z) - __TE.:}_. (19)
T (-z7hE ,‘

The desired prediction is

T

Y(z) =zX(z) = m (20)
The transform of the error is
Bl N\ T
(21)

GS}(Z) =Y (z) -Y(z) = 1- (2-g-h)z=! - (g-1)z~*

after substituting Equations (15), (17), and (18). Evaluating the integral

Y\Z 1 _1
=T c~ zZ) €~ y z7ldz , ‘ 22)
La=55 ( }( (

v by summing the residues at the two poles inside the unit circle, gives

Z _Ti2-g) | (23)
v gh(4-2g-h)

for the sum-squared error in predicted position of the first order filter with
a ramp input. Similarly, it can be shown that for smoothed position and
velocity,
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Yo Tegae?’ (24)
v gh(4-2g-h)

VA_gl2-g) + 2h(d-g) (25)
Ly~ gh(4-2g-h)

4, Truncation Error

It was stated in the previous section that a first-order filter will

‘converge on a constant velocity noise free input trajectory with zero error. It

is also true that a constant acceleration input will he estimated with a constant

-.error in the steady state, and trajectories with higher derivatives will cause
“errors that grow as long as the higher derivatives do not change sign.

- Fortunately, rcal target trajectories cannot possess monotonic higher

. derivatives along any given coordinate axis for verv ~7 and the position errors

that result can be kept within reasonable limits. The steadv~-state error that is
caused by higher derivatives than the first is called truncatisn error for the

first-order filter.

The mathematical approach to estimating truncation error is to assume

that that due to acceleration is predominant. This is equivalent to assuming that
acceleration does not change sigrificantly in one sample period, This is a
~good assumption for trajectories for which a first-order filter is useful. In

practice, it is found that tracking filters higher than second order are rarely

necessary and a first-order filter is frequently adequate. It is also true that

tﬁe‘n’oise amplification ratio tends to increase with the order of the filter;

~":3,>t;hat is, a low-order filter will follow a low-order curve with less noise output
' ~than a higher order filter. The order of the filter, then, like the choice of

Smoothing constants is a compromise between noise reduction and dynamic
response.

The fact that truncation error for the first-order filter can be closely
approximated for several representative trajectories by the response to the
second derivative input has been demonstrated cxperimentally [4]. The
analytical investigation can proceed as follows: Let the input be

x(nT) = A/2mT)? , (26)

which corresponds to a parabolic trajectory in one coordinate with acceleration
A. The Z transform is

bR g
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L 7 i+ wh
‘\,..‘ X{(z) = p +2 '__&—'—"h’,‘ 2' ) £
(v) = A/2 1 ERT (27) E
Then the transform of the desired output is «%
o (14270 z
j Yi(z)=2X(z) = A/2 TTi--_—?_—r)—q . (28) &
t‘ By using Equations (17), (27), and (24) to form the crror expression

~ A .
AY(z) = Y (z) -Y(z)'.‘ (29)

and invoking the final value thcorem, the steady-state cvvor is obtained:

AS\,(nT) = lim (1 - z“’)A;(z) ‘ (30)

nT—+w z—1

*-.—i"‘r"-::: L o e, R

The result is

- n&&i%;'—":: EXR

| Co ‘ ‘
o o \ ' AG(w)'-—‘-—ATz/h . (31)
. : J
i ’ .
: A less sophisticated but simpler teehnique is to substitute

£+ EROTMNT 30 TS s

éne ‘:;.';.ia: Sl

M+ 1) =A/2 n+ DT+ A;(n{j)

¥ n) = A/2 001t As ) |
yn-1)=A/2 (n-1T+ Acin - 1)

X)) =A/2nT?

e et SO A o s

. L
X(n-1)=A/2 (n-1)? (32) ’
into Equation (5), set A;, (n+ 1) = A;; {n) = A;(n - 1) in the steady state, and
solve for A;(n + 1). The reanlt is the sgame. As & matter of record, the ‘% j
truncation errors for smoothed position and velocity ave 3
= AT K .
Ay AT? = (43)
2¢ - h
SN - AT L i L] . 9/
Ay A oh (34)
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5. Weight Selection

The weights g and o st be selected to give some suitable
compromise hetween dynamie response gnd noise ratio which meet'ss the overall
gystem error apecification. Sometimes the sampling period T can he varied
within [imits toaid in meeting the requivements,  Two basic relationships
hetween g and h have been used to ea\ﬁe the task of choosing the wéﬂights from

all posasible y-h mh 8.

]he cxmcdll\, D.;mpé,cl Filte

, As c,.m be secn from Equauou (17), the ﬁmt-—order fil*i DY Has a‘ -
sccond—dogx ce p()lvnomial in itg transfer function. Ithds been tevogniaed for.

many years that the or itically damped condition in a system char uvterlwd by

such a function hr.\\s wuﬁonably fast and Wc‘llubahav*vd trnnsimt rcsponsﬂ. The . i

olcs of Lqudtion (17) are

Zi;0 'é' |2'“Y£§~h ﬂh'J'(2'.-':“%”'11)?+ dg-01 . o . {88
.md critiul dampinb, m,(,ux gw hv
(“-g-h) + 4(g- )~ 0 R o (f:zg_;)' e
from which ‘ |
h= 2- -§+ 2‘«/1-’;‘;{,, . o

LA

Aleo, by applyinf, l{outh 8 mcthod to the dmmminutm' polynomibal of k.qnmtlon ;
(17) after usiong the bilinear transformation (5], .

§+1

i fhrwtih: ) Ry
R it . (38)
Thi first-order filter 1a stable if
h>o
B> v
feZg-h>o0 . (39)
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The conditions in Equation (39) indicate that g and h lie within the triangle shown

" in Figure 1. The locus of Equation (37) is also shown in Figure 1 showing.the

combinations of g and h normally used for the critically damped filter. Actually,
the useful part of the curve lies between h = o and h = 1, since for larger

values both noise ratio and time response increase. For example, if the time
response is defined to be the 1/e time constant in position error which results
from a velocity step input, the inverse transform of Equation (21) with equal
denominator roots gives for the time constant the value of n for which

log, [ (n+1)(1-g) n/2]=-1. (40)

I Equation (40) is plotted against the ncise ratio [Equation (10)], Figure 2 is
obtained. The lower portion of the curve is the useful range and is obtained

: usi_ng the m’aus sign in Equation (37). The upper curve, obtained using the plus

sign, gives more noise for the same time response.

b. The Optimum First-Order Filter

There are two weights to be determined in the first-order
filter, and specifying one of them is equivalent to fixing one performance
criterion, such as noise ratio. Then a relationship exists between g and h which
minimizes the transient error for this specified noise ratio. This means that

the function

6§2+ "22;, (41)

in which A is a constant and 6;:’; and ZE; are given by Equations (10) and (23)

must be differentiated with respect to g and h, set equal to zero, and h solved
for in terms of g. The result is

h=g¥ (2-g) . (42

Further details are given by Benedict and Bordner [6]. It might also be pointed
out that Benedict and Bordner showed that not only does Equation (42) minimize
Equation (41) but that the filtér given by Equation (5) is the optimum linear
filter for tracking a noisy ramp among all the filters of the form in Equation (6).
That is, no other combination of past measurement and predictions will do any
better than the last two. ’
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¢ Kalinan Steady-Siaie Filter

If the Kalman filtering technique |7} is applied to the estimation
of a constant velocity trajectory given nolsy position measurcements, Equations
(3) and {4) give the predicted and corrected states. The weights are compited
for each measurement from

”~\
wm) = Bm) ut o H + R
/I: n) = 'l;f;(n - 1) d"'I +Q

P@-1) = {1-Wo-1) 1] Pn-1) 5 o uy)

/\ . ! , .
in which P is the covariance error matrix in predicted state and P isthe corrected

covariance error matrix. Othcr matrixes were defined previously except for Q,
which will be taken to be ' ‘

Q_ 0 ot ‘ . (44)

In definlng Q in this manner, all deviations in the trajectory caused by deriva-
tives higher than the first ave treated as white noise with variance,. and this

~ manguver noise is assumed Lo affect only the uncertainty in predicted velocity

during the sample pcriod over which it vccurs.

K \|muling the matrixes in Equalion (41) Ieads to the tollowing equations
for the elements of W) and P{n):

N ~ '
Win) = Py(n)/{Py(n) + R]
n ”~ ‘ ‘ :
W) = Piy(m)/ [P 3(n) + R] {45)
-~ 1l 1 2 P |
an) = Win-1) R+ 27T Wy(n-1) R + T* Py (n-1) - 1T* W,(n-1) Pm(n—l)
~ ~ ~ ‘
D a(n) = Wy(n-1) R+ T l’gg(n-]) =T Wy(ti=1) Pp(n-11
~ ~ ~ -
Py (n) = Pyg(n—-1) = Wy(n=1) Ppp(n-1) + M , (46)
in which
K= <T‘(2 is the measurement variance and

M= ”'M?' is the mancuvey varianee . (47)
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If It and M are constant, W(n) and P(n) become constunt matrixes as the

time index n increases. In the steady state, the time indexes in Equation (46)
may be dropped and the constant matrix clements solved for. If this is done,
there is obtained

) P
P“-' T Pm = Wil{ + T ‘VzR

W, fp\,z = M, (48)
from which
CTW, = Wi/ (2-W)) o (49)
) 4
w
M 1
24 =
TR (2-Wp)° (1-w)) (50)
or in g-h notation,
b= gY¥ (2-g) (51)
TR o \52)

;“Equation‘ (51) is the same as Equation (42), which was derivéd by calculus of

variations. “Thus, this steady-state filter i the same as Benedict and

" Bordner's optimum fixed weight filter. However, the Kalman filter fixes the

weights through Equation (52) which gives g in terms of the sampling period,
measurement noisé,_ and expected maneuver noise. In the optimum fixed weight
fiiter, the final choice of weighis is still a compromise between Equations (10)
and (23). The steady-state Kalman makes the choice automatically if values
can be selected for T, M, and R.

6. Filter Comparison and Design Curves

One objective of this paper 18 to compare the critically damped
filter with the ateady-state Kalman filter. Some basis for comparison must be
chasen and that bagis wall bw one ot relative transient and truncation errors for
eyual noise ratios. Equaticna (37) and (42) have been plotted in Figuro 3
showing h in terms of g for the two filters. In Figure 4, Equations (10), (23),
and (31) for noise ratio, transient error, and trunca'fon error are shown
(normalizi:d) for the critically damped filter as functions of g. The same
quantities are shown for the steady-state filter in Figure 5. In Figure §, the
sum-squared transient errors and truncation errors for both filters are shown

12
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as funcitons of mean-square noige ratio. Figure 6 shows that for a given outpud
noise raijo the stewdy-state filter has a transient orror about 84 percent as
great as ihat of the eritically damped filter and a truncation erxvor about 72
puereceni as groeat.

In Figures 7(a) and (b), g and h are shown as functions of the parameter
T*M/R tor the steady~state filter. These figures cover a wide range because M
is normally a function of T? so that T*M/R is a function of T4 In general,
Figure 7(a) is useful for tracking intervals on the order of a second and Figure
7(b) for intervals around 0. 1 second.

Figures 7(a) and (h) are valid regardless of how M is chosen, In
practice, T (or its allowable range) is known and a good estimate can be made
of R, the measurement variance, A reasonable way to estimate M is to assume
gome maximum acccleration, Amux’ for the trajectory so that the greatest

velocity change u one sa ople period is TAmax' Let this quantity be related
to %y by ' ‘ ‘

A = 53
I TM TAmax (563)
s0 that
1
e 2. 2 a2 -
M (TM -1’5‘5T max (54)
and
, M X |
LN R 2.2 55
1 R T Ama.\' B er (59)
or
2
+ .
T_(__M_f___wAmax (f“,s)
T Bo ) *
X X

If the mancuver were truly random from sample to sampie, B would be set
equal to & so that TAmax would be the 3v value of the maneuver noise, But a

velocity maneuver is not really white nolse. I the target accelerates at all,
there will be a high degree of correlation hetween samples in the wmanecuver.

There are techniques available for mathematically modeling the muneuver to
account for this correlation, but this introduces more states to be eatimated.
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Like the question of track initiation, thls is a subject best left for
future investigation. Some aid in selecting B can be obtained by plotting curves
of truncation error and noige ratio as in Figure 8. The normalized %r noisc
error 18 3§ from Equation (10) which is plotted as a function of g using Equation
(43) for h. The normalized maximum truncation error can be obtained by
equating Equation (56) to the square root of Equation (52):

2
2
miaxX - B 5
Bo T e-gl NI-g (37)
Recognizing that the truncation error is
oy dMax =
Ama‘x =T h (58)
and
h=g¥ (2-g) , (59)
vthen the normalized maximum truncation error is
max B (60) '

.y NI

Equation (61) is plotted as a function of the parameter B in Figurc 8 and shows

thati the filter welghts the truncation and noise errors equally for B between 1

and 2. In Figure 9, B is plotted against the worst expected error,

36+ A /o , with T* A ,/,r as a parameter. From these curves, an
max/ x’ max/ x

estimate can be made of the ve! e oi B which minimizes the maximum error.
In Flgure 10, thoe total error is plotted as a function of T Amax /crx with B as a

purameter. Figure 9 is useful when the absolute minimum total error must ho
obtained in order to maintain track. Figure 10 is more useful against mancuver-
ing targoets whon the least obtainable error is not required.

Also in Figure 10 is shown the total exror for the cage = 1, h= 1, or no
smoothing, given by

yn+1) = 2x(n) - x(n-1) , (61)
for which
6=nNb and A = T!A . (62)
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It can be deduced from Figure 9 that when truncation crror can he
expected to exist throughout the trajectory, such as when tracking a ballistic
missile, the choice of B = 1 or less is optimum, However, for small values of
T A /(r‘, B less than onc does not drastically change the total error from

what it 1s with B = 1. It i8 further scen from Figure 10 that for ratios of

T Am“ ()’x greater than 4, the reduction in error over that of the no-feedback

lilter is completely negligible and a no-feedback filter should be used.

Agalnst a mancuvering target, the laxgest value of B should b used
guch that the worst expected error, Ama 4 36r < does not excecd the confines

of the radar measurement volume. This will insuxe that txack is not lost
during a maximunm maneuver while glving the least noise during no mancuver.

Incidentally, Figure 10 does not indic‘ite that values of B to the right of
the no smoothing curve arc useless. As B decruscs the cutves move across
the puge to the left then back toward the no smoothing lin¢ as B gets very smdll
No smoothing corresponds to B = 0,

As an example of the use of the curves, suppose that T“ A“ ax/“ is

~ estimated to be 0.1 and the normalized coordinate extremity of the radar

volume is 6.0. I"rom Figure 9, the optimum value of B is about 0.6 and the
worgt ervoris 4,0, well within the radar voiume. The noise ratio from
Flgure 8 is 2. 15. If the radar volume dimension 6. 0 is used for Am“ /«r‘( + 30,

then, from Figurc 10, B = 4 and the noisc from Figure 8 is 1.22." Thus the
no~muneuver crror is about half what it is with the léast maximum ¢rror condi-~
tion, bhut track is maintained in either case.

7. Conclusion

The mathematical techniques usceful in the analysis of first-order
digital filters have been reviewed and demonstrated. The important performance
measures (noise ratio, transient error, and truncation crror) have been
derived and listed for predicted position, smoothed position, and veloelty. The
assumptions made in these derlvations have been noted and their effects dis-
cussed where possibie. The steady-state optimum filter has been compared to
the exitically damped filter and shown to have less truncation and transient
error for a glvon noise ratio. Design curves have been provided that can be
ugcd to solect the smoothing welghts if the measurement noisc and trajectory
dynamics can be eatimated. This filter, however, in which the weights are
conatant, 18 not presently recommended for track initiation,
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For ballistic missile tracking, the truncation and noise errors should be
" weighted about equally with the parameter B= 1. A larger value of B would be
‘ better against a maneuvering target, provided the total ervor does not exceed
. . the radar measurement volume.
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