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ABSTRACT

Tests were conducted in the AEDC Aerodynamic Wind Tunnel, Transonic (4T), to
determine optimum operating parameters which minimize tunnel interference effects. The
tunnel is equipped with inclined hole, variable porosity, test section walls. Pressure
distributions on a 20-deg cone-cylinder model having a blockage ratio of 1 percent were
used to select optimum test section wall porosity, wall angle, and tunnel pressure ratio
through the Mach number range from 0.1 to 1.3. Practically interference-free results were
achieved at the optimum conditions for all Mach numbers except for the range from 0.95
to 1.05 where noticeable compression waves impinged upon the model. The
recommended schedule for wall porosity ranges from 1.5- to 7.0-percent open area,
dependent upon Mach number.
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SECTION |
INTRODUCTION

The Propulsion Wind Tunnel Facility (PWT) Aerodynamic Wind Tunnel, Transonic
(4T) at the Arnold Engineering Development Center (AEDC) is equipped with a variable
porosity, variable wall angle, perforated test section which allows virtual cancellation of
model-induced disturbances for supersonic Mach numbers. The development of- the wall
configuration is described in Ref. 1.

The present tests were conducted with the objective of defining the optlmum walt
porosity, wall angle, and tunnel pressure ratio schedule throughout the Mach number
range from 0.1 to 1.3. These optimum settings were determined by examining static
pressure distributions on a 20-deg (total-angle) cone-cylinder model of 1-percent blockage.
For subsonic Mach numbers the criteria for selecting the optimum porosity was that
which minimized the forebody drag error, and the optimum pressure ratio criteria was a
uniform pressure on the model afterbody. Wall angle variations were not considered for
subsonic Mach numbers. The criterion for optimum wall porosity and wall angle
determination at supersonic Mach numbers was a minimum deviation from interference-
free pressure distributions.

SECTION 1l
APPARATUS

2.1 TUNNEL 4T

Tunnel 4T is a closed-loop, continuous flow tunnel with a Mach number range
from 0.1 to 1.35, a stagnation pressure range from 300 to 3700 psfa, and a stagnation
temperature range from 80 to 130°F. The general arrangement of Tunnel 4T is sketched
in Fig. 1, Appendix.

The test section flow is generated through a two-dimensional, fixed, sonic-block
nozzle with parallel sidewalls. Supersonic speeds are obtained by expansion through the
upstream portion of the test section. The top and bottom test section walls may be
converged or diverged 0.5 deg.

The perforated test section walls are of the variable porosity type with an
available porosity range from O- to 10-percent open area. Two plates with identical hole
geometry are utilized, the airside plate being fixed and the backside or cutoff plate
sliding upstream for decreasing porosity. The wall geometry and general test section
arrangement are sketched in Fig. 2.

The tunnel is equipped with two model support systems: a conventional sector
for sting-mounted models and a captive trajectory store separation support system. A
more detailed desc1"iption of the tunnel and the supporting equipment is given in Ref. 2.

2.2 CONE-CYLINDER MODEL

A 20-deg total-angle cone-cylinder model of 1-percent blockage was sting mounted
at zero angle of attack; the installation is shown in Fig. 2. A photograph of the
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installation is presented as Fig. 3. For this test, nominally 100 static pressure orifices on
the bottom ray of the model were used. Further description of the model is available in
Ref. 3.

2.3 INSTRUMENTATION

The standard tunnel pressures were measured using servo-driven -mercury
manometers. The model pressures were measured using 5- and 15-psid self-balancing
transducers referenced to the tunnel plenum pressure.

SECTION 11i
PROCEDURE

3.1 TEST CONDITIONS

Data were obtained throughout the Mach number range at a nominal stagnation
pressure of 2000 psfa and a stagnation temperature of 100°F. For a few Mach numbers,
data were obtained utilizing the full range of wall angle, *0.5 deg, and wall porosity,
from O to 10 percent.

In general, a desired Mach number was set and the effect of varying wall porosity,
wall angle, and tunnel pressure ratio was determined. Mach numbers were not set
precisely on the nominal values because of problems with the tunnel instrumentation.
However, the data accuracies were unaffected since duplicate backup instrumentation was
used for data reduction purposes.

3.2 DATA REDUCTION AND PRECISION

All of the model and tunnel data were processed on line utilizing the PWT data
acquisition system. Real-time displays of the model pressure distributions on a cathode
ray tube allowed rapid determination of the optimum values for the basic tunnel
parameters: wall porosity, wall angle, and tunnel pressure ratio.

The model pressures were converted to pressure ratios, p/p;, and computer
plotted as a function of body station, x/d. These plots were traced for this presentation.

A statistical description of the magnitude of tunnel interference on the model
pressures was obtained using the standard deviation, o, defined by

P R S ) S

where the summations extend over the entire model, and N is the number of pressure
orifices. This somewhat unusual formulation was considered necessary because the
interference-free data (Ref. 3) were available at only discrete Mach numbers, whereas the
present data deviate from these nominal values as much as AM = 0.02.
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Based on a confidence level of 95 percent, estimates of the random errors in the
data are:

AM; +0.003
A(p/p,) +0.001
At +0.1
Afy, +0.03
AX +0.001
SECTION IV

RESULTS AND DISCUSSION
4.:I SUBSONIC INTERFERENCE EFFECTS

Representative subsonic model pressure distributions are shown in Fig. 4 along
with empirical interference-free curves based upon the results of Ref, 3. With decreasing
porosity, the data show progressive deviation from the interference-free curves. This
deviation is more clearly seen in Fig. 5 where pressure coefficient is used instead of
pressure ratio to eliminate the influence of slight variations in Mach number.

. This type of tunnel interference has not been noted in any of the open literature.
Extrapolation of the afterbody data to the solid wall condition (r = Q) indicates a
pressure coefficient correction of AC, = -0.07. The classical solid blockage correction
based upon model volume is AC, = 0.04, (Ref. 4), which is the wrong direction, whereas
the classical wake blockage correction based upon model drag is insignificant, AC, =
-0.0005, although in the desired direction.

The measured interference is fundamentally a simple change in the test section
Mach number. The interference errors are plotted as a function of model station in Fig. 6
for two wall porosities. The curves drawn are the pressure coefficient errors wh1ch result
from the given assumed Mach number error:

CP - cPt: = M [ “] (2)
where
dcp, 10 N 5M* - 10
dM  M(M? + 5) MM2 +3) T 3

The Mach number differences, M; - M... are those necessary to match the measured
afterbody pressure errors.

The test section Mach number in 4T is determined by calibration (Ref. 5) which
relates the ratio of plenum pressure and tunnel stagnation pressure (expressed by M.) to
the average centerline Mach number. This plenum-stream calibration is a function of
Mach number, wall porosity, and wall angle. The calibration data for M = 0.60 and 0.95
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along with the analytic fit of the data used for data reduction are reproduced in Fig. 7.
These data were obtained utilizing a centerline static pipe of 2.9-in. diameter which
extended from the strut sector all the way upstream through the nozzle. Subsequent
completely empty-tunnel calibrations utilizing static pressure orifices in the test section
walls essentially duplicated the data shown. It is, therefore, concluded that the measured
deviations in model pressures are truly model-induced interference and not related to the
tunnel calibration.

The modeliinduced Mach number errors are also given in Fig. 7. The data at M =
0.60 represent the scatter for the entire model length whereas those for M = 0.95 are
limited to the cone pressures. The data indicate that a wall porosity of 7= 8 to Y at M =
0.60 provides zero interference, However, insufficient tunnel calibration data were
obtained at these higher wall porosity settings to allow complete confidence in the
measurements. For M = 0.95, it appears that interference-free conditions are obtained
with 7 = 6, although the effect is small for v = 2.

It is expedient to use a constant wall porosity setting for subsonic Mach numbers
and, therefore, it is recommended that ¢ = 6 be utilized for M < 1.0. Adequate
calibration data are available throughout the Mach number range at this porosity setting,
and the interference effects are small.

The true measure of the detected subsonic interference effects is totally
dependent on acceptance of the interference-free data of Ref. 3, including the Mach
number setting accuracies in the Propulsion Wind Tunnel, Transonic (16T). These data
were reexamined for the present application and were determined to be sufficiently
accurate, although the precision of any single model pressure measurement was not as
good as for the present data. The Mach number setting error in 16T at M = 0.6 (Ref. 6)
is small, AM < 0.003 at most, and in the same direction as 4T so that M; - M,, for the
present data is considered quite accurate at M = 0.6.

In conclusion, it is possible that the subsonic interference effect detected in
Tunnel 4T is simply a function of the somewhat unique model geometry. As a result of
the model extending practically to the rear of the test section, being mounted on a rather
large sting, and in proximity to the sector boom, the model is effectively of infinite
length insofar as the test section flow is influenced. The classical wall interference
theories do not consider this specific gecometry and one should not expect agreement of
these theories with the data. However, since the interference can be significantly large, it
is highly desirable that applicable theoretical and additional experimental work be done.
Similar interference effects are to be expected with engine-inlet integration tests that use
model geometries which are also effectively of infinite length.

4.2 MODEL PRESSURE DISTRIBUTIONS

The effects of wall porosity and wall angle on the model pressure distributions for
M = 0.95 through 1.10 are presented in Figs. 8 through 14. The interference-free curves,
drawn for nominal Mach numbers, are based upon theory and upon empirical results
from Ref. 3.
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A threefold reduction in wall interference was obtained in the vicinity of M = 1.1
with variable porosity compared to that obtained with a constant wall porosity of 7 =
6.0. The recommended wall porosity schedule provides practically interference-free results
above M = 1.15, the deviation being only twice that present in the free stream, and it is
doubtful that any significant improvements could be made. However, the interference
effects in the vicinity of M = 1.0 are not insignificant and further wall development is
recommended.

SECTION V
CONCLUSIONS

The investigation of optimum operating parameters for the PWT Aerodynamic
Wind Tunnel, Transonic (4T) utilizing a 1-percent blockage cone-cylinder model has
resulted in the following conclusions:

1. Practically interference-free data are obtainable throughout the Mach number
envelope except for the range of M = 0.95 through 1.05. Within this range, the
shoulder expansion reflects from the wall and impinges on the model as a
compression.

2. The recommended wall porosity settings range from 1.5 to 7.0 percent open,
dependent upon Mach number, with parallel test sectionswalls.

3. Utilization of wall angle variations as a supplement to the recommended wall
porosity schedule produces data somewhat closer to interference-free values than
that obtainable with parallel walls. However, wall angle variations are not
recommended because of the added test complexity.

4. Significant subsonic interference effects were detected which are not presently
explainable in terms of classical interference theory. Although the interference
could be practically eliminated with variable porosity, further study of the
effects is required.
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Selection of the optimum wall porosity and wall angle settings within the Mach
number range from M = 0.95 to 1.10 is difficult because of conflicting requirements. The
flow over the cone is subsonic and, particularly for the lower Mach numbers, wall
variations directly affect the cone pressures. However, within the shoulder expansion
from the ‘model to the wall the flow is completely supersonic and a different wall
boundary condition is required for interference-free conditions. The tunnel 4T wall
geometry is such that optimum wave cancellation occurs with lower wall porosity settings
(At = 1) than those required to achieve the correct cone pressures. Since forebody drag
measurements are usually considered the most important in the transonic range, the
recommended wall porosity settings are a compromise favoring those which provide the
correct cone pressure.

Within the Mach number range from 0.95 to 1.05, the shoulder expansion reflects
from the wall and impinges on the model as a compression for all wall settings. This
interference indicates that the wall is effectively too open to cancel the model
disturbances, and yet the interference is basically unaffected by wall changes, particularly
within the Mach number range from 0.95 to 1.0. Wall angle variation as a supplement to
wall' porosity variation provides slight improvements in the model pressure distribution
relative to the parallel wall setting above M = 1.0.

The model pressure distributions obtained at M = 1.15, 1.2, and 1.3 are shown in
Figs. 15, 16, and 17, respectively. The data are practically interference free at the
optimum porosity settings with zero wall angle. Wall angle variation in this Mach number
range provides no significant improvement in the interference effects.

4.3 OPTIMUM OPERATING PARAMETERS

The optimum tunnel pressure ratio for a given Mach number is defined as that
which minimizes the pressure gradient over the downstream portion of the model. The
recommended pressure ratio settings for parallel walls are shown in Fig. 18, This curve
represents a fairing of data obtained throughout the subsonic Mach number range. For
supersonic Mach numbers the tunnel pressure ratio must be high enough to stabilize the
shock system from the model support sector, and A = 1.4 has proved to be adequate.

The recommended wall porosity settings at 8, = 0 are given in Fig. 19. Some
improvements in the model pressure distributions are obtainable with both wall porosity
and wall angle variations. However, the improvement shown in the model pressure
distributions using variable wall angle is small, and it is difficult to justify the increased
tunnel operating complexity. Further, as discussed in Ref. 5, the Mach number setting
accuracies are poor with nonzero wall angles; therefore, it is recommended that variable
wall angle not be utilized.

A quantitative description of the magnitude of wall interference in Tunnel 4T is
presented in Fig. 20. The 2 ¢ deviation of the pressure coefficients from interference-free
values is a statement that 95 percent of the data are within +2 o of interference-free
values (provided one assumes a normal distribution). The bottom curve in Fig. 20 is the
tunnel centerline nonuniformity which, of course, is included in the model data.
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APPENDIX

ILLUSTRATIONS
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Fig. 10 Model Pressure Distributions at M = 1.00
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Fig. 11 Model Pressure Distributions at M = 1.025
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Fig. 16 Model Pressure Distributions at M = 1.20
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