<table>
<thead>
<tr>
<th>TO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution is unlimited. Document partially illegible.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 24 JUL 1969. Other requests shall be referred to Army Assistant Chief of Staff for Force Development, Attn: FOR-OT-UT, Washington, DC 20310. Document partially illegible.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>oag, d/a, ltr, 29 apr 1980</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
AGAM-P (M) (18 Jul 69) FOR OT UT 692079

SUBJECT: Operational Report - Lessons Learned, Headquarters, 588th Engineer Battalion, Period Ending 30 April 1969

24 July 1969

1. Subject report is forwarded for review and evaluation in accordance with paragraph 5b, AR 525-15. Evaluations and corrective actions should be reported to ACSFOR OT UT, Operational Reports Branch, within 90 days of receipt of covering letter.

2. Information contained in this report is provided to insure appropriate benefits in the future from lessons learned during current operations and may be adapted for use in developing training material.

BY ORDER OF THE SECRETARY OF THE ARMY:

KENNETH G. WICKHAM
Major General, USA
The Adjutant General

DISTRIBUTION:
Commanding Generals
US Continental Army Command
US Army Combat Developments Command
Commandants
US Army War College
US Army Command and General Staff College
US Army Air Defense School
US Army Armor School
US Army Engineer School
US Army Field Artillery School
US Army Infantry School
US Army Missile and Munitions School
US Army Ordnance School
US Army Transportation School
Copies furnished:
Office, Chief of Staff, US Army

Protective marking cancelled when separated from Inclosure.

UNCLASSIFIED REPORT
DISTRIBUTION NO FOREIGN WITHOUT APPROVAL OF
ASSISTANT CHIEF OF STAFF FOR FORCE DEVELOPMENT
(ARMY) ATTN FOR OT UT, WASHINGTON, D.C. 20310

FOR OFFICIAL USE ONLY

NOT REPRODUCIBLE
SUBJECT: Operational Report - Lessons Learned (RCS-CSFOR-65) for the Quarterly Period Ending 30 April 1969

THRU: Commanding Officer
79th Engineer Group
APO San Francisco 96491

Commanding General
20th Engineer Brigade
APO San Francisco 96491

Commanding General
United States Army, Vietnam
ATTN: AVBIG-DH
APO San Francisco 96307

Commander-in-Chief
United States Army, Pacific
ATTN: GPO-C
APO San Francisco 96588

TO: Assistant Chief of Staff for Force Development
Department of the Army (ACSFOR-DH)
Washington, D.C. 20310

Section I. Operations: Significant Activities

1. General:

 a. The 588th Engineer Battalion (Combat) (Army) is organized under TOE 5-35G. The Battalion has a Headquarters and Headquarters Company and four line companies. The 362d Engineer Company (Light Equipment) is attached for all purposes and is organized under TOE 5-58G. The 584th Engineer Company (Construction Support) was attached to the 588th Engineer Battalion for all purposes on 4 April 1969 and is organized under TOE 5-114D.

 b. The Battalion is organic to the 79th Engineer Group which is located at Long Binh, RVN.
SUBJECT: Operational Report - Lessons Learned

o. Headquarters and Headquarters Company, Company A, Company B, Company D, and the 362d Engineer Company are located at Tay Ninh Base Camp, RVN (XT147351). Company C is located at Don Tien Base Camp, RVN (XT095475). The 544th Engineer Company is located at the Hai Pho Don Rock Quarry (XT268365).

d. Throughout the period the Battalion has been engaged in combat and operational support of the 25th Infantry Division and the 1st Air Cavalry Division, repair of lines of communication, construction of new and one minor cantonment, construction or rebuilding of artillery gun pads at one location, rebuilding of a mountain top signal facility, construction of helicopter and other aircraft facilities, providing logistical support for construction accomplished by other free world units, the operation of the laterite pits and a rock quarry, and the LOC construction of QL-22. The Battalion area of responsibility covers 6,400 square miles and 110 miles of road network.

2. Command: The 588th Engineer Battalion was commanded by LTC John C. Lovenger from 1 February 1969 to 7 April 1969. LTC John A. Rostad assumed command on 8 April 1969 and served through the remainder of the period. MSG Gerald R. Larsen served as Sergeant Major from 1 February 1969 through 4 February 1969. CMS Ivan Z. Compton then became Sergeant Major and served through the remainder of the period. Other personnel assignments were as follows:

<table>
<thead>
<tr>
<th>Bn</th>
<th>MAJ</th>
<th>LIEUTENANT</th>
<th>PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex</td>
<td>Russel J. Kruchten</td>
<td>1 Feb - 30 Apr</td>
<td></td>
</tr>
<tr>
<td>Co, Bn</td>
<td>1LT Stephen G. Wacker</td>
<td>1 Feb - 1 Mar</td>
<td></td>
</tr>
<tr>
<td>Co, Bn</td>
<td>1LT Timothy J. Shell</td>
<td>2 Mar - 30 Apr</td>
<td></td>
</tr>
<tr>
<td>Co, Co A</td>
<td>CPT John G. Hauck</td>
<td>1 Feb - 9 Feb</td>
<td></td>
</tr>
<tr>
<td>Co, Co A</td>
<td>1LT John W. Baker</td>
<td>10 Feb - 30 Apr</td>
<td></td>
</tr>
<tr>
<td>Co, Co B</td>
<td>CPT Michael L. Jacobs</td>
<td>1 Feb - 20 Feb</td>
<td></td>
</tr>
<tr>
<td>Co, Co B</td>
<td>CPT John L. Metz</td>
<td>21 Feb - 30 Apr</td>
<td></td>
</tr>
<tr>
<td>Co, Co C</td>
<td>CPT Sammie D. Simmons</td>
<td>1 Feb - 13 Feb</td>
<td></td>
</tr>
<tr>
<td>Co, Co C</td>
<td>CPT Bernard E. Stalman, Jr.</td>
<td>14 Feb - 30 Apr</td>
<td></td>
</tr>
<tr>
<td>Co, Co D</td>
<td>1LT Robert J. Dipasquale</td>
<td>1 Feb - 28 Feb</td>
<td></td>
</tr>
<tr>
<td>Co, Co D</td>
<td>1LT Francis L. Smith</td>
<td>1 Mar - 30 Apr</td>
<td></td>
</tr>
<tr>
<td>Co, 362d Engr Co</td>
<td>1LT John J. Hill</td>
<td>1 Feb - 31 Mar</td>
<td></td>
</tr>
<tr>
<td>Co, 544th Engr Co</td>
<td>1LT Charles B. Seifert</td>
<td>1 Apr - 30 Apr</td>
<td></td>
</tr>
<tr>
<td>Co, 544th Engr Co</td>
<td>CPT James L. Keenan</td>
<td>4 Apr - 30 Apr</td>
<td></td>
</tr>
</tbody>
</table>

3. Personnel, Administration, Morale and Discipline:

a. The Battalion, including the 362 Engineer Company and the 544th Engineer Company (attached 4 April 1969), had an overall strength of 948 during the quarter. Projected losses for May are 4 officers and 48 enlisted men; June are 5 officers and 68 enlisted men; and July are 8 officers and 87 enlisted men. During the quarter, 495 personnel rotated and 596 replacements
SUBJECT: Operational Report - Lessons Learned

FOR OFFICIAL USE ONLY

Silver Star 0
Soldier's Medal 0
Bronze Star with Ww Device 2
Bronze Star Medal 40
ACM with Ww Device 0
Army Commendation Medal 101
Purple Heart 22

b. A direct VHF "hot line" to the 79th Engineer Group permits local line communications. An English net between the Battalion and Group is also operational. Weekly supply arrived daily Monday through Friday, from Long Binh with all material. A helicopter is available to the Battalion for evacuation and resupply and for reconnaissance missions required by this Battalion to conduct. In addition, it is used to deliver mail, pay, personnel, and spare parts to field units.

c. A nightly movie is shown in the Battalion theater. Live shows are also available on a monthly basis. Unit newspapers are received from USAVE, 25th Infantry Division and the 20th Engineer Brigade. The Pacific Stars and Stripes, Army Times and Special Service magazines are also received. The Battalion publishes a monthly newspaper and it is distributed on a per five basis. Each company operates an enlisted work shift through Sundry Funds. There is also a CPO and CC Officers' Club in the Battalion. The Battalion makes a full use of the R & A program. During the quarter 245 personnel went on R & A, 90% of whom were in the field. Personnel are held in the field and at permanent locations by the Battalion Chaplains. Church attendance averaged 35.9% during the reporting period. The high morale of the Battalion is indicated by the extension of buddy service tours. Seventy-two personnel extended their tours during the quarter to serve with the Battalion.

d. Three were C Counselor, 1 Social, and 4 Summary Courts-Martial during the quarter. There were 6 Field Grade and 53 Company Grade Article 15's during the quarter.

4. Intelligence and Counterintelligence:

a. The 583rd Engineer Battalion received daily intelligence summaries from the 1st Brigade, 25th Infantry Division at Tay Ninh and the 3d Brigade, 25th Infantry Division at Dru Tien. Intelligence and operations briefings at 1st Brigade, 25th Infantry Division and MACV Tay Ninh Province are attended daily by the S3 Officer or his representative. Intelligence summaries, terrain studies and related materials are received from Headquarters, II Field Forces.

b. Engineering reconnaissance of roads, bridges, culverts, air fields and natural construction activities is performed regularly by the Battalion Intelligence Section. Reconnaissance results are reported to the 79th Engineer Group, the 25th Infantry Division and the MACV (Tay Ninh) Province Engineer.

c. There was no major enemy attack conducted against one company of the 583rd Engineer Battalion during the reporting period. Engineer Base Camps and
5. Plans, Operations and Training:

a. Combat Support: The Battalion had no directed combat support missions during this quarter. However, equipment (i.e. D7E, Grader, Crane) was utilized by the 56th Engineer Battalion, 25th Infantry Division on a few occasions in support of their combat mission.

b. Operational Support: Battalion effort on operational support missions varied from 4 to 5%. These missions consisted of constructing numerous fighting bunkers to upgrade base camp perimeter at Tay Ninh, Dau Tieng, and Mai Da Dau Quarry, constructing bunkers and fixed wing aircraft revetments and revetments at five sites, construction of sectors for air control and counter mortar fires, clearing fields of fire, upgrading perimeter roads, and repairing one forward airfield.

c. Line of Communications: Battalion effort on LOC maintenance varied from 15 to 25%. The effort expanded for maintenance and repair of 90 miles of road network in the LOC consisting of grading and shaping the road surfaces and repairing craters and culverts destroyed by enemy action. The 56th Engineer Battalion was also involved in LOC construction which required an average of 29% of their effort during the month of April. This project includes preparation of the road for paving by filling, grading, compacting, and preparing actual paving of the 20km of QL-22 roadway.

d. Base Construction: Battalion effort expended on base construction varied from 10% to 45%. These projects consisted of construction of a major base camp camp improvement, aviation facilities for maintenance and operation, construction of MDO Advisory billets at 6 reported locations and at 1 new location, operation of interrite pits at two locations, construction of a 36 space Dog Kennel, covered arms storage area, site preparation for a surgical hospital, and the operation of a rock quarry from 4 April to the end of the reporting period.

e. Training: Each company conducts monthly training in personal hygiene, character guidance, preventive maintenance, safety, and weapons firing. Required annual training is scheduled at specified intervals according to each company's Master Training Plan. Additionally required training, periodic night classes are offered for NCOs and officers covering preventive maintenance, construction management, and communications.

6. Civic Affairs: During this reporting period, the Battalion Surgeon held MEDCALs twice weekly at nearby villages. Two Battalion Chaplains made weekly visits to local orphanages with Battalion personnel assisting with repairs and maintenance of the buildings. The Battalion is providing technical assistance.
in the construction of the fortifications of a Chieu Hai camp in Tay Ninh City.

7. Logistics:
 a. All classes of supply including construction materials were requisitioned through the 598th Dept in Long Binh. Bills of Materials for NCA and OCHA funded projects are approved before issue by 79th Engineer Group.
 b. Equipment, supplies, and construction materials for the Battalion are picked up from Long Binh and transported to Tay Ninh by the 588th Engineer Battalion's assets. If additional haul capabilities are required, the 79th Engineer Group provides support from their units under its command and the 49th Transportation Group occasionally provides support.
 c. Potable water in Tay Ninh Base Camp is obtained from four water well fill points constructed by the Battalion. At Dau Phong, the water well and fill points are in use. Class I and Class V supplies are still requisitioned through the 203rd Supply and Service Company at Tay Ninh.

8. Force Development:

 9. Command Management:
 a. Projects and missions assigned to the Battalion are supervised by the Battalion Commander under the staff supervision of the Operations Officer. The intelligence and operations sections operate together to plan and manage projects and missions. Equipment resources of organic and attached companies are allocated daily to insure efficient utilization.
 b. Base construction policies are established by a base development planning board under the supervision of the Battalion Commander. This Headquarters implements the policy within the framework of Military Construction Army and Operations and Maintenance Army funded project directives. Management of projects in progress which are constructed on a self-help basis is further implemented by strict control of issued materials. All self-help construction is supervised by engineer personnel. When projects are assigned to the Battalion's units, a meeting is held by the 53rd and the constructing unit commander to discuss the project. Before initiation of construction, a pre-construction conference is held by the Battalion Commander with the Operations Officer, constructing company commander and the platoon leader assigned to the project. This briefing is to discuss completely all aspects of the proposed construction and to permit comments to be made prior to the initiation of construction. After construction actually begins, the senior person present at the job site is prepared to brief visitors on construction progress.
 c. Daily operations meetings are held to discuss construction for the coming day. Management indicators used in committing effort and controlling progress include daily troop disposition reports, equipment deadline reports, weekly and monthly status of projects reports, project completion reports and after action reports.
Section II. Commander's Observations, Evaluations and Recommendations:

1. Personnel:
 a. Substitution of Personnel.
 (1) Observation: During certain months throughout the year, an excessive
 amount of personnel is lost because of DRCG.
 (2) Evaluation: Infusion programs do not always solve the problem
 completely and infusion is not always practical. Offensive losses of personnel
 in a particular MOS can be sometimes replaced by non-engineer personnel.
 (3) Recommendation: When there is an excessive monthly loss of the MOS
 personnel of a generally lesser skilled category (i.e. Pioneer Engineer) the
 vacancy can be successfully filled by non-engineer troops (i.e. Infantry-11B).
 This was demonstrated during this quarter by 130 infantry trained personnel
 who came into the Battalion and were trained on the job.

2. Operations:
 a. Construction of Field Expedient Bridge
 (1) Observation: During Operation Rough Rider, a field expedient bridge
 was to be constructed across a 40' gap with a velocity of 5' per second.
 (2) Evaluation: The time limit and the equipment available were the
 overriding factors. The 60' culvert, 60 penny nails, NSAL matting and a dozer were
 the only equipment available.
 (3) Recommendation: A half culvert was placed in the gap and was used to
 support the roadway surface. The 60 penny nails were used to secure the cul-
 vert and keep the sections from drifting apart. NSAL matting was then placed
 on top of the culvert and perpendicular to it. The placement of the matting
 also helped to keep the culvert in place. Fill was then placed on the top of
 the matting for a roadway surface and the bridge was complete.

 b. Installation of Claymore Mines
 (1) Observation: During recent field operation, it was discovered that
 difficulty had been found in the expedient placement of claymore mines.
 (2) Evaluation: The legs of the claymore mines are not adequate to secure
 the mines due to rain and unstable ground.
 (3) Recommendation: Short "U" shaped pickets could be placed on both
 sides of the mine. These pickets would be facing inward toward the mine. Once the
 pickets have been driven into the ground, a tie wire can be used to secure the
 tops of the pickets. This would secure the claymore mine into place and help
 keep it secure and stable.

 c. Pouring Concrete Walls
 (1) Observation: During a recent project, a satisfactory method of pour-
 ing concrete walls was discovered. The dimensions of the walls were 4'x10'x6'.
 (2) Evaluation: While using plywood sheathing, it was found that plywood
 was too porous and the concrete fused with the plywood, even though the plywood
 was thoroughly saturated with oil. This left rough finish on the wall.
 Also the plywood became saturated and spongy after prolonged construction of
 forms.
 (3) Recommendation: When sheathing was lined with tin, the concrete did
 not fuse with the form. 2"x4" studs were used and the sheathing was made with
 3"x3/8" angle iron, bolted at the ends in the center. The center bolts were
taken out of the frame within three or four hours after the pour and completely set up. This made the removal of the bolts easier, with little danger of chipping the concrete while removing them.

d. Construction of Helicopter Revetments

(1) Observation: It has been observed that diagonal bracing is not required in the construction of corrugated metal helicopter revetments 5' in height.

(2) Evaluation: Two rows of whalers and wire ties spaced 6' on centers are adequate to hold panels in place. This includes only panels that slope toward one another at the top.

(3) Recommendation: Interior bracing on 5' high helicopter revetments should not be used.

e. Prefabrication of Bunkers

(1) Observation: This unit has had much success in the prefabrication of bunkers in the Battalion Yard. After completion the bunkers were transported to the site and lifted into place by means of a crane.

(2) Evaluation: Construction of bunkers in the Battalion area facilitates the process immensely. There is no requirement to transport materials, equipment or tools to the job site and electric power is available for cutting materials. Often, ob site conditions are not the best and the bunkers may not be level when constructed in place. Furthermore, there are never any problems of disappearance of materials at the job site.

(3) Recommendation: Whenever possible, bunkers should be prefabbed in the Battalion area and transported to the work site.

f. Multiple Firing of the M60 Fuselight

(1) Observation: In a recent field operation there was a limited supply of M60 fuse lighters available.

(2) Evaluation: By adapting the M16 shell to the fuse lighter, the lighter can be reused.

(3) Recommendation: Remove the lead and the powder from the M16 cartridge and insert the shell into the fuse lighter. Cock the fuse lighter and it is ready to fire.

g. Blasting Post Holes

(1) Observation: In using a shape charge to blast a post hole in a rocky terrain, a controlled method was needed to blast the desired hole.

(2) Evaluation: A depth of 10' was needed for the posts and a method had to be developed to give the required depth using a given amount of explosives.

(3) Recommendation: By placing the 40 pound shape charge on top of the box it came in, the charge will be elevated to the proper height and will blast a hole up to 10' deep.

h. Defensive Perimeter Construction

(1) Observation: During the clearing of the perimeter for the Dai Tien Base Camp, considerable rubber trees were removed. These trees were windrowed perpendicular to the perimeter so they would not provide cover and concealment for the enemy.

(2) Evaluation: However, in the proximity of the bunker line, the windrows prevented the bunkers from being mutually supporting. As the freshly cut trees were too green to burn, a quicker method of removal was desired.

(3) Recommendation: The windrows can be buried in trenches dug out by bulldozers. In addition to rapid removal, the excess fill can be used to build the berm line between the bunkers.
FOR OFFICIAL USE ONLY

EGED-CO

SUBJECT: Operational Report - Lessons Learned

1. Artillery Gun Pad Revetments

 (1) Observation: Initial design was inadequate for use as gun pad
 revetments. It was noted that the presence of the sand caused the revetments
 to expand from the inside which, in turn, caused the revetments to shift from
 the inside-out and shifting of the revetments.

 (2) Evaluation: Two undesirable conditions contributing to the change
 were:

 (a) Substantial settlement of the soil inside the revetment causing
 increased pressure of the soil on the sides of the revetment.
 (b) An immediate underwater pressure effect after the initial shock wave passed
 over the revetment causing an additional pressure differential between the
 inside of the revetment and the surrounding air sphere.

 (3) Recommendation: In order to avoid failure of gun pad revetments, it was
 decided to bury 6x6 revetments approximately 14 feet from the inside of the
 shelter, increase the height of the revetment to 3 and tie the opposite posts
 with lots of 100 feet. Thus adding substantial strength to counter pressures, differential and limit shifting of

 2. Simplified Grade Check Drill

 (1) Observation: Many grade operators have difficulty in accurately cutting
 a V-ditch to certain slopes, particularly if a deep cut is desired.

 (2) Evaluation: Grade stakes are occasionally placed at excessive intervals.
 And the inexperienced operators cannot effectively "eyeball in" the depth from their position above the soil and using the grade stakes alone.

 (3) Recommendation: On solution is to utilize "rod holes". In front of each grade stake drill a small hole to the indicated depth, using a line level
 and a rule to insure accuracy. Then, in order to cut his ditch to the proper
 level, an operator has merely to connect those holes with a smooth cut. Guiding
 on these grade holes, a good operator can generally lay his ditchline to an accuracy of a few inches without over-digging from his machine.

3. Training:

 (1) Observation: The element of time is an important factor to be consid-
 ered in administrating and monitoring training.

 (2) Evaluation: Classes scheduled during the afternoon are considerably
 less effective because of the heat. Classes scheduled in the evening of a work-
 ing day or a Sunday are poorly received. Also, the time interval between clas-
 ses and inspections of training records can affect efficiency.

 (3) Recommendation: Classes are most effective for a few hours on a Sunday
 morning. Inspections of training schedules should be mandatory because more fre-
 quent inspections do not allow adequate time to correct errors.

4. Intelligence:

 a. Enemy Mining Technique

 (1) Observation: While clearing roads of mines and booby traps, it has
 been noted that the enemy will dig several holes the night before and place a
 full sand bag in the hole and camouflage it. After the clearing operation, the
 enemy will come to his pro-dug hole and place a mine in a matter of seconds.

 (2) Evaluation: There is a need for better security of roads, plus a wall

FOR OFFICIAL USE ONLY
FOR OFFICIAL USE ONLY

SUBJECT: Operational Report - Lessons Learned

trained sweep team capable of picking out pre-dug mine holes. In addition, a visual sweep in front of a convoy after the main sweep will cut down on such mining techniques by the enemy.

3. Recommendation: This information should be disseminated to the maximum amount of personnel and should be incorporated into minefield training and practice.

5. Logistics:

a. Faster Method of Loading: Pencorp

1. Observation: S4 often must rely on inefficient methods of loading materials and are forced to improvise means of expediting loading procedures.

2. Evaluation: The 20 ton crane with a hook and the 5 ton wrecker are used for loading. Material in 55 gallon barrels presents a particular time consuming task when loaded one at a time.

3. Recommendation: By welding a 10' bar to a loop and placing 4 sets of chains on the bar, 4 barrels can be loaded in practically the same amount of time as one.

6. Organization:

a. Battalion Organization Adjustment

1. Observation: A distance of 13km separated the Battalion’s Construction Support Company from the Battalion’s Light Equipment Company. Both units were involved in a paving operation at a location 5km to 28 km away from either location.

2. Evaluation: The dump trucks from the Light Equipment Company had to make the 13km trip before loading at the asphalt plant. The paving equipment had difficulty receiving proper maintenance support at the FSB location. A platoon of dump trucks was formed and attached at the asphalt plant site, and the pave train was attached at the base camp to enable proper maintenance.

3. Recommendation: Battalions should experiment with combinations of equipment and personnel to obtain maximum efficiency even at the expense of company integrity.

7. Maintenance:

a. Preventive Maintenance for Water Distributors

1. Observation: Water sources for distributors to add moisture during road paving preparation are often difficult to locate and are usually murky or filled with vegetation.

2. Evaluation: To insure that there is even flow from the distributor for the road, it is necessary to prevent foreign matter from being pumped into the...
FOR OFFICIAL USE ONLY

EDEN-CO
SUBJECT: Operational Report - Lessons Learned

14 May 1969

distributor tank. Just covering the end of the hose with screening results in much clogging and extra strain on the pump engine.

(3) Recommendation: A small wooden frame box covered with wire mesh screening allows substantial water flow and prevents foreign matter from entering the tanks.

b. Fuel Injector Pump Failure

(1) Observation: The internal tolerances of the fuel injector pumps are such that only a small amount of water passing through will cause the pump to seize.

(2) Evaluation: Despite the humid climate and field storage of fuels, water damage can be eliminated by daily precautions.

(3) Recommendation: Each day the operator should drain any water condensate out of the fuel filter and the fuel tank, using the drains located on the base of each unit. Also, condensation can be reduced by filling the fuel tank in the evening and making sure the fuel tank cap is sealing the fuel tank correctly.

c. Red Ball Requisitions

(1) Observation: Information on Red Ball procedures is not as widely disseminated as other supply information, so some unit commanders and motor officers aren’t familiar with proper follow-up action.

(2) Evaluation: Follow-up action on Red Ball requisitions must be initiated, if, after ten days, the AEI has not been received. For outstanding Red Ball requisitions, follow-up actions will be initiated on AVCA Form 125R and will contain the identical information as the original Red Ball requisition, except that the Red Ball requisition number will be used if it has been received.

(3) Recommendation: Have classes and printouts to disseminate information to the Battalion.

d. 290 Tractor Brakes

(1) Observation: The activator on the 290 braking system occasionally freezes.

(2) Evaluation: The activator needs to be lubed regularly, but the fitting is not shown on the equipment lubrication order.

(3) Recommendation: Lubrication order be made to include the fitting. Operators should be informed of the problem.

8. Chaplain

a. Interesting Character Guidance Classes

(1) Observation: Because of long working hours and hot days, it is difficult sometimes to maintain attention during class.

(2) Evaluation: The classes should be concise and should be held during Sunday mornings. Guest speakers should be used for portions of the class in order to maintain interest and add professional or first hand experiences.

(3) Recommendation: Whenever applicable, doctors, lawyers, unit officers, unit NGO’s or other pertinent personnel should have a small but thoughtful part in character guidance.

9. Signal

a. Re-educate Commo Personnel

(1) Observation: Lessons learned by commo personnel are sometimes lost between companies because of DEROS and other changes.
FOR OFFICIAL USE ONLY

SUBJECT: Operational Report - Lessons Learned

10. Medical:

a. MEDCAPs
(1) Observation: Despite many hours of operation at MEDCAP sites, no tangible medical results were seen.
(2) Evaluation: The Battalion Aid Station decided to spend the same amount of time on MEDCAP, but to reduce the number of locations, hence increasing the frequency of visits. This program produced better medical results. It helped to eliminate the primitive medical treatment and allow positive factors to influence the populace.

11. Administrative: None.

12. Safety:

a. Traffic Control at Construction Site
(1) Observation: Paving or repairing roads or construction near a busy roadway can result in motor vehicle accidents.
(2) Evaluation: The informal traffic control of the open Vietnamese roads created inattention to warnings and work at the job site. And occasionally people simply do not understand the dangers.
(3) Recommendation: Any construction at a site of this nature should have signs in both English and Vietnamese, before, after, and along the job site. The signs should be utilized with road blocks and safety patrol personnel to enforce and accentuate the warnings. (This method was used successfully on the QL-22 paving site.)
ECE-3 (14 May 69) 1st Ind

SUBJECT: Operational Report of the 588th Engineer Battalion (Combat)
For the Period 1 Feb 1969 through 30 April 1969

DA, HEADQUARTERS, 79th Engineer Group, APO 96491 20 May 1969

TO: Commanding Officer, 20th Engineer Brigade, ATN: AVN-GS, APO 96491

1. This operational report of the 588th Engineer Battalion has been reviewed and is submitted in accordance with USARV Reg 515-15, dated 13 April 1968.

2. This report is considered to be an adequate summary of the battalion's operational experience during the report period.

FOR THE COMMANDER:

[Signature]
SHIGEZOSHI NORITA
CPT, AGO
Adjutant
SUBJECT: Operational Report of the 588th Engineer Battalion (Combat) for the Period 1 Feb 1969 through 30 April 1969

2. Subject report for the 588th Engineer Battalion (Combat) has been reviewed and is considered adequate with the following comments:

 a. Reference Section I, paragraph 5d, page 4: should read...construction was accomplished on MACV Advisory Facilities at 6 locations.......

 b. Reference Section II, paragraph 2a(l), page 6: should read...with a stream velocity of 5 feet per second.

FOR THE COMMANDER:

[Signature]

J.J. MONTGOMERY
Major, AGC
Adjutant

Copies Furnished:
CO, 79th Engr Gp
CO, 588th Engr Bn
AVHCC-IIT (14 May 1969) 3d Ind

SUBJECT: Operational Report - Lessons Learned (AGS-OSFOR-65) for the
Quarterly Period Ending 30 April 1969

HEADQUARTERS, UNITED STATES ARMY, VIETNAM, APO San Francisco 96375

TO: Commander in Chief, United States Army, Pacific, ATTN: GPOF-DT,
APO 96554

1. This headquarters has reviewed the Operational Report-Lessons Learned
for the quarterly period ending 30 April 1969 from Headquarters, 588th
Engineer Battalion.

2. Comments follow:

a. Reference item concerning Multiple Firing of the M60 Fuselighter,
section II, page 7, paragraph 2(f); nonconcur. Fuselighter M2/M60 DODLC
M776 was not in short supply during this period. Quantities on hand in
ammunition supply point's (ASP's) and depots were more than adequate to
support operations. The recommendation to modify ammunition is contrary
to the provisions of paragraph 110b, TM 9-1300-206. This constitutes an
unauthorized disassembly of an ammunition item. Unit is being informed
by separate message that any alteration of loaded ammunition is hazardous
and strictly prohibited. No further action required.

b. Reference item concerning Enemy Mining Technique, section II, page
8, paragraph 4(a); concur. The technique described is commonly used by VC
in many areas and is well known to engineer units in the areas where it is
encountered. This information will be disseminated in the June Mine War-
fare Notes published by the Mine Warfare Center, USARV. No further action
required.

FOR THE COMMANDER:

Cy furn:
588th Engr Bn
20th Engr Bde

A.R. GUENTHER
CPT. AGC
ASST. ADJUTANT GENERAL
GPOP-DT (14 May 69) 4th Ind
SUBJECT: Operational Report of HQ, 588th Engr Bn for Period Ending
30 April 1969, RCS CSFOR-65 (R1)

HQ, US Army, Pacific, APO San Francisco 96558 10 JUL 69

TO: Assistant Chief of Staff for Force Development, Department of the
Army, Washington, D. C. 20310

This headquarters has evaluated subject report and forwarding indorsements and concurs in the report as indorsed.

FOR THE COMMANDER IN CHIEF:

[Signature]

C. L. SHORT
CPT, AGC
Asst AG
Operational Report - Lessons Learned, Hq, 588th Engineer Battalion

Experiences of unit engaged in counterinsurgency operations, 1 Feb 69 to 30 Apr 69.

CO, 588th Engineer Battalion

14 May 1969

N/A

692079

N/A

OACSFOR, DA, Washington, D.C. 20310

N/A