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PREFACE 

The Engineering Design Handbook of the Army Materiel Com- 
mand is a coordinated series of handbooks containing basic infor- 
mation and fundamental data useful in the design and development 
of Army materiel and systems. The Handbooks are authoritative 
reference books of practical information and quantitative facts help- 
ful in the design and development of materiel that will meet the 
needs of the Armed Forces. 

The present handbook is one of a series on ballistics. It deals 
with the dynamics of liquid-filled projectiles which are known to 
behave in an unpredictable manner in flight. Until rather recently 
the causes of such misbehavior were not well understood. Whenever 
such problems arose in practice they were usually treated on an 
ad hoc basis, i.e., by engineering trial and error methods. Such 
methods, as a rule, are time-consuming and expensive. Recently, 
however, considerable progress has been made in this field. For 
certain limited geometries of cavity shapes, such as the cylinder 
or near cylinder, it is now possible to give the designer a set of 
simple rules for the rational design of liquid-filled projectiles that 
will be dynamically stable in flight. 

This handbook summarizes the state of our present knowledge 
which is directly useful to the designer. Many of the more abstruse 
theoretical developments, principally in Russian literature, are 
omitted. However, references to these are to be found in the Appen- 
dix C. Since the dynamics of the liquid-filled projectile is less 
familiar to the designers than the dynamics of the rigid projectile, 
this handbook gives more of the theoretical background of solved 
problems than is usually found in other volumes of the Engineering 
Handbook Series. The emphasis, however, is on the understanding 
the physics of the problem rather than mathematics. Thus Chap- 
ter 2 contains a brief review of the dynamics of a rigid projectile; 
Chapters 3 to 8, inclusive, deal with the dynamics of the liquid and 
its reaction on the containing cavity. Chapter 9 is the design chap- 
ter where the rules for the design of the liquid-filled projectile are 
explicitly stated. It would be unfortunate, however, if the designers 
were to use this chapter without the understanding of the theoreti- 
cal background as given in the preceding chapters. 

The text was prepared by Drs. B. G. Karpov and E. H. Wede- 
meyer, both former members of the U. S. Army Ballistic Research 
Laboratories at Aberdeen Proving Ground, Md 

The Handbooks are readily available to all elements of AMC 
including personnel and contractors having a need and/or require- 
ment. The Army Materiel Command policy is to release these 
Engineering Design Handbooks to other DOD activities and their 
contractors, and other Government agencies in accordance with 
current Army Regulation 70-31, dated 9 September 1966. Proce- 
dures for acquiring these Handbooks follow: 
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PREFACE (CONT) 

a. Activities within AMC and other DOD agencies should direct 
their request on an official form to: 

Publications Distribution Branch 
Letterkenny Army Depot 
ATTN:   AMXLE-ATD 
Chambersburg, Pennsylvania 17201 

b. Contractors who have Department of Defense contracts should 
submit their request, through their contracting officer with proper 
justification, to the address indicated in par. a. 

c. Government agencies other than DOD having need for the 
Handbooks may submit their request directly to the Letterkenny 
Army Depot, as indicated in par. a above, or to: 

Commanding General 
U. S. Army Materiel Command 
ATTN:   AMCAD-PP 
Washington, D. C. 20315 

or 

Director 
Defense Documentation Center 
ATTN:    TCA 
Cameron Station 
Alexandria, Virginia 22314 

d. Industry not having a Government contract (this includes 
Universities) must forward their request to: 

Commanding General 
U. S. Army Materiel Command 
ATTN:   AMCRD-TV 
Washington, D. C. 20315 

e. ALL foreign requests must be submitted through the Washing- 
ton, D. C. Embassy to: 

Office of the Assistant Chief of Staff 
for Intel ligence 

ATTN:   Foreign Liaison Office 
Department of the Army 
Washington,  D. C. 20310 

Al requests, other than those originating within the DOD, must 
be accompanied by a valid justification. 

Comments and suggestions on this handbook are welcome and 
should be addressed to Army Research Office-Durham, Box CM, 
Duke Station, Durham, N C. 27706. 
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CHAPTER 1 

BRIEF BACKGROUND OF THE PROBLEM OF THE DYNAMICS OF A 
LIQUID-FILLED PROJECTILE 

The problem of the unpredictable behav- 
ior of liquid-filled projectiles in flight has 
been known to designers for a long time. 
Most frequently the difficulties are encoun- 
tered with spin-stabilized white phosphorus 
(WP) projectiles. At normal temperature 
the WP filler is solid and the projectile, if 
properly designed, flies well. However, if 
these projectiles are exposed to an exces- 
sive heat — e.g., the result of lying in the 
sun — the WP melts (110°F) and becomes 
liquid. As a result, the projectile's flight 
behavior might be   dramatically   altered. 

Until rather recently the cause or causes 
of such strange behavior were not well 
understood by the designers. Some de- 
signers conjectured that the failure of the 
liquid to initially acquire full spin, thereby 
not contributing its angular momentum to 
the gyroscopic stability of such a projec- 
tile, might be responsible for its dynamic 
instability. Perhaps this misconception is 
reflected in the most frequently used en- 
gineering solution to instability — the par- 
titioning of the cavity by longitudinal baf- 
fles which force the liquid to acquire fil 
spin at the muzzle. 

In the United States, until recently, very 
little systematic research was done in this 
field. The reason may have been because 
the problem appeared to be of great com- 
plexity. Moreover, the relatively infrequent 
appearance of such instabilities in practice 
might not have justified a significant effort 
in this field, particularly since the encoun- 
tered problems usually yielded to some 
sort of ad hoc engineering solution by trial 
and error methods. Such solutions, how- 
ever, usually required a compromise with 
the performance of the projectile. 

Nevertheless, sporadic efforts at a better 
understanding of this problem have been 
made. For example, during World War II a 

fairly extensive experimental program was 
conducted by firing one-inch diameter 
liquid-filled models. Since the observations 
of flight were visual, the models were fired 
at low muzzle velocity. One' of the difficul- 
ties of such visual experiments, unless the 
misbehavior is rather dramatic, is that of 
deciding whether or not the wind had a 
controlling influence on the flight of rela- 
tively light models. The results of these 
experiments, in elucidating the causes of 
the dynamic instability of liquid-filled pro- 
jectile, were largely inconclusive. 

Another investigation used, as an analog 
of the yawing motion of the projectile, a 
liquid-filled gyroscope. The gyroscope was 
designed to be moved, while spinning, 
through an arc of 45° thus simulating an 
ascending branch of the trajectory. Unfor- 
tunately, because of the experimental dif- 
ficulties and for other reasons, nothing of 
value was accomplished. 

In England, under the auspices of the 
Tiquid-Filled Shell Panel of the Ministry of 
Supply, the studies cf the liquid-filled pro- 
jectile problem were more fruitful. In par- 
ticular, E. A. Mine examined all available 
field trial records, from 1926 to 1940, of 
projectiles with liquid fillers. Examination 
of these data revealed no discernible uni- 
versal characteristic which could account 
for the observed behavior. Earlier (1880), 
Greenhill developed the theory of the sta- 
bility of a liquid-filled top containing a 
spheroidal cavity completely filled with the 
liquid which is spinning as a rigid body. 
This theory showed that, if disturbed, the 
liquid acquires a great many natural oscil- 
lations characterized by discrete frequen- 
cies or eigenfrequencies. These oscillations, 
in turn, produce pressure pulses on the 
casing. The unique feature of the spheroi- 
dal cavity, which is not true for cavities of 

1-1 
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other geometries, is that only one charac- 
teristic frequency causes a hydrodynamic 
couple on the containing casing. The spin- 
ning top might become unstable if this 
eigenfrequency coincided with one of the 
natural frequencies of the top. Such coin- 
cidence of frequencies of two coupled oscil- 
lators is known as resonance. Thus reso- 
nance between the characteristic frequency 
of the liquid and the top is responsible for 
instability of the top. However, the trial 
projectiles in Milne's collection did not have 
spheroidal cavities and most, if not all, 
were only partially filled. Hence, the avail- 
able mathematical model was inadequate. 
Nevertheless, in a search for some fruitful 
correlations among the available data, i.e., 
what characteristics of the projectile made 
some stable and others unstable, the math- 
ematical model did suggest certain readily 
computable physical parameters of the pro- 
jectile which might play an important role. 
When these were computed and the trial 
projectiles were arranged according to 
these parameters, a fairly well defined cor- 
relation curve could be drawn between sta- 
ble and unstable projectiles as found in 
actual firing trials. This is well known 
Milne's stability graph. It is empirical in 
nature and should be used with consider- 
able caution. More will be said about it 
later. 

In 1953 K. Stewartson published the 
results of his investigation on the stability 
of liquid-filled yroj ectiile containing a cylin- 
drical cavity which is either fully or par- 
tially filled. He found that in the cylindrical 
cavity a doubly infinite number of modes 
of free oscillations occur in contrast to the 
only one mode for the spheroidal cavity. 
The different modes of oscillation can be 
characterized by pairs cf numbers (n, j) 
where n and j relate to the number of radial 
and axial half-waves, respectively, of oscil- 
lations of fluid particles. Associated with 
each mode (n, j) is a natural or eigenfre- 
quency     wnj   or nondimensional frequency 

Tn> = -£-  where Q is the axial spin of the 

projectile. These oscillations produce pres- 
sure pulses on the casing which might re- 
sult in hydrodynamical moments.  Such os- 

cillations of the fluid particles in a spinning 
fluid are not to be confused with the slosh- 
ing of the surface waves in a nonspinning 
fluid, but are in the nature of traveling 
waves in the cavity. 

It was shown again that resonance be- 
tween the natural frequencies of the fluid 
and the projectile is the cause of the 
dynamic instability of the projectile con- 
taining such liquid-filled cavity. The ex- 
tremely useful feature of this theory for 
the designer is that the nondimensional 
eigenfrequencies in a given cavity depend 
only on the geometry of the cavity, i.e., its 
fineness-ratio c/a where 2c and 2a are the 
height of the cavity and its diameter, re- 
spectively; and the amount o©fluid in it. 
In principle, therefore, the eigenfrequencies 
are under the control of the designer. He 
can avoid resonance by a judicial design 
of the cavity. 

Nevertheless, at first sight, the problem 
still appeared tobe formidable. If there are 
an infinite number of hydrodynamic mo- 
ments which must be added to the equation 
defining the yawing motion cf the projec- 
tile, the solution of the equation may be- 
come prohibitively difficult. Fortunately, 
however, one needs to consider only reso- 
nating frequencies; the hydrodynamic mo- 
ments associated with all other frequencies 
are negligible. But even among the reso- 
nating frequencies the theory shows that 
moments associated with higher modes, 
i.e., higher n,j values, very rapidly de- 
crease in importance. Suppression of these 
higher modes also is markedly assisted by 
viscosity. Thus very few of the resonating 
frequencies are likely to be of practical 
importance. As a matter cf fact, the experi- 
ments with a very sensitive gyroscope, to 
be described later, show that for practical 
design purposes the only resonant fre- 
quency which needs tobe considered is the 
one associated with the smallest odd multi- 
ple cf the radial and axial pressure half- 
wave lengths, i.e., lowest n,j, mode, which 
can be accomodated in a given cavity. This 
frequency, which can be called fundamen- 
tal, gives rise to the largest hydrodynamic 
moment. 

1-2 
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At present the eigenfrequencies can be 
computed only for the cylindrical cavities 
or, by slight modification of the cylindrical 
theory for cavities which depart only 
slightly from the cylindrical. But at least 
the fundamental cause of the dynamic in- 
stability of liquid-filled projectiles has been 
firmly established. 

Stewartson's theory has been abun- 
dantly confirmed by the experiments de- 
signed to test its predictions. To enhance 
the agreement between the theory and the 

experiments, it was necessary to incorpo- 
rate small viscous correction to the frequen- 
cies of the inviscid theory. Also it was found 
feasible to extend the theory to noncylin- 
drical cavities satisfying certain conditions. 
The experiments showed that the applica- 
bility of noncylindrical theory is consider- 
ably broader than its theoretical limita- 
tions would suggest. Thus Stewartson's 
theory with its modifications and exten- 
sions provides the basic tool which the 
designer of the liquid-filled projectile should 
use whenever it is possible to do so. 

1^3/1-4 
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CHAPTER 2 

DYNAMICS OF A RIGID PROJECTILE 

2—0  LIST OF SYMBOLS 

2a 

c/a 
CD 

JL a 

= diameter cf cavity, ft 

= fineness ratio 

= drag coefficient 

= lift coefficient, per rad 

= static moment coefficient, per rad       ly 
a 

C   fC. = yaw damping moment coefficient, 
i     o per rad/sec 

CM        = magnus  moment   coefficient,  per       I 
pa       rad/sec, per rad y 

Cw        = normal  force   coefficient, per rad        i 
_ a 

= axial     torque     coefficient, 
perrad/sec ip 

2c 

D 

d 

e 

f 

G 

g 

H 

h 

r 

i 

x0 

= height of cavity, ft 

= as defined by Eq. 2—12 

= maximum diameter cf projectile, ft 

= base of natural logarithm 

= a constant associated with bear- 
ing friction of gyroscope 

= as defined by Eq. 2—3 

= acceleration due to gravity, ft/sec2 

= damping moment factor as defined 
by Eq. 2-3 

= distance between center of mass 
and pivot point cf gymbal, ft 

= angular momentum of fluid at muz- 
zle, slug-ft2 rad/sec 

= V I 0Iz0 moment of inertia about 
either axis cf gyroscope where I 0 
«Iz0, slug-ft2 

= axial moment cf inertia cf empty 
casing, slug-ft2 

= axial  moment cf inertia cf frozen 
liquid, slug-ft2 

'yo 

y0 

Ko 

k"2 
X 

k-2 

y 
k 

£n 

log 

M 

Mf 

m 

n 

P 

Po 

Pf 
S' 

- Ix0 tix0, axial moment cf inertia cf 
loaded projectile, slug-ft2 

= transverse moment cf inertia cf 
empty casing, slug-ft2 

= transverse moment cf inertia cf 
frozen liquid, slug-ft2 

= "effective" transverse moment cf 
inertia cf liquid, slug-ft? Note: 
all transverse moments are re- 
ferred to the same center cf mass. 

= transverse moment cf inertia cf 
loaded projectile, slug-ft2 

= gravitational  moment   of gyro- 
scope, slug-ft2/sec2 

= axial radius cf gyration, cal 

= transverse radius cf gyration, cal 

= a constant cf integration 

= naturallogarithm 

= commonlogarithm 

= static moment factor as defined by 
Eq. 2—3; mass, slug 

= mass cf liquid, slug 

= mass cf loaded projectile, slug 

= twist cf rifling, cal/turn 

= as defined by Eq. 2—3 

p        = axial spin rate, rad/sec 

p,q,r    = angular velocity components along 
x-,y-,z- axes, respectively, rad/sec 

= spin rate cf projectile casing im- 
parted by rifling, rad/sec 

= final or equilibrium rate, rad/sec 

= (TTd2)/4 frontal  area cf projectile, 
ft2 

2-4- 
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(sg)R 

liq 

Pa 
(T 

GREEK LETTERS 

= ratio cf liquid transverse moment 
of inertia to its rigid value 

= angle of deflection, rad 

= yaw  damping  rate due to liquid 
filler, per cal or per ft 

= nutational yaw damping rate, per 
cal or per ft 

= precessional yaw damping rate, 
per cal or per ft 

= v t iw/V , a complex variable 

= air density, slug/ft3 

= nondimensional   nutational  fre- 
quency of projectile 

*: 

s        = arc length along trajectory, cal 

s = P2/4M    gyroscopic stability factor 

(s )     = gyroscopic stability factor cf pro 
8 L      jectile with liquid filler 

= gyroscopic stability factor of rigid       ^ 
projectile 

U 
T       = magnus moment factor as defined 

by Eq. 2—3 

u,v,w  = velocity   components   along x-,y-,z- 
axes, respectively, ft/sec 

V = speed of projectile relative to air, 
ft/sec 

V = velocity vector of center cf mass 
of projectile, ft/sec 

x        = difference in distance between cen-      <x- 
ter of gravity  cf filler and center 
of gravity of loaded projectile 

X,Y,Z = inertial, earth bound coordinate 
system 

x,y,z = body fixed coordinate system of 
the projectile, located at its center 
of mass with x-axis along axis of 
projectile 

al .«recessional   fre- 

nutational yaw rate cf projectile, 
rad/cal 

precessional yaw rate of projectile, 
rad/cal 

axial spin rate of projectile, 
rad/sec 

total   angular velocity  vector of 
projectile, rad/sec 

MATH SYMBOLS 

approximately 

of the order 

proportional 

2-4    INTRODUCTION 

We shall review briefly the yawing mo- 
tion of a rigid projectile. For a fuller appre- 
ciation of the dynamics of liquid-filled pro- 
jectile, the knowledge and understanding 
of the dynamics of rigid projectile are 
essential. There are a number of excellent 
references in which this subject is fully 
treated l'2 • One cf the more concise and 
yet complete discussions is to be found in 
Ref. 1. Here we shall avoid giving a brief 
outline of the derivation of the differential 
equation of yawing motion because brevity 
may lead to misunderstanding. The full 
treatment, however, would take too much 
space. We shall begin, therefore, with the 
differential equation of the yawing motion 
cf a rigid projectile, taken directly from 
Ref. 1 (Ch. VI, Eq. 6.12). 

2-2    EQUATION OF YAWING MOTION 

Let V be the velocity vector of the center 
cf mass of the projectile relative to the 
earth-bound or inertial system X,Y,Z. Let 
another body-fixed coordinate system (x,y,z) 
have its   origin located   at the center of 

*Superscript numbers refer to references at the end cf each 
chapter. 
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mass cf the projectile with the x-axis coin- 
ciding with the axis of symmetry of the pro- 
jectile and positive pointing toward the 
nose, with positive y-axis pointing to the 
right when looking in the positive x direc- 
tion, and with the z-axis defined by the 
right-hand rule. The coordinates are illus- 
trated in Fig, 2—1; the inertial system is 
omitted for simplicity. 

The components cf V along the projectile 
fixed axes are u,v, and w, respectively. The 
components cf the total angular velocity 
vector  ÖJ along the   same axes are P,q, 

and r. In Ref. 1 it is shown that greater 
convenience and simplicity results in writ- 
ing the differential equation of the yawing 
motion in a nonrolling coordinate system, 
i.e., with the angular velocity cf the coor- 
dinates defined by (0,q,r).   In this  system 
we define 

v   t  iw 4 v 
where 

i = v~ 1- The complex variable % locates 
the plane containing the velocity vector 
and the projectile's axis. Its magnitude 
represents the magnitude cf the sine cf the 

FIGURE 2-1.   SCHEMATIC OF COORDINATES 

24 
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yaw. For the small yaws, for which the yaw 
equation is valid (linearized system), the 
sine of the yaw is equivalent to the yaw 
angle. The differential equation of the yaw- 
ing motion in the complex variable £ is 
shown tobe 

£"+ (H - iP) e- (M t i PT)4= G        (2_i) 

where the derivatives are with respect to 
the arc length along the trajectory, in cali- 
bers, defined by: 

where 

1 Vdt (2-2) 

The use of the arc length as an independ- 
ent variable, rather then the more natural 
"time", is done in order to remove velocity 
factors from the coefficients of the equa- 
tion. Although the nondimensional aerody- 
namic functions H,M, and T themselves are 
functions of nondimensional parameters 
such as Mach number and Reynolds num- 
ber, they change rather slowly and for a 
short segment of trajectory can be re- 
garded as constants. These functions are 
defined by the following relations: 

H 
PaS'd 

2m 
V_>T L>r» K 

(c»,+c»i) 

PSd   -2 
M = _! k     C w M 2m      y       MO 

PSd a 
2m 

C,   +k"2 CM 

}(Z-3) 

"k<fr¥AW 
Ix/pdU    I, 

G = PgdV'2 

,-2_ md2 

*     I. 

fc-2 - m 
y "T 

,d2 

= air density, slug/ft 

TTd2 

4 
ft2 

frontal  area of projectile, 

m 

P 
n 

V 

l*>l7 

= maximum diameter of projec- 
tile, ft 

= mass of projectile, slug 

= axial spin rate, rad/sec 

= twist of rifling, calibers per turn 

= speed of projectile relative to 
air, ft/sec 

= axial and transverse moments 
of inertia, respectively, slug-ft2 

= axial and transverse radius of 
gyration, respectively, cal 

= acceleration    due   to   gravity, 
ft/ sec2 

= drag coefficient 

C, = lift coefficient, per rad 

CM = static moment coefficient, per 
° rad 

CM   tCM. = yaw damping  moment   coeffi- 

k'2,k-2 
x  *   y 

g 

C
MP, 

cient, per rad/sec 

= magnus moment coefficient, 
per rad/sec, per rad 

PS'd 
The   dimensionless  quantity 

a 

2 m 
is 

sometimes called the "density factor" be- 
cause it is roughly the ratio of the air 
density to the average density of the pro 
jectile. Its usual value is cf the order of 10*1 

Since we are principally interested in the 
effect of a liquid filler on the yawing motion 
of the rigid casing, we shall neglect the 
small inhomogeneous term G in Eq. 2—1. 
This term is caused by the curvature of the 
trajectory due to gravity and gives rise to 
yaw of repose. So setting the right hand 
side of Eq. 2—1 equal to zero, the remain- 
ing homogeneous equation is of the second 
order in a complex variable |, with con- 
stant coefficients. Its solution, therefore is 
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the sum cf two exponentials. To obtain the 
characteristic equation we substitute for | 
in Eq. 2—1, say,ems, and obtain a quadratic 
characteristic equation in m. Its roots are 
complex and can be written as 

m- = \. + i<t>. 
'        i ) 

= l 
%   [_H + iP± \/4M + H2 _P2 + 2iP(2T _H) 

(2-4) 

where 4>! is the derivative with respect to s. 

Thus the solution of Eq. 2—1 is 

^kieicb1 + k2ei4>2 (2_5) 

where 

ki=kioeXjs j = 1,2 

The four constants  of integration are the 
two initial amplitudes kQ and the two initial 

orientation angles <)>.   of the amplitude vec- 
tors. 

Eq. 2—5 describes the projectile's re- 
sponse to initial conditions. The amplitudes 
k- of the disturbances  can either grow or 
decrease exponentially while the orienta- 
tion angle 4>j of each amplitude vector 
changes at a constant rate^j. The resulting 
motion is known as damped epicyclic mo- 
tion. 

In the complex roots of the characteris- 
tic equation, Eq. 2—4, we can readily sep- 
arate the real and the imaginary parts. 
We neglect H2 under the square root sign as 
being of second order, expand the square 
root by the binomial expansion, and collect 
the real and the imaginary terms. Then 
the  imaginary   parts   are  the  yaw rates 

4> 1,2 P± V/P2 4M 

Since (f)' must be real, the expression under 
j 

the square root must alwaA s be positive, 

(--. 4M    >   0 

Or, written in another form 
P2/4M > 1 

This is the gyroscopic stability condition. 
The gyroscopic stability factor is 

e      M 

Sometimes it is convenient to designate 

The rates can then be written as 

*l,2 = 1/2 P (l ± °"}' rad/caJ (2—8> 

The higher rate cj)' is usually called the 

"nutational" rate; the other, 4>', the "pre- 

cessional" rate. Eater we shall find it con- 
venient to deal with these rates as frac- 

tions of the total spin rate £-. Using the 
definition of 

■■¥(%)■ we have 

4>i     I <f>'     I 
-  =—= JL(1 t (T);T   =_i = _f_(l  -<r) 

n      pd       21 P      Ed       2Iv 
V        y V 

(2-9) 

and we shall SEea^ of these as the "nuta- 
tional" (T_) and the "precessional" (T ) fre- 
quencies of the projectile. 

The real parts of the characteristic roots 
are the yaw damping rates 

(2-6) 
1,2 -w H - P(2T-H) 

4>'   _  4>' 
(2-10) 

2-6 
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Since, from Eq. 2—8, 

d>'    - *'    = yl 2 
Po- 

Eq.  2—10   can conveniently be written in 
the form 

K 1,2 -(54) H(l±  i)?2T (2-11) 

Eq. 2—1 was derived with the assumption 
that the axial spin is constant. If a slow 
variation of the axial spin is taken into 
account, it can be shown that another small 
term should be added to the yaw damping 
rates. For a rigid projectile, this term is 
usually small and can be omitted. For a 
liquid-filled projectile, however, if the liquid 
is very dense, this term might play an 
important role as will be shown shortly. 
The term to be added is 

where 

,(l*g>n 
n-2 

D 
P„S'd 
XL 2m 2m 

Cj   is the   axia 

cD+k;2 Cit 
(2-12) 

torque coefficient which 
arises from viscous interaction between the 
air and the casing through the boundary 
layer. Thus the complete expression for the 
yaw damping rates, with slowly varying 
axial spin included, becomes 

\ 
1,2 -(lA) 

(2-13) 

The yaw damping rates vary throughout 
the flight because H, T, D, and cr depend on 
the air density and are functions of Mach 
and Reynolds numbers. To require that 
the damping rates always be negative 
might be too restrictive. An occasional di- 
vergence of the yaw in flight, as when pass- 
ing through the transonic range of veloci- 
ties, may not be detrimental either to range 
or accuracy. What is essential, for a well 
designed projectile, is that the initial dis- 
turbances at the muzzle die out as rapidly 
as possible. For the initial part of the tra- 
jectory it is essential, therefore, to satisfy 
the dynamic stability condition that Xj be 
negative. 

23     NONSPINNING PROJECTILE 
The motion of the liquid in a cavity of a 

nonspinning yawing projectile is usually 
described by the term "sloshing". In recent 
years the problem of sloshing of liquid in 
various types of containers has received a 
great deal cf attention principally in con- 
nection with liquid-fueled rockets. For our 
purpose, however, the sloshing problem 
presents little interest. As will be shown in 
Chapter 3, see also Refs. 3 and 4, the 
motion cf the liquid in nonspinning projec- 
tile causes no dynamical problems of the 
type encountered with liquid-filled spinning 
projectiles. If the nonspinning projectile is 
dynamically stable when the liquid is frozen 
(rigid projectile), it will continue to be 
dynamically stable with a liquid filler. The 
only effect a nonviscous liquid will have is 
to alter slightly the inertial properties of 
the system. The viscosity, in general, will 
aid the yaw damping rates. 

The motion cf a rigid nonspinning pro- 
jectile is quite simple. We set P = 0 in 
Eq.  2—1.  The resulting equation is: 

^" +H ^  -M| =0 (2-14) 

Its solution is the sum of two exponentials: 
4> | =kxe

lVl+k2 ei4>; 

where 
kj = kjoeM! 

d>. = d>.   + cj). s 

i=i,2 

2 = y2H (2-15) 
4/ = _ $'2 = /TM~ 

The static moment factor M for a statically 
stable projectile is negative. Thus the two 
yaw damping rates are equal and so are 
the magnitudes of the turning rates. How- 

ever, the two vectors k     - xandk2 e    2turn 
in the opposite directions. Hence the result- 
ing motion is not epicyclic but an ellipse 
with a semi-major axis kj +k, and a semi- 
minor  axislkj -kJ .We shall not pursue 
this subject further. For greater detail and 
additional information the reader should 
consult Ref. 1. 

2-6 
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2-4   152 NMWP PROJECTILE XM410 

We shall consider an application of some 
of the formulas developed previously to 
the XM410 Projectile when the WP filler is 
solid and the system, therefore, is rigid. 
This projectile has experienced great diffi- 
culties with liquid WP and, hence, should 
provide a useful vehicle for illustration of 
design considerations for liquid-filled pro- 
jectiles which we consider in some detail in 
Chapter 9. 

In order to study the dynamics of this 
projectile we require certain information 
concerning its physical and aerodynamic 
properties. The physical characteristics — 
such as mass, location of the center of 
mass or center of gravity, and moments 
of inertia — are relatively easy to obtain 
either by computations or, preferably, by 
actual measurements. To obtain the aero- 
dynamic information over the pertinent 
range of velocities is usually more difficult. 
Some estimates can be made from known 
prototypes, or some values can be esti- 
mated by experienced persons. Recently a 
good summary of the available aerody- 
namic information on a large variety of 
projectile shapes has been compiled in an 
Engineering Design Handbook5. As a last 
resort, models of the projectile can always 
be fired in the ballistic ranges. 

In various attempts to solve the problem 
of its dynamic instability with liquid WP, 
the XM410 Projectile has undergone many 
design changes. The sketch in Fig. 2—2 is 
believed to represent an original design 
which has been shortened in overall length 
to increase its gyroscopic stability factor. 

The physical characteristics of this pro- 
jectile are given below. These may differ 
from other available sets, but for our pur- 
pose this is immaterial. 

m, total mass ofWP-loaded 
projectile 1.313 slug 

CG, measured from nose      1.85 cal 

Overall length 2.83 cal 

* 

* 

* 

* 

* 

5! 

FIGURE 2-2.   A SKETCH OF 152 MM WP XM410 PROJECTILE 

2-7 
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d, maximum diameter 

K 
ly 

n, twist cf rifling 

We compute 

k"2 = 7.36   cal; 

0.5 ft 

0.0446 slug-ft2 

0.1548 slug-ft2 

40 cal per turn 

k"2 = 2.12   cal; 
y ' 

S' = H£ =0.196 ft2 
T 

With air density Pa =0.233  x 10  2slug/ft3, 
the "density factor" 
P.S'd 
.5 0.87x10—. 
2m 

The aerodynamic characteristics have 
been measured by ballistics range firings. 
Illustrative computations for the dynamic 
stability cf this projectile are done for 
Mach 1.5 (see Table 2—1). The projectile 
also has adequate dynamic stability at 
Mach numbers 2.0 and 1.0 for which the 
aerodynamic data also are given in Table 
2—1. 

TABLE 2-1.  AERODYNAMIC DATA FOR XM410 
PROJECTILE 

Mach No. 2.0 1.5 1.0 

CP, cal from nose 

Mq MQ 

C     (assumed) 

0.43 

3.1 

1.5 

-4.0 

0.1 

0.50 

2.9 

1.4 

-5.0 

0.3 

-0.01 

0.56 

2.6 

1.3 

-2.0 

-0.1 

ff the center of gravity (CG) and the center 
of pressure (CP) are measured from the 
nose, then the static moment coefficient is 
given by 

CN    (CG-CP) 

Also 
-Cx -c, 

where  CN   is the normal force coefficient, 
per rad.    a 

By use of the aerodynamic information 
from Table 2—1, the static moment at 
Mach 1.5 is 

CM   =2.9(1.85- 1.4)= 1.30 

We compute: 

M=A3ß±k-y
2CM   =9.59 *10-4 

2m       y      M
CT 

P = !i (II)   =4.53 x10-2 

Therefore, the gyroscopic stability factor is 

% = £=2-14 

and 

cr   =0.730 
T

n =0.25     nutational frequency 

T   = 0.04     precessional frequency 

Next  we compute the  aerodynamic func- 
tions H, T,and D. 

PaSd 
H 2m 

H = 0.S7x 

= 10.88 x 10'4 

a '   \     i aj 

2.4 -0.5 t 2.72 (5.0)\ 

P„Sd 
T = 2m 

T = 0.87x 10"4 

c. +k;2cM a p 
a 

2.4 

PSd a 

D =   2m 
CD+kx   Clp 

+ 7.56(0.3)1 

1 

4.oi x icr4 

D=0.87 x 10 
a 

0.5 - 7.56(0.01) = 0.37 x 10 

2-8 
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The D term is small and could have been 
omitted. Finally, using Eq. 2—13 we fincj? at 
Mach 1.5, the nutational X., and the preces- 
sional \ yaw damping rates 

Xx = -Z99 x 10"4 per cal or - 1.60 * 10'3 per ft 

X
2 = - 3.57 * 10"4per cal or -0.71 * 10"J per ft 

The projectile, therefore, is dynamically 
stable at Mach 1.5, i.e., it satisfies the dy- 
namic stability condition that the two yaw 
damping rates be negative. 

2—5 SOME CONSIDERATIONS   OF  GYRO- 
SCOPIC STABILITY WITH LIQUID FILLER 

Detailed discussion of the stability of a 
rigid projectile is found in Ref. 6. Here, 
since we have all the pertinent information 
for the XM410 Projectile, we shall examine 
only what happens to its gyroscopic stabil- 
ity if the WP becomes liquid. 

By Eq. 2—7, the gyroscopic stability fac- 
2 

tor is proportional toP . From the definition 
of  P, Eq.   2—3, s    is proportional to the 

square of the axial angular momentum of 
the projectile, i.e. 

s   aP
2 ex (lp)2 

g x 

where p is the axial spin. The axial moment 
of inertia I  can be considered as composed 

of two parts — that of the casing I     and 

that of the filler regarded as rigid i   . Thus, 

at the muzzle, the s for a rigid projectile is 
proportional to:        3 

Sg a  (!x0 P0   + ^0 P0
)2 

where p0 is the spin of the casing as im- 

parted by the rifling. With the liquid filler, 
however, the above equation should be 
modified to read 

■««<1.oPo + I,)2 

where I' is the angular momentum of the 
liquid   at  the muzzle.  Experiments  show, 

see Ch   5, that unless the liquid is very 

viscous, the value of   l',at the muzzle, is 
usually only about 10% of its full rigid 
value. Hence, its contribution to the total 
angular momentum is small and can be 
neglected. Therefore, with the liquid filler, 
the gyroscopic stability factor at the muz- 

zle is proportional only to (Ix0P0)2- This at 
once reduces s , relative to the rigid filler 
case, by a factor 

x0 

Ao + ixo 

For many projectiles ix0«lx0 and such 

reduction in the value of s may not be sig- 

nificant. However, for thin-walled projec- 
tiles, as the XM410, such a reduction must 
be carefully examined. To express it dif- 
ferently: if the projectile is gyroscopically 
stable with a rigid filler, there is no assur- 
ance that it will be gyroscopically stable 
with a liquid filler. 

If air effects are neglected, once the 
projectile is out of the gun, its total angular 
momentum remains the same. As the liquid 
gradually acquires full spin, it does so only 
at the expense of the original angular mo- 
mentum of the casing I   o . Thus with a a    x0   0 

liquid filler, the axial spin of the casing 
decreases more rapidly with time or dis- 
tance than with a rigid filler. This rate of 
decrease cf the spin depends on a number 
of factors which will be discussed later. 
However, the final level of an equilibrium 
spin, when the casing and the liquid have 
the same spin, is governed by the conser- 
vation of angular momentum law 

(I x0 lJVi =1*oPo 

where pf is the final or equilibrium axial 
spin rate. This, therefore, is one inertial 
effect of a liquid filler on the gyroscopic 
stability. 

2-9 
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What about the transverse moment of 
inertia I ? It, too, can be separated into two 

parts:   I    without the filler (referred, how- 

ever, to the CG of the system) and i     t Mfx
2 

of the  filler, where i 0 is the transverse 

moment of inertia of the filler about the 

filler's   CG   and MLx2 is the transfer term 

from the   CG   of the filler to that of the 
whole system.  Here Mf is the mass of the 

filler and x is the difference in positions of 
the two CG's. 

In Chapter 3 —see alsoRefs. 3 and 7 — 
it is shown that if the filler is liquid, its 
"effective" transverse moment of inertia is 
less than when it is rigid, i.e., i „has to be 0    ' y0 
reduced or multiplied by a factor, sayp, 
which is less than unity. For a completely 
filled cylindrical cavity, ß depends only on 
the fineness-ratio of the cavity, i.e., the 
ratio of its height 2c to its diameter 2a, 
The curve of ßvsc/ais shown in Fig. 2—3. 
Experiments* indicate that this function 
can be used with adequate accuracy for a 
fairly wide range of geometrical cavity 
shapes. 

=/3i, 

0 12 3 4 5 6 
c/a, FINENESS-RATIO 

FIGURE 2-3.   RATIO OF AN "EFFECTIVE"    TRANSVERSE MOMENT OF INERTIA  OF THE LIQUID TO ITS RIGID VALUE 
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Thus the transverse  moment of inertia 
of the liquid filler becomes 

ßi yo 
+ M^f 

and  the  total   moment of inertia I    of a 
Y 

rigid projectile with a liquid filler must be 
replaced by I +i . In the gyroscopic stabil- 

ity factor the transverse moment of inertia 
appears in two places: in P2and in M in the 
radius of gyration. The replacement should 
be made in both places. 

To summarize: if (s )   is the gyroscopic 

stability factor of a rigid projectile, then the 
gyroscopic stability factor at the muzzle of 
the same projectile when its filler is liquid 
is 

(«Oi =(S
g

}Rl 
xO1 I 

g'L 
V yO       y, 

(2-16) 

(sg)  should be >1.3, which represents an 

arbitrarily imposed safe lower limit for the 
stability factor. 

One more complication may arise in 
practice when the liquid filler is either 
exceptionally dense, such as mercury, or 
its angular momentum is a substantial 
fraction of the angular momentum of the. 
casing. For a rigid projectile the minimum 
gyroscopic stability occurs at the muzzle. 
From this point the gyroscopic stability 
increases rapidly reaching maximum at the 
summit of the trajectory and then decreas- 
ing.  It can be readily shown that initially 

(ksg)' = 2D 

where prime indicates a derivative with 
respect to distance. D, as previously de- 
fined, is always positive for a rigid, spin- 
stabilized projectile, i.e., s begins to in- 

crease at the muzzle. However, if the liquid 
is very dense, or its angular momentum is 
large, the initial axial spin decay —due to 
transfer of an angular momentum from the 
casing to the liquid — may be very rapid, 
or the final equilibrium spin may be too 
low. If one were to represent, in the former 

case, even roughly, such rapid spin decay 
by an "effective" axial torque coefficient 
C| , such an "effective" C. might be con- 

siderably larger than its normal aerody- 
namic value.   C,   is negative by definition 

and when it is multiplied, in the expression 
for D , by a fairly large factor, the axial 
radius of gyration k'2; the product may 
overbalance the drag coefficient CD thus 
making D negative. This means that, ini- 
tially, at the muzzle, the gyroscopic stabil- 
ity factor will decrease and reach a mini- 
mum value some distance from the muzzle 
before beginning to increase in the usual 
manner. If the gyroscopic stability factor 
is marginal at the muzzle, its further de- 
crease may lead to trouble. Whenever this 
possibility is suspected, it is safer to guard 
against it by replacing, in the definition of 
the gyroscopic stability factor, the initial 
axial spin p0 imparted by the rifling, with its 
final value pf as determined from the con- 
servation of angular momentum. The de- 
signer, therefore, should impose on the 
gyroscopic stability factor an additional 
factor of safety, i.e., multiply Eq. 2—16 by 

x0 
I-j—1 .  Thus the final design requirement 

for the gyroscopically stable projectile with 
a very dense liquid filler would be 

^MT){^)(-$ <2-17) 

We shall apply some of these ideas to 
the XM410 Projectile. Pertinent physical 
information follows: 

Ix     = 0.0446 slug-ft2 

l 0   = 0.0076slug-ft2 
x0 

xO 

xO 

y 

y0 

= 0.0370 slug-ft' 

= 0.69 

= 0.1548 slug-ft 

= 0.0140 slug-ft: 
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M^    = 0.310slug 

a     = 0.22ft (cavity radius) 

CG, filler from base, = 0.515ft 

CG, system from base, = 0.488ft 

x     = 0.027 ft 

Mfx
2^ 0.0003 slug-ft2 

iy0 +MfX2 =0.0143 slug-ft2 

Iy0 = ^ -ipj tMfX2) = 0.1405,slug-ft 

c/a = 1.56 

p     = 0.37 

ßiy0 = 0.0052,slug-ft2 

^ = ßiyo -^Ä   = 0.0055, slug-ft2 

111 tiy = 0.1460,slug-ft2 

y        = i rv; 
I n + i yO        y 

Previously we have found that the gyro- 
scopic stability factor for the XM410 as a 
rigid projectile, at Mach 1.5, was 2.14. 
Therefore, if the WP is liquid, then by Eq. 
2—16, the actual gyroscopic stability factor 
at the muzzle is 

(Sg)L =(2.14)(0.69)(1.06)=1.57 

i.e., 27% less. Examination of the spin de- 
cay shows that with WP liquid filler in the 
XM410 Projectile, D is positive and the 
above value cf the stability factor at the 
muzzle is a minimum. 

In practice it may be adequate, in esti- 
mating the degradation of the gyroscopic 
stability factor with a liquid filler, simply 
to multiply its rigid value by the first factor 
and ignore the ratio of the unmodified to 
modified transverse moments of inertia. 
The error will be less than 10%. 

2^-6 THE GYROSCOPE 

As we shall see later, if the liquid in the 
cavity contains a fundamental fluid fre- 
quency which is ±i resonance with the nuta- 
ticral frequency of the projectile, then the 

projectile may become dynamically unsta- 
ble. For dynamic stability, therefore, the 
nutational yaw damping rate must now 
satisfy a more stringent condition: 

Our task shall be to show how to compute 
XJJ     and how to suppress, if need be, the 

offending fluid frequency. Unfortunately, at 
present an a priori computation of fluid 
frequencies can be done only for cylindrical 
cavities or for cavities not departing too 
far from the cylindrical. For cavities of 
other geometries it is most economical, at 
present, to resort to laboratory experi- 
ments. A properly designed gyroscope is 
an excellent tool for this latter purpose. 
The equation describing the gyroscope's 
oscillatory motion is analogous to that de- 
scribing the yawing'motion of the projec- 
tile. Hence, inferences from the behavior 
of the liquid-filled gyroscope are at once 
transferable to the behavior of the liquid- 
filled projectile provided that the gyroscope 
is designed to simulate the projectile's nuta- 
tional frequency Tn. 

A description of various types of gyro- 
scopes and their properties and uses can 
be found in many books; see, for example, 
Ref. 9. 

The gyroscope is essentially a rotor 
which, for liquid-filled experiments, should 
be hollow. The rotor is mounted on an inner 
gimbal which, in turn, is mounted on an 
outer gimbal. The outer gimbal is sup- 
ported by a rigid frame. A successful in- 
strument, developed at the Ballistic Re- 
search Taboratories, is shown in Fig. 5—2. 
It will be described in detail in Chapter 5 
in connection with the description of some 
experiments. 

The elementary theory ofthegyroscope's 
motion will be sketched only briefly. Tet 
the x-axis coincide with the axis of sym- 
metry of the rotor, the y-axis pass through 
the pivots of the inner gimbal, and the 
z-axis pass through those of the outer gim- 
bal. Thus the rotor spins about the x-axis 
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but can oscillate about the y- and z-axes. 
The inner gimbal can oscillate also about 
the y- and z-axes, but the outer gimbal 
can oscillate only about the z-axis. Let 9 
be the angle of deflection of the x-axis 
from the vertical. In the projectile analogy, 
this angle is equivalent to the yaw. Angu- 
lar displacements about the y- and z-axes 
are  $   and $z , respectively. Let Q be the 
constant spin of the rotor in rad/sec. Also 
let 

Ix    be the axial moment of inertia of 
the rotor 

I   ,l' ,l" be the transverse moments of 
Y     Y    Y inertia of the rotor, inner, and 

outer gimbals, respectively, 
about the y-axis. 

I„ I2, Iz be the transverse moments of 
inertia of the rotor, inner, and 
outer gimbals, respectively, 
about the z -axis. 

All transverse moments of inertia are about 
the origin, i.e., about a common pivot point. 

Let IyO = I  +r 
y     y 

i,„=i'ti; ti' 

I '  does not appear in the equation of I 
Y Y0 

because the outer gymbal cannot turn, 
about the y-axis. Further analysis is mark- 
edly simplified if the gyroscope is designed 
so that I „si   , i.e., so that the outer gim- 

y0 zO a 

bal is very light. Then one can replace I 0 

and Iz0 by, say, I = vlyo'zo as tne moment 
of inertia about either axis. 

Further assume that the bearing friction 
in the gimbals can be represented byf e 
and f e   (viscous friction) where f is a con- 

z 

stant. Then it can be shown that the differ- 
ential equations of motion in the y- and z- 
components can be written (see Ref. 9) as 

The independent variable is time. K0 =Mgfi 
is the gravitational moment where M is the 
mass of the rotor and the inner gimbal, h is 
the separation of the center of mass (CM) 
and the pivot-point, and g is the accelera- 
tion due to gravity. For the unstable posi- 
tion, i.e., when the center of mass is above 
the pivot-point, K0 >0.This situation is an- 
alogous to the positive static moment for a 
statically unstable projectile when the cen- 
ter of pressure is ahead of the center of 
mass. Define 

The two equations above can be combined 
to give a single equation in a complex var- 
iable e 

10 +(f-iin) e -Kne =o (2-18) 

The roots of the characteristic equation 
of Eq. 2—18 are complex, giving two fre- 
quencies and two damping rates. With the 
assumption that f/I £2 < < 1 , we   have 

Nutation 

Frequency 

i n 
"    .(l+o-) 

21 

Precession   x i.n .. - 
21 

-(1     <r) 

-ifi-4) 
-*M)J 

(2-19) 

l-l-    =i__L+ 
where 

and the gyroscopic stability factor: 

S     El2tt2 

4IK„ 

I e + f e -1  no Ko^ 

The nondimensional frequencies are 

n     2IV 

T = JL(1- <r) 
P    21 
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ff sgis large, as is usual with the gyroscope, 
then 

<r»l -. 
2s 

and 

T"ST 

K„ (2—20) 
T      =; 

P I sv 

It should be noted that for statically un- 
stable positionK0>0, we have s >(), cr< 1, 

and the precessional amplitude has a ten- 
dency to diverge at a rate depending on 
the quality of the bearing or on the value 
of f. For statically stable position KQ<0 , 
s <0 and ol —friction in the bearings 
damps both components. It is desirable, 
therefore, to have frictionless bearings. 
Also, it is desirable to design the gyro- 
scope to have only pure nutation, i.e., to 
provide the means of adjusting its center 
of mass location to the pivot-point. This 
suppresses the precessional motion by 
making K0 = 0 . Since the liquid affects only 
the nutational amplitude, and not the pre- 
cession, the observations of the effect of 
the liquid are considerably simplified. 

2-7   THE PROJECTILE AND   THE   GYRO- 
SCOPE 

To obtain the equations which we shall 
use in the next chapter for adding the 
hydrodynamic moment, let us return to 
Eq. 2—1 and letH=T=G = 0. The resulting 
equation 

£"-iP £'-M£ =0 (2—21) 

describes a neutrally stable oscillation, i.e., 
the amplitudes k10 and k20 remainconstant. 
Assume, also, that the velocity of the pro- 
jectile V is a constant V0. Then we can 
easily change the independent variable 
from distance, in calibers, to time since by 
Eq. 2-^. 

Eq. 2—2L becomes 

I MVi 
e-i^P|- ü| =0 (2-22) 

d2 I 

Now 

M 
0 _     ra PSdmd 

I 
d 2m      y 

by definition of M, Eq. 2—3 

Since   M=V2   P.VjSdC^ 

aerodynamic moment, 

MVo = 
M 

.C      JL 
"a d

2 

is defined as the 

Let us also change the axial spin p rad/sec 
to Q rad/sec. Then the two equations for 
the projectile and the gyroscope become, 
respectively: 

ia-una-M£=o 

10   -ilxfi 9 -Ko0    0 
(2—23) 

where we let f ° 0 in the gyroscope Eq. 
2—18. The only difference between the two 
equations is that the projectile is being 
acted  upon by the aerodynamic moment 

M; whereas the gyroscope, by the gravita- 
tional moment KQ. The solution for each 
equation is the sum of two exponentials. 
To obtain the characteristic equation let 

£ or  $cce 
iTQ\ 

(2—24) 

The characteristic equation for the projec- 
tile, for example, becomes 

I2 

I -I  T+. 
*vK 

0 (2—25) 

The roots are- 
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For stability of the system, in view of the 
definition of T by Eq. 2—24, T must be real. 

We shall introduce the hydrodynamic 
moment, which arises from the disturbed 
fluid oscillations in the cavity, into Eq. 
2—23 rather than the full Eq. 2—1. The 
former is algebraically simpler to work 
with. Since we are dealing with a linearized 
system of equations, whatever one finds 
with Eq. 2—23, such as a divergence of 
one of its amplitudes (instability), this rate 
of divergence is simply to be added alge- 
braically to the aerodynamic damping cf 
corresponding amplitude as found from Eq. 
2-4. 

As we shall see in Chapter 3, the method 
cf analysis cf the stability of the liquid- 
filled projectile system is to disturb ini- 
tially undisturbed flight by causing small 
amplitude  oscillations,   about the   CG, cf 

the form e1 ' . Such a disturbance ex- 
cites the natural fluid oscillations, causing 
pressure pulses on the walls cf the cavity. 
When these pressure pulses associatedwith 
various fluid frequencies are integrated 
over the cavity, it is found that some pro- 
duce no moments while others do. These 
hydrodynamic moments, acting as exter- 
nal moments, are added to aerodynamic 
moments in Eq. 2—23. The stability of the 
system is determined from the nature cf 
the roots of the characteristic equation of 
the whole system. For the system to be 
stable, the roots must be real. 
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CHAPTER 3 

DYNAMICS OF A LIQUID-FILLED PROJECTILE 

3—0  LIST OF SYMBOLS* 

2a = diameter of cylindrical cavity 

b = a constant depending on fill-ratio 

2b = diameter cf cylindrical air column 
for a partially filled cylindrical 
cavity 

C = aerodynamic coefficient 

Cl = component of aerodynamic mo- 
ment of empty projectile 

•Cm        = component  of aerodynamic mo- 
ment cf empty projectile 

2c = height cf cylindrical cavity 

C = Bessel function 

d = deceleration cf projectile 

F(r,t)=0= equation cf surface bounding the 
liquid 

G(f,t) =0= equation cf a free surface 

h = distance from point on axis cf pro- 
jectile to   CG;  distance between 
center cf cavity and center cf rota- 
tion 

M   , Mzx, M       = components cf M about x-, 
y-, z- axes, respectively 

i = x/-l 

Jj = Bessel function 

) = axial mode number 

K = c/a fineness ratio; a constant 

L = axial (longitudinal) moment cf in- 
ertia cf empty projectile 

l,m,n = components cf the unit vector z' 
along the x-, y-, z- axes, respec- 
tively (direction cosines) 

M = hydrodynamic moment on projec- 
tile 

M = hydrodynamic moment vector 

■Dimensions are omitted since there are no engineering 
applications in this chapter. If the given formulas using 
these symbols are to be applied, any consistent set a 
units may be employed. 

M = mass cf liquid filler 

n = radial mode number 

P = hydrodynamic pressure 

Pb = pressure due to basic flow 

P = perturbation pressure 

r, 0 ,z = cylindrical system cf coordinates 
with the z-axis along the direction 
cf flight 

S = - 4EK rn. ) / (L d e ) Stewartson' s 

parameter 

T = transverse  moment  cf inertia cf 
empty projectile 

Te = "effective" transverse moment cf 
inertia cf liquid 

t = time 

U,V,W = velocity components cf basic flow 
along  r, e ,z,   respectively 

u,v,w = velocity components of perturbed 
flow along r, $ ,z,   respectively 

V = flow velocity vector 

Vb        = velocity vector cf basic flow 

T = perturbation velocity vector 

Yj        = Bessel function 

x,y,z = inertial system cf coordinates with 
z-axis along the direction cf flight 

x',y',z' = body-fixed coordinate system cf 
projectile located at its center cf 
mass with z'-axis along axis cf 
symmetry cf projectile 

GREEK LETTERS 

a 

P 

= yaw angle 

l/sg   recipi 
bility factor 

= l/sg   reciprocal  cf gyroscopic sta- 
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"Y = ojt azimuthal angle 

H = displacement cf a free surface 

v = kinematic viscosity of fluid 

£ = 1  + dm sine cf yaw, for small yaw 
£ is yaw angle 

P = density cf fluid 
Tn = w/^ nondimensional nutationalfre- 

quency 

T0or Tnj= ojnj/n   nondimensional      eigenfre- 
quency 

T = nondimensional   precessional   fre- 
quency 

ß = axial spin rate 

w = nutational    (or precessional)   fre- 
quency 

MATH SYMBOLS 

= approximately 

= of the order 

oc = proportional 

3-4    INTRODUCTION 

The dynamic equations cf a spinning pro- 
jectile become very complicated when the 
projectile is filled with liquid. In fact, it is 
not generally possible to describe the be- 
havior cf a liquid-filled projectile by a 
simple dynamic equation as Eq. 2—1 for 
the rigid projectile. The liquid within the 
cavity of the projectile, as it moves about, 
exerts pressure forces on the inner walls 
of the cavity, producing a moment on the 
projectile. This external moment must be 
considered in the dynamics cf the projec- 
tile in a manner similar to the moment due 
to aerodynamic forces. However, the motion 
cf the liquid and, therefore, the moment 
produced by this motion are not completely 
determined by the instantaneous motion cf 
the confining casing but rather by the en- 
tire history cf the projectile's motion. When, 
for example, the projectile is at rest, this 

does not imply that the liquid within the 
cavity is at rest; it only implies that, if 
there is a flow of liquid inside the cavity, 
the flow velocity near the wall must be di- 
rected parallel to the wall. 

When the projectile undergoes any mo- 
tion, it is necessary that the liquid follow 
this motion to a certain extent. Precisely, 
the flow must adjust to the motion of the 
cavity walls so that, at any point on the 
wall, the flow velocity has a normal compo- 
nent equal to that cf the wall. Certainly, 
these"boundary conditions" are insufficient 
to determine the state cf the fluid motion 
which is determined by the previous motion 
cf the boundaries as well. 

For the reasons given above it is clear 
that the stability cf a liquid-filled projectile 
depends not only on the design properties 
cf the projectile and the physical properties 
cf the liquid but, in a sense, on the flight 
history, too. It is possible that a spin-stabi- 
lized liquid-filled projectile will be quite 
stable at the beginning of its trajectory 
and become suddenly unstable as the liquid 
within the cavity attains a certain amount 
cf rotation, and vice versa. 

From the preceding discussion it should 
be clear that the dynamics cf a liquid-filled 
projectile system involves an extremely 
complex interaction between the motion cf 
the casing and the motion cf the liquid 
within the cavity. It is not surprising then 
that the problem of predicting the dynamic 
behavior cf a liquid-filled projectile can be 
solved — exactly — only for certain special 
cases or under very restrictive conditions, 
or both. Other cases require simplifications 
and approximations in order to be mathe- 
matically tractable. 

It is very fortunate that the limitations 
dictated by mathematical tractability do 
not greatly restrict the application cf the 
theory to the more important practical 
problems as, for example, the prediction cf 
stability of the liquid-filled projectile sys- 
tem. 
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Themain limitation of the present theory 
is the following: it is assumed that the pro- 
jectile moves with essentially constant 
speed and eventually spins about its axis 
of symmetry. Superimposed on this basic 
translational and rotational motion is a 
small yawing motion, i.e., only small per- 
turbations about the state of uniform mo- 
tion of the projectile are considered. The 
assumption of a small perturbation is com- 
pletely appropriate when one is concerned 
with the question of stability. As in the 
case of a rigid projectile, a liquid-filled pro- 
jectile is considered unstable when a small 
perturbation increases in time and, vice 
versa, the projectile is stable when the per- 
turbed motion is damped. As a consequence 
of the small perturbation assumption, one 
can assume that the motion of the liquid 
consists of an essentially steady basic flow, 
superimposed on which is an oscillatory 
flow of small amplitude. The smallness Of 
the superimposed oscillatory flow permits 
linearization of the equations for the per- 
turbed fluid motion as well as the dynamic 
equations of the projectile. 

The linearization of the fluid dynamic 
equations is essential for the tractability of 
the whole problem. While the nonlinear 
equations for the spinning rigid projectile 
can be handled, it appears to be quite hope- 
less to solve the nonlinear fluid dynamic 
problem. 

The division of the flow field into a 
steady basic flow and a superimposed oscil- 
latory flow is an idealization, justified only 
under the assumption of small yaw ampli- 
tude. When a small yaw can be assumed, 
then and only then is it possible to treat 
the basic flow and the superimposed oscil- 
latory flow separately. 

The basic flow is generated by the un- 
perturbed motion of the casing, i.e., by its 
translational and rotational motions. When 
the projectile spins, the liquid within the 
cavity is taken along with the walls by fric- 
tion and starts to rotate. As the time 
elapses, the liquid acquires more and more 
rotation until finally all of the liquid rotates 
with the casing as if it were solid. 

The basic flow, thus, consists of a more 
or less uniform rotation depending on the 
spin of the projectile and the time elapsed 
after the firing; it is, however, not affected 
by an eventual yawing motion of the pro- 
jectile. 

Once the basic flow is given, the super- 
imposed oscillatory flow consequent to the 
yawing motion of the projectile depends 
only on this yawing motion, i.e., on the fre- 
quency and amplitude of yaw. It should be 
mentioned that the independence of the 
oscillatory flow from the previous motion of 
the projectile rests on the reasonable as- 
sumption that both the basic flow and the 
yaw amplitude are "almost" stationary, 
i.e., that their characteristic time of change 
is large compared to the inverse of the yaw 
frequency. 

A consequence of this independence from 
the previous motion of the projectile is that 
the moment due to liquid oscillations can 
be related directly to the instantaneous 
motion of the projectile. This fact is very 
important for the writing of the dynamic 
equations which take the simple form of 
differential equations only when the acting 
forces are determined solely by the instan- 
taneous motion, i.e., the yaw angle and its 
derivatives rather than by previous events. 

The period during which the liquid 
achieves full spin — denoted as the "spin- 
up" period — is usually short compared with 
total time of flight. The duration of the spin- 
up period depends on the liquid viscosity, 
the geometrical dimensions of the cavity, 
and on the spin rate itself. Some problems 
regarding the attainment of liquid rotation 
and dynamic stability during the spin-up 
period are discussed in Chapter 8. 

For the present it may be sufficient to 
note that in practice the state of solid rota- 
tion is the most important one to consider 
since the spin-up period is usually rather 
short. In typical cases, a state of substan- 
tially solid rotation is achieved within a 
distance of a few thousand calibers of 
travel from the muzzle. 
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ff we omit the earliest part cf the pro- 
jectile's trajectory from present considera- 
tion, we can assume that the basic flow of 
the liquid within the cavity of a spinning 
projectile is a solid rotation having the 
angular velocity of the projectile. The 
superimposed oscillatory flow is regarded 
as a perturbation about the state of solid 
rotation. It is again very fortunate that the 
most important practical case, in which the 
liquid has achieved filspin, is compara- 
tively simple from the analytical point of 
view. In fact, if full spin of the liquid is as- 
sumed, exact solutions of the stability prob- 
lem can be obtained for special cavity 
shapes. The earliest example —Greenhill's 
solution for the spheroidal cavity —is char- 
acterized by mathematical simplicity. How- 
ever, its practical application is rather 
limited. The second example—Stewartson's 
solution for the cylindrical cavity —has be- 
come the most important tool for the 
prediction of stability and the basis 
on which further refinements have been 
built. Both of these examples will be dis- 
cussed in greater detail —Greenhill's solu- 
tion because cf its mathematical simplicity 
and Stewartson's solution because of its 
practical relevancy. 

3-2   EQUATIONS   OF PERTURBED  FLUID 
MOTION 

The motion of the liquid within the cavity 
of the projectile is described by the Navier- 
Stokes Equations together with certain 
boundary conditions. Throughout the analy- 
sis which follows it is assumed that the 
liquid is incompressible. Then the Navier- 
Stokes Equations, in vector notation, reduce 
to: 

rs defined as: V - (^- > -^- > -j-J.  The flow 

-|^4 v • vv+ v$=  w2 v 

V»V= 0 

(3-1) 

(3-2) 

Here V denotes the flow velocity vector, 
P the hydrodynamic pressure, p the density 
and v the kinematic viscosity of the liquid, 
t the time, and V the differential operator 
nabla (del) which, in Cartesian coordinates, 

8_ 
y     dz/ 

velocity vector V(x,y,z,t) and the pressure 
P(x,y,z,t) must satisfy not only the partial 
differential Eqs. 3—1 and 3—2 but also the 
boundary conditions which, in their most 
general form, are as follows: 

(1) Condition on any surface bounding 
the liquid (solid wall, free surface, 
interface): the component of the flow 
velocity normal to the surface must 
equal the normal component of the 
surface velocity. 

(2) Condition on a free surface: the pres- 
sure must be constant on a free sur- 
face. 

(3) Condition on a solid wall: the tan- 
gential component of the flow velo- 
city must equal the tangential com- 
ponent of the velocity of the wall. 

Frequently, the term v V V in Eq. 3—1, 
which represents viscous forces, is neg- 
lected. With this "inviscid approximation" 
the boundary condition (3) is disregarded 
(see pars. 3—2.2 and 3—2.3). 

As outlined above, the flow is thought to 
consist of two parts: (1) an essentially 
steady basic flow, the_ components of which 
may be denoted by V , P , and (2) a small 
perturbation 7, p.  The basic flow Vb,P, is 
generated by the undisturbed motion of the 
cavity walls, i.e., by the simple spinning 
motion. Thus the basic flow alone is a solu- 
tion cf the Navier-Stokes Equations (viz. 
the solution with the appropriate boundary 
conditions imposed by the pure spinning 
motion.c£th£ walls). Inserting the total flow 
vector V =Vb+T and  pressure   Pb+ p   into 
Eqs. 3—1 and 3—2 and considering that the 
basic flow V , Pb solves the equations, one 
obtains: 

ll+T 
at 

vvb + vb.vv+ v 2- 

V v = 0 

vV2 v 

(3-3) 

(3-4) 

3-4 
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Here the second order term T • V T has 
been neglected in accordance with the as- 
sumption that the perturbation" p is small 
in comparison with Vb, Pb. 

The boundary  conditions (1),  (2),  and 
(3) apply, naturally, to the sum of the two 

flow fields: Vbtv, PhtP 

The basic flow velocity Vb which occurs 
in Eq. 3—3 is not yet specified, except that 
Vbmust solve the Navier-Stokes Equations. 
As stated before, Vb may be a rigid rotation 
about the spin axis, a motion which is actu- 
ally attained after a sufficiently long time 
after firing. Whatever the basic flow is, it 
must be specified before the perturbed mo- 
tion can be computed. 

In conjunction with the reduction of the 
second order viscous equations to first 
order inviscid equations, the boundary con- 
ditions reduce to conditions (1) and (2) of 
par. 3-2. 

An equivalent formulation of the boun- 
dary conditions (1) and (2) can be given 
as follows: 

(1) If HT, t) =0is the equation of a sur- 
face bounding the liquid, the condi- 
tion onl(i t) = Ois 

JF + v -VF = 0 when F(T; t) = 0      (3—5) 
at 

(2) ff G(7, t) = Ois the equation of a free 
surface, the condition is 

3-21    INVISCID APPROXIMATION 

In the previous paragraph the equations 
of perturbed fluid motion are derived in full 
generality for future application. Here an 
important simplification of the general 
equations will be considered, namely, the 
equations of inviscid flow, which result 
when the viscous term on the right hand 
side of Eq. 3—3 is neglected. The resulting 
inviscid equations are substituted for the 
full viscous equations on the usual assump- 
tion that the viscous, or frictional, forces 
which are represented by the term on the 
right hand side of Eq. 3—3 are negligibly 
small. 

It should be emphasized at this point 
that although viscosity plays an important 
role in the attainment of liquid spin, it 
may —and frequently does — havea negli- 
gible influence on the oscillatory motion of 
the liquid. But even when the influence of 
viscosity on the oscillatory motion is not 
negligible, the inviscid solution provides an 
approximation which can be improved by 
the methods discussed in Chapter 6. Ac- 
cordingly, throughout the following para- 
graphs of this chapter the liquid within the 
cavity of the projectile is considered as in- 
viscid, i.e., the viscous term wV T in 
Eq. 3—3 is neglected. 

P = Pb tp = 0 when G(r, t) - 0      (3-6) 

Eq. 3—5 is a consequence of the boundary 
condition( l):a fluid particle which at time t 
is located at apointTof abounding surface 
moves so that at time t tdt its location 
TtVdt is again on the bounding surface; 
i.e., when i|i| t) = 0,it follows that F(i+ V <it, 

t tdt) = 0 orjL? + V" • VF = 0. 
at 

3-2.2   EQUATIONS OF PERTURBED FLUID MOTION 
IN CYLINDRICAL COORDINATES 

Cavities of liquid-filled projectiles have, 
with rare exceptions, the shape of bodies of 
revolution with a symmetry axis coincident 
with the symmetry axis of the projectile. It 
is convenient, therefore, to introduce a cy- 
lindrical system of coordinates (r, e,zjsuch 
that the z-axis is along the direction of 
flight which, for zero yaw, coincides with 
the' spin — and symmetry axis. Here r is 
the radial distance from the axis and e is 
the polar angle. The velocity components 
of the basic flow and the perturbation in 
the(r, e,zj system are, respectively: 

V"b = (U,V,W)      and      T=(u,v,w). 

3—5 
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The origin of the coordinate system (r,0, z) is 
fixed to the moving projectile, i.e., the co- 
ordinate system is assumed to move uni- 
formly but not to rotate with the projectile. 
(Rotating coordinates are introduced by 
Stewartson' and other authors ; such co- 
ordinates offer slight advantage when the 
basic flow Vb is a solid rotation. For eco- 
nomic use of notation and to avoid con- 
fusion, rotating coordinates will not be used 
in the analysis which follows unless it is 
explicitly so stated.) 

With Vb specified by Eq. 3—7, the boundary 
conditions, Eqs. 3—5 and 3—6, become in 
cylindrical coordinates 

JÜ+ uJI +(V +v)LJ>I + w JI    -0 
at 3r r   de 3z 

when F(r, 9, z, t) = 0 (3-12) 

P = P   +p = 0 when G(r, 0,z,t) =0    (3—13) 

When the cavity is a body of revolution, 
it is possible to_specify, to a certain extent, 
the basic flow Vb. Obviously, because of the 
rotational symmetry of the cavity, the gen- 
erated flowüeld must have rotational sym- 
metry, i.e., Vb must be independent of the 
polar angle_6. Moreover, as is shown in 
Chapter 8, Vb is also independent of zand 
only its circumferential component V is dif- 
ferent from zero. Thus the basic flow re- 
duces to only one component which de- 
pends on r and t only: 

V,   =(0, V(r,t), 0). (3-7) 

It can also be shown (see Chapter 8) 
that V(r, t) depends only very weakly on 
time, so that V(r, t)undergoes a negligibly 
small change during each cycle of the yaw- 
ing motion of the projectile. Consequently, 
V may be treated as quasi-steady, i.e., the 
time dependence of V may be ignored as far 
as the solution of Eqs. 3—3 and 3 - 4 is 
concerned. With V specified in this way, 
and with viscous terms neglected, Eqs. 3—3 
and 3-4   become, in cylindrical coordinates 

_9u+ V da 
at      r   de 

-2Yv + 9p/p 
3r 

0 (3-8) 

-9i + ¥_ai+(dy+Y\u + i_a£k =o    (3-9) 
3t ^ r   30   \dt      r/       r   3(9 

3-2.3   BOUNDARY CONDITIONS IMPOSED BY THE 
YAWING MOTION CF THE PROJECTILE 

An explicit formulation of the boundary 
conditions of perturbed fluid motion can be 
given only when the shape of the cavity 
and the motion of the projectile are known. 
It is, however, possible to compile the 
boundary conditions in a rather general 
form which can be easily adapted to cases 
cf special interest. 

It is assumed that the cavity has rota- 
tional symmetry and that the spinning pro- 
jectile performs a pure nutational or pre- 
cessional motion. (The general yawing mo- 
tion can always be made up from each pure 
motion — nutation and precession — by 
superposition. It is thus sufficient here to 
consider a pure circular motion which can 
be either nutation or precession. ) 

The liquid is assumed to rotate, initially, 
with velocity V(r) about the axis of sym- 
metry. Obviously, V(r) satisfies the bound- 
ary conditions for zero yaw. When, however, 
the projectile undergoes a small yawing 
motion in addition to its spin, a pure rota- 
tion cf the liquid is no longer compatible 
with the boundary conditions. The per- 
turbed motion of the projectile is communi- 
cated, through the cavity walls, to the ro- 
tating liquid, causing it to perform a per- 
turbed motion also. 

Jw   v_aw_ + ap/p 
at    r  de      dz 

au + u +1 _a_v + _a_w _ Q 
3r r    36      3z 

(d   Hi) j0 describe  the yawing motion of the 
cavity walls, it is convenient to introduce 
two coordinate systems.  (For the benefit 

(3—11)       of those   who  wish to study the original 

3-6 
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Stewartson's paper' and to follow more de- 
tailed development by Ash and Gundersen6 

we shall follow Stewartson's notation and 
his coordinate system. This differs from 
that of Chapter 2 in that the z-axis lies 
along the axis of symmetry of the projec- 
tile rather than the x-axis as in Chapter 2.) 
The two coordinate systems are: inertial 
system (x,y,z) where the z-axis lies along 
the direction of flight, and a body-fixed 
coordinate system (x1, y1, z') so that z' lies 
along the axis of symmetry of the projec- 
tile. The (x1, y1, z1) system is obtained when 
the   (x, y, z)   system  is   rotated by the 

amount   and  in the  direction of the yaw 
angle CY. 

The relations which follow are most 
easily derived by referring to Fig. 3—1. In 
this figure the z-axis is shown upward and 
the z'-axis forms the yaw angle CY with the 
z-axis. (In order not to confuse the dia- 
gram, the x', y1 -axes are not shown.) Also 
shown in Fig. 3—1 is the unit vector z' 
which points into the direction of the z'- 
axis. The projections of z1 on the (x,y,z) - 
axes are, respectively: (l,m,n) = (sin a cosY, 
sine sinY ,cosa )whereY is the azimuthal 

FIGURE 3-1.   SCHEMATIC   OF COORDINATES 

3-7 
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angle shown in the figure. (It may be noted 
that in the notation of Chapter 2» I" v/V, 
m = w/V, and n=u/V where V is the velocity 
of the projectile and u,v,w, are its velocity 
components on the projectile-fixed, coordin- 
ate system.) If now the projectile precesses 
(or nutates) with the precessional (or nuta- 
tional) frequency w, the end point of the 
unit-vector z' describes a circle as indicated 
in the diagram and the azimuthal angle y 
changes according to the relation: Y= wt. 
The components of the unit vector z~' are 
then 

z4 = (l,m,n) = (sin CY   COS U> t, sincY   sin ojt, 
cos a ). 

In accordance with the assumption that 
the yaw angle CY is very small compared to 
unity, it is permissible to neglect terms of 
the   second   and  higher orders in CY,  i.e., 

(l,m,n) = (a cos cot,   a sin wt,   1)        (3—14) 

The transformation rules between the 
(x,y,z)-system and the (x'.y'.zO-system are 
(neglecting terms of higher than first order) 

where R(z') is the cavity radius at z'. The 
same equation in space-fixed coordinates 
(x,y,z) is obtained by substituting x',y' and 
z' according to Eq. 3—15. Neglecting, 
again, higher order terms and considering 
that 

R2(z t lx t my) = R2(z) t tiBl(lx t my) t higher 
dz 

order terms, we obtain 

x2ty2 
-R2(z)-( 

(lx t my) = 0 

2z + dRl 
dz 

(3—17 ) 

Finally,  Eq.   3—17   may be expressed in 
polar coordinates (r, 6 > z). It is 

x = r cos y=rsinÖ (-"5 — 1H )| 

Substituting for x,y according to Eq. 3-18 
and for l,m according to Eq.  3-14 yields 

lx + my = or cos (wt — 0) 

2^2 2 
x  t y   =r (3-19) 

x' = x -■ 
y' = y - mz 

z1 = z t lx t my (3-15) 

The liquid within the cavity of the projec- 
tile is bounded by the solid walls of the 
cavity and — if the cavity is only partially 
filled —by a free surface. In the analysis 
which follows it is assumed that the liquid 
is rotating sufficiently rapidly so that the 
free surface — prior to perturbation —is a 
cylinder parallel to the axis of symmetry. 
(In other words, gravity and deceleration 
are assumed to be negligible in comparison 
with the centripital forces.) 

The boundary condition on the cavity 
surface can be derived fromEq. 3—12. For 
a cavity of rotational symmetry, the equa- 
tionof the cavity surface in body-fixed coor- 
dinates is 

With Eq. 3—19, Eq. 3—17 becomes 

r2 - R2(z) - ailz + —)t cos(ojt - 0) = 0 
\        dz ' 

(3—20) 

Eq. 3—20 is the differential equation of the 
cavity surface in space-fixed polar coordin- 
ates. The boundary condition on the cavity 
wall can now be easily derived by substi- 
tuting the left-hand side of Eq. 3—20 for 
F(r, 0,z,t) inEq. 3—12. 

Considering that the perturbation veloc- 
ity components (u, v, w)are — like the yaw 
angle a — small compared to the basic flow 
(U,V,W) and neglecting higher than the first 
order terms, one obtains 

2ru _dR_ w= Qr/V -u)\/2z tfÜL) sin(ut-e) 

r.2 _x,2 +y,2 = R2(Z.) = 0 (3—16) when r = R(z) <3-21) 

3-8 
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In accordance with the linearization and 
neglect of higher order terms, the boundary 
conditions, Eq. 3—2L, will be satisfied on 
the cavity surface of the undisturbed spin- 
ning projectile, i.e., at r = R(z). 

3—2.4  BOUNDARV CONDITIONS  ON A FREE SUR- 
FACE 

To determine the boundary conditions 
on the free surface of the liquid, it is impor- 
tant to remember that the free surface is 
displaced relative to its undisturbed posi- 
tion. It can, however, be assumed that the 
displacement is small. 

For the undisturbed projectile, the free 
surface is assumed to be a cylinder parallel 
to the axis, its equation being r = bwhereb 
is a constant depending on the fill-ratio. 
The displaced free surface, then, is given 
by the equation 

r = b+r1 ( 0,z,t) 

or G(r, e,z,t) = r-b- n( 0,z,t) = 0      (3—22) 

or, neglecting higher order terms 

/ 9P \ 
Pb(b) + 1 \-g-L) + p(b) = 0 (3-25) 

According to the dynamic equations 

9P. 
9r 

£= pi (3—26) 

Eq. 3—26 evaluated at r = b and substituted 
in Eq. 3—25 gives 

P. (b) + P v (b) n + p(b) = 0 (3—27) 

Finally, n can be  eliminated by  applying 
q xr       r\ 

the operator — + -  —— toEq. 3—27.   One 
^ at      J- 30 M 

obtains 

^u + IßP+y^P)=0,   whenr = b 
b plBt      r  30/ 

(3—28) 

where n is the displacement of the free sur- 
face from its equilibrium position. It can be 
assumed that n/b al. 

Since the free surfaceG(r, 0,z,t) = 0is a 
surface bounding the liquid, G(r, 0,z, t) must 
satisfy Eq. 3—12, i.e., 

Eq. •* 28 js ^he boundary condition on a 
free surface of the rotating liquid. ln con" 
trast to the boundary condition on the cav- 
ity wall, Eq. 3—28 is a homogeneous boun- 
dary condition, i.e., the yaw angle cy does 
not enter into it. 

d_G 
8 
5+u9GJV + v\aG + waG=0 (3_23) 
t        9r    \    r   / 90        9z v ' 

Substituting Eq. 3—22 into Eq. 3—23 and 
neglecting higher order terms, we obtain 
a condition for *l 

92. + X<^l=u 
8t       r 90 

(3-24) 

The dynamic condition on the free surface, 
Eq. 3—13, becomes 

Pb(b+n) + p(b+n) = 0 

3-3  REACTION OF THE LIQUID UPON THE 
PROJECTILE 

The dynamics of a liquid-filledprojectile 
involve a coupling of the equations of fluid 
motion and the equations of yawing motion 
of the projectile. Precisely, the fluid motion 
depends on the motion of the projectile and 
the motion of the projectile depends on the 
reaction of the fluid motion. To uncouple 
the two sets of equations it is assumed that 
the liquid-filled Projectile describes a yaw- 
ing motion of the same type as a rigid pro- 
jectile. In combined motion, however, the 
frequency and damping rate may be 
changed relative to the values for the rigid 

3-9 
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projectile. Thus the first step is to compute 
the fluid motion consequent to a yawing 
motion of — for the present — an unspeci- 
fied frequency and damping rate. Once the 
fluid motion is known, the reaction of the 
liquid can be computed and introduced into 
the equations of yawing motion. Finally the 
equations of yawing motion yield a condi- 
tion for frequency and damping rate of the 
liquid-filled projectile system. 

3-3.1   MOMENTS DUE TO THE LIQUID 

The perturbed fluid motion produces 
pressure forces on the cavity surface which 
in turn give rise to a moment on the projec- 
tile. When the pressure P is known, the re- 
sulting hydrodynamic moment M is found 
by integration: 

since M is of first order in a, we find that, 
within first order 

M yz M yz ' M;x = M,x; M' xy u xy 

Thus, we can use the components of M in 
the primed system as the components in 
the unprimed system. 

Of special interest is the cavity of rota- 
tional symmetry. Assume that the shape of 
the cavity surface is given by an equation 
r1 =R(z'). Then for zt < z' -~ z2 the integral, 

Eq. 3—29, assumes the special form 

z2    2TT 

Mzx=/    /      P(Z'tRj^Rcos «•  do' dz' 

(3—30) 
zx      0 

M 
//.*" 

dA (3—29) 
z2    2i7 

where dA denotes the vectorial surface ele- 
ment (pointing in a direction normal to the 
surface and away from the inside), 7 is the 
radial  vector  from the moment-reference 
point to the surface element, and 7_x dA is 
the cross-product between 7 anddA. The 
integral is taken over the wetted part of 
the cavity surface. 

The components of M may be denoted by 
M = (Myz, M„    Mxy) where, for example, M2x is 

a moment about the y-axis which is 
directed so that —for positive Mzx —it 
tends to turn the z-axis toward the direc- 
tion of the x-axis. (The use of double sub- 
scripts (yz, zx, xy) instead of (x, y, z) is con- 
venient here as it designates the direction 
of the_torque and also accounts for the fact 
that M is really an antisymmetric tensor 
with components M    = - M 2, etc.) 

(Myz> Mzx, Mxy)   are the components of M 
in the inertial system (x,y, z). In practice it 
is easier to compute the components of 
M in   the  body-fixed coordinate  system 
(x', y', z'). Tet the components of M in the 
body-fixed system be: (M'   , Mzx, M'  ). Then, 

Myz=/y        p(z'+R^|-)Rsin   6' d0'dz' 
z^     0 

l (3-31) 

M      = 0 (3-32) 
xy 

1$ A-*I becomes infinite, as is the at 
a plaffie endwall cFThe cavity, the expres- 
sions on the right-hand sides of Eqs. 3—30 
and 3-31 degenerate. Tet us assume, for 
example, that the cavity has a plane end- 
wall atz' = z{ and let us denote the portion 
of the moments contributed by the plane 

and   (My2)Zi: endwall by   (Mzx)2 

tively.   Then,  considering that 

°R  dz1 = dr',  we may write 
dz' 

respec- 

ts') =r', 

Hh) 2Tr 

(MM)Z   "11 Pr'2 cos 0< do'dr'  (3-30a) 

0   0 

R(zx) 2TT 

<MyZ>Zl 
Pr'2 sinö' dß' dt>    (3—31a) 

0     0 

3-1 0 
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3-3.2     EQUATIONS OF YAWING MOTION 

The dynamic equations cf the yawing 
motion of a liquid-filled projectile have a 
similar form as the corresponding equa- 
tions of a rigid projectile (Eq. 2—23); the 
only difference being that the moments due 
to liquid oscillations must be included in 
the "external" moment. Thus, the dynamic 
equations may be written 

T a2L+Lnam -CI = M. 
dt' dt 

TEfiE-L^aL   -Cm = M 
dt2 dt yz 

(3—33) 

(3-34) 

where Cl, Cm are the components of the 
aerodynamic moment, T and L the trans- 
verse and longitudinal moments of inertia 
of the empty projectile, respectively, and ^ 
the spin frequency. Mzx and M    are the m e 

ments due to the liquid as defined by Eqs. 
3—30 and 3—31. 

Eqs. 3—33 and 3—34 can be combinedas 
usual into one complex equation. Writing 
ltim=£,    ; M„   t iM    = M   gives 

li -iLnli -ce =M 
dt' 

(3—35) 

3-4 NONSPINNING LIQUID 

The assumption of a nonspinning liquid 
seems to be relevant only in connection 
with a nonspinning projectile. For a spin- 
ning projectile, the fluid near the wall at- 
tains spin quite rapidly, a fact that pre- 
cludes the assumption of nonspinning 
liquid. In typical cases the liquid has 
achieved about 10%of spin when the pro- 
jectile leaves the muzzle (see Ch 5). 

For a nonspinning projectile, however, 
the assumption of nonspinning liquid is 
valid and the results outlined in the para- 
graphs which follow are applicable. 

The effects of a nonspinning liquid on 
the dynamics cf a projectile are summa- 
rized in pars. 3-4.1  and 3—4.2. 

3—4.1  COMPLETELY FILLED CAVITY 

When the cavity is completely filled so 
that no free surface is formed, the presence 
of the liquid only influences the weight, 
center cf gravity, and moments cf inertia 
cf the projectile. The proper weight and 
center cf gravity cf the projectileliquid 
system are to be taken just as though the 
liquid were replaced by a solid cf identical 
specific weight. The moments of inertia, 
however, are different from those which 
one would obtain by treating the liquid as 
a solid. The liquid follows less than a solid 
the yawing or pitching motion of the pro- 
jectile and, therefore, contributes less to 
the moments of inertia than a solid cf equal 
weight occupying the same volume. The 
presence cf the liquid can be accounted for 
by attributing to the liquid "effective" mo- 
ments cf inertia. The effective moments 
are fractions cf the rigid moments cf iner- 
tia. 

The inviscid liquid within a spherical 
cavity, for example, is not constrained to 
follow any rotation cf the casing about the 
center; therefore, all effective moments cf 
inertia taken about the center are zero. 
Similarly, for a liquid-filled cavity of rota- 
tional symmetry, the effective moment of 
inertia about the symmetry-axis is zero. 
Once the effective moments about a certain 
point are given, one can recompute their 
values for any other point in the same way 
as for a solid. 

In particular, if the effective transverse 
moment cf inertia about the center cf grav- 
ity is Te, the effective transverse moment 
about a point on the axis at a distance h 
from the center cf gravity is: (Te)h= Tet Mfh , 

where Mf is the mass of the liquid. 

If necessary, the effective moments of 
inertia can be computed by methods outi 
lined in the following. An example is given 

3-1 1 
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in par. 3-6 for the spheroidal cavity. Gen- 
erally, a computation of the moments of 
inertia is not necessary since the stability 
of a nonspinning projectile does not depend 
on it. Moreover, the contribution of the 
liquid to the total moments of inertia is 
usually very small. For the stability of a 
nonspinning projectile, it is necessary and 
sufficient that the center of gravity lies 
ahead of the center of pressure. For the 
design of a stable projectile, therefore, the 
shift of the center of gravity due to the 
liquid should be calculated. 

3-42   PARTIALLY FILLED CAVITY 

When the cavity is only partially filled, 
the reaction of the liquid upon the yawing 
motion of the projectile is less simple. Some 
t i e after firing the liquid forms a free sur- 
face, the shape cf which depends on the 
joint action of gravity and deceleration. 
(Immediately after firing,the liquid is likely 
to undergo a violent splashing motion 
which, however, subsides quickly by the 
action cf strong deceleration.) If we assume 
that the deceleration cf the projectile is 
many times larger than gravity, the action 
cf gravity may be neglected. The liquid, 
then, moves into the most forward position 
and forms — prior to perturbation — a 
plane free surface which is perpendicular 
to the direction of deceleration, i.e., the 
direction of flight. 

The yawing motion of the projectile 
causes oscillations of the liquid with waves 
forming on the free surface (analogous to 
gravity waves). Usually the mass of the 
liquid is relatively small and hence the re- 
action of the wave motion on the casing is 
negligible. An exception arises when the 
yaw frequency is close to a natural fre- 
quency cf free oscillation cf the liquid. In 
this case the wave amplitude can rise very 
high and cause a noticeable interaction 
with the casing. (For the basic mode of free 
oscUlatim the natural frequency is roughly 
wQ =2TTII0 = \/d/a where d is the decel- 
eration of the projectile, and 2a the dia- 
meter of the cavity at the location of the 

free surface.) Due to the strong interaction 
at resonance, the yawing frequency may 
be shifted somewhat. However, in contrast 
to the case cf a rotating liquid, the oscilla- 
tory motion has no detrimental effect on 
the stability cf the projectile. In any in- 
stance of instability, energy is transferred 
to the perturbed motion. When aerody- 
namic forces are not destabilizing, the per- 
turbation energy must have its origin in 
the projectile-liquid system itself. However, 
if the projectile and liquid have no spin, the 
energy cf the unperturbed system is at its 
lowest value and hence no energy can be 
transferred to the perturbation. This is dif- 
ferent for the spinning projectile where a 
large amount of rotational energy is stored 
in the system. 

3-4.3   COMPUTATION   CF   EFFECTIVE   MOMENTS 

OF  INERTIA 

For a nonspinning liquid the equations cf 
perturbed fluid motion, Eqs. 3—3 and 3-4, 
reduce to 

9v 
at 

v P- 
p 

=    0 

(3—36) 

(3-37) 

In order to compute the perturbed flow, it 
is often convenient to eliminate T. Taking 
the divergence of Eq. 3—36 and making 
use of Eq. 3—37 yields 

V2p = Q (3-38) 

In polar coordinates Eq. 3_38 reads 

Sr7 

1 jD + i 
dr 

2 
a p 
ae2 

2 
a P 

dz 
— = 0  (3—39) 

In the discussion which follows some basic 
results for cavities cf rotational symmetry 
are presented. It is assumed that the cav- 
ity is given — in body-fixed coordinates — 
by an equation: r'2 = x'2 t y'2 = R2 (z1) 
or, according to Eq. 3—17, in space-fixed 
coordinates 

3-4 2 
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F(r,e,z,t)=r2-R2(z) 

dRz 
- (2z + ^L)t (1 cos 6 + m sin 0 ) = 0 

dz 

The boundary conditions follow when Eq. 
3—40 is substituted ii Eq. 3—12 and sec- 
ond order terms are neglected 

(1 cos 9   + m sin <9 )(z +R^?) = u - w^? 
dz dz 

whem=R(z) I'•*—*1 ) 

boundary condition Eq. 3-45 for the func- 
tion f of the two variables r and z. Further 
computation of flow and pressure fields can 
be performed only when the shape of the 
cavity, i.e., the function r = R(z) , is given. 
As an example, the solution of Eqs. 3-44 
and 3^45 for the spheroidal cavity is given 
in par. ^H Without the final determina- 
tion of f(r,z), an important result can be 
derived from Eq. 3-43. Substituting Eq. 
3—43 into Eqs. 3—30 and 3—31, one ob- 
tains 

M     =-1 T   ,     M    =-m T (3-46) zx e yz e v * 

Taking  the derivative of Eq.   3—41   with 
respect to tand substituting 

9u =      l   3P       A    dff-     1   rip —    - p-gB and —j- - p-§*- 

according to Eq.  3—36 yields the following 
condition for p 

(1 cos 0 t m sin e ) (»*=*(£-trt; 
when r = R(z) (3—42) 

The form of Eq. 3—42 of the boundary con- 
dition and  the  differential  equation, Eq. 
3—39, suggest that the factor (1 cos 6 + m 
sin 6 ) should be separable from the solu- 
tion of p. Thus, the solution is sought in the 
form 

p = - p(l  « e   tu  sin e ) . f(r,z)     (3-~4:iJ 

where f(r,z) satisfies the equation 

±2, dzi + l_m_ _f   + 92f 0 (:j—44) 

dt2    r   9r     r2 az' 

and the boundary condition 

/z + RdRW_aj-dR_a_n 
\ dz/     (ar     dz „J?~> wnen r = R(z)      (3-45) 

The fluid dynamic problem thus is reduced 
to the problem of solving Eq,  3—44   with 

with T, = pH"     /    f(a: 

(3-47) 

The components cf the moment, according 
to Eq. 346, are proportional to the accel- 
eration cf the corresponding components of 
the yaw angle. Substituting Eq. 3—46 into 
Eq. 3—35 yields 

(T+T )£    -inL£   -C§ = 0 (3-48) 

Eq. 3—48 shows that the reaction of the 
liquid upon the projectile can be described 
by attributing to the liquid an "effective" 
moment of inertia T   given by Eq. 3—47. 

This result is derived here for the ap- 
proximate linearized equations cf motion 
but it is valid also within the exact theory, 
as shown by Zhukovskii4 in 1948. 

3-6   SPINNING IIQUID 

3-5.1   INTRODUCTION 

Except for a short "spin-up" period the 
liquid within tne cavity of a spinning pro- 
jectile can be assumed to rotate with the 
projectile as if solid. For this state cf solid 
rotation, the equations of perturbed fluid 
motion assume a particularly simple form. 

3-13 
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Setting   V = Qr, where f2 is the axial spin, 
Eqs. 3-8 to 3—11 reduce to 

- 21 .ap/p. o 

Jl + Q il+2ßu + iiP/P   =0 
at       de T ae 

_aw+ n aw+ ap/p =n 
at ■      3z 

_§H + H + 1 J^I + _§Z = 0 
3r     r     r    30       3z 

(3-49) 

(3—50) 

(3-51) 

(3—52) 

general motion. For example, a pure pitch- 
ing motion at fixed frequency w is 
1 =a0 coswt, m =0. This pitching motion is 
obtained by superposition of two preces- 
sional motions with frequencies to and - 
(1 + im) = Ciscos wt = J   (aQeiwt o0e "1" -SUB/. 

Due to the linearity of the perturbation 
equations, the perturbed flow and the mo- 
ments on the casing consequent to the gen- 
eral yawing motion can be obtained by 
superposition of the particular flows and 
moments, respectively. 

As for the perturbed motion of the non- 
spinning liquid (par. 3—4), solutions ofEqs. 
3-49 to 3—52 are sought by the method 
cf separation of variables. In the nonspin- 
ning case, it was possible to separate from 
the solution the H and 6- dependence in 
form cf a factor(I cos Mm sinö) (see Eq. 
3-43). It can be shown that in the case cf 
a spinning liquid a separation cf the t- and 
8-dependence is not possible except for 
special motions of the projectile. The spe- 
cial motions for which separation is possi- 
ble are described by 

(1 + im) V lojt (3—53) 

where u> may be complex, while aQ — the 
initial yaw angle — is a real constant. For 
complex u),  i.e.,  if w= wR ■* itOj, Eq. 3—53 
describes a damped ( Wj>fj) or undamped 
(u)j <0) nutational or precessional motion. 
It is well known that the actual yawing 
motion cf a spin-stabilized solid projectile 
is of the type given by Eq. 3—53 and, it 
willbe shownlater, that the presence cf the 
liquid does not alter the character of the 
motion although it may alter the frequen- 
cies cf nutation and precession and —most 
noteworthy —the damping rates. 

Although the particular motions, Eq. 
3—53, suffice to describe the stability be- 
havior cf the projectile, it should be men- 
tioned that any motion can be represented 
as superposition cf particular motions so 
that the expressions, Eq. 3—53, may be 
considered as Fourier components of the 

3-14 

3—5.2 TVE BOUNDARY VALUE PROBLEM 

In this paragraph some basic results are 
presented which rest on the following 
assumptions: 

(1) The cavity has the shape cf a body 
of revolution; the equation of the 
cavity surface is:  r'  =R(z') 

(2) The liquid has achieved full spin, 
V =ftr 

(3) If the cavity is only partially filled, 
the liquid forms —prior to perturba- 
tion — a cylindrical free surface. The 
equation cf the free surface is r = b; 
the radius cf the cavity R(z') is every- 
where larger than the radius cf the 
void b. 

(4) The projectile describes a yawing 
motion cf the type:  ltim= oQelwt" 

The boundary value problem can be formu- 
lated most conveniently using complex no- 
tation. It is understood that, when complex 
notation is used, only the real part cf an 
expression shall have physical significance; 
exceptions are equations like 3—35 and 
3—53 where two real components cf a vec- 
tor are united into one complex quantity 
(1 t im), etc. Under the assumptions (1) to 
(4) the boundary conditions — Eqs. 3—21 
and 3—28 —assume the special form 

(n-!j|w) = -i*(n  -oWz + R^e1^ -*> 

whenr = R(z)  (3—54) 
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p\at       del 
when 

(3-55)      n2b <■n " " >f' + 2 n f/f - ( n - u) )f = 0 
4fi2-(fi-u))2 (3—62) 

when r = b 

The above boundary conditions suggest 
that the solution of Eqs. 3—49 to 3—52 is 
of the form 

u = u(r,z)ei<wt- 6) 

Y = v(r,2)ei(wt-0) 

w = w(r,z)ei(wt_Ö) 

_E=f(r,2)ei(Wt- d> 
P 

In  terms of these quantities, Eqs.   3-41 
to 3—52 can be put into the following form 

(writing: P=*.l.= *)= 

1U = _(n -co)f + 2 nf/r 
4£22-(£2- w)2 

v=   2Qf + (n-a)f/r 
4£22-(£2-w)2 

w = — 1 
fi — CO 

(3-57) 

(3—58) 

(3—59) 

dli + 1  9f _ f _ 

8r2    r   9r     r2 

4^ 

(n- w)2 
.-1 

a22 

(3—60) 

The boundary  conditions, Eqs. 3—54 and 
3—55, become 

(£2 -co)P +   252 f/r + dR [z_ 

AQ.A -{Q. -co) 2      dz (fi -co) 

-a(n-w)(z + lÄ (3—61) 

when r = R(z) 

As a special case we consider the boundary 
condition on the walls of a cylindricalcavity 
with radius a and two plane endwalls at 
z = z1(z2. At the  cylindrical  sidewalls the 

boundary condition is: dR = 0 and Eq. 3—61 
becomes dz 

(3-56)       (n-q))f' + 2ftf/r 

4£2
2
-(£2-UJ)

2 

oz(f2-w)      (3—61a) 

when r = a 

At the plane endwalls ■;— becomes infinite 

and Eq. 3—61 reduces to 

Q, — LO 
- at( Q, — w), 

when z = z1( z2 

(3—61b) 

3—6 GREENHILL'S   SOLUTION   FOR SPHE- 
ROIDAL CAVITY 

The stability problem for the completely 
filled spheroidal cavity was solved by 
Greenhill2 in 1880. In 1940 Greenhill's 
solution was applied to a liquid-filled spin- 
ning projectile by Milne, who exhibited the 
stability criterion in form of a simple dia- 
gram (Milne's graph). Mine also compared 
theoretical predictions with experimental 
data of free flight firings. The stability cri- 
terion of Mine is discussed in Chapter 4. 

Greenhill's solution requires relatively 
little computational effort; nevertheless, the 
solution displays the essential features cf 
the liquid-filled projectile problem. For 
these reasons the solution is discussed in 
this paragraph in detail. 

It is assumed that the cavity is spheroi- 
dal; its equation is 

,.2 R2(z') = a2(l -z,2/c2) (3—63) 

3-4 5 
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where 2a, 2c are the lengths cf the principal 
axes cf the spheroid. A simple solution of 
Eq. 3—60 is 

f = kra (3—64) 

where k is a constant yet tobe determined. 

Evaluating the boundary condition Eq. 
3—61 with R(z) and f(r,z) given by Eqs. 
3—63 and 3—64, respectively, yields for 
k 

i = g(K2-l)    (^-^)2(ft + ^)       (3-65) 
(n + w) -K2(Q -w) 

where K = g- • 

It is thus shown that Eq. 3—64 with Eq. 
3—65 solves the boundary value problem 
for a spheroidal completely filled cavity. 
The perturbation pressure and velocity 
components of the perturbed fluid motion 
follow from Eqs. 3—64 and 3—59. The per- 
turbation pressure is 

p=   akTzei(Mt-G) (3—66) 

(K2—1' 
——I, 

the right-hand side of Eq. 3—65 becomes 
infinite  or   the yaw amplitude a  is zero. 
In fact, at this frequency the solution, Eq. 
3-64, satisfies the homogeneous boundary 
condition which is obtained from Eq. 3—61 
when a is set equal to zero. This means 
that the  liquid can undergo free oscilla- 

tions at the discrete frequency wn= Q (—V \K2+l/ 

A frequency cf free oscillation is usually 
referred to as "natural frequency" or 
"eigenfrequency". It is shown later that 
frequencies of free oscillation play an im- 
portant role in the stability theory of a 
liquid-filled projectile; generally the projec- 
tile becomes unstable when the frequency 
cf nutation of the projectile is sufficiently 
close to a natural frequency. Usually the 
mass of the liquid is small compared to the 

mass of the projectile; and, hence, the re- 
action of the liquid upon the projectile is 
small. When, however, the frequency of 
yaw approaches a natural frequency, the 
liquid oscillations attain very high ampli- 
tudes and the reaction of the liquid upon 
the projectile becomes significant. This 
effect is discussed in the paragraph which 
follows for the case of the spheroidal cav- 
ity. 

3—6.1   THE   MOMENT  ON A  PROJECTILE WITH 
SPHEROIDAL CAVITY 

3—6.1.1   Center of Rotation Coincides With Center 
of Cavity 

The moment on the projectile is obtained 
by evaluation of the integrals, Eqs. 3—30a 
and 3—31a. The pressure in the liquid js 

P=( p/2K>V tp (3-67) 

where the first part ( P/2) U2r2 is the pres- 
sure due to the-basic flow, and the second 
part p is the pressure due to the perturbed 
fluid motion. 

At the cavity surface we have 

r2 = R;(z')t2 cv z'R(z')ei(Wt - 9) 
(3-68) 

Eq. 3—67 evaluated at the cavity surface 
yields 

P(z-, e,0 = _P tt2R2(z') 
2 

ttfP^VRCz'te^Wt   _Q) 

+ P(z', 0,0 (3-69) 

p (z1, 8,t) = Pkz'RtzOe"0" _ ö)     (3-70) 

with 

(Eq. 3—70 follows when Eq. 3—66 is eval- 
uated at the cavity surface and higher 
order terms are neglected.) Substituting 
Eq. 3—69 into Eqs. 3—30 and 3—31, and 
integrating yields for the hydrodynamic 
moment on the projectile (setting 
oe'U t - 1 t im) 

Z-* 6 
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M=MzxtiMyz 

(ltim)tt 
,  a2M( , 1   -     T„(l   t   T-T2) 2     _i(K2-l)T 2  

'0 

(3-71) 

where 

M,   = P_ a2c, mass cf the liquid 

-¥—   , dimensionless yawing 
"     frequency 

wo _ K2-l 
TO = , dimensionless eigenfre- 

n     K2+l     quency 

K    = c/a , fineness-ratio 

It should be emphasized that both the 
basic pressure and the pressure perturba- 
tion p contribute to the moment on the pro- 
jectile. The basic pressure —represented 
by the first two terms cf Eq. 3—69 — is 
rotationally symmetrical about the z-axis; 
about z\ however, it contains a small anti- 
symmetrical part in addition to the large 
symmetrical part. Clearly, the symmetri- 
cal part gives no contribution to the mo- 
ment. The antisymmetrical part, however, 
which is cf first order in the yaw angle, 
must be considered. 

Eq. 3—71 was derived under the assump- 
tion that the center cf rotation coincides 
with the center cf the cavity. This restric- 
tion can easily be removed as shown in the 
discussion which follows. 

3—6.1.2 Change of the Center of Rotation 

Tet us consider the case that the center 
cf the cavity lies a distance h above the 
center cf rotation and the latter is kept at 
z = 0 . Generally, a rotation about the point 
z =0 is composed cf a rotation about z = h 
and a translational motion cf the point z =h. 
Because cf the principle cf superposition, 
the pressure field produced by the com- 
bined motion is the sum of the pressure 
fields due to rotation and translation. 

The solution cf the boundary value prob- 
lem for the combined motion is, instead cf 
Eq. 3-64, 

f = kr(z - h) t <*h( u)2 - Sl2)r (3-71a) 

The part kr(z - h) represents the pressure 
field due to rotation  about z = h, and 

ah( w2- n2)r is the part due to the trans- 
lational motion. It can be shown readily 

that the second part, oh( w2- Q2)t, is inde- 
pendent cf the cavity shape. Precisely, if 
f(r,z) solves the boundary value problem 
for a completely filled cavity of rotational 

symmetry, then     f(r,z -h) t ah(u>2 -!T22)r 

is the solution for the case that the center 
cf rotation is changed in the way described 
above. 

For the   moment   M,   on the projectile, 

one finds in a generalization of Eq. 3-71 

M, =Mth2  w2Mf(ltim) (3-71b) 

where M is given by Eq. 3 _ 71 and Mf is the 
mass of the liquid. 

It can be shown that the last equation 
has general validity if M is interpreted as 
the moment on the projectile consequent 
to rotation   about the  center of gravity. 

The above formula for Mh shows that — 
with respect to the superposed transla- 
tional motion — the liquid reacts in the 
same way as a rigid body. In fact, the 
liquid moves like a rigid body, provided 
the casing is not rotated about a trans- 
verse axis and no free surface is present. 
If the cavity is only partially filled, the 
free surface bounding the liquid is being 
deformed when subjected to a lateral ac- 
celeration and, consequently, the reaction 
on the casing is different from that cf a 
rigid body. The motion of the liquid in this 
case is more complex and depends on the 
cavity shape. If the cavity is almost com- 
pletely filled — as usual in practice — Eq. 
3-71b is still a good approximation. 
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3-6.2     THE  MOTION OF TVC   PROJECTILE 

Substituting Eq. 3—71  into the dynamic 
equation, Eq.   3—35,  and recalling that 

i = (1 + im) =  o0e' wt    , yields the following 
condition for T 

T T
2
-LT+ fciß = 

4T T   — 

where  ß = 4TP, 
L2fi2 

(3-72) 

(3—73) 

and D=_l_i(K2-l)T[l-     T0(l+    T-    T2)] 

(3—74) 

For the empty projectile the right-hand 
side of Eq. 3—72 is zero and one has the 
well-known solution 

_L_ 
2T 

i±yi-p (3-75) 

where ß is the reciprocal of the gyroscopic 
stability factor. When ß<l the projectile 
is stable and its nutational and preces- 
sional frequencies are, respectively, 

#('+/^e> (3—76) 

moved by increasing the  spin.  Eq.  3—71 
shows that the moment due to the liquid 
is proportional to Q, . Increasing the spin, 
increases the moment so that the ratio of 
liquid forces and inertia forces is independ- 
ent of the spin. This fact is also displayed 
by Eq. 3—72; only the term containing pis 
influenced by a change of spin. 

A further discussion of Eq. 3—72 may be 
limited here to two extreme cases: 

(1) A spheroidal  mass   of liquid con- 
tained in a thin-walled casing. 

(2) A  heavy   top  with   a small liquid- 
filled cavity. 

The first case had found the attention of 
Kelvin5 who had demonstrated that a thin- 
walled spheroidal top fiJl cf liquid which is 
pivoted at the center of the spheroid can be 
made unstable by changing the shape cf 
the casing from an oblate into a slightly 
prolate form. Greenhill's solution2 gave 
the mathematical explanation of this phe- 
nomenon. The assumption that the left- 
hand side of Eq. 3—72 is zero, requires 
D = 0 , or 

r0(l + T -   T2) = 1 (3—78) 

L (l-f^ß) (3-77) 

Instability occurs only when ß>l , i.e., 
when the roots of Eq. 3—75 are complex. 
Similarly, the liquid-filled projectile is un- 
stable when a root of the complete Eq. 
3—72 is complex. (Since Eq. 3—72 is a 
cubic with real coefficients, it has either 
three real roots or one real and two con- 
jugate complex roots.) 

The usual procedure for removing the 
gyroscopic instability is to increase the 
spin of the projectile, which has the effect 
of decreasing ß. 

It was noted by Stewartson' that the in- 
stability caused by liquid oscillations is of 
a different kind; the latter cannot be re- 

The roots of Eq. 3—78 are complex and the 
top is unstable when 

0  < T0 <1 or 1< K<3 (3-79) 

Eq. 3—79 is the criterion for instability of 
a spinning liquid mass enclosed in a prolate 
spheroidal thin-walled cavity. The spheroi- 
dal mass is stable for K< 1 — i.e., when the 
spheroid has an oblate shape — while it 
becomes unstable for a slightly prolate 
shape. 

Generally, the problem of liquid-filled 
projectiles is more relevant to the other 
extreme case (case 2): the mass of the 
liquid is small compared to the mass cf 
the projectile. Then the righbhand side cf 
Eq.  3—72  is negligible except near T = T0 

3-18 
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where T _ T has a pole. Dis a slowly vary- 

ing function of T . Thus, since D/T-T0IS im- 
portant only when a root of Eq. 3—72 
occurs near T0, D(T) may be replaced by 
D( T0 ) the residue of the pole. 

It can be seen readily that, when D is 
small, the three roots of Eq. 3—72 are near 
Tp, Tn, and T0, respectively. If D is nega- 

tive, the root near TP is always real, while 

the roots near Tn and T0 can become com- 

plex   conjugates when   Tn    is  sufficiently 

close to   T     If T   ~ Tn the left-hand side 
'o- n ~ 

of Eq. 3—72 may be expanded about Tn 
and one has approximately 

(T -     T„)( T   -    Tn) - 

L /T^T 
(3—80) 

T„  +     Tn or  T -. 
(   T„  -      T„)< D/L 

yr^r 

However, according to Eq.   3—74,D( TQ)is 

always negative, so that only the nuta- 
tional component of the yaw can become 
divergent. Eq. 3-82 describes the com- 
plete range of instability. 

Eq.   3—82   also  shows that   the band- 
width  of instability cannot be decreased 
below the value /-4D(T0)/L 

large the stability factor 1/ß is. 

however 

W the center of rotation does not coin- 
cide with the center of the cavity, the righb 
hand side of Eq. 3-72 must be supple- 
mented — according to Eq.  3—71b —by 
the additional term -h2Mf T

2
, where h is 

the distance between the center of the cav- 
ity and the center of rotation. This addi- 
tional term is usually very small. The addi- 
tional term does not alter the residue 
D(TQ),  i.e., the stability of the projectile 
is not affected by a change of the center 
of rotation 

Thus, if Dis negative, the criterion for in- 
stability is 

The stability criterion Eq. 3-82 can be 
put, alternatively, into the following form 
proposed by Milne  by defining 

Tn~   To   < 
-4D(r0) 

L/T^W 
(3—82) 

'K2-1\T 

vK2+l/L 

Eq. 3—82 shows that the projectile be- 
comes unstable when D is negative and T0 

falls within a small bandwidth about the 
nutational frequency. 

K2+l 

/2a2M, 

5L 

Similarly, when D is positive, instability 
occurs when T0 falls within a small band- 
width about the precessional frequency. 
The criterion for instability then is 

Milne's criterion for instability is 

|l - xl < y ^C*8S1 

T
P~ 

4D(T0) 

LL/I^T 
(3—82aJ 

In deriving Eq. 3—83, use is made of the 
approximation 

T0   « Tn    or     x = 1. 
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3-6.3     EFFECTIVE  MOMENTS   OF  INERTIA OF A 
SPHEROIDAL  MASS  OF   LIQUID 

For the case of a nonspinning liquid, 
Eq. 3—71 may be specialized by setting 
Q, - 0 but £2T = w = finite. One obtains 

M=(lt im)  w2.a2Mf4K2-l)l (3—84) 
5    (K2+l) 

Recalling that (11 i m) = |  = cvQeiwt   yields: 

S*Ü.   with M = -T 

T   = 

dt2 

a2Mf (K
2-l)2 

5    (K2+l) 
(3—85) 

T  is the effective transverse moment of e 

inertia of a spheroidal mass of liquid, rela- 
tive to the center of gravity. As shown in 
par. 3—4, a liquid-filled nonspinning pro- 
jectile behaves as though the liquid is re- 
placed by an "equivalent rigid body" hav- 
ing the same mass but effective moments 
of inertia which are smaller than the mo- 
ments of inertia of the frozen liquid. The 
effective axial moment of inertia is for an 
inviscid fluid for all bodies of revolution. 
Eq. 3-85 shows that for a sphere (K = 1) 
also the transverse effective moment is 
zero. For small deviations from a sphere 
(K ~ l)the effective moment of inertia is 
still very small since it varies like (K2 - l)2. 
In the limit K-*<°, the effective moment of 
inertia  agrees  with that of a solid body 

a2Mf(K2_1}2    c2Mf 
T   =lim e    K-co      5     K2 + 1 

(3—85a) 

When the center of rotation does not 
coincide with the center of gravity, the 
effective moment of inertia follows from 
Eq. 3—71b 

<Te>h T   th2Mf e 1 
(3—86) 

where Te and (Te)h are the respective mo- 
ments of inertia about the center cf gravity 
and about a point which is a distance h 
above the center of gravity, and Mf is the 
mass cf the liquid. Eq. 3—86 is completely 
analogous to the corresponding relation 
for a rigid body. 

3-7   STEWARTSON'S   SOLUTION   FOR     A 
CYLINDRICAL CAVITY 

3-7.1    INTRODUCTION 

Stewartson's solution for the cylindrical 
cavity is certainly the most important con- 
tribution to the theory of liquid-filled pro- 
jectiles, at least from the proj ectile de- 
signer's point of view. Cylindrical cavities 
are favored by various design considera- 
tions; in fact, most of the existing liquid- 
filled projectiles have cylindrical or nearly 
cylindrical cavities. On the other hand the 
solution for cylindrical cavity includes the 
practically important case of partially filled 
cavity, while Greenhill's solution for the 
spheroidal cavity cannot easily be ex- 
tended to the partial fill conditions. 
Stewartson's solution is the only known 
exact solution for partially filled cavities 
and there seems to be little hope that 
exact solutions can be obtained for other 
cavity shapes. 

For a cylindrical cavity, the boundary 
conditions assume a particularly conven- 
ient form, and the boundary value problem 
becomes amenable to methods of solution 
which are briefly outlined in par. 3—7.2. A 
discussion cf the main results of Stewart- 
son's analysis is given below. For further 
information the reader is refferred to 
Stewartson's original paper1 and a more 
detailed analysis by Ash and Gundersen' . 

The calculations show that, in a generali- 
zation of the results for the spheroidal 
cavity, the projectile becomes unstable 
whenever the frequency cf nutation of the 
projectile is sufficiently near to one cf a 
number of natural frequencies of the liquid. 
The completely filled spheroidal cavity ap- 
pears tobe a special case, as only one 
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mode of free oscillation is related to in- 
stability. (There are other modes of free 
oscillations of the liquid in a spheroidal 
cavity which, however, do not produce a 
moment nor are they induced by the yaw- 
ing motion of the casing.) 

For the cylindrical cavity a doubly infi- 
nite number of modes of free oscillation 
occur in contrast to the one mode for the 
spheroidal cavity. The different modes of 
oscillation can be characterized by pairs of 
numbers (n,j) where n and j relate to the 
number of radial and axial half-waves of 
the respective mode of oscillation. Asso- 
ciated with each mode (n,j) is a natural 
frequency Lonj and a residue D determining 
the bandwidth of instability. 

Similarly as for the spheroidal cavity, 
the moment due to the liquid is small ex- 
cept when the yawing frequency of the pro- 
jectile  w  approaches a natural frequency 
U)   • 

nj 

Mathematically, the moment is a very 
complicated function of the yawing fre- 
quency w, having poles at all frequencies 
wnj If w is not near a pole, the moment is 
small and may be neglected. If, however, 
w approaches a natural frequency, say wnj, 
the moment becomes large as D/w - to ■ 
and the equation of yawing motion, Eq. 
3- 35, reduces to 

The quantity 
-4D 

T T2-LT +fciß 
4TP 

u I   n|^  t small terms 
T

n) (3—87) 

where T = Ü,   T . = —üi and D is the residue 
n     nl     ° 

at the pole. 
r; 

In analogy to the results for the spheroidal 
cavity, Eq. 3—67 yields as condition for in- 
stability 

<JS 
-4D( T .) S = ") 

L v/1 -P 
(3—88) 

where Tn  is the nutational frequency of the 
projectile. 

Wl-ß 
= S will be denoted 

as  "Stewartson's parameter"  in the dis- 
cussion which follows. 

The derivation of Eq. 3—88 is analogous 
to the derivation of the corresponding Eq. 
3—82 for the spheroidal cavity. Eq. 3—88 
also rests on the assumption that D/L is 
a small negative quantity. Computations 
have shown that D is always negative and 
that |D|/L<<1 when the liquid mass is 
small relative to the mass of the projectile. 

The analogy of the solutions for spheroi- 
dal and cylindrical cavities as well as con- 
siderations concerning the general nature 
of the boundary value problem suggest 
that the stability criterion for any cavity of 
rotational symmetry 'can be put into the 
form of Eq. 3—88. The eigenfrequencies wnj 
and residues D( w .) take on values charac- 
teristic of cavity shape and dimension. In 
particular, the dimensionle ss eigenfrequen- 
cies Tnj depend only on the cavity shape 
and fill-ratio; i.e., the Tnj are independent 
of spin, absolute dimensions of the cavity, 
and properties of the liquid. (This is no 
longer the case when liquid viscosity is 
taken into account; see Chapter 6.) 

In the light of the aforementioned rela- 
tions, the spheroidal cavity appears tobe a 
limiting case for which all except one resi- 
due are zero. Computations for a cylindrical 
cavity show that the absolute values of the 
residues decrease rapidly with mode num- 
bers (n,j) so that in practical applications 
only the lowest modes are important (see 
Chapter 9). 

For the lowest radial mode numbers, 
eigenfrequencies and residues have been 
computed and presented in tabulated form. 
The tables are briefly referred to as "Stew- 
artson's Tables". 

It turned out that tables for higher axial 
mode numbers (j =1,2,3 .. .)couldbe absorbed 
into the table for j = 0 because j occurs only 
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in a product: WT) where c/a is the fineness- 

ratio of the cylinder (2c = length, 2a =di am - 
eter). In other words Tnj is —for fixed 
radial mode number n — only a function of 
TtS—. 

(2j+l) 

It should be mentioned that the absorb- 

tion of j into the factor        is a peculiarity 

for the cylindrical cavity' — a result of the 
periodicity  of waves in an axial direction. 

For the tabulation it was convenient to 
separate from D a dimensional factor and 
introduce a new dimensionless quantity R . 

Dti£R2=0 
c 

(3—89) 

Extended Stewartson Tables for c/[a(2j+l)J 
and 2R versus eigenfrequencies T are 
presented in Chapter 4. 

3-7.2   METHOD OF SOLUTION OF THE BOUNDARY 
VALUE PROBLEM 

It is readily seen that a particular solu- 
tion of Eq. 3—60 is 

f(r,z)=C1(Ykr)elk 

where   Y2 = 4Q2 

(Q -w)' 
.- 1 

(3—90) 

(3-91) 

and C[ is a Bessel function of order one 
with argument Ykr. The solution of the 
boundary value problem may be con- 
structed by superposition of particular solu- 
tions of the type Eq. 3—90. For the cylindri- 
cal cavity Stewartson obtains (the nota- 
tion used here is slightly different from 
Stewartson's notation) 

f(r,z) = - a (n -w)2r(z-h) t Xnr t?jm 
"       r 

00 

xrx2j+iJi(Ykr)+z2j+iYi(Ykr> 

cos k(z - h t c) (3-92) 

Jp Yj are Bessel functions of the first and 

second kind, respectively, andk =JL(2j + 1). 
2c. 

The length of the cylinder is 2c and its cen- 
ter is a distance h above the center of rota- 
tion, which is at z = 0. The first term of 
Eq. 3—92 has the effect that the solution 
satisfies the boundary condition, Eq. 
3—61b, at the plane endwalls z -h = + c of 
the cylindrical cavity. The boundary condi- 
tions at the curved sidewall, Eq. 3—61a, 
and at the free surface, Eq. 3—62, lead to 
two conditions of the form 

-h=    y C2+1 
(i) cos k(z -h tc)   ; i = 1,2 

j = 0 

(3—93) 

where the constant coefficientsC,., ,(1) and 2j+l 

C2.+1 are linear combinations of the X2-+1 

andZ,. ...On the other hand, theC,.,,(l) are 
2jTl 21 + 1 

the coefficients of a Fourier expansion of 
(z - h) and areCr+,(l)= - -2-r Thus one ob- 

tains twolinear equations for each pair 
(X,.,., Z,.,,) which suffice to determine the 

2j+l'      2| + 1' 

X2j+1andZ2j+1. 

The term XQr t Z0/r of Eq. 3—92 takes care 

of the lateral motion of the cavity; it is zero 
when h =0, i.e., when the center of rotation 
coincides with the center of the cavity. 
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When the cavity is completely filled, i.e. 
whenb = 0 , Zn = 0, Z 

2j+l 
0 and only the X„ 

X2.+1 must be computed. (That Z2.+1= 0 

when b = 0 follows readily from the fact that 
Yj ( Ykb)becomes infinite for b = 0.) 

Obviously, the method outlined above is 
not applicable when the cavity surface or 
the free surface is noncylindrical. In either 

case the coefficients C2+1
(l)   of Eq.  3—93 

would depend on z, and the elimination of 
theX2.+1, Z2j+1becomes impractical. 

The special simplification achieved when 
the boundaries are cylindrical renders pos- 
sible the solution of another problem, 
namely, the completely filled cylindrical 
cavity with a cylindrical central body 
(burster). At the surface of the immersed 
cylindrical body the boundary condition is 
that of a solid wall, i.e., Eq. 3—61 must be 
satisfied at r = aand r = bwhen b isthe radius 
of the central body. This yields again two 
conditions for X2-+1, Z2-+1. 

Eigenfrequencies and residues for the 
cavity with central burster have been com- 
puted and tabulated'. Tables for various 
ratios b 2/a2 are presented in Chapter 4. 

Calculations show that the jth terms 
under the sum of Eq. 3—92 solve the homo- 
geneous boundary conditions (Eqs. 3—6 1b 
and 3—62 with 11 im = 0) when Yka assumes 

one of an infinite series of discrete eigen- 
values  y,  (n = 1,2,3 .. .). 

This leads to the eigenvalue-condition 

Yka 1    TT a(2) t 1) 

(1- Tn)
2 2      c 

= yn(T0,bVa2) (3-94) 

a = 1,2,3 ... 

j =0,1,2,3 ... 

The yn depend on T0 andb2/a2. The eigen- 

frequencies TQ can now—in principle—be 

found solving Eq. 3—94. It is, however, dif- 
ficult and not even practical to eliminate T0 

from Eq. 3—94. Instead, T0 is considered 

as the independent variable (first column 

in   Stewartson's  Tables)   and c/[a(2j+l)] is 

tabulated as function of T0 (second column 
in Stewartson's Tables). It is 

c 
S(2T+iT 

IT/2V (1 -   T0)
2 

y„(-0.b2/a2) 
(3—95) 

1,2,3 

Once the amplitudes X, .+1, Z2j+1cf the pres- 

sure fluctuations are known, the moments 
on the projectile can be computed through 
integration (inserting Eq. 3—92 into Eqs. 
3—30 and 3—31 and integrating). By a 
similar argument as for the spheroidal 
cavity (par. 3—6) it follows that, near reso- 
nance, the moment on the projectile be- 

comes large as  —D— Q2 (1 tim). 
T-    Tn 

3—8  THE EIGENVALUE PROBLEM 

The importance of eigenfrequencies for 
the stability of a liquid-filled projectile was 
discussed in pars. 3—6 and 3—7. For a 
heavy projectile filled with a comparatively 
small mass of liquid, the stability problem 
reduces to the problem of calculating the 
eigenfrequencies and associated residues. 

Frequently, an exact knowledge of the 
eigenfrequencies appears to be of primary 
interest while approximate values for the 
residues are sufficient. The residue deter- 
mines the bandwidth of instability. Even 
when the value of the residue is only ap- 
proximately known, it is still possible to 
avoid  instability   when  the  frequency of 
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nutation is chosen sufficiently remote from 
any one of the eigenfrequencies or the cy- 
lindrical cavity is so constructed as to have 
its eigenfrequencies sufficiently remote 
from the nutational frequency of the pro- 
j ectile. 

On the other hand, the calculation of 
eigenfrequencies is usually far easier than 
the solution of the complete stability pro- 
blem. For the reasons given above one is 
very often content to know just the eigen- 
frequencies for a given cavity shape and 
to estimate the value of the residue. It was 
shown experimentally7 that for small 
changes of cavity shape there may be sig- 
nificant changes of the eigenfrequencies 
while the associated bandwidths change 
very little. Precisely, when the eigenfre- 
quencyis shifted by an amount equal to the 
bandwidth, the bandwidth itself remains 
practically unchanged. It is clear, then, 
that the eigenfrequencies should be known 
with a much higher degree of accuracy 
than the residues. These considerations 
play an important role in computation of 
eigenfrequencies in noncylindrical cavities, 
Chapter 7. 

An impression of how frequency and resi- 
due depend on cavity shape is furnished by 
Table 3—1 which shows comparison of data 
for cylindrical and spheroidal cavities. 

TABLE 3-1.    EIGENFREQUENCIES AND 
RESIDUES OF THE BASIC MODE (n= 1, j = 0) 
FOR CYLINDER AND SPHEROIDAL CAVITY 

c/a 2R 
To cyl. cav. spher. cav. cyl. cav. spher. cav. 

0.00 0.995 1.000 0 0 

0.10 1.117 1-1-95- Q&\& 9r243- 
0.20 1.262 1.225 0.682 0,540 

conditions (1 t im = 0) have solutions repre- 
senting liquid oscillations at discrete fre- 
quencies (eigenfrequencies). The problem 
is to find the frequencies for which solu- 
tions exist. For the stability problem only 
those solutions are of interest which pro- 
duce a moment on the projectile. 

For cavities of rotational symmetry the 
free oscillations are of the form 

(v,p/p)=[v(r,z), f(r.z)]ei<wt-md) 

(m= 0,±1,±2>±3) ...) 

Only the modes with m = l,w>0 are of in- 
terest for the stability problem since modes 
with |m| * 1 cannot produce a moment, and 
modes with m = - l,w>0 cannot be in reso- 
nance with the nutational motion of the 
projectile. The case m = - l,w>0 is physi- 
cally the same as m = l,w<0 and corre- 
sponds to waves traveling retrograde rela- 
tive to the spin. Although such waves exist, 
they can be excluded here from considera- 
tion since they cannot cause instability. For 
a liquid-filled projectile it is possible that 
one of its frequencies is negative, i.e., that 
the yawing motion is reversed. An example 
is the oblate spheroidal cavity. Its only 
eigenfrequency is negative and, as a con- 
sequence, the root nearest to TQ of the 
characteristic equation may be negative. It 
can, however, never become complex and 
thus does not lead to instability. 

For the reasons given above, only posi- 
tive eigenfrequencies are of interest. In 
practice, nutational frequencies are small 
and rarely exceed 1/3 of the spin fre- 
quency. It is, therefore, sufficient to calcu- 
late eigenfrequencies only up to about 1/2 
of the spin frequency. The domain of 
interest of TQ is: 0  < rQ < 0.5. 

The problem of calculating the eigenfre- 
quencies — briefly denoted as the eigen- 
value problem —is described below. 

The equations of perturbed fluid motion 
in connection with homogeneous boundary 

For a cylindrical cavity the theory shows 
that residues associated with higher radial 
modes become very small and it is reason- 
able to assume a similar behavior for other 
cavities, too. It is sufficient then to calcu- 
late only the eigenfrequencies of the lowest 
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modes. It should be noted that — in con- 
trast to acoustic or elastic vibrations, etc. — 
higher modes of liquid oscillations do not 
necessarily correspond to larger eigenfre- 
quencies. 

Exact solutions cf the eigenvalue pro- 
blem are known only for ellipsoidal and cy- 
lindrical cavities; it is, however, possible 
to compute eigenfrequencies for a variety 
of other cavity shapes by approximate 
methods . Practical computations of eigen- 
frequencies for nearly cylindrical cavities 
and methods for the approximate solution 
cf the eigenvalue problem are discussed in 
Chapter 7. 
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CHAPTER 4 

MILNE'S STABILITY GRAPH, STEWARTSON'S  AND 
CENTRAL COLUMN TABLES 

4—0  LIST OF SYMBOLS* 

d = exterior diameter of projectile, ft 

F(T)    = function of fineness-ratio c/a and 
of fractional air volume b2/a2 

Ix        = axial moment of inertia of a loaded 
projectile, slug-ft2 

1 = transverse moment of inertia of a 
y ? 

loaded projectile, slug-ft 

M        = mass of loaded projectile, slug 

n        = twist of rifling, cal/turn 

2R      = residue at the pole, obtained from 
Stewartson's Tables 

sg       = gyroscopic stability factor 

V        = velocity of projectile, ft/sec 

Vc       = volume of cylindrical cavity, ft 

GREEK LETTERS 

projectiles in flight. For this purpose he 
had collected all available data from field 
trials conducted by British Services be- 
tween 1926 and 1940. These data pre- 
sented a "bewildering complexity" — all 
attempts at discovering a common cause 
for instability proved unavailing. Numer- 
ous attempts at various correlations be- 
tween intuitively "reasonable" parameters 
also proved unsuccessful. 

2 
In 1880 Greenhill developed a theory 

for instability of a spinning top containing 
liquid which completely filled a spheroidal 
cavity — the liquid spinning with the full 
spin of the top. He showed that only a pro- 
late spheroidal cavity led to instability. 
Milne has reexamined this theory and de- 
rived a condition for instability for the pro- 
jectile containing such liquid-filled cavity. 
The development of this theory is given in 
Ch. 3. 

hq 

= aerodynamic nutational yaw damp- 
ing rate, per cal or per ft 

= nutational yaw damping rate due 
to liquid, per cal or per ft 

= maximum rate of divergence of nu- 
tational amplitude, per sec 

= v/l - 1/s 

4—1.2 INSTABILITY CRITERIA 

It is shown in Ch. 3 that the condition 
for instability of the projectile containing 
a prolate spheroidal cavity full of liquid 
is by Eq. 3—82 

< rn ~    T0Y 
-4D(T0) 

(4-1) 

>V   MILNE'S STABILITY GRAPH 

4—1.1   INTRODUCTION 

E. A. Milne1 working (1940) under the 
auspices of the British Liquid-Filled Shell 
Panel of the Ministry of Supply was con- 
cerned with finding some rationale behind 
the unpredictable behavior of liquid-filled 

*For identification of other symbols in this chapter, refer 
to Chapter 3. 

where, to be consistent with the notation 
of Ch. 2 which notation is more familiar to 
the American designers, we have replaced 
the axial moment of inertia L by   I , and 

\/l - ß   by °" = v 1 — 1/s .   The expression 

* L and T, Chapter 3, are defined for an empty projectile. 
We replace L and T by I, and I„ respectively, for a 
loaded projectile. It can" be shown that the end "results, 
i.e., instability criteria, are identical whether written for 
an empty or loaded projectile. Since Milne uses the 
inertial properties of a loaded projectile, Eqs. 4-4 and 
4—5 were written for the loaded case. 
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for D(Tn)    —a residue at the pole  T0 —   is 

D(T0)=|Mfa
2_^_(T0)2 (4-2) 

5 (K2+l)2 

which is obtained by replacing T by T0 in 

Eq. 3—74 and substituting for T0 — the 

eigenfrequency  of the liquid — its value 

K2-l 

K2 +1 
(4-3) 

Thus  replacing  D( TQ ) in Eq.  4-4    by its 

value, Eq. 4—2, and after some slight re- 
arrangement th e instability criteria be- 
comes 

.-1     <4 
4K2 2Mfa

2 

(K2+l)2 5Ix°" 
(4-4) 

To simplify the writing, define 

2K /2M£a
2 

y = ■ 

(4-5) 

K2+l V   51 o- 

In terms of the variables  x and y, the in- 
stability criteria become 

(x2 -l)2   <4y2x4 

or 

t2 -l|   <2yx2 (4-6) 

Eq. 4-6 readily reduces to Eq. 3—83, i.e., 

|x2 - lj = |(x - 1) (x 11)| and if near resonance 
Tn Ä To> x ~ 1' Eq. 3—83 follows. 

4-1.3 MILNES STABILITY GRAPH 

Milne has expressed the instability cri- 
teria as 

x—y<l<x + y (4-7) 

which form can be obtained fromEq. 4-6. 
He defined x and y as 

'K2 - l\/l 

^K2 + 1, 

2K 

K2+l 

/2Mf a 2 

51 

(4-8) 

which are identidal to x and y defined by 
Eq, 4-5 if cr = l. 

In Milne's analysis of actual firings it 
was very difficult to reconstruct the mo- 
ments of inertia of fired projectiles from 
their drawings. He used, therefore, the fol- 
lowing approximate relationships 

I   =0.14Md2 
X 

I   =0.06Md2L2 

y 

where 

M = mass of loaded projectile, slug 

d = projectile exterior diameter, ft 

L= overall length of fuzed projectile, cal 

The use   cf these   approximate relations 
had the virtue cf consistency. 

By use of these relations in Eq. 4—8, 
the x and y become 

x = 0.67L 

5.4K 

K' 

KH1V 5Md 

K2 +1 

2M,a2 

(4-9) 

4-2 
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When these coordinates were computed 
for each projectile and plotted x vs y with 
each projectile being marked whether 
stable or unstable —i.e., going full range 
or falling short — a clear separation was 
exhibited between these regions. A fairly 
unambiguous curve could be drawn be- 
tween stable and unstable regions. Milne's 
stability graph with Eq. 4—9 as coordinates 
is reproduced in Fig. 4—1. 

As can be seen, most of the curve is 
empirical and appears to be only tangent 
to the theoretical curve defining the region 
of instability at x - y = 1 near y = 0. Never- 
theless, it is remarkable that although the 
mathematical model was clearly inade- 
quate — since probably none of the actual 
projectiles had spheroidal cavities and 
were completely filled — the theory indi- 
cated proper correlating parameters. With 
these parameters a heterogeneous collec- 
tion of projectiles and their bewilderingly 
unpredictable behavior in flight fell into 
order, delineating the regions of stability 
and instability. 

I2 

I    T2-I   T    + -j^— 
y x       41 s 

y g 

D(T„) 

T — T. (4—10) 

which is cubic in T . For unstable projectile, 
the three roots are one real and two com- 
plex conjugate. As was shown in Ch. 3 the 
latter are 

1,2 9 9 

4D 

TV 
"(   T  -    T„) 

(4-11) 

These are of the form 
Tj - a + ib 

T2 - a -ib 

Hence the  solution of the yaw equation, 
i.e.,   Eq.   3—35  with Eq.   3—71   added,  is 

^k10eif2at[e-"bt+e"bt] + k20l 
iTpfit 

(4-12) 

Now the graph is probably only of his- 
torical interest. But in its time it served 
a very useful purpose.   If it is to be used 
now for cavity shapes which, as yet, can- 
not be treated theoretically or tested ex- 
perimentally, Milne's paper should be con- 
sulted for other details and fuller apprecia- 
tion of the limitations of his empirical curve. 

4-4.4   RATE OF DIVERGENCE 

where Tp is the precessional frequency 

v>-°-> 
y 

Clearly, the second term in the bracket 
will lead to the divergence of the nuts- 
tional component k10 . The rate of diver- 

gence is nbper sec, or 

prdfetitdeirreit^illify uaitBttaiiheisaaadtit&schUiae 
tional amplitude may grow at a certain 
rate. What is this rate? 

Xliq=l"\/rF_( T„-   T0)
2
, per sec 

(4-13) 

The solution of the yaw equation, Eq. 
3—35, with hydrodynamic moment Eq. 
3—3L added, is a sum of exponentials of 
the form 

eiT^t 

The values of T are the roots of the char- 
acteristic equation, Eq. 3—32. In the nota- 
tion of Ch. 2 the characteristic equation is 

It is to be recalled that the hydrody- 
namic moment was added to the simplified 
yaw equation, Eq. 2—23 (or Eq. 3—3?). 
Therefore, for a complete description of the 
yawing motion of the projectile, the aero- 
dynamic damping rates — as obtained from 
the solution cf Eq. 2-1 —should be added. 
There is no change in the precessional yaw 
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damping rate X    . However, the nutational 

damping rate becomes \{t \H . 

To express \      in other units than per 

sec  — as per foot, for example — divide 
Eq. 4—13 by the velocity V. However, 

Therefore, 

n _ 2TT 

V ~" nd 

or 

/^-<T„-^ 
,per ft 

(4—13a) 

k]"=^\ 
/,*-<T.-^ ,per cal 

(4—13b) 

The nutational amplitude will either grow 
or diminish as 

( \t + \,. )t 
kioe 

4-2   STEWARTSON'S  TABLES 

4—2.1   INTRODUCTION 

Stewartson's theory and his instability 
criteria for the projectile containing a cylin- 
drical cavity of height 2c and diameter2a, 
which is either partially or completely filled, 
were discussed in Ch. 3. As a preliminary 
to the consideration of Stewartson's Tables, 
we may add a few more comments which 
might be useful to the designer. 

It has been shown that for the cylindri- 
cal cavity a doubly infinite number of 
modes of free oscillations occur, in con- 
trast to the one mode for the spheroidal 
cavity. The different modes of oscillations 
can be characterized by a pair of numbers 
(n,j) where n and j relate to the number of 
radial and axial half-waves of the respec- 
tive modes of oscillations. Thus the hydro- 
dynamic moment is much morecomplicated 

than was the case for the spheroidal cavity. 
Nevertheless, the characteristic equation 
of the yawing motion with hydrodynamic 
moment added can be written formally as 

IYT2 -I T   + 4TY~ 
y g 

= Mfc
2F(T) (4-14) 

where Mf is the mass of the fluid, and F(T) 

is a function of the fineness-ratio of the cav- 

ity c/a   and the amount of fluid   l-b2/a2 

in it where 2b is the diameter of the air 
column for a partially filled cavity. F(T) 
contains a double infinity of poles corres- 
ponding  to  all the eigenfrequencies   Tnj. 

It can be shown that if the mass of the 
fluid in a cavity is small relative to the 
mass of the projectile, F(T) can be ex- 
panded into a series of terms of the form 

D(Tni) 

where D(Tnj)  are the residues  at corres- 

T   . It also can be shown ponding poles T 

that  all terms are negligibly small except 
those for which   -rnj   is close to either the 

nutational or the precessional frequencies 
of the projectile. Therefore, if one of Tnj is 

close to the nutational  frequency   Tn,  for 

example, Eq. 4—14  can be written as 

I T2 - I T   t 
y " 41 s 

y g 
T   —   Tnj 

(4-15) 

Eq. 4—15 is of the same form as Eq. 4—10. 
To stress the  analogy  of further analysis 
with that of the spheroidal cavity, we desig- 
nate T_: =  T0 with the understanding that ") 
T0  will stand for any Tn- . 

As before, we expand the left-hand side 
of Eq. 4—15   in a Taylor's series about Tn , 

4-5 
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which is the root of the left-hand side, re- 
taining only the first order term. Eq. 4—15 
becomes 

I.(.-T) = -^>- (4-16) 

For simplicity   of writing define a new 
quantity 

s= P(2R)V 
Lo- (c/a) 

(4-19) 

which is quadratic inT. The solution of Eq. 
4-16 is 

IQ4-To 
2 

-   Tn)2+ 4D 
I o- 

It is to be recalled that the solution of the 
yaw equation, Eq. 3—35 with hydrodynamic 
moment added, is a sum of exponentials 
of the form e1 Tßt For stability T must be 
real; for instability T must be complex 
conjugate. For instability, therefore, the 
discriminant in Eq. 4—17 must be nega- 
tive, i.e.. 

( T   - v     n Tn)' + 
4P   <0 

I  o- 

This can happen only if D < 0. Computa- 
tions of the residues show that all  D( T«i> 
are real and negative. Therefore, the con- 
dition for instability of the nutational am- 
plitude becomes 

(T 
_T  -,2_4|D| 

0 '       ■ <0 
I 

The residue D has the dimensions of 
moment of inertia. For tabulation of the 
residue it is more convenient to separate 

Q 
D into two factors: (^ a quantity p : which 

c 
has the dimensions of moment of inertia 
where p is the density of the fluid, and 2a 
and 2c are the diameter and the height of 
the cavity, respectively, and (2) a non- 

dimensional positive function, say R2, which 
— as the residue D  — depends only on c/a 

and b2/a2, i.e., 

|D| = P^R
2 

and call it "Stewartson's parameter". With 
this parameter the instability condition, Eq. 
4—18, becomes 

<Tn-   Tn)2< S 'n '0' (4—20) 

which  can be written in a more familiar 
form as Stewartson's instability criteria 

-1 < 
T„ -    T„ 

<1 (4-21) 

It is to be noted that the factor 4 in front 
of D in Eq.  4—18  was absorbed in (2R)2. 

By following arguments similar to those 
for the spheroidal cavity, par. 4—1.4, the 
rate of divergence of the nutational ampli- 
tude of yaw is 

,        n yS-( Tn - T0)
2
   ,persec|4-22J 

Iiq        Z 

or 

\..   = JL v/s-( T -   T„)
2
   , per ft (4—22a) q    nd   

The algebraic sum of  V     and the aerody- 

nuts- 

At exact resonance T  =   T„, the rate of n 0' 

namic damping   Ki   will'control the 

tional amplitude. 

At exact resc 

divergence is maximum 

\      = QJs        , per sec («-23) 
max      2 

The width of the resonance band, on the 
frequency   scale,  is  obtained by  setting 
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V.   =0 inEq. 4—22. The width is 

AT0 = ± J S 

or the width is 2 v S. 

It can be readily seen that Eq. 4—-22 is 
an equation of an ellipse with semi-major 

axis  = — v S     and  semi-minor axis v^ • 

The elliptical shape of the resonance band 
is clearly shown in Fig. 4—2. As we shall 
see later, the introduction of viscosity 
markedly   alters the shape of this band. 

4-2.2 THE TABLES AND  THEIR APPLICATION 

In order to use Stewartson's instability 
criteria, Eq. 4—21, it is necessary to know 
the poles  TQ   and the residues 2R at these 

poles. These are functions of the geometry 
of the cavity c/a and the amount of fluid as 

determined by b2/a2. Special tables, 
therefore,  were prepared to facilitate the 
use of Eq. 4—21 for design purposes. 

Let  V   be the volume of the cylindrical 

cavity.   If it  is filled to  ß  fraction  of its 

volume, then    ßVc =Vc(l -b
2/a2)    .    b2/a2 

is fractional volume of cylinder of air of 
diameter 2b. 

Each table is computed for a specific air 
volume ratio b2/a2 at 0.05 intervals. In 
each table — i.e., for a given b2/a2 — the 
first column, or the argument, gives the 
values of the fluid frequencies   TQ(nj).    This 
column is followed by  a column pair, one 
headed by the quantity    c/[a(2j 11)]     and 
another by 2R. The physical significance of 
the quantity     c/[a(2j +1)]    , see Ch. 3, is 
that it is associated with longitudinal num- 
ber of half-wave lengths of pressure fluctua- 
tions. Thus for j = 0 there is one-half of the 
full cosine wave in the cavity; j = 1 corres- 
ponds to 3/2 waves; j = 2 to 5/2 waves, etc. 

It is to be noted that only antisyrnmetrical 
pressure waves give rise to hydrodynamic 
moments. The next column headed by 2R 
shows the residues corresponding to the 
associated frequencies. The first column 
pair corresponds to the radial mode n = 1. 
The succeeding column pairs, i.e., headed 

by c/[a(2j t 1)1 and   2R,   correspond to 
higher radial modes, n = 2,3. Because the 
hydrodynamic moment is proportional to 
the residue at the corresponding pole, and 
these decrease very rapidly at higher 
radial modes, the Tables terminate atn = 3. 
In practice it is found (see Ref. 5 of Ch. 5) 
that the designer will usually be concerned 
only with the first column pair torn = 1. 
Other radial modes, unless unusual cir- 
cumstances prevail such as an exception- 
ally high specific gravity of the fluid, lead 
to negligible moments and could be ig- 
nored. If desirable for peace of mind, they 
always can be computed and the resulting 
instability can be compared with the aero 
dynamic damping. 

We shall make more extensive use of 

these Tables .in Chapter 9. Kere, we briefly 
rllustrate therr use as an mtroductron to 
the next paragraph were we shall apply 
Stewartson's  instability   criteria to the 
BHI Projectile. 

Problem 1. In designing a new projectile 
containing a cylindrical cavity, liquid-filled 
to 95%, we have to select the fineness-ratio 
of the cavity c/a in such a way that the 
cavity will contain no fluid frequencies in 
close proximity to the nutational frequency 
of the projectile. Tet us assume that the 
nutational frequency of a loaded projectile 
is   rn =0.10.  From Stewartson's Tables we 

can readily find all c/a of cavities which 
contain fluid  frequency    TQ=0.10.   In our 

design we should avoid all these fineness- 
ratios. 

To find c/a of resonating cavities we go 

to the Tables to page marked b2/a2=0.05 
(95%fili). On the line T0 =0.10 , in the col- 

umn headed  by   c/[a(2j 11)]    for n = 1, we 
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find the following number 1.114. This num- 
ber signifies that the following cavities, as 
defined by their fineness-ratios c/a, will 
contain fluid frequency TQ = 0.10: 

0,1,2, c/a=l.i: L4(2j tl) 

] c/a 

0 1.114 

1 3.34 

2 5.57 

etc. 

Similarly for n = 2 

c/a = 0.530(2j t 1) j =0,1,2, 

Avoid such cavities. The width of the reso- 
nance band also has to be taken into 
account. But such details will be discussed 
in Chapter 9. 

Problem 2. Suppose a WP-loaded projec- 
tile with a cylindrical cavity filled to 95%is 
tobe shipped to a hot climate where WP 
may become liquid. The fineness-ratio of 
the cavity is 2.1. The nutational frequency 
of the loaded system is Tn = 0.10. Is there 
a possibility that the projectile with liquid 
WPwill become dynamically unstable? To 
answer this question we compute the fol- 
lowing table by referring to the fluid fre- 
quencies and corresponding residues in 
Stewartson's Tables for b2/a2 = 0.05 (linear 
interoplation is used): 

tile appears to be safe. But theinstability 
test has to be performed to assure one that 
this is so. 

4—3 AN EXAMPLE: 152 WIM WP PROJECTILE, 
XM410 

The cavity of the XM410 Projectile, as 
shown in Fig. 2—1, is not cylindrical. Tater 
we shall learn how to deal with such a 
cavity. For the present, however, let us 
assume that the cavity is cylindrical and is 
defined by its fineness-ratio c/a = 1.56, and 
its radius a = 2.68 inches. 

The pertinent physical information 
needed for applying Stewartson's insta- 
bility criteria to this projectile is 

Density of ' liquid WP P : = 3.49 slug/ft5 

I    : 
X 

= 0.0446 slug-ft2 

a; = 0.223 ft 

0" : = 0.73 

Tn  : = 0.25 

Thus, by Eq. 4- -19 

s = : 3.81 x 10-2(2R)2 

Suppose the cavity is to be filled to 95%, 
i.e., b2/a2 = 0.05. What fluid frequencies are 
present in this cavitywith this percent of 
fill? To find this, we compute the following 
table 

2.1 
! 2j tl 

2.10 

T
0WV 2R 

0 0.48(1,0) 1.945 

1 0.700 0.29(2,1) 0.141 

2 0.420 0.26(3,2) 0.035 

3 0.300 0.02(3,3) 0.002 

Then compute the "Stewartson's para- 
meter" ,S' and perform the necessary test 
for instability by applying Eq. 4—21. Since 
none of the fluid frequencies is close to the 
nutational frequency   T  =0.10,   the projec- 

) 
1.56 

2jt 1 T0(nj) 2R 

0 1.56 0.343(1,0) 1.300 

1 0.52 0.087(2,1) 0.0312 

2 0.312 0.050(3,2) 0.0047 

The last two columns in the above table 
were obtained from Stewartson's Tables by 
referring to   the   page   corresponding to 
b2/a2 =0.05and finding the frequencies and 

the residues  corresponding  to    ,-..    ,, = 

1.56, 0.52, etc.   One finds, for example, for 

48 



AMCP 706165 

40 r- 

30 

; 

01 a 

x 

20 

10 

(XM4I0) 

J i L 

L, 
I     »■       i i      I 
•3 .4 .5 

FIGURE 4-2.   RESONANCE BAND IN THE CYLINDRICAL CAVITY OF THE XM410 PROJECTILE 
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1.56 the following 

'o 

0.34 
0.36 

a(2j t 1) 

1.551 
1.605 

2R 

1.286 
1.381 

By simple linear interpolation the value of 
TQ   for  1.56 is  0.343;other entries in the 

above table are similarly determined. 
Clearly, since -rn = 0.25, there is no need to 

consider higher values of j. Even j = 2 is 
unnecessary;    TQ is too far removed from 

the resonance. With the residues we com- 
pute S and the middle term in Stewartson's 
inequality. 

0       n 

/■- 

T0-   Tn 

0.37 0 6.45 xlO"2      0.254        0.093 

1 0.37 xlO-4       0.0061     -0.163        -26.7 

For instability 

-1   < _2 1   <1 

Therefore, this projectile is unstable be- 
cause there is a fluid frequency TQ = 0.34 for 

j = 0 which satisfies the instability condition. 

It is interesting to note that for this 
projectile, although the fundamental fluid 
frequence TQ = 0.34    is  fairly far removed 

from the nutational frequency  Tn = 0.25, the 

projectile is still unstable. The reason for 
this is the exceptional width of the band of 
frequencies present in this cavity 

T0 ± y/J- 0.34 ± 0.25 

or,   from   TQ1 = 0.09   to    TQ2 = 0.59.   This is 

shown in Fig. 4—2 

It is to be noted, however, that fluid fre- 

quencies rQ ± yiTare properties of the fluid 

and the cavity. To be unstable, the projec- 
tile must satisfy the instability condition, 
see Eq. 4—20, 

s-(To-\)2>° 
Thus relative to the nutational frequency, 
the response of the projectile to the above 
range cf fluid frequencies will be, on the 
high side, from 

T„    = T   t J S = 0.25 10.25 = 0.50 
U 1 n        v 

but on the low side, it cannot reach the 
computed value 

T02 - Tn - /s~^ 0.25 - 0.25 = 0.00 

because the lower limit of the frequency 
band present in the cavity is only TQ2 = 0.09. 

Therefore, the resonance band, for this pro- 
jectile, is assymetric. 

Such broadness of the frequency band is 
usually characteristic cf the thin-walled, 
small fineness-ratio cavities. As we shall 
see later, to design such projectiles free cf 
resonance instability usually presents very 
severe design problems. 

The rate cf divergence of the nutational 
amplitude, due to the liquid, is: 

\iq=y  V/S-(T0 - rn)
2 ,per sec 

or, as before: 

Xiiq = ^^"-(To-\)2   -Per ft 

Using the above values of S and T0 for j _ Q, 

we find 

V   = 37.2 xlO'3    , per ft 

This is to be added to the aerodynamic 
damping  of the   nutational   component 

Xj = - 1.60 x 10"3 per ft. Therefore, the nuta- 
tional amplitude initially will grow very 
rapidly. 
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4-4   CENTRAL COLUMN  TABLES 

As was pointed out in Chapter 3, the 
special simplification achieved when the 
boundaries are cylindrical renders possible 
the solution of another problem, namely, 
the completely filled cylindrical cavity with 
a cylindrical central body (burster). Central 
bursters are frequently employed in the de- 
sign of WP projectiles. 

However, to fill the cavity 100%is 
usually difficult to achieve in practice and, 
moreover, some space must always be pro- 
vided for the expansion of the fluid when 
heated. Thus practical usefulness of this 
solution is limited. Nevertheless, special 
tables have been prepared to handle this 
problem when needed. 

The tables, in their structure, are identi- 
cal to Stewartson's Tables. The diameter of 
the central column is designated 2r. Hence, 

the central column occupies r2/a2 fraction of 

the total volume.  The ratio r2/a2 formally 

plays the same role asb2/a2 in Stewartson's 
Tables, i.e., each table is constructed for a 

specified r2/a2.   The  remaining volume is 
always 100%full. 
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1. E. A.  Milne, Report on the Stability of 
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TABLE 4-1.    STEWARTSON'S TABLES 

FLUID FREQUENCIES AND RESIDUES FOR VARIOUS CYLINDRICAL CAVITIES OF 

HEIGHT 2c AND DIAMETER 2a, AND VARIOUS FILL-RATIOS b2/a2 WHERE 2b IS THE 
DIAMETER OF THE AIR COLUMN 

b2/a2 =0.00 

n   =   l n  =  2 n   =   3 

T0 a(2j +  1) 2R a(2j t 1)           2R a(2j t 1) 2R 

.00              .995 .000 ,478 .0000 .310 ,0000 

.02 1.018 ,058 .490 .0070 .319 .0019 
,04 1.042 ,118 .503 .0144 .327 .0040 
.06 1.066 .181 .516 ,0223 .336 .0062 
.08 1.091 .246 .530 .0307 .345 .0086 
.10 1.117 .313 .544 ,0396 .355 .0111 

.12 1.144 ,382 .559 .0491 .364 .0139 

.14 1,172 .454 .574 .0591 .375 .0168 

.16 1,201 .528 .590 .0697 .385 .0198 

.18 1.231 .604 .607 .0809 .397 .0231 

.20 1,262 .682 .624 ,0928 .408 ,0266 

.22 1.294 .762 .642 ,1054 .420 .0304 

.24 1.328 .845 ,661 .1187 .433 .0344 
.26 1.363 .930 ,680 .1328 ,446 .0387 
.28 1.399 1.017 .700 .1478 .460 .0433 
.30 1.437 1.107 .722 ,1636 .475 .0481 

.32 1.478 1.200 .745 ,1804 .490 .0533 

.34 1,521 1.295 .769 .1981 .506 .0589 
.36 1.565 1.392 .794 .2169 .523 .0649 
.38 1.612 1.491 .820 ,2369 .541 .0714 
e40 1.662 1.593 ,848 ,2581 .561 .0783 

.42 1.715 1.698 .878 .2805 .582 .0858 

.44 1,771 1.805 .910 .3043 .603 .0938 
.46 1.831 1.914 e944 .3296 .626 .1024 
.48 1.895 2.026 .980 .3566 .651 .1118 
.50 1.963 2.142 1.019 .3853 ,678 .1220 
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TABLE 4-1.   STEWARTSON'S TABLES (CONT) 

b2/a2  = 0.02 

=   1 n  = 2 

c 

2R 
c 

2R 
c 

~r 
0 a(2j + 1) a(2j + 1) a(2j t  1) 2R 

.00 .994 .000 .475 .0000 .305 .0000 

.02 1.017 .058 .488 .0068 .314 ,0020 
.04 1.041 .118 .501 .00.41 .322 .0040 
.06 1.066 .180 .514 .0219 .331 .0062 
.08 1.091 .245 .528 .0302 .340 .0085 
.10 1.117 .312 .542 .0389 .349 .0110 

.12 1.144 .381 .556 .0481 .359 .0136 
.14 1.173 .453 .572 .0578 .369 .0165 
.16 1.202 ,526 .588 .0680 .380 .0195 
.18 1.232 .602 .605 ,0788 .391 .0228 
.20 1.264 .680 .623 .0902 .403 ,0264 

.22 1.297 .760 .642 .1023 .416 .0302 
.24 1 .332 .843 .662 .1151 .429 .0343 

s26 1.369 .928 .682 .1285 .443 .0386 
.28 1.407 1.014 .704 .1428 .458 .0433 
.30 1.448 1 .103 .727 .1579 .473 e0483 

.32 1.491 1.194 .752 .1738 .490 .0538 

.34 1.537 1 .286 .778 .1906 .507 .0596 
.36 1.586 1 .380 .806 .2083 .526 .0660 
.38 1 .638 1.475 .837 .2268 .547 .0730 
.40 1.695 1.570 .871 .2462 569 .0807 

.42 1.757 1.664 .909 .2665 .593 .0892 
.44 1.825 1.755 .951 .2876 .620 .0985 
.46 1.902 1.839 .998 = 3095 .650 .1090 
.48 1.990 1.909 1.051 .3321 .683 .1207 
.50 2.097 1.953 1.112 .3553 .719 .1338 

.52 2.234 1.951 1.191 .3811 .762 .1500 

.54 2.439 1 .877 1.295 .4160 .812 .1700 
.56 2.841 1.759 1.441 .4820 .869 .19a 
.58 1 .647 .6419 .936 .2311 
.60 1.893 .9860 1.012 .2774 

.62 2.117 1.4607 1.094 .3348 
.64 2.309 1.9151 1.1B1 .4001 
066 2.488 2.2961 1.272 .4694 
.68 2.667 2.6144 1.368 .5400 
.70 2.855 2.8913 1.471 .6116 
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TABLE 4-1.   STEWARTSON'S TABLES (CONT) 

b2/a2  = 0.05 

n   =   1  n   ~  2 n  =   3 

To a(2j + 1) 2R a(2j t 1) r     2R a(2j + 1) 2R 

.00 .991 .000 .465 .0000 ,291 .0000 

.02 1.014 .058 .477 .0067 .299 .0018 

.04 1.038 ,118 .490 .0138 .307 .0037 

.06 1 .062 .180 .503 .0212 .316 .0057 
.08 1.088 .245 .516 .0292 .324 .0078 
.10 1.1 14 .311 .530 .0373 .333 .0101 

.12 1.141 .381 
.452 

.545 .0460 ,343 ,0126 
.14 1.169 .560 .0552 .353 .0153 
.16 1.199 .525 .576 .0650 .363 .0182 
.18 1.231 ,601 .593 .0753 ,374 .0213 
.20 1.264 .679 .611 .0863 .385 .0246 

.22 1.299 .759 .630 .0979 .397 .0282 

.24 1.335 .841 .650 .1101 .410 .0321 
.26 1.373 .926 .671 .1231 .423 .0362 
.28 1.413 1.013 .693 .1368 .437 .0407 
.30 1.456 1.102 .717 .1514 .452 .0455 

.32 1.502 1.193 .742 .1668 ,468 .0508 

.34 1.551 1.286 .769 .1833 .485 .0565 

.36 1.605 1.381 .798 ,2009 .503 ,0627 

.38 1.663 1.477 .830 .2199 .522 .0696 
.40 1.727 1.574 .     .865 .2405 .543 .0771 

.42 1.799 1.670 .903 .2625 .566 .0855 

.44 1.880 1.765 .946 ,2867 
.3134 

.591 .0948 
.46 1.974 1.857 .994 .617 .1051 
.48 2.087 1.944 1.048 .3433 .647 .1167 
.50 2.229 2.026 1. 109 .3778 .679 .1296 

.52 2.421 2. 105 1.183 ,4198 .715 .1447 

.54 2.711 2,213 1.271 .4742 .755 .1622 

.56 3.255 2.493 1.379 .5503 .800 .1828 

.58 4.949 4.128 1.510 .6627 .851 .2072 
.60 1.665 .8314 .907 .2363 

.62 1.837 1.0676 .971 .2712 
.64 2.016 1.3576 1.042 .3122 
.66 2.198 1.6702 1.121 .3596 
.68 2.382 1.9800 1.209 .4132 
.70 2.575 2.2757 1.305 .4726 
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TABLE 4-1.   STEWARTSON'S TABLES (CONT) 

b2/a2 = 0.10 

n  = 2 n   =   1 n  =   } 

.00 

a(2j+  1) 

.981 

2R 

000 

a(2j t 1) 

.441 

2R 

,0000 

a(2j t 1) 2R 

.267      .0000 

.02 1.003 .057 .453 .0061 .274 .0015 
.01» 1.027 ,117 .465 .0125 .282 .0031 
.06 1.051 .179 .477 .0193 .289 .0047 
.08 1.078 .243 .490 ,0265 .297 .0065 
.10 1 .103 .309 .503 .0339 .306 .0085 

.12 1.130 .377 .517 .0417 .314 .0106 

.14 1.158 .447 .532 .0500 .323 .0128 

.16 1.189 .521 .547 .0588 .333 .0153 

.18 1.221 .596 .563 .0682 .343 .0179 

.20 1 .255 .675 .580 .0781 .353 .0207 

.22 1 .290 .756 .598 .0886 .364 .0238 
.24 1 .328 .839 .617 .0998 .375 .0270 
.26 1.368 .925 .637 .1116 .387 .0306 
.28 1.410 1.014 .659 .1242 .400 .0344 
.30 1.454 1.105 .681 .1376 .414 .0385 

.32 1.502 1.199 .705 .1520 .428 .0430 
.34 1.555 1 .296 .731 .1675 .443 .0479 
.36 1.612 1.397 .759 .1843 .459 .0531 
.38 1 .676 1 .502 .789 .2025 .476 .0589 
.40 1.749 1.611 .821 .2225 .495 .0653 

.42 1.829 1 .723 .857 .2443 .515 .0723 

.44 1.921 1.841 .896 .2683 .537 .0800 
.46 2.029 1 .968 .940 .2950 .560 .0885 
.48 2.160 2.107 .988 .3253 .585 .097? 

.1084 .50 2.327 2.268 1 .041 .3602 .612 

.52 2.549 2.472 1 .102 .4011 .643 .1203 
.54 2.876 2.779 1.172 .4502 .676 .1337 
.56 3.434 3.384 1.253 .5106 .712 .1489 
.58 4.773 5.366 1.346 .5869 .753 .1663 
.60 1.454 .6860 .798 .1865 

.62 1 .578 .8133 .849 .2097 
.64 1.718 • 975s .906 .2368 
.66 1.873 1.1707 .971 .2682 
.68 2.041 1. 3947 1.044 .3047 
.70 2.222 1.6378 1.126 .3469 
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To 

TABLE 4-7.   STEWARTSON'S TABLES (CONT) 

b2/a2  =0.15 

"   =  '  n  = 7 n  =  3 

a(2j + 1) 2R a(2j + 1) 2R 

.00 .966 .000              .415 .0000 

.02 .988 .057              .425 .0054 

.04 1.011 .115              .436 .0111 
.06 1.035 .176             .448 .0170 
.08 1.060 .239              .460 .0233 
.10 1.086 .304              .473 .0299 

012 1.113 .371              .486 .0368 
.14 1.141 .441               .500 .0441 
.16 1.171 .514              ,514 .0519 
.18 1.203 .590               .529 .0601 
•20 1.237 .668              .545 .0689 
.22 1.273 .750               .562 .0782 
.24 1.311 .834              .580 .0880 
.26 1.351 .921               .598 .0985 
.28 1.394 1.011               .618 .1097 
.30 1.439 1.104              .639 .1217 

.32 1.488 1.201               .662 .1346 
• 34 1.542 1.303 .685 .1484 
.36 1.601 1.410 .711 .1635 
.38 1.668 1.523              .739 .1799 
• 40 1.743 1.645              .769 .1978 

.42 1.826 1.773              .801 .2173 

.44 1.922 1.911              .836 .2389 
.46 2.035 2.064              .875 .2630 
.48 2.172 2.241                .918 .2900 
.50 2.343 2.458              .964 .3205 

•52 2.569 2.739 1.017 .3556 
.54 2.888 3.149 1.076 .3964 
• 56 3.400 3.885 1.142 .4447 
.58 4.448 5.768 1.218 .5029 
.60 9.42121.765 1 - 305 e5735 

.62 1.Zf04 .6607 
•64 1.517 .7689 
.66 1.646 .9006 
.68 1.790 1.0582 
.70 1.951 1.2408 

a(2j + 1) 2R 

.245 .0000 

.251 

.258 

.265 

.272 

.280 

.0012 

.0025 

.0039 

.0054 

.0070 

,288 
.296 
.305 
.314 

.0087 

.0106 

.0126 

.0148 

.323 .0171 

.333 

.343 

.354 

.366 

.378 

.0196 

.0223 

.0253 

.0284 

.0318 

.391 

.405 

.419 

.435 

.451 

.0355 

.0395 

.0439 

.0487 

.0539 

.469 

.488 

.509 

.531 

.556 

.0596 

.0658 

.0727 

.0803 

.0887 

.582 

.611 

.643 

.678 

.717 

.0981 

.1087 

.1206 

.1340 

.1493 

.760 

.809 

.864 

.927 

.998 

.1668 

.1870 

.2103 

.2373 

.2688 
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TABLE 4-1.   STEWARTSON'S TABLES (CONT) 

b2/a2  =0.20 

=   1 n  = 2 n  =  3 

c 

2R 
c 

2R 
c 

To a(2j + 1) a(2j + 1) a(2j t  1) 2R 

.00 .947 .000 .387 .0000 .224 ,0000 

.02 .968 .055 .398 .0048 .230 .0010 

.04 .991 .113 .408 .0097 .236 .0020 

.06 1.015 . 172 .419 .0149 .242 .0032 

.08 1.039 .234 .430 .0202 .249 ,0044 
. 10 1.065 .298 ,442 .0259 .256 .0057 

.12 1.091 .364 .454 .0313 .263 .0071 

.14 1.119 .433 .467 .0382 .271 .0086 

.16 1.149 .504 .480 .0450 .279 .0103 

.18 1.180 .579 .494 .0521 .287 .0121 
.20 1.214 .657 .509 .0597 .295 ,0140 

,22 1.249 .739 .525 .0677 .305 ,0160 
.24 1.287 .823 .541 .0762 .314 .0183 
.26 1.327 .910 .558 .0853 .324 .0207 
.28 1.369 1.001 e577 .0951 .3?4 .0232 
.30 1.415 1.096 .596 .1055 .346 ,0260 

.32 1 .464 1.195 .617 .1167 .357 .0291 

.34 1.518 1e299 .639 . 1288 .370 .0323 
.36 1.577 1.411 ,662 .1419 .383 .0359 
.38 1.644 1.530 .688 .1561 .397 .0398 
.40 1.719 1.660 .715 .1717 .412 ,0440 

.42 1.803 1.800 .744 .1888 .428 .0487 
A4 1.899 1.954 .776 .2077 .445 .0537 
.46 2.01 1 2.129 .811 .2285 .464 .0593 
.48 2.147 2.331 .849 .2516 .484 .0654 
.50 2.315 2.576 .890 .2774 .505 .0722 

.52 2.532 2.897 .937 .3070 .529 .0797 
.54 2.831 3.358 e988 .3409 .555 .0881 
.56 3.287 4.128 1.045 .3799 .583 .0976 
.58 4.114 5.781 1.110 .4257 .614 . 1082 
.60 6.509 12.660 1.183 .4801 .648 . 1202 

.62 1 .266 .5454 .687 .1338 

.64 1.360 .6239 .729 .1495 

.66 1.469 .7193 .778 .1674 
.68 1.592 .8342 .832 .1883 
.70 1 .733 .9706 .894 .2125 
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TABLE 4-1.   STEWARTSON'S TABLES (CONT) 

1 

2/„2 b7 0.25 

n =  3 

.00 

.02 
.04 
.06 
.08 
. 10 

. 12 

.14 

.16 

.18 
.20 

.22 
.24 
.26 
.28 
.30 

.32 

.34 

.36 

.38 

.40 

.42 
.44 
.46 
.48 
.50 

.52 

.54 

.56 

.58 
.60 

.62 
.64 
.66 
.68 
.70 

a(2j + 1) 2R 

.925       .000 

a(2j + 1) 2R 

.360       .0000 

a(2j + 1) 2R 

.205       .0000 

.946 

1.015 
1.039 

065 
092 
122 
153 
185 
220 

1.257 
1.296 
1.338 
1.383 

1.432 
1.485 
1.543 
1.609 
1.683 

1.765 
1.859 
1.970 
2.100 

.054 

.110 

. I Do 

.229 

.290 

.354 
,422 
.492 
.565 
.642 
,722 
.806 
.893 
.983 

1.078 

1.178 
1.285 
1.398 
1.522 
1.657 

1.803 
1.966 
2.150 
2.366 

2.261 2.630 

im im 
3.138 4.190 
3.802 5.616 
5.307 9.816 

.370 

:J8 
.400 
.411 

,422 
.434 
.446 
,459 
.473 
.488 
.503 
.519 
.536 
.553 

.572 

.593 

.614 

.637 

.662 

.689 

.718 
-749 
.783 
.820 

Mi 
.957 

1.013 
1.076 

1.148 
1.229 

\m 
1.550 

.0041 

.0083 

.0173 

.0221 

,0272 
,0326 
,0383 
.0444 
.0509 
.0577 
.0650 
.0728 
.0811 
.0900 

.0996 

.1100 

. 1211 

.1333 

.1466 

.1612 

.1772 

.1949 

.2144 

.2361 

•Am 
.3206 
.3573 
.4004 

.4511 

.5111 

,7727 

.210 

.'228 

.234 

.241 
,248 
.255 
.262 
.270 

,278 
.287 
.296 
.306 
.316 

.326 

.338 

.350 
,362 
.376 

.390 

.406 

.423 

.441 

.460 

.504 

.530 

.557 

.588 

.622 

.660 

:W 
.806 

.0008 

:884g 
.0035 
.0046 

.0058 

.0070 

.0083 

.0098 

.0113 

.0130 

.0148 

.0168 

.0189 

.0211 

.0236 

.0263 

.0291 

.0323 

.0357 

.0395 
,0436 
.0481 
.0530 
.0584 

\m 
.0787 
.0871 
.0966 

.1074 

.1197 
• 1322 .1502 
.1692 
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TABLE 4-1.   STEWARTSON'S TABLES (CONT) 

b2/a2  = 0.30 

n  =   1 n   =  2 

c 

2R 

c 

2R 
c 

To a(2j+  1) a(2j  t  1) a(2j + 1) 2R 

.00 .900 .000 .333 .0000 .187 .0000 

.02 .920 .052 .342 .0034 .192 .0006 

.04 .941 .106 .351 .0070 .197 .0013 
.06 .963 .162 .360 .0106 .202 .0020 
.08 .987 .220 .370 .0145 .208 .0028 
.10 1.011 .281 .380 .0186 .213 .0037 

.12 1.036 .343 .391 .0229 .219 .0046 

.14 1.063 .408 .402 .0274 .226 .0056 

.16 1.091 .476 .413 .0322 .232 .0067 

.18 1.121 .548 .425 .0373 .239 .0079 
.20 1.153 .623 .438 .0428 .246 .0091 

.22 1.187 .701 .451 .0485 .254 .0105 
.24 1.223 .783 .465 .0547 .262 .0119 
.26 1.261 .869 .480 .0612 .270 .0135 
.28 1 .302 .958 .495 .0682 .279 .0152 
.30 1.346 1.052 .512 .0757 .288 .0170 

.32 1 .393 1.152 e529 .0838 .297 .0190 

.34 1 .445 1.258 .548 .0925 .308 .0211 

.36 1.502 1.372 .567 . 1019 .318 .0235 
.38 1 .565 1.496 .588 .1122 .330 .0260 
.40 1.637 1.633 .611 .1234 .342 .0288 

.42 1.717 1.781 .635 .1356 .356 .0318 

.44 1.808 1.948 .661 .1490 .370 .0351 
.46 1.913 2.138 .690 .1638 .385 .0387 
.48 2.037 2.360 .720 .1801 .401 .0426 
.50 2.188 2.629 .754 .1982 .419 .0470 

.52 2.378 2.972 .790 .2185 .438 .0518 

.54 2.625 3.437 .831 .2415 .458 .0571 
.56 2.973 4.134 .875 .2676 .481 .0631 
.58 3.517 5.361 .925 .2974 .506 .0698 
.60 4.564 8.244 .980 .3319 .533 .0774 

.62 8.380 24.961 1.042 .3718 .564 .0859 
.64 1.113 e4l89 .598 .0957 
.66 1.193 .4746 .636 .1068 
.68 1.286 .5410 .679 .1197 
.70 1.391 .6197 .728 .1346 
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TABLE 4-7.   STEWARTSON'S TABLES (CONT) 

b2/a2  =0.35 

n =  2 n  =   1 n =  3 

c 

2R 
c 

2R 
c 

To a(2j + 1) a(2j + 1) a(2j + 1) 2R 

.00 .872 .000 = 307 ,0000 .170 ,0000 

.02 .892 ,050 .315 .0028 .174 .0005 

.04 .912 .102 .323 .0057 0179 .0010 
.06 .934 .155 .332 .0088 .184 .0016 
.08 .957 .211 .341 ,0120 .189 .0023 
. 10 .980 .269 .350 ,0154 .194 .0029 

.12 1,004 .329 ,360 .0189 .200 ,0037 

.14 1.030 .392 .370 .0227 .205 .0045 

.16 1.057 .458 .380 .0267 .211 .0053 

. 18 1.086 .527 .391 .0309 .217 .0063 
c20 1.117 .600 .403 .0354 .224 .0073 

.22 1.150 .676 .415 .0402 .231 .0083 

.24 1.184 .755 .428 o0453 .238 .0095 
.26 1.221 .838 .441 .0507 .245 .0108 
.28 1.261 .926 ,456 .0565 ,253 .0121 
.30 1.303 1.018 .471 .0628 .261 .0136 

.32 1.349 1.116 .487 .0695 .270 .0151 

.34 1.399 1.220 .503 .0767 ,280 .0169 
= 36 1.454 1.333 .521 .0845 ,289 .0187 
.38 1.515 1.457 .541 .0930 .300 .0207 
.40 1.584 1.593 .561 .1023 .311 .0229 

.42 1.659 1.741 .583 .1124 .323 .0253 

.44 1.746 1.908 ,607 .1235 .336 .0279 
.46 1.846 2.097 .632 .1357 .349 .0308 
.48 1.963 2.317 .460 .1492 ,364 .0339 
.50 2.104 2.582 .690 .1640 .380 .0374 

.52 2.277 2.916 .723 .1807 .397 .0412 
• 54 2.500 3.359 • 759 .1995 .416 .0455 
• 56 2.802 3.996 .799 .2207 .436 ,0502 
.58 3.250 5.039 .843 ,2448 .458 .0555 
.60 4.022 7.143 .892 .2724 .483 .0615 

.62 5.920 14.119 .946 .3043 .510 .0682 

.64 1.008 .3415 .541 .0759 

.66 1.078 .3851 .575 .0847 
.68 1.159 .4366 .613 .0948 
.70 1.251 .4980 .657 .1065 

4-20 



AMCP 706-165 

TABLE 4-1.   STEWARTSON'S TABLES (CONT) 

b2/a2   =  0.40 

=   1 n   =  2 

c 

2R 

c 

2R 

c 
To a(2j+   1) a(2j  t  1) a(2j +  1) 2R 

.00 .842 .000 .281 .0000 .154 .0000 

.02 .861 .047 .288 .0023 .158 .0004 

.04 .881 .097 .296 .0047 .162 .0008 
.06 .901 .148 .304 .0072 .166 .0013 
.08 .923 .201 .312 .0098 .171 .0018 
.10 ..945 .256 .320 .0125 .176 .0023 

.12 .969 .313 .329 .0154 .181 .0029 

.14 .994 0373 .338 .0185 .186 .0035 

.16 1.020 .436 .348 .0218 .191 .0042 

.18 1.048 .503 .358 .0252 .197 .0049 

.20 1.077 .572 .369 .0289 .203 .0057 

.22 1.109 .645 .380 .0328 .209 .0066 

.24 1.142 .722 .392 .0369 .215 .0075 

.26 1.178 ,802 .404 .0414 .222 .0085 

.28 1.215 .886 -417 ,0461 .229 .0095 

.30 1.256 .975 .431 .0512 .237 .0107 

.32 1.300 1.070 .445 .0567 .245 .0119 

.34 1.348 1.172 .460 .0626 .253 .0133 
.36 1.401 1.282 .477 .0^90 ,262 .0147 
.38 1.459 1.402 .494 .0759 .271 .0163 
.40 1.524 10535 .513 .0835 .281 .0181 

.42 1.596 1.680 .533 .0917 .292 .0199 

.44 1.677 1.842 e554 .1008 .304 .0220 
.46 1.771 2.026 ■577 .1107 .316 .0243 
.48 1.881 2.240 ,602 .1217 .329 .0267 
.50 2.010 2.497 .629 .1337 .343 .0294 

.52 2.168 2.814 .658 .1473 .359 .0324 

.54 2.367 3.226 .691 .1624 .376 .0358 
■ 56 2.629 3.799 .726 .1795 .394 .0395 
.58 3.000 4.675 .765 .1989 .414 .0436 
.60 3.591 6.270 .809 ,2210 .436 .0483 

.62 4.764 10.204 .857 .2463 .460 .0536 

.64 9.819 39.504 .911 .2757 .488 .0596 

.66 .973 .3100 .518 .0664 
.68 1.043 .3502 .552 .0744 
.70 1.124 .3980 .592 .0835 
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TABLE 4-1.   STEWARTSON'S TABLES (CONT) 

b2/a2  =0.45 

=J  n  = 2 

To a(2j + 1)          2R a(2j + 1) 2R 

.00 .810 .000 .255 ,0000 

.02 .828 .045 ,262 .0018 
.04 .847 .092 .269 .0037 ,06 .866 .140 .276 .0057 
,08 ,887 . 190 .284 ,0078 

. 10 .908 .242 .291 .0100 

.12 .931 .296 .299 ,0123 

.14 .954 .353 ,308 .0148 
.16 .979 .412 .317 .0174 
.18 1.006 .475 .326 .0202 
.20 1.034 ,541 .335 .0231 

.22 1 ,064 .610 .346 .0263 

.24 1.096 .683 .356 .0296 

.26 1.130 .759 .367 .0332 

.28 1.166 .840 .379 .0370 
.30 1.205 ,925 .391 .0410 

.32 1.247 1.016 .405 .0454 

.34 1.292 1.114 .418 .0502 
.36 1.342 1.220 .433 .0553 
.38 1.397 1.335 .449 .0609 
,40 1.459 1.462 .466 .0669 

.42 1 ,528 1,604 .484 .0735 
.44 1.603 1.760 .503 ,0808 
,46 1.691 1.937 .524 .0888 
.48 1.792 2.141 .546 • 0975 .50 1.910 2.380 .570 .1072 

.52 2.052 2.676 .596 .1180 

.54 2.229 3.052 .625 .1301 

.56 2.456 3.560 .657 . 1437 

.58 2.766 4.299 .691 .1590 

.60 3.227 5.527 .730 .1765 

,62 4.028 8,043 • 773 • 1965 .64 6.051    ' 16.751 .821 .2196 
.66 

/* ft .875 .2464 
.68 .937 .2778 

. 70 1.007 .3148 

a(2j + 1) 2R 

.138       .0000 

.142 

.146 

.150 
.154 
.158 

.163 

.167 
.172 
.177 
.182 

.188 

.194 
,200 
.206 
.213 

.220 
,228 
.236 
.244 
.253 

.263 

.273 
,284 
.296 
.309 

.323 

.338 

.354 

.372 
.392 

.413 
.438 
,465 
.495 
.530 

.0003 

.0006 

.0010 

.0014 
.0018 

.0022 
.0027 
.0032 
.0038 
.0044 

.0051 
,0058 
.0066 
.0074 
.0083 

.0092 
,0103 
.0114 
.0127 
.0140 

.0155 
.0171 
,0188 
.0207 
.0228 

.0252 
.0277 
.0306 
.0338 
.0374 

.0415 

.0461 

.0514 
.0576 
,0646 
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TABLE 4-1.  STEWARTSON'S TABLES (CONT) 

b2/a2  =0.50 

=   1 n  = 2 

c 
2R 

c 
2R 

c 
To a(2j t 1) a(2j t 1) a(2j + 1) 2R 

.00 .775 .000 ,230 .0000 .123 ,0000 

.02 .792 .042 .236 ,.0014 .127 ,0002 

.04 .810 .085 .21+3 .0029 .130 .0005 
.06 .828 .131 .249 .0045 .134 .0007 
.08 .848 .178 ,256 .0061 .137 .0010 
. 10 .869 .226 .263 .0078 .141 .0014 

.12 .890 .277 .270 .0097 .145 .0017 

.14 .912 .330 .278 .0116 .149 .0021 
.16 .936 .386 .286 .0137 .154 .0025 
.18 .961 .kkk ,294 .0158 .158 .0029 
.20 .988 .506 .303 .0181 .163 .0034 

.22 1.017 .571 .312 .0206 .168 .0039 

.24 1.047 .640 .321 .0232 .173 .0044 
.26 1.079 .712 .331 .0260 .179 .0050 
.28 1.113 .788 .342 .0290 .184 ,0056 
.30 1.150 .869 .353 .0322 .190 ,0063 

.32 1.190 .955 .365 .0357 .197 .0070 

.34 1.233 1.047 0377 .0394 .203 .0078 
.36 1.280 1.147 ,391 .0434 .211 .0087 
.38 1.331 1.256 .405 .0478 .218 .0096 
.40 1.389 1.377 .420 .0526 .226 .0107 

.42 1.453 1.510 .436 .0578 .235 ,0118 
.44 1.525 1.659 .453 .0635 ,244 .0130 
.46 1.606 1.828 .472 .0697 .254 .0143 
.48 1.698 2.018 .492 .0766 .264 .0158 
.50 1.803 2.236 .513 .0842 ,276 .0174 

.52 1.931 2.507 .537 .0926 .288 .0191 

.54 2.088 2.847 .562 .1021 .301 .0211 

.56 2.284 3.290 .590 .1127 .316 .0233 

.58 2.543 3.910 .621 .1247 .332 .0257 

.60 2.909 4.866 .655 .1383 .349 .0285 

.62 3.487 6.588 .693 .1539 .369 .0316 
.64 4.625 10.812 .735 .1718 .390 .0351 
.66 9.260 39.918 .783 . 1926 .414 .0391 
,68 .836 .2167 ,442 .0438 
.70 .898 .2453 .472 .0492 
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TABLE 4-7.   STEWARTSON'S TABLES (CONT) 

b2/a2  = 0.60 

'o 

.00 

.02 
,04 
.06 
.08 
. 1.0 

.12 

.14 
.16 
.18 
.20 

.22 

.24 

.26 
.28 
.30 

-32 
.34 
.36 
.38 
,4o 

,42 
.44 
.46 
.48 
.50 

.52 

.54 

.56 

.58 

.60 

.62 
,6k 
.66 
.68 
.70 

a(2j + l) 

.697 
2R 

.000 
a(2j + 1) 2R 

.182       .0000 

m M 
.ikk 
.762 
.780 

.840 

.862 

.886 

.911 

.937 

.966 

.996 
1.028 

063 
100 
141 
185 
234 
288 

1.348 
1.416 
1.491 
1.577 

109 
149 
190 

M   -M 
,325 
.375 
.427 

.482 

.541 

.602 

.667 

.736 

.810 

.889 

.975 
1.068 
1.170 

1.283 
1.409 
1.549 
1.708 
1.886 

1.678 2.102 

1:381 urn 
2.124 3.114 
2.360 3.702 

2.687 4.585 
3.191 6.133 
4.116 9.591 
6.948 25 388 

,196 
.202 
.207 

.213 

.219 

.225 

.232 

.239 

.246 

.254 

.261 

.270 

.278 

.288 

.298 

.308 
,319 
.331 

.343 

.357 

.371 

.387 

.403 

.422 

M 
.487 
.513 

.541 

.574 

.610 

.650 

.697 

.0008 

.0017 

.0025 

.0035 

.0044 

.0055 

.0066 

.0077 

.0090 

.0103 

.0117 

.0132 

.0147 
,0164 
.0183 

.0202 

.0224 

.0247 
,0272 
.0299 

.0328 

.0361 

.0397 

.0436 

.0479 

.0527 

.0581 

.0642 

.0710 

.0787 

,0875 
.0976 
.1092 
.1228 
.1388 

a(2j + 1) 

,096 

.098 

.101 

.104 
• 107 
.110 

.113 

.116 
• 119 
.123 
.126 

.130 

.134 

.138 

.143 

.148 

.152 

.158 

.163 

.169 

.175 

.182 

.189 

.197 

.205 

.214 

.223 

.233 

.245 

.257 

.270 

.285 

.302 

.320 

.341 

.365 

2R 

,0000 

.0001 

.0003 
,0004 
.0006 
,0007 

.0009 

.0011 

.0013 

.0016 

.0018 

.0021 

.0024 

.0027 

.0030 

.0034 

.0038 

.0042 

.0047 

.0052 

.0057 

.0063 

.0070 

.0077 
,0085 
.0093 

.0103 

.0113 

.0125 

.0138 

.0153 

.0170 

.0189 

.0210 

.0235 

.0264 
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TABLE 4-1.   STEWARTSON'S TABLES (CONT) 

b2/a2   = 0.70 

n   =   1 n   =  2 n  =  3 

a(2j + 1) 2R a(2j + 1) 2R a(2j + 1) 2R 

.00 .606 000 .134      .0000 .070       .0000 

.02 .619 .028 .138 .0004 .072 .0001 
.04 .633 .057 .142 .0008 .074 .0001 
.06 .647 .086 .145 .0012 .076 .0002 
.08 .6a .117 .149 .0017 .078 .0003 
.10 .677 .149 .154 .0021 .080 .0003 

.12 .693 .183 .158 .0026 .082 .0004 
.14 .710 .218 .162 .0032 .084 .0005 
.16 .728 .256 .167 .0037 .087 .0006 
.18 .747 .295 .172 .0043 .090 .0007 
.20 .767 .336 .177 .0050 .092 .0008 

.22 .788 .380 ,182 .0056 .095 .0009 

.24 .811 .426 .188 .0063 .098 .0011 

.26 .835 .474 .194 .0071 .101 .0012 

.28 .860 .526 .200 .0079 .104 .ooi4 

.30 .887 .580 .206 .0088 .108 .0016 

.32 .916 .639 .213 .0098 .111 .0017 

.34 .948 .702 .220 .0108 .115 .0019 

.36 .981 .769 .228 .0119 .119 .0021 

.38 1.018 .843 .236 .0131 .123 .0024 

.40 1 .058 .923 .245 .0145 .128 .0026 

.42 1.102 1.012 .254 .0159 .133 .0029 

.44 1.151 1.109 .264 .0175 .138 .0032 

.46 1.204 1.217 .275 .0192 .143 .0035 
.48 1 .264 1.338 .286 .0211 .149 .0039 
.50 1 .330 1.473 .298 .0232 .156 .0043 

.52 1.407 1.632 .312 .0256 .163 .0047 
.54 1.496 1.818 .326 .0282 .170 .0052 
.56 1.600 2.042 .342 .0312 .178 .0058 
• 58 7.725 2.319 .359 .0345 .187 .0064 
.60 1.878 2.674 .378 .0382 .197 .0070 

.62 2.074 3.152 .399 .0425 .208 .0078 
.64 2.337 3.845 .422 .0474 .220 .0087 
.66 2.718 4.960 .448 .0531 .233 .0097 
.68 3.347 7.116 .478 .0597 .248 .0108 
.70 4.729 13.311 .511 .0675 .265 .0122 
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TABLE 4-?. STEWARTSON'S TABLES (CONT) 

b2/a2  = 0.80 

n   =   1 n  =  2 

c 

2R 
c 

To a(2j+  1) a(2j + 1) 2R 

«oo .496 .000 .088 .0000 

.02 ,507 .019 .091 .0001 
.04 .517 .039 .093 .0003 
.06 .529 .060 .096 .0004 
.08 .541 ,081 .098 .0006 
.10 «553 .104 e 10L .0008 

.12 .566 .127 .104 .0009 

.14 .580 .152 .107 .0011 

.16 .594 .178 e   110 .0013 
.18 .609 .205 .113 .0016 
.20 .625 ,234 .117 .0018 

.22 .642 .264 .120 .0020 

.24 .660 .296 .124 .0023 
.26 .679 .330 .128 .0026 
.28 ,699 .366 .132 .0029 
.30 .720 .405 .136 .0032 

.32 .743 .445 .141 .0035 
.34 .768 .489 .145 .0039 
.36 .794 ,536 .150 .0043 

:E .822 ,587 .156 .0048 
.853 .643 .162 .0052 

,42 .887 .703 .168 .0058 
.44 .923 .770 .174 .0063 
.46 .963 .843 .181 .0070 
.48 1.007 .924 .189 .0077 
.50 1.056 1.013 .197 .0084 

.52 1.110 1.116 .205 .0093 

.54 1.172 1.234 .215 .0102 

.56 1.243 1.371 .225 .0113 
.58 1.325 1.534 .237 

.249 
.0125 

.60 1 ,422 1.731 .0139 

.62 1.537 
1.681 

1.975 .263 .0154 
.64 2.294 .278 .0172 
,66 1e863 2,721 .295 

.314 
.0193 

e68 2.1® 8 3.346 .0217 
.70 2,466 4.367 .335 .0246 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN 

FLUID FREQUENCIES AND RESIDUES FOR VARIOUS CYLINDRICAL CAVITIES OF 

HEIGHT 2c  AND DIAMETER 2a, WITH CYLINDRICAL CENTRAL COLUMN OF DIAMETER 2r. 

THE REMAINING CAVITY ISALWAYS 100% FILLED. 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN (CONT) 

r2/a
2  =0.0025 

n   =  1 n  = 3 

o 

.00 

.02 

.04 

.06 

.08 

.10 

.12 

.14 

.16 

.18 
,20 

.22 

.24 

.26 

. 28 

.30 

.32 

.34 

.36 

.38 

.40 

.42 

.44 

.46 

.48 

.50 

.52 

, 56 
.58 
.60 

.62 

.64 

.66 

.68 
,70 

a(2j + 1) 2R a(2j   t 1) 2R a(2j  H    1)       2R 

■"■■ o 1 .000 

1.005 .057 
1.020 .117 
1.053 .   1 / V 
1.078 .242 
1.104 .309 

1.130 .377 
1.1 58 .448 
1.187 
1,217 .597 
1.248 .674 

1,280 .755 
1.314 .837 
1.349 »  „J JL- i. 

1.385 1.009 
1.424 1.098 

1.464 1.190 
1.506 1.284 
1.550 1.361 
1.597 1  , "-rOÜ 
1.647 1.582 

1.699 1      & P £ 

1,755 
1.815 1    Of1 ■■? 

1.878 2.016 
1.346 2.132 

2.020 2.250 
2.099 2.373 
2.184 2.438 
2.278 2.628 
2.380 2.762 

2.492 2.901 
2.616 3.045 
2.754 5. \ y 5 
2,908 3.351 
3.082 

• 40> 

.47/ 

.490 
en 5 

.517 

.531 

.561 

.577 

.533 

.610 

.OH:; 

.047 

.666 
,687 
.708 

.754 

.779 

.805 

.833 

. <--■ J J 

.323 

.964 
1.003 

1.044 
1.089 
1,137 
1.190 
1.247 

1.310 
1.380 
1.458 
1.544 
1.641 

«uuuu 

.0063 

.0130 

.0202 

.0279 

.0361 

. 0449 

.054! 
,0640 
.0746 
.0857 

.0376 

.1102 

.1236 
,1378 
.1529 

, 1 ^ > J ^J 

1 SCO 

,2039 
.2231 
.2435 

-863       .2652 
1C01 

?3ftq 

. JD 68 

.3966 

.4283 

.4622 

.4985 

.5374 

.5791 

.6239 

.67 20 

.7239 
77QQ 

.299 .0000 

.307 .0019 

.316 .0039 

.324 .0060 

.333 .0083 

.343 .0108 

.352 .0134 

.363 .0162 

.373 .0192 

.384 .0224 

.396 .0258 

.408 .0295 

.420 .0333 

.433 .0375 

.447 .0419 

.461 .0467 

.477 .0518 

.493 .0573 

.510 .0631 

.528 .0694 

.547 .0762 

.567 .0835 

.588 .0913 

.611 . 0998 

.636 .1089 

.663 .1189 

.691 .1296 

.722 .1413 

.755 .1541 

.792 .1680 

.831 .1832 

.875 „2000 

.924 .27 24 
• 377 .2387 

1.037 .2612 
1.105 .2861 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN (CONT) 

n  =  3 

">C 

->o 

u 

'-\6 
50 

To a(2) + 1) 2R a(2j   +   1)       2R a(2j   +   1)       2R 

.00 .y03      .000 

.02 o' 

•32 1.377     1.110 

.jo 1.461      1. 
1    to.7       t     i-^r. 

2/a2    =0.02 

n =  2 

c 
a(2j   + 1)        2R 

.410 .0000 

.422 .0038 
•W .0079 
.446 .0124 
.453 .0173 
.473 .0226 

.486 .0284 

.S01 ,0346 

.516 .0413 

.531 .0 486 

.5^8 ,0564 

.565 .0645 

.582 ,0740 
A P i A ' "> T' . ■■-■-.... i , Uw;o 

.620 .0943 

.641 .1056 

.662 .1178 

.685 .1309 

.708 .1450 

.733 .1601 

.760 .1763 
-t r-. r. 

. /CO .1337 
Clip **j •*  "■ ? . w j Ü .   /!   /4 

.850 .2326 

.884 ,2542 

.921 .2775 

.560 .3025 
1.002 .3295 
1.048 .3586 
1.098 .3899 
1.153 .4237 

1.213 .4602 
1.279 .4397 
1.352 .5425 
1.433 .5880 
1.525 .6391 

262       .0000 
'~T . .-vtu .031 .422 00 3R ?£q n<-M' 
,04 QiiQ lAir ;,-,r o^-^ *    D^ .Oulo 

■ 06 973 lf-.l *;i^ r-M "~Z7 -00^3 

:?cn ,:0^ :i? :L:71 :$»f jg? .007, 
Al j'ofl •?" -S? •"*?? -310 .0115 

M K?o '-^S *Ü&? .0645 .361 .Q25' 
U i';rf '     o '^7 -07^0 .373 .0238 *-u i./-...-'r ,i.)K,'.i KOI A.'-:?r; ifl r-                ^i 

30 !'p 1'?;^ *?f? -OSJI -338 .0363 
.411       .0405 

.3^ TIP     ;' *^f       -     78 .425       .0449 
1-^61     i.iOi -70R        i^n #456        ^ 

40 Yilk    I'LOO *4^      •  ^i -*72      .0604 

4? 1   £A£     «   ,«-,-.-. 
■■Ü -^K    ]'7A7 'tiS      -mi -509      .0728 

1.775 1.927 .884 .25^9 '^, '^i.3 
•BZ^ 2.041 .921 :2hs :IU 'Mil 

52            1.916 2.159 .360 .3025 625 11^0 
-^             1.992 2.260 1.002 3?Q5 'tH '}Ut 

2.075 2.405 1  048 ^586 'lit '\%tl 

■*     i:8 liiiS !:?!? ig» S II 
:1     111 HI Hi -W $ -- 
'70             9'Q?7 ^'?5? 1*^3 .5880 1^8 2327 ■/0              2.^37 J.421 t.525 .fi^i ,;5„ 32555 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN (CONT) 

n   =  3 

To a(2) + 1) 2R 

.00 .800 .000 

.02 .822 .043 
.04 .845 .088 
.06 .868 .136 
.08 .892 .186 
.10 .916 .239 

.12 .942 .294 

.14 .968 .352 

.16 .995 .413 

.18 1.024 .476 
.20 1.053 .543 

.22 1.033 .611 

.24 1.115 .683 

.26 1.148 -757 

.28 1.182 .834 

.30 1.218 .914 

.32 1.256 .997 

.34 1 .295 1.083 
.36 1 .336 1.172 
.38 1 .380 1.263 
.40 1.426 1.358 

.42 1.475 1.456 
.44 1.526 1.557 
.46 1.531 1.661 
.48 1,640 1.769 
.50 1.702 1.880 

.52 1.769 1 .995 

.54 1.841 2.113 

.56 1.920 2.235 

.58 2.005 2.362 
.60 2.097 2.494 

.62 2.199 2.630 
.64 2.31 2 2.772 
.66 2.437 2.320 
.68 2.576 3.074 
.70 2.732 3.237 

r /a2   =0.05 

n  = 2 

c 
a(2j   t   1) 2R 

.359 .0000 

.370 

.380 

.391 
.403 
.415 

.0022 

.0045 

.0071 

.0099 

.0130 

.427 

.440 

.454 
M68 
.432 

.0164 

.0201 

.0242 

.0286 

.0334 

.498 
.514 
.531 
.549 
.567 

.0387 

.0444 

.0507 

.0575 
.0649 

.587 
.607 
.629 
.652 
.677 

.0730 
,0818 
.0914 
.1019 
.1133 

.703 

.731 
.760 
.792 
.826 

.1257 

.1392 

.1539 
.1699 
.1874 

.862 

.902 
.944 
.990 

1.041 

.2064 
.2272 
.2498 
.2746 
.3016 

1.097 
1.150 
1 .226 
1 .301 
1.386 

.3311 
.3634 
.3987 
.4374 
.4798 

a(2j  +  1)       2R 

.231        .0000 

.238 .0013 
.245 .0027 
.252 .0042 
.259 .0058 
.266 .0075 

.274 .0094 

.283 .0114 

.291 .0135 
.300 .0158 
.309 .0183 

.319 .0209 

.329 .0238 
.340 .0268 
.352 .0301 
.364 .0336 

.376 .0373 
.330 .0414 
.404 .0458 
.419 .0505 
.435 .0556 

.452 .0611 

.470 .0670 

.489 .0735 
.510 .0805 
.532 .0881 

.557 .0964 
.583 .1055 
.611 .1154 
.642 .1263 
.676 .1383 

.714 .1516 

.755 .1662 
.801 .1825 
.852 .2007 
.910 .2210 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN (CONT) 

r2/a2  =0.1(L 

n   =   l n  =  2 n   =  3 

c 
To 

a(2j t 1) 2R 

.00 .675 .000 

.02 .695 .032 

.04 .715 .066 

.06 .736 .102 

.08 .758 .141 

.10 .780 .182 

.12 .803 .225 

.14 .827 .272 

.16 .852 .320 

.18 .878 .372 

.20 .905 ,426 

.22 .933 ,483 
,24 .962 .543 
.26 .993 ,606 
.28 1.025 .672 
.30 1.058 .741 

.32 1.093 .813 

.34 1.129 .888 
.36 1.167 .967 
.38 1 .208 1.049 
.40 1.250 1.134 

.42 1.295 1.223 
,44 1.343 1.315 
,46 1.394 1.411 
.48 1.448 1.551 
.50 1.506 1,514 

.52 1.568 1.722 

.54 1.634 1,834 

.56 1.706 1.950 

.58 1.784 2.071 
.60 1.870 2,197 

.62 1.963 2.328 
,64 2,066 2.464 
,66 2.180 2.607 
.68 2.307 2.757 
.70 2,449 2.915 

.317 .0011 
.326 .0024 
.335 .0037 
.345 .0052 
.355 ,0068 

.366 ,0086 
.377 .0105 
.388 .0126 
.401 .0149 
.413 .0175 

.426 .0202 
,440 .0233 
.455 .0266 
.470 .0303 
.486 .0343 

.503 .0 388 
.521 .0436 
.540 .0490 
.560 .0550 
.582 .0615 

.605 .0687 

.629 .0767 

.655 ,0856 
.683 .0954 
,713 .1063 

.746 .1184 

.781 ,1318 

.819 .1467 
,860 .1633 
.905 ,1817 

.955 ,2023 
1.010 ,2252 
1.071 .2507 
1.139 .2792 
1,215 .3110 

a(2j   +1)       2R a(2j   t   1)       2R 

.308 ,0000 ,201        .0000 

.207 ,0010 

.212 .0021 

.218 .0032 

.225 ,0044 

.231 .0057 

.238 .0071 

.245 .0087 
,252 .0103 
,260 .0120 
,268 .0139 

,276 .0159 
.285 .0181 
,294 .0205 
.304 .0230 
.314 .0257 

.325 ,0286 
.337 .0318 
.349 .0352 
.362 .0389 
.376 ,0428 

.390 ,0472 

.406 .0519 
.423 .0570 
,441 .0626 
.460 .0687 

,481 .0754 
.504 ,0828 
.529 .0909 
.556 .0998 
.586 .1097 

.619 .1206 

.655 ,1328 

.696 .1465 

.741 .1618 

.792 .1790 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN (CONT) 

r2/a2  = 0.15 

To 

n   =   1 

-00 .585 .000 .273 ,0000 

'11 IS -024 ,280 .0007 
'22 '6,20n -050 283 .0015 
.06 .638 .078 ,296 ,O023 
'?n '§? '  °7 -3°5 -0032 
•10 -677 .139 ,314 .0041 

'\l -^ 'Ml -323 .°052 
•JA -27? *2P9 -333 :°063 
'  P *SJ '2J8 -3k3 -°076 
•IS '765 ,283 .353 .0090 
-20 -789 .333 .364 .0104 

m?l •?!? *?S <376 'ot21 
•24 .841 ,428 .388 01 ^ 
•2§ »868 >80 [fei ig  58 
'In 'SS -534 -^ .0180 •30 -928 .532 .428 .0204 

*Q5 *^? '653 -^3 .0230 
*?6 AU 'III -459 .0259 
'It Veil 'S? -476 .0291 
'?n I'?«? *856 '453 '0326 ,40 1.104 .331 ,512 .0365 

•44 .130 1.032 .554 .0458 

48 !"??? H7J V577 '0512 ,4ö 1 ,236 1 ,268 .602 oq7? 
•50 1.340 1/363 .629 .*0640 

•52 1.397 1   462 .657 0716 
.54 1.458 1   565 689 !o80 2 
.56 1.525 1.673 .723 0899 
.58 1.597 1.787 76O '     ^ 
•60 1.675 1.305 .800 

•62 1.761 2.029 .845 
.64 1.856 2.159 ,834 430 
•66 1,361 2,235 343 1609 
.68 2.078 2.439 1 01 1 *   814 
.70 2.208 2.530 1.079 2047 

1008 
1131 

1271 

n  =  3 

a(2j +1) 2R a(2j   +   1)        2R a(2j   +   1)       2R 

.179        .0000 

.184 .0008 

.189 .0016 

.134 .0025 
,200 .00 35 
.206 .0045 

.212 .0056 

.218 .0068 

.224 ,0080 

.231 .0034 
,238 .0109 

.245 .0125 

.253 ,0142 
,261 ,0160 
.270 ,0180 
.279 ,0201 

.289 .0224 

.299 .0 249 

.309 .0276 

.321 .0305 

.333 .0337 

,346 .0371 
.360 .0409 
.374 .0450 
,390 .0494 
.408 .0544 

.426 .0598 
,446 .0657 
.468 .0723 
,492 .0796 
.519 .0877 

.548 .0968 
,580 .1069 
.616 .1184 
.657 .1312 
.702 .1458 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN (CONT) 

r2/a2  =0.20 

n   =   1 n   =   2 n  =  3 

o 

.00 

.02 

.04 

.06 

.08 

.10 

.12 

.14 

.16 

.18 

.20 

.22 

.24 

.26 

.28 

.30 

.32 

.34 

.36 

.33 

.40 

.42 

.44 

.46 

.48 

.50 

.52 

.54 

.56 

.58 

.60 

.62 

.64 

.66 

.68 

.70 

a(2j + 1) 

.515 

2R 

.000 

a(2j   +   1) 

.24- 

2R 

,0000 

a(2j  +   1) 2R 

.161 .0000 

.530 .018 

.545 .038 

.561 .060 

.578 .083 

.596 .107 

.514 .134 

.633 .162 

.652 .192 

.673 .225 

.695 .259 

.717 .296 

.741 .335 

.765 .377 

.791 .42 2 

.819 .469 

.847 ,519 

.878 .573 

.910 .630 

.943 .690 

.979 .754 

1.017 .821 
1.057 .893 
1.100 .968 
1.146 1 .048 
1.195 1 .132 

'* ,247 1 .221 
1,304 1 .314 
1.365 1 .413 
1.431 1 .516 
1,503 1 .626 

1.583 1 .741 
1.670 1 
1.766 1 O.C-.-l 

• _> -'1 

1.874 2 .127 
1.993 2 .270 

.251 .0005 
,258 .0009 
.265 .0015 
.273 .0 020 
.281 .0027 

.289 .0033 

.297 ,0041 

.306 .0049 

.316 .0057 

.325 .0067 

.-336 .0077 
,345 .0088 
.358 .0101 
.369 ,0114 
.382 .0129 

.335 .0145 
,409 .0163 
,424 .0183 
. 440 .0205 
.456 .0229 

.474 .0256 
.453 ,0 286 
.514 .0320 
.536 .0358 
,560 .0401 

.585 .0449 

.613 .0504 
,544 .0566 
.677 .0637 
.713 .0718 

.753 .0811 

.798 .0918 
,847 .1042 
.903 .1184 
.965 . 1349 

.165 ,0006 

. 170 .0013 

.175 ,0020 

.130 .0027 

.185 .0035 

.190 ,0044 

.196 .0053 

.201 .0064 

.207 .0074 
,214 ,0086 

,220 .0099 
.227 .0112 
.235 .0127 
,242 ,0142 
.250 .0159 

.259 .0177 
,268 .0197 
.277 ,0218 
.287 .0241 
.298 .0267 

.310 ,0294 

.322 .0324 

.335 .0357 

.350 .0392 

.365 .0432 

.381 .047 5 

.399 .0523 

.419 .0576 
,440 .0636 
,464 ,0702 

.490 .0776 

.519 .0860 

.551 .0954 

.587 .1062 
,628 .1184 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN (CONT) 

r2/a2 -0.25 

n   =   1 n   =   2 n   =   3 

.471 .014 

.404 .030 

.498 .046 

.513 .064 

.528 .083 

.544 .104 

.561 .126 

.579 .149 

.597 .175 

.616 .202 

.636 .231 

.657 .262 

.679 .255 

.702 .331 

.726 •36iJ 

.752 .410 

.779 .453 

.807 .500 

.838 .550 

.870 .603 

.904 .659 

.941 .719 

.980 .784 
1.021 .852 
1.066 .925 

1.114 1.003 
1.165 1.005 
1.221 1.173 
1.282 1.266 
1.348 1.365 

1.421 1.470 
1.501 1.581 
1.589 1.700 
1.688 1.826 
1.798 1.961 

.226 .0003 

.232 .0006 

.239 .0010 

.245 .0014 

.-252 .0018 

.260 .0022 

.267 .0027 

.275 .0032 

.203 .0038 

.292 .0044 

.301 .0051 

.311 .0058 

.321 .0066 

.332 .0075 

.343 .0084 

.354 .0095 

.367 .0106 

.380 .0119 

.394 .0133 

.409 .0148 

.42 5 .0166 

.442 .0185 

.460 .0206 

.480 .0230 

.501 .0258 

.524 .0288 

.549 .0323 

.576 .0363 

.606 .0409 

.638 .0462 

.674 .0523 

.714 .0594 

.759 .0677 

.809 .0774 

.865 .0887 

T0 a(2j +1) 2R a(2j   +   1)       2R a(2j   +   1)       2R 

♦00 -457       .000 .220        .0000 .145       .0000 

.02 

.04 

.06 

.08 

.10 

.12 

.14 

.16 

.18 

.20 

.22 
.24 
.26 
,28 
.30 

.32 

.34 

.36 

.38 

.40 

,42 
.44 
.46 
,40 
.50 

.52 

.54 

.56 

.58 

.60 

,62 
.64 
.66 
,68 
.70 

.149 .0005 

.153 ,0010 

.158 ,0016 
,162 ,0022 
: 167 ,0028 

.171 .0035 

.176 ,0042 

.182 .0050 

.187 .0059 

.193 ,0058 

.199 .0078 

.205 .0089 

.211 .0100 

.218 .0113 

.225 .0126 

.233 .0140 

.241 .0156 

.250 .0173 

.259 .0191 

.269 .0211 

.279 ,0233 

.290 .0257 

.302 .0283 

.314 .0312 

.328 .0343 

.343 .0378 

.359 .0416 

.377 .0459 

.396 .0507 

.417 .0560 

.440 .0621 

.466 .0689 

.495 .0766 

.528 .0854 

.564 .0955 

4-34 



AMCP 706-165 

TABLE 4-2.   TABLES FOR CYLINDRICAL CAV TIES WITH CENTRAL COLUMN (CONT) 

r2/a2  =: 0.30 

n   =   1 n  =   2 n   =  3 

c 
To a(2j +  1) 2R 

.00 .k03 .000 

.02 .420 .011 

.04 .432 ,023 

.06 .445 ,035 

.08 .457 .050 

.10 .471 ,064 

.12 ,485 .080 

.14 .500 .098 

.16 .515 .116 

.18 .531 .136 

.20 ,548 .157 

.22 ,566 .1 CO 

.24 ,584 ,201: 

.26 ,604 .230 
,28 .624 .258 
.30 .646 .289 

.32 ,669 .321 

.34 .693 .356 

.36 .718 .393 

.30 .745 .433 
,40 .774 .477 

.42 .805 .523 
.44 .338 .572 
.46 .873 ,62.6 
,48 .910 .683 
.50 .950 .744 

.52 .394 .310 

.54 1.040 .881 

.56 1.091 .957 

.53 1.1 47 1.0 30 
,60 1.207 1.126 

.62 1.273 1.219 
,64 1 ,346 1.320 
,66 1 .k27 1.427 
,68 1.513 1.542 
.70 1,618 1,666 

.203 ,0002 
,209 .0004 
.215 .0007 
.221 .0009 
.■227 .0012 

.234 .001 5 

.241 .0018 
,24c .0022 
.255 .0025 
.263 .0029 

.271 .0034 

.220 .0039 
289 .0044 

,298 .0050 
.308 ,0056 

.319 .0063 

.330 ,0070 

.342 .0079 

.354 .0088 

.368 .0098 

.382 .0109 

.357 .0121 

.413 .0135 

.431 .0151 

.450 .0168 

.470 .0188 

.4-33 .0210 

.517 ,0236 

.543 ,0266 

.573 .0300 

.605 .0339 
.641 .0386 
,681 .0440 
.725 .0505 
.776 .0581 

a(2j   t   1)       2R a(2j   t   1)       2R 

.198       .0000 .131       .0000 

.135 .0004 

.139 .0008 
.142 .0012 
.146 .0017 
.150 .0022 

.155 .0022 

.159 .0034 

.164 .0040 
,169 .0047 
.174 .0054 

.179 ,0062 
.185 .0070 
.191 .0079 
.197 .0089 
.203 .0100 

.210 .0111 

.218 .0123 

.225 .0137 

.233 .0151 
,242 .0167 

.251 .0184 

.261 ,0203 

.272 ,0224 
,283 .0247 
,296 .0272 

.309 .0299 

.323 .0330 

.339 .0364 

.356 ,0402 

.375 .0445 

.396 .0493 

.419 .0543 
,445 .0611 
.475 .0632 
.507 .0764 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN (CONT) 

0.35 

c 

To a(2j + I] )         2R 

.00 .365 .000 

.02 .375 .009 

.04 .386 .018 

.06 .397 .023 

.08 .409 .038 

.10 .421 .050 

.12 .433 .062 

.14 .446 .075 

.16 .460 .090 

.18 .474 .105 

.20 .489 .121 

.22 ,504 .139 

.24 .521 .158 

.26 .538 .179 

.28 .556 .201 

.30 .575 .224 

.32 .595 .250 

.34 .617 .277 

.36 .639 .307 

.38 

.40 
.663 
.689 

,338 
.373 

,42 .716 . 410 
,44 ,746 ,450 
. 46 .777 .493 
.48 .810 .540 
.50 ,846 .530 

.52 .885 .645 

.54 .927 .704 
c56 .973 .768 
.58 1.023 .837 
.60 1.078 .912 

,62 1,138 .993 
.64 1.204 1.081 
,66 1.278 1.175 
,68 1.359 1.278 
.70 1.451 1.389 

n   =   7 

a(2j   +   1) 2R 

.17J .0000 

.183 .0002 

.188 .0003 

.494 .0005 

.199 ,0006 
,205 .0008 

.210 ,0010 

.217 ,0012 

.223 ,0015 

.230 .0017 

.237 ,0020 

,244 ,0023 
.252 ,0026 
.260 ,0030 
,263 .0033 
.277 .0037 

.236 .0042 

.296 .0047 

.30 7 .0052 

.318 .0058 

.330 .0065 

.343 .0072 

.357 .0080 

.371 .0089 

.387 .0099 

.404 .0111 

.422 .0123 

.442 .0138 

. 464 .0154 

.487 .0173 

.513 .0195 

.542 .0221 

.574 .0251 

.610 .0286 

.650 .0328 

.695 .0378 

a(2j   +   1) 2R 

.118 .0000 

. 122 .0003 

.125 .0006 

.128 .0010 

.132 .0013 

.136 .0017 

.140 .0022 

.144 .0026 

.148 .00 31 
,152 .0037 
.157 ,0042 

,162 .0049 
.167 .0055 
.172 .0062 
.177 .0070 
.183 .0073 

.189 .0087 

.196 .0097 

.203 .0107 

.210 .0119 

.218 .0131 

.226 .0145 

.235 .0160 

.245 .0176 

.255 .0194 

.266 .0214 

.278 .0235 

.291 .0260 

.305 .0286 

.321 .0317 

.338 .0351 

.356 .0389 

.377 .0433 

.401 .0483 

.427 .0540 

.456 .0606 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN (CONT) 

r2/a2 =0.40 

n  =  ! n  = 2 n  =  3 

To 

.335 .007 

.345 .014 

.355 .021 

.365 .030 

.375 .038 

,386 .048 
.398 .058 
,410 .069 
.422 .081 
,436 .093 

.449 .107 

.464 .122 

.479 .137 

.495 .154 

.512 ,173 

.530 .192 
,549 .213 
,56y .236 
.590 .261 
.613 .288 

.637 .317 

.663 ,349 

.690 .383 

.720 .420 

.752 ,460 

.737 .504 
,824 .552 
.865 .605 
.910 .662 
.959 .724 

1.013 .792 
1.072 .867 
1.139 .948 
1,213 1.037 
1.295 1.135 

•°0 ,326       .000 .160 

002 
.04 
.06 
.08 
.10 

.12 

.14 

.16 

.18 

.20 

.22 
.24 
.26 
,20 
.30 

.32 
.34 
.36 
,31 
,40 

,42 
,44 
.46 
,48 
.50 

.52 

.54 

.56 

.53 

.60 

.62 

.64 

.66 

.68 

.70 

.165 .0001 
,169 .0002 
.174 .0003 
.479 .0004 
,184 .0005 

.189 .0007 

.194 .0008 
,200 .0010 
,206 .0011 
.212 .0013 

.219 .0015 
,226 .0017 
.233 .0020 
,241 .0022 
,249 .0025 

.257 ,0328 
,266 .0031 
.275 .0035 
,235 .0039 
.296 .0043 

.307 .0048 
,320 .0053 
.333 .0059 
.347 .0065 
.362 .0073 

.378 .0081 

.396 .0090 

.415 .0101 

.436 .0113 

.459 .0127 

.485 .0143 

.514 .0162 

.546 .0185 

.581 .0212 
,622 .0244 

a(2j +1)        2R a(2j   +   1)       2R a(2j   t   1)       2R 

00000 ,106        ,00 00 

.109 ,0002 

.112 .0005 

.115 ,0008 

.119 .0010 

. 122 .0014 

. 125 .0017 
,129 ,0020 
.133 ,0024 
.137 .0029 
.141 .0033 

.145 .0038 

.150 ,0043 

. 154 ,0048 

.159 .0054 
,165 .0061 

.170 ,0068 

.176 .0075 

.182 .0084 

.189 .0033 

.196 .0102 

,203 .0113 
.211 .0124 
,220 .0137 
,229 .0151 
,239 ,0166 

,250 .0183 
.261 00202 
,274 .0223 
,288 .0247 
.303 .0273 

.320 .0303 

.338 .0338 

.359 .0377 

.383 .0422 

.409 .0474 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN (CONT) 

r2/a2  = 0.45 

 n   =   I   n  =  2   n   =   3  

.02 .298 .005 

.04 .307 .010 

.06 .315 .016 

.08 .324 .022 

.10 .334 .029 

.12 .344 .036 

.14 .354 .044 

.16 .364 .052 

.18 .375 .061 

.20 .387 .071 

.22 .399 .081 

.24 .412 .092 

.26 .425 .104 

.28 .439 .117 

.30 .454 .131 

.32 .470 .146 

.34 .487 .162 

.36 .504 . 1 80 

.38 .523 .199 

.40 .543 .220 

.42 .564 . 242 

.44 .587 .266 

.46 .612 .293 

.48 .638 .322 

.50 .666 .353 

.52 .697 . 388 

.54 .730 .426 

.56 .766 .467 

.58 .80 6 .513 

.60 .849 .563 

.62 .897 .619 

.64 .950 .680 

.66 1.010 .748 

.68 1.076 .822 

.70 1.150 .905 

.147 .0001 

.151 .0001 

.155 .0002 

.160 .0003 

.164 .0004 

.169 .0004 

.174 .0005 

.179 .0006 

.184 .0008 

.190 .0009 

.196 .0010 

.20 2 .0012 

.208 .0013 

.215 .0015 

.222 .0016 

.230 .0018 

.237 .0021 

.246 .0023 

.255 .0025 

.264 .0028 

.274 .0031 

.285 .0035 

.297 .0038 

.309 .0043 

.323 .0047 

.337 .0053 

.353 .0058 

.370 .0065 

.389 .0073 

.410 .0082 

.432 .0092 

.458 .0104 

.486 .0118 

.518 .0135 

.554 .0155 

T0 a(2j + 1) 2R a(2j  +  1)       2R a(2j  +   1)       2R 

.00 .290      .000 .143      .0000 .095      .0000 

.098 .000 2 

.101 .0004 

.103 .0006 

.106 .0008 

.109 .0010 

.112 .0013 

.115 .0016 

.119 .0019 

.122 .0022 

.126 .0025 

.130 .00 29 

.134 .0033 

. 1 38 .0037 

.143 .0042 

.147 .0047 

.152 .0052 

.158 .0058 

.163 .0064 

.169 .0071 

.175 .0078 

.182 .0087 

.189 .0095 

.197 .0105 

.205 .0116 

.214 .0128 

.223 .0141 

.234 .0155 

.245 .0171 

.257 .0190 

.271 .0210 

.286 .0233 

.302 .0260 

.321 .0290 

.342 .0325 

.365 .0365 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN (CONT) 

r2/a2  =0.50 

n   =   1 n = 3 

a(2j +  1) 2R a(2j   +   1) 

.00 

.02 

.04 

.06 

.08 

.10 

.12 

.14 

.16 

.18 

.20 

.22 

.24 

.26 

.28 

.30 

.32 

.34 

.36 
3n 

O 

.40 

.42 

.44 

.46 

.48 

.50 

.52 

.54 

.56 

.58 

.60 

.62 

.64 

.66 

.68 

.70 

.257      .000 .127 

2R 

.0000 

a(2j  +   1)      2R 

.085 .0000 

,264 ,004 
.272 ,008 
.279 .012 
.287 .017 
.295 ,022 

.30 4 .027 

.313 .033 

.322 .039 

.332 ,046 

.342 .053 

.353 .061 

.364 .069 

.376 .078 

.388 ,088 

.401 .098 

.415 .109 

.430 ,122 

.445 .135 

.462 .149 

.479 .165 

,498 .131 
.518 ,200 
.539 .220 
.562 ,242 
.587 ,266 

.614 .292 

.643 .322 

.675 .354 

.710 .389 

.748 .428 

.730 .472 

.837 .521 

.889 .575 
,948 .636 

1.014 .704 

.131 .0000 

.134 .0001 

.138 .0001 
,142 ,0002 
,146 .0002 

.150 .0003 

.154 .0004 
.159 .0004 
.164 .0005 
.169 .0006 

.174 .0007 

.179 .0007 

.185 .0008 

.191 .0010 

.197 .0011 

,204 .0012 
.211 .0013 
.218 .0015 
.226 .0016 
.235 .0018 

,244 ,0020 
.253 .0022 
,263 ,0025 
.274 ,0027 
.286 .0030 

.299 .0034 
.313 .0037 
.328 ,0042 
.345 ,0046 
.363 .0052 

.383 .0058 
,406 .0066 
,431 .0075 
.459 .0085 
.490 .0097 

.087 .0001 

.089 ,0003 

.092 ,0004 
,094 ,0006 
.097 .0008 

.100 .0010 

.103 .0012 

.106 .0014 

.103 .0017 

.112 ,0019 

.116 .0022 

.119 .0025 

.123 ,0028 

.127 ,0032 

.131 .0035 

. 135 .0039 

.140 ,0044 
„145 ,0048 
.150 .0054 
.156 .0059 

.162 .0065 

.168 ,007 2 

.175 .0079 

.182 .0037 

.190 ,0096 

.198 .0106 

.208 .0117 

.218 ,0129 
.228 .0143 
.2.40 .0159 

.254 ,0176 
,268 .0196 
.285 .0219 
.303 ,0246 
.324 .0277 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN (CONT) 

r2/a2  = 0.60 

n   =   1 n  =  2 

a(2j + 1) 2R a(2j   t   1) 2R 

.00 

002 
.04 
.06 
,08 
.10 

012 
.14 
.16 
.18 
.20 

.22 

.24 

.26 

.28 

.30 

.32 

.34 

.36 

.38 

.40 

.42 
,44 
.46 
.48 
.50 

.52 

.54 

.55 

.58 

.60 

197 .000 ,098 

.62 

.64 

.66 

.68 

.70 

.202 ,002 
,208 . 004 
.213 .006 
.219 .009 
,226 .011 

.232 .014 

.239 .017 

.246 .021 

.253 .024 

.261 .028 

.269 .032 

.278 .036 

.286 .041 

.296 ,046 

.306 ,051 

,316 .057 
.327 .064 
.333 ,070 
.351 .078 
.364 ,086 

.378 .095 

.393 .105 

.409 .115 

.426 .127 

.445 ,140 

.465 .154 

.487 .170 

.511 .187 

.537 .206 

.566 ,228 

.598 .253 

.633 ,280 

.672 .313 

.717 .347 

.766 ,387 

yo ,0000 

.100 .0000 

.103 ,0000 

.106 .0001 

.109 .0001 

.112 .0001 

.115 ,0001 

.119 .0001 

.122 .0002 

.126 .0002 -™ .0002 

.133 .0003 

.138 .0003 

.142 ,0003 

.146 .0004 

.151 ,0004 

.156 .0005 

.162 .0005 

.167 .0006 

.173 .0006 

.180 .0007 
^ 00008 
.194 .0008 
0202 .0009 
.210 .0010 
.219 .0011 

.229 .0013 

.240 .0014 

.251 .0016 

.264 .0017 

.278 .0019 

.293 .0022 

.310 .0024 

.329 ,0027 

.351 ,0031 

.375 .0035 

a(2j   +   1)       2R 

.065        .0000 

.067 .0001 

.069 .0002 

.071 ,0002 

.073 ,0003 

.075 ,0004 

.077 .0005 

.079 ,0006 

.081 .0007 

.084 .0009 

.086 .0010 

.089 .0012 
,092 ,0013 
.094 ,0015 
.097 .0017 
.101 .0019 

.104 .0021 

.108 .0023 

.111 ,0026 

.115 ,0028 

.120 .0031 

.124 .0035 

.129 .0038 

.134 ,0042 

.140 .0046 

.146 .0051 

.152 .0056 

.159 .0062 

.167 .0068 

.175 .0076 

.185 .0084 

.195 .0093 

.206 _nm4 

.219 .0116 

.233 .0130 

.249 .0147 
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TABLE 4-2.   TABLES FOR CYLINDRICAL CAVITIES WITH CENTRAL COLUMN (CONT) 

r2/a2  =0.70 

n   =   1 n   =   2 

c 
To a(2j t 1) 2R 

.00 .142 .000 

.02 . 146 .001 

.04 .150 .002 

.06 .154 .003 

.03 .158 .004 

.10 .163 .005 

.12 .157 .006 

.14 .172 .008 

.16 .177 .009 

.18 .183 .011 

.20 .188 .013 

.22 .134 .014 

.24 .200 .016 

.26 .206 .018 

.28 .213 .021 

.30 .220 .023 

.32 .227 .026 

.34 .235 .029 

.36 .244 .032 

.38 .252 .0 35 

.40 .262 .039 

.42 .272 .043 

.44 .282 .047 

.46 .294 .052 

.48 .306 .057 

.50 .319 .063 

.52 .334 .070 

.54 .349 .077 

.56 . 366 .085 

.58 ,385 .094 

.60 .40 5 .104 

.62 .428 .115 

.64 .453 .128 

.66 .431 .143 

.63 .512 .160 

.70 .547 .179 

a(2j  +1)       2R 

.071      .0000 

.073 .0000 

.075 .0000 

.077 .0000 

.079 .0000 

.081 .0000 

.083 .0000 

.086 .0000 

.083 .9001 

.091 .0001 

.094 .0001 

.097 .0001 

.100 .0001 

.103 .0001 

.106 .0001 

.103 .0001 

.113 .0001 

.117 .0002 

.121 .0002 

.125 .0002 

.130 .0002 

.133 .0002 

.140 .0003 

.146 .0003 

.152 .0003 

.159 ,0004 

.166 .0004 

.173 .0004 

.182 .0005 

.131 .0005 

.201 .0006 

.212 .0007 

.224 .0007 

.238 .0003 

.253 .0009 

.270 00011 

4-41 



AMCP 706-165 

TABLE 4-2.   TABLES FOR CYLINDRICAL CAVIT ES WITH CENTRAL COLUMN (CONT) 

r2/a2  = 0.80 

n   =   1 

c 
To a(2j + 1) 2R 

.00 .092 .000 

.02 .094 .000 

.04 .097 .001 

. 06 .099 .001 

.08 .102 .001 

.10 .105 .002 

.12 .108 .002 

.14 .111 .003 

.16 .114 .003 

.18 .118 .004 

.20 .121 .004 

.22 .125 .005 

.24 .123 » JuO 
„26 .133 .006 
.28 .137 .007 
.30 .142 .008 

.32 .146 .009 

.34 .151 .010 

.36 .157 .011 

.38 .162 .012 

.40 .168 .013 

.42 .175 .015 

. 4*-'- .182 .016 

.46 .189 .018 
,48 .197 .019 
.50 .20 5 .021 

.52 .214 .0 24 

.54 .224 .026 

.56 .235 .023 
58 .247 .032 

» 0\J .260 .035 

.62 .274 .039 

.64 . 290 .044 

.66 .308 .043 

.68 .328 .055 

.70 .350 .062 
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CHAPTER 5 

EXPERIMENTS 

5-0 LIST OF SYMBOLS* 

R1       = corner radius cf cavity, ft 

Re      = Reynolds number 

V        = volume cf original cavity 
c 

GREEK LETTERS 

6       = semi-vertex  angle   of truncated 
cone 

X        = maximum   rate   cf  divergence   cf 
nutational amplitude, per sec 

5^1    INTRODUCTION 

In this chapter we shall describe briefly 
the three sets cf experiments, the results cf 
which led to further theoretical develop- 
ments in the problem of the dynamics cf 
liquid-filled projectiles. The three experi- 
ments are: (a) verification cf Stewartson's 
prediction cf instability cf a projectile con- 
taining a cylindrical cavity cf a given fine- 
ness ratio and with a given percent cf fill; 
(b) instability in noncylindrical cavities; 
and (c) instabilities occurring during spin- 
up of the liquid, or in the transient phase. 
These experiments and the theoretical de- 
velopments stemming from them have con- 
siderably broadened and enhanced the 
means with which the designer can now 
handle the problem cf instability cf liquid- 
filled projectiles. 

While these experiments will be briefly 
described in this chapter, the correspond- 
ing theoretical developments will be con- 
sidered in Chapters 6, 7, and 8, for the 
three sets cf experiments, respectively. 

*For identification of other symbols in this chapter, refer 
to Chapter 3. 

5-2   VERIFICATION OF STEWARTSON'S IN- 
STABILITY CRITERIA 

Prior to the experiments conducted in 
the Ballistic Research Laboratories (BRL), 
Stewartson's theory had been tested only 
twice. The first tests were conducted with 
actual projectiles at the British Proving 
Ground,Porton, England. Special projectiles 
with cylindrical cavities were designed and 
built. The results of the tests were highly 
successful. For different fineness-ratios cf 
the cavities and different fill-ratios, all pro- 
jectiles predicted to be unstable gave short 
ranges, i.e., approximately 50%, and all 
projectiles predicted to be stable gave full 
ranges. 

Range firings, however — although they 
provide the final proof of the pudaing — 
are not very informative on details such as 
levels of yaw along the trajectory, nor yaw 
history. 

The second tests were conducted by 
G.N. Ward'. He used a gyroscope. With a 
given fineness-ratio cf the cavity, he tested 
all fill-ratios from zero to 100%in order to 
detect all resonances which are predicted 
to occur at various fill-ratios. He observed 
with certainty only one resonance with 
fundamental fluid frequency, i.e., the lowest 
j value, which occurred at the predicted 
fill-ratio. The maximum rate cf divergence 
cf the nutational amplitude, which is pre- 
dictable by the theory, could not be well 
determined with his apparatus. The width 
cf the resonance band, however, could be 
observed. It was found to be about three 
times as broad as predicted by the theory 
and curiously assymetrical, on the fill-ratio 
scale, relative to the resonant frequency 
T0 = Tn. Thus according to Ward's observa- 

tions, Stewartson's instability criteria 
should be modified to read: 
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-3.9< < 2.7 

instead cf as given by Eq. 4—21. 

At the time of these experiments the 
cause cf this disagreement with the theory 
was not known. The gyroscope was suspect, 
but examination of various possible sources 
of errors led to inconclusive results. 

L2.1   FREE-FLIGHT FIRINGS 

Because of the suspicion that the gyro- 
scope in Ward's experiments might have 
contributed to the disagreement with the 
theory, it appeared desirable to test the 
theory by free flight in the Ballistic Range 
of BRL under carefully controlled experi- 
mental conditions2. 

The projectiles for these experiments 
were 20 mm models. These were machined 
from solid aluminum bar stock to have 
cylindrical cavities cf a prescribed fineness- 
ratio. The cavities were designed so that 
the principal fluid frequency j = lwas close 
to the nutational frequency cf this projec- 
tile. The aerodynamic characteristics cf 
this configuration, a 5-caliber long Army- 
Navy spinner rocket, were well-known from 
previous work3. 

To test Stewartson's theory, the fluid 
must be fully spinning. Consequently, with- 
in the inclosed range the fluid must come 
to the full spin rapidly. Previous tests 
showed that glycerine —viscosity v = 1000 
centistokes, — reaches full spin at about 
40 feet from the muzzle. The BRL inclosed 
range is 280 feet in length. Therefore, the 
remaining 240 feet could then be used for 
relevant observations during which the pro- 
jectile executes about ten nutational oscil- 
lations. Further details cf these experi- 
ments can be found in Ref. 2. 

If one defines the Reynolds number as 

Re 
_ f2az 

where 

n   =  axial spin 

a    =  radius cf the cavity 

v = kinematic viscosity of the fluid 
the experiments were conducted at 
Re = 7.2 x 102. 

The results are shown in Fig. 5—1. The 
ordinates are the yaw undamping rates due 
to the liquid, i.e., with aerodynamic damp- 
ing removed. The theoretically predicted 
resonance band also is shown. 

Several discrepancies between theory 
and observations are at once apparent. 
These are: (a) the maximum rate cf diver- 
gence is not as great as predicted; (b)the 
resonant bandwidth is considerably 
broader than predicted; and (c) the fre- 
quency at which the maximum divergence 
occurs is displaced relative to the nuta- 
tional frequency of the projectile. Viscosity 
of the liquid was at once suspect as a likely 
cause of the observed differences with the 
predictions of an inviscid theory. However, 
to perform tests with liquids cf different 
viscosities or different Reynolds numbers, 
recourse must be made to the gyroscope. 

5-2.2   EXPERIMENTS WITH  GYROSCOPE 

The BRL gyroscope, as shown in 
Fig. 5—2, was found to be an excellent 
experimental tool for studies of its dy- 
namics when liquid-filled. Its design draw- 
ings may be requested from the BRL. 

The rotor of this gyroscope is a hollow 
metal cylinder. It may be made either cf 
steel or aluminum, thereby changing the 
inertial properties of the system. Another 
hollow Lucite cylinder with end pieces or 
cups at both ends may be inserted into the 
metal rotor. The Lucite cavity may be 
easily made to any desired geometry to 
simulate the cavity of the projectile. A 
cavity inner diameter from 2 to 2.5 inches 
is very convenient for experimental pur- 
poses. The moments of inertia cf this gyro- 
scope can be changed by  an addition of 
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heavy brass rings to the rotor at its pivot- 
point. Such rings change largely the axial 
moment of inertia. Thus the BRL gyro- 
scope has a range of the nutational fre- 
quencies fromT = 0.02 to T = 0.12 in incre- 

ments of 0.02. With such an arrangement, 
the gyroscope can be made to simulate the 
nutational frequency of the projectile under 
investigation provided, of course, that the 
projectile's nutational frequency lies within 
the range of the gyroscope. 

The unique characteristic of the BRL 
gyroscope is that its inner and outer gim- 
bals are supported by "Bendix Pivots" 
shown in the insert in Fig. 5—2. These 
consist of crossed flexible spring leaves so 
arranged and mounted that one-half of the 
unit can rotate about the common axis 
with very little transverse displacement 
due to an imposed curvature of the springs. 
The rotation is frictionless; has negligible 
hysteresis; and is linear (within 2.5%)with 
applied torque up to deflections of 15 de- 
grees. 

To measure angular displacements of 
the gyroscope, strain gages are attached to 
one of the pivot spring leaves of the outer 
gimbal. Since this pivot is stationary, the 
wires from the strain gages do not inter- 
fere with the motion of the gyroscope. The 
gages form a part of the bridge circuit 
whose amplified output is continuously 
monitored on a photographic recorder with 
calibrated timing lines. The rotor is spun 
by a 27-volt DC motor which is capable, 
depending on the load, of spins up to 7000 

rpm. The spin is controlled by a variable 
power supply and is measured by cali- 
brated Strobotac. 

For the experiments Silicone oils (Dow 
Corning Corp.) of various viscosities were 
used. Table 5—1 summarizes pertinent 
physical characteristics of these oils to- 
gether with the Reynolds numbers of cor- 
responding experiments. 

In order to observe a „„„   ,   .     reso- complete 
nance curve, the cavities for 2- and 2.5-in. 
diameters were   designed  to resonate at 

an 85% fill-ratio, i.e., b2/a2 = 0.15. From 
Stewartson's Tables one finds the required 
fineness-ratio c/a. For a steel rotor with 2- 
in cavity diameter, Tn = 0.060 (empty), the 
required fineness-ratios are 

c/a = 1.0307 (2j t 1) j =0,1,2, 

The chosen cavity was c/a = 3.092 (j = l)which 
had a volume of 3 2 8 cc. 

For an aluminum rotor with 2.5-in. cavity 
diameter, Tn = 0.053 (empty), the required 

finess-ratios are 

c/a = 1.0257(2) t 1) = 0,1,2, 

The chosen cavity was c/a = 3.077 (j = l)with 
a volume of 605 cc. These were convenient 
cavity sizes. 

For some fluids complete resonance curves 
were measured by varying the fill-ratio; for 
others, only the peaks of the resonance 
curves were established. The results are 
summarized in Table 5—2. 

According to the inviscid theory, the 
maximum rate of divergence should occur 
at precisely  the nutational frequency 
To = T

n and — except for slight variation 
in the density of tested fluids, which slightly 

TABLE 5-1. OILS AND REYNOLDS NUMBERS 
SPIN U = 5000 RPM 

Viscosity Sp. Gr. Reynolds Numbers 
V , centistokes      at 77°F      2-in. cavity      2.5-in. cavity 

1 

3 

5 

13* 

49* 

100 

3 50 

1000 

.818 3.38 x 10s 5.19 * 105 

.900 1.13 x 105 1.73 x 10s 

.920 6.76 x 10 4 1.04 x 10 5 

.940 2.60 x 104 4.00 x 104 

.960 7.53 xio3 1.06 x io4 

.968 3.38 x 103 5.19 * 103 

.972 0.97  x 103 1.48 x io3 

.972 3.38 x 10 2 5.19 x 10 2 

* Inadvertently, these two oils were partially mixed re- 
sulting in the above viscosities. Original viscosities 
were 10 and 50 centistokes, respectively. 
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TABLE 5-2. MAXIMUM RATE OF DIVERGENCE  X OF THE NUTATIONAL AMPLITUDE, max ' 
CORRESPONDING FILL-RATIO, AND ASSOCIATED FLUID FREQUENCY (INVISCID) TQ. 

Viscosity 
v , centistokes 

1 

3 

5 

13* 

49* 

100 

350 

1000 

2-in. cavity 

per sec 
Fill, 

% T0 

0.232 83.9 0.060 

0.174 83.9 0.060 

0.138 83.8 0.06L 

0.091 84.4 0.059 

0.046 85.5 0.055 

0.040 87.2 0.051 

2.5-in. cavity 

per sec 
Fill, 

% To 

0.522 84.5 0.055 

0.431 83.9 0.056 

0.355 84.5 0.055 

0.295 85.1 0.053 

0.160 85.8 0.051 

0.109 86.8 0.048 

0.048 88.8 0.043 

0.029 90.1 0.039 

"Inadvertently, these two oils were partially mixed resulting in the above viscosities. 
Original viscosities were 10 and 50 centistokes, respectively. 

alters Stewartson's parameter — shouldbe 
independent cf viscosity. The maximum 
rate cf divergence of the nutational compo- 
nent at resonance is given by Eq. 4—23 

2 
, per sec 

Thus, according to the inviscid theory, the 
^max's m Table 5—2 should be very 
nearly the same. This is clearly not the 
case. There is a strong effect of viscosity 
or, more appropriately, of Reynolds num- 
bers. This implies that the inviscid theory, 
in order to account for the observed effects, 
requires a viscous correction. This will be 
taken up in Chapter 6. When so corrected, 
the theory and observations are in ex- 
cellent agreement. This is illustrated in 
F'ig 5—3. Additional illustrations are given 
in F'ig 6—2. Further details of these ex- 
periments are to be found in Ref. 4. 

50     INSTABILITIES 
CAVITIES 

IN  NONCYLINDRICAL 

In the preceding paragraph and Ch. 6 it 
is shown that, for a liquid-filled projectile 
having a cylindrical cavity, Stewartson's 
theory with viscous correction gives excel- 
lent prediction cf the fill-ratios, over a wide 
range of Reynolds numbers, at which reso- 
nance with the nutational frequency cf the 
projectile occurs. Unfortunately, however, 
5-6 

most projectile cavities are not cylindrical. 
The projectiles are usually streamlined and 
the cavity, in general, follows the outer 
form. Theoretical prediction of eigenfre- 
quencies in such cavities at present is not 
feasible. The problem contains fundamental 
mathematical difficulties,  see par. 3—7.1. 

In order to shed some light on the be- 
havior of the eigenfrequencies in noncylin- 
drical cavities, the experiments described 
below were undertaken. The cylindrical 
cavity was systematically modified in such 
a manner so as to approximate the geom- 
etries, cf the cavities cf streamlined pro- 
jectiles. 

Figs. 5—4(A) and 5-^(B) show the 
types cf cavities which were tested. In the 
first series cf experiments the effect cf 
rounded corners was examined. A pre- 
viously tested cylindrical cavity, c/a = 3.077, 
designed to resonate at 85%fill-ratio, was 
progressively modified maintaining, how- 
ever, the same c/a, by rounding corners 
as is shown in Fig. 5—4(A). In configura- 
tion A only one end cf the cylinder was so 
modified; in configuration B both ends were 
modified. The results are shown in Fig. 5-5, 
Rounding the corners produces relatively 
small change in the fill-ratio cf the original 
cylinder; this implies a relatively small 
shift in the eigenfrequency. It is to be noted 
that the reference volume V is the volume c 
of the original cavity. 
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Modifications shown in Fig. 5—4(B) are 
combinations of the cylinder and the trun- 
cated cones. The latter are defined by the 
semi-vertex angle 6 , and the nondimen- 
sional height h/2c. The effect on the fill- 
ratio for resonance of various modifications 
was surprisingly large. To accommodate 
these large changes in the direction of 
greater fill-ratios for resonance in modified 
cavities,the original cylindrical cavity, 
c/a = 3.077, had to be redesigned. A new cy- 
lindrical cavity was designed to resonate 
at 60%fill-ratio rather than at 85% of the 
old cavity. The fineness-ratio of the new 
cavity was c/a = 2.687 with a volume of 534 
cc. The results of these tests are shown in 
Fig. 5—6. The ordinates are the volumes of 
the fluid at which resonance, T

n = To = 0.055, 
occurs divided by the total volume of modi- 
fied cavity, i.e., these are the fill-ratios rela- 
tive to the volumes of modified cavities all 
having, however, the same fineness-ratio 
c/a. 

In Chapter 7 a modification of Stew- 
artson's theory will be made which will 
permit prediction of resonance in noncylin- 
drical cavities provided that the departure 
of the geometry of the cavity from the cy- 
lindrical satisfies certain conditions. It was 
found that all cavities tested in the above 
experiments could be treated by the modi- 
fied theory. 

Further details of these experiments are 
to be found in Ref. 5. 

5-4  INSTABILITY  DURING SPIN-UP  OR 
TRANSIENT PHASE 

Stewartson's theory deals with an in- 
viscid fluid which is spinning as a rigid 
body with the full spin of the projectile. 
Real fluids attain such steady state in a 
relatively short time after the projectile 
leaves the muzzle. The duration of this 
spin-up or of the transient phase depends 
principally on the viscosity of the fluid. 
Experiments show, however, that signi- 
ficant dynamic instabilities of the projectile 
may develop during this transient phase. 
This means that even if the projectile is 
stable — by   Stewartson's  criteria in its 

steady state, i.e., with liquid fully spinning 
— severe transient instability may render 
such a liquid-filled projectile useless in 
practice. The designer, therefore, has to 
consider this transient phase. 

This phenomenon is exhibited in 
Fig. 5—7. The projectile was 20 mm with 
a cylindrical cavity of height 2c = 2.09 cali- 
bers and the cavity diameter of 2a = 0.78 
calibers with the fineness-ratio c/a =2.68. 
The volume cf the cavity was 7.8 cc. These 
projectiles were fired in the inclosed range 
of the BRT. 

Fig. 5—7 shows the yaw damping rates 
obtained from the usual analysis of the 
yawing motion. Hence these are the total 
rates, due both to the aerodynamic and 
liquid effects. With water as the filler, the 
instability manifests itself from about 50% 
to 95% fill-ratios. With heavier liquids the 
instability band is broader. Also the sever- 
ity cf the instability is roughly proportional 
to the specific gravity of the liquid. Within 
the uncertainty cf observations, the preces- 
sional yaw damping rates are unaffected 
by the presence of the liquid. 

Further details cf these experiments are 
to be found in Ref. 6. 

Stewartson's theory, of course, is inap- 
plicable to these results because the liquid 
is not yet fully spinning. A few tests with 
glycerine as a filler, which attains full spin 
very rapidly, also shown in Fig. 5—7, indi- 
cate that this projectile was stable with 
70% fill where maximum transient insta- 
bility appears to occur. The fill-ratios cf 
steady state instabilities, Stewartson's pre- 
dictions, are also indicated in the figure. 

The transient instabilities are manifesta- 
tions cf the same mechanism which is re- 
sponsible for instabilities in a steady state, 
i.e., it is a resonance phenomenon with the 
eigenfrequencies cf the liquid. In the tran- 
sient phase, however, the eigenfrequencies 
are no longer fixed depending only on the 

finess-ratio c/a and the fill-ratio b2/a2, but 
are variable and time-dependent.  They 
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vary with the radial velocity distribution 
in the cavity, which continuously changes 
until a rigid body rotation is reached. Thus 
during such sweep-up of the eigenfrequen- 
cies in a spin-up process, resonance with 
the nutational frequency of the projectile 
may occur. 

An attempt at the solution of this "un- 
steady" problem, mathematically much 
more difficult than the steady state case, 
will be described in Chapter 8. 

5-6   AXIAL SPIN DECAY 

Figs. 5—8 and 5—9 show some typical spin 
decay curves, in a vacuum, for the same 20 
mm projectile, 70% filled. These, of course, 
are measures of the spin-up process. For 
these experiments' the liquid was a mix- 
ture of glycerine and water. With liquids of 
higher viscosity, the graphs show that a 
considerable fraction of the angular mo- 
mentum of the liquid was acquired while 
the projectile was still in the gun. Table 
5—3 illustrates this. 

TABLE 5-3.   PERCENTAGE OF THE ANGULAR 
MOMENTUMAT THE MUZZLE 

Viscosity, % of angular momentum 
centistokes at the muzzle 

1000 40 

600 27 

100 14 

10 10 

1 10 

Relatively rapid spin decay of the liquid- 
filled projectile is due to a continuous trans- 
fer of the projectile's angular momentum 
to the liquid. This rate of transfer depends, 
among other things, on whether the mo- 
mentum is transferred by the laminar or 
turbulent shearing stresses at the walls of 
the cavity. The latter is a many times more 
efficient process than the former. However, 
an attempt to represent the observed spin 
decay by either of these two processes 
proved unsuccessful6,8. Neither the laminar 
nor the turbulent shearing stress hypothe- 
sis accounted for the observed spin decay. 
The solution was found in the experimental 
evidence6 that, as a result of end effects, 
strong secondary flow develops within the 
cavity. The secondary flow markedly alters 
the rate of diffusion of vorticity into the 
Tiquid thus accelerating the attainment of 
the full spin. The theoretical analysis of this 
problem also will be taken up in Chapter 8. 
There it will be shown that one can predict 
with reasonable accuracy the angular mo- 
mentum of the fluid in the cavity, including 
the effect cf the secondary flow, for any 
instant during the spin-up. This knowledge, 
in turn, will permit an estimate cf the time- 
dependent eigenfrequencies as the fluid 
gradually attains its rigid body rotation. At 
the end of the spin-up the eigenfrequencies 
become those predicted by Stewartson's 
theory. 
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CHAPTER 6 

EFFECT OF VISCOSITY 

6—0 LIST OF SYMBOLS* 

x = scaled frequency interval 

Y = scaled rate cf undamping 

GREEK LETTERS 

a 

A 

i6 

oo 

Ti 

TR 

AT, 
0 

= amplitude cf yaw 

= real part associated with a slight 
change AT due to viscosity cf the 
filler 

= 6/(2 yj |D| /O-L , aparameter 

= imaginary part associated with a 
slight change ATQ due to viscosity 
of the filler 

= viscous counterpart cf T i.e.,T = 
To * AT

O 

=     T    +   € 
0 

= imaginary part cf T 

= real part of T 

= e t i 6 

6-1   INTRODUCTION 

The effect cf viscosity on the motion cf 
liquid-filled projectiles is twofold: the proc- 
ess cf spin-up as well as the perturbed fluid 
motion are influenced by viscosity. In this 
chapter we are concerned with the second 
aspect, namely, the way viscosity influ- 
ences the perturbed fluid motion. 

The theories of Greenhill' and Stewart- 
son2 are based on the assumption that the 
liquid within the cavity is in a state cf 
rigid rotation  and yet has zero viscosity. 

*For identification of other symbols in this chapter, refer 
to Chapter 3. 

In a strict sense these assumptions are 
inconsistent since the liquid cannot achieve 
any rotation without the action of viscosity. 

Clearly, the inconsistency may be re- 
moved, assuming that the viscosity is very 
small so that its effect on the liquid oscilla- 
tions can be neglected and assuming fur- 
ther that the casing had been spinning suf- 
ficiently long to establish a state cf uniform 
rotation of the liquid. The question arises 
however, whether these assumptions are 
valid for a liquid-filled projectile leaving 
the muzzle cf a gun. In cases cf very high 
viscosity and small dimensions cf the cav- 
ity, the rotation cf the liquid may be nearly 
uniform when the projectile leaves the gun 
but then viscosity has a strong effect on 
the perturbed motion cf the liquid. On 
the other hand for very low values cf vis- 
cosity and large cavity dimensions, the 
effect cf viscosity on the perturbed motion 
may be neglected but the rotation cf the 
liquid is not uniform. 

In most practical cases the viscosity has 
some intermediate value, and both the fi- 
nite spin-up time and viscous effects on the 
perturbed fluid motion must be considered. 

6-2   HISTORICAL BACKGROUND AND 
OUTLINE OF THE PROBLEM 

Although Stewartson's theory was very 
successful to explain the observed instabil- 
ities cf liquid-filled projectiles, some dis- 
crepancies were found when the theory was 
tested experimentally by Ward3 in 1959. 
Ward investigated the motion cf a liquid- 
filled gyroscope and observed that the 
bandwidth cf frequencies for which the 
gyroscope became unstable was considera- 
bly broader than predicted and that there 
was also a shift cf the central frequency cf 
the instability band relative to theoretical 
values. 
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The findings of Ward were confirmed in 
1965 by Karpov4,5 who also pointed out 
that viscous effects are responsible for the 
discrepancies between predicted and ob- 
served ranges of instability. It was shown 
by Karpov that the bandwidth of instability 
decreases with decreasing viscosity of the 
liquid filler so that in the limit of zero 
viscosity the observed bandwidth ap- 
proaches asymptotically the value pre- 
dicted by Stewartson. 

A full explanation of the observed facts 
was obtained by Wedemeyer ,7, through a 
modification of Stewartson's theory, which 
takes into account viscosity in the form of 
boundary layer corrections to Stewartson's 
inviscid solution. 

A rough estimate for practical purposes 
is to consider that the effect cf viscosity on 
the stability of liquid-filled projectile be- 
comes insignificant when 

1/y Re       <</]D|7OT (6-1) 

S3     THEORY OF VISCOUS CORRECTIONS 

A detailed discussion of the theory of 
viscous corrections is given in Refs. 6 and 
7. The treatment of the problem given in 
Ref. 7 is preferable and more complete 
than Ref. 6. The analysis is based on the 
assumption  that  the   Reynolds   number 

Re =  —rf    the flow is sufficiently large, 

so that the action of viscosity is limited to 
a  narrow  boundary   layer zone near the 
walls. The main results of the theory are: 

a. The right hand side cf thecharacteris- 
tic equation, Eq. 3—87, representing the 
reaction of the liquid upon the projectile 
is formally retained except that the eigen- 
frequencies T„J   are slightly changed. Due 

to the action of viscosity any of the eigen- 
frequencies,  say T ,   is shifted by a small 
amount    AT,   which contains a real part 
and an imaginary part. The imaginary part 
of AT,   corresponds to viscous damping cf 

tiiat. both 
the msta- 

the free oscillations, while the real part is 
caused by the displacement effect of the 
boundary layers. Both the real and imagi- 

nary part of ATQ are of the order 1/ ,/Re   . 
b. In contrast to the eigenfrequencies, 

the residues. D of the inviscid theory under- 
go only negligibly small changes. Thus, the 
effect of viscosity can be described com- 
pletely in terms of viscous eigenfrequen- 
cies., It is shown in par. 6-r3 
the broadening and the shit 
bility bands follow naturally when the vis- 
cous eigenfrequencies are substituted in 
the place of the inviscid values. 

c. The broadening of the instability 
band is caused by the imaginary part cf 
AT,, while the real part cf AT, is responsi- 
ble for the  shift cf the central frequency. 

6-3.1  THE RATE OF DIVERGENCE 

As was mentioned in the previous para- 
graph, the only significant effect of vis- 
cosity is to change the eigenfrequencies 
by a small amount. We may thus retain 
the results cf the inviscid theory except 
that the eigenfrequencies r   are replaced 
everywhere by   their viscous counterpart 
0v To + ATO 

Eq. 3—81 then reads 
Tn   + ±iJ(JLpi)' 

o-L 
(6-2) 

It is readily seen that the two solutions for 
T are always complex because T0V is com- 

plex' and it will be shown that one of the 
two solutions, viz. the one corresponding 
to   the negative sign of the square root, 
has a negative .imaginary part and. thus, gives riserfo a divergent yawing motion a 
the projectile. 

Let   T    and  T   be the real part and 
R I 

imaginary part cf T, respectively. The com- 
plex yaw angle is 
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,      . if2(T   +iT   )t i fiTr   . -fiT.t 
1 tim= o0e R      I    - e       R       aQe I 

(6-3) 

The amplitude cf yaw diverges for negative 
T[ as 

U+im| = o =  cv e   "Ti' (6-4) 

The relative  time  rate   cf  divergence is 

1 dö_ - _ _fiT    , per sec    (6—5) 
CY dt ! 

The dimensionless rate - T is termed sim- 

ply "rate cf divergence" or "rate of un- 
damping". 

In order to separate the real and imagi- 
nary parts cf Eq. 6—2, the following abbre- 
viations are convenient 

AT„  =  € t i6 

To+  e   =   T00>   ^ T      =   Tnn   t i 6 0v oo 

4°! t    62-(rnn-T)2 00 nJ 

o-L 

n  =  2 6(Too   - Tn) 

Eq. 6-2then reads 

less cf how large ( T00 - Tn) is. When plotted 

versus (T00  _ T(1)> the  rate   cf undamping 

-Tj gives a bell-shaped symmetric curve 

with a maximum at (TQ0 - Tn) = 0. For large 

values cf the   argument, the rate of un- 
damping decays like 1/(TQO - T )2. Actually, 

the width cf the instability band is infinite 
and one should rather define a characteris- 
tic bandwidth cf frequencies for which the 
rate cf divergence is larger than a certain 
small percentage cf the maximum rate. 
For practical purposes it is useful to define 
a residual bandwidth characterized by a 
band cf frequencies for which the rate cf 
undamping is larger than the aerodynamic 
damping rate. Eq. 6—8 shows that - T de- 

pends on the two parameters |D|/O-L 
and 6 . To eliminate one cf the parameters, 
it is advantageous to define a scaled rate 
cf undamping y, and a scaled frequency 
interval xby 

(Too- \)/2 

IM 
aL 

(6-9) 

ID] 
crL 

Then y depends only on x and the one pa- 
rameter 

T   _   Tn    +  TQQ + i£  a*    ,/m+in       (6-6) 
2      2 

Reducing the square root, one obtains for 
the real and imaginary parts cf T It is 

A = 6/2 

isi 
crL 

(6-10) 

TR
     

±2    \ 

/     /   2j_     2                      T        +    T /  vm + n    — m   +   oo         n 
1             2                          2 

v4' /   Vm +   n    +   m    ,      6 
V                   2                   2 

(6-7) 

A 1+ A2-x2)2 + 4 A2x2 + (1 + A2 -x2 ) 
2 

(6-11) 

The first solution for T (corresponding to 
the upper sign cf the square root) has a 
negative imaginary part and thus yields 
a positive rate cf undamping _ T   regard- 

The scaled Eq. 6—11 has the advantage 
that it can be presented conveniently in 
graphical form or in the form of a table. 
Fig.   6—1   shows  plots  of   y versus   x for 
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several values of the parameter A . For 
A = 0 the inviscid case is recovered; the 
undamped curve has an elliptical shape 
and the bandwidth is finite. 

For larger values of A the undamped 
curve becomes increasingly flat and the 
bandwidth is at first broadened until finally, 
for very large A, the curve becomes so flat 
that an increasing part of it falls below the 
aerodynamic damping rate and the resid- 
ual bandwidth of instability shrinks. 

Fhe maximum undamping occurs when 
the nutational frequency Tn  coincides with 

the central frequency T      which is shifted 

away from the inviscid eigenfrequency TQ 

by the amount E. 

Fo account for viscosity it is necessary 
to compute both e and 6 , i.e., the real 
and imaginary  part of AT,.   Once t  and 6 

are known, the rate of divergence may be 
determined with the aid of Fig. 6—1 or 
directly from Eq. 6—11. Fhe computation 
of ATQ is discussed in par. 6—3.2. 

6-3.2  COMPUTATION   OF  VISCOUS   EIGENFRE- 
QUENCIES 

In the previous paragraph it was shown 
that the effect of viscosity on the stability 
of a liquid-filled projectile can be described 
completely in terms of complex eigenfre- 
quencies which are substituted for the real 
eigenfrequencies of the inviscid theory. Fhe 
subject of this paragraph is the computa- 
tion of these viscous eigenfrequencies. 

Fo facilitate the understanding of the 
computational scheme, a few basic notions 
may be outlined beforehand. It is assumed 
throughout the following that the Reynolds 

number d: the flow Re  =   ua    is very large, 

so that boundary layer theory is applicable. 
An important result of boundary layer 
theory is that when a flow is in contact 
with a wall, a thin layer of reduced flow 
velocity — the so-called boundary layer — 

is formed on the walls as a result of fric- 
tion. Fhe remaining flow outside of the 
boundary layer —briefly termed "external 
flow" — is not subjected to friction, i.e., 
the external flow satisfies the dynamic 
equations of inviscid flow and the inviscid 
boundary conditions. However, the boun- 
dary conditions for the external flow do 
not apply at the wall but at the edge of the 
boundary layer or, precisely, at a surface 
which is displaced from the wall by the 
boundary layer displacement thickness. If, 
for example, the displacement thickness at 
the curved wall r = a of a cylindrical cavity 
is 6a, the boundary condition requires that 
the normal component u of the flow velocity 
be zero at r = a-8a, i.e., u(a - 6a) = 0. Simi- 
larly, if at the plane surface z = + c, the 
displacement thickness is 6c, the boundary 
condition for the normal component w ap- 
plies at z = ± (c - 6c), i.e., w(c - 6c) = 
w(-c t 6c)  = 0. 
Fhus, the effect of viscosity is equivalent 
to a reduction of the cavity dimensions 
from (a, c)to (a - 6a,  c -  6c). 

Fhe detailed analysis shows that 6a and 
6 c are constants, so that the reduced cav- 
ity is again cylindrical. Consequently, the 
viscous eigenfrequency T0V of a cylindrical 
cavity with dimensions (a,c) is equal to the 
inviscid eigenfrequency T of the reduced 
cavity (a- 6a,  c-  6c), or 

T0V (a,c)   =T0(a- 6 a, c-  6c) (6-12) 

Actually, the physical interpretation of ba 
and 6c as "displacement thickness" is 
somewhat ambiguous for unsteady flow 
since 6a, 6c are not real in this case. Fhe 
oscillating flow in the cavity of the yawing 
projectile produces an oscillating boundary 
layer flow which is not in phase with the 
inviscid flow outside the boundary layer. 
Within the mathematical formalism, the dis- 
placement flow of the boundary layer is a 
complex quantity, the real part of which 
corresponds to the component in phase with 
the inviscid flow; the imaginary part corres- 
ponds to the component 90 degrees out of 
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phase. The complex displacement flow, in 
turn, leads to a complex displacement 
thickness. It appears, that a complex dis- 
placement thickness has no physical mean- 
ing; however, the essential point is that the 
use of complex notation leads to complex 
values for ( 6 a, 6c), so that the boundary 
conditions for the inviscid flow apply at the 
complex boundaries r =(a-6a) and 
z = ± (c -6c). 

Since the cavity dimensions enter into 
the theory only via the boundary condi- 
tions, it follows that the effect of viscosity 
is equivalent to replacing (a, c) by (a- 6a, 
c - 6c) in the results; Eq. 6—12 follows re- 
gardless whether 6a and 6c are real or not. 

For the cylindrical cavity of radius a and 
height   2c,  the  following expressions  are 
found for the displacement thickness 6a at 
the curved wall and 6c at the plane walls 

A3. =      1 1 t i 1 

/Ite /T"      /l^ 
(6-13) 

6c =     1 
c 

3 - T  /l - i \ _ 1    + T n +i\" 

/IT^1 -T/     yjr^i -r) (6-14) 

with T = —, dimensionless yawing frequency 

Re Ua. , Reynolds number 

The viscous eigenfrequencies may now be 
computed from Eq. 6—12 with ba and be 
as given by Eqs. 6-13 and 6—14. 

Assuming, that 6a«a and 6c<<c , 
we may expand the right hand side of Eq. 
6-12 and retain only terms up to first 
order in 6a and 6c. Thus, Eq. 6—12 be- 
comes simply 

T0v(a,c)  =   T0(a,c) 
9TQ(a,c) 

9a 

9T (a,c) 
>a - 2   6c 

9c 
(6-15) 

The partial derivatives    -£*Ie-    and      -   o 
9a 9c 

in Eq. 6—15 may be computed from tables 
of   TQ  by numerical differentiation. 
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In Stewartson's  Tables, however,  TQ is 

tabulated versus c/ [a(2j + 1)]   and   b /a   . 
It is, therefore, convenient to express the 
partial  derivatives   9T / 3a   and    9TQ/ 9C 

by derivatives with respect to  c/[a(2j 11)] 

and     b2/a2.   The  partial   derivatives  are 

9-o _ 9TO 
C 

9TO_ . 
2b2 

9a 9c/[a(2j + 1)] a2(2j +1) 3b2 /a2 3 
a 

9T0_ 9T0 1 

9c 9c/[a(2j + 1)]      a(2j + 1) 

and Eq. 6—15 becomes: 

T      - T 3T
0 , c        y 6a^ _ 5cv  +      drQ      ^    tf_      6a 

0v   ~ T°      9c/ra(2i + l)l   "   a(2i + l)\a       c'        »J ,2   '      2 0      9c/[a(2j + l)]        a(2j + l) \ a       c /        gtf/ 

The evaluation of Eq. 6—16 with the aid of 
Stewartson's Tables may be illustrated in 
an example: 

Suppose the fineness-ratio is c/a = 3.60and 

the cavity is 95%fUled or b2/a2  = 0.05. 

For the principal mode   (j = l,n = l)  we ob- 
tain: 

,2 
 -  = 1.20,   _ =  0.05 

a a a 

a(2j+ 1) a2 

and from Stewartson's Tables 

L2 /   2, 
T0 (c/[a(2j t 1)],   b /a"4)   = TQ (1.20, 0.05) =  0.1600 

Approximating  the partial  derivatives by 
difference quotients we obtain 

9T0 _ T0(1.231,   0.05) - T0(1.20, 0.05)  _ 0.02 
"9c/ La(2j + 1)J ~ 0.031 ~ ÖÜ31 

9T0        _  T0(I.20,  0.10) - T0(1.20, 0.05)   _ 0.0069 

9b2/a2 0.05 0.05 

0.656 

0.138 

(6-16) 
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Next, Eqs. 6—13 and 6—14 are evaluated 
for c/a  =  3.60 and T =    T„ 0 

5a 
a 

c 
1 

\/R«r 

1 ti 

0.16 

1 

2 Vo.84 

1 

3.6 x 0.8 

1 (0.77 t 0.77i) 

?H4     (1 =x\ _ 1.16     (1   +i 

\/Tl6    0.84/      \/z84     0.84 

L- [0.22    -0.38i] 

Substituting these results  into Eq.  6—16 
finally yields 

T0V = 1-0 t —L- (0.44 + 0.9l6i) 
sfRe 

According to the definition of E and 6 
T0v- To= AT

O   =   E+ 15 

we have 

€ =    0-44    ■ 0.916 

J~Re /RT 

Finally the frequency shift and the shape 
of the instability band follow from E ,6, and 
Eq. 6—8. 

6-4  EXPERIMENTAL VERIFICATION 

According to the theory, the broaden- 
ing and shift of the instability bands is a 
consequence of the shift of eigenfrequencies 
by a  small amount  ATQ  =  e t i&.   The 

theory predicts that both the real and the 

imaginary  part   of   AT„   are proportional 

to Re-1'2 . During the course of experi- 
ments on a liquid-filled gyroscope, Karpov A 

measured the rate of divergence as a func- 
tion of the fill-ratio for various fluids. Since 
the functional dependence between fill-ratio 
and eigenfrequency is known, it was possi- 
ble to plot the measured rate of divergence 
versus the (inviscid) eigenfrequency. When 
the theory is correct, it should be possible 
to fit a curve of the type shown in Fig, 6—1 
to the experimental points, provided the 
values  of   e   and   6   are properly   chosen. 

The method actually used was to deter- 
mine e and 6 by a curve fitting procedure. 
The rate of divergence has its maximum 
when T0 t e = I-,. 

The frequency T0, at which maximum 

undamping occurs, and also the nutational 

frequency T of the gyroscope can be de- 

termined with rather high accuracy. The 

difference Tn — T0 then yields the experi- 

mental value for E . 

The value of b was determined from the 
observed maximum rate of divergence. Let 
r be the ratio of the maximum rate cf di- 
vergence as predicted by inviscid theory 
divided by the observed maximum rate cf 
divergence, i.e., 

\ max (inviscid) y< 
X max (viscous cr observed) 

/ S+b2   -6 

Then, according to Eq. 6—11 evaluated €or 
x = o 

(since    y ~  \max,   ymax(inviscid) = i,    and 

Ymax (viscous)"  V 1 +  A     —  A 

and 6 = V^-K'-O 
6-8 
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With E and 6 so determined, the theoreti- 
cal resonance curves (rate of divergence 
versus eigenfrequency) were computed and 
compared to the experimental data. The 
agreement was very good. 

When, however, e and 6 were plotted 
versus the Reynolds number, it appeared 
that   they   did  not follow the predicted 

— 1 !2 Re ' -law. The data indicated only to 
some extent a unique dependence on the 
Reynolds number and the dependence was 

more like Re" 4 or Re 5 . The experi- 
mental 6's were larger than expected 
except for the lowest experimental Rey- 
nolds numbers. 

The nature cf the observed discrepan- 
cies suggested the following hypothesis: 
"For sufficiently large amplitudes of oscilla- 
tion and high Reynolds number, the boun- 
dary layer on the concave wall of the cavity 
becomes unstable. As a result cf this in- 
stability a cellular flow and eventually tur- 
bulence develops in the boundary layer, 
yielding a larger skin friction and thus a 
larger value for 6." This hypothesis was 
supported by another observation, namely, 
the instability of the gyroscope was self- 
generating only in a close vicinity cf reso- 
nance, i.e., some of the observed instabili- 
ties were absent at small amplitudes. 

To resolve this matter, it was necessary 
to perform the experiments at a smaller 
amplitude of oscillation. To this end a new 
gyroscope cf greater sensitivity was built, 
and the previous experiments were re- 
peated at yawing amplitudes cf less than 
one degree?, The results cf these experi- 
ments are in excellent agreement with the 
theory. In Fig. 6—2 theoretical resonance 
curves are plotted for different Reynolds 
numbers together with experimental data. 
The theoretical and experimental data cf 
Fig. 6—2 are based on the following con- 
stants and   dimensions   cf the gyroscope 

b2/a2 0.15 

Q. =  5000  rpm; m = 1.6 xj.0-3 

S.   =3.077 
a 

=   1 

Figs.  6—3 and 6-4    show a comparison of 
theoretical and experimental values, 
respectively, cf «  and 6;  «= R(ATQ) and 
6- 1(AT0). 

The logarithmic plot log « and log 6 versus 
log Re yields straight lines with a slope cf 
— 1/2. All experimental points fall very 
close to the theoretical lines. 

The data  in Figs. 6—3 and 6-4 
based on the following dimensions: 

are 

3.077 =  1 b2/a2 0.15 

Ward's experimental  data3, which are ob- 

Vned for about the same  c/a and  b2/a2 

values, also fit the very well. 

The good agreement with theoretical 
predictions, which was found for all experi- 
mental data taken at small yawing ampli- 
tude, can be considered as a full confirma- 
tion cf the theory. On the other hand, the 
experiments have disclosed a severe limi- 
tation cf the theory. The theory cf viscous 
corrections, which is based on the assump- 
tion of laminar boundary layer, is not appli- 
cable at large yaw amplitudes and Rey- 
nolds numbers. 

Theoretical considerations suggest that 
the boundary layer becomes unstable at 

constant values cf 0 v Re , i.e., the higher 
the Reynolds number, the smaller is the 
yaw-angle at which transition to a non- 
laminar boundary takes place. From ex- 
perimental results   it appears that transi- 

tion occurs at about     a J Re      ~ 3 

where CY is measured in degrees. 

10" 

In Ref. 5, Karpov investigated thorough- 
ly the effects cf large yaw amplitude be- 
cause cf the important practical aspects 
cf the problem. A discussion cf these inves- 
tigations is given in Chapter 10. 
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CHAPTER 7 

NONCYLINDRICAL CAVITIES 

7-0 UST OF SYMBOLS" 

A     = a constant 

a(z) = radius of cavity at z.i.e., a func- 
tionof z 

ao    = radius of the cylindrical part of the 
cavity 

b0     = radius of cavity void at z = c 

C      = boundary curve in x, y-plane 

Cj    = Bessel function 

D = residue at pole, related to non- 
cylindrical cavity 

D0 = residue at pole, related to cylindri- 
cal cavity 

D' = domain, related to boundary 
curve C 

f j      = modes of oscillations 

k       = wave number 

Kn = ir/(2rin)-Kn is tabular value in 
Stewartson's Tables for a given T0, 
c/[a(2j t 1)], and the nth radial 
mode 

M = moment on projectile in nonrotat- 
ing, inertial coordinate system 

M' = moment on projectile in rotating 
coordinate system 

n = radial mode number; a normal 
direction to curve C 

PR = real part of P hydrodynamic pres- 
sure 

Pj = imaginary part of Phydrodynamic 
pressure 

P* = complex conjugate cf P hydrody- 
namic pressure 

PR = real part of p perturbation pres- 
sure 

R'      = radius of rounded corner of cavity 

s       = tangential direction to curve C 

AV    = change in liquid volume 

Vc     = volume of original cylinder 

x,y,z = rotating   system of coordinates 
with z along axis of rotation 

GREEK LETTERS 

ß 

n„ 
e 
A 

T' 

= V/4/(1-T)
2
-1 

2,    2 

*For identification of other symbols used iithis chapter, 
refer to Chapter 3. 

= parameter depending on T and b /a 

= cone angle, refer to Fig. 7—1 

= parameter 

= nondimensional eigenfrequency in 
rotating coordinate system 

<J>      = phase  of wave in axial direction 
wö     = frequency in  rotating  coordinate 

system 

%     = frequency in nonrotating,  inertial 
coordinate system 

7-4   INTRODUCTION 

The stability behavior of liquid-filled pro- 
jectiles can be predicted with high accuracy 
when the liquid-filled cavity is cylindrical, 
or when the cavity is spheroidal and com- 
pletely filled. The cases of spheroidal and 
cylindrical cavities have been investigated 
extensively because of their mathematical 
tractability. 

Although most liquid-filled projectiles 
have cavities of nearly cylindrical shape, 
there are few cases where the cavity is 
exactly cylindrical and the question arises 
whether nearly cylindrical shapes may be 
approximated by cylinders and how large 
the encountered error is. In some cases, 
cavity shapes deviate sufficiently from cyl- 
inders so that the applicability of Stewart- 
son's theory is rather questionable. 
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Solutions for cavity shapes other than 
spheroidal or cylindrical are not known and 
it appears that they are very difficult to 
obtain. Furthermore, special solutions 
would be of little use for the designer in 
view of the large variety cf practical cavity 
shapes. 

Fortunately, it has become possible to 
compute the eigenfrequencies for most 
practical cavities on the basis of an ap- 
proximate theory . Moreover, extensive ex- 
perimental investigations have been per- 
formed* which support and supplement the 
theory cf Ref. 1. 

The theory is applicable to cavities of 
rotational symmetry, provided that the 
cavity has two plain endwalls and the 
radius a(z) of the cavity varies only slowly 

da withthe distance along the axis, i.e., 
dz 

«1. 

Frequently, the corners between end- 
walls and sidewalls are rounded, and the 
condition «1   is  not  fulfilled at the 

corner. However, the experiments have 
completely clarified the effect of rounded 
corners on the eigenfrequencies. 

Approximate residues may be computed 
on an empirical basis. As mentioned in 
par. 3—7, it is very often sufficient to have 
just a rough estimate of the bandwidth of 
instability and thus a rough approximation 
of the residue. Nevertheless, it appears 
that residues can be predicted now with 
reasonable accuracy. The theoretical and 
experimental results regarding cavities of 
rotational symmetry are discussed in 
par. 7-2. 

The stability problem becomes ex- 
tremely difficult when the cavity is not 
rotationally symmetrical. Fortunately, 
cavities cf nonrotational symmetry are 
practically unimportant, with the possible 
exception of cavities formed by partitioning 
as in Fig. 8—1(A). As yet cavities of other 
than rotationally symmetrical shapes are 
not amenable to theoretical treatment. 
However, some ideas regarding the compu- 

tation of eigenfrequencies for such cavities 
are outlined in par. 7—4. 

7-2 CAVITIES OF ROTATIONAL SYMMETRY 

The "nport*"106 of, eigenfrequencies and 
correspondrng residues lor the stabrlrty 
problem of liquid-filled projectiles was dis- 
cussed in par. 3—6. Although the stability 
problem has been solved only for cylindri- 
cal and completely filled spheroidal cavi- 
ties, we may assume with certainty that 
eigenfrequencies exist also for other cavity 
shapes and that they are related to insta- 
bilities in a manner similar to that for sphe- 
roidal and cylindrical cavities. 

It is reasonable to assume that small 
changes of the cavity shape cause small 
changes cf the eigenfrequencies and 
residues. Thus, as a first approximation, 
Stewartson's stability criterion may be ap- 
plied in cases where the cavity is nearly 
cylindrical, approximating the true cavity 
shape by a suitable cylinder. On the other 
hand, Stewartson's solution for the cylindri- 
cal cavity has been used in Ref. 1 as a 
starting point for the construction cf higher 
approximations. In the paragraphs which 
follow a brief outline cf the theory cf Ref. 1 
is given. 

7-2.1  THEORETICAL APPROACH 

The equations cf perturbed fluid motion 
for cavities cf rotational symmetry were 
discussed in Chapter 3. It was shown in 
par. 3—5.1 that, if the cavity has rotational 
symmetry, the perturbed fluid motion de- 
pends on time and azimuthal angle only in 
the form cf a factor el(UJt ~ 'which can be 
separated from the solution. The (r,z)-de- 
pendent amplitude function f(r,z) cf the 
pressure perturbation, Eq. 3—56, is de- 
scribed by the partial differential equation, 
Eq. 3—60, and boundary conditions, Eqs. 
3—61 and 3—62. 

As shown in par. 3—7.1, the solution be- 
comes particularly simple for cylindrical 
cavities. In the case cf a cylindrical cavity, 
the solution cf the boundary value problem 

7-2 
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can be constructed by a series of modes of 
oscillation  f. where   the z-dependence of 
each mode f j can be separated in the form 
of a factor coskz so that 

f j - coskzC^ßkr);    (0<z<2c) ;   0<r<a 

(7-1) 

where Cl is a Bessel function of the argu- 
ment ßkr and 

Eq. 7-4 expresses that only certain dis- 
crete fineness-ratios - exist for given b2/a2 

21 
2     2 C and T or, for given b /a and ^ there exists 

a set of discrete eigenfrequencies T = Tnj ac- 
cording to the choice of j and n in Eq. 
7—4,  In Stewartson's Tables the various 

are tabulated as functions of b2/a2 

a(2j t 1) 
and T . Let us denote these functions with 
K (b2/a

2,Tn),i.e., 

(1-T)' 
-1 

The eigenfrequencies are those frequen- 
cies for which one of the modes f. satisfies 

the homogeneous boundary conditions, 
Eqs. 3—61 and 3—62 with a = 0. The 
boundary condition applied at r=a yields 
the following condition 

2     2 
ka = nn (b /a ,T),    n = 1,2,3 (7-2) 

where a is the cavity radius. The n s which 
are essentially determined by the roots of 

■y       -y 

Bessel functions, depend on T and b /a , 
where b is the radius of the cylindrical air 
column. For a completely filled cavity, b = 0. 
The integer number n is related to the 
number of half-waves in the radial direc- 
tion. 

The boundary condition, Eq. 3—61, ap- 
plied at z = ± cleads to 

k2c= TT(2J t 1),   j =0,1,2, (7-3) 

where 2c is the cavity height, and j is re- 
lated to the number of axial half-waves 
(which is 2j t 1). 

A  comparison of Eqs.  7—2   and  7—3 
gives a condition for the fineness-ratio 

IT/2 

a(2j + 1) ^(bV.-r) 
0,1,2, . . 

= 1-2,3, . 

(7-4) 

2 ,  2 

a(2j — = Kn(b7aV0) (7-5) 

where 

TT/2 (7-6) 

(Here, as in previous chapters, the nota- 
tion   TQ   is used  for any eigenfrequency.) 

Let us consider now the modification 
when the cavity is not exactly cylindrical. 
We will assume, however, that the cavity 
is "nearly" cylindrical in the sense that it 
has two plane endwalls at z = 0 and z = 2c 
and that the variation of the radius a(z) is 
small, i.e.. 

«1 for 0    < z    < 2c (7-7) 

With this assumption, an obvious approxi- 
mation of the boundary condition, Eq. 
3—61, is to neglect the term containing da- 

dz" 

The resulting approximate boundary 
condition at r = a is formally the same as 
the condition at a cylindrical surface, the 
only difference being that the cavity radius 
is now slowly varying with z. A conse- 
quence of the variation of the cavity radius 
is — roughly speaking — that the radial 
wavelength and the wavenumber k must 
vary with z since a fixed number of waves 
must fit into the variable interval a(z). 

7-3 
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Thus instead cf Eq. 7—1, one may try, 
as an approximate solution of the eigen- 
value problem, 

fj= cos  (j>(z)C1(ßkr) 
(7—8) 

0   < z   <   2c, 0 <   r  < a(z) 

where k depends now weakly on z. The 
phase cf the wave in the axial direction 
can no longer be assumed to be equal to 
kz butsather 

4>=  f kdz (7-9) 

It can be verified that Eq. 7—8 with Eq. 
7—9 satisfies —within our approximation— 
the perturbation equation, Eq. 3—60. 

The homogeneous boundary conditions, 
Eqs. 3—62 and 3—61 with a = 0, applied to 
the sidewalls yield a condition analogous 
to Eq. 7—2 except that a is now variable. 

Thus 
k(z) -Vo^/a2,^); 1,2,3 .. . 

(7-10) 

The boundary condition Eq. 3—6L with 
<y= 0 applied to the endwalls z = ± c leads 
to 

4>(2c) = /   kdz = TT(2J + 1) ;    j = 0,1,2, . . . 
o 

(7-11) 

Eq. 7—11 is a generalization cf Eq. 7—3 
when k is variable. Both, Eq. 7—3 and Eq. 
7—11, express the fact that the number of 
half-waves in an axial direction is an odd 
integer number. Eq. 7—10 substituted in 
Eq. 7—1 1 yields 

A 
2c 

2c c/[a(2j + 1)] 

/*■■ 

2 / 2. U.bVa') 
dz =  1 ;   j 0,1,2, . .. 

1,2,3, . . . 
(7-13) 

Eq. 7—13 is the generalization cf Eq. 7—5 
for the case that a is variable. Eq. 7—13 
may be used to determine either the eigen- 
frequency T„ when the fill-ratio (i.e., 
b /a ) is given or vice versa. The Kn are 
tabulated in Stewartson's Tables as func- 
tions of TQ and b /a . For a cylindrical cav- 
ity, the Kn   represent the c/[a(2j 11)] value 
cf the cylinder. 

The practical computation cf eigenfre- 
quencies on the basis cf Eq. 7—13 is dis- 
cussed in par.    7—2.2. 

7-2.2 COMPUTATION OF EIGENFREQUENCIES 

The evaluation cf Eq. 7—13 is difficult 
when Kn is given numerically (as in Stew- 
artson's Tables) since one has to assume 
both b and TQ in order to perform the inte- 
gration numerically, and eventually repeat 
the procedure with changed values cf   TQ 

(or b)   until the correct value cf T   (or b) 
can be   ootained by interpolationo for a 

100% filled cavity, i.e., b = 0, the integra- 
tion simplifies considerably since Kn be- 
comes independent of z and can be taken 
out cf the integral. One obtains from Eq. 
7-13: 

Kn(0, r0) = 

2c 

2c J   a(2j + 1) 
o 

dz 
(7-14) 

2c 

I ■ -^dz  =  TT(2J t 1): 
a 

j =0,1,2, . . . 

n= 1,2,3, ■ ■ ■ 

(7-12) 
Finally,  expressing  n    by Kn according 

to  Eq,   7—6   and rearranging terms,  Eq. 
7—12 yields 

7—4 

Since K   is the value cf a cylinder 
a(2j + 1) 

with eigenfrequency  T     Eq.  7—14 can be 
interpreted in the following way: A com- 
pletely filled noncylindrical cavity has the 
same eigenfrequencies as an "equivalent 
cylindrical cavity"; the latter is defined as 
a cylindrical cavity having a fineness ratio 
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c/a equal to the averaged c/a of the non- 
cylindrical cavity. For a 100% filled cavity, 
therefore, only one integration must be per- 
formed to determine the average c/a. 

A way of solving the eigenvalue problem 
given in Eq. 7—13 is to approximate  1/Kn 

by polynomials in b2/a2. If TQ   is given and 
b is to be determined, one could plot l/Kn — 

2     2 for the particular TQ  given — versus b /a 
and approximate the resulting curve by a 

polynomial in b /a If neither ,2,    2 nor b /a 
are too large, the following formula is con- 
venient and quite accurate within specified 
limits 

1 t 1.26 (?J]   <7-15) 

7-2.3   NONCYLINDRICAL FREE SURFACE 

According to the derivation of Eq. 7—13, 
it can be readily seen that Eq. 7—13 is also 
valid when b is a slowly varying function 
of z. The case of variable b is realized when 
the deceleration —or acceleration—of the 
projectile is not negligible compared with 
centrifugal forces. The free surface then 
forms a paraboloid given by 

Q2b2 = fi2b2 -2g(z -c) ; 0 < z < 2c   (7—18) 

where g is the deceleration and b0 the 
radius of the void at z = c. For a cylindrical 
cavity, bQ is independent ofthe deceleration 

2       2 
g, and the fill-ratio is   1 - bQ/a0. 

K „ is the value K (0, T.) as obtained from n0 nv 0 
Stewartson's Tables for b2/a2 = 0. The ap- 
proximate Eq. 7—15 is valid within the 
following limits 

0 < T0 < 0.12 

0 < b2/a2 < 0.15 (7-16) 

With Eq.  7—15  substituted into Eq. 7—13 
one obtains 

2c 

K    fx1 =  ±-    f        c 

ncr-  o'     2c   /   a(2j + 1) 
0 

1 + 1.26 C* 

7-2.4  RANGE OF VALIDITY 

Eq. 7^-13 was derived on the assumption 

is small against unity. ii    i da 
that U- dz 

The approximate solution of the eigen- 
value-problem, Eq.  7—8, contains an error 

da which is locally of the order 
dz 

. Neverthe- 

less, the error of the resulting eigenvalue- 
condition, Eq. 7—13, is far smaller. The 
mathematical reason for this is that the 
error of the approximate solution, Eq. 7—8, 
is orthogonal, or nearly so, to the solution. 
Experiments2 have shown that Eq. 7—13 is 

da. a valid approximation atleastupto 
dz 

<0.2. 

(7-17) 

Eq. 7—17 has the advantage that the right 
side is independent of TQ and the left side 
is independent of b. By integration of Eq. 
7—17,  one  finds   a  relation   of the form 

So (T0) = c1+ cy 

Higher approximations of 1/Kn, in place 
of Eq. 7—15, and a practical evaluation of 
the integral Eq. 7—13 are discussed in 
par. 9—4. 

7-2.5  EFFECT OF ROUNDED CORNERS 

Sometimes cavities  have rounded cor- 
ners between one or both endwalls and the 

sidewall. At the rounded corners 22. attains 
|dz 

large values and Eq. 7—13 is not appli- 
cable. The effect of rounded corners can, 
however, be predicted on the basis of the 
experimental results of Ref. 2 (see also 
oar. 7—3.2.2). The effects of rounded cor- 

, *r* summarized ^ the paragraphs 
which follow. 

7-5 
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Let R'denote the radius cf the rounded 
corner, then R'/a is a measure of the 
amount of rounding. R'/a = 1 corresponds to 
hemispherical ends. 

Relative to the original cylindrical vol- 
ume, the fiil-ratio at which resonance occurs 
remains constant up to R'/a< 0.6, regardless 
of whether one or both ends are rounded. 
In other words forR'/a< 0.6 ,the liquid vol- 
ume remains unchanged. 

For R'/a>0.6 and the particular experi- 
mental conditions, the experimentally ob- 
served resonance occurred at progressively 
smaller fill-ratios. (For hemispherical ends 
— R'/a = 1 — the drop was 7%when one end 
was rounded and twice as much when both 
ends were rounded.) The results for 
R'/a > 0.6 must, however, be interpreted 
with some caution for the conditions of the 
experiment (see par. 7—3.2.2), resonance 
occurred at a fill-ratio of about 1-b /a =0.84, 
so that the value of b/a was about 0.4. If 
now R'/a exceeds the value 0.6, only part 
of the rounded contour is wetted by the 
liquid, so that the rounding effectively re- 
duces the length of the cavity and its c/a 
value. The reduction of the effective c/a 
value nearly accounts for the observed de- 
crease of the fill-ratio. It is thus very likely 
that at fill-ratios higher than 84%, the re- 
duction of the liquid volume occurs at cor- 
respondingly larger values of R'/a, and ear- 
lier at smaller fill-ratios. Experiments with 
smaller fill-ratios (see par. 7—3.2.2) con- 
firm this conjecture. 

At least up to R'/a =0.6 the effect of 
rounded corners is completely described 
by the rule that the eigenfrequencies re- 
main constant when the liquid volume is 
kept constant. 

7-2.6  ROUNDED  CORNERS  IN CONJUNCTION 
WITH OTHER MODIFICATIONS 

Finally, let us consider rounded corners 
in conjunction with other modifications of 
the cavity and eventually other fill-ratios. 
The principle  of superposition  suggests 

that the effects of the different modifica- 
tions are additive as long as the changes 
are small. This suggestion was verified 
also by experiments. Thus, the eigenfre- 
quencies for a given amount of fill may be 
computed according to the following rule. 
First, the rounding of the corners is dis- 
regarded and the contour of the cavity at 
the corner is completed by a straight ex- 
tension of sidewalls and endwalls. The 
amount of liquid filling the cavity is kept 
unchanged. (Since the volume of the cav- 
ity with straight corners is somewhat larg- 
er, while the amount of liquid is unchanged, 
the radius b of the air-column increases 
accordingly.) The cavity with straight cor- 
ners and equal amount of liquid filler has 
the same eigenfrequencies as the cavity 
with rounded corners, for which it was sub- 
stituted. The eigenfrequencies for the sub- 
stituted cavity then may be computed on 
the basis of Eq. 7—13. 

7-3   NONCYLINDRICAL CAVITIES OF ROTA- 
TIONAL SYMMETRY 

7-3.1   RESIDUES 

An accurate computation of residues for 
noncylindrical cavities of rotational sym- 
metry requires the solution of the boundary 
value problem, Eq. 3—60, with inhomo- 
geneous boundary conditions Eqs. 3—61 
and 3—62. 

By analogy with Stewartson's solution 
for the cylindrical cavity, Eq. 3—92, it is 
suggested that the solution of the boun- 
dary value problem can be constructed by 
means of a series 

f"  2[XiJi(ßkr) + ZiYi(|3kr)]cos *(Z) 

j = 0 
+ regular terms (7—19) 

The mathematical problem of determining 
the coefficients X-,Z. and the subsequent 
computation of the moment on the projec- 
tile have not been solved for any modified 
cavity  although   an approximate solution 

7-4 
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does not appear too difficult. Meanwhile, 
the residues for modified cylindrical cavi- 
ties may be estimated on an empirical 
basis. 

For a cylindrical cavity, the residue is 
6 

(Eq.   3—89)  -D = -££üR2 where   a0   is 
c 

the radius of the cavity and R2 is a dimen- 
sionless factor which depends on the eigen- 
frequency TQ and weakly on the fill-ratio. 
(It is roughly 

2R = 2.84 T0 x   (1 + T0) [l - (b4/a0
4Vj.) 

We may write the residue for modified 
cavities  in   a   similar  way,   however, the 

factors R and paQ
6/c are both to be 

modified. 

T0  and fill- Since R depends only on 
ratio, it is suggested that R changes only 
via the change of T and the fill-ratio. In 
other words, the value cf R may be taken 
from Stewartson's Tables at the appropri- 
ate eigenfrequency TQ and fill-ratio of the 
modified cavity. 

It is difficult to find a sensible generali- 
zation of the factor pa0/c. Obviously, 
some mean value of the radius should be 
substituted in the place of a0. However, in 
averaging the radius over the length of the 
cavity, different positions must be given a 
different weight. The parts of the cavity 
near the ends (z = 0, z = 2c) contribute by 
far the largest portion to the moment on 
the projectile and, thus, to the residue 
which is directly proportional to the mo- 

ment. Very roughly, a0   may be replaced by 

the mean value cf a at both ends. The 
modified residue then becomes 

-D= P^R2 

where 

:|[a(0)6ta(2c)6l 

(the notation means a evaluated at z = 0 
and z = 2c). 

Consider,  for example,   a cavity which 
is cylindrical   at  one   end   and   slightly 
tapered at the other end as shown in Fig. 
7—1.   The radius  cf the cavity at z = 0 is 

a(0) = aQ) the radius atz = 2c is a(2c) = a0 - Aa 

where, in the example of Fig. 7—1, 
Aa = h tan 8. If A a is small as compared 
to a0, Eq. 7—20 becomes 

4'-^] (7-21) 

With Eq. 7—21 the residue becomes 

D = D0[l-3Aa] where - D0 = p—%-R . 

Thus, the estimated change cf the resi- 
due, relative to its value for the cylindrical 
cavity, is AD/DQ = - 3 Aa/a0. The experi- 
mental data cf Ref. 2 suggest that the 
above crude method slightly overestimates 
the drop cf the residue and that a better 
approximation is given by 

AD 

D7 
= _ 2 Ajä. 

(7—22) 

with -D0 = R' 

As mentioned above, R   should be taken 
from Stewartson's Tables not at the proper 
c/[a(2j t 1)] value but at the proper TQ and 
fill-ratio of the modified cavity. 

7-3.2  EXPERIMENTS 

(7—20) 

The effect on resonance of various modi- 
fications cf cylindrical cavities was investi- 
gated experimentally by Karpov2. 

All experiments of Ref. 2 were carried 
out with a liquid-filled gyroscope. The nuta- 
tional frequency cf the gyroscope was fixed. 

7-7 



AMCP 706-165 

Fill-        .8 _ 
Ratio 

8 -Degrees 

FIGURE   7-1.    FILL-RATIO   VS     CONE   ANGLE    9   AT   FIXED   FREQUENCY    T0= 0.055,   c/o   =2.687 
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For a given modified cavity the fill-ratio 
was determined at which the rate cf diver- 
gence of the yaw amplitude attained its 
maximum value. At this fill-ratio, the eigen- 
frequency equals the nutational frequency 
of the gyroscope. 

Since there are a great many ways in 
which a cylindrical cavity can be modified, 
only changes have been investigated which 
are in the direction of approaching common 
cavity shapes of actual projectiles. 

A number of cavities were combinations 
of a cylindrical section and a truncated 
cone section of various heights and cone 
angles. Other cavities were combinations 
of two conical sections or of a cylindrical 
section with rounded corners and a conical 
section. Also cylindrical cavities with 
rounded corners at one or both ends were 
investigated. The radius of curvature of 
the rounded corners was varied between 
R'/a = 0 and  R'/a = 1.0. 

7—3.2.1   Modified Cylindrical Cavities 

The results of the experiments on cavi- 
ties with one conically tapered end are 
shown in graphical form in Fig. 7—1. All 
data refer to the same resonance frequency 

_ T0= 0.055. The fill-ratio at which 
resonance occurs is plotted for the various 
configurations versus the cone-angle. For 
comparison, theoretical curves are plotted 
in the same graph. The theoretical data 
were computed on the basis of Eq. 7—13. 

Fig. 7—1 shows that the theory gives 
good predictions even for cone angles e up 
to  12". A cone angle of 12" corresponds 

da to Idz 0.21. It is thus shown that Eq. 7—13 

may be applied with some confidence at 

least for da 
dz 

< 0.2. 

For a number of cylinder-cone configura- 
tions, Fig. 7—2 shows a. plot of residues — 
as computed from maxim 
damping —  versus 

urn rates of un- 
the   one variable 

h tanfl 
a„ 

Aa 
-an- 

of the endwall at the tapered end of 
the cavity and a„ the radius at the cylin- 
drical end. Theoretical considerations 
(par.   7—3.1)   suggested that  D/D0 should 

approximately depend only on 
h tanö 

Fig. 7—2 shows that D/DQ is roughly repre- 
sented by 

D/D0 = 1-2 h tanö 
*o 

where a0 — ^a  is the radius 

7—3.2.2 Rounded Corners 

The   effect  of rounded corners is dis- 

played in Fig. 7—3 where   y—is plotted 
c 

versus R'/a. AV is the change of liquid 
volume Vc, the volume of the original cyl- 
inder. The change in volume is very small 
for R'/a< 0.4. 

ForR'/a>0.4, the experimental points 
for c/a = 3.077 and c/a = 2.69 follow different 
branches. For c/a = 3.077, the fill-ratio is 
about 84% and b/a ~ 0.4. For c/a = 2.69, 
the fill-ratio is about 60% and b/a ~ 0.63. 
Apparently, all experimental data follow 
the abscissa up to R'/a = 1 -b/a and 
branch off after that point. This behavior 
can be explained as follows: if R'/a>l-b/a, 
only part of the rounded corner is wetted 
by the liquid so that the effective length 
of the cavity (the length which is actually 
felt by the liquid) is reduced. This reduc- 
tion of the cavity length can account for 
the observed effect. It is thus suggested 
that for 100% fill the independence of the 
liquid volume on R'/a holds even for larger 
values of R'/a. 

The data in Fig. 7—3 show also that the 
effect of rounded corners is additive, i.e., 
the change of volume due to rounded cor- 
ners is independent of other modifications 
of the cavity. Thus, the effect of rounded 
corners on fill ratio or eigenfrequency may 
be added to the effects cf other modifica- 
tions. A scheme Of computation was dis- 
cussed in par. 7—3.1. 

7-9 
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7-4 ASYMMETRICAL CAVITIES 

So far, we have considered only eigenfre- 
quencies corresponding to an odd number 
(2j t 1) cf half-waves. It was shown by 
Stewartson3 that, for the case of cylindrical 
cavity, only "odd" eigenfrequencies can 
produce instability although "even" eigen- 
frequencies exist as well. Generally, when 
the cavity is symmetrical about a plane 
normal to the axis, only odd modes cf 
oscillation interact with the yawing motion 
and thus only odd eigenfrequencies must 
be considered. This can no longer be as- 
sumed for asymmetrical cavities. Thus, 
when a cavity is significantly asymmetri- 
cal, one should account for the possibility 
that additional instability bands occur 
about the even eigenfrequencies (which 
correspond   to half-valued j's  as: 

1   3   5 .). 
2   2   2 

For slightly asymmetrical cavities the 
residues corresponding to even eigenfre- 
quencies are probably very small. At any 
rate, the residues cf Stewartson's Tables 
are not applicable — not even approxi- 
mately — for j = ^,f> • • . The eigenfre- 

2   l      ' 
quencies for half-valued j's   may be com- 
puted on the basis cf Eq. 7—13. 

7-4.1   OTHER CAVITIES AND RITZ METHOD OF 
APPROXIMATION 

Compared with the eigenvalue problem 
for cavities cf rotational symmetry, the 
corresponding problem for more general 
cavities is extremely difficult. Mainly re- 
sponsible for the mathematical simplifica- 
tion achieved in the case cf axisymmetri- 
cal cavity is the separation cf the factor 
ei(wt - 9) from the solution, which is pos- 
sible because cf the cyclic symmetry cf 
the fluid motion in the axisymmetrical 
case. 

Fortunately, most practical cavities are 
axisymmetrical, but there is an important 
exception, namely, cavities which are par- 
titioned by longitudinal baffles as shown 
in Fig. 8—1(A). 

7-4 2 

In the absence of a method for obtaining 
precise analytical solutions cf the eigen- 
value problem, an approximate method — 
known as RLtz Method —may be employed 
for cavities which are cylindrical but not 
axisymmetrical. 

The Ritz Method in combination with a 
method cf computation for noncylindrical 
cavities, which is discussed in par. 7—3, 
should render possible the computation cf 
eigenfrequencies for a noncylindrical, non- 
axisymmetrical cavity provided that the 
cross section changes only slowly with the 
distance along the axis. 

The analysis which follows should be 
restricted to a completely filled cavity 
since, in practice, cavities are usually com- 
pletely or almost completely filled and — 
inferring from the results for axisymmetri- 
cal cavities — the effect cf fill-ratio is prob- 
ably small near 100% fill. On the other 
hand considerable simplification is gained 
by the assumption cf complete fill. 

7-4.2 THE EIGENVALUE PROBLEM 

We consider a liquid-filled cylindrical 
cavity cf arbitrary cross section. The liquid 
is assumed to rotate with the cavity about 
an axis which is parallel to the sidewalls. 
It is advantageous to introduce a system 
cf rotating orthogonal triads (x,y,z) so that 
z lies along the axis cf rotation, and x and 
y rotate with angular velocity ft about z. 
Relative to the rotating system, the cavity 
walls are stationary. We suppose that the 
endwalls cf the cavity are atz = 0 and z = 2c, 
and that the constant cross section cf the 
cavity covers a domain D' with boundary 
curve C in thex,y-plane. 

With the above assumptions, the eigen- 
value problem for the free oscillations cf 
the liquid reduces to the following set cf 
equations for p 

p = P(x,y)eiaV cos kz,    k = -f (2j + 1) 
2c 

OK oy 

(7-24) 

(7-25) 
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where 
P'=M.-IU "» ? o n 

T '0 is   the eigenfrequency in the rotating 
system. 

The form cf the pressure perturbation, 
Eq. 7—24, assures that the boundary con- 
ditions are satisfied on the endwallsz= 0,2c. 

The boundary conditions on the side- 
walls can be written 

ap^-ap. = 0    along c        (7_26) 
an     T0  as 

ap       ap 
where —— and denote the partial deriva- 

9n 8s 
tives cf P in directions normal (n) and tan- 
gential (s) to the boundary curve C. 

The coordinate variables (n,s) are de- 
fined in the following way: s is the arc 
length along C, and n is the distance mea- 
sured from C along the normal to C, so 
that positive n corresponds to points ex- 
terior to C. The arc length is measured in 
the direction cf rotation, starting from any 
point on the boundary curve C. 

coordinate system where A is a constant. 
In the inertial system cf nonrotating co- 
ordinates the moment M is equal to 

i(ft+w!))t iw0t 
M=M'elQtor  M=Ae °    = Ae 

(7—28) 

Thus, the frequency coQ — as measured in 
the nonrotating system — is related to w^ 
by wQ = Ü, t U)Q. 

For the nondimensional eigenfrequency 
TQ =coQ /n, we obtain 

To = To + l (7—29) 

We assume that, in analogy to Stewartson's 
case, the projectile becomes unstable when 
its nutational frequency T„  is near TQ or, 
precisely, when 

|T0" Tn| < /s 

Tacking the value cf S, we cannot predict 
the width cf the instability band, and, 
hence, may not be able to predict insta- 
bility even if the eigenvalue problem could 
be solved. It is believed, however, that the 
knowledge cf the eigenfrequencies is cf 
primary importance for the designer. The 
width cf the instability band may be esti- 
mated, assuming a rough value for S. 

Eqs. 7—25 and 7—26 characterize the 
eigenvalue problem for a cylindrical cavity 
cf arbitrary cross section. 

In analogy to the case cf axisymmetric 
cavity, solutions cf Eqs. 7—25 and 7—26 
exist only for discrete values cf T^ when 
k is given. In practice it is simpler to 
prescribe T^ and compute the "eigen- 
values'^2^. The characteristic cavity 
length then follows from T'0 and ß\2. 

It ghouls be mentioned that only the 
real part of Eq. 7—24 is physically signifi- 
cant. Thus, if P = P   t iP we have 

R I 

PR = (PRcoswJ)t -Pjsinuy)cos kz    (7—27) 

Eq. 7—24 suggests that the moment on 

the projectile is M' = AelW()t in the rotating 

7-4.3  RITZ METHOD OF APPROXIMATION 

For a given cross  section and T', Eqs. 

, and      „2. ?have a solution.only when 
the quantity p k   assumes certain discrete 

values' breifly denoted, as "eigenvalues". 
We are rnterested   marnly   rn the lowest 
eigenvalue which in Stewartson's case cor- 
responds to the lowest radial mode num- 
ber. The eigenvalue problem given by Eqs. 
7—25 and /—26 may be stated alterna- 
tively in the form cf a variational principle 
(see, e.g., Ref. 4). 

It can be shown that the lowest ergen- 
value  is   the minimum cf the  expression 

7-4 3 
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VP*- VPdxdy -_L r/p*JI-P-ä£*)ds 
•^/(P 

1 = 

Jj '  ~J      T'oJ\     ds     ~   as/- 

D' C 

J    Pdxdy 
D' (7—30) 

with respect to all functions P(x,y) which 
are continuous with their first partial deriv- 
atives, everywhere in D1. P*(x,y) is the 
complex conjugate of P(x,y). 

The Ritz Method of approximation con- 
sists of replacing the class of all eligible 
functions P(x,y) by a suitable subclass and 
minimizing the expression for I, Eq. 7—30, 
with respect to this subclass. The minimum 
cf I relative to the subclass of functions is 
usually a very good approximation for the 
exact eigenvalue. 

The practical computation may proceed 
in the following manner. A continuous func- 
tion P(x,y,\) of x,y and a parameter A is 
selected, which should satisfy the boundary 
conditions Eq. 7—26 for all values cf \. If, 
for example, P^x.y) and P2(x,y)are two 
linear independent functions which both 
satisfy the boundary conditions, we may 
define 

P(x>y,X)=P1(x,y)+ KP2(x,y) 

P(x,y, A) should be smooth, i.e., differenti- 
able, function of (x,y) and should have all 
the properties which are known about the 
exact solution. In particular, for the lowest 
mode of oscillation, P should have the low- 
est number of nodes, etc. In addition P(x,y, A) 
should be defined so that the integrals in 
Eq. 7—30 can easily be evaluated analyti- 
cally. With P(x,y,X) so defined, Eq. 7—30 
is evaluated and I is computed as a func- 
tion cf X. The approximate eigenvalue then 
is obtained as the minimum of I with re- 
spect to all values of \. 

A better approximation is obtained when 
P depends on more than one parameter and 
the minimum value of I with respect to all 
the parameters is determined. Usually, the 
one-parameter representation is completely 

7-4 4 

sufficient; even a representation with no 
parameters may yield a good approxima- 
tion as is shown in the example below. 

7-4.4  EXAMPLE: CIRCULAR CYLINDER 

Although Stewartson's case of a circular 
cylinder can be treated by exact analytical 
methods, it is instructive to compare the 
exact results with those obtained by the 
Ritz Method. 

For the circular cylindrical cavity we 
know that P and P* must be of the form 

P=R(r)e-ie   ;P*  = R(r)eiö       (7—31) 

We assume for Rthe polynomial 

2 
R=(i)-K(i) f7-3* 

The constant K is determined by the re- 
quirement that P satisfy the boundary con- 
dition at r = a. We obtain 

K 
3-T0 

(7—33) 

With the above function P, Eq. 7—30 yields 

K-^K2 

Iaz 

4    5      6 

(7-34) 

Since the assumed function for P contains 
no free parameter, we cannot improve the 
result by minimizing the value of I. Never- 
theless, a very good approximation is al- 
ready attained by setting 

Ia2=  [32k2a2 

With  ka = H^£LLiI We have 
2       c 

(7-35) 

With p2= 

^ - f VP    <7-36> 
- I and la2 given by Eqs. 

a - r0r 
7—34   and   7—35, the right hand side of 
Eq.   7—36  is completely determined as a 
function of TQ. 
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For several values cf T0the approximate 

a(2i t i^value   according to  Eq.   7—36 is 

shown in Table 7—1. The agreement with 
exact values from Stewartson's Tables is 
excellent. 

TABLE 7-1.   CIRCULAR CYLINDER: 
COMPARISON OF RITZ METHOD AND EXACT 

SOLUTION 

c/ [a(2j + 1)1 

Ritz.- 
Tn Method Exact 

0 0.994- 0,99 5 

0.2 1.260 1.262 

0.5 1.9 59 1.963 

REFERENCES 

1. E. H. Wedemeyer, Dynamics of Liquid 
Filled Shell: Non-Cylindrical Cavity, 
BRL Report 1326, Aberdeen Proving 
Ground, Md., August 1966. 

2. B.G. Karpov, Dynamics of Liquid-Filled 
Shell: Resonance in Modified Cylindri- 
cal Cavities, BRL Report 1332, Aber- 
deen Proving Ground, Md., August 1966. 

3. K. Stewartson, "On the Stability cf a 
Spinning Top Containing Liquid," J. 
Fluid Mech. 5, Part 4 (1959). 

4. R.   Weinstock,   Calculus   of   Variations 
With Applications  to Physics and En- 

gineering,  McGraw-Hill Book Company 
Inc.,N.Y.,  1952. 

7-4 5/7—16 



AMCP 706-165 

CHAPTER 8 

PARTIALLY SPINNING LIQUID 

8-0  UST OF SYMBOLS* 

A = acceleration of free surface of 
liquid; axial moment of inertia of 
empty projectile 

Aj = axial moment of inertia cf fully 
spinning proj ectile 

= diameter of free surface cf liquid 

= acceleration due to gravity 

2a 

g 

1 

l/h 

Pi 

Pi 

P2 

% 

Re 

= angular momentum of liquid at 
time t 

= angular momentum cf liquid when 
liquid is rotating as a rigid body, 
i.e.,  its maximum  steady  state 
value 

= value of angular momentum at 
time t relative to the rigid or 
steady state value 

= function of a/c and Reynolds num- 
ber (for laminar flow) 

= function of a/c and Reynolds num- 
ber (for turbulent flow) 

= average height cf roughness ele- 
ments 

= pressure  perturbation   at  inward 
facing side cf interface 

= pressure perturbation at outward 
facing side of interface 

= derivative of p  with respect to r 

= derivative cf p   with respect to r 

= radial flux cf boundary layers 

= radial flux cf core-flow 

= Reynolds number 

r,ö,z  = cylindrical nonrotating coordinate 
system with   c in QviQi direction of 

projectile 
axial 

u,v,w = velocity components  along   r, 0,z 
respectively 

= velocity components of boun- 
dary layer flow 

= radial component cf flow velocity 
at inward facing side of interface 

= radial component cf flow velocity 
at outward facing side cf interface 

= nondimensional velocity 

GREEK LETTERS 

6 

£ 

\ 

TI 

= boundary layer thickness 

= Ico/A^0 

= small radial displacement of liquid 

= rate of undamping, per sec 

= dimensionless rate of undamping 

= initial axial spin rate 

= final axial spin rate 

= frequency cf basic mode of oscilla- 
tion 

*For identification of other symbols used in this chapter, 
refer to Chapter 3. 

MATH SYMBOLS 

= approximately 

= of the order 

«        = proportional 

8^J    INTRODUCTION 

The stability criteria which have been 
formulated and discussed in previous chap- 
ters are based on the assumption that the 
liquid within the cavity cf the proj ectile has 

achieved full f.Pm.\ i.e., that .prior to per" 
turbafion the liquid rotates with the casing 
as if solid. The assumption cf solid rotation 
cf the liquid appears to be a valid assump- 
tion in most practical cases, except for the 
earliest part of the projectile's trajectory. 
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The duration of spin-up of the liquid de- 
pends on liquid viscosity, angular velocity, 
and cavity dimensions. In typical cases a 
state of nearly solid rotation is attained 
within a distance of 2000 to 6000 calibers 
of travel from the muzzle. 

During the spin-up period the projectile 
may become unstable although it is stable 
at its final state when the liquid has at- 
tained solid body rotation. In the course of 
experimental investigations with a liquid 
of high specific gravity: severe dynamic 
instabilities cf liquid-filled projectiles have 
been observed in cases where the projectile 
should have been stable according to the 
assumption of rigid rotation of the liquid 
filler. Theory predicts that the frequencies 
of free oscillation depend on the state of 
rotation of the liquid and thus change dur- 
ing spin-up, beginning with high values 
and approaching asymptotically the final 
values for solid rotation. Whenever a fre- 
quency cf free oscillation passes through 
the resonance band about the nutational 
frequency, the projectile becomes tempo- 
rarily unstable. In practice, instabilities 
during spin-up are not too serious pro- 
vided that the passage through the main 
resonance occurs quickly, so that the pro- 
jectile remains in the unstable regime only 
for a short duration. During the time cf 
transient instability the yaw angle grows 

according to »=   »0exp(i£2 yxjdt j where  Tj 

is the dimensionless rate of undamping. 
Although at present the resonance frequen- 
cies and bandwidths during spin-up cannot 
be predicted with high accuracy, it is possi- 
ble, nevertheless, to give a good estimate 
of the integrated rate cf undamping    /Tjdt 

and thus to estimate the growth of an 
initial yaw angle during spin-up. 

Besides the occurrence cf transient in- 
stabilities, another practical problem is as- 
sociated with liquid spin-up, i.e., the pro- 
jectile loses angular momentum at the rate 
at which angular momentum is absorbed 
by the liquid, and the spin rate decreases 
below its value at the muzzle. The decrease 

cf spin rate, in turn, has an adverse effect 
on the stability factor. This latter effect is 
important when the stability factor is close 
to one. Eq. 3—88 shows that a decrease cf 
the stability factor sg —i.e., an increase cf 
p = -     — can  cause instability via  the 

broadening of the bandwidth  even when 
Sg>l. 

In order to avoid the unwanted effect cf 
slow spin-up, attempts have been made to 
accelerate the attainment cf liquid rotation 
by use cf longitudinal baffles which divide 
the cavity into a number cf compartments 
as shown in Fig. 8—1(A). Apart from the 
fact that baffles give rise to serious design 
problems, the dynamic stability behavior 
cf the projectile with baffles was found to 
be unreliable. A theoretical prediction cf 
the stability behavior for cavities with 
longitudinal baffles is, so far, not possible. 
Thus, longitudinal baffles add an element 
cf uncertainty. 

The use cf transverse baffles, as shown 
in Fig. 8—1(B), has the virtue that the 
stability behavior remains predictable, see 
par. 9—3.6. However, transverse baffles 
are not very effective in accelerating the 
spin-up. 

The problem cf transient instability dur- 
ing spin-up is not too serious and it can be 
handled by the designer. It is possible, 
now, to predict the occurrence cf transient 
instabilities by methods which are dis- 
cussed in the paragraphs which follow. The 
computation cf transient flow fields during 
spin-up — a prerequisite for the stability 
problem — is treated in par. 8—3. Experi- 
mental data on the same subject are dis- 
cussed in par. 8—4 and the prediction cf 
transient instability  bands,  in par.  8—5. 

8-2 ATTAINMENT OF LONGITUDINAL MO- 
TION 

When the cavity is only partially filled 
with liquid, the motion cf the liquid just 
after firing is extremely complex. With the 
exception cf certain particularly simple 
cases the details cf the fluid motion remain 

a  2 
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(A) (B) 

FIGURE   8-l(A).     LONGITUDINAL   BAFFLES FIGURE 8-KB).      TRANSVERSE   BAFFLES 

8-3 
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unpredictable. The most prevalent case — 
a completely or almost completely filled 
cavity cf rotational symmetry — is rela- 
tively simple from the analytical point of 
view. 

Roughly, the chain of events taking place 
in the liquid-filled cavity after firing is as 
follows, assuming that the cavity is rota- 
tionally   symmetrical about the  spin-axis: 

a. Under the action of extremely high 
accelerating forces the liquid moves into 
the most backward position forming a free 
surface perpendicular to the direction cf 
motion. Initial disturbances due to the sud- 
den start cf the motion cause rapid oscilla- 
tions cf the free surface. The frequency cf 
the basic  mode of oscillation is approxi- 

mately where 2a is the diam- 

eter of the free surface and A the acceler- 
ation. While the liquid is forced to follow 
the translational motion cf the projectile 
at once, the spin is only slowly transferred 
to the liquid when the cavity is rotationally 
symmetrical, ff the cavity is completely 
filled, the liquid moves, except for the rota- 
tional motion, along with the projectile as if 
solid. 

b. The spin of the projectile is trans- 
ferred to the liquid by viscous friction on 
the cavity walls. During the short accelera- 
tion period only a thin layer of fluid adja- 
cent to the  walls attains some rotation. 

c. When the projectile leaves the muz- 
zle, the force due to acceleration suddenly 
changes direction. The following decelera- 
tion, due to air-drag, produces a force which 
tends to move the liquid forward. (For a 
typical projectile the deceleration — al- 
though several orders of magnitude smaller 
than the initial acceleration — is neverthe- 
less many times greater than g; thus the 
effect of gravity can be neglected.) The 
motion cf the liquid subjected to a sudden 
change of acceleration is very complex 
whenever a free surface is present. The 
free surface which was assumed to form 
during the acceleration period becomes un- 

8—4 

stable when subjected to deceleration. 
Small deformations cf the free surface grow 
rapidly and eventually form small jets. The 
development of the free surface may be 
quite different depending on whether the 
cavity is almost completely filled or not: 

(1) If the cavity is almost completely 
filled, the gap between the free surface and 
the forward facing endwall of the cavity is 
very much smaller than the cavity diam- 
eter. Consequently, the surface waves 
cannot grow very high before the wave 
crests come into contact with the wall. 
From then on, the waves spread gently to 
the sides, and the voids between wave 
crests become elongated and penetrate the 
fluid in a backward direction. Finally, a 
plane and stable free surface forms near 
the rear endwall. In brief, the fluid moves 
gently and well-ordered into the most for- 
ward position. 

(2) Consider now the case where the 
fill-ratio is not nearly 100%, so that the 
gap between the free surface and the front 
wall is large. The deformations of the free 
surface grow to high amplitudes and form 
jets which protrude into the air space in 
front cf the liquid. At last the jets impinge 
with high velocity on the front wall where 
they cause splashing of the fluid. The free 
surface breaks up into disconnected parts 
and the overall flow pattern becomes cha- 
otic. Nevertheless, it appears that this dis- 
ordered motion prevails only for a very 
short duration. Probably, the turbulent mo- 
tion causes rapid mixing of the fluid parti- 
cles that are close to the wall and the non- 
rotating inner parts of the fluid. As a re- 
sult, all parts cf the fluid attain a small 
amount of rotation rapidly. The rotating 
fluid then is driven by centrifugal forces 
toward the sidewalls and a new free surface 
of hollow cylindrical shape is formed. After 
the formation of the new free surface a 
state of relatively steady fluid motion is 
restored. At this time the liquid has 
achieved only a small amount cf rotation. 
In the final state of rotation the centrifugal 
forces  are approximately 10 g for typical 
spin-stabilized projectiles.   Thus, the cen- 
trifugal  forces outweigh the decelerating 
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forces even when the liquid has attained 
only a small fraction cf its final angular 
momentum. 

Summarizing, we have seen that during 
the period of launching the liquid within a 
partially filled cavity undergoes a violent 
disorderly motion which, however, is atten- 
uated quickly as soon as the fluid has 
achieved a certain amount cf rotation. The 
fluid, then, forms a hollow body of revolu- 
tion bounded by a cylindrical free surface 
on the inside. There is no such period cf 
disorderly motion when the cavity is com- 
pletely or almost completely filled. 

8-3 ATTAINMENT   OF    ROTATIONAL   MO- 
TION 

The theory of spin-up to be discussed 
subsequently was developed in Ref. 2, for 
a completely filled cylindrical cavity. The 
theory can easily be extended to partial 
fill conditions, provided that forces due to 
gravity or acceleration are small compared 
to centrifugal forces. 

It was shown in par. 8—2 that, except 
for a very short launching period, the 
effects cf acceleration or deceleration can 
be neglected. The liquid attains some rota- 
tion rapidly and assumes the shape of a 
hollow body cf revolution bounded by a 
cylindrical free surface. 

The analyses cf liquid spin-up as given 
in Ref. 2 are confined to cylindrical cavities 
although the essential parts of the theory 
hold as well for any cavity cf rotational 
symmetry. 

In par. 8—3.1 a representation cf the 
theory of spin-up is given with emphasis 
on applications to liquid-filled projectiles. 
Some parts, especially the one on turbulent 
boundary layers, of Ref. 2 have been elab- 
orated to the point where the results can 
be applied immediately to engineering 
problems. 

The practical computation cf velocity dis- 
tributions and total angular momentum is 
discussed in par. 8—3.2. 

8-3.1  THEORY OF SPIN-UP 

We consider a cavity cf rotational sym- 
metry which is completely or partially filled 
with liquid. The liquid is assumed to be at 
rest or to have a small residual amount of 
rotation relative to a nonrotating frame of 
reference. For the case cf a partially filled 
cavity, we assume that the liquid is 
bounded by a cylindrical free surface on the 
inside. (These assumptions are consistent 
with the statements of par. 8—2 namely, 
that gravity and decelerating forces are 
unimportant relative to centrifugal forces.) 
We also require that at a time t-0 the 
casing starts to rotate about its axis of 
symmetry with either constant or time de- 
pendent angular velocity. 

Due to viscous friction the liquid near 
the cavity walls is dragged round and ac- 
quires rotational motion. It may appear 
that only rotating flow is generated by the 
rotation cf the cavity walls. However, a 
closer look on the fluid dynamics shows 
that in addition to rotating flow, a second- 
ary flow with radial and axial flow com- 
ponents must occur. In fact, the secondary 
flow proves to be cf prime importance for 
the mechanism cf spin-up. Consider, for 
example, one cf the endwalls cf a cylindri- 
cal cavity. The fluid particles adjacent to 
the endwall rotate with the wall and are, 
therefore, subject to centrifugal forces. Be- 
cause cf these centrifugal forces, the fluid 
particles near the endwalls are driven radi- 
ally outwards. When the stream cf rotating 
and outward-moving fluid approaches the 
cylindrical sidewalls, it is deflected into the 
interior of the cavity while the interior non- 
rotating fluid moves towards the endwalls 
to replace the fluid lost by the radial out- 
flow. Thus, a circulating secondary flow is 
generated. 

It is readily seen that the liquid rotation 
is attained essentially by viscous friction 
near the endwalls. The secondary flow in 
turn transports the rotating liquid towards 
the sidewalls where it builds up a layer of 
increasing thickness. 

8-5 



AMCP 706-165 

A refined analysis shows that the second- 
ary flow is very slow except within a thin 
boundary layer at the endwalls where the 
flow is propelled by centrifugal forces. 

8-3.1.1   Equations of Motion 

Following the usual procedure of bound- 
ary layer theory (see e.g., Ref. 3), we 
divide the flow into two parts: a boundary 
layer flow which occupies the boundary 
layer region near the walls and a so-called 

core-flow which occupies all of the cavity 
except the boundary layer region. 

Let (r, e,z)be the nonrotatingcoordinates 
in radial, circumferential, and axial direc- 
tions, respectively, with the origin in the 
center of the cavity and (u,v,w) the respec- 
tive velocity components in these direc- 
tions, and p the pressure. With the simpli- 
fications resulting from the rotational sym- 
metry of the flow, the equations of fluid 
dynamics, Eqs. 3—1 and 3—2, in cylindrical 
coordinates (r, £ ,z) read 

avx../3v^v\+w av= v 

h       \9r     x) dz 
\*1 + £(1\+ &~\ 
L3r2      arW     9z2J 

(8-1) 

(8-2) 

9t 9z dz    P  dz 
(a w+ _i_3w + a w\ 

9r 2     r "Ö7    HP) 
(8-3) 

9(ru) + 3frw) = 0 
dr dz (8-1) 

The boundary of the cavity may be given 
by the equation 

r = f(z) (8-5) 

u = w = 0 

v =rn 

Let us assume that the casing starts to 
spin at t= 0 with angular velocity SI. Then 
the boundary conditions are 

at   r = f(z) ,     0 < t (8-6) 

u = v = w = 0   for t < 0 (8-7) 

8-6 
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As mentioned above, the entire flow can 
be divided into a boundary layer flow at 
the walls and a core-flow. The viscous terms 
on the right hand sides cf Eqs. 8—L to 
8-3 are small in the core-flow. In the fol- 
lowing, it is also shown that the components 
of the secondary flow (u,v) are small in the 
core-flow. 

Within the boundary layer the velocity 
components tangential to the wall are of 
the order Q a, where a is the radius cf the 
cavity. 

Consider for example the boundary layer 
on one cf the plane endwalls cf a cylindri- 
cal cavity cf diameter 2a and height 2c, 
and let (uB, vB, w„) be the velocity com- 
ponents of the boundary layer flow. Then 
uB and vB are of the order £"2 a. Within the 
boundary layer, the fluid flows radially out- 
wards with the velocity uB. If 6 is the 
boundary layer thickness, the radial flux 
per unit angle is of the order uB6~£7afc. 
Conservation cf mass requires that an 
equal amount cf liquid in the core-flow 
moves radially inwards. Tet u be the radial 
velocity in the core-flow and 2c the height 
cf the cylinder. The radial flux in the core- 
flow then is cf the order uc which must be 
equal to the radial flux in the boundary 
layer, i.e.,  uc = uB 6 = na6, or: 

u=[flaj (8-8) 

Eq. 8—4 shows, that wis cf the order u_ or 

-HI (8-9) 

On-the other hand, the rotational compon- 
ent is 

6/a= 0.1 Re" /   for turbulent boundary layer 

(8-12) 

where the Reynolds number = Z3. is based 

on flow velocity v, radius cf the cavity a, 
and kinematic viscosity v. 

In our case, the flow velocity is of the 
order v =Qa and the Reynolds number is 
conveniently defined by 

Re = 
aiü_ (8-13) 

In typical cases the Reynolds numbers of 
liquid-filled spinning projectiles are cf the 
order Re ~ 10 , i.e., 6/a is very small. 

We can now simplify the fluid-dynamic 
equations, Eqs. 8—1 to 8—3, by retaining 
only  the   terms   of lowest orders in 6/a. 

Eqs. 8-8, 8-9, and 8—10 applied to 
Eq.   8—2   yield  within our approximation 

P3r 
(8-14) 

Eq. 8-3 shows that  ^-Sp. is small, cf the 
Pdz 

order £2 c (6/c) . Thus, within our approxi- 
mation   p is independent cf z and, accord- 
ing to Eq. 8—14 y, within the same approxi- 
mation, is independent cf z. Precisely 

g - 0f$ (8-15) 

Because   cf Eq.   8-15, the terms  with 
"i 

— and —-in Eq. 8-1 may be neglected, 
dz Sz 

\~Qa (8-10) 
andEq. 8—1 simplifies to 

From boundary layer theory it follows that %,     /QV    V\=   Td ^    3 /v\ 
the boundary layer thrckness rs  small a üL + u(— + _)   v —Z+3t(r-) 
,, j \9r     r/       \_dr2 \r / 
the order 

(8-16) 

6/a Re -1/2 for laminar boundary layer 

(8-11) 

Eq. 8—16, when supplemented by an 
additional relation for u, describes the spin- 
up   cf the liquid.   It is readily seen that 

8-? 
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both v and u are independent cf z. Thus, 
Eq. 8—16 constitutes a partial differential 
equation with the independent variables r 
and t. The additional relation for u de- 
pends on cavity shape and the nature of 
the boundary layer. The computation of u 
and the results for the cylindrical cavity 
are discussed in the paragraph which fol- 
lows. 

8—3.1.2  Computation of the Secondary Flow 

Eq.  8-16 contains as an additional un- 
known the radial component u of the sec- 
ondary flow,  u is a function of the radius r 
and time t but, as shown above, u is inde- 
pendent cf z. 

According to Eqs. 8—8, 8—11, and 8—12; 
the order of magnitude cf u is: 

u~fla ©ow- 1/2 

for a laminar boundary layer, 

u~0.1S2a/|)(Re)" 

for a turbulent boundary layer. 

The transition from laminar to turbulent 
boundary layer occurs somewhere around 
Re = 105. With regard to the transition to 
turbulent boundary layer, see par. 8—3.1.3J 

The computation cf u requires an elab- 
orate analysis cf the boundary layer flow. 
For details on the boundary layer calcula- 
tion see Ref. 2. 

Once the boundary layer is known, u is 
given by the simple condition that, for any 
radius, the total radial flux within the 
boundary layers and the core-flow must be 
zero. As an example, consider a cylinder 
cf height 2c and diameter 2a, and let uß(r,z) 
be the radial velocity in the boundary layer 
and z the axial distance from the endwalls. 
The radial Aux QR in each of the boundary 

layers at the two endwalls is: 
6 

QB= 2TTTJ uB(r,z)dz 

where 6  is the boundary layer thickness. 
The radial flux Qc cf the core-flow is 

Qc = (2^r)2cu(r) (8-18) 

Conservation cf mass requires 

2QBiQcJ = a (8-19) 

or with Eqs. 8-17 and 8—18 

u(r) = -1   f uB(r,z) dz (8-20) 

Eq..8—20. is also valid for noncylindrical 
cavrtres when c is rnterpreted as me vari- 
able height c(r) cf the cavity. 

The calculation cf uß is complicated by 
the fact that the boundary layer flow de- 
pends on the pressure distribution cf the 
core-flow (which is given by Eq. 8—14), so 
that one has a coupling between the bound- 
ary layer equations and the equation for 
the core-flow. This coupling renders an 
exact treatment cf the problem extremely 
difficult, and refuge must be taken in ap- 
proximations. 

8-3.7.2.1  Completely Filled Cavity 

In Ref. 2, the following approximate ex- 
pressions for u are derived for a completely 
filled cylindrical cavity. 

(a) For a laminar boundary layer: 

u= - 0.443 |(Rer1/2(r f2 -v) (8-21) 

(b) For a turbulent boundary layer: 

u = - 0.035^ (Re)"1/5(rft- v) 8/5 

(aft) 3/5 

(8-17) 

(8—22) 

Eq. 8—2II and Eq. 8—22 are exact for 
v-0 and v - rß, i.e., at the beginning cf 
spin-up when no rotation is present (v = 0) 
and at the end when a state cf solid rota- 
tion (v =rQ) is attained asymptotically. 

8-8 



AMCP 706-165 

For special distributions cf v(r), exact 
solutions cf the laminar boundary layer 
equations are known4'5' , e.g., when visa 
solid rotation v =rQJ with 17' < £7 . It was 
shown in Ref. 2, that Eq. 8—21 gives good 
agreement in those cases where solutions 
have been obtained. Thus, Eqs. 8-21 and 
8—22 may be used with some confidence. 

8-3.7.2.2 Partially Filled Cavity 

Eqs. 8-21 and 8—22 were derived in 
Ref. 2 for a completely filled cavity, but 
they may be used — with some reserve — 
also in the case cf a partial fill. 

If we assume that the liquid forms a 
cylindrical free surface at r = b so that the 
two endwalls are equally wetted, Eq. 8—19 
holds as well for the partially filled cylindri- 
cal cavity when QB is interpreted as radial 
flux within the wetted part (r >  b) cf each cf 
the endwalls. 

It can be shown that the radial flux with- 
in the boundary layer on the partially 
wetted surface is nearly equal to the flux 
on the completely wetted surface, except 
near r = b. The reason for this is that the 
boundary layer flow is essentially deter- 
mined by the balance cf the centrifugal, 
Coriolis, and viscous forces while radial 
acceleration is relatively unimportant. An 
exception arises where the free surface 
meets the endwalls. At the free surface uB 

is zero and the fluid in the close vicinity is 
quickly accelerated in a radial direction. 
Within a short distance the equilibrium be- 
tween Coriolis forces or centrifugal forces 
and viscous shear is attained, and the 
velocity distributions within the boundary 
layer turn into those cf the completely 
wetted case. Consequently, the radial 
velocity u in the core-flow assumes a value 
equal to that cf the completely filled cavity 
(Eqs. 8—21 and 8—22), except within a 
thin annular layer around the free surface 
where u sharply drops to zero. Mass con- 
servation requires that within this layer 
the fluid moves with relatively high axial 
velocity toward the endwalls. 

The preceding considerations show that 
Eqs. 8—21 and 8-22 may be used for 
values cf r not too close tor = b, keeping in 
mind that u drops to zero near r =b. 

8—3.1.3   Transition to a Turbulent Boundary layer 

In order to compute the attainment cf 
spin, it is necessary to know whether the 
boundary layer on the cavity wall is laminar 
or turbulent. Experimental data7'8 indicate 
that transition to turbulent boundary layer 
occurs between Re = 0.5 x 105 and 3 x 10 , 
i.e., the boundary layer is 

full turbulent for 3 x 105 < Re     (8—23) 

full laminar for Re <   0.5 x 105    (8—24) 

For Reynolds numbers between these limits 
the character cf the boundary layer de- 
pends also on the roughness cf the walls. 
As a rule cf thumb8, the boundary layer is 
turbulent when 

4'>  20xRe"3/4 (8—25) 

where k1 is the average height cf the rough- 
ness elements determined by the usual 
engineering. Strictly speaking, the bound- 
ary layer may be partly laminar (atsmaller 
radii) and partly turbulent (at large radii) 
and the point cf transition may also change 
during spin-up. Eqs. 8-23,8—24,and8-25 
refer to the state cf the boundary layer 
att=0 and r = a. 

For the transitional regime cf Reynolds 
numbers it was found that the computed 
spin-up times for turbulent and laminar 
boundary layer do not differ greatly. It is 
thus not too critical which cf the two formu- 
las,  Eq.   8—21   or  Eq.   8—22,  is used if 

0.5 x 105< Re c 3x 105. 

8—3.1.4  Discussion of the Equation of Spin-up 

In Eq.   8—16 the rate cf change cf v is 
made up cf two parts: the convective term 

8-9 
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u  15^- t -J ,  and the viscous term on the 

right hand side of Eq. 8—16. 

The convective term represents that por- 
tion of the total rate which is produced in 
the boundary layers and convected by the 
secondary flow u into the interior. The 
viscous term represents the portion pro- 
duced within the core-flow by viscous forces 
that drag the fluid around, Depending on 
Reynolds number and cavity shape, either 
of the two terms can be dominant so that 
the other term may be neglected. In both 
cases considerable mathematical simplifi- 
cation is obtained. 

The rate of change of v due to the con- 
vective term is of the order 

\3t/ dr 
conv 

(£)«* 

or with Eq. 8—8 

(8—26) 

Considering, for example, the case of lami- 
nar boundary layer; Eqs. 8—11 and 8—26 
yield 

(frHi (Re)' 
•1/2 (8-27) 

The contribution of the viscous term is of 
the order 

Vat/.     „2 
vise   a 

QRe ■l (8—28) 

Comparison of Eqs. 8—27 and 8-28 shows 
that the convective term is dominant when 

l«^Re c 
1/2 (8—29) 

For liquid-filled projectiles, Eq. 8—29 is 
practically always fulfilled so that —to the 
first  approximation  — the viscous  terms 
may be neglected.  The resulting reduced 
equation is 

JtL +u/_9l+ l\=0;/l«S Re1/2\ (8—30) 
at \ 9r      r / \ c / 

For the case of a turbulent boundary layer, 
the preponderance of the convective term 
is even larger so that Eq. 8—30 holds for 
the turbulent case except for very slender 
cavities. 

Eq. 8—30 suggests for the spin-up time 
1 ~ - which yields for the case of laminar 

boundary layer 

fitÄ£Re1/2 (8-31) 

The general  solution of Eq.   8-30 is dis- 
cussed in par. 8—3.1.5. 

For small Reynolds numbers and slender 
cavities the viscous term of Eq. 8—16 may 
compete with the convective term and the 
complete equation should be considered. In 
the analysis of Ref. 2 approximate solu- 
tions of the complete equation are derived 
in successive steps, starting with the solu- 
tion of the reduced equation. The results 
are reported in par. 8—3.2. 

The extreme case of an infinitely long 
cylinder is interesting for comparison. In 
this case the convective terms are zero 
since there is no secondary flow. The result- 
ing equation is 

Jv_-  J_3iv+_a/v\" 
3t        [9r2     ar\r/_ 

(infinite cylinder)       (8—32) 

Eq.   8—32  is a linear differential equation 
which can be solved by standard methods. 

■    Tftyß spiix-ixp time suggested by Eq. 8—32 

2 
fit- -^- = Re (infinite cylinder) 

Comparison of Eqs. 8—33 and 8—31 shows 
that — for larger Reynolds numbers — the 
secondary flow is very effective to accel- 
erate the spin-up. For a typical liquid-filled 
projectile Re = 106 and c/a = 3. The spin-up 
time, according to Eq. 8—31, is approxi- 
mately 1/300 of the value obtained for the 
infinite cylinder. 
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8—3.1.5  General Solution of the Reduced Equation 
of Spin-up 

The reduced  equation of spin-up, Eq. 
8—30, can be written in the form 

9 frv)    + u   9(rv) = 0 
9t 8r 

(8-34) 

Eq. 8-34 can be integrated at once along 
certain lines in the (r,t) -plane, the so-called 
characteristics, which are defined by 

dr _ 
ilt 

(8—35) 

With Eq. 8—35 we may write the left hand 
side cf Eq.   8—34  as a total differential 

^rvl+_afry2.   dr_=dfrv)   = 0     (8_36) 
3t dr dt        dt v ' 

Integrating Eq. 8—36 yields 

rv = constant for   JJ- (8-37) 

Eq. 8—37 expresses the conservation of 
angular momentum for any fluid particle. 
In fact, angular momentum is produced 
only in the boundary layers, while every 
fluid element in the core-flow carries its 
angular momentum rv unchanged along its 
trajectory which is given in the (r.t)-plane 
by Eq. 8—35. 

It remains to solve the characteristic 
equation, Eq. 8-35. In the most general 
case u is a function of r,t and (rv). Note that 
(rv) is constant along the path of integra- 
tion. To avoid confusion, let us denote the 
angular momentum rv by x, and write 

dr 
dt 

= u (r,t,x) ; x (8—38} 

If u does not depend explicitly on t — 
which is the usual case — Eq. 8—38 can 
be simply integrated to give the general 
solution 

The initial conditions are 

r = r(x) at t = 0 (8—40) 

Usually, the initial conditions are given in 
a form x = x(r) which is the inverse function 
of r = r(x). 

When solved for x, Eq. 8—39 yields the 
distribution of angular momentum rv = x(r,t). 

Applications cf Eq. 8-39 in the case of a 
cylindrical cavity are given in par. 8—3.2. 

8-3.2 VELOCITY DISTRIBUTION DURING SPIN-UP 

The velocity distribution and the total 
angular momentum of the liquid during 
spin-up can be computed from Eq. 8—39 
when u(r,x) is known and the initial condi- 
tions are specified. For the cylindrical 
cavity the method of computation is dis- 
cussed and results are presented. 

8—3.2.1  Method of Computation 

The computation cf u(r,x) is outlined in 
par. 8—3.1.2 and in more detail in Ref. 2. 
Fora cylindrical cavity with plane end- 
walls, u is given approximately by Eqs. 
8—21 or 8—22 for laminar or turbulent 
boundary layers, respectively. Substituting 
v = x/r, Eqs. 8—21 and 8-22 read 

u = - k(rS7 - x/r)    (laminar) (8--11) 

3/5 u = - k (rfi -x/r)B/ 7(an)% 5 (turbulent) 3/5 

(8—42) 

(8-43} with    k = 0.443 c (Re)"1/2 

i-l/5 k = ^■■(Re)-1" (8-44) 
t <- v 

fiis the angular velocity of the casing. 

8-3.2.7.1 Initial Conditions 

r(x) 
The  lower limit of the integral   r(x)  in 

Eq. 8—39 depends on the initial conditions, 

8-1 1 
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i.e., on the distribution of angular mo- 
mentum at t = 0. IF this is x(r), then r(x) is 
the inverse function cf x(r). 

For the case in which the cavity is 
started impulsively at t = 0 to spin with 
angular velocity ft, the function x(r) is de- 
fined by: 

0 < x(r) < a  fi     for       r = a 

x(r) = 0 for       r < a 
■    (8-^45) 

Eq. 8-45 implies that att = 0 the liquid is 
not spinning except within an infinitesimal 
layer at r = a. Within this layer the value cf x 
increases from 0 to a2ft . Note, that this 
layer must be assumed at r = a in order to 
have Eqs. 8—21 and 8-22 satisfy the 
boundary conditions u = 0 at r = a. 

The inverse function cf Eq. 8- 45 is 

(8—46) 
r(x)= a   for   0 < x < a^ft 

r(x) < a   for x = 0 

8-3.2.7.2 Laminar Case 

As an example, consider the case of 
laminar boundary layer. Substituting Eqs. 
8-41and 8-46intoEqs. 8-39yields 

dr 
- t = 

k(rft-x/r) 
,r>   £n — "2kft- 

-x/ft 
a2 x/ft 

(8-47) 

for   0 < x < a2ft 

and 

t = ' dr 
krft 

r(0) 

J_£n-1_ 
kft       r(0) 

(8—48) 

for    x = 0 , r(0) < a 

8^1 2 

Solving Eq.   8-47     for x and substituting 
x = rv yields 

r    2kftt     a — e   
v a r 
aft 2kftt    , 

e      - 1 

for     0 < v    or   r/a > e "kS7t (8—49) 

Eq. 8-49   is supplemented by: 

v=0 for r/a < e~vQt (8—50) 

Eq. 8-50 is a consequence cfEq. 8—48. 

8-3.2.7.3 Partially Filled Cavity 

As shown in par. 8-3.1.2.1,Eqs. 8-21 
and 8—22 are valid also for partially filled 
cylindrical cavity except at points close to 
the free surface r = b, where u drops to zero. 

With u^o, the integral dr cf Eq. 8—39 

diverges as r—b, i.e., the time for the 
liquid to attain rotation increases indefi- 
nitely as the distance from the free surface 
decreases to zero. In practice, the diverging 
integral has the effect that angular momen- 
tum is not   convected  across the free 

surface. 

The velocity distributions obtained for a 
partial fill are, for r > b, nearly the same as 
those for completely filled cavity except 
near the edge r = b. For practical purposes 
the velocity-distributions for a completely 
filled cavity, cut off at r = b, may be used in 
the case cf partial fill. 

8-3.2.7.4 Total Angular Momentum 

The total angular momentum I cf the 
liquid at any time t is obtained by integra- 
tion when velocity distribution v(r,t) is 
known. It is 

Kt) = 'Iff r'v(r,t)d(9 dr dz 
(8-51) 
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where the integral is taken over the liquid- 
filled part of the cavity volume. Sincev(r,t) 
is independent of 8 and z, it is 

I = Im(l -e-2kfit) (8-55) 

with    I,   = pir£2ca4 

1(0  =2irp/"   r 2v(r,t)2c(r)dr 

b 

18-52) 

where 2c(r) is the height of the cavity at the 
radius r, 2a the maximum diameter of the 
cavity, and 2b the diameter of the cylindri- 
cal void. For the cylindrical cavity one ob- 
tains simply 

K0 2-rrp2c   t r2v(r,t)dr 

b 

(8—53) 

8—3.2.2  Computation of Angular Momentum 

The value of the angular momentum of 
time t relative to a rigid or steady state 
value for partially filled cavity is 

I/t 
1 - e- 2kftt 

i - bV 
; b/a < e -k£2t 

1/lco- 
1 -e 

-2kfit 
1 - 2e 

-2kfit 

1 + b /a 

b/a > e -kftt 

(8—56) 

The results given below are for a cylin- 
drical cavity. The velocity distributions 
are computed — unless otherwise stated — 
on the bases of Eq. 8—39, i.e., they are 

valid   approximations when   1<< -|-Re 1/2 

The equations, Eqs. 8—54 to 8—58, which 
follow apply when the casing is started im- 
pulsively att = Oto spin with constant angu- 
lar velocity £2. 

8—3.2.2.7 Laminar Boundary Layer 

For the case of laminar boundary layer 
(see par. 8—3.1.3)the velocity distribution 
is 

2kf2t 
-1/r 

2kf2t       . 
e - 1 

r* > e 

r < e 

-kftt 

(8—54) 

-k£2t 

where v* _v  
ai2 

r*   = I   ,k= 0.443 !Re"1/2 

a c 

Eq. 8—54  applies also for partially filled 
cavity when restricted to r >b/a. 

The total angular momentum for a com- 
pletely filled cavity is 

with  I,     = p-rr£2ca4(l -b4/^4) 

As   shown  by Eqs.   8—54 to 8—56, the 
velocity distributions and the total angular 
momentum depend only on the scaled time 
ld2t. 

For several values of kS2t the velocity 
distributions according to Eq. 8—54 are 
shown in graphical form in Fig. 8—2. 

I/Ico versus   scaled  time kST2t is shown in 
Fig. 8—4 for a 100%filled (b2/a2 = 0.00) and 

70% filled (b2/a2 = 0.30) cavity. 

A somewhat better approximation for 
the total angular momentum which was de- 
rived in Ref. 2 on the basis of the full equa- 
tion of spin-up, Eq. 8—16,is given implicitly 
by 

2kQt —=_!—r^ a -i/i 
1 t 4/(kRe)   |_ .) 

Mi + 
kRe ('♦TU] 

(8-57) 

Eq.  8—57 yields improved values  of I/I 
especially at short times, when kRe/JL\ is 
not large as compared to unity. Vco / 
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FIGURE   8-2.     VELOCITY   DISTRIBUTION   DURING   SPIN-UP   FOR   LAMINAR   BOUNDARY   LAYER 

8 1.0 

FIGURE   8-3.     VELOCITY   DISTRIBUTION   DURING   SPIN-UP   FOR   TURBULENT   BOUNDARY   LAYER 
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kflt 

FIGURE   8-4.    ATTAINMENT OF   THE   ANGULAR   MOMENTUM   (LAMINAR   BOUNDARY   LAYER) 
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FIGURE   8-5.    ATTAINMENT    OF   THE   ANGULAR   MOMENTUM   (TURBULENT   BOUNDARY   LAYER) 
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8-3.2.2.2 Turbulent Boundory Layer 

The case cf a turbulent boundary layer 
prevails in applications to liquid-filled pro- 
jectiles   (see  par.  8—3.1.3). The velocity 
distribution is obtained via numerical inte- 
gration a the following equation, Eq. 8—§8, 

.?> -/ dr* 

(r* - y/r*) 8/5 
(8—58) 

where      kt = 0.035- Re_1/5   , r*   = r/a, 

aß 
,  y = r*v* 

(y is  kept   constant for the integration.) 
Velocity  distributions v*  = y/r* versus   r* 
according to Eq. 8—58 are shown in graphi- 
cal form in Fig. 8—3. 

1/1^ versus  scaled time is shown in Fig. 
8-5  for cavities of 100%and 70% fill-ratio. 

8-3.2.2.3 Other Initial Conditions 

reaches full spin. The final angular velocity 
ßra is redu» 
cording to 
ßra is reduced from the initial value n   ac- 

Aj+A (8—59) 

where A is the axial moment of inertia of 
the empty projectile, and A, the moment cf 
inertia of the fully spinning liquid. 

Usually, A, is only a small fraction cf A 
so that the 'change cf ß during spin-up is 
small and may be neglected for practical 
purposes. 

Taking into account the dependence of ß 
on the angular momentum I of the liquid by 
the relation 

(8—60) 

the exact solution for I with variable ß is 

I t «A = ßQA 

1/1* = 
1- e -2kß0t 

i _ ee-
2kiV 

The discussions above are the most rele- 
vant examples in applications to liquid- 
filled projectiles. 

Spin-up profiles for other initial condi- 
tions — e.g., starting from a rigid rotation 
with ß' ^ß at t r o — can always be com- 
puted by evaluating the integral, Eq. 8—39, 
for the given initial condition r(x). ff u de- 
pends explicitly ont -e.g,via52 —Eq. 8—39 
does not apply and the original differential 
equation, Eq. 8-38, must be solved. Gen- 
erally, if the solution cf Eq. 8—38 is given 
by F(x,r,t) = 0, then x is found as function 
of r and t by solving F(x,r,t) = Ofor x. 

In the preceding examples it was as- 
sumed that the angular velocity ß remains 
constant after the casing has been started 
impulsively. Strictly, ß is not constant for a 
liquid-filled projectile leaving the muzzle cf 
a gun. As the liquid absorbs angular 
momentum from the casing, the angular 
velocity must  decrease  until the liquid 

with 
AßA 

I* = PTT"coca 
4    n 

ß„ A1 +A 

where ßQ is the initial axial spin rate and 
ß^ is the final value. Eq. 8—61 replaces 
Eq. 8—55 since, in the latter equation, ß is 
considered constant. 

8-4  EXPERIMENTAL RESULTS  ON  SPIN-UP 

Experiments to determine the attain- 
ment of liquid rotation have been per- 
formed by Karpov^for a completely and 
partially filled cylindrical cavity. 

Most of the data were obtained by ob- 
servation cf the axial spin decay cf liquid- 
filled projectiles in the free flight range. 
When the projectile has left the gun, its 
angular momentum decreases continu- 
ously. A relatively small fraction of the 
spin-decay is due to the torque by air fric- 
tion while most of the spin decay results 
from absorption of angular momentum in 
the liquid. 

8-16 
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The contribution due to air-friction is de- 
termined separately, by observation cf the 
spin-decay of empty projectiles, and then 
subtracted from the total rate of change of 
angular velocity. Let Q, be the angular ve- 
locity corrected in this manner, A the axial 
moment of inertia of the empty projectile, 
and I the angular momentum of the liquid. 
Then, from the conservation cf angular 
momentum 

I + QA = const "oA ;or 1 = (n0-n)A 
(8—62) 

where 11 is the initial angular velocity when 

the liquid is at rest. 

Thus, observation of angular velocity n 
versus the time cf flight is a convenient 

way to determine experimentally the at- 
tainment of angular momentum via Eq. 
8—62. 

Experimental data for I, obtained in this 
manner, have been compared with theoreti- 
cal predictions and good agreement was 
found in all cases. Strictly speaking, the 
variation of angular velocity 52 should be 
taken into account for the theoretical com- 
putation; however, the total change cf ft 
under the experimental conditions was only 
a few percent so that within a reasonable 
approximation the theoretical data, based 
on constants = ftQ can be used for compari- 
son. 

In Figs. 8—6, 8—7 and 8-8 experimental 
data cf I/IJO obtained from range firings' '9 

1.0    - 

X      Re = 6.1 X 103 

©     Re= 1.76X10 

1.0 1.2 

FIGURE   8-6.    ATTAINMENT   OF   THE  ANGULAR   MOMENTUM  (TURBULENT   BOUNDARY   LAYER, 
700%   FILL)   COMPARISON WITH EXPERIMENTS 
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kflt 

FIGURE   8-7.     ATTAINMENT   OF   THE   ANGULAR   MOMENTUM   (LAMINAR   BOUNDARY   LAYER,   70%  FILL) 
COMPARISON   WITH   EXPERIMENTS 
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are shown for various Reynolds numbers 
and fill-ratios. The Reynolds numbers were 
varied by using oils of different viscosities. 
The projectile used was the 20 mm M56 
with a cylindrical cavity of 15.6 mm diam- 
eter and 4 1.8mm height. The experimental 
data of I/I^are compared with the theoreti- 
cal values predicted by Eqs. 8—55 and 
8—58. According to the theory, the angular 
momentum depends only on the scaled 
timek<T2torktS7t for the laminar or turbulent 
case, respectively. Thus, when plotted 
versus k£2t(orktfit , respectively) the ex- 
perimental   data   of I/I^ for  different 
Reynolds numbers and fineness-ratios 
should fall on one curve. Figs. 8—6 to 8-8 
show that this is indeed the case. The 
agreement with the theoretical curves is 
also quite good. 

In the laminar case, Fig. 8—7, the experi- 
mental increase of I/l^ is initially higher 
than theoretically predicted. The difference 
can be explained easily byjthe neglect cf 
the viscous terms (right-hand side of Eq. 
8— 16) in the theoretical computation. The 
agreement is improved when the higher 
order approximation, Eq. 8—57, is used for 
comparison with the experimental data. 

The experimental data for Re = 0.61 * 10 
(70% filled cavity) were compared with 
theoretical data both for laminar and tur- 
bulent boundary layers. As shown in par. 
8—3.13, in the range 0.5 xl05<Re<3x 105 

the boundary layer may be laminar or 
turbulent or mixed. The experimental data 
for Re = 0.61 x 105 fit quite well in both of 
the theoretical curves so that a decision re- 
garding the type of boundary layer cannot 
be obtained from this comparison. (It also 
shows that, for these transitional Reynolds 
numbers, the theoretical predictions based 
on laminar and turbulent boundary layer 
do not differ very much, so that it is not too 
critical whether the laminar or turbulent 
formula is used.) 

For the data taken at Re = 1.76x 10 , 
however, a comparison with theoretical pre- 
diction shows that the assumption of a tur- 
bulent boundary layer is certainly favor- 
able. 

Few attempts have been made to mea- 
sure the velocity distribution during spin- 
up. The experiments reported in Ref. 1 were 
obtained at relatively low Reynolds num- 
bers. The experimental technique —which 
is described in Refs. 10 and 11 — utilizes 
an impulsive  spin  generator having a 

transparent liquid-filled  cavity (- = 3).  A 

suspension of small particles of exactly the 
same specific weight as the liquid is used 
to trace the fluid motion. The particle tra- 
jectories are photographed with a high- 
speed motion camera. By this method it 
was possible to measure the distribution of 
rotational velocity and also the secondary 
flow. 

The observed secondary flow is in fairly 
good agreement with theoretical predic- 
tions (see Ref. 2). A very good agreement 
cannot be expected since the experimental 
Reynolds   number   was   rather   low 
(Re = 1.83 x 10 ), while the theory is based on 
the assumption of higher values of - Re     . 

Similarly, viscosity has a strong in- 
fluence on the distribution of angular veloc- 
ity, which  is felt especially at the point 
r/a = e~ c where—according to the "in- 
viscid" formula, Eq. 8—54 — the velocity 
distribution has a cusp. 

Further experiments on the determina- 
tion of spin-up profiles at higher values cf 
- Re are necessary in order to check the 
c 
theoretical   computations.   Instead cf 
increasing the Reynolds number — which 
usually leads to experimental difficulties — 
the fineness-ratio c/a could be decreased in 
order  to   obtain larger values  cf-Re1/2. 
However, the conditions for a turbulent 
boundary layer can be established only at 
larger values cf Re. 

8-5  INSTABILITY DURING SPIN-UP 

Transient instabilities cf liquid-filled pro- 
jectiles have been observed during the ini- 
tial period cf flight in cases where the pro- 
jectile is stable according to Stewartson's 
theory. 
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Systematic investigations1'9, have shown 
overwhelmingly that the occurrence cf 
these instabilities are connected with the 
spin-up cf the liquid. In fact, Stewartson' s 
theory is based on the assumption that the 
liquid within the cavity is — prior to per- 
turbation — in a state cf solid rotation and 
there is no theoretical reason to expect 
that the dynamic behavior cf a projectile 
during spin-up should be related in a 
simple way to its behavior at the final 
stage cf full spin. On the contrary, Stewart- 
son's theory proves that small changes cf 
the geometry or the fill-ratio can have a 
striking effect on the stability behavior, so 
that there is every reason to expect that 
the state cf motion cf the liquid —which is 
changing continuously during spin-up — has 
also a strong effect on the dynamic 
behavior. 

It is suggested by analogy, that the in- 
stabilities during spin-up have a similar 
cause as the instabilities cf the Stewartson 
type; however, it is not possible as yet to 
give an exact prediction cf instability on 
theoretical grounds. 

Lacking an exact theory, fairly suc- 
cessful attempts have been made to derive 
a crude criterion for the global behavior of 
the projectile on the basis cf empirical 
facts and a reasonable hypothesis. 

In the paragraphs which follow the pres- 
ent criterion and experimental evidence 
are discussed, and possible refinements of 
the theory are outlined. 

It appears that the present theory de- 
scribes the essentials cf transient insta- 
bility correctly although it must be con- 
ceded that the theory rests on,a rather 
small volume or experrmental evrdence and 

much more data must be obtained before 
final conclusrons can be drawn. 

8-5.1   THEORETICAL APPROACH 

The principal  ideas cf the theory cf 
transient instabilities are as follows: 

(1) As in the case cf complete spin, the 
partially spinning liquid has a number cf 
discrete frequencies cf free oscillations 
(eigenfrequencies) which depend on the 
cavity shape, fill-ratio, and the velocity dis- 
tribution. 

(2) The projectile becomes unstable 
when its nutational frequency falls within 
certain bandwidths about the eigenfrequen- 
cies. The bandwidths and the rates cf un- 
damping are determined — as in the case 
cf Stewartson's theory —by the residues at 
the poles which characterize the reaction of 
the liquid upon the projectile in a given 
mode cf oscillation. 

(3) Any cf the eigenfrequencies change 
continuously corresponding to the change 
cf the velocity distribution. However, the 
change is very slow compared with the fre- 
quency cf oscillation so that the velocity 
distribution may be considered as "quasi- 
steady", which means that the variation 
cf the velocity distribution may be neg- 
lected for the purpose of computing the 
corresponding eigenfrequencies. 

8—5.1.1  Mathematical Difficulties of an Exact Com- 
putation 

Unfortunately, it has not been possible, 
as yet, to compute the eigenfrequencies or 
residues for the velocity distributions that 
are actually encountered (see par. 8—3.2). 
The mathematical difficulties arise for the 
following rea sons: 

(1) The angular velocity — i.e., the fre- 
quency at which the fluid particles rotate — 
varies between zero and its full value at 
the wall. At some radius the frequency cf 
rotation must coincide with the eigenfre- 
quency. At this radius — briefly called the 
resonance radius — the equations cf per- 
turbed fluid motion have a singularity. At 
the singularity the amplitude cf oscillation 
becomes infinite and undergoes a phase 
shift, i.e.,the phase cf the oscillation is dif- 
ferent for radii smaller and radii larger 
than the resonance radius. 
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(2) A numerical integration of the equa- 
tions of perturbed fluid motion, which was 
attempted in Ref. 12, breaks down at the 
singularity. It is also likely that — as a 
result of the phase shift —the eigenfre- 
quencies have a small imaginary compo- 
nent; this, too, would render a numerical 
treatment very difficult. 

(3) If there are complex eigenfrequen- 
cies, they must occur always in pairs with 
conjugate complex values (in contrast to 
the case of viscous damping where only 
damped oscillations occur, see Chapter 6). 
Actually the occurrence of conjugate com- 
plex eigenfrequencies means that the fluid 
motion itself is unstable — a possibility 
which cannot be excluded for the particular 
spin-up profiles encountered during 
spin-up. 

There are, of course, other possibilities 
between Case I and Case II and —lacking 
a theoretical basis — we are free to adapt 
our model to the experimental facts. 

8—5.1.3  Eigenfrequencies for Rectangular Distri- 
butions 

For the rectangular distribution of angu- 
lar velocity, the equations of perturbed fluid 
motion become (compare Chapter 3) 

P" + £1. 
r 

. + k' 4£T 

(n-u)' 
-   1 

for       b < r < a 

p = 0 

(8-63) 

P" p" +i_- J_-k p = 0 ;  for r < b      (8-64) 
f        -2 

8-5.1.2 A Simplified Model 

In order to study the essential features 
of the problem, a simplified model was as- 
sumed (see Ref. 9) according to which the 
liquid rotates with constant angular ve- 
locity within an annular layer next to the 
sidewalls while the rest of the liquid has no 
rotation. These "rectangular" distributions 
are not dissimilar to the true distributions 
(see par. 8—3.2) with which they have in 
common the two separate regions of spin- 
ning and nonspinning liquid, although the 
true velocity distributions have anon- 
uniform spin in the annular region at the 
wall. 

where b is the radius of the interface be- 
tween the nonrotating core r-< b and the 
uniformly rotating annulus b < r < a. 

The radial velocity u  must be zero at 
r= a; this leads to the boundary condition 

ap* +. p = 0 at  r = a (8—65) 

On the perturbed interface the pressure 
must be continuous. This leads to the con- 
ditions that if p is the solution of Eq. 8—63 
for b < r and p the solution of Eq. 8-64 
for r < b then, (see Appendix A for deriva- 
tion of Eq. 8—66) 

To complete the model, it is necessary 
to give a relation between the true velocity 
distributions and the rectangular model- 
distributions, i.e., with constants, so that 
any one of the latter corresponds to one of 
the true distributions. For example, the 
correspondence can be such that the true 
distribution is represented by either 

Case I, the rectangular distribution having 
the correct angular momentum, or 

Case ll,the rectangular distribution having 
the correct volume of rotating liquid. 

■Vj+i ;P2 

P9-P1 
4 -(1 -T)' 

-bp; 

at  r = b    (8-66) 

where primes indicate partial derivatives 
with respect to r. The second of the two 
Eqs.   8—66 shows that if T is small, p   ^g. 

comes   small like T
2
 compared to p    (see 
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footnote*). Then, neglecting  px relative to 
p2, the first cf the Eqs. 8—60 simplifies to 

bp',t 

P?=- 

2 * x _-P2 

4-(1-TT 
at r = b (8=67=) 

Eq. 8—67 agrees with the boundary con- 
dition, Eq. 3—62, on the free surface at r=b 
of a partially filled cavity. (The physical 
reason for this agreement is that the de- 
formations cf the interface produce little re- 
action in the nonspinning inner core —un- 
less the frequency of oscillation is high —so 
that the condition on the interface is ap- 
proximately the same as that on a free 
surface.) Since we are mainly interested in 
low values cf T0 (up to about T = 0.2 or 
T 

2=0.04), Eq. 8—67 is a good approxima- 
tion and the problem reduces to the case cf 
a partially filled cavity with a free surface 
atr = b. Consequently, Stewartson's Tables 
for a partially filled cavity may be used. 

The exact computation cf eigenfre- 
quencies entails no principal difficulties,but 
the model which we have assumed is so 
crude that the error encountered by the ap- 
proximate condition at the interface is 
probably unimportant against other errors. 

We are now able to compute, roughly, 
the course of eigenfrequencies during spin- 
up. Fig. 8—9 shows a graph cf contour- 
lines cf T0 in the plane b2/a2 versus 
c/[a(2j t 1)] .The graph, which is taken from 
Ref.   1, is for the lowest radial mode n = 1. 

To determine the course cf eigenfrequen- 
cies, a line may be drawn at constant    c/a   . 

2j + l 

'The second of Eq. 8—66 can be written as 

bp\__T2 

Pi 

Pi 

Therefore, if Tis small, 

a2 2 

Where the line intersects a contour-line cf 
a given T0, the corresponding value cf b2/a 
can be read on the or din ate. It is seen 
readily that T0 decreases with decreasing 
b /a2. Thus, at the beginning cf spin-up, 
when the "effective" b2/a2 is near one, TQ 

is high. As the liquid attains more and 
more rotation and the effective b /a de- 
creases, TQ decreases monotonically from 
its initial value to the final value at full 
spin. According to our assumption, the pro- 
jectile becomes temporarily unstable when 
the principal eigenfrequency passes 
through resonance. We may certainly neg- 
lect the eigenfrequencies of higher modes 
since these produce rarely more than a 
mild divergence even in the steady state. 

8-5.1.4 Stability Criteria 

The above model cf transient instability 
is too crude to give precise values cf the 
eigenfrequency or the rate of undamping at 
any instant cf time. However, from the 
engineering point cf view it is only im- 
portant to predict the integrated effect on 
the projectile. 

ff we trust our model only qualitatively, 
since it predicts a monotonic decrease cf 
the eigenfrequencies during spin-up, we can 
draw some important conclusions: 

(1) The projectile remains stable during 
the spin-up time if the principal 
eigenfrequency of the steady state 
lies above the frequency cf nutation. 

(2) If the principal eigenfrequency cf the 
steady state lies below the nuta- 
tional frequency, the projectile be- 
comes temporarily unstable. The in- 
stability is less severe when the in- 
stantaneous eigenfrequency passes 
quickly through the resonance band. 
This is the case, when the steady 
state eigenfrequency is remote from 
the nutational frequency. Con- 
versely, when the steady state 
eigenfrequency is close to (and be- 
low) the nutational eigenfrequency, 
the instability is more severe. 

If T0(t) is the variable eigenfrequency, 
Tn the nutational frequency, and J xn—TQI<^/s; 
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we  find  for  the   rate cf undamping (Eq. 
4—22) 

dT„ 

\^rrfi v/s - (xn- rf , per sec   (8—68) 

The yaw angle increases like 

/\d. 
a - aQ e 

W c*i is the final yaw angle after the pas- 
sage through the instability band and a-0 
the initial yaw angle, we have 

0* / 
o 

\dt (8—69) 

Substitution of Eq. 8 — 68intoEq. 8—69 and 
change of the variables yields 

(8—70) 

£n dT„ 

dr, 
— is practically  constant for the short 

dt 
duration cf passage through the instability 
band. Carrying out the integration, we ob- 
tain 

®=--?taM   ^ 
The value cf the Stewartson parameter S 
may be taken equal to its value for the 
partially filled cavity. 

dT0 
To compute     we must know the spin- 

dt 
up history. The theory of spin-up (par. 8—3) 
yields the velocity distribution and the "ef- 
fective" b2/a2 as a function cf time. Thus, 
we have 

dt       d(b2/a2) 
d(b7az) 

dt 

d(b2/a2) 
may be computed by numerical 

(8—72) 

differentiation  cf  Stewartson's Tables   or 
graphically by means cf Fig. 8—9. 

Finally, it should be mentioned that Eq. 
8—7 1 remains unchanged by viscous ef- 
fects. It was shown in Chapter 6 that, as 
an effect cf viscosity, the instability band is 
broadened while the maximum rate cf un- 
damping is decreased. The viscous un- 
damping curve, X versus T is quite dif- 
ferent from Eq. 8—68. In spite cf this dif- 
ference, the integral, Eq. 8-69, leads to 
the same result regardless how much the 
band is broadened. The flattening cf the 
undamping curves just compensates the 
broadening, so that the integrated area is 
independent of the damping factor 6. Thus, 
Eq. 8—71 may be used irrespective of the 
effect of viscosity. 

8-5.2  EXPERIMENTAL DATA 

All pertinent experimental data avail- 
able on transient instability cf liquid-filled 
projectiles are found in Refs. 1 and 9. The 
most important cf these data are re- 
produced here and discussed with respect 
to the theoretical approach cf par. 8-5.1. 

The experiments have been performed 
with the 20 mm Projectile, M56 with liquid 
filer. The projectile had a cylindrical cavity 
cf 15.6-mmradius and 4 1.8-mmheight. Ac- 
cording to the physical characteristics cf 
this projectile, a Stewartson-type of insta- 
bility was expected at fill-ratios between 
43% and 48%. The yaw damping rates cf 
the projectile were observed in the free 
flight range over the initial 4400 calibers 
cf travel and, subsequently, evaluated. 

Fig. 8-10 shows the observed nutational 
yaw damping rates versus fill-ratio for the 
case where the projectile was filled with 
water (Re = 6.1 x 105). 

The  damping  rate   changes in a most 
striking  manner in the  vicinity   cf the 
steady state instability band at about 45% 
cf fill. The projectile is damped at fill-ratios 
smaller than 40% and unstable (negative 
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FIGURE   8-10.     NUTATIONAL    YAW  DAMPING   RATE   OF   TEST   PROJECTILE 

damping rate) at fill-ratios larger than 
45%.The largest rate cf undamping is at- 
tained at fill-ratios just above the in- 
stability band. The experimental facts dis- 
played by this diagram are in accord with 
the stability criterion cf par. 8—5. The 
steady state eigenfrequency at fill-ratio 
45% coincides with the nutational fre- 
quency — thus there is an instability band 
at 45%fii, For smaller fill ratios —i.e., 
larger b /a — the steady state eigenfre- 
quency lies above the nutational frequency 
(see, e.g., Fig. 8—9), thus, according to the 
statement (1) cf par. 8—5.1.4), the projec- 
tile is stable. For fill-ratios larger than 45% 
the steady state eigenfrequency lies below 
the nutational frequency so that the instan- 
taneous eigenfrequency must at one time 
during spin-up pass through the resonance 
band and the projectile becomes tempo- 
rarily unstable. If the fill-ratio is close to 
45% (but above), the eigenfrequency re- 
mains for a long time within the instability 
band, thus the total divergence cf the yaw 
amplitude is largest near 45%. 

According to our model, the nutational 
damping rate should be negative only for a 
more or less short interval and positive 
during the remaining time. Such behavior 
could not be observed with certainty. Pos- 
sibly, the resolution cf the data is insuf- 
ficient to reproduce the fine details cf the 
yaw history  so that the damping rates 

shown in Fig. 8—10 must be interpreted 
as average values! Or we must assume a 
real band-broadening, like the broadening 
by viscous effects; however, the cause for 
such an unusual band-broadening is un- 
known. 

When the cavity cf the 20 mm projectile 
was filled with glycerine instead of water, 
no divergent yaw was observed except a 
very mild divergence at 45%frll-ratio. The 
explanation is simple: the viscosity cf glyce- 
rine is so high that the liquid has achieved 
full spin at the muzzle. Thus it becomes 
unstable only when its steady state eigen- 
frequency falls near the nutational fre- 
quency. And even then the instability is 
very mild because cf the strong viscous 
flattening cf the undamping curve. 

Fig. 8—11 shows the ratio cf the yaw 
amplitude to its initial value on a loga- 
rithmic scale for 70%frlled cavity and three 
different viscosities cf 1, 3 and 30 centi- 
stokes. The slope cf the curve is directly 
proportional to the rate cf divergence. The 
figure indicates that: 

(1) Initially the yaw is divergent in all 
three cases as a result cf transient insta- 
bility. At a certain point, the projectile be- 
comes stable and the yaw decreases by 
aerodynamic damping. 
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(2) The larger the viscosity, the shorter 
is the period of instability. This is in accord 
with our expectation since the spin-up time 
— andthus the unstable period —is shorter 
for higher viscosity. 

In particular, our model predicts that the 
stability depends on an "effective" value of 

7      2 
b /a which in turn depends only on the 
total angular momentum attained by the 
liquid. Thus, the transition to the stable 
regime should occur in all three cases at 
the same angular momentum of the liquid. 
Fig. 8—12 shows the course of the angular 
momentum versus time for the three cases 
v = 1,3 and 30. The point of transition to the 
stable regime is marked by a dot. (For the 
case v = 1 the transition point was not ob- 
served; however, from the changing slope 
of the curve one may conjecture that it 
lies about at the right edge of the graph.) 
Fig. 8—12 shows that transition to the 
stable regime occurs at a value of I/i^of 

roughly 0.6 in all three cases. The theo- 
retical model, according to which the true 
distribution of angular velocity is replaced 
by a rectangular distribution, suggests that 
transient  instability   should   occur  in the 

band I or the band II of Fig. 8—12 for the 
model-distributions I and 11, respectively. 
In Case I the true distribution has been re- 
placed by a rectangular distribution having 
the correct angular momentum while the 
model distribution of Case II reproduces 
the correct volume of spinning liquid. Case 
II appears to be closer to reality; however, 
the experimental data are too limited for 
final conclusions to be drawn. As mentioned 
above, it is also not clear why the insta- 
bility band is so much broadened. The 
broadening may be feigned by the evalua- 
tion procedure or we may ascribe it to 
some unknown mechanism; in either case 
we may try to estimate the total increase 
of yaw on the basis of Eq. 8—71. (The 
validity of Eq. 8—71 is not effected, for 
example, by viscous broadening, as shown.) 

Let us consider the instability band for 
Case I. We read from the graph, Fig. 8—12, 
the following time intervals of instability 

Aßt = 88   ;   for   v =   30 
Attt = 230 ; for   v =  3 
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The Stewartson parameter for the two 
cases was S = 3.3 x 10~4. The width of the 
unstable interval, in terms of TQ is 

ATQ = 21/S
_
 = 3.6 x 10-2 

With the above data we obtain, Eq. 8—71, 

V AQt 

TTc          A£2t 

4    •     AT0 •u® 
30 

3 

88 

230 

0.62 

1.62 

1,86 

5.05 

To determine the experimental value of 
Q-JCXQ, the   contribution  of aerodynamic 

damping must be substracted. This can be 
done graphically — as indicated in Fig. 
8—11 — by extending the damping curves 
— which are straight lines —backwards to 
the point where they intersect the ordinate. 
The point of intersection yields the ampli- 
tude ratio for the case in which aerody- 
namic damping is disregarded. The values 
of °J<x  obtained in this way are 

£) experimental 

30 

3 5 

The good agreement with the theoretical 
prediction is fortuitous. The best one can 
hope for from the present theory is that it 
gives the correct order of magnitude of the 
initial growth of yaw. 
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APPENDIX A 

DERIVATION OF EQ. 8-66, PAR. 8-5.1.3 

It is assumed that the basic flow field 
consists of a nonrotating core 0 < b) and an 
annular region (b < r < a)of uniform rota- 
tion. 

After perturbation, the interface at r = b 
between rotating and nonrotating liquid 
becomes displaced radially by a small 
amount TI( 6 ,z,t). 

The flow velocity normal to the interface 
must equal the normal displacement veloc- 
ity of the interface. This condition, which is 
analogous to the kinematic condition on a 
free surface yields, according to Eq. 3—24 

an +   v jn 
at 3(9 (Al) 

V and u are, respectively, the circumferen- 
tial and radial components of the flow 
velocity either at the inward facing or at 
the  outward facing side of the interface. 

Applying Eq.  Al to the inward facing 
side, where V = 0 and u  = ut yields 

_an 
at 

(A2) 

and  similarly for the outward facing side, 
where V/r   = Q  and u = u2. 

-21 +n £2- 
at    "  ae (A3) 

u   and u   are proportional to    e^1-0 l     6' , 

and the same dependence on the wave fac- 
tor must be assumed for n. 

Thus 

r\= f\ (Z) e'twt " Ö > (A4) 

Eqs. A2, A3, and A4 yield 

—iu 1 _ -IU., 

C0-S7 
(A5) 

Another condition is that the pressure must 
be   equal   at both  sides of the interface. 
Denoting the undisturbed pressure by P,    , 

"l 

P,     and the pressure perturbation by p^ 

p2 at the inward and outward facing sides, 
respectively, we obtain 

Pb (b + n ) + Pl(b + n )   = 

Pb (b + T, )   + p2(b + n ) 
(A6) 

Expanding 

Pb(b + T, )   = Pb(b) + (__b)bn   +  . . . 

and neglecting higher order terms, yields 
/9PA 

Vb) + UrV+*& = 

PH (b)    + 

'apL 

9r 

(A7) 

T+ p2(b) 

Since the unperturbed pressure must be 
equal at both sides of the unperturbed in- 
terface, we have 

Pb (b)   =  Pb (b) (A8) 

Furthermore, the unperturbed pressure is 
constant in the nonrotating core, i.e., 

3pb 

"aT 
(A9) 

A-^A-l 



AMCP 706165 

while,   in  the  annular  region of rotating 
flow, we have (see Eq. 3—26) 

9r    /b (pr)b =p"2b  <A10> 

™2 

3£T 

9P2    +  J_f2 
9r 1-T r 

4 -   (1-T)
2 

T=   XL 

(A12) 

Similarly, when Eq. 3—57 is specialized for 
Substituting  Eqs.  A8,  A9,  A10,  and A5       " = 0 
into Eq. A7 yields 

p2 - Pi = - p "2bn = 

1U, 
p n2bZL = p n2bJ2l- 

Finally, uL,   u2 can be expressed by pv p2, 

respectively.  According  to Eq. 3—57 we 
have 

1U, 
1U.      _ 1 
-LL - - _P"_ 

poo 

aPi 
or (A13) 

(All)      Substituting Eqs. A12  and A13 into Eq. 
Al 1 finally yields: 

P2 -Pi - 
b -a-* + -r- P2 9r       1-T   

z 

4   -(1-T)
2 

-h 8Pi 

8r 
b 

(A14) 

A-A-2 
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CHAPTER 9 

DESIGN OF A LIQUID-FILLED PROJECTILE 

<; a    — 

9-0  LIST OF SYMBOLS 

2a     = diameter cf cylindrical cavity 

2a0    = diameter cf the cylindrical part of 
a noncylindrical cavity 

2b     = diameter cf the cylindrical air vol- 
ume, ft 

2c     = height cf cavity, ft 

CG    = center cf gravity 

CD    = drag coefficient 

static moment coefficient/rad 

normal force coefficient 

center cf pressure 

as defined by Eq. 9-9 

as defined by Eq. 9—10 

fineness-ratio cf the cavity 

maximum projectile diameter, ft 

projectile's deceleration as defined 
by Eq. 9—36, ft/sec2 

acceleration due to gravity, ft/sec 

head length, cal 

nondimensional height cf noncylin- 
drical part cf cavity 

axial moment cf inertia cf empty 
casing, slug-ft2 

- axial moment cf inertia cf frozen 
liquid, slug-ft2 

= IvntLn,  axial moment cf inertia 

cNff  - 

CP     = 

c-i      = 

S = 

c/a    = 

d 

8 

«o 
H 

h/2c 

x0 - 

lx0 

'yd        = 

•yo        - 

cf loaded projectile, slug-ft2 

transverse  moment  cf inertia cf 
empty casing, slug-ft2 

transverse  moment  cf  inertia cf 
frozen liquid, slug-ft2 

I/Ic 

k 

k 

in. 

M 

Mf 

"effective" transverse moment cf 
inertia cf liquid, slug-ft2, defined in 
par. 2—5. Note: all transverse mo- 
ments are referred to the same 
center cf mass. 

lyo * i or   I, = I„   t i„    the latter 

tobe used whenever it makes a 
significant difference with a liquid 
filler, slug-ft2 

= angular momentum cf fluid at any 
time  t 

= total angular momentum cf fluid, 
i.e., maximum steady state value 
when fluid'is spinning as a rigid 
body 

= fractional value cf the angular mo- 
mentum at time t relative to the 
rigid or steady state value 

= axialmode 
= 0.443(a/c)Re-i/2 (laminar flow) 

= 0.035(a/c)Re-1/5 (turbulent flow) 

•n = tabular value in Stewartson's 
Tables for a given T0> C/ [a(2j t 1)] , 
b2/a2, and nth radial mode 

,-2     = md2/I    transverse radius  cf gyra- 
"y tion, cal 

L. = overall length cf fuzed projectile, 
cal 

= natural logarithm 

=  (paS'd/2m) k-2c 
a 

nondimensional 

moment factor; Mach number 

= mass cf WP filler, or cf any other 
liquid, slug 

= mass cf loaded projectile, slug 

= (2c/a0) tane 

= average m1 

M 
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P 

2R 

Re 

2r 

r* 

R' 

R'/a 

r/a 

S 

S c 

S' 

s 

g 

g'L 

<sg>R 

t 

V 

= radial  mode;   twist   of rifling, 
cal/turn 

= (2u/n)(Ix/l )    nondimensional axial 
spin 

= residue at the pole, obtained from 
Stewartson's Tables 

= üa2/v Reynolds number 

= diameter of burster, ft 

= radius  of nonspinning   core,   i.e., 
where v* = 0 

= corner radius cf cavity, ft 

= fractional radius of corner cf cavity 

= fractional radius of burster 

p(2R)V 
I er(c/a) 

: Stewartson's parameter cf original 
cylindrical cavity 

■ -rrd IA cross-sectional   area cf pro- 
jectile, ft2 

: Stewartson's parameter in non- 
cylindrical cavity 

£lc/n ratio cf critical to actual spin, 
dimensionless 

P2/4M   gyroscopic stability factor 

gyroscopic stability factor with 
liquid filler 

gyroscopic stability factor with 
rigid filler 

time, sec 

velocity cf projectile, ft/sec; vol- 
ume cf fluid required for each mod- 
ified cavity to bring it into reso- 
nance, ft 3 

volume of cylindrical cavity, ft3 

volume cf noncylindrical cavity, ft3 

circumferential nondimensional 
velocity of fluid particles at 
radius  r* 

volume cf air in cavity, ft 3 

volume cf burster, fti 

axial velocity cf fluid, ft/ sec 

a, 

Stewartson's parameter $ 

v 

wp 

VPP 

= b /a   = (1 -ß) fractional air volume 
in  cavity 

= k(S7t scaled time 

GREEK LETTERS 

= initial yaw upon entering reso- 
nance band 

= final yaw upon leaving resonance 
band 

= fractional fill cf cavity volume 

= c2 /yRe viscous correction to the 
inviscid damping 

= c  /./Re viscous correction to the 
inviscid frequency 

= semi-vertex angle  of truncated 
cone at height h/2c,rad 

= mid-point cf cylindrical arc 

= rate   cf divergence   cf nutational 
amplitude, per sec or per ft 

= viscosity   cf working  fluid,   poise 

= viscosity cf water, poise 

= kinematic viscosity of liquid, stoke 

= kinematic viscosity of white phos- 
phorous, stoke 

= liquid density, slug/ft3 

= air density, slug/ft3 

= density   of   white   phosphorus, 
Slug/ft 3 

= yi-i/sp 

o"'        = specific gravity cf working liquid 

T„ =üL>nÄ7nondimensional nutational fre- 
quency of projectile 

T0(nj) = (or simply T0) =wni/f2 nondimen- 
sional fluid frequency (eigen- 
frequency ) 

f2 = (2-rr/nd)V   axial spin, rad/sec 

= critical spin as defined by Eq. 
9—35, rad/sec 

= (Ixn/2I )(11 <r) nutational frequency, 
rad/sec 

9-2 
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9-+    INTRODUCTION 

To design a well behaved, i.e., dynami- 
cally stable, liquid-filled projectile some- 
times is very difficult. This is largely be- 
cause of the constraints imposed upon the 
design such as the size cf the projectile, its 
weight, and the amount of chemical filler 
the projectile is to carry for its maximum 
effectiveness. The parameters at the 
disposal of the designer within the above 
limitations are the geometry of the cavity, 
its fineness-ratio, and the fill-ratio. Oc- 
casionally, as is the case with the XM410 
Projectile, the resonance band is so broad 
and the instability is so severe that rela- 
tively small modifications, which might be 
permissible within the above constraints, 
are quite ineffective. In such cases resort 
must be made either to a drastic redesign 
of the cavity, at some sacrifice of the opti- 
mum design cf the system, or to some other 

means whose effectiveness, however, rests 
as yet on a rather slender experimental 
basis. 

Especially difficult problems are en- 
countered with thin-walled projectiles. For 
such projectiles the value of Stewartson's 
parameter 

S = 
p(2R)V 

I <r(c/a) 

is usually large because cf the relatively 
large diameter cf the cavity 2a, small c/a, 
and small I . The width cf the theoretical 
inviscid resonance band is 2^S and the 
maximum divergence rate cf the nutational 
amplitude is proportional to ^S. Thus a 
large S makes the design of stable projec- 
tiles much more difficult. 

SECTION I 

STEADY STATE 

We shall consider first the steady state 
condition, i.e., when the liquid is fully spin- 
ning. If the projectile is incurably dynami- 
cally unstable in this state, there is no 
point in worrying about its behavior during 
spin-up. However, if the proj ectile is de- 
signed to be stable with the full spin, then 
it behooves the designer to examine its 
stability in the transient phase. We shall 
consider this phase in Section 11. 

9-2 PRELIMINARY CALCULATIONS: GYRO- 
SCOPIC STABILITY AND NUTATIONAL 
FREQUENCY 

To design a well behaved rigid "conven- 
tional" projectile is usually not difficult. A 
variety cf methods are available for esti- 
mating its inertial and other physical pro- 
perties. To estimate its aerodynamic 
characteristics is usually more difficult. In 

this connection the recent publication 
AMCP 706-242 ,Design for Control cf Pro- 
jectile Flight Characteristics, should be 
very useful. For estimating moments 
cf inertia, for example, Hitchcock's1 for- 
mula may be used. These pertain to HE- 
loadedprojectiles and are usually good to 
about 10%;I is usually better determined 
than I . 

I   = 0.14mr 
X 

I   =(0.5t0.42L2)Is 
Y 

(9-1) 

where 

m = mass cf loaded projectile, slug 

d  = maximum diameter cf projectile, ft 

L = overall length of fuzed proj ectile, cal 

9-3 
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For thin-walled projectiles perhaps a better 
approximation for I   is 

I   = (0.5t0.36L2)I 
Y * 

Gyroscopic   stability factor   can be 
written as (see Ch. 2) 

sg    lM 

where ■MA \ n/l 

(9-2) 

(9—2a) 

n      = twist of rifling, cal/turn 

p ^ k "2c 
2m"   y      Ma 

M      =^-k..    CM (9—2b) 

p      = air density, slug/ft 

m     = mass cf loaded projectile, slug 

d      = diameter of projectile, ft 

-2 ,•       r- rod k      = radius a gyration =    ——, cal 
y 

CM        static moment coefficient, per rad 

It should be remembered, see par. 2—5, 
that with a liquid filler, the gyroscopic 
stability factor at the muzzle is less than 
with a rigid filler, ff (s )R is the gryoscopic 
stability factor of the projectile with rigid 
filler, i.e., with liquid frozen, then the gyro- 
scopic stability factor at the muzzle when 
the filler is liquid is 

(s )T  = (s ) 
R( ho + i,o ) 

(9-2c) 

where I „ is the axial moment cf inertia of 
the   empty   casing and ix0 is that of the 
liquid regarded as rigid. Experience has 
shown that the safe lower limit for the 
gyroscopic stability factor is about 1.3. 
ff (s ).  is too low, the twist cf rifling cf the 
gun may have to be changed. 

Once  the gyroscopic  stability factor is 
known, compute 

(9-3) 

and then the nutational frequency 

(9-4) 

Sometimes it is more convenient to replace 
CM    by C

M  =CN (CP-CG) where CN    is 

normal force coefficient, because CN   and 
a 

CP (center cf pressure) depend only on the 
external shape and are invariant with in- 
ternal modifications such as changes in the 
geometry cf the cavity. Of course, the CG 
will probably change as the cavity changes 
but such changes can be estimated and 
allowed for. In a preliminary design, for 
many  conventionally shaped projectiles, 

Cx,  is about 3, and CP can be taken as 3/4 H 
"a 

for   square-based  and 2/3 H for boat-tailed 

projectile, measured from the fuzed nose, 
where H is the head length in calibers. 
These rough values are reasonably ade- 
quate and are applicable in the range of 
low supersonic velocities, 1 < M < 2, where 
M is the Mach number. 

Here the question may well arise as to the 
proper inertial properties to be used in de- 
fining the nutational frequency: those cf 
loaded projectile, of the empty casing, or 
something in between? Experiments sug- 
gest the following: 

(1) For Ix use the loaded rigid projectile 
value, 

(2) For I the "effective" transverse mo- 
ment cf inertia cf the fluid is to be used 
whenever it makes a significant difference 
inT , i-e., 

n 

\ = Jyo t V x Mfx '(see par- 2—5) 

However, in a preliminary design this re- 
finement is unnecessary because cf fairly 
rough estimates cf the moments cf inertia. 

9^4 
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Thus with Ix> <x , and Tn known, one may 
proceed to consider whether the designed 
cavity contains fluid frequencies in close 
proximity to the nutational frequency of the 
projectile. We shall consider first the 
simplest case of the cylindrical cavity. 

9-3    CYLINDRICAL CAVITY 

9-3.1   VISCOUS CORRECTIONS 

It was shown in Ch. 6 and elsewhere that 
agreement of the inviscid theory with the 
results of the experiments is markedly im- 
proved if viscous corrections are applied to 
Stewartson's theory. These corrections af- 
fect the inviscid fluid frequency and the 
inviscid damping. The frequency correction 
is shown to be of the form 

(9-5) 

which should be added to the tabulated 
inviscid frequencies in Stewartson's Tables. 
Thus the exact resonance with the nuta- 
tional frequency occurs not when TQ = Tn 
but when T t « = Tn- The maximum diverg- 
ence of the nutational amplitude, due to 
resonance, becomes 

\ = $-(y/s+~¥-b), per sec (9-6) 

The formulas for computation of Cj and c2 
are given in Ch. 6. The functions cx and c2 

depend on T0 , c/a, and the inviscid partial 

9T, 
9T„ 

derivatives d(b?%^   ana 9|c/[a(2j + 1)]}  ' 

The derivatives, as shown in Ch. 6, can be 
adequately approximated by the quotients 
of the differences obtained from Stewart- 
son's Tables. The following, however, may 
assist the designer in computation cf c and 
c. Let 

t, = 
1 /2 yr^ 

2v/2   vA" +   T„ 

1        1 1  +    Tn 

^ 73^   ' " T°" 

Also, for simplicity cf writing, let 

x = b2/a2 

a(2j t 1) 

instead cf the inviscid maximum diverg- 
ence 

X. - ^ yi" per sec (9-6a) 

where the damping correction has the form 

0 " — (9—7) 

Stewartsons' instability criteria is modified 
to 

-r      J_  c- ~r 
6 tit) ^ 0^) < 1 + 

v^ 

(9-8) 

Then, in the ranges cf TQ and x 

0 < T0 < 0.25 

0 < x^ 0.10 

the following formulas for the derivatives 
(for n = 1 mode) are accurate 

D   = Q-= 0.077 t 1.32x x       ax 

Dv =    ,fT0 = 0.09 + 32.5x t (0.54 - 28.4x)y y       ay 

9-5 
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The formulas for ct and c2 can now be ex- 
pressed as 

c   =2xDt,tyD ft-(t   -t)(c/a)   *] 
1 x 1 fL  1 2       3 

(9-9) 

c2= 2xDxt1tyDy[t1t (t2t t3) (c/a)   *] 
(9-10) 

The following table provides the values cf 
t j, 12 — 13, and 12 113 

TABLE 9-1    VALUES OF tv t2 -t3, AND t2 +t3 

FOR VARIOUS T0'S 

as compared with Ch. 6 values cf 0.44 and 
0.9 16,respectively. The agreement is good. 

As was pointed out in Ch. 6 the viscous 
resonance band is bell-shaped, see Fig. 
6—1, hence its width cannot be specified. It 
was suggested, therefore, that the perti- 
nent width is to be determined relative to 
the aerodynamic damping — i.e., where, 
in the wings of the bell-shaped curve, the 
divergence due to the liquid is just 
balanced by the aerodynamic damping. 
Nevertheless, a convenient measure cf the 
viscous resonance bandwidth is 

Width = 2(ji t6) (9-11) 

as compared with the inviscid width = 2^'S . 

o 4 

0.00 

0.04 

0.08 

0.12 

0.16 

0.20 

0.24 

0.28 

0.707 

0.722 

0.737 

0.754 

0.772 

0.79 1 

0.811 

0.833 

t2-t3 t2 + t3 

0.857 1.265 

0.846 1.292 

0.836 1.324 

0.829 1.359 

0.820 1.400 

0.8 12 1.446 

0.807 1.50 1 

0.800 1.562 

As an example, take the case considered 
in Ch. 6: x = 0.05, y = 1.20, TQ = 0.l6,c/a = 3.60. 
We compute 

D   =0.143 

Dy = 0.659 

then 

cL= 2(0.05) (0.143)(0.772) 

+ 1.20(0.659) (0.772 -^Sf) = 044 

c,= 2(0.05) (0.143) (0.772) 

9-3.2 REYNOLDS NUMBER 

The  Reynolds   number   cf the rotating 
fluid is conveniently defined as 

o    2 

Re=Ai3_ (9—12) 

where 

n = (2jL V) axial spin, rad/sec 

a = radius cf the cavity cf the projectile 

d = diameter of projectile 

v = kinematic viscosity 

V = velocity cf projectile 

ff v is expressed in stokes, then a must be 
expressed in centimeters. 

Sometimes the designer is more familiar 
with the ratio cf the viscosity cf his working 
fluid to that cf water, i.e.,  (j./u   where \± is 

viscosity of his fluid and R0 is that cf water. 
If, in addition, he knows the specific gravity 
a' cf his fluid, then remembering that the 
kinematic viscosity of water is 0.01 stoke, 
the kinematic viscosity cf his fluid is simply 

11.20(0.659) (0.772 t^Ä = 0.929 , , , 
3.60 / v = o.OlOVl-O 1/cr   stoke (9-13) 

9-6 
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An example: what is Re cf WP in the 
XM410 Projectile fired at M = 1.5? 

n = 40 cal/turn 

d = 0.5 ft 

V = 1.5(1120) = 1680 ft/sec 

.-. Q - 1056 rad/sec 

a =2.68(2.54) = 6.8 cm 

Assume that the ratio cf viscosities |VM-0 
= 2, 

sp.gr.cr1 = 1.8,thenv    - 1.1 x 10~2 stoke and 

Ite = 4.1 x 106, by Eq. 9—12. 

Viscous corrections are inversely propor- 
tional to the square root cf the Reynolds 
number. Whether the viscous correction is 
significant or not depends on how ac- 
curately one knows the nutational and fluid 
frequencies; if these are known to three 
significant figures, a correction in the fourth 
place is insignificant. In other words, the 
usual engineering judgment must be exer- 
cised in considering significance cf the cor- 
rections in view cf other uncertainities. 
Correction to viscous damping 6 , for ex- 
ample, must be judged relative to the size 

cf Vs- One can rapidly estimate the order 
cf magnitude cf these corrections by taking 
as representative values of Cj=0.4 and 
c,= 1. 

9-3.3   DESIGN OF CYLINDRICAL CAVITIES 

With the above preliminaries out cf the 
way, one may consider now the design cf a 
cylindrical cavity which will contain no fluid 
frequencies in a dangerous proximity to the 
nutational frequency cf the projectile. 

c/ [a(2j t 1)]  (first radial  mode n = 1),  find 

the corresponding number, say, Kj. Then 
all cylindrical cavities whose fineness- 
ratios satisfy the condition 

(c/a)1 = Kj(2j t 1) j =0,  1,2,.  . . 

will contain this resonating fluid frequency 
T0.  Similarly for the second radial mode,n-2 

(c/a)2=K2(2j + l) j=0, 1,2, 

One can always neglect the third radial 
mode and in many instances even the 
second mode because cf rapidly decreasing 
residues (2R) in higher radial modes. The 
hydrodynamic moment is proportional to 
2R. 

As stated above, the width cf the viscous 
resonance band should be determined rela- 
tive to the level cf aerodynamic damping. 
However, for illustrative purposes, we can 

accept that the width is given by 2 L/s t 6 j. 

Therefore, all cavities with frequencies in 
the range cf 

xn±(ys+ g 

should be avoided. This range cf fre- 
quencies can be readily converted into the 
range cf fineness-ratios. Tet 

Toi=Tn+(ys"+Q 

T02=   T n-(>/S + 6) 

The width cf the resonance band  on the 
frequency  scale is from TQ1   to TQ2.  From 

the same Stewartson's Table, on the line 
, find the corresponding K,,. Then 

To 

(c/a)u=_Ku(2j + l) 1 = 0,1,2, 

With the nutational frequency ~rn known 
from Eq. 9—4, the resonating fluid fre- 
quency is TQ = Tn - e. Suppose the cavity is 

to be filled to a certain fraction cf its 
volume, i.e.,1- b /a ,say 0.95 <r 95 %. There- 
fore, b2/a2 = 0.05. In Stewartson's Tables, on 
the page marked b2/a2 -0.05, find 
TQ = Tn - e.  In the first column, headed by 

gives one bound for c/a; similarly for (c/a) 12. 
The range of fineness-ratios to be avoided 
is from (c/a) n to (c/a)12 about the central 
ratio (c/a)j of the exact resonance. Since 6 
depends slightly on c/[a(2j t 1)] through D 

Eq. 9—10, it might be necessary to recom- 
pute its value for the edges cf the band. 

9-7 
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In principle, therefore, to design a cy- 
lindrical cavity which will contain no fluid 
frequencies in close proximity to the nuta- 
tional frequency of the projectile is a simple 
and straightforward process. In practice 
the difficulty is usually encountered when S 
is large. With larger S the frequency band 
is broader and the range of the fineness- 
ratios to be avoided is correspondingly 
wider. It might become impossible to avoid 
this range because of other constraints im- 
posed upon overall design cf the projectile. 
We shall encounter this condition with the 
XM4 10 Projectile. 

Perhaps a more common practical prob- 
lem is when the proj ectile has been de- 
signed and produced for other purposes 
and is being adapted to carry liquid. The 
designer should investigate whether there 
is a danger that the cavity contains reso- 
nating fluid frequencies. We have dealt 
briefly with this problem in Ch. 4 in con- 
nection with Stewartson's Tables. The ex- 
amples which follow illustrate in greater 
detail the proper procedure to be applied. 

9-3.4  EXAMPLES 

9—3.4.1   105 mm Chemical Projectile 

We either estimated or previously mea- 
sured the following characteristics: 

Ix = 0.0174 slug-ft2 

I   = 0.1727 slug-ft2 

m = 1.06 slug 

a = 27 cal/turn 

Pa=0.00257Sslug/ft3 

d = 0.34 ft 

a = 0.13 U 

c/a = 265 

C„    = 4.5 

Compute: 

t(v) 
fe-) 

2.37 x 10" 
(see Eq. 2—3) 

-2 4M = 4,_/.y.„o 

s   = 1— = 1-2 g    4M 

kv 
C

M- = 4.6 y-lQ-2 

(see Eq. 2—3) 

(see Eq. 2— 7) 

«r = ,/!-!.: 0.41 

Tn=^ (It v) = 0.07 

(see Eq. 9—3) 

(seeEq. 9-4) 

The gyroscopic stability factor appears to 
be too low, i.e., less than 1.3. If WPbe- 
comes liquid, then at the muzzle the gyro- 
scopic  stability factor becomes (see par. 
2-5) 

Rfc^W <SA = <s> 

ix0 - 0.0007 slug-ft2 

IxO = Ix-ixO = ft^67slug-ft2 

(see Eq. 9—2c) 

.(s ), 
g 

= 1.2 (o^ZA2 

L \0.0174/ 
1.1 

Mf = 0.087 slug 

which is undesirably low. Therefore, modifi- 
cation of the twist of rifling is desirable. 
Tet n = 20. With this twist 

(s )T  =2.23,   <r= 0.74, T  =0.088 g L n 

Next check whether viscous effects are 
important. Suppose this projectile is to be 
fired atV= 1680 ft/sec. What is the Reynolds 
number of the spinning liquid? 

9-3 
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n-ZlV = 1534 rad/sec 
"" nd 

a = 0.13 (12) (2.54) = 4.0 cm 

v = 1.1 x 10~2 stoke 

By Eq. 9—12, Re = 2xl06. Let us estimate 
the viscous corrections using rough values 
cf Cj and c2> i.e., 0.4 and 1, respectively. 
Then correction to the frequency, Eq. 
9—5, is E = 0.0003 and can be neglected. 
The correction to the damping, Eq. 9—7, is 
6= 0.0007.   As we shall see in a moment, 

v/S = 2.1 x 10     Thus the viscous correction 

to the damping is on the border line of ac- 
ceptability. For the present, let us neglect 
it also. 

Suppose now that the cavity is to be 
fiied to 97%or b2/a2 = 0.03. Since the fine- 
ness-ratio cf the cavity is fixed, c/a = 2.65, 
in order to find whether it contains resonat- 
ing fluid frequencies, construct the following 
table: 

2.65 

] (2j + 1) 

2.65 

To(nJ) 2R 

0 _ _ 
1 0.883 0.25(2,1) 0.670 

2 0.530 0.089(2,2) 0.0334 

3 0.379 0.17(3, 3) 0.0208 

T0 and 2R are found from the table for 

b /a =0.03 by simple interpolation corre- 
sponding to various values cf c/[a(2j t 1)]. 
Clearly, there is a possibility of resonance 
with TQ = 0.089(2, 2) since Tn = 0.088. Com- 
pute Stewartson's parameter. 

S = 
Pa' 

I   crc/a 
.(2R)* 

p      = 3.49 slug/ft; 

wp 

I   = 0.0174 slug-ft2 

<r -0.74 (from previous calculation) 

c/a = 2.65 

.-. S= 0.38 x 10~2 (2R)2 

For j = 2, n = 2, S = 4.2 x 10~6 andv/s^=  2.1 

x 10 . Thus by Stewartson's criteria for 
instability, Eq. 9—8, since we have found 
that e and 6 may be neglected 

-1<T°-T"   <1 

0.089-0.088    = 0J0   unstable 

5 
a   =0.37xl0-4ft -4*.5 

2.1 x 10~3 

The width of the frequency band present 
in this cavity is fromT0 x = 0.089 t 0.002 =0.091 

to TQ2= 0.089 - 0.002 - 0.087.    However,  the 

resonance band, i.e., the range of frequen- 
cies  to  which  the projectile responds,  is 

from rQl= rn + /? = 0.088 t 0.002 - 0.090 on 

the high side, but only TQ2   = 0.087 on the 

low side because frequency 0.086 is not 
present. In the present case these finer 
points are fairly meaningless because cf 
small differences involved and the un- 
certainly cf the numbers. However, it is 
important to realize that in a given cavity, 
i.e., c/[a(2jtl)],    a   band   cf frequencies 

TQ ±ys may be present — this is the 
property of the fluid; but the resonance 
band, i.e., the frequencies to which the pro- 

jectile responds, is Tn ± ,/S . The two are 
co-extensive only in the case cf exact reso- 
nance, i.e., if T = Tn. Otherwise the reso- 
nance band will be asymmetric —terminat- 
ing, on one side or the other, with the avail- 
able frequencies. We shall see more cf this 
in a better example later. 

The fineness-ratios corresponding to the 
limits cf the resonance band are c/a = 2.65 
and 2.64, respectively. The band is very 
narrow and the cavity is just on the edge 
cf its resonance band. 

9-9 
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Now, having established that resonance 
occurs at j = 2 and with x = b /a = 0.03, one 
can recompute viscous corrections more 
accurately by Eqs. 9—5 and 9—7 in order 
to be sure that our neglect cf these correc- 
tions was justifiable, ff so done, one finds 

« = 0.0001,and 6= 0.0004 instead cf our rough 
values cf 0.0003 and 0.0007, respectively. 
Hence, their neglect was justifiable. 

The maximum rate of divergence of the 
nutational amplitude due to this instability 
is 

the fineness-ratio cf the actual cavity. The 
designer may well impose a specification 
on the bounds cf c/a. He can then perform 
the analysis for the minimum and the maxi- 
mum values cf c/a. In other words, care 
should be exercised in foreseeing various 
eventualities. 

9—3.4.2 75 mm Chemical Projectile 

The projectile has the foUowing ch^^- 

teristics 

-2 I   = 0.386 x 10 -l    slug-ft 

X=i   ^-K-TJ2     Per ft '0 'n' 

3.14 
V4.2 x 10 ~6 - (0.089 - 0.088)2 

= (20) (0.344) 

X =0.82x 10-3 per ft 

This  is to be added to the aerodynamic 
damping  cf the   nutational   component\v 

The   algebraic   sum cf the two rates will 
control the nutational amplitude. 

Since the resonance band is so narrow; 
theoretically, a minor modification cf the 
fineness-ratio cf the cavity will remove it 
from resonance. Thus c/a = 2.60 or c/a = 2.70 
will suffice. However, in practice, one should 
consider possible evaporation cf the liquid 
with   a   consequent   increase   in b2/a2. 
Suppose, therefore, that some liquid evapo- 

■y       -y 

rates and the fill-ratio becomes b /a = 0.10. 
How are the fluid frequencies affected? In 
the present case, if the cavity were modi- 
fied to c/a = 2.60, the fluid frequency (2, 2) 
becomes TQ= 0.125; if the choice were 
c/a =2.70, T0 becomes 0.15. In the present 
case, therefore, evaporation cf the liquid 
makes the projectile even safer. This, cf 
course, need not always be the case. If the 
design cf the cavity places TQ below rn on 
the frequency scale, then the shift cf T0 to- 
ward higher frequencies due to evapora- 
tion may result in resonance. 

Another source cf possible difficulty is 
the lack cf precision in the knowledge cf 

-2 I   =4.39 x  10 ~L slug-ft 2 

m ~ 0.460 slug 

Mf =0.0125 slug 

n = 25 cal/turn                       C„ = 4.91 

a = 0.085 ft                              c/a = 3.25 

Therefore 

P=2.21x 10 ~2 

4M= 3.68 x 10-4 

s   = 1.33,o-=0.67,    T = 0.073 e 

Check whether s   is large enough if WP be- 
comes liquid 

'     = 0.00005 slug-ft 2 
x0 

[x0 = 0.00381 slug-ft2 

•-.(Sg)L = 1.30 

which is acceptable. 

Next compute the Reynolds number cf 
the spinning fluid. Suppose V = 2000 ft/sec. 

n = 2043 rad/sec 

a = (0.085)(12)(2.54) = 2.6 cm 

v = l.lx 10~2 stoke 

.*.Ite= l.lx 106 

By  the previous  example,   since Re ~ 106, 
viscous effects can be neglected. 
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Suppose the cavity is to be filled to 97% , 
i.e., b2/a 2 = 0.03. Construct the following 
table 

3.25 
2j + l To(ni) 2R 

0 3.25 - - 

1 1.083 0.074(1, 1) 0.225 0.93 x 10-4 0.96 x 10- 

2 0.464 

T0- Tn 

0.10 

Compute Stewartson's parameter S. Its 
value is inserted in the above table to- 
gether with the test for instability. 

The band of frequencies present in this 

cavity isTQ ± /s = 0.074 t 0.010. Since Tn=0.073, 

the  resonance  band   is from T    = 0.0731 

0.010=0.083 on the high side, and to the limit 
of frequency band TQ2 =0.064. These fre- 
quency limits of the resonance band cor- 
respond to the fineness-ratios fromc/a = 3.29 
to 3.21,respectively. 

The maximum rate cf divergence is 

\^4.9y 10"3,  per ft 

Again, this instability can be easily re- 
moved by modifying c/a of the cavity either 
to 3.2 or lower, or to 3.3 or higher. Re- 
marks at the end of the first example 
should be kept in mind. Check again for 
possible instability in the new cavity. 

9-3.4.3 XM410 Projectile 

As before, see par. 4—3, we shall con- 
sider this projectile as containing a cy- 
lindrical cavity c/a = 1.%. In par. 4—3 it 
was found that the fundamental fluid fre- 
quency  present  in this  cavity is T0- 0.34. 
With  ^=0.25,   the frequency band covers 
the range TQ ± /s = 0.34 ± 0.25 or from 0.59 
to 0.09. The nutational frequency, however, 
is  rn = 0.25.  Since the projectile is unstable 
only when (Eq.   9-8   neglecting   e  and 6) 

S
-(

T
O-T„)

/>0 

the resonance band is T
0 j = T„ t ,/S = 0.25 

t .25 = 0.50 on the high side, but on the lower 
side it does not go to T

02 = Tn - ^S = 0.25 
- 0.25 = 0.00but only to the lowest frequency 
which is present in the cavity, i.e., 0.09. 
Therefore, the resonance band is asymmet- 
ric. The corresponding fineness-ratios are 
c/a = 2.2 and 1.1,respectively. 

As we have seen, this projectile is 
violently unstable and unless one is willing 
to reduce the c/a of the cavity below 1.1, or 
to increase it above 2.2, no minor modifica- 
tions will remove it from resonance insta- 
bility. With any major modification it is es- 
sential to recompute rn and to perform 
analysis anew. 

To change the fineness-ratio, one can 
either lengthen the cavity or reduce its 
diameter. Tet us try the latter alternative. 
Suppose we reduce the diameter cf the 
cavity to, say, 90%, or a/aQ = 0.90 where &Q 
is the original radius, ff we make the walls 
cf the cavity thicker, the added mass cf 
steel will significantly alter the projectile's 
inertial properties thus changing rn. Simple 
computations show the following effects cf 
the modification: 

Original Modified 

c/a 1.56 1.73 
Tn 0.25 0.31 

To 0.34 0.40 

/-$ 0.25 0.18 

O          n 0.37 0.52   (unstable) 
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There is only a very slight improvement. 
The improvement could be enhanced if 
one were to insert a sleeve of density equal 
to that ofWP, thus retaining the inertial 
properties of the original projectile. Similar 
computations,as above, show that with such 
an arrangement it is still necessary to re- 
duce the diameter of the cavity to 80%in 
order to remove this projectile from insta- 
bility. The volume of the reduced cavity will 
only be 64%of the original. 

9-3.5 CYLINDRICAL CAVITY WITH CENTRAL 
BURSTER 

Thus far we have considered only unen- 
cumbered cylindrical cavities. However, 
many chemical projectiles use bursters in a 
form of a centrally located cylindrical 
column. The analysis of such configurations 
is only slightly different from that of a 
plain cylindrical cavity.* 

Consider, therefore, that a cylindrical 
cavity contains a central cylindrical burst- 
er of external diameter 2r with volumevf. 
The volume of the cylinder without the 
burster is Vc. Suppose the available volume 
Vc — vr is to be filled to a certain fraction, 
say,P'i.e., 

0(Vc-vr)= ßV(l-r2/a2) 

Relative to the cylindrical volume V , this 
amount of liquid will occupy a fraction of Vc 
volume, i.e., V (1 -b2/a2). Therefore, 

2/2, 

or 

V Q -b7a')=  ßVr(l -rVa') 

b2/a2=l -(3(l-r7a2) (&-14) 

For a cylindrical cavity with a central 
burster, if the available cavity is filled to ß 
fraction, we should enter Stewartson's 
Tables with the above b2/a2 and not with 
1-p. 

For example: the cavity of the XM410 
Projectile has a central burster for which 
r/a = 0.29. Suppose the available cavity is to 
be filled to 93% .i.e., ß= 0.93, then 

b2/a
2= i_0.93[l - (0.29) 2]= 0.15 

For the XM410 Projectile with a cylindrical 
burster cavity one finds from Stewartson's 
Tables with b2/a2 = 0.15 

T0 = 0.346 and /s^0.26 

or essentially the same situation as without 
the burster. Changing the fill-ratio does 
not improve the situation either, as the fol- 
lowing table illustrates: 

0.93 0.82 0.71 

b2/a2 0.15 0.25 0.35 
To 0.35 0.36 0.39 

/r 0.26 0.28 0.30 

T0  ~Tn n ^7 n di n Ai 

@- 

By Stewartson's instability criteria, all con- 
figurations are unstable. 

9-3.6  100% FILLED CAVITY WITH CENTRAL 
BURSTER 

If one were to consider a cavity with 
such a burster, and 100%fii;then Stewart- 
son's Tables become inapplicable and one 
should use the special Central Column 
Tables given in Ch. 4. For the XM410 Pro- 
j ectile with 

r/a = 0.29,   r2/a2= 0.084,      c/a = 1.56 

one finds from these tables 

T„     = 0.50 

*For a treatment of cavities with partial bursters see 
Appendix  B. V^ 

Js      = 0.33 

= 0.76 (unstable) 
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The frequency band is even broader than 
for a partially filled cavity and covers the 
range cf frequencies from TQ1 = 0.83 to rQ2 = 
0.17. It is to be noted, however, that as the 
principal fluid frequency recedes from the 
nutational frequency, the latter comes 
closer and closer to the edge cf the fre- 
quency band. The tables show that for a 
given c/[a(2j t 1)] , TQ increases as r/a in- 
creases. Thus it is conceivable that for this 
projectile by changing the diameter cf the 
burster an eventual stability may be 
achieved. This is illustrated in the following 
table: 

r2/a2 0.05 0.084 0.15 

To 0.45 0.50 0.57 

sr 0.32 0.33 0.34 

T0-Tn 
'0.63 0.76 0.95 

Thus it is possible to achieve stability, at 
least in principle, by this means if one is 
willing to pay the price of, say, a 20% re- 
duction in the volume of the cavity. The 
problem also arises whether a r2/a2= 0.20 or 
r/a = 0.45 burster could be inserted through 
the fuzing hole. It is to be noted, however, 
that in this exercise Tn was kept constant. 
In practice, changing the size cf the burster 
will alter the inertial properties cf the pro- 
jectile thereby changing T„. This, cf course, 
should be taken into account in the analy- 
sis. However, to fill the cavity 100% is 
difficult and undesirable because some un- 
occupied volume must always be provided 
for possible expansion cf the liquid. Accord- 
ingly, the cavity is likely tobe always only 
partially filled. 

Experiments with the gyroscope showed 
that if the air gap between the burster and 
the free liquid surface is reduced below a 
certain critical value, a very marked reduc- 
tion in instability occurs? This is due to 
interference by the central cylindrical 
column with  the   oscillations   cf the free 

liquid surface. For the gyroscope, with 
c/a - 3.08, a = 2.5-in. cavity, and b2/a2= 0.15, 
the critical gap was found to be 

b/a -r/a = 0.05 

If these experiments have general 
validity, they suggest that it is possible, 
in a given burstered cavity, to find a critical 
fill-ratio which will markedly reduce the 
instability. 

As an example, for theXM410 Projectile 
with a burster r/a = 0.29, if completely filled, 
TQ = 0.50 and the projectile is unstable, ff 
the above rule is to be applied, the critical 
fill-ratio should be 

b/a < 0.29 t 0.05 = 0.34 

or less than b2/a2= 0.12 which, corresponds 
to 96%fill of the burstered cavity. The 
experiments suggest, therefore, that if one 
fills more than 96%, there might be inter- 
ference with a consequent marked reduc- 
tion cf instability. 

However, this method of stabilization, 
even if it works, is of very precarious 
nature because the liquid may evaporate 
with a consequent increase in the air gap 
and a return to a severe instability. 

The above technique might also fail if 
the nutational frequency cf the projectile 
lies between T    as given by Stewartson's 

2      2 Tables for a prescribed b /a and TQ as ob- 
tained from the Central Column Tables for 
r2/a2 »b2/a2. The latter TQis always higher. 
In the example above for the XM410 Pro- 
jectile with burster for b2/a2 = 0.7 5 (93% 
full), TQ = 0.35;  if this cavity is completely 
filled, T

0 = 0.50. Thus there is a sharp tran- 
sition cf the frequencies from TQ = 0.35 for 
93% full to T0 = 0.50 for 100% full, ff the 
nutation frequency cf the projectile lies in 
such a gap of frequencies as, say, TQ - 0.40, 
transitional instability might occur as the 
cavity is filled through the critical range of 
fill-ratios, i.e., from 93%to 100%.Further 
discussion of this problem may be found in 
Ref. 4. 
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9-3.7  PARTITIONING OF THE CAVITY 

Partitioning cf the cylindrical cavity by 
longitudinal baffles sometimes is used by 
designers as a solution for instability of 
liquid-filled projectiles. At the present time, 
however, no theory is available for con- 
sidering such a design on a rational basis. 
The problem presents very formidable ma- 
thematical difficulties (see Ch. 7). Thus far, 
several attempts at an approximate theo- 
retical solutions have proved unsuccessful. 

However, partitioning cf the cylindrical 
cavity by a transverse baffle or plate, thus 
dividing the cavity into two cylindrical cav- 
ities, presents no difficulty. Each cavity, 
in turn, can be treated by Stewartson's 
theory. 

9-3.7.1  Full Transverse Baffles 

Tet us apply this to the XM410 Projec- 
tile — a difficult case. As we have seen, 
the resonance band cf this projectile — 
containing a cylindrical cavity and a burst- 
er, with 93% fill — is very broad. It covers 
a frequency range fromT0 x = 0.50tOT0 2- 0.09, 
corresponding to the fineness-ratios c/a 
from 2.2 to 1.1, respectively. Suppose, 
therefore, we try placing a diaphragm or a 
baffle at c/a < 1.1, say, at c/a = 1.00. With 
such an arrangement, one cavity will have 
a fineness-ratio c /a - 1.00; while the other, 

c , = 1.56 -1.00 = 0.56. We neglect the thick- 
rfess of the partition, which can be easily 
taken into account. Performing the analysis 
of these two cavities in the usual manner, 
we find the following 

b2/a 2 = 0.15, Tn = 0.25 

Cj/a c2/a 

T
0(nj) 0.03(1, 0) 0.22(2, 0) 

A 0.02 0.03 

T0   "Tn -10.5 (stable; i -1.18 (stable) 
A 

Therefore, with such a partition the XM4 10 
Projectile becomes stable. Since the air gap 
between the free surface cf the liquid and 
the burster — when the liquid is fully spin- 
ning — is b -r = 0.27 in., the partition need 
not completely separate the two chambers. 
The gap between the partition and the 
burster must, however, be less than(b -r) 
so that at frill spin there will be no com- 
munication of the liquid between the two 
chambers. 

A minor problem arises. Suppose that 
the diameter cf the central hole in the 
partition, for loading purposes and for ad- 
mitting the  burster,   is 2rr  Clearly, rl >r 

where 2r is the diameter cf the burster. The 
loading or the fill cf the cavity must be 
such thatb >r , where 2b is the diameter cf 
the air column. If these conditions are 
satisfied then, at full spin, there will be no 
communication cf the liquid between the 
two chambers. However, in the nature of 
things, there is no assurance that b will be 
the same in both chambers. It might well 
happen that there will be slightly more 
liquid in one chamber than in the other. 
Thus the diameters of the air columns, or 
the "effective" fills, in the two chambers 
will be different. The minimum b in either 
chamber will be b = rr Therefore, one 
should examine this contingency. 

Let b2/a2 be the fill-ratio of the chamber 

whose fineness-ratio is Cj/a; and b2/a2,c2/a 

for another chamber. Then, if the overall 
fill-ratio is b2/a2 and the fineness-ratio of 
the whole cavity is c/a: 

b2/a 2(c/a) = b2/a \c j/a) t b2/a 2(c2/a)    (9— 15) 

The two extreme configurations are when 
either bj = r l or b2 = r lt provided, of course, 
that b > r j. From the above relation, the 
fill-ratios in the two chambers can be de- 
termined and the analysis cf stability per- 
formed in the usual manner. 

As an example, consider the XM410 Pro- 
jectile with a partitioned cavity as above, 
i.e., 
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bVa2= 0.15, c/a = 1.56,c/a = 1.00, 

c 2/a - 0.56, a - 2.68 in. 

Suppose   rx -r = 0.125 in. 

(1) Case 1: b, = rr What is b2 and what 
are the consequences cf such distribution? 

TY/a = r/a t 0.125/a = 0.29+0.0337-0.324 

r^/a2 -^/a2=0.i0 

'. b2/a2  =0.24 

Such distribution of the liquid in the two 
chambers leads to TQ = 0.017 in the cj/a 
chamber (instead cf TQ = 0.03 for b2/a2= 0.15), 
andTQ- 0.305(instead cf TQ = 0.22) inthec2/a 
chamber. Thus it is a beneficial shift cf the 
frequencies, i.e., away from T  = 0.25. 

(2) Case 2:   b2 = r, 

b2/a2 = 0.10 

.•.b2/a2 = 018 

The new frequencies are: TQ = 0.048 and 0.175 
in chambers 1 and 2, respectively. Such an 
analysis is worth performing for safety. 

Examination cf Stewartson's Tables will 
show that if the thickness cf the partition is 
taken at the expense cf the smaller cham- 
ber, i.e., c/a =0.56, the fluid frequency in 
this chamber will shift to the lower fre- 
quency and, hence, away from resonance. 
Similarly, if the overall fill-ratio is increased 
from 93% to, say, 95% or 96%, the fre- 
quencies in both chambers will shift to 
lower values. From Stewartson's Tables 
one can find other positions cf the trans- 
verse baffle which will give a stable pro- 
jectile. 

9-3.7.2   Partial Transverse Baffles 

To incorporate a transverse baffle into 
the  projectile's   cavity   is   difficult. If the 

transverse baffle offers the only solution to 
the projectile's instability, then — if the 
projectile is already built — it has to be 
cut, the baffle welded into place, and the 
pieces put together again — a costly pro- 
cess, ff the baffle could be introduced into 
the cavity during the manufacture cf the 
projectile, i.e., before the nose is formed, 
this would simplify the problem con- 
siderably. At any rate, if the transverse 
baffle is the only solution, incorporating it 
into the cavity must be left to the ingenuity 
cf the designer. 

It would be much simpler if a partial 
plate, i.e., one not extending through the 
diameter cf the cavity, could do the job. 
Such a plate could, perhaps, be attached to 
the burster and be inserted into the cavity 
through the fuzing hole. The effectiveness of 
partial plates was examined by the pre- 
viously unreported experiments described 
below. 

The cavity in the gyroscope, described in 
Ch 5, has a fineness-ratioc/a = 3.077which 
was designed to resonate at 85%fill-ratio, 
i.e., b2/a2 = 0.15. The fractional radius cf the 
air column, therefore, at full spin, was 
b/a = 0.39. A rod cf 3/8-in. diameter was 
placed along the center line cf the cavity. 
On this rod discs cf various diameters 
could be placed at various positions thus 
dividing the original cavity c/a into two 
cavities Cj/a andc2/a, respectively. The re- 
sponse cf the system to various configura- 
tions was determined by measuring the 
maximum divergence rate of the nutational 
amplitude. 

In the original cavity the resonance oc- 
curred whenTn =T0(1,1) = 0.055. It is tobe re- 
called that (1, 1) mode corresponds to ra- 
dial mode n = 1, and the axial mode j = 1. 
j = 1 signifies that there are 3/2 waves cf 
axial pressure fluctuations in the cavity 
(varying as the cosine cf the distance), or 
3/2 waves cf axial velocity fluctuations 
(varying as the sine cf the distance) with a 
node, i.e., axial velocity w = 0 at each end. 
Thus the cavity can be divided into six 
quarter-wavelength steps. A schematic cf 
various velocity waves in each cavity, c(/a 
and c2/a, respectively, is shown in Fig. 9—1. 
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e/a =3.077, T   =.055 = T   0,1) 

2a 

c ,/a c2/a 

FIGURE   9-1.    A   SCHEMATIC   OF   THE   AXIAL    VELOCITY   DISTRIBUTIONS   FOR    VARIOUS   POSITIONS   OF   THE 
TRANSVERSE   BAFFLE 
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Let 2r j be the diameter cf the disc and 
its position from, say, the bottom of- the 
cavity, be designated as 1,2,3,.. etc., cor- 
responding to 1/4, 2/4, 3/4, etc., cf the 
wavelength. Let \Q be the maximum rate 
cf divergence for the original cavity. Lhen 
we can express the effectiveness cf the 
partial baffle as the ratio cf its X to \Q for 
various discs and positions. Lhe results 
are summarized in Lable 9—2. 

TABLE 9-2  EFFECTIVENESS OF PARTIAL 
BAFFLES 

rl/a 0.91 0.86 0.81 0.76 0. 71 0.50 

Position 
1 0.00 0.00 

\/\0 
0.00 0.00 0.20 0.26 

2 0.91 0.79 0.87 0.85 0.80 0.77 

3 0.00 0.00 0.01 0.21 0.53 0.75 

4 0.68 0.95 0.90 0.90 0.87 0.65 

Because cf symmetry, see Fig. 9—1, Posi- 
tion 4 is the same as Position 2, and Posi- 
tion 5 is the same as 1. Position 5 was not 
measured. 

ff one regards each cavity as completely 
inclosed, then the analysis for fluid frequen- 
cies in each cavity can be performed in 
the usual manner. Lhe results are given in 
Lable 9—3. 

TABLE 9-3    FLUID FREQUENCY ANALYSIS 

,/a c-,/a 
Baffle 
Position 2i t 1 

T, (nj) 2i tl To("i) 

1 0.495 0.13  (2,0) 2.546 0.45  (2,1) 

2 1.008 0.055(1,0) 2.033 0.46 (1,0) 
0.33  (2,1) 

3 1.521 0.33 (1,0) 
0.15  (2,1) 

1.521 0.33   (1,0) 
0.15  (2,1) 

4 2.033 0.46   (1,0) 
0.33 (2,1) 

1.008 0.055(1,0) 

Lhickness of the disc was taken into ac- 
count in its positioning. Lhe position was 

measured to half-thickness — t/a = 0.018. 
2 

Resonant frequency, Tn = 0.055, is present 
in the c/a cavity at Position 2, and at Po- 
sition 4 in the c2/a cavity. For other posi- 
tions of the disc there are no resonances. 
Lhe appearance cf instabilities with 
smaller discs, for Positions 1 and 3, Lable 
9—2, is a reflection cf their ineffectiveness 
in suppressing the original resonance in 
the unencumbered cavity. 

Lwo features are to be noted in Lable 
9—2: (1) a partial plate, extending to not 
less than 3/4 cf the diameter cf the cavity, 
for b/a =0.15, effectively suppresses the 
original resonance. Lhe most effective posi- 
tion for such a baffle appears to be at a 
quarter of the wavelength from either end, 
and (2) even a relatively small disc 
r/a = 0.50, at Position 1, has reduced the in- 
stability to one quarter cf its original 
value. Sometimes such a reduction might 
bring the instability within control cf the 
aerodynamic damping and, hence, be bene- 
ficial. 

Lhe theoretical ratio cf k/\0 for resonat- 
ing cavities — considering cavity 2 or 4 as 
completely separated, and taking into ac- 
count different effects cf viscosity in the 
smaller and the original cavities —is 1.65. 
Lhe observed ratios for different discs are 
only about half as great. Lhis suggests 
that a partial baffle interferes with the 
flow sufficiently so as to reduce the insta- 
bility to about one-half cf its theoretically 
predicted value. 

9-3.7.3  Cylindrical Partition 

Another type cf partitioning cf the cy- 
lindrical cavity was suggested by Frasier 
(BRL). Following the idea discussed 
in par. 9—3.6 cf changing the diameter cf 
the burster as a means cf shifting the fluid 
frequencies in a 100%frlled cavity, Frasier 
suggested inserting a cylindrical partition 
in a place of a large burster. Lhus the 
cavity will be divided into two parts: (1) 
an annular outer cavity of diameter 2a and 
an inner diameter 2rc> i.e., that cf the cy- 
lindrical partition, and (2) an inner cavity 
of outer diameter 2r   ,if the thickness of 

c 

the partition be neglected, and cf inner di- 
ameter 2rb   — the diameter cf the actual 
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burster. The outer cavity is to be filled 
100%the inner cavity can be only partially 
filled. In other words, in the exercise cf 
par. 9—3.6 the "larger burster" is to be 
replaced by a thin-walled "can" while re- 
taining the actual smaller burster in the 
inner cavity. The "can" may be partially 
perforated for ease cf loading the liquid and 
for assurance that the liquid will be 
properly distributed in the two cavities at 
full spin. It is undesirable to make this 
"can" into a sieve but only to provide 
enough perforations for loading purposes. 

Tet us apply this idea to the XM410 Pro- 
jectile. In par. 9—3.6 it was stated that if 
the diameter cf the burster is r2/a2 = 0.20 and 
the cavity is 100% filled, the projectile 
will be stable. Tet us confirm this assertion 
with greater care. From the Central 
Column Tables, Table 4^2 forr2/a2 = 0.20, 
c/[a(2j t 1)] = 1.56for j = 0, we find TQ = 0.615, 

2R = 1.712. From par. 4—3, S= 3.81xl0_2(2R)2. 
Therefore, /s = 0.332. With Tn = 0.25, apply- 
ing Stewartson's instability criteria, Eq. 
9—8 with viscous effectsneglected, 

0.615 -0.25 
0332 

1.09 stable 

ff the whole volume cf the burstered 
cavity, disregarding the volume cf the 
partition, is filled to ß fraction, then, by 
Eq. 9—14 

b2/a2= l-p(l-rb
2/a2) 

Relative to the inner cavity, however, 
whose outer diameter is 2rc, the fractional 
air volume is 

b2/rc
2 = (b2/a2)(a2/rc

2) 

Using the same values as in par. 9—3.5, 
we have ß = 0.93 andb2/a2= 0.15. Therefore, 
relative to the inner cavity the fractional 
air volume is 

b2/rc
2 = 0.15/0.20- 0.75 

Thus an inner cavity has a fineness-ratio 
c/rc = 3.47 and a fill-ratio 1 - b2/rc

2 = 0.25. To 
find the fluid frequencies in this cavity we 
go to Stewartson's Tables, Table 4—1, with 
b2/rc

2 =0.75 (interpolating) and form the fol- 
lowing table: 

3.47 

1 2jt 1 

3.47 

Vni) 2R 

0 — 

1 1.157 0.49(1,1) 1.164 

2 0.694 0.20(1,2) 0.270 

Therefore, in the 100%filled outer cavity 
the fundamental fluid frequency is suf- 
ficiently far removed from the nutational 
frequency cf the projectile to cause no 
trouble. 

Consider now the inner cavity, ff we 
neglect, in this exercise, the thickness cf 
the wall cf the cylindrical partition, the 
outer diameter cf the inner cavity is 2rc 
whereas the inner diameter is that cf the 
burster 2rb. Therefore, wehaverc/a = sfojS) 

= 0.45 and rb/a = 0.29 (par. 9—3.6). The fine- 
ness-ratio of the inner cavity is 

c/r   = (c/a)(a/r J = 1.56/0.45 = 3.47 

Stewartson's parameter S has to be com- 
puted for the diameter cf the inner cavity. 

S = 
Pr '    c 

T^c7F7 (2Rr (pa5) \Ix<rc/a/ 
(r /a)6(2R) 6,-^2 

In par.  4—3 the value cf the first factor 
was found to be 3.81 * 10"? Therefore 

\6/~>o\2 

or 

S = 3.81 x 10-2(rc/a)ö(2RV 

Sr0.195(r /a)3(2R) 
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with rc/a = 0.45, (rc/a)3 = 0.091, Stewartson's 

test for instability is 

j  Js T„   _   T 0           n Js 
1 0.0206 0.24 11.7 stable 

2 0.0048 -0.05 -10.4 stable 

Therefore, with such cylindrical parti- 
tioning of the cylindrical cavity, neither the 
outer nor the inner cavities will contain 
fluid frequencies in close proximity to the 
nutational frequency cf this projectile. This, 
therefore, is another way of stabilizing the 
XM410 Projectile and, from the design 
point cf view, this method may be much 
simpler than the insertion of a transverse 
baffle. 

9-4  NONCYLINDRICAL CAVITIES 

Thus far we have considered only cylin- 
drical cavities, the geometryfor which 
Stewartson's theory applies. However, in 
practice most cf the cavities are not cy- 
lindrical;theprojectiles are usually stream- 
lined and the cavity, in general, follows the 
outer form. For such cavities no general 
theory is available and the discussion in 
par. 3—7.1 outlines the reasons. Neverthe- 
less, Wedemeyer2 has succeeded in extend- 
ing Stewartson's theory to noncylindrical 
cavities provided, as is pointed out in Ch. 7, 
that variation of the radius of the 
cavity with the axial distance is small, 

i.e. da(z) 
dz 

<< 1. Fortunately, however, the 

experiments conducted with the gyroscope 
with noncylindrical cavities showed that 
Wedemeyer's theory has much broader 
validity than the above inequality would 
suggest. It can, therefore, be applied with 
some confidence to the cavities cf many 
projectiles. The reasons for its broader 
validity are suggested in par. 7—2.5. 

Wedemeyer has shown that in a noncy- 
lindrical cavity either the fill-ratio b 2/a 2 can 
be obtained for a given eigenfrequency TQ, 

or the eigenfrequency for a given fill-ratio, 
from the following condition 

Zc 
1 

2c K~ a(2jtl) 
dz       (9-16) 

where K  is a tabulated function in Stewart- 
2      2 son's Tables, and is a function cf b /a and 

T0 ■ The above integral represents an aver- 

age value cf c/ [a(2j 11)] in a noncylindrical 

cavity weighted  according to 1 /Kn values. 

Since Kn is a function of b2/ a2 and, hence, cf 
a (z), it will vary throughout the noncylindri- 
cal part cf the cavity. 

The  evaluation   cf  Eq.   9—16   is incon- 
venient since Kn is given only in a tabular 

form as a function cf T0 and b /a2. How- 
ever, 1/K can be represented analytically 
by fitting polynominals to the tabulated 
values. To facilitate the solution of both 
problems, i.e., finding b2/a2 for a given 
or finding TQ for a givenb2/a 2,we shall rep 
resent l/Kn as a function cf both cf these 
variables. Fortunately, this is found to be 
relatively simple. 

V 

Tet 
x = b2/a2 

then within the following limits cf T0 and x 

0   < T0 < 0.36 

0   <   x < 0.40 

the following polynomial representation cf 
1/K jfor radial mode n= l,and l/K2for radial 

mode n = 2, is accurate: 

j^_- 0.996 t 0.115x t 0.926x2 

- (1.007 t 0.942x - 0.590x 2) TQ 

(9-17) 

— = 2.056 t 1.390x t 5.545x2 

- (2.296 t 2.696x t 3.029x 2) TQ 

(9-18) 
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These functions represent Stewartson's 
Table cf TQ and the column c/ [a(2j t l)]for 
the first two radial modes. It is not neces- 
sary to consider the third radial mode. 

The accuracy cf these formulas can be 
checked. Consider: 

(1) 105 mm  chemical projectile pre- 
viouslv analyzed in par. 9—3.4.1. We had 

T0(2,2) = 0.089, x = b2/a2= 0.03,andK2= 0.530 
(see par. 9—3.3).ff we substitute the above 
values cf T0 and x in Eq. 9-18, we should 
recover K2. Eq. 9—18 gives K2= 0.529 in- 
stead cf the tabulated value K2 = 0.530. 
The agreement is good. 

(2) 75mm chemical projectile previously 
considered   in par  9 — 3.4.2. We  had 
T0(1,1) = 0.074, x = 0.03, K[ = 1.083. Applica- 

tion cf Eq.  9—17 with above values cf TQ 

and x gives K, = 1.083 in exact agreement 
with the tabular value. 

As previously indicated, in practice the 
designer will usually be concerned with ra- 
dial mode n - 1.However, if need arises to 
consider mode 2, Eq. 9—18 is available. 
In the analyses which follow we shall b e. 
dealing only with Eq. 9—17; the treatment 
with the other equation is identical. 

9-4.1   EVALUATION OF TtE INTEGRAL, EQ. 9-16 

By substituting Eq. 9-17 into Eq. 9—16, 
the latter becomes 

2c 

2T7   ^yTTT[o-996t0.115xtO. 926 > 

(1.007 t   0.942 x-  0.590x2)x0ldz 

Eq.  9—19 can be put into more con- 
venient nondimensional form. Tet 

z'=-£-,a'      a      ,x„=— , a constant. Since 2c        = Ao—     °    a2 ao 
c/ [aQ(2j t 1)] is also a constant, it can be 
taken from under the integral sign. In nor- 
malized form, Eq. 9—19 becomes: 

0   96(l/a') + 0.115xn(l/a')3 

an(2j+l). 

0.926x0
2(l/a')5 

1.007(l/a') t 0.942x0(l/a- [ 
-0.590x0

2(l/a')5]T0 

v3 

dz" 

(9—20) 

Eq. 9—20 shows that there are three types 
cf integrals which have to be evaluated 
either numerically or analytically, depend- 
ing on the shape cf the cavity: 

y"(l/a')dz' 
0 

(9-21) 

(9-19) 

1 

II   = f (l/a')3dz- 
0 

1 

III   = /(l/a')5dz' 

With this symbolic designation cf the inte- 
grals as I, II, and III, Eq. 9-20 can be 
written as: 

Since all x 's contain a(z), all have to be 
integrated along the cavity. The cavity has 
a constant height 2c and usually a cylindri- 
cal section cf radius aQ. If there is no cy- 
lindrical section, then a0 should be taken as 
a maximum diameter cf the cavity. 

1=  c 
a0(2j 

c [o.996l + 0.115xnll t 0.926x 2III 
j +1) L ° ° 

;2J 

] 

- (1.0071+ 0.942x0II 

-0.590X0HH)T0 

(9—22) 
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Before considering   a  specific cavity 
shape, let us examine the significance of 
xQ- Consider two cases: 

(1) Noncylindrical cavity without a 
burster. Let V„ be its volume of height 2c 
and cf maximum diameter 2aQ.Let Vc be the 
volume of the cylinder cf the same height 
and diameter, i.e., 

V   = iTa02 2c 

Suppose that V0 is to be filled to a certain 
fraction of its volume ß, i.e., 

PV, o V    - v 

where v  is the air volume: 

va = rrao2 2c(b2/a 2) = V (b2/a 2) 

b2/a0
2=(l-P)Zo 

V (9—23) 

To recapitulate: if a noncylindrical cavity 
without a burster is to be fiied to ß frac- 
tion of its volume, then x0, to be used in 
Eq. 9—22, is as defined by Eq. 9—23. 

(2) Noncylindrical cavity with a burster. 
Let the volume of the burster be vr = 
Vc(r /aQ ). If this noncylindrical cavity is to 

be filled to ß fraction cf its available 
volume, i.e., ß(VQ - vr), then 

ß(V0 -vr) = V,   -vr-va 

Let us consider a noncylindrical cavity 
as is shown in Fig. 5—4(B). The cavity 
consists cf a cylindrical section, and a 
truncated cone cf height h/2c and cf semi- 
vertex angle e. In normalized dimensions, 
the total height cf the cavity is l,the 
height cf the cylindrical part is 1 -h/2c, 
and the height cf conical part ish/2c.Here 
some care is necessary in defining the 
variation cf a(z) with z the axial dis- 
tance. If we choose the origin cf the z co- 
ordinate at the base cf the cavity, then 
a' = a(z)/a0 has the following values 

a1 = 1  for 0 < z'   < z\ where z\ = 1 - h/2c 

2c 
a' = 1 - (z>- z>)— tantf for z\  < z' <  1 

Let m1 = 2e-tan6   , then a' = 1- (z' -zj )m' 

Each integral   can be broken into two 
parts: 

I  -   I    cyl   +      f noncyl 
0       0 z\ 

On the other hand, if one were to locate the 
origin cf the z-coordinate at the junction cf 
the cylindrical and noncylindrical   parts 
then 

a' = 1   for   -z[ < z'  < 0 

a' =  1 -z'm'   for   0 < z>  < h/2c 

where v   is air volume 
a 

v
a=Vc(b2/a0

2-'2/a0
2> 

From this it follows that 

x0 = b2/aQ
2= (1  - ß)lL t ß(r2/a0

2)   (9-24) 

and the integral is divided as 

h/2c        0 h/2c 

/ =    /    cyl +/   noncyl 

-z1. "2i 
ko 

To recapitulate: if a noncylindrical cavity 
containing a burster is to be filled to ß frac- 
tion of its available volume then xQ, to be 

used in Eq. 9—22, is as defined by Eq. 
9—24. Now we can return to the evaluation 
cf the integrals. 

The designer may adopt whichever system 
is, more convenient., If the cavity consists 
a several noncylindrical  sections, careful 
control cf the z-coordinate  and the limits 
of integration must be maintained. 
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We shall use the first system. The first 
integral becomes 

1 z' 1 
I =  f (l/a')dz' =  Adz- d-   f - dz|_ , 

-/ 7 7    1 - (z       z'jjm' 
0 Z1 

£n/l-iLm'\ 
\       2c    / (9-25) 

I = l-h/2c __Lpn/l - Jl 
m' 

where   in  is the logarithm to the base e. 

Similarly, performing the integration 
with integrals II and III, we obtain 

i r    i II = 1 - h/2c + ■=—   , r— 7 2m'   A  _ hm'\2 '   /l _ hm'\< 
_\ 2c/ 

- i 

(9—26) 

III = 1 - h/2c 
1 

4m' 

[(•-^, 
- 1 

(9—27) 

For this type of noncylindrical cavity, all 
the integrals can be easily evaluated. When 
their values are substituted in Eq. 9—22, 
either the fill-ratioß, i.e., x , for a given T 

or the TQ for a prescribed fill-ratio can be 
readily found. 

For the   cylinder-truncated-cone config- 
uration the ratio of volumes is 

^6=1- h/2c t iJi-d-iHILV' 
m1 2c / 

(9—28) 

As stated in Ch 7, this theory should be 
applied only if the loading of the liquid is 
such that the radius of the cavity at its 
narrowest point is larger than the radius of 
the air column. For the cylinder-truncated- 
cone cavity, this condition requires that 

a'  = 1 -m'h/2c   > b/a„ 

In other words, the air column must be 
cylindrical. 

9-4.2  TEST OF THE THEORY 

No experiments were performed to test 
the predictions of the present theory of de- 
termining the eigenfrequencies for a pre- 
scribed fill-ratio in noncylindrical cavities. 
Such tests are difficult because they re- 
quire a continuous variation of the nuta- 
tional frequency of the apparatus in order 
to locate the resonating TQ. The inverse 
problem of establishing the fill-ratio for 
resonance to occur for a given frequency 
Tn = TQ is much simpler. It requires only a 
systematic change in the fill-ratio until 
resonance is achieved. 

We shall describe one comparison of the 
experiment with predictions of the theory 
in some detail; other comparisons are 
shown graphically in Fig. 7—1. 

A gyroscope was used as an experi- 
mental tool. The original cylindrical cavity 
had the following characteristics: 
c/a = 2.687; Vc = 534 cc; and it resonated 
at j = 1 withTn =T0(I,I) = 0.050 at 61%fill- 
ratio, or p= 0.61. The maximum rate of 
divergence was measured to be X0 = 0.364 
per sec. 

This cavity was modified at one end by a 
truncated cone, see Fig. 7—1, with hx /2c = 
0.33, 0=5°; and at the other end also by a 
truncated   cone withh3/2c = 0.54, e= lx/i'. 
The resulting volume of the modified cavity 
V„ was   413   cc.  The   same  frequency 

Tn = TQ = 0.050, i.e., resonance was found in 

a modified cavity at a fill volume of 390 cc, 
or at 94% fill-ratio. The maximum diver- 
gence was measured to be \ = 0.065 per 
sec or considerably less than in the original 
cylindrical cavity. 

The last point — i.e., decrease in insta- 
bility in a modified cavity as compared 
with that for the cylindrical cavity, or the 
effect of modification on the residue or on 
Stewartson's parameter S —is clearly indi- 
cated by the experimental data. In Ch. 7 
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a rough estimate has been made of this 
effect in a form 

= 1 -1.5(m'h/2c) 

where S    is Stewartson's parameter of the 

modified cavity and Sc is that of the origi- 
nal cylindrical cavity. The experimental 
data lead to the following 

A -1-1 13(m'h/2c) (9—29) 

with a standard deviation of 0.04. The re- 
sult, Eq. 9—29, is in good agreement with a 
very rough estimate given in Ch. 7. 

Now we can proceed to test the predic- 
tions of the theory of the above experi- 
mental results. 

Computation of the integrals by Eqs. 
9—25, 9-26, and 9—27 is readily accom- 
plished, ff we designate, for example, I 
I2, and 13 as the first integral for the trun- 
cated cone e = 5°, for the cylindrical part, 
and for the second truncated conee= ix/i', 
respectively, we fiid the following values 
for I,  II, and III: 

I = Ij 112 t I3 = 0.359 t 0.13 t 0.682 = 1.171 

II = 0.426 t 0.13 t 1.144= 1.700 

III = 0.512 t 0.13 t 2.071 = 2.713 

y<r = 3.58 x 10 ~3. With the aid of Stewart- 

son's Tables we compute Dx   and D ,   see 

Ch. 6, and then, by Eq. 9—10, we compute 
c2. The viscous damping correction is found 

to  be  6=    Cj_ = 3.45 * 10"?    It is to be 

noted that to obtain D   and D  one can dif- 
" Y 

ferentiate Eq.   9—17   (radial mode n = ]) 
directly. Since, by definition 

Kl   a(2j t 1) 

we have 

1= c/[a(2j t 1)] lo-996 t 0.115x t0.926x; 

- (1.0071 0.942x 

-0.590xV, ■] 
(9-30) 

For the  two truncated cones we have 

8= 5':        (m'h/^c)^ 0.155 

8 = 7^°:     (m'h/2c)3 = 0.382 

Therefore, by Eq. 9—29 

Sm=/S^|l - l.nfOn'h/^c^tOn'h^tOj] 

Substitution of these integrals into Eq. 
9—22 and with TQ = 0.050, and j = 1, the 
solution of the resulting quadratic in x0 

gives x0 = 0.0436. Therefore, 

6=1 -xn&r = 0.944 

S   = 3.58 x 10_3(0.393) = 1.41 * 10-3 

The gyroscope was run at n = 5000 rpm, 
or^/2 = 0.262x 103rad/sec. Therefore, 

which is in excellent agreement with the 
observed value. 

This experiment was performed with 
oil of viscosity 3 centistokes. the 
Reynolds number Re = 1.73x 105; and 

2 VSm +   5     / ~ 6     = 0072 Per SeC 

which  is   in   a   good   agreement with the 
measured X = 0.065 per sec. 
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It is to be noted that an inviscid A in a 
modified cavity would be expected to be 
(Eq. 9-6a) 

A; = • (0.262 x 103) (1.41 x 10  3) 

0.37 per sec 

instead of the observed X = 0.065. In this 
case, therefore, viscosity has very signifi- 
cant effect on instability. 

A good agreement of the predictions of 
the theory with the experimental data 
should give some confidence to the designer 
in dealing with noncylindrical cavities. As 
was pointed out in Ch. 7, in the case of a 
truncated-cone type of modification, the 

theory appears to hold up to -j— = tane = 0.2 

which was the limit of experimental data. 

In  a  modified cavity the width of the 
resonance  band  is  given,   as before, by 

T ± ,/s- if viscous effects are negligible, 

otherwise by Tn + (y/s^ t 6). 

9-4.3 THE XM410 PROJECTILE 

We return to this projectile as another 
example. Now, however, we shall consider 
the real cavity as given by the drawing. 
The noncylindrical part of the cavity, see 
Fig. 2—2, cannot be represented by the 
truncated cone. Hence, to evaluate the 
integrals I, II, and III in Eq. 9—22,numeri- 
cal integration is necessary. One can mea- 
sure the radii directly from the drawing 
thus computing a' vs z' at enough positions 
to obtain reasonably accurate values of 
the integrals. Or, one can fit a circular arc 
to the curved noncylindrical part and com- 
pute a . The latter procedure was followed 
here. 

A brief note on the numerical integration 
might be useful. Suppose we have to evalu- 
ate the integral 

where y is either (l/a'),  (l/a')3 or (l/a')5-It 
is convenient to divide the interval 0 toh/2c 
into an euen number of subintervals — six 
is a convenient number, i.e., 

A =-4-(h/2c) 

Then by Simpson's rule 

h/2c 

/ydz1 - y (y0+ 4y 1 + 2y2 + 4y3 + 2y4 + 4y5 + y6) 

0 

where y; are the values of y computed at 
z' = nA,  n = 0, 1, ... 6. 

For the »■§ Projectile 

h/2c = 0.325,  z'j = 1 -h/2c = 0.675, 

c/[a0(2j + l)] = 1.56,   j   =  0. 

The integrals, with the origin of coordinates 
at z'   have the following values 

0       h/2c 

I =     f + f   = 0.675 t 0.381 = 1.056 

-2;    "0 

II = 0.675 t 0.544=1.219 

III 0.675 t 0.816= 1.491 

h/2c 

J    ydz' 

Substituting these values intoEq. 9—22, 
we obtain: 

1= 1.56[ 1.052t0.140x0 t 1.381x0
2 

- (1.0631 1.148x0 -0.880X0
2
)T0] 

This equation permits, therefore, finding TQ 

for specified ß, or finding ß for a given T . 
The designer is likely to be interested in 
the former, i.e., of finding whether there is 
a resonant frequency present in his non- 
cylindrical cavity with a prescribed percent 
of fill. Therefore, let us find TQ for a given 

ß. Previously we used (3 = 0.93. By Eq. 9-24 

x0 = b2/a0
2=(l-ß)^itßr2/a0

2 
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We have 

V0 /V   = 0.90,   r/a0 = 0.29, ß = 0.93 

,x0 = 0.14 

With this xn   the solution forTn   becomes 
from Eq. 9-^22 

1= 1.56 {0.996(1.056) t 0.115(0.14)(1.219) 

t 0.926(0.14)2( 1.491)- [1.007(1.056) 

t 0.942(0.14X1.219) 

-O.590(0.14)2(..491)]r0} 

0.641 = 1.099 - 1.206T0 

••. T0 = 0.38 

Previously we have found that for this pro- 
jectile, with a cylindrical cavity with a 
burster, TQ was 0.35. Thus, there is a slight 
shift toward higher frequencies in a non- 
cylindrical cavity. 

The effect cf a noncylindrical cavity on 
the width cf the resonance band ,/S- can 

be readily estimated. In general, one com- 
putes an average m' 

m1  = /■ 
m'dz 

/ 
dz 

In cases when the noncylindrical part can 
be represented by a circular arc, compute 
Q m. at mid-point. Then m' =2<Lian9 

a0 ■ 

For  the  XM410   Projectile   whose non- 
cylindrical  section  is representable by a 
circular arc, 0,-17° 12'. Therefore, m1 = 0.97 
and with h/2c = 0.325, S'h/2c = 0.315. There- 
fore, the modified Stewartson's parameter 
is (see Eq. 9—29) 

A ■= 1-1.13(0.315) = 0.64 

or yiT = 0.25(0.64) = 0.16. Therefore, the fre- 

quencies present in this noncylindrical cav- 
ity are 0.38+ 0.16 or from 0.54 to 0.22. The 
resonance band, therefore, is 0.251 0.16= 0.41 
on the high side to 0.22 on the low side. 
Theband, therefore, is more asymmetrical 
than in a cylindrical cavity. The situation, 
therefore, has improved somewhat relative 
to the condition with the cylindrical cavity. 
But the projectile is still unstable. 

The two solutions for instability cf this 
projectile thus far found, therefore, are: 
(1) the partitioning cf the cavity by a 
transverse baffle as discussed in par. 
9—3.7.1, and (2) partitioning cf the cavity 
by a cylindrical baffle, par. 9—3.7.3. In 
the former case, application cf the present 
theory to the noncylindrical part cf the par- 
titioned cavity shows that it contains no 
resonating frequencies. 

9-4.4  ROUNDED CORNERS 

Experimentally determined effects of 
rounding the corners cf the cylindrical cav- 
ity are shown in Fig. 5—5. Additional data 
are given in Fig. 7—3. For the experiments 
depicted in Fig. 5—5, all cavities had the 
same fineness-ratio c/a = 3.077 and the 
original cylindrical cavity contained a reso- 
nant frequency Tn = T0(1,1) = 0.055 when this 

cavity was filled to 1 -b /a cf its volume. 
The experiments established the volume <f 
fluid V required for each modified cavity to 

bring it  into  resonance,   i.e., to  contain 
T0 = 0.055. 

The designer, however, is interested in 
an inverse problem—how to find TQ in modi- 
fied cavity. Wedemeyer's theory is inappli- 
cable to rounded corners because cf the 
violation cf the restriction cf the theory 
that |da/dz|<< 1. However, experiments in- 
dicate that for a practical range cf fill- 
ratios, i.e., from 90% to 98%, and if the 
radius cf the corner R1 is not large, the pro 
cedure for finding T0 in a modified cavity 
is simple. 
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Let V0 be the volume of the modified 

cavity,R'/a is fractional radius of the corner, 
i.e., for R'/a = 1 the end of the cavity is 
hemispherical; c/a the fineness-ratio; and Vc 

is volume of the cylindrical cavity (R'/a = 0). 
The experiments show that if T0 is present 
in the  cylindrical  cavity  at a fill-ratio 

1 - b /a , the same TQ will be present in a 

modified cavity  at  its  fill-ratio   p=V/V0 

providsd that 

b/a <(1 -R'/a) (9-31) 

Fig. 5—5 shows that if Eq. 9—31 is satis- 
fied, then V/Vc — which is plotted in Fig. 
5—5 —is a constant. Therefore 

or 

V/Vc = 1 - bVa2 = V0 V 

b2/a2 = 1 

V 

(9—32) 

If the cavity contains a burster of radius r 
then Eq. 9—32 is modified to 

'a"=1"ß(v""^)      (9~32a) b2/a2- 

Therefore, to find T„ in a modified cavity, 

provided Eq, 9—31 is satisfied, enter Stew- 
artson's Tables with b /a as given by Eq. 
9—32 or Eq. 9—32a whichever is applica- 
ble, and c/[a(2j 11)] of the cavity. 

For cases when Eq.   9—31 is not satis- 

fied, i.e., 

b/a > (1 - R'/a) (9—33) 

the procedure for finding T0 at present is 
unknown. However, for-such relatively 
slight modification of the cylindrical cavity 
the eigenfrequencies in the modified cavity 
are probably controlled principally by 
b2/a2 , i.e., if a particular TQ is present in 
the cylindrical cavity at certain b2/a2, then 
the same TQ will be present in a modified 

cavity if its fill-ratio is such as to give the 
L 2/   2 same b /a . 

If V0 is the volume of modified cavity 
which is filled to ß fraction of its volume, 
then the fractional air volume, regarded as 
cylindrical, is 

b2/a2=  (1 -p)(V0/Vc) (9-33a) 

For practical fill-ratios, shortening of the 
length of the air column —because of the 
curvature of the ends —is negligible. Then 
with this b2/a2 and the c/a of the cavity, 
one can find T0 from Stewartson's Tables. 

One can check this assumption by ex- 
periments, the results of which are shown 
in Fig. 5—5. Only here we shall do the 
reverse: we assume that ß is given by the 
experiments and then apply Eq. 9—33a to 
compute b /a with known c/a to find TQ . 
If our  assumption   of the   importance  of 

a    in the modified cavity is correct, we b2/r2 

should reproduce T0 = 0.055. 

Eq. 9—33a can be written 

b2/a2 = (V0/Vc)-(V/Vc) 

The values of V/Vc are given in Fig. 5—5 
and  V0/Vc   can  be  readilj   computed  or 

measured. The details are given in Ref. 3. 
The results are shown below for Configura- 
tions A and B with one and both ends 
modified, respectively. 

R'/a 
0.80 

1.0 

Config. 
A 

0.050 

0.055 

Config. 
B 

0.050 

0.055 

The correct value is TQ =0.055. Thus for 
R /a = 0.80, the error is about 10%which is 
acceptable. 

Therefore, for the design purposes, if the 
modified voiume VQ is filled to ß fraction in 
the amount so that 

b/a > (1 - R^a) 
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is satisfied, find b2/a2 from Eq. 9-33a. 
Find T0 from Stewartson's Tables with this 
b2/a2 and c/[a(2j 11)] of the cavity as if the 
cavity was cylindrical. The expected error 
in T0 , so found, is not likely to exceed  10%. 

Experimental data3 although somewhat 
limited, nevertheless clearly indicate that S 
is significantly affected by rounding the 
corners. For the cylindrical cavity with 
rounded corners the effect is 

ward end cf the cavity. It can be readily 
shown that  the critical spin is given by 

nc
2=2(c/a)     -   ?       (rad/sec)2   (9-35) 

a(l - ß ) 

c/a = fineness-ratio of the cavity 

1 - p = fractional air volume 

g = deceleration of theprojectile,ft/sec2 

one end modified: 

both ends modified: 

1 -0.2(R'/a-0.3) 

■= l-0.4(R'/a-0.3) 

i.e., the effect is negligible forR'/a less than 
0.3. However, if rounded corners are com- 
bined with other modifications as defined 
by m'h/2c, previously considered, then the 
total effect of these modifications is 

•s. 

'■ (£) (^) (9-36) 

where 
PaS'd _ 

2m 

l-1.13(m'h/2c)-0.3(R7a)   (9—34)        Let 

"density factor" (see Ch 2) 

V    = velocity, ft/sec 

d    = diameter, ft 

C D   = drag coefficient 

s =- lb. 

9-4.5  SLOW SPIN 

Another minor problem can profitably 
be taken up at this time. Occasionally one 
encounters liquid-filled projectiles with 
axial spin sufficiently low for the free liquid 
surface to assume a distinctly parabolic 
form. The question arises as to what effect 
such departure cf the free surface from the 
cylindrical will have on the eigenfrequen- 
cies. The effect is easily computable if one 
treats the parabolic surface by Wede- 
meyer's theory. 

Consider, therefore, a cylindrical cavity 
which is filled to a ß fraction cf its volume 
which is spinning sufficiently slowly to form 
a parabolic free surface. Define a critical 
spin ttc for which the vertex of the parabola 
lies at the bottom cf the cavity. For a flying 
projectile this, cf course, will be at the for- 

where fi is the actual spin, i.e., 

S2 = —:V   rad/sec 
nd 

Then it can be readily shown that in the 
range cf 

0 < s < 1 

the integrals   I, II,  and III, see par. 9-4.1, 
take the following simple values 

I = 1 

II = 1 

III = It 
(9-37) 

If these integrals are substituted in Eq. 
9—22, the value of TQ can be readily found 
using x0 = (1 -ß). 
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As an example, consider the XM410 Pro- 
jectile: 

PaS'd 
2m 

, 0.87 x 10~4 (see par. 2—4) 

d = 0.5 ft 

at M^ 1.5 V^ 1680 ft/sec 

CD = 0.5 

.-. g - 246 ft/sec2 

g/80 = 7.6 

where    g0 = 32.2ft/sec2. If p = 0.93 

Sic - 221 rad/sec 

However, at M= 1.5,^2 = 1056 rad/sec (see 
par. 9—3.2). Therefore, 

s =-^ = 0.2 

It can be readily shown from Eq. 9—22 that 
the shift in the eigenfrequency due to para- 
bolicity cf the free surface is approximately 

2 s' AT0 =: x0 

Therefore, the  effect on TQ  in the XM410 
Projectile,   fired   at   M=1.5,  is negligible. 

ff the spin is so low that the vertex cf 
the parabolic free surface enters the cavity, 
i.e., s > 1, Stewartson's theory is no longer 
applicable. In this case, see Ref. 5. 

SECTION II 

TRANSIENT STATE 

96    INTRODUCTION 

In the preceding section the designers 
were given a set cf simple rules for the 
analysis of the cavity of liquid-filled 
projectiles in order to be sure that it con- 
tains no fluid frequencies in close proximity 
cf the nutational frequency cf the projectile, 
i.e., how to avoid resonance. Experiments6,7 
show, however, that the projectile may also 
become unstable during spin-up cf the 
liquid. This transient instability may be so 
severe as to render the projectile useless 
in practice even if it is designed to be 
stable in its steady state, i.e., with the 
liquid fully spinning. The designer, there- 
fore, should consider the transient phase 
as a part of overall design problem cf 
liquid-filled projectiles. 

Transient instability has the sameunder- 
lying cause — resonance. Mathematically, 
however, the problem cf unsteady flow is 
much  more difficult than the  steady  one 

and has not, as yet, been solved. An outline 
cf the difficulties is given in Ch. 8. How- 
ever, in order to assist the designer in esti- 
mating the level of yaw which may occur 
during temporary instability during spin-up, 
Wedemeyer suggested treating the problem 
as quasi-steady, i.e., replacing the actual, 
time dependent flow by a sequence of 
steady state solutions. To achieve this, it 
was necessary to solve a rather sophisti- 
cated problem cf circulation of fluid in the 
cavity during spin-up. Once this is done, 
then it is possible to compute the time 
history cf the angular momentum cf the 
fluid. With this, the matching cf unsteady 
flow with an "equivalent" steady state solu- 
tions becomes feasible. 

Consider, for simplicity, a 100%full cav- 
ity. At a certain time t during spin-up, a 
fraction of the fluid mass, near the wall, is 
spinning with a certain velocity distribution 
as is shown in Figs. 8—2 and 8—3; the 
inner cylindrical  core is not yet spinning. 
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This fluid possesses a certain angular mo- 
mentum. Wedemeyer suggests matching 
this momentum with that of a partially 
filled cylindrical cavity b2/a2 with the fluid 
spinning as a rigid body, i.e., with a con- 
stant angular velocity. The eigenfrequen- 
cies of the hollow rigidly spinning cylinder 
are known from Stewartson's theory. The 
important assumption is then made that 
the eigenfrequencies in the actual partially 
spinning fluid are the same as in an "equiv- 
alent" cylinder having the same angular 
momentum. The influence of different 
boundary conditions in the actual fluid — 
with its spinning part and nonspinningcore, 
and in an "equivalent" cylinder with its 
free surface — is discussed in par. ^^HH 
Thus by replacing a time sequence of the 
angular momenta of the actual fluid with 
those of an equivalent series of partially 
filled cavities with the fluid spinning as a 
rigid body, a time history of eigenfrequen- 
cies can be found. Once T0(t) is known, it is 
a simple matter to find the time required 

S. for TQ(t) to cross the resonance band Tn 
And knowing the rate of divergence, the 
amplification of yaw during transient in- 
stability can be readily found by integra- 
tion. The matching cf the angular momenta, 
as above, Wedemeyer designates as Case 
I; matching the volumes of rotating fluids 
he designates as Case 11. Comparison of 
the predictions by these two methods with 
the experiments should decide which one, 
if either, is the better method. 

The time history of the angular momen- 
tum of the fluid depends significantly on 
the nature of the boundary layer on the 
walls of the cavity, either laminar or turbu- 
lent. The condition for existence of either 
one or the other is given in Ch. 8 as 

laminar for:  Re < 0.5 x 105 

turbulent for:  Re > 3 x 105 

For intermediate Reynolds numbers, the 
nature of the boundary layer depends on 
the roughness of the walls cf the cavity. 
This problem is discussed in par. 8—3.1.3. 
In practice, however, it is adequate to 
assume a turbulent boundary layer for Re 
in excess cf the laminar limit. 

The time history of the angular momen- 
tum also depends somewhat on the fill- 
ratio, see Figs. 8—4 and 8—5. In practice, 
however, the fill-ratios are usually between 
90%and 98%.Therefore, for the purposes 
at hand and in view cf the approximate 
nature of the theory, it is adequate to treat 
all practical cases as if the cavity were 
100%full. 

9-5.1   LAMINAR BOUNDARY LAYER 

It was shown by Eq. 8—55 that the value 
of the angular momentum at time t relative 
to its rigid or steady state value cf a fluid 
in a completely filled cavity, if the casing 
is spinning at a constants, is 

-4— 1 —   e' 2kS7t 

where 

I,    = ixQn total angular momentum for a 
rigid fluid 

x0 
moment cf  inertia  of  a  rigid fluid 

Q = lüL V rad/sec 
nd 

k = 0.443(a/c)Re_1/2 

c/a = fineness-ratio of the cavity 

t = time, sec 

If S7 is not constant, see Eq. 8—61. How- 
ever, the change in 52 during spin-up is 
usually relatively small and, for our pur- 
poses, can be disregarded. 

The angular momentum cf a hollow cylin- 
der  cf fluid   spinning with constant fi is 

4~= 1 -(bi/a2)2 

Case I: We are to equate the angular 
momentum of the actual fluid, Eq. 8—55, 
with that of an "equivalent" cylinder above, 
Eq. 9—38, 
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1 _e-2k^t = 1 - ■(b2/a 2)2 

Therefore, 

(b2/a2)e=xe = e -kS2t (9-39J 

Case 11: One finds the volume of the 
rotating fluid with actual velocity distribu- 
tion by setting v* - 0 in Eq. 8—54. The 
radius cf nonspinning core r* is 

r/a b/a -kfii (it -40i 

where xe is an "effective" b /a , i.e., time 
dependent by Eq. 9—39. It is to be noted 
that during spin-up the "effective" fill-ratios 
l-xecover the whole range of values from 
zero, at the very beginning, to the actual 
fill-ratio for the steady state condition. 

Thus one finds the time history cf an 
"effective" xe or, simply x(t) . As stated 
above, the eigenfrequency T0(t) in the actual 
cavity is assumed to be the same as in a 
steady state condition for a partially filled 
cavity as defined by x,. With known value 
cf c/[a(2j t 1)], T0(t) can be readily found 
from Stewartson's Tables as a function 
cf x(t). 

The computation of TQ(t) can be con- 
siderably simplified by the use cf Eq. 9—30 
(for radial moden = 1). 

1 = c [0.996 t 0.115x t 0.926x 2 

a(2jt   1) 
- (1.0071 0.942x -0.590X

2
)T0] 

where x is to be regarded as an "effective" 
x(t) computed by Eq. 9—39. Since x(t) is 
time dependent, T0 will also be time de- 
pendent, i.e., T0(t) . Thus one can trace the 
time history cf TQ(t) during spin-up. The 
resonance band covers a frequency range 
from   T  t .fS     to   T   - v/S .  Therefore,  if 
T0(t) attains   any   cf these  values   during 
spin-up,   resonance   instability  will occur. 

The use cf Eq. 9—30 avoids graphical 
and interpolative processes required with 
Stewartson's Tables or with Fig. 8—9. Tests 
show that Eq. 9—30 give reasonablygood 
values cf TQ even for x = 0.8, i.e., with an 
error of roughly 5% which, for practical 
purposes, is entirely adequate at such high 
values cf x which occur very early in the 
flight cf the projectile. Below x = 0.6, Eq. 
9—30 is quite accurate. 

The fractional volume cf the spinning fluid 
in an "equivalent" cylinder corresponding 
to b/a is 1 - b2/a2. It follows that 

(b2/a2)   =x   =e~2kf2t (9-41) 

Notice the factor 2 in the exponent in 
Case II as compared to 1 in the angular 
momentum Case I, Eq. 9—38. 

Thus by treating the problem either by 
the Case I model or by the Case II model 
the time history cf xe and, by Eq. 9—30, 
cf T0(t) is obtained during spin-up. At the 
beginning cf spin-up TQ starts high, then 
decreases as spin-up progresses and even- 
tually reaches its steady state value as 
given by Stewartson's Tables for a fully 
spinning liquid.  Cf course, if steady state 

T0 lies above Tn+ yif, no resonance would 
occur during spin-up. 

Since the laminar case is probably not 
of practical usefulness to the designers cf 
projectiles, we shall not pursue it further. 
Additional details cf computation cf yaw 
during transient instability will be taken 
up in connection with the turbulent case. 

9-5.2 TURBULENT BOUNDARY LAYER 

As previously stated, the turbulent case 
is to be used whenever Re > 3 x 10 • In 
practice, it may be used to the Reynolds 
number  limit  for the  laminar   case, i.e., 
to Re > 0.3 x 105. 

The time history cf the angular momen- 
tum for the turbulent case is not given by 
a simple formula as by Eq. 8—55 but 
graphically as in Fig. 8—5. Nevertheless, 
to simplify the handling cf this case in 
practice, Fig. 8—5 can be easily repre- 
sented algebraically in a form similar to 
the laminar case. 
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Let T = ktftt be the "scaled time"; i.e., 
in terms cf T, the graphs in Fig. 8—5 are 
universal or applicable to all cases satis- 
fying the conditions of the theory. For the 
turbulent case, as is shown in Ch. 8, 

kt = 0.035(a/c)Re -1/5 (9—42) 

Then the formulas below accurately repre- 
sent the graph of Fig. o c for a 100% f,,n 

cavity. 

Cavity 100%full 

For      0 < T < 0.6 

Ml - -M= -1.716T+ 0.627T2 i-i)"-1 

of t. In terms of T, a single graph delineat- 
ing the time history of I/I     or T0(T), for a 

given projectile, will be applicable to 
conditions of fire, i.e., to different muzzle 
velocities. The latter will change the scale 
of T through changes both in kt (through 
Re) and ft. 

Case II: If we consider the volume cf 
the rotating fluids, the formula for the tur- 
bulent case is different from that of the 
laminar. To find the radius of the nonspin- 
ning core r*, i.e., where the circumferential 
velocity v* of fluid particles is zero, we 
set y = r*v* = 0 in the integral equation, Eq. 

(9   43)       8—58. The resulting integral becomes 

full 

For T > 0.6 

Ml -i_\= -0.226 -0.964T 1 -t)= 
or 

-L = l_0.80e-°-964T 
(9-44) 

As was the case with the laminar boundary 
layer, the history of angular momentum 
with the turbulent boundary layer is not 
particularly sensitive to the fril-ratio. So 
within the practical range of the fill-ratios, 
i.e., between 90% and 98%, the use of 
100%fill formulas is adequate. 

Case I: As before, equating the angular 
momentum cf the fluids with actual velocity 
distribution with that of an "equivalent" 
cylinder with rigid body rotation, we have 
for T 10. 6, for example, (from Eqs. 9—38, 
and 9-44) 

(b2/a2)2 = 0.80e-°-964T 

or 

(b2/a \ 0.89e -0.48 2T (9-45) 

Thus, again TQ(T) can be readily determined 

from Eq.   9-30.  It is more convenient to 
use as a variable, either fit or T, instead 

T - k Qt 
dr* 

(r*) 3/5 
(9—46) 

and is readily evaluated. Since r* = r/a = b/a, 
it follows that 

b/a 
1 

(i,iT)"> 
or 

(b'/a V = xf HT) 3 T\10/3 (9—47) 

or 

m = -Mi/x3/10-i) 
3k, 

Again, with an "effective"xe(T), yT) can 

be readily found by Eq. 9—30. 

9-5.3 AMPLIFICATION OF YAW 

Amplification of yaw during transient in- 
stability can be computed by Eq. 8—71. 
This equation can be slightly simplified. It 
was derived on the assumption that the 
resonance band is sufficiently narrow for 
d T0/dt to be regarded as constant during 
the  passage   of T0(C)   through  the band. 

If SI is constant, then ftdt/d-r0~ A(fit)/AT0. 

But   AT0 = 2yjT is the width of the band. 
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On substitution into Eq. 8-71, the amplifi- 
cation cf yaw can be written as 

in -°o = -Zy/sMnt) (9—48) 

where aQ and CY are the initial and final 
yaws upon entering and leaving the reso- 
nance band, respectively. A(fit) - (fit) 2 - (fit)i 
is the nondimensional time interval 
required for the TQ(fit) to traverse the 
resonance band. (flt)l corresponds to the 
higher frequency limit cf the resonance 
band, i.e., Tn ty/S   with associated fill-ratio 
(b /a )i = xj; (fit)2 corresponds to the lower 
frequency limit of the band, i.e., Tn -^/s" 
with   associated x2-  This interval can be 
readily determined. If, for example, we con- 
sider Case I, 100%full cavity, and T ^ 0.6. 

i = 0.89e-°-482ktnt 

the width cf the resonance band is fromx2 
toxi- Therefore, 

1     Pn 
xi 

0.482k,      xo 
A(fit) (9—49) 

Thus amplification cf yaw, for a given S, 
depends on the value cf A (fit). With the 
Case II model, the transit cf T0(t) curve 
through the resonance band occurs earlier, 
i.e., at smaller values cf I/I^ where the 
T0(t) curve is steeper or its rate cf change 
is greater. Therefore, at earlier times TQ(t) 
will traverse the resonance band in a 
shorter time resulting in a smaller value 
cf A (fit). At later times the TQ(t) curve 
flattens out in its asymptotic approach to 
the steady state value cf-r . If TQ(t) curve 
crosses the resonance band at later time, 
as in Case I, TQ(t) stays within the reso- 
nance band longer resulting in larger value 
cf A(fit). This is clearly shown in Fig. 8—12. 

The earlier time cf passage cf T0(t) 
through the resonance band on the Case II 
model can be shown by the following exam- 
ple. Consider, for simplicity, the laminar 
case. The resonance occurs when T0(t) = Tn 
and, for a given c/[a(2j 11)] , at a specific 
value cf b2/a2= x0 as given by Stewartson's 
Tables. Then by Eq. 9—41, Case II 

-2kfit 
x0= e 

9-3 2 

Assume that the resonance occurs at 
x0 = 1/e . Then if 1/e = e~2k"t,   kfit =Y2.  At 
this value cf kfit the fractional value cf the 
angular momentum, Eq. 8—55, is 

+^l  _   e-2kfit; 1 -e ■ 1. 
0.63 

For Case lLtherefore, the resonance occurs 
when  the   fluid has   acquired  63% of its 
angular  momentum.   On  the other hand, 
for Case I, by Eq. 9—39 

1/e 
-kfit 

Therefore, kfit = l,and the angular momen- 
tum is 

J_ 1 -2kfir 1 -e-2 =0.86 

or the resonance occurs when the fluid has 
acquired 86%cf its angular momentum. 

9-5.4   EXPERIMENTAL EVIDENCE 

As stated in Ch. 8, the proposed methods 
cf computation cf the eigenfrequencies dur- 
ing spin-up and the consequent evaluation 
cf the amplification cfyaw during transient 
instability are relatively crude and no de- 
cision, on theoretical grounds, could be 
made at this time for preferring either 
Case I or Case II treatments. An appeal, 
therefore, must be made to the available 
experimental data. Some cf these are de- 
picted in Fig. 8—LI and are discussed in 
Ch. 8; others are to be found in Ref.  6. 

All cf the experimental data were ob- 
tained with a modified 20 mm M56 Projec- 
tile fired in the closed aerodynamic range cf 
the BRL with a few firings outside at a 
"time cf flight" screen. As Fig. 8—1 1 shows, 
instability commences very early: for a 
v = 30 cSt fluid, for example, instability 
ceases at about fit = 200or at 50 feet from 
the muzzle; for a v = 3 cSt fluid the insta- 
bility ceases at fit = 600 cr  160 feet from 
the muzzle (for these firings fi - 104rad/sec, 
V = 2.7 x 103 ft/sec). With a mercury filler 
the projectile developed an excessive yaw 
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at 150 feet from the muzzle; and with C(Br)4 

fluid6 (specific gravity - 3, v = 3.4 cSt) early 
instability also was manifested. As we have 
seen, early instability favors the Case II 
model. 

However, computations on the basis of 
models Case I and Case 11, and a compari- 
son of the results with the experimental 
data for the 20 mm M56 Projectile, lead to 
the following conclusions: (1) Case I gives 
roughly the correct order of magnitude of 
yaw amplification but is at variance with 
the observational data on the time of com- 
mencement of instability, and (2) Case II 
gives more nearly correct time for the on- 
set of instability but underestimates the 
amplification of yaw. 

The designer, however, is usually more 
interested in the correct estimate of the 
level of yaw which is likely to occur during 
transient instability rather than the pre- 
cise time cf its occurrence. Both methods 
predict reasonably early the onset cf insta- 
bility, i.e., during spin-up. Therefore, it is 
suggested that the designer confine himself 
to the Case I model cf computation. Mild 
transient instability, i.e., yaws cf 2-4 de- 
grees can usually, be tolerated. The dura- 
tion of transient instability is usually short, 
unless the resonance band is very wide, 
and such mild yaws can usually later be 
suppressed by the aerodynamic damping. 
If required, their effect on the trajectory 
can be computed and allowed for. Occur- 
rence of larger transient yaws present, cf 
course, a more difficult problem. As an il- 
lustration we may consider the experiment 
described in the paragraphs which follow. 

20 mm M56 Projectiles were loaded with 
90%cf C(Br)4 and fiied at a "time cf flight" 
screen at 600 yards. None cf the projectiles 
hit the target — all falling short — suggest- 
ing the presence cf excessive yaws. For 
this projectile, from Refs. 6 and 7, we have 
the following information: 

c/a = 2.68 

With n = 10 rad/sec, a = 0.78 cm, and v = 0.034 
stoke the Reynolds number is 1.8x 105 . 

The width cf the resonance band on the 
frequency scale is 

T , - 0.156 t 0.031= 0.187 

To2 = 0.156 -0.031= 0.125 

From Stewartson's, Tables one finds that 
the resonance in the above cavity occurs 
(n = 1,  j = 1) at(b2/a

2)0 = x0 = 0.541or at 46% 

fill.  The  "effective"(bVa2).  corresponding 
to the above frequency limits cf the reso- 
nance band are, by Eq. 9—30, Xj = 0.579and 

1 =0.501, respectively. 

One computes k= 1.16x 10-3.  Applying Eq 
9-49,    Case I, 

A(nt) - ^  t* ^^ = 259 {U '     (0.482X1.16)       0.501 

The  amplification   cf yaw,  by   Eq.  9—48 
o 

?" S- -- (0.393X3.1 * 10-3) (259) = 3.155 

or 
— = 23 
"0 

Thus the Case I model predicts the occur- 
rence cf very large transient yaw which 
appears to account for the observed be- 
havior cf the projectile. 

The exact  resonance   occurs, by Eq. 
9-45,   at 

x   = 0.541 = 0.89e_0'482kt"t 

Therefore, k fit - T = 1.075 or, with given 
fi=:104 rad/sec and V- 2.7 < 103 ft/sec, at 

TV 
ftk 

250 feet from the muzzle 

T = 0.156 n 

ys"= 3.i x io-3 
when, by Eq.  9-44,  1/1^ = 0.72 or the liquid 
has acquired 72% cf its angular momentum. 

9-33 
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If, for the same example, we were to use 
the Case II model computations, then by 
Eq. 947 

A("t) = 3T 
* 

3/10 U) (9—50) 

during spin-up. The yaw, on linear theory, 
will obviously be very large. However, as 
we shall see in Ch. 10, the maximum ampli- 
tude might be limited by nonlinear effects. 

In principle, however, Eq. 8—69 

The amplification   of yaw is found to be 
a, 

only -££- - 2.6 which is completely inadequate 

to account for the observed behavior. The 
resonance would have occurred atl/l^ = 0.40 
or 75 feet from the muzzle. 

9-5.5 TRANSIENT INSTABILITY OF THE XM410 
FROJECTLE 

We have used the XM410 Projectile for 
various illustrative purposes. We will again 
use this projectile for a final illustration. 

As was previously shown, a cylindrical 
cavity c/a = 1.56 of the XM410 Projectile, for 
j = 0 , contains a broad range of fluid fre- 
quencies, T0± v/s"= 0.34 ±0.25 or from 0.59 to 
0.09. The nutational frequency is T = 0.25. 
Therefore, the resonance band covers the 
frequency range fromTQ { = 0.50 to T

02 = 0.09. 
The principal fluid frequency TQ = 0.34 lies 
above the nutational frequency and, nor- 
mally, no transient instability would be 
encountered, (see Ch. 8).However, because 
of the exceptional width of the resonance 
band of this projectile, the projectile will 
be unstable during spin-up. 

Its spin-up history is presented graphi- 
cally in Fig. 9—2. The data were computed 
by Eq. 9—30 to obtain To(^t), and by Eqs. 
943 and 9-44 to find the corresponding 
I(f2t)/I . As the graph shows, the projectile 
is in serious trouble during its transient 
phase. The instability commences at about 
£2t =300or, at M = 1.5 with n = 103 rad/sec, 
at about 0.3 sec from muzzle. 

There is no need to integrate Eq. 8—69 
in order to find the amplification  of yaw 

can be integrated numerically since T0(t) is 
a function of time through x(t) by Eq. 9—30 
and x(t) is given by, say, Eq. 945. The 
process, however, is cumbersome and 
usually not worth the effort. It could be 
used in special cases when it might be de- 
sirable to do so. 

9-5.6 AMPLIFICATION OF YAW IN NONCYLIN- 
DRICAL CAVITIES 

Only a rough estimate can be made of 
the amplification of yaw in noncylindrical 
cavities because theoretical spin-up history 
has been developed for the cylindrical cavi- 
ties. Nevertheless, since the time of occur- 
rence of instability during spin-up is of no 
particular importance to the designer, one 
may use the following procedure to arrive 
at a rough approximation. The width cf the 
resonance band in a noncylindrical cavity 

is Tn±\/rn> see Par- 9—4,2, where S is 
Stewartson's parameter in a noncylindrical 
cavity and is found by Eq. 9—29. One then 
computes the corresponding x2 and x by 
Eq. 9—30 for the above frequency limits. 
Then A(f2t) is found, as before, by Eq.9—49, 
The amplification cf yaw would be given by 

^ :-£-/s"mA<nt) (9-51) 

Such a procedure probably can be relied 
upon to give the correct order of magnitude 
to the yaw amplification during transient 
instability with a noncylindrical cavity. 

9-34 
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9-6    BRIEF OUTLINE OF DESIGN STEPS 

It may be helpful to the designer to have 
a brief outline of the main steps to be fol- 
lowed in the design of liquid-filled projec- 
tiles. 

Given: I,, sg, <r, T for the rigid projectile, 
i.e., with liquid frozen. 

I. CYLINDRICAL CAVITY 

A.   NEW DESIGN: 

3. 

4. 

Construct table c/[a(2j t 1)] vs j - 0,1,2, 

From Stewartson' s Tables for b 2/a2 = 
1 - ß find all T0  and 2R corresponding 
to each value of c/ [a(2j t 1)] ,j = 0, 1,2, 
In practice it is seldom necessary to 
go beyond j = 2. 

Compute Stewartson's parameter S 
and test for instability by Eq. 9-8 if 
viscous effects are significant; other- 
wise by Eq. 4—24. If unstable, see 
discussion in pars. 9—3.4 and 9—3.7. 

1. Cavity: 2c = height, 2a = diameter 

2. Assign a fill-ratio ß 

3. Check whether with liquid filler the 
gyroscopic stability is adequate, Eq. 
9-2c 

4. Check whether viscous effects are 
significant, par. 9-3.1 

5. From Stewartson's Tables with 
b2/a2= 1-ßfind KL on the line T

0=Tn 

in the first column headed by 
c/[a(2j t 1)] for the first radial mode 

n = 1. If viscous effects are significant, 
use the line T„ ■0-   T     -£ 

All cavities with 
c/a=   Kj(2j t 1) = 0, 1, 2, 

will have resonating frequency T0 = x 
Repeat for n = 2 
cavities. 

o 
Avoid   all   such 

See par.   9—3.3   on how to deal with 
the width cf the resonance band. 

B.   CONVERSION OF A N EXISTING PROJECTILE 
TO ONE CONTAINING A LIQUID 

1. Given c/a ,ß 

2. Items IA1, IA2, IA3, and IA4 apply. 

1. 

2. 

II.  NONCYLINDRICAL CAVITY 

Items IA1, IA2, IA3, and IA4 apply. 
To find T either in a newly designed 
cavity or in an existing cavity- see 
pars. 9-4, 9—4.1, and 9-4.2. 

For a cylindrical cavity with rounded 
corners see par. 9—4.4. Neglect the 
effect of rounded corners on TQ if 
R'/a < (1-b/a) where R1 is the radius 

of the corner and b/a = y/l - ß   ■ 

III. SPIN-UP OR TRANSIENT PHASE 

1. If the projectile is designed to be 
stable in its steady state, i.e., with 
the liquid fully spinning, examine its 
stability during spin-up cf the liquid. 

2. Compute Stewartson's parameter S. 

3. The width cf the resonance band is 

S . Compute the corresponding x t 
and x2by Eq. 9—30. 

Find A (fit) by Eq.9-49 and the ampli- 
fication cf yaw during transient insta- 
bility by Eq. 9-48. 

9-36 
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APPENDIX B 

TREATMENT OF CAVITIES WITH   PARTIAL BURSTERS 

The partial burster, i.e., the burster 
which protrudes only part way into the cav- 
ity is considered in this Appendix. It ap- 
peared desirable to relegate this matter to 
the Appendix because, at the present time, 
it is not known how to compute the eigen- 
frequencies in such partially burstered cav- 
ities. The configurations are shown schema- 
tically in Fig, B—1. Theoretical solution 
appears very difficult because for config- 
urations shown in Fig. B—1, there is a dis- 
continuity in one of the boundary condi- 
tions. The best way to deal with this prob- 
lem, therefore, is by the conduct of experi- 
ments. These are planned at the BRL and 
the results will be published in a BRL Re- 
port. Meanwhile, in order not to delay the 
issuance of this Handbook, a tentative pro- 
cedure for handling this problem by the 
designer is outlined below. It is to be under- 
stood, of course, that the validity of this 
procedure might be either confirmed or 
negated by the forthcoming experiments. 

Let V0 be the volume of the cavity with- 
outthe burster, and V be that of the cylin- 
drical cavity of the sameheight 2c and the 
same diameter 2a. Let 2rbe the diameter of 
the burster, h its length in the cavity, and vr 

its volume. Thus the burster protrudes h/2c 
fraction into the cavity; a fraction 1 -h/2c 
is without the burster. If the available vol- 
ume of the cavity    V0 - vt   be filled to ß 
fraction, then we can distinguish three 
cases for the fill-ratios. 

Casel. If b2/a2 > r2/a2 , then the fill- 
ratio is given by 

ß>l-(b2/a2) -(r2/a2)(h/2c) (B1) 

(V0/Vc) -(r2/a2)(h/2c) 

It is to be recalled, par. 9—3,6, that in 
order for the burster not to interfere with 
the oscillations of the free surface it is 
necessary that 

b2/a2 -r2/a2 :> 0.10(r/a) (B2) 

If this condition is satisfied and ß is com- 
puted by Eq. Bl, then the problem is to be 
treated as in par. 9—3.5, i.e., the fluid does 
not feel the presence of the burster and, 
hence, the length of the burster does not 
make any difference. 

Case 2.. This  is   a  special  case  when 
b2/a2 =r2/a2.  The fill-ratio is given by 

(V0/Vc)  - (r2/a2) 

(V0/V)-(r2/a2)(h/2c) 
(B3) 

Case 3.   If   b2/a2 < r2/a2, the fill-ratio is 
given by 

R<1 (b2/a2) (1 - h/2c) 
ß <1 - 7, ,      ,      (B4) 

(V0/Vc)-(r
2/a2)(h/2c) 

This case is probably the most commonly 
encountered in practice. It is to be noted 
that for the cylindrical cavity V,  =V . 

Thus Case 1 presents no problem. For 
Case 2, the oscillating free surface will 
periodically uncover part of the burster and 
the burster will interfere with these oscilla- 
tions. Case 3 is more nearly clear cut. But 
in the absence of any knowledge or evi- 
dence to the contrary, we shall assume that 
Case 2 loading condition and Case 3 are to 
be treated in a similar manner. 

Suppose, therefore, that the cavity has a 
fineness-ratio c/a; the diameter of the cylin- 
drical burster is 2r and it protrudes h/2c 
fraction into the cavity. The cavity is filled 
to ß fraction of the available volume V0 -vr 

so that Eq.   B4 is  satisfied,  see Fig. 
B—1 . The   fractional   air column is given 
by   b2/a2 < r2/a2. The suggested procedure 
for finding T0 in such a cavity is as follows: 

A-B-4- 
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a.   Cylindrical Cavity 

Step 1: Disregard the burster. Find T0 

from Stewartson's Tables, Tables 4-4, with 
c/[a(2j t 1)] and above b2/a2 which is 
either   arbitrarily prescribed   so  as  to 
satisfy the condition that  b2/a2 < r2/a2   or 
computed  with prescribed  ß   by Eq.  B4. 
Call this ■oi- 

Step 2: Disregard the air column. Con- 
sider the burster as extending through the 
whole cavity and the cavity is lOO'Mfilled. 
Find T0 from Central Column Tables, 
Tables 4-2, with c/[a(2j,+ l)] and r2/a2. 
Call this T02 . 

Step 3:   It is suggested that the effective 
T0  of the   actual' cavity is the weighted 

mean of the two T0'S found in Steps  1 and 
2, i.e., 

<Tn> o '.„ -1 Toi & - h/2c> + To2(h/2c>      (B5) 

b. Noncylindrical Cavity 

To compUte Toi for a noncylindrical cav- 

ity we must use Eq. 9—22 with x0 = b2/ag 
as above and evaluate the integrals, Eq. 
9—21, for the cavity. 

To compute T02 it is necessary to have 

a function similar to 1/Kj, Eq. 9—17, but 
for the Central Column Tables. Call this 
function    1/K  ,.   It is found that for the c I 
radial mode n = 1, the polynomial, Eq. B6, 
represents well the tabular values for the 
following range of T0 and   r2/a2 : 

0.0 <    T
0  < 0.36 

0.05 <  r2/a2 < 0.25 

Tet 
y s r 2/a 2 

then one can write an equation which is 
analogous to Eq. 9—22 for a completely 
burstered 100%filled noncylindrical cavity. 

1 = c/[a0(2j t 1)] [d.0121 t4.684IIy0) 

- (1.460116.4941Iy0) TQ 

+ (0.8751+1.492IIy0)T2] (B6) 

where 

yo 2/   i 

and the integrals I and II are identical to 
those used in Eq. 9—22 which are given by 
Eq. 9—21. Because of a somewhat different 
form  of function    1/Kcl   as compared to 

1/Kj   for Stewartson's Tables, the integral 

III does not appear in   1/Kcl because there 

is no y2 term. 

The effective T0 for partially burstered 
noncylindrical  cavity is given,  as before, 
by Eq. B6J 

Tet us consider as an example the 
XM410 Proj ectile with a partial burst- 
er.     Suppose the burster    r/aQ=0.29, 

r2/a2 = 0.084,      par.    9-3.6,    protrudes 

h/2c = 1/3 into the cavity. Tet the fill- 
ratio of the available cavity be such that 

b2/a^=0.05    which  satisfies the condition 

for Case 3 that b2/a2 < r2/a2. The 
fineness-ratio of the cavity c/a = 1.56. 
What is T0 in this cavity? 

a.   Cylindrical Cavity 

W we assume that the cavity is cylindri- 
cal then: 

Step 1. From Stewartson's Tables for 
c/a0 = 1.56       for   j = 0   and    x0 = 0.05    we 

find T01 = 0.34. 

Step 2. From Central Column Tables for 
c/a = 1.56       for j =0 and    y0 = 0.084    we 

find T02 = 0.50. 

A-B—3 



AMCP 706-165 

Step 3. The effective T0 in such a cavity 

is, Eq. B5,    (r0)eff = (0.34)g) t (0.50)g) = 0.39 

b. Noncylindrical Cavity 

In par. 9—4,3 we found the values of the 
integrals for the cavity cf the XM410 Pro- 
jectile: 

W    x0 = 0.05    then applying Eq. 9—22 to 

a partially filled cavity without the burster, 
Step   1, with j = 0  and    c/a0 = 1.56, we 

obtain T0   = 0.38. 

Using the same values cf the integrals I 
and II and with y0 = 0.084 we obtain from 
Eq. B6, Step 2, TQ2 = 0.57. 

I = 1.056 
II = 1.219 

HI = 1.491 

Therefore, Step 3, 

<Veff = 0.38(|)+ 0.57g) =0.44 

A—B— 4 



CHAPTER 10 

AMPLITUDE DEPENDENT BEHAVIOR 

10-0 LIST OF SYMBOLS" 

d = width of gap between rotating 
cylinders; boundary layer thick- 
ness 

K = aconstant 

M = Mach  number;   stability  criterion 

R = average radius of inner and outer 
cylinder 

V = mean value of flow velocity within 
the gap 

AV      = change of flow velocity across gap 

v = value which perturbation velocity 
assumes at edge of boundary layer 

10—1   INTRODUCTION 

Because of the lack of theoretical devel- 
opment dealing with nonlinear effects in 
the liquid-filled systems, and extreme scar- 
city'of the experimental data, present com- 

ments of necessity will be very brief. The 
purpose of these comments is to make the 
designer aware of the existence of the am- 
plitude dependent behavior of the liquid- 
filled projectile. Such an awareness may 
prevent injudicial extrapolation from the 
linear theory and also may, perhaps, save 
him from unpleasant surprises when sudden 
instability occurs at larger yaws. 

In the preceding chapters it has been 
emphasized that the mathematical descrip- 
tions both of the yawing motion of the pro- 
jectile and the behavior of the liquid in its 
cavity are predicated on the fundamental 
assumption that the perturbation of the 
initially undisturbed motion is small. This 
assumption Pernutted linearization of the 
equations of motion and their solution. But 
how small is "a small perturbation"? In the 
case of the motion of the rigid projectile, 

*For identification of other symbols in this chapter, refer 
to Chapter 3. 

practical experience shows that "small- 
ness of the perturbation" cannot be de- 
fined in general terms. The extent of the 
validity cf the linearized theory, as applied 
to the rigid projectile, depends in a large 
measure on the shape of the projectile. The 
most important cause of the amplitude de- 
pendent behavior in a rigid projectile is the 
nonlinearity of the aerodynamic coeffi- 
cients. For some shapes cf projectiles these 
manifest themselves at the origin, i.e., at 
very small yaws. In other cases the yawing 
motion of amplitude as large as 6-10 de- 
grees can be adequately described by the 
linearized theory. As is shown in Ref. 1, 
certain types of nonlinearities in the aero- 
dynamic coefficients can be handled math- 
ematically thus permitting the description 
of the yawing motion at larger yaw angles. 

For the liquid-filled projectiles the expe- 
rience cf the behavior of such systems at 
larger yaws is non-existent. Moreover, as 
was pointed out in Ch 3, it appears quite 
hopeless to solve the nonlinear fluid- 
dynamic problem. A priori, therefore, at 
the present time one cannot hope to theo- 
retically predict the behavior of the liquid- 
filled projectile at larger yaws. 

Fortunately, most projectiles are de- 
signed to operate within the regime of 
small yaws. Thus the linearized dynamics 
for the rigid projectiles serves an extremely 
useful purpose. Similarly, the linearized dy- 
namics for the liquid-filled projectiles should 
be equally valuable to the designer. Never- 
theless, it appeared desirable to undertake 
a few exploratory experiments2 with the 
gyroscope at larger amplitudes. Although 
some interesting data were obtained, it is 
clear that these experiments just scratched 
the surface of a complicated and unex- 
plored field. Most cf the experiments were 
performed with a 2.5-in. cylindrical cavity, 
withc/a =3.08 at resonant fill-ratio b2/a2 

= 0.15. 

10-1 
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10—2 GROWTH OF AMPLITUDE AT  RESO- 
ANCE 

Experiments show that Stewartson's the- 
ory with viscous corrections accurately pre- 

dicts the initial rate of growth of the nuta- 
tional amplitude at resonance. However, 
the experiments also show that this initial 
rate of growth persists only up to a certain 
amplitude where the rate changes abruptly 
to a new rate. This matter was discussed 
briefly in Ch. 6 where it was pointed out 
that this change is probably associated 
with the development of instability in the 
laminar boundary layer. Further theoreti- 
cal consideration of this phenomenon will be 
considered in par. 10—5. The amplitude at 
which transition occurs is strongly Rey- 
nolds number dependent as is shown in 
Table 10—1. 

TABLE 10-1.   REYNOLDS NUMBERS OF 
TRANSITION FROM THE LAMINAR BOUNDARY 

LAYER. 

v,cSt LogRe 

1 5.72 

3 5.23 

5 5.00 

13 4.60 

49 4.04 

100 3.72 

350 3.17 

Transition Amplitude, 
 Degrees  

0.4 

0.6 

0.73 

1.0 

2.6 

5.6 

<8 

For still higher viscosity oils, the transi- 
tion presumably occurred at amplitudes 
not reachable by the gyroscope because of 
its amplitude limitation of about 12°. 

As the amplitude continues to grow, the 
new rate also changes. It may even under- 
go a series of changes but eventually ap- 
pears to settle to a more nearly linear rate 
rather than exponential. Finally, at a cer- 
tain amplitude, marked by a rather sharp 
discontinuity, the rate of growth of the 
amplitude ceases and the gyroscope settles 
to oscillate at a constant amplitude. Ihis 
maximum amplitude reached by the gyro 
scope depends strongly on the Reynolds 
number. This appears to be a steady state 
condition because the gyroscope continues 
to oscillate at this amplitude indefinitely. 

10-2 

The time histories of growth of ampli- 
tude, at resonance, at various Reynolds 
numbers,   are   shown in  Figs.   10—1(A) 
tbroimh 10—1(HV The transition, discussed 
above, is marked by an arrow on the rec- 

ords. The transition is shown particularly 
clearly on the larger amplification record, 
Fig. 10—2(A). 

Frasier* (BRL) has observed that such 
a transition from the laminar boundary 
layer is progressively delayed, i.e., occur- 
ring at larger amplitudes, as one moves 
away from the exact resonance, i.e., into 
the wings cf the resonance band. This 
might be expected. The excited liquid fre- 
quencies have maximum amplitude at the 
exact resonance and, hence, have a maxi- 
mum disturbing influence on the boundary 
layer. Away from the resonance, these dis- 
turbing influences are weaker and should 
manifest themselves at correspondingly 
larger amplitudes of the gyroscope. 

Thus the first departure from the predic- 
tion of the linear theory of the rate of 
growth of the nutational amplitude is due 
to the change in the nature of the boundary 
layer on the walls of the cavity. In this 
connection, another observation made by 
Frasier is of interest. He cut slots in the 
metal rotor shown in Fig. 5—2. With a 
proper illumination and a stroboscope he 
could observe the free liquid surface at 
resonance. Working with siliconeoil — 
v = 1 cSt , c/a = 3.08 cavity and resonance fill 
b2/a2 = 0.15  — he   observed,  at small 

amplitudes, a clearly defined 1-1/2 cosine 
displacement wave (j = 1). As the ampli- 
tude of the gyroscope increased, the dis- 
placement of the free liquid surface became 
surprisingly large and a number of high 
frequency wavelets appeared superimposed 
on the fundamental j = 1 wave. In prelimi- 
nary experiments, no analysis was made of 
the nature cf the frequencies of these wave- 
lets. These might be excited by the transi- 
tion of the laminar boundary layer to cellu- 
lar. 

'Private communication 
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FIGURE 10-1(C).  RECORD   OF AMPLITUDE HISTORY,    V = 3 cSi 

0 

FIGURE lO-l(D).   RECORD  OF AMPLITUDE  HISTORY,     V=5cSt 
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The observations of the maximum am- 
plitude reached by the gyroscope are very 
limited because of the amplitude limitation 
of .the gyroscope (12°). The available data 
are given in Table 10—2. 

TABLE 10-2.   MAXIMUM STEADY STATE 
AMPLITUDE AT RESONANCE 

2.5-in. cavity 

max' 

2-in. cavity 

max' 
V, cSt LogRe 

5.72 

degrees 

5.3 

LogRe degrees 

1 

3 5.23 7.9 5.05 5.2 

5 5.00 11.3 4.03 7.9 

The above few values suggest only the 
trend. In addition to the Reynolds number 
effect, there appears to be an influence of 
the geometry of the cavity. This is further 
substantiated by the results of tests in a 
modified cavity of the type considered in 
par. 9-4.2. In the modified cavity at 
logRe = 5.23, the gyroscope had a max- 
imum amplitude of only 3.6° instead 
of 7.9°, Table 10—2, when the cavity was 
cylindrical. Also the maximum amplitude 
appears to be sensitive to the condition of 
resonance — it is maximum at exact res- 
onance but less elsewhere as the following 
few values show: 

Fill-ratio, 
% 

" max, 

degrees 

82.2 (resonance) 5,2 

82.6 4.4 

82.9 3.9 

It should be noted, however, that the 
observed amplitude behavior was associ- 
ated with relatively very slow initial diver- 
gence which, for the above experiments, did 
not exceed X = 0.5 per sec. As Fig. 
10—1(A) shows, even for the highest Rey- 
nolds number tested (Re = 5 x 105), at 
which the rate of divergence is the largest, 
it required almost 70 seconds to reach its 
maximum amplitude. The question may 
well be asked what would happen if the 

initial divergence rate is more violent? For 
the XM410 Projectile, for example, the ini- 
tial divergence rate at M = 1.5 is X = 62 
per sec. Will the restraining moments which 
delimit the amplitude be able to contain 
such violent divergence? The answer is: 
probably not and the yaw may reach a 
very high level even with large Re. The 
experiment described below, although 
made at the transient instability rather 
than at the steady state resonance as in 
the gyroscope experiments, nevertheless is 
suggestive. 

The 20 mm M56 Projectile was filled to 
70% with mercury. According to Fig. 5—7, 
its transient instability is maximum at this 
percent of fill and is about \= 8 per sec. 
The projectile was fired in the Transonic, 
Range of the BRL, which is about 800 feet 
long. The projectile rapidly developed an 
excessive yaw of some 60-70 degrees. It 
flew at approximately this yaw throughout 
the observed length of the trajectory with 
its axis precessing about the mean trajec- 
tory at this angle. It did not tumble and, 
as inferred from its precessional rate, its 
gyroscopic stability factor was in excess 
of 2. 

Therefore, the observed maximum ampli- 
tudes with the gyroscope may not be realiz- 
able in practice if the initial divergence 
rates are sufficiently violent. It is still very 
probable that the projectile will eventually 
stabilize at some amplitude but it is im- 
possible to predict at present what this 
level of yaw is likely to be. 

In passing it might be of interest to note 
that stabilization of the gyroscope at a 
certain amplitude after initial instability 
has a counterpart in the dynamics of the 
rigid projectile acted upon by a cubic static 
moment of the type (c) in Ref. 1, Ch. VIII. 

10—3 THE EFFECT 0 F SPIN 

The initial rate of divergence of the nuta- 
tional amplitude at resonance is propor- 
tional to the axial spin, i.e., QJS- How- 

ever, the final constant amplitude reached 
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by the gyroscope appears to be independ- 
ent of the spin as Fig. 10—3 shows. The 
three spins at which the gyroscope was 
run show different rates of initial diver- 
gence but the final amplitude seems to set- 
tle to approximately the same value. The 
data, however, are extremely limited. 

10^4 SUDDEN APPEARANCE OF INSTABIL- 
ITY 

As Ward3 pointed out, the liquid-filled 
gyroscope could be made unstable at al- 
most any fill-ratio by giving it a sufficiently 
violent initial   disturbance.  Tinearized 
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FIGURE 10-3.   GROWTH   OF AMPLITUDE   AT  RESONANCE   FOR   VARIOUS SPIN RATES 
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theory cannot predict such behavior. In 
this connection the following experiment is 
of practical relevance. The c/a = 3.08 cav- 
ity was completely filled. At this fill-ratio 
the gyroscope was stable. It was spun at 
5000 rpm and gently released at various 
initial yaw angles. Up to about a0- 6° the 
initial yaw decreased in the usual manner 
for the stable conditions of the gyroscope, 
i.e., because of small damping due to the 
supporting flextures. At an initial angle of 
slightly above 6" the yaw suddenly di- 
verged, settling eventually at a steady yaw 
of about 10°. Large yaws might arise in 
practice in the case of a poorly designed 
gun-projectile system, in the aircraft gun- 
nery, and at the summit cf a high angle 
trajectory. Such sudden appearance of in- 
stability at larger yaws might well be 
responsible for the occasionally reported 
correlation of the performance of the liquid- 
filled projectile with quadrant elevation. At 
large quadrant elevations the surnmital 
yaws are large and, hence, a liquid-filled 
projectile designed to be stable at small 
initial yaws may suddenly become instable 
at surnmital yaws. The designer should be 
aware of such possibilities. 

Another type of instability was observed 
by F'rasier working in the wing of the 
resonance band: v=icSt, c/a = 3.08,at 
b2/a2 = 0.05. The resonance in this cav- 
ity is at b/a =0.15 or 85% full. At 
95% fill (b2/a2 =0.05) one is far out in 
the wing of the resonance band. At this 
location the divergence was just barely 
enough to overcome the natural damping of 
the system. But the gyroscope was per- 
mitted to run with the nutational amplitude 
increasing very slowly. When it reached 
about 2°, the amplitude suddenly diverged 
to about 5" by sharp discontinuity. Further 
growth continued at a new and higher rate. 
This phenomenon might also be associated 
with the instability cf the laminar boundary 
layer. 

10-5 SOME  THEORETICAL CONSIDERA- 
TIONS 

There are two possible reasons why the 
present stability theory should not be appli- 

cable at larger yaw amplitudes. First, the 
nonlinear terms in the dynamic equations, 
which have been neglected in Stewartson's 
and extended theories, become appreciable 
at sufficiently large yaw angles. Second, 
viscous friction is altered via the transition 
to cellular or turbulent boundary layer at 
larger amplitudes of the perturbed flow, an 
effect which was  mentioned in par.   6—4. 

The effects due to nonlinear terms in the 
dynamic equations appear to be insignifi- 
cant at least to the amplitude of 8 degrees 
or so. This is shown in Fig. 10—1(H) where 
for a viscous fluid (Re = 1-5 * 103) the 
boundary layer stays laminar to the ob- 
served amplitude cf 8 degrees and there- 
corded rate cf divergence is predictable by 
the linear theory to this level cf yaw. 

In contrast, the transition cf the boun- 
dary layer and a resulting change in the 
stability behavior can occur —for practical 
Reynolds numbers — at yaw angles cf less 
than one degree. If transition occurs, it 
brings about a rather sudden change in 
viscous damping, resulting in a sudden 
change cf the bandwidth cf instability and 
the rate cf divergence. 

For the case cf laminar boundary layer, 
the influence cf viscosity is inversely pro- 
portional to the square root cf the Rey- 
nolds number (see Ch. 6). In practice, the 
Reynolds number is usually so large that 
the effect ofviscosity on the bandwidth can 
be disregarded — provided that the boun- 
dary layer is laminar. 

On the other hand, transition to a cellu- 
lar boundary is more likely at high Rey- 
nolds numbers and, once transition occurs, 
viscous effects increase many times and 
may become important even for large Rey- 
nolds numbers. 

As yet it is not possible to compute — 
on theoretical grounds — the increase of 
viscous damping after transition or even to 
compute the critical yaw angle at which 
transition occurs. However, by experimen- 
tal investigations2 the effects cf large yaw 
angle are greatly clarified.  It is possible, 
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now, to estimate the critical yaw angle and 
the band broadening on semi-empirical 
grounds. 

10—5.1   TRANSITION TO   CELLULAR   BOUNDARY 
LAYER 

It was shown by Taylor*that the flow in 
the gap between two rotating cylinders can 
become unstable when the inner cylinder 
rotates faster than the outer cylinder, and 
the mean flow velocity exceeds a critical 
value. As a result of instability, a cellular 
vortex pattern develops in the flow which 
considerably increases the viscous friction 
at the wall. A similar instability was found 
by Goertler5 for boundary layers on con- 
cave walls. The common feature of both 
these flows is that the flow velocity in- 
creases in a direction towards the center 
of curvature of the streamlines. The stabil- 
ity criterion found by Taylor can be written, 
for the case of small gap width, as follows: 
The flow is unstable if 

(V-Yd)- AV > M (10-1) 

where V is the mean value of the flow veloc- 
ity within the gap, AV is the change of the 
flow velocity across the gap, d the gap- 
width, and R the average radius of inner 
and outer cylinder. (For small gap-width, 
inner and outer cylinder have nearly equal 
radii.) v is the kinematic viscosity. 

For the case of boundary layers on con- 
cave walls, V and AV are interpreted, 
respectively, as mean value and change of 
the flow velocity in the boundary layer, and 
d as boundary layer thickness. 

The number M is different for the Taylor 
and Goertler case, and M depends on the 
shape of the boundary layer. 

The boundary layer which is formed at 
the cylindrical walls of the yawing liquid- 
filled cavity is of the type investigated by 
Taylor and Goertler. Therefore, the stabil- 
ity criterion should have the form of Eq. 
10— 1, where V, AV,R and d must be 
interpreted appropriately, while M may be 
determined experimentally. 

In our case R and V are the cavity 
radius and the circumferiential velocity, re- 
spectively, i.e., 

R 

V 

a 

(10-2) 

d is proportional to the boundary layer 
thickness. According to Eq. 6—13 we may 
define: 

Re 
fia' (10-3) 

AV is proportional to the circumferen- 
tial component of the perturbation velocity 
which is proportional to   aßu ,i.e.: 

AV oc v oc aQa (10-4) 

where cy is the yaw angle, and v is the 
value which the perturbation velocity as- 
sumes at the edge of the boundary layer. 
At the wall, the perturbation velocity is 
zero, i.e., v is the change of the total veloc- 
ity across the boundary layer. Actually, v 
depends on time, azimuthal angle, and 
axial distance so that the boundary layer 
becomes at first unstable at a position on 
the cavity walls, where v attains its maxi- 
mum value. We may thus interpret v as 
the maximum value cf the perturbation 
velocity near the wall. The proportionality 
of v to ail a follows from Eqs. 3—54 for the 
radial component u, and Eqs. 3—57 and 
3—58 which connect u and v. Substituting 
Eqs. 10—2, 10—3, and 10—4 into Eq. 10—1 
yields that the left-hand side of Eq. 10—1 
is proportional to y/~Rea ■ 

Thus,  the   criterion  for instability be- 
comes 

(10-5) Re o>K 

where Kis some constant. The experiments 
confirm this relation, see Table 10-1,and 
suggest for K the value 

K= 2.5 x 102,    deg (10—6) 

when a is measured in degrees. 
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Although it must be expected that K de- 
pends on cavity shape and fill-ratio, the 
dependence is probably very weak. Hence 
Eq. 10-6 may be considered a good 
approximation in all cases where cavity 
shape and fill-ratio are not too different 
from those of the experimental configura- 
tion. In the experiments of Ref. 2, fineness- 
ratio and fill-ratio of the cylindrical cavity 
were    kept    constant    at c/a  = 3.077, 
b2/a2 = 0.15. 

Eqs. 10-5 and 10—6 show that transi- 
tion to cellular boundary layer can occur 
at relatively small yaw angles. The upper 
limit of Reynolds numbers of practical pro- 
jectiles filled with liquid of low viscosity 
lies around 106. At a Reynolds number of 
Re = 106 the critical yaw angle at which 
transition occurs is only 0.25 degree. 

10—5.2  DAMPING FACTORS 

The broadening of the bandwidth due to 
viscous effects was discussed in Chapter 6. 
It was shown there that the effect of vis- 
cosity can be described completely in terms 
of the viscous eigenfrequencies TQV = 
E t i6. In particular it was shown trPat 
the broadening and flattening of the band- 
width of instability is caused by the imagi- 
nary parts. The physical significance of 6 
is that it determines the damping rates of 
the modes of free oscillations. The ampli- 
tudes of the free oscillations decrease like 
e -llbt g js brief]y denoted as damping 
factor. Once 6 is known, the resonance 
curves (rate of divergence versus eigenfre- 
quency) can be computed. For laminar 
boundary layer, 6 is given by Eq. 6—16. 
For the case that the yaw angle is larger 
than the critical yaw angle, the boundary 
layer is no longer laminar and Eq. 6—16 
is not applicable. It can be assumed, how- 
ever, that the broadening of the resonance 
curve is related to the damping factor 6 in 
the same way as was the case for the 
laminar boundary layer. 

It was shown experimentally in Ref. 2 
that,   at large amplitudes, the resonance 

curves have indeed the same shape as in 
the case of laminar boundary layer, but 
th at th e corresponding damping factors 
were much larger. From the shape of the 
resonance curves, the damping factors 
were experimentally determined as func- 
tions of the Reynolds number for various 
yaw amplitudes. The results are shown in 
Fig. 10—4J It is apparent that in the regime 
of small Reynolds numbers all data follow 
the original curve for a laminar boundary 
layer. At higher Reynolds numbers, the 
experimental curves separate from the 
theoretical curve and from several 
branches, a different branch for each yaw 
amplitude. 

The experimental data shown in Fig. 
10-4 are taken for a fixed cavity configu- 

ration with: c/a = 3.077 (j = 1)    b2/a2 = 0.15 , 
and 0.055.     It i s known that 

for a laminar boundary layer the damping 
factor depends on the cavity shape and 
fill-ratio (Eq. 6—16) and the same must be 
expected for cellular boundary layer, i.e., 
the experimental curves shown inFig. 10—4 
are — for the present —valid only for this 
particular configuration. An investigation of 
Eq. 6—16 shows that, in the laminar case, 
the damping factor depends only weakly 
on cavity shape and fill-ratio as long as the 
resonance frequency    T0 << 1.   The same 

weak dependence can be assumed in the 
case of a cellular boundary layer. Thus, if 
the fineness-ratio is not too different from 
c/a = 3, the experimental data of Fig. 10—4 
may be used to estimate the value of 6 at 
large yaw amplitudes. 

It should be mentioned that not only the 
damping factor but also the frequency shift 
is subject to change —relative to its lami- 
nar value — after transition to a turbulent 
boundary layer. However, because of its 
greater practical importance, only the 
damping factor was determined experimen- 
tally. The frequency shift, which is directly 
related to the displacement thickness of 
the boundary layer, is not likely to change 
much as a result of transition to a cellular 
boundary layer. 
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APPENDIX C 

BIBLIOGRAPHY AND SURVEY OF PAPERS 0 N THE MOTION OF BODIES 
HAVING CAVITIES FILLED WITH LIQUID 

The problem of stability of rotating 
bodies containing liquid-filled cavities has 
its origin in a number of investigations 
regarding the shape of the earth1'2'3'4. In 
1880, during the course of investigations of 
the motion of a gravitating liquid ellipsoid, 
Greenhill solved the problem of stability 
of a rotating solid body containing an ellip- 
soidal cavity completely filled with liquid. 
The case of a rotating body with a liquid- 
filled ellipsoidal cavity, which lent itself to 
theoretical analysis, was further investi- 
gated by Hough'. Hough was able to show 
that the general motion of a liquid-filled 
body can be described exactly by ordinary 
differential equations if the cavity is ellip- 
soidal and completely filled with ideal 
liquid, and the fluid is initially rotating 
uniformly with the body as if solid. 

For the case that the liquid within the 
ellipsoidal cavity is initially at rest, the 
solution of the problem was found inde- 
pendently by Beltrami, Bjerknes and Max- 
well in 1873 [see Tamb']. 

An ideal inviscid liquid enclosed in a 
cavity which is initially at rest cannot 
attain any vorticity by the motion of the 
cavity walls, so that, for strictly inviscid 
fluid, the flow is irrotational (potential 
flow). 

Assuming potential flow for the liquid, 
Joukowski8 gave the general solution of 
the problem of motion of a solid body with 
cavities filled completely with ideal liquid. 
In particular, Joukowski has shown that 
the dynamics of a rigid body with cavities 
completely filled with an ideal fluid in irro- 
tational motion, can be expressed in terms 
of an "equivalent rigid body" replacing 
the liquid. The equivalent rigid body and 
the liquid have equal mass, and the same 

center of gravity; however, the moments 
of inertia of the equivalent rigid body are 
only fractions of the moments of inertia of 
the frozen liquid mass. Thus, the problem 
of motion is reduced to the computation of 
"effective" moments of inertia and to solv- 
ing the' equations of motion of a rigid body. 
The effective moments of inertia, which 
depend on the cavity shape, are known in 
many cases. The approach used by 
Joukowski approximately describes themo- 
tion of a liquid-filled projectile if the vis- 
cosity of the liquid is small and if the aver- 
age motion of the projectile is irrotational. 
If, however, the average motion of the pro- 
jectile contains a rotation about any axis, 
the liquid is dragged round to some extent 
by friction on the cavity walls and the flow 
ceases to be irrotational. Thus, according 
to its physical content, Joukowski's theory 
is not applicable in the case of a spin- 
stabilized projectile except perhaps at the 
very beginning of the motion. However, the 
yawing and pitching motion of a nonspin- 
ning liquid-filled projectile or the motion of 
a liquid-filled pendulum are correctly de- 
scribed by Joukowski's approach. 

On the basis of Joukowski's results, 
Chetaev21 solved the precisely stated prob- 
lem of stability of a solid body containing 
a cavity completely filled with liquid. The 
stability criterion given by Chetaev is anal- 
ogous to the stability criterion for a solid 
body, except that the moments of inertia 
of the liquid must be replaced by those of 
the equivalent rigid body. 

Adjoining the work of Greenhill, Hough, 
and Joukowski, many authors aimed at an 
extension of the theory. Stretenskii10, 
Moiseev11 12'13'19 , Okhotsimskii16, Rabin- 
ovich18, Narimanov17'23, and Rumiantsev14 

have considered the problem of motion of 
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a solid body with cavities partially filled 
with liquid. On the assumption that the 
liquid is ideal and incompressible, the mo- 
tion of the liquid is irrotational. For the 
case of small perturbation about a posi- 
tion of equilibrium, the equations of motion 
for the system of vessel and liquid are de- 
rived in Refs. 11, 16, 17 and 18. The dis- 
placement of the liquid from its equilibrium 
position was expanded in a series of func- 
tions with time-dependent coefficients and 
the problem was reduced to an infinite set 
of ordinary differential equations for the 
coefficients. A variational method (Ritz 
Method) to solve the equations was applied 
by Bogoriad44. 

In Ref. 13 the stability problem is re- 
duced to the problem of showing the posi- 
tive definiteness of a certain infinite quad- 
ratic form. Explicit solutions are obtained 
only in particular cases19. The same prob- 
lem is considered by Pozharitskii41 for the 
case that only potential forces are acting 
on the system. By the use of a theorem of 
Tagrange, it is shown that the system is 
stable in its equilibrium position when the 
potential energy of the equilibrium position 
has a minimum. 

The stability of the rotational motion of 
a body having a cylindrical cavity partially 
filled with liquid was first investigated by 
Narimanov23. He derived the equations of 
small perturbation of the spinning body and 
liquid. The problem led to aninfinite system 
of ordinary differential equations, reflecting 
that an infinite number of modes of oscilla- 
tions is involved in the perturbed motion 
of the liquid. No numerical results were 
obtained by Narimanov. 

An important step was made in 1959 by 
Stewartson2 , who solved the stability prob- 
lem for a spinning top with a cylindrical 
cavity completely or partially filled with 
liquid. According to Stewartson's theory, a 
heavy top with a small mass of liquid be- 
comes unstable when the nutational fre- 
quency of the top falls within a narrow 
bandwidth about any of an infinite number 
of natural frequencies of the liquid. The 
stability conditions obtained by Stewartson 

A-C-2 

were checked experimentally by Ward 
who found that in the main form the theory 
agreed with the experimental findings, but 
that there is also a certain discrepancy: 
the bandwidth of instabilities was found to 
be much broader than predicted. In an 
attempt to explain this discrepancy, Kos- 
tandian39 investigated the influence of the 
deviation of the free surface from an ideal 
cylindrical shape, but no conclusive results 
were obtained. A fiil explanation for the 
broadening of the bandwidth and a correc- 
tion of Stewartson's stability criterion was 
given in Ref. 63. 

Several authors consider the conditional 
stability relative to certain variables, but 
not all, that determine the motion of the 
mechanical system with an infinite number 
of degrees of freedom. Rumiantsev29,30'36, 

37,43,48 gave the general formulation and 
solutions of the problem of conditional sta- 
bility of spinning motion of a rigid body 
with cavities completely or partially filled 
with liquid. He posed the problem of sta- 
bility in relation to every variable charac- 
terizing the motion of the solid body and to 
some of the variables characterizing the 
motion of the liquid. On the basis of 
methods developed by Tiapunov5'28, suffi- 
cient conditions for the stability of the rota- 
tional motion are obtained. Similarmethods 
have been employed by Sobolov33, Ishlinsky 
and Temchenko34, Moiseev40, Tsel'man45, 
Pozharitskii 49>54, et al. 

The above investigations have led to 
general results regarding the stability of 
certain equilibrium states. However, since 
only sufficient conditions of stability could 
be derived, the results have no important 
applications with regard to the prediction 
of instabilities   of liquid-filled projectiles. 

A sufficient condition for stability of rota- 
tion about the vertical (z-axis) of a heavy 
symmetrical top with a cavity completely 
filled with ideal liquid is: 

(iz-gn2-MfgZo>o 

The above condition is equivalent to the 
condition:    -rn >  1.   If   Tn > 1, instability 
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could only occur if there exists an eigenfre- 
quency T0 > 1 of a mode of liquid oscilla- 
tion which interacts with the motion of the 
body. The theories of Greenhill and Stew- 
artson26 suggest that for all relevant eigen- 
frequencies   T0 <  1    Thus,  the prediction 
of Greenhill's and Stewartson's theory is 
consistent with the above condition  Tn  > 1, 
which was derived by Rumiantsev37 by an 
entirely different approach. 

If dissipative forces are present, it is 
necessary to distinguish between tempo- 
rary and secular stability. Joukowski8 has 
shown that, with relative motion between 
the liquid and the casing, energy is dis- 
sipated until a final state of solid rotation 
about one of the principal axes is attained. 
The final state is stable in the sense of 
secular stability. Kolesnikov42 derived as 
a sufficient condition for secular stability: 
Iz >  Iy 5^ Ix.    The   motion    is    stable 
when the axial moment of inertia is larger 
than  the   transverse  moments of inertia. 

A number of papers is devoted to the 
effect of viscosity on the motion of the 
liquid and the stability of a liquid-solid sys- 
tem. Theorems on dissipative mechanical 
systems with a finite number of degrees of 
freedom are extended by Pozharitskii54 to 
the liquid-filled projectile system. Making 
certain assumptions, Pozharitskii shows 
that the oscillations damp out when the 
potential energy of the liquid projectile 
system has an isolated minimum at the 
equilibrium state. 

Rumiantsev66 computes the motion of 
liquid-solid systems in two simple cases 
where only frictional forces are present: 
the oscillations of a liquid-filled cylinder 
about the axis of symmetry and of a liquid- 
filled sphere about the center. Ievlova59 

investigates the oscillations about a fixed 
axis of a pendulum having a spherical 
cavity filled with viscous liquid. 

A solution for the transition to uniform 
spin of the liquid within a spherical cavity 
for the case of small perturbation of the 
angular velocity  (linearized problem) was 

given by Greenspan47,53. Wedemeyer52 

solved the problem of spin-up for a cylin- 
drical cavity which, initially at rest, is sud- 
denly started to rotate. Stewartson and 
Roberts46 give a solution for the viscous 
flow in the spheroidal cavity of a precess- 
ingbody for the case of small perturbations 
about a state cf steady rotation. 

Recently, Chernous'ko ' ' made im- 
portant contributions to the theory of mo- 
tion of a body having cavities filled with a 
nonrotating liquid. Chernous'ko67 derives 
general equations of motion for the case 
where the cavity is completely filled with 
viscous liquid and where the main flow is 
irrotational. As in the inviscid case con- 
sidered by Joukowski8, the inertia proper- 
ties cb the liquid can be described by effec- 
tive moments of inertia. The viscosity in- 
troduces additional terms into the equa- 
tions of motion, representing viscous fric- 
tion. The additional terms can be expressed 
by a symmetric tensor, similar to the mass 
tensor, which depends on the cavity shape. 
Once the moments of inertia and the fric- 
tion tensor are known, the equations of 
motion reduce to ordinary differential equa- 
tions. It is supposed that the averagemo 
tion of the rigid body containing the liquid 
is irrotational and that the frequencies of 
oscillation are sufficiently large so that the 
effects of friction are restricted to a thin 
boundary layer zone near the cavity walls. 

The effect of viscous friction on the mo- 
tion of a spinning body having a cylindri- 
cal liquid-filled cavity was investigated by 
Wedemeyer 3. The solution, which was 
found in the form of a boundary layer cor- 
rection to Stewartson's solution, explains 
the experimentally observed broadening of 
the bandwidth of instability. 

Further investigations on the subject of 
liquid-filled projectiles, mainly at Ballistic 
Research Taboratories, have been pub- 
lished74-90. Refs. 76, 77 and 78 are con- 
cerned with further analysis of Stewart- 
son's stability criteria.   The attainment of 
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liquid rotation was investigated experimen- 
tally and theoretically in Refs. 79-83,the 
instability during spin-up in Ref. 84, and 
the effect cf liquid viscosity on the insta- 
bility of liquid-filled projectiles in Refs. BO- 

SS. Theoretical and experimental investi- 
gations regarding eigenfrequencies in non- 
cylindrical cavities are reported in Refs. 
89 and 90. 
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