<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD NUMBER</td>
</tr>
<tr>
<td>AD852875</td>
</tr>
<tr>
<td>LIMITATION CHANGES</td>
</tr>
</tbody>
</table>

TO:  
Approved for public release; distribution is unlimited.

FROM:  
Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; FEB 1969. Other requests shall be referred to U.S. Army Mobility Equipment Research and Development Center, Fort Belvoir, VA 22060. This document contains export-controlled technical data.

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAMERDC Notice dtd 15 Jul 1977</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
Report No. 6
RESEARCH ON ELECTROCHEMICAL ENERGY CONVERSION SYSTEMS
Interim Technical Report

By
R. T. FOLEY, D. H. BOMKAMP,
and W. R. BAIRD

February 1969

To
J. S. ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT CENTER
Fort Belvoir, Virginia

Prepared By
The American University
Washington, D. C.

Contract No. DA-44-009-AMC-1386(T)

DA Project/Task Area/Work Unit No. 1T061102A34A 00 023 EF

MAY 28 1969
RESEARCH ON ELECTROCHEMICAL ENERGY CONVERSION SYSTEMS

Interim Technical Report

By

R. T. FOLEY, D. H. BOMKAMP,
and W. R. BAIRD

February 1969

U.S. ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT CENTER
Fort Belvoir, Virginia

Prepared By
The American University
Washington, D. C.

Contract No. DA-44-009-AMC-1386(T)
DA Project/Task Area/Work Unit No. 1T061102A34A 00 023 EF
The investigation of electrochemical energy conversion systems has involved two specific tasks. The first has dealt with measurements of the solubility of oxygen in organic liquids which might provide the basis for high energy batteries. The solubility of oxygen in γ-butyrolactone is 5.5 ml/100 ml, in propylene carbonate, 1.7, in dimethyl sulfoxide, 3.7, and in N-nitrosodimethylamine, 6.6. The physical method used for these determinations gives results about 2.7% low when compared with literature values for the solubility of oxygen in water. No change in solubility was observed in butyrolactone due to the presence of added electrolyte – up to 0.8 M lithium perchlorate.

The second task deals with the mathematical analysis of electrochemical energy conversion devices. Attention was given to the solution of kinetic equations describing the hydrogen-deuterium exchange of an hydrocarbon on a catalytic surface saturated with deuterium. Kinetic expressions for a five step successive reaction for methane are solved by matrix techniques. These techniques should be conveniently handled by a digital computer and the expressions can be corrected for temperature, flow rates, and other experimental parameters.
Table of Contents

Summary ........................................................................ 1
Table of Contents .......................................................... 11
List of Illustrations ....................................................... iii
List of Tables ................................................................. iv
I. Introduction ............................................................... 1
II. Task Four - Oxygen Electrode in Propylene Carbonate ... 2
    A. Objective ............................................................. 2
    B. Solubility of Gases in Liquids ................................. 2
    C. Methods for Determining Solubility of Gases in Liquids
       ................................................................. 3
    D. Method and Apparatus Used .................................. 4
    E. Results and Discussion ......................................... 8
III. Task Seven - Mathematical Analysis of Electrochemical
     Energy Conversion Devices ................................. 15
     A. Background ....................................................... 15
     B. Discussion ......................................................... 16
     C. Matrix Solution of Differential Equation ............... 21
     D. Conclusions ....................................................... 25
Literature Cited ........................................................... 26
series of solvents. This plot is usually linear and gives rise to a
relationship between \( L \) and \( \gamma \) (3). This relationship has been
presented by Wal. (4) as:

\[
\log L = \frac{-1}{2} \frac{\sigma^2}{2} \frac{\gamma}{T}
\]

or, the energy required to form a cavity in a liquid surface is propor-
tional to the product of the surface tension and the area of the
cavity. This expression holds for simple, one-component solvent systems
but fails for more complex systems.

The solubility has also been correlated as a function of solvent
internal pressure (4 \( \Delta P_{\text{int}} \), with the higher internal pressure being
associated with the lower gas solubility (5).

From an empirical standpoint, it has been observed that the solubili-
ty of a gas will increase as a function of its solubility for solvents and
sizes. For simple, non-polar organic solvents, the order is \( \mathrm{CO}_2, \mathrm{H}_2, \mathrm{CH}_4, \mathrm{Ar}, \) and \( \mathrm{N}_2 \).


Many methods are reported in the literature and roughly they may
be placed in one of the following three categories:

a) physical
b) weigh-weigh

c) gas chromatography
List of Tables

Table I. Solubility of oxygen in water (22°C, 5°C) .................. 10
Table II. Solubility of oxygen in organic solvents
           (22°C, 5°C) ........................................ 11
Table III. Solubility of oxygen in lithium perchlorate-
           acetone solutions .................................. 12
1. Introduction

This is the sixth semi-annual report of research on high-energy electrical energy conversion systems. Up until now the overall program has been divided into seven tasks:

1. Determination of open circuit potentials of a series of couples in various electrolytes, and at various temperatures;

2. Determination of the reversibility of these couples;

3. Electrochemical stability of high-energy couples leading to evaluation of their couples as materials for construction of high-energy, electrically rechargeable storage systems;

4. Determination of kinetic parameters and evaluation of the rate limiting factors of selected reactions of electrochemical couples at appropriate electrodes;

5. Determination of kinetic parameters of selected reactions at catalytic electrodes;

6. Investigation of ion transport and redox behavior and/or electrolytes at elevated temperature, and

7. Conduct of an analysis of performance characteristics of electrochemical energy conversion devices.

The final four semi-annual reports in this series will cover work on Tasks 4, 5, 6, and 7. Current and future work are contained in Tasks 1 and 2.
II. TASK FOUR - OXYGEN ELECTRODE IN PROPYLENE CARBONATE

A. Objective

In the third progress report (1) on this project the concept and theoretical advantages of the air electrode were discussed. To interpret the experimental results from mass transport considerations it is necessary to know the solubility of \( \text{O}_2 \) in propylene carbonate. To correlate our results with those obtained in other systems it is required to know the solubility of oxygen in organic solvents such as \( \gamma \)-butyrolactone, dimethyl sulfoxide, dimethyl formamide, and 2-nitrosodiethylamine. A survey of the literature failed to yield the pertinent data on the solubility of \( \text{O}_2 \) in these solvents. For these reasons the solubility of \( \text{O}_2 \) was measured in a number of organic solvents.

B. Solubility of Gases in Liquids

There have been many approaches to the explanation of gas solubility in liquids including various ways of treating the experimental data. Some of these are discussed in the monograph by Hildebrand and Scott (2). None of the approaches have been universally applicable.

One of the more successful treatments of solubility data utilizes a plot of \( \log L \) (Ostwald absorption coefficient*), against \( \sigma \) (solvent surface tension) for a given gas in a

\[
L = \frac{v_g}{V_s} \quad \text{where} \quad v_g \text{ is volume of gas absorbed and} \quad V_s \text{ is volume of solvent absorbing.}
\]

* L = \( \frac{v_g}{V_s} \) where \( v_g \) is volume of gas absorbed and \( V_s \) is volume of solvent absorbing.
series of solvents. This plot is usually linear and gives us the relationship between \( I_c \) and \( \gamma \) (3). This relationship has been expressed by the equation:

\[
\log I_c = -\frac{4\pi^2}{\sigma} \frac{\sigma}{\gamma} + C
\]

or, the energy required to form a cavity in a liquid surface is proportional to the product of the surface tension and the area of the cavity. This expression holds for simple and constant solvent systems but fails for more complex systems.

The solubility has also been correlated as a function of solvent internal pressure (at 47°C) with the higher internal pressure being associated with the lower gas solubility (3).

From an empirical standpoint, it has been observed that the solubility of a gas will increase as a function of internal pressure, giving various experimental data for some gases. The order is \( \text{H}_2, \text{N}_2, \text{O}_2, \), and \( \text{Ar} \).

Other methods for determining the solubility of gases in liquids:

Many authors report the literature and normally they may be classified in one of the following, terms or pressure:

a) osmotic

b) electro-chemical

c) physical.

As a rule, the halogenated solvents that enter into the formation of the monosaccharides are the most effective because the halogen offers some resistance to the diffusion of a solute.
fication of the apparatus used by Lowry and Millott (3). This method was found efficient to furnish results of the desired accuracy, i.e., about 1%. The apparatus was constructed relatively easily, using commercially available lenses. It was possible to connect the apparatus to the existing vacuum distillation system so that an organic liquid could be depased by vacuum distillation and the receiver for the distillate could become the reservoir for the gas solubility apparatus.

Other modifications to the apparatus were possible to yield greater accuracy but the increased expense and difficulty of operation could not be justified.

The apparatus is schematically shown in Figure 1 and is pictured along with the vacuum distillation apparatus in Figure 2. This apparatus consists of the calibrated burettes joined at their bottoms. One of the burettes is attached to a rough liquid manometer to allow for maintenance of atmospheric pressure in one-half of the system. A large spiral is mounted on top of the other burette and provides a large area for absorption. As the degassed liquid is dripped from the reservoir into the spiral the liquid will flow down through the spiral and thin film.

A suitable surface area for absorption will then be presented to the gas. In reality the two burettes are separated by a 6-inch column of liquid so that there is a decrease of pressure in the absorption

type of tube in the spiral, with atmospheric pressure maintained in the reservoir. The amount of gas absorbed is equal to the volume of the生态圈 for the duration of the experiment.

The pressurization experiment is carried out as follows:

- 5 -
Figure 1. Diagram of an apparatus for measuring the concentration of solution with an absorption method.
Figure 2. Gas solubility apparatus and vacuum distillation unit.
1) The solvent is degassed. This is accomplished by vacuum distillation using the Nestor-Faust spinning band distillation column. The distillate is collected in a flask which is then attached to the top of the absorption apparatus via a ground glass fitting.

2) The U-portion connecting the two burettes is filled with pure solvent until the liquid stands at the zero level in both burettes.

3) The oxygen gas is flowed through the two burettes to completely fill them and to saturate the U-portion of solvent.

4) Both columns of gas are returned to atmospheric pressure and all outlets to the atmosphere are closed off.

5) The solvent in the reservoir is slightly pressurized with hydrogen to assume that it will flow into the apparatus. This is done through a gas inlet tube connected to the sample reservoir flask.

6) The solvent is dripped into the absorption spiral at a rate of about 2.5 ml/minute and collected in a volumetric flask as it flows out of the burette at the same rate.

7) After collecting some appropriate volume in the volumetric flask, such as 100 ml, the burettes are drained until the non-absorption side reads 0.0 ml. This indicates that that side is at atmospheric pressure. The amount of solvent above 0.0 in the absorption side is the amount of O₂ absorbed; this must be added to the volume collected.

I. Results and Discussion

One important modification made in the apparatus over that described by Korrisson and Billett (9) involved the use of a slight pressure head to maintain a flow of solvent into absorbing burettes. This pressurizing gas will be absorbed to some degree and then will be released into the spiral. This obviously decreases the observed solubility of oxygen in the organic
liquid by some magnitude. If the pressurizing gas is oxygen a large negative error would be expected. If the pressurizing gas were \( N_2 \) or \( H_2 \) a smaller error would be expected and the question was whether the error would be small enough to be tolerated. To investigate this effect and also to study the precision and accuracy of the method, a number of experiments were performed with water as the solvent. These values are reported in Table I. As expected, when \( O_2 \) was used as the pressurizing gas the values were quite low—by 58%. Although the pressurizing gas does not saturate the water during the time of exposure in the reservoir, considerable gas is absorbed. A series of experiments with \( N_2 \) as the pressurizing gas gave results that were 7.1% too low while \( H_2 \) produced an error of -2.1%. The nitrogen runs are not replicates as certain improvements in technique were introduced as the experimental work progressed. For example, in the early work the elapsed time between degassing the solvent and running the experiment was often several hours. Values closer to the accepted literature value were obtained when the experiment was performed directly after degassing through vacuum distillation. Experiments 3, 11, and 12 were run in this manner and the average coefficient, 0.0277, was lower than the accepted 0.02847 value (8) by 2.7%. The results given below for oxygen solubilities in the organic liquids should then be assumed to be low by about 3% assuming that the solubility behavior in these organic solvents is similar to that in \( H_2 O \).

In Table II are given solubilities of oxygen in \( \gamma \)-butyrolactone, propylene carbonate, dimethyl sulfoxide, and \( \alpha \)-nitroso(dimethyl)amine.
<table>
<thead>
<tr>
<th>No.</th>
<th>Initial</th>
<th>Osmotic Fed ( \text{cm}^3/\text{g} )</th>
<th>Osmotic Fed ( \text{cm}^3/\text{g} \text{CL} )</th>
<th>Osmotic Fed ( \text{cm}^3/\text{g} \text{NaCl} )</th>
<th>5.29°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>$c_0$</td>
<td>3.1/1.9</td>
<td>3.0</td>
<td>7.8</td>
<td>0.0073</td>
</tr>
<tr>
<td>02</td>
<td>$c_2$</td>
<td>3.1/1.9</td>
<td>3.0</td>
<td>7.8</td>
<td>0.0073</td>
</tr>
<tr>
<td>03</td>
<td>$c_1$</td>
<td>2.4/2.9</td>
<td>2.7</td>
<td>-</td>
<td>0.0372</td>
</tr>
<tr>
<td>04</td>
<td>$c_2$</td>
<td>10.5/20.9</td>
<td>2.7</td>
<td>-</td>
<td>0.0271</td>
</tr>
<tr>
<td>05</td>
<td>$c_2$</td>
<td>3.0/1.75</td>
<td>2.7</td>
<td>-</td>
<td>0.0271</td>
</tr>
<tr>
<td>06</td>
<td>$c_2$</td>
<td>7.8/23.4</td>
<td>2.7</td>
<td>-</td>
<td>(0.637)</td>
</tr>
</tbody>
</table>

\[ \Delta T = 5.29°C \]

\[ \frac{G_{eq} - G_{eq}^{0}}{G_{eq}^{0}} = \frac{G_{eq} - G_{eq}^{0}}{G_{eq}^{0}} \]
<table>
<thead>
<tr>
<th>Solvent</th>
<th>Solubility (g/100 ml)</th>
<th>Average</th>
<th>Literature Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-butyrolactone</td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propylene carbonate</td>
<td>1.7</td>
<td>0.223</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethyl sulfoxide</td>
<td>2.8</td>
<td>0.3312</td>
<td>0.016 (\text{H}_2/100 \text{ml}) (10)</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethyl sulfoxide</td>
<td>6.6</td>
<td>0.5775</td>
<td>(5 = 10^{-7}) (\text{H}_2/100 \text{ml}) (11)</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
there is not a sufficient basis for such conclusions. In the first place, the literature is very contradictory in regard to the isoelectric point of albumins. It is universally admitted that the isoelectric point of albumins is at about 

3.5, but this is not always true. In some cases, the isoelectric point of albumins is at about 5.5. This discrepancy in isoelectric point of albumins is not always true. It would appear that albumins have a particular isoelectric point for each solvent. In general, the isoelectric point of albumins is at about 5.5 in water.
Table III. Solubility of oxygen in lithium perchlorate - \( \gamma \)-Butyrolactone solutions

<table>
<thead>
<tr>
<th>Concentration ((-1\text{H}O, \ldots))</th>
<th>Solubility ((\text{ml/100 ml}))</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>5.6</td>
<td>0.0513</td>
</tr>
<tr>
<td>0.45</td>
<td>5.8</td>
<td>0.0531</td>
</tr>
<tr>
<td>0.6</td>
<td>5.4</td>
<td>0.0495</td>
</tr>
<tr>
<td>0.8</td>
<td>5.6</td>
<td>0.0513</td>
</tr>
</tbody>
</table>

Fig. 3 SOLUBILITY IN BUTYROLACTONE vs. LICI\(_4\) CONCENTRATION
a role in that gas saturated with oxygen by mechanical stirring or agitation and a pH difference would tend to yield high values. This might account for some of the results reported in the literature that appear to be high.
III. THE H2/DE REDUCTION WITH A Pt/Al2O3 CATALYST

6. Background

The reaction of hydrocarbons on a fuel cell catalyst is being studied by observing the *H-D exchange of the hydrocarbon on the surface saturated with D₂. Studying the kinetics of this exchange is complicated by the large number of ways in which deuterated species can be formed, which makes solution of the rate expressions difficult. In this section techniques for solving the rate expressions for the successive deuteration of methane are described. Kinetic expressions for first order successive reactions of the type

\[ A \xrightarrow{k_1} B \xrightarrow{k_2} C \]

have been solved for three step irreversible reactions. The rate expressions for the three step successive reaction are:

\[
\frac{d[A]}{dt} = k_1[B] \]
\[
\frac{d[B]}{dt} = -k_1[B] + k_2[B][C] \]
\[
\frac{d[C]}{dt} = k_2[B][C] \]

These expressions can be integrated to the form:

\[
[1] \quad (a) \quad \int k_1[B] dt = \int \frac{d[A]}{dt} dt \]
\[
[2] \quad (b) \quad \int -k_1[B] + k_2[B][C] dt = \int \frac{d[B]}{dt} dt \]
\[
[3] \quad (c) \quad \int k_2[B][C] dt = \int \frac{d[C]}{dt} dt \]

for a five step successive reaction.

\[
\frac{d[A]}{dt} = k_1[B] = k_2[B][C] \]

solution of the rate expression by calculus methods would be difficult.
by use of other techniques, these expressions can be solved more efficiently.

b. Discussion

Solution of the rate expressions for a five step successive reaction would be desirable in order to create a model for reactions such as the successive one site exchange of D for H in CH₄. When gaseous CH₄ is passed over a catalytic surface which has been exposed to D₂ such that all available sites are assumed to be occupied and only one exchange of D for H is made with each contact of the molecule with the surface, the reaction is:

\[ \text{CH}_4 + D \rightarrow \text{CD}_4 + H \]

If it is assumed that the rate of increase of a deuterated species is proportional only to the number of molecules of the lower deuterated species and the probability of transition from one species to the next higher deuterated species, first order reaction kinetics can be used for each transition between species and the rate expressions are:

\[ \begin{align*}
\frac{d[\text{CH}_4]}{dt} &= -k_{1} [\text{CH}_4][D] \\
\frac{d[D]}{dt} &= k_{1} [\text{CH}_4][D] - k_{2} [D][\text{CD}_4] \\
\frac{d[\text{CD}_4]}{dt} &= k_{2} [D][\text{CD}_4] - k_{3} [\text{CD}_4][\text{CH}_4] \\
\frac{d[\text{CH}_5]}{dt} &= k_{3} [\text{CD}_4][\text{CH}_4] - k_{4} [\text{CH}_5][\text{CD}_4] \\
\frac{d[\text{CD}_5]}{dt} &= k_{4} [\text{CH}_5][\text{CD}_4] - k_{5} [\text{CD}_5][\text{CH}_5] \\
\end{align*} \]

The solutions for these expressions are given in Appendix A and are:

\[ \begin{align*}
[\text{CH}_4] &= [\text{CH}_4]_0 e^{-k_1 t} \\
[\text{CD}_4] &= \frac{[\text{CH}_4]_0}{k_2} \left( e^{-k_2 t} - e^{-k_1 t} \right) \\
[\text{CH}_5] &= \frac{[\text{CD}_4]_0}{k_3} \left( e^{-k_3 t} - e^{-k_2 t} \right) \\
[\text{CD}_5] &= \frac{[\text{CH}_5]_0}{k_4} \left( e^{-k_4 t} - e^{-k_3 t} \right) \\
\end{align*} \]
Larson and Hall (12) assumed the expressions (1) to be applicable in the H-D exchange of CH₄ on a deuterated silica-alumina surface. In the absence of the solutions to all the rate expressions, the authors solved the first rate expression for the value of $k_{ol}$ and assumed that the rate of exchange per hydrogen atom is $(\frac{1}{2})k_{ol}$, regardless of the molecule reacting, i.e., $\lambda_{H_2}$, $\lambda_{D_2}$, $\lambda_{CH_4}$, $\lambda_{CD_4}$ - $\lambda_{H_2}$, $\lambda_{D_2}$ - $\lambda_{CD_4}$. This assumption implies that the rate of H-D exchange is constant, with a correction made for the number of H's available. This assumption provided $k$ values for the remainder of the rate expressions which were then numerically evaluated from the experimental data. The values calculated by the authors using this technique were consistent with the experimental values.

As a verification of the concentration expressions (2), the concentration of each of the deuterated species was calculated using the author's calculated value of $k_{ol}$ and the assumptions $\lambda_{H_2}$, $\lambda_{D_2}$, $\lambda_{CH_4}$, $\lambda_{CD_4}$ - $\lambda_{H_2}$, $\lambda_{D_2}$ - $\lambda_{CD_4}$. The calculated values agree with the experimental values within experimental errors, indicating that the assumptions regarding the $k$ values are reasonable. However, with the concentration expressions (2), it would not have been necessary to make any assumptions regarding the $k$ values, as each $k$ can be solved for independently using these expressions.
Since the probability of a H-D exchange does appear to be independent of the specie reacting, a binomial distribution of the deuterated species when at equilibrium is suggested where 

\[ \mu = \frac{4!}{(4-2)!} \cdot p^2 \cdot (1-p)^2 \]

The use of the binomial distribution is allowed by inspecting the manner in which each of the deuterated specie is formed. For example, in order to form D_2, there must have been two contacts of the CH_4 molecule with the surface in which an H-D exchange occurred, and two contacts with the surface in which an H-D exchange did not occur. If p=1/4 is the probability of any particular H of CH_4 exchanging on the surface, then the probability of two successful exchanges and two unsuccessful exchanges is \( p^2(1-p)^2 = (1/4)^2(3/4)^2 \). Since the number of ways in which four H atoms taken two at a time can be arranged is \( \frac{4!}{2!2!} \), the total probability of forming D_2 is

\[ \begin{align*}
\sum_{n=0}^{2} \binom{4}{n} (-1)^{n} (p^n)(1-p)^{4-n} &= \frac{4!}{2!2!}(p^2)(1-p)^2 \\
&= \frac{4\cdot3\cdot2\cdot1}{2\cdot1\cdot2\cdot1}(1/4)^2(3/4)^2 \\
&= \frac{1}{16} \cdot \frac{27}{16} \\
&= \frac{27}{256}
\end{align*} \]

The calculated values are:

\[ \begin{align*}
P_0 &= 0.3125 \\
P_1 &= 0.375 \\
P_2 &= 0.25 \\
P_3 &= 0.0625 \\
P_4 &= 0.0156
\end{align*} \]

The mean number of H atoms exchanged is \( 4(1/4) = 1 \)
When these probability values are expressed as a ratio:

\[ (C.H.I.) \sim 1 \]

\[ (C.H.D) \sim 1.25 \]

\[ (C.D.D) \sim 2.75 \]

\[ (C.H_2) \sim 0.67 \]

\[ (C.D_2) \sim 1.33 \]

The equilibrium distribution of the deuterated species from ref(12) are:

\[ (C.H.D) \sim 1 \]

\[ (C.H_2) \sim 1.25 \]

\[ (C.D_2) \sim 2.75 \]

\[ (C.D_3) \sim 0.67 \]

Thus far it has been assumed that only one H-D exchange can occur when a specie contacts the surface. If more than one H-D exchange can occur on contact with the surface, the following diagram represents the ways in which deuterated species can be formed:
When first order reaction kinetics are assumed, the rate expressions are:

\[
\frac{dc}{dt} = -(k_{m1} + k_{m2} + k_{d1} + k_{d2}) \cdot c(t) \\
\frac{dc}{dt} = k_{m1} \cdot (c_{m1}) - (k_{m1} + k_{m2} + k_{d1} + k_{d2}) \cdot c(t) \\
\frac{dc}{dt} = k_{d1} \cdot (c_{d1}) + k_{d2} \cdot (c_{d2}) - (k_{d1} + k_{d2}) \cdot c(t) \\
\frac{dc}{dt} = -(k_{m1} + k_{m2} + k_{d1} + k_{d2}) \cdot c(t) \\
\frac{dc}{dt} = k_{m1} \cdot (c_{m1}) - (k_{m1} + k_{m2} + k_{d1} + k_{d2}) \cdot c(t)
\]

The solutions to these expressions using the techniques described in Appendix A are:

\[
\begin{align*}
(c_{m1})_0 &= (c_{m1})_0 \cdot e^{-k_{m1} \cdot t} \\
(c_{m2})_0 &= (c_{m2})_0 \cdot \left\{ e^{-k_{m2} \cdot t} \right\} \\
(c_{d1})_0 &= (c_{d1})_0 \cdot \left\{ e^{-k_{d1} \cdot t} \right\} \\
(c_{d2})_0 &= (c_{d2})_0 \cdot \left\{ e^{-k_{d2} \cdot t} \right\} \\
(c_{m1})_0 &= (c_{m1})_0 \cdot \left\{ e^{-k_{m1} \cdot t} \right\}
\end{align*}
\]
When transitions between species other than by one-site exchanges are prohibited, the above expressions become identical to the previous expressions.

C. **Matrix Solution of Differential Equations**

The technique used to solve the differential equations was that of "compartment analysis" as introduced by Beauchamp (13,14). Each of the five species of the methane reaction is considered to be a "compartment." The number of molecules in each compartment is a function of time and the probability of a transition of a molecule into and from the compartment. At the moment the mechanism of transition between compartments is not important, rather it is desired to create a mathematical model which will explain the experimental values. The model then should describe the number of molecules in each compartment as a function of the above two variables. It follows that this model be exact and rigorous and be based on a minimum number of a priori assumptions. Once the exact model has been determined, assumptions can be made based on physical likelihood, valid approximations, etc. The purpose of the effort is to determine how the experimental data can be explained. The criteria usually being a least square error fit of the experimental values. Once the proper reaction parameters have been determined, mechanisms which are consistent with
the parameters can be postulated. If the experimental data cannot be explained under any conditions, then the model created is not applicable.

The generalized linear differential equation

\[ \frac{\Delta x_i}{\Delta t} = \sum_{k=1}^{m} k_{ik} x_k \]

\[ \Delta t = i, 2, \ldots, m \]

can be rewritten in matrix notation

\[ \dot{X} = KX \]

The solution of the matrix equation is

\[ X = e^{Kt} X_0 \]

where the vector \( X_0 \) is the value of \( x(t) \) at \( t = 0 \).

Saaty (15) shows the solution of the matrix \( e^{Kt} \) by

\[ e^{Kt} = \sum_{n=0}^{\infty} \frac{t^n}{n!} ( \lambda_1^{-1} K \lambda_1^{-1} ) \lambda_1^n \]

where \( \lambda_1, \lambda_2, \ldots, \lambda_n \) are \( N \) distinct, real positive roots of the determinant \( \Delta \).
Using the method of solving, Eqn. (16), gives the solution for the reaction \( \lambda_1, \lambda_2, \ldots, \lambda_n \).

The rate differential equations are:

\[
\begin{align*}
\frac{dX_1}{dt} &= \lambda_1 X_1, \\
\frac{dX_2}{dt} &= \lambda_2 X_2 - \lambda_3 X_1 X_2, \\
\frac{dX_3}{dt} &= \lambda_3 X_1 X_2 - \lambda_4 X_3 X_4. \\
\end{align*}
\]

In matrix notation, \( \mathbf{X} = \mathbf{A} \mathbf{X} \),

the solution being

\[
\mathbf{X} = e^{\mathbf{A} t}.
\]

The characteristic roots of \( \mathbf{A} \) are given by the roots of the determinant

\[
\begin{vmatrix}
\lambda - \lambda_1 & 0 & \cdots & 0 \\
0 & \lambda - \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda - \lambda_n
\end{vmatrix} = 0.
\]

The characteristic roots are \( \lambda_1, \lambda_2, \ldots, \lambda_n \).

The general solution is

\[
\mathbf{X} = \sum \left[ \begin{array}{c} v_j \end{array} \right] e^{\lambda_j t}
\]

for \( j = 1, 2, \ldots, n \).
evaluating the matrix product for \( \begin{bmatrix} 1, 1, 1, 1 \end{bmatrix} 
\end{equation}
when these products are performed by addition only, matrix addition.

\[
\begin{bmatrix}
-k_{1,1} & 0 & k_{1,2} & 0 \\
k_{1,1} & -k_{1,2} & 0 & k_{1,3} \\
-k_{1,2} & k_{1,3} & -k_{1,4} & 0 \\
k_{1,2} & -k_{1,3} & k_{1,4} & -k_{1,5}
\end{bmatrix}
\]

Substituting \( e^{K_t} \) into \( \mathbf{c}(0) \cdot e^{K_t} \mathbf{c}_0 \)

\[
\begin{bmatrix}
C_1 \\
C_2 \\
C_3
\end{bmatrix} = \begin{bmatrix}
\mathbf{c}_0 \cdot e^{K_t} \\
\mathbf{c}_0 \cdot e^{K_t} \\
\mathbf{c}_0 \cdot e^{K_t}
\end{bmatrix}
\]

In instances where the initial concentrations are zero except for \( C_1 \), where at \( t = 0 \), \( C_1 = 1 \), only the first column of the matrix \( e^{K_t} \).

need 1 for \( C_1 \), which essentially reduces the work required in multiplying matrices.

The above method can be applied to the rate equations of single
site reactions in general. It is somewhat unreasonable, in the latter
cases, to call the rate equations by a single site to step with
reaction \( 1, 1, 1, 1, 1 \).
D. Conclusions

Exact expressions have been derived for H-D exchange of methane on a surface of adsorbed deuterium. While the expressions are awkward to handle, valid approximations are available which will ease calculations.

From the symmetry of the expressions for the multiple site exchange, it appears that the expressions for other molecules can be deduced with a minimum of calculations.

There are several advantages to this method of solving kinetic expressions over calculus methods. In particular the matrix operations can be conveniently handled by a digital computer, not only to derive the concentration expressions but also to substitute experimental values into the rate expressions. Also in the matrix form, perturbation matrices can be included to apply any necessary corrections for temperature, flow rates, etc., without disturbing the original rate constant expressions.
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORT TITLE</td>
<td>Security Classification</td>
</tr>
<tr>
<td>REPORT DATE</td>
<td>October 1962</td>
</tr>
<tr>
<td>CONTRACT OR GRANT NO.</td>
<td>760-0001637-5 (9)</td>
</tr>
<tr>
<td>PROJECT NO.</td>
<td>003026</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>A description of the objectives, methodology, results, and conclusions of the research, development, or demonstration activity.</td>
</tr>
<tr>
<td>SPONSORING MILITARY ACTIVITY</td>
<td>DOD/AFOSR/AFSL</td>
</tr>
</tbody>
</table>
INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the originating department, agency, or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DOD Directive 52H40.6 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parentheses immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is involved.

5. AUTHORS: Enter the name(s) of author(s) as shown on the report. Enter last name, first name, middle initial, if used, and rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references used in the report.

8. CONTRACT/GRANT NUMBER: If applicable, enter the applicable contract number or grant number under which the report was written.

9a. AFDL/DOJ PROJECT NUMBER: Enter the appropriate military department or agency project number, contract number, system number, task number, etc.

9c. ORIGINATOR'S REPORT NUMBER: Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

10. OTHER REPORT NUMBERS: If the report has been accepted by another report number (either by the originating or by the sponsor), also enter this number.

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

(1) "Qualified requester* may obtain copies of this report from DDC."

(2) "For other distribution of this report is not authorized."

(3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

(4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

(5) "All distribution of this report is controlled. Qualified DDC users shall request through"...

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional supplementary notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office, laboratory sponsoring or undertaking the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicating the scope of the technical information. It may also appear at the end of the table of contents. If additional space is required an indication shall be attached.

It is specified that any changes made to the report be indicated by (1) the addition of new paragraphs, with an indication of the number of the paragraph appearing on the (2) table of contents; and with an indication of the number of the paragraph appearing on the (3) table of contents.

14. KEY WORDS: Enter key words that will serve as a factor for identification and retrieval of the report. Key words shall be taken from the table of contents and shall include the report number. The key words will be placed beginning with the first key word and shall be followed by the key word number in parentheses.

15. THE ACQUISITION OF INTELLECTUAL PROPERTY RIGHTS:...

Security Classification