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ABSTRACT

This is the last of a series of reports describing an experimental study
of the critical factors and mechanisms involved in achieving high-emission-
density cathodes capable of long life and reliable operation in electron tubes.
Detailed results of the work of the last reporting period of this investigation
are included herein, along with a review of the more significant develop-
ments of the entire two-year program. All of the objectives of the program
have essentially been met, and in some cases exceeded, resulting in a tung-
state cathode which represents an advance in the state of the art for high
current density emitters., Reliability and reproducibility were demonstrated
by consecutively fabricating and life testing eighteen cathodes. No rejects
or deviations were encountered, and initial characteristics were uniform fer
the entire group.

The tungstate cathode is unique in that it can supply higher continuous
emission currents over longer periods cf time than any other known cathode
system. Such performance was substantiated by extensive life testing in
diode tubes during the program. This investigation also has led tc the
development of generally optimum composition and processing procedures
(see Appendix A). The tungstate cathode upon which the bulk of the work
was placed is a metal-matrix unit containing porous tungsten as the matrix,
Distributed uniformly throughout the matrix in specific proportions are a
barium-stronium-tungstate compound corresponding to the formula BaSSr
(W06)2, and zirconium. After processing, a surface film of barium
zirconate was identified.

In addition to life testing of the standard-composition cathode, as de-
fined in Appendix A, studies were made of other compositions including those
containing greater zirconium content. During the last reporting period,
eighteen new cathodes, all containing extra zirconium, were started on life
test under widely differing emission densities and temperatures. The in-
creased zirconium appears to have stabilized the very low temperature
operation, and six cathodes are now beyond the 2, 000-hour point with no
downward deviations in emission levels.

An analysis of two tungstate cathodes, one of which had completed life
test, and the other a new and unactivated cathode, was made of electron
diffraction, electron microprobe, electron microscopy, and x-ray diffrac-
tion to gain an insight into the emission mechanisms of the barium-strontium-
tungstate cathodes. Structural and chemical changes that occur with life
were identified.




\u

A review of the resistance to poisoning by various gases and metal
vapor deposits on tungstate cathodes was completed.

Sublimation rates for tungstate cathodes were reviewed and compared
to the rates of other cathode systems.

Noise properties of the tungstate cathode were determined. The noise
properties of a standard barium oxide-on-nickel emitter, and a cornmercially
available barium-aluminate cathode, were evaluated on the same equipment
for purposes of comparison.

The emitting characteristics of tungstate cathodes were studied with
an emission microscope. The existence of local areas of high emissien
density dispersed through other areas of low activity was verified at typical
operating levels in a diode containing a dissecting arode apertere and an
auxiliary current probe,

11
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FOREWORD

This research and development program was directed toward an
experimental study of high current density cathodes for long life and re-
liable operation in electron tubes. Sponsored by the U.S. Army Elec-
tronics Command under Contract DA 28-043 AMC-02289(E), the work
was conducted under the technical guidance of the USAECOM Electron
Tubes Division, Techniques Branch, and followed Technical Guidelines
TT-29A dated 19 November 1965.
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REPORT

INTRODUCTION

This final report includes a review of the salient results of the entire
program, in addition to the more detailed results of the work performed
since the publication of Tri-annual Report No. 2, dated May 1968.

The technical guidelines for this program cover the requirements for
an experimental study of high emission density cathodes for long life and
reliable operation in electron tubes. The major objective of this research
and development program was a study of the critical factors and mechanisms
involved in achieving reproducible high emission density cathodes for the
following specific applications:

(a) Cathodes with very long life (tens of thousands of hours), low
. g o g .
sublimation rates at temperatures below 600 C, with the objec-
tives of 500°C at a current density of 50 MA /cm?.

(b) Long life cathodes (thousands of hours) for reliable operation
in the 3-10 A‘/cm2 current density range, with low sublimation
rates at the lowest possible temperature,

(c) Cathodes capable of delivering 30 A/cm2 with reproducible life
(hundreds of hours), reasonable sublimation rates and high

reliability,

In addition to the studies concerning cathode composition, preparation and
processing, other tasks include:

(a) Measurement of current density as a function of temperature
and plate voltage, and a derivation of work function,

(b) Measuremment of sublimation rate and products,
(c) Measurement of poisoning by gases and metal vapors.

(d) Measurement of noise.




(e) Electron-beam microscope analyses of the cathode surface.
(f) X-ray emission spectroscopy analysis of optimum cathodes.

(g) Surface characterization in an attempt to determine the emis-
sion mechanisms.

(h) Evaluation of cathode reliability and reproducibility,

LIFE TESTING

The initial characteristics of a cathode can be determined rapidly
after activation and preliminary aging. However, the relationships between
cathode life and its composition, preparation, and processing can only be
derived with assurance by actual life testing. In order to evaluate the
cathode alone, ie., in an environment free from variables introduced by
the test vehicle, it was necessary to first design a life test diode capable of
dissipating high emission currents, and also possessing a high degree of
r :producibility.

Such a diode was developed and subsequently used in all the cathode
life tests, proving to be a very reliable and satisfactory vehicle for the
purpose. Its general construction is shown in Figure 1. Pertinent features
include an all metal-ceramic vacuum enclosure to impart dimensional
stability; a water-cooled copper anode to allow high energy concentration;
and a sapphire viewing window for optically monitoring cathode temperature,
as a cross-check on the temperature determined by means of a platinum,
platinum-rhodium thermocouple attached to the cathode sleeve. A srnall
ion pump served the dual purpose of maintaining the integrity of the vacuum
and monitoring the gas evolution patterns throughout the test.

Previous studies!'? esiabiished the potential of the barium-strontium-
tungstate activated matrix cathode for high emission densities and long life,
In the present program, additional studies were conducted on modifications
of the basic tungstate matrix cathode, including the composition and process-
ing of the cathode materials and life testing in a standardized diode under
various temperatures and current densities. The effects of evaporated
metallic coatings over the cathode emitting surfaces were evaluated, and
various analytical techniques, such as x-ray and emission microscope, elec-
tron diffraction, electron microscope and microprobe analysis were conducted
to characterize the emitting surface and to gain an understarding of the
mechanisms of the cathode.




Figure 1 - Life Test Diode Assembly




From the many cathodes studied, 66 cathodes were chosen as being
worthy of extended life test evaluations. From this number, only 56 cathodes
had accumulated hours on test, with the other ten being lost during diode
assembly, processing, or from vacuum leaks in the diode bodies., Life
characteristics were taken over a wide range of temperatures and current
densities, ranging from 600°C to 11000C, and from 50 milliamperes to 30
amperes per square centimeter, respectively.

Figure 2 is a summary of life versus temperature for standard tungstate
cathodes as measured in close-spaced diodes during the program. These
data were sclected from those cathodes that have reached end of life {a point
arbitrarily chosen as the value where cathode emission has fallen 10 percent
or more from its initial value) due to natural wearout. No included are the
failures induced by other unrelated causes. The solid line on this curve
represents an average of actual accurmulated data, while the dotted portion
is an extrapolation for predicting cathode life at the lower temperature con-
ditions. These results are typical of those encountered in low-voltage diodes,
and should be indicative of life in favorable tube environments. In less favor-
able tube environments, however, life predictions may be significantly altered
by conditions such as excessive ion bombardment resulting from the presence
of residual gases in high-voltage tubes, or the presence of evaporated metallic
coatings caused by electron collection on various tube components. To achieve
the maximum life of any thermionic cathode system -- the tungstate cathode
is no exception -- a non-hostile environment must be provided.

At the close of this final reporting period, a total of 56 cathodes had
been started on life test. Eighteen of these -- numbers HCD-50 through
HCD-67 -- were new cathodes not previously reported. Nine cathodes --
numbers HCD-3, -25, -37, -49, -58, -59, -60, -63, and -65 -- were re-
moved from test, leaving a total of twenty cathodes still operating.

The final eighteen cathodes placed on test, a group having identical com-
position and uniform processing, contained double the amount of zirconium
employed in the standard mix defined in Appendix A, The intention for tkis
group, in addition to determining the effects of the extra zirconium, was to
gain an insight into the spread of emission characteristics and variations in
life that can be expected from repetitive construction of tungstate cathodes.

In preparing this group of cathodes containing double the amount of
zirconium, a different compaction pressure and sintering schedule were found
to be necessary. DLetails for this composition are given in Appendix C. Once
this new schedule was established, all eighteen cathodes -- HCD-50 through
HCD-67 -- were assembled in sequence with no rejects or defects occurring
during processing or testing. The initial characteristics of this group of
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cathodes, as shown by the corresponding emission/temperature data curves
taken from life test diodes, were remarkably uniform.

A summary of the results of all the cathodes that were on life test at
the start of the last reporting period, and of the new cathodes placed on life
during this interval, follows. Associated curves for the final-period cathodes
are also included as Figures 3 through 62. These curves are tabulated on the
next page opposite their corresponding tube designations to facilitate reference.
A comprehensive summary of all life test results up to the close of the final
period is given in Tables I and II. Cathodes having completed test are pre-
sented in Table I on pages 72 and 73, with cathodes currently on test given
in Table II on page 74.

Fig. No. Tube No. Fig. No. . Tube No.

3 HCD-3 (Life Test) 33 HCD-57 (Emission)
4 HCD-4 (Retest) 34 HCD-57 (Emission)
5 HCD-9 (Life Test) 35 HCD-57 (Retest)

6 HCD-17 (Life Test) 36 HCD-57 (Retest)

7 HCD-25 (Life Test) 37 HCD-58 (Life Test)
8 HCD-26 (Life Test) 38 HCD-58 (Emission)
9 HCD-32 (Life Test) 39 HCD-58 (Emission;j
10 HCD-37 (Life Test) 40 HCD-59 (Life Test)
11 HCD-40 (Life Test) 41 HCD-59 (Emission)
12 HCD-47 (Life Test) 42 HCD-59 (Emission)
13 HCD-49 (Life Test) 43 HCD-60 (Life Test)
14 HCD-50 (Life Test) 44 HCD-60 (Emission)
15 HCD-50 (Emission) 45 HCD-60 (Emission)
16 HCD-51 (Life Test) 46 HCD-61 (Life Test)
17 HCD-51 (Emission) 47 HCD-61 (Emission)
18 HCD-51 (Emission) 48 HCD-61 (Emission)
19 HCD-52 (Life Test) 49 HCD-62 (Life Test)
20 HCD-52 (Emission) 50 HCD-62 (Emission)
21 HCD-53 (Life Test) 51 HCD-63 {Life Test)
22 HCD-53 (Emission) 52 HCD-63 (Emission)
23 HCD-54 (Life Test) 53 HCD-64 (Life Test)
24 HCD-54 (Emission) 54 HCD-64 (Emission)
25 HCD-55 (Life Test) 55 HCD-65 (Life Test)
26 HCD-55 (Emission) 56 HCD-65 (Emission)
27 HCD-55 (Emission) 57 HCD-66 (Life Test)
28 HCD-56 (Life Test) 58 HCD-66 (Emission)
29 HCD-56 (Emission) 59 HCD-66 (Emission)
30 HCD-56 (Emission) 60 HCD-67 (Life Test)
31 HCD-56 (Retest) 61 HCD-67 (Emission)
32 HCD-57 (Life Test) 62 HCD-67 (Emission)
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HCD-3 Cathode (Figure 3): This cathode operated at a temperature
of 950°C and a current level of 6.5 A/cm? out to 6700 hours. Although a
minor decline in emission was noted after a cooling-water stoppage occurred
at this point, the cathode was still operating at 5,75 A/em“ at the 11, 700-
hour mark, After 14,000 hours of operation, emission declined rapidly to
approximately 2 A/cm? at 14, 300 hours, at which point testing was terminated,

HCD-4 Cathode (Figure 4): The HCD-4 cathode has accumulated 16, 500
hours of operation at 800°C, with a constant current density of approximately
0.40 A/cm?. Life testing continues.

HCD-9 Cathode (Figure 5): At 10,450 hours, this cathode was operat-
ing at a current level of 5,15 A/cm? at a temperature of 900°C. Emission
has steadily declined thereafter to approximately 3 A/cm® at 16, 000 hours,
Life testing continues.

HCD-17 Cathode (Figure 6): This cathode differs from the standard
composition in that the tungstates were fired three times while they were
being prepared, instead of the two firings usually employed, After operat-
ing steadily at 900°C at an emission of 1,65 A/cm? out to 10, 000 hours, the
emission increased to 2. 16 A/c.m2 at the 13, 000-hour point, At 15,000
hours, emission still continues stably at the 2. 16 A/cmé level, Life testing
continues,

HCD-25 Cathode (Figure 7): The processing of this cathode deviated
from standard, in that the preactivation step (a 10 minute flash at 1200°C)
was not used, Operating at 950°C, the HCD-25 cathode emitted stably out
to 8500 hours, at which point the test was terminated, Over this interval,
the initial current density of 4 A/cm? declined only slightly to approximately
3.5 A/cm? at end of test, despite a cooling-water deficiency which occurred
at the 3500-hecur point,

HCD-26 Cathode (Figure 8): Originally operating at 950°C and 5 A/cmz,
this cathode continues to exhibit increasing emission, reaching 5.5 A/cm? at
9, 000 hours and 6 A/cm2 at 13,000 hours, Life testing continues.

HCD-32 Cathode (Figure 9): The HCD-32 cathode was placed on oper-
ation at 750°C and a current density of 0,15 A/cmz. This emission has %n-
creased with time, as shown in Figure 9, and is currently at 0,24 A/cm
after logging 12,000 hours. Life testing continues.
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HCD-37 Cathode (Figure 10): This test was one of a series conducted
to determine the lowest stable operating temperature of the standard -mix
cathode., The HCD- 37 cathode was placed on lifz test at 700°C on a emission
density of 0. 05 A/cm?. After an initial drop, emission remained stable at
0.045 A/cm? up to 5200 hours, at which point it was removed from test,

HCD-40 Cathode (Figure 11): The HCD-40 cathode, which contains a
higher zirconium content (0.734 w/o) than the standard mix, began operation
at 650°C and 0.075 A/cm®. Generally stable emission has been maintained
at this level out to th= 1, 000-hour point. Life testing continues.

HCD-47 Cathode (Figure 12): This cathode constituted a special test
involving twice the normal zirconium content, a cornpaction pressure of
78 TSI and 2.5 minutes of sintering. Starting on test at a temperature of
650°C and an emission density of 0.12 A/cm#, this cathode has exhibited
stable emission with time and has currently logged 8000 hours of operation.
A definite improvement ir the low-temperature operation of tungstate
cathodes is in evidence here, through the use of additional zirconium.
Life testing continues.

HCD-49 Cathode (Figure 13): The HCD-49 cathode was identical to
HCD-47 in composition and processing, with the excepiion that a compacting
pressure of 95 TSI was applied in this case., The higher pressure was used
because it has been observed that the denser compacts improve the machin-
ing properties of the cathode. Through evaluations of life versus various
compaction pressures, the optimum cathode density can be ascertained,
Operating at 1050°C, this cathode remained within the range of 13 to 14, 75
A/cm” through 2500 hours, followed by a gradual decline to approximately
9 A/cm® at 3000 hours, at which point he test was terminated.

HCD-50 through HCD-67 Cathodes (Figure 14-62): This group com-
prises the final eighteen cathodes placed on life test during the program.
All of these cathodes contained double the zirconium content (Appendix C!}
employed in the standard mix (Appendix A). Special emphasis was placed
on making them uniform in terms of compos1t1on and processing. Six cath-
odes of this group were started on life at 650° C at a current density of approxi-
mately 0. 050 A/cmz; six were started at 975°C and 8 A/cm®; and six were
started at 1100°C and 30 A/cm?.

It was the initial intent of this portmn of the life test program to ope
ate the second group of six cathodes at 95C °C and at a current density of 8
A/cmz. The first diodes constructed for life test indicated that this emission
level was borderline with the particular batch of emission material prepared
for this test. With the concurrence of the sponsoring :gency, the cathode
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temperature was increased to 975 C for the 8 A/cm  condition. At the
same time, a new batch of emission material was processed, and all eighteen
life test cathodes were made from this new batch.

An examination of the characteristic curves (Figures 14 through 62)
reveals the excellent uniformity existing throughout this group. The initial
emission appeared to be comparable to that obtained from the majority of
the standard composition cathodes. However, in the high-temperature and
high-emission tests (Conditions ""b'" and ''c'"), the cathode emission declined
uniformly with time. Figures 14, 19, 21, 23, 62, and 64 illustrate this for
Condition "b" (8 A/cm?2). Such a decline in emission might be caused by
operating the cathode too close to the knee of the voit/ampere curve (the
point where the emission changes from space-chargc-limited current to
temperature-limited conditions).

This decline in emission with time did not occur in most of the stand-
ard composition cathodes life tested under similar conditions. For example,
iz. reviewing the performance of standard composition cathodes, cathode
number BTA-6, which was operated at a lower temperature of 950°C and
8 A/cmz, exhibit.d a rising emission during the first 800 hours on life, and
in spite of equipment difficulties, remained quite constani: over a 2200-hour
period. Similarly, cathode HCD-2, operating at 8 A/cm ™, but at the higher
temperature of lOOOoC, showed constant emission characteristics over the
first 1800 hours on life, Cathode HCD-3, operating at 950°C, but at a cur-
rent densityof 6.5 A/cmz, had a flat emission characteristic to well past
10, 000 hours. Cathode HCD-14, operating at lOOOoC exhibited a risiag
eruission current from 7.5 A/cm® to 8.5 A/cmz over the first 300 hours on
life. Other life test cathodes -- numbers HCD-15, HCD-25, HCD-26, HCD-
27, HCD-3!, and HCD-23 -- all operating at 9500C, but at lower emission
levels, exhibited either a flat or rising current during the early stages of
life testing.

The decline in emission ezxperienced with the double zirconium cathodes
life teste 1 at llOOOC, 30 A/cm” (Condition "c'') can be seen in the data for
cathodes HCD-58, HCD-60, HCD-63, and HCD-65 (Figures 37, 43, 51 and
55, respectively). Three other cathodes of this group -- HCD-56, HCD-57,
and HCD-59 -- reczcived special aging.in an attempt to stabilize emission at
this high current level. Of these three, cathode HCD-59 alonc exhibited
superior performance and maintained a flat emission character:stic to 800
hours.

B comparison, standard composition cathodes operated under Con-
dition "¢" -- HCD-5, HCD-6, HCD-7, HCD-8, HCD-12, and HCD-2! --
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generally exhibited the flat or rising emission patterns during the early
stages on life test, There was a wider spread in characteristics in this
group, but this spread could be attributed to minor variafions in processing
which were being studied with these cathodes.

This pattern was reversed at very low temperature (Condition "a''),
howev=2r, where the emission of the double zirconium cathodes remained
constant or increased with time, thus providing a high degree of probability
that the extremely long life objective of this program has been met. Al-
though the 500°C target was not attained. the 600°C objective has been
demonstrated in life test diode HCD-51, The remaining seven cathodes
are on lifs test at 650°C. Several of these -- namely, HCD-47, HCD-57,
HCD 61, and HCD-66 -- all have a 0. 0"0 A/cm  emission capability at
600° C, although they are on test at 650°C and at higher current densities.
Two cathodes, HCD-40 and HCD-47, are well beyond 10, 000 hours on life
test with no indication of emission deterioration. Cathodes HCD-51 and
HCD-55 are beyond the 5,000 hour mark with similar stable characteristics.

Further, in preparing the final eighteen life-test cathodes, some evid-
ence was encountered that prolonged uperation at a low temperature _and low
current density contributed to more stable operation at the 30 A/cm” levels
(as shown by the excellent performance of cathode HCD-59, where a pre-
liminary aging of 600 hours at 650°C preceded the high-temperature tests).
Accordingly, cathode HCD-57, which had operated for 1600 hours at 0. 117
A/cm2 at 650° C, was rescheduled to 30 A/ (Condltlon ""¢e"). However,
a power failure of the DC lines to the bui‘dmg at the 100-hour point allowed
the cathode to overheat due to the loss of electron cooling at this high emis-
sion level. A declining emission up to the 250-hour point (as possibly
caused by the overtemperature) made this test inconclusive and the cathode
was again rescheduled to its original condition ("a'"). Although the emission
remained fairly constant during the next 1600 hours, it is only hali that of
the original level of 0.117 Alcm?, indicating that the activity was impaired

during the high current or overtemperature exposure during operation at
1100°C.

Two exceptions to the otherwise consistent pattern of the double zir-
conium cathodes were noted in HCD-48 and HCD-59. HCD-48 was the first
of the double zirconium cathodes operated for any length of time at 30 A/cm?,
This test was made to evaluate the effects of the shorter sintering schedule
used with this composition, HCD-48 had outstanding emission properties,
During the first 250 hours, emission rose from 37 A/cm? to over 46 A/cmz,

and remained at that level to the 500 hour point, where equipment failure

10




caused permanent damage to the cathode. In subsequent tests, using the
same materials and processing procedures, the superior emission properties
could not be duplicated.

In summarizing the overall life test results, and in particular the
cathodes containing double zirconium it appears that the extra zirconium in-
creases the low temperature activity and makes nossible the achievement of
goals for Condition "a'", ie., very low temperature, long life, low current
density operation. Although the initial activity of this group of cathodes is
high, as discnssed above, most of these cathodes exhibit a slow but steady
drop in emission versus time under Conditions "b" and "c'". This behavior
is typical of barium oxide on nickel cathodes, where the nickel substrate
contains large amounts of active reducing elements; initial activity is high,
but emission tends to fall more rapidly with time than in cathodes made with
less active nickel.

In spite of the added complications encountered with the cathodes con-
taining the extra zirconium, all eighteen cathodes were processed in sequence,
and all exhibited uniform emission characteristics in test diodes. None of the
cathodes were rejected at any stage of manufacture or processing. This de-
gree of consistency on a small quantity of eighteen suggests that reproduci-
bility should be no problem on a large manufacturing scale.

It was observed that cathodes containing the higher zirconium content
were more susceptible to deterioration by atmospheric moisture after the
sintering. Also, in machining these cathodes it was more difficult to obtain
a smooth and flawless surface. These observations suggest that it might be
profitable to individually adjust cathode composition for every specific cur-
rent density, or other environmental condition, to obtain maxium life. Many

additional life tests are necessary to bracket and document these parameters.

If the factors that contribute to the extremely high activity of cathode
HCD-48 can be identified and duplicated, the usefulness of the tungstate mat-
rix cathode could be upgraded by at least another 50 percent. In spite of
intensive efforts, the reasons for the appeararcc. of the occasional super
cathode have not been isolated. The existence of such cathodes oifers un-
refuted evidence that a potential for additional upgrading of the tungstate
cathode still exists. As a result of the studies conducted during the past two
years, cathodes can now be reliably manufactured to consistently deliver 30
A/cm® emission. Even further progress in cathode pevformance can be
expected with continued research.
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Table I - Summary of Life Test Results Completed to Date

Cathode Life* Initial llours
Diode* Temp. Test Current on
(Cath. No.) °c)_ Cond. Alem?) Life_ Remarks _
BTA-6 950-974 b 8 2500 Rescheduled at 750 hours
HCD-1 650 a 0.G55 1200 Rescheduled at BSOOC at end of 1200 hours;
850 a 1.5 8800 stable emission, followed by gradual de-

cline; at 4700 hours cooling-water failed,
resulting in decline in emission to 0.65
A/lcm? at 5000 hours, recovering to 0.775
Alcm” at 7200 hours,

HCD-2 1000 b 8.4 5300 Stable to 1600 bours; decrecasing emission
to 5300 hours

HCD-3 350 b 5 14300 Useful life approx. 14,000 hours; water
failure at 7000-hour point may have
contributed to early failure

HCD-5 1050 c 13-15.8 750 Stable over ﬁzrst 500 hours; decreased to
B.5 A/cm” at 750 hours

HCD-6 1100 c 18-24 800 Stable over first 500 hours; decreased to
4 A/em? at 800 hours

HCD-7 1075 c 314 410 Stable to 300 hours: decreased to 26 A./cmZ
at 410 hours

HCD-8 1050 c 15. 5 1100 Generally stable to 1000 hours; decreased
to 10,5 A/cm? al 1100 bours -

HCD-11 1100 b 8 550 Rapid drop in emission with time; anode
cooling-water failure

HCD-12 1100 c 30 890 Good emission after 80 hours (see Second
Quarterly): gencrally stable to 300 hours
followed by decreasing emission

HCD-13 1100 b 8 1250 Stable for first 550 hours, followed by de-
creasing emiss.on

HCD- 14 1000 b 7.5 1909 Emissioré nassed through maximum of 8.5
Alcm” at 250 hours, followed by de-
creasing emission after 700 hours

HCD-15 950 b 4,75 4000 Generally stable through 930 hours, de-
creasing thercafter

HCD-16 1100 c 10 12 325 Special cathode, triple fired tungatate (sce
text), rise in emission from 10 to 12
Alcm? in first 20 hours, then rapid drop
in emission; cooling-water failure

HCD- 18 1100 b 7.5 210 Special catbode, double zirconium concentration,
(see Third Qnarterly); erratic emission;
cathode expanded

HCD-20 1100 b 4.¢5 750 Lower compaction pressure, stable emission for
400 hours, followed by decreasing emission

HCD-21 1100 c 19 736 Lower compaction pressire, cinission stablized
at 22 A/cm? in first 120 hours; rose suddenly
to 29 Afem™; stable at 29 Arem? to 340 honrs
followed by decreasing emission

HCD-25 950 b 4 8500 Special test,  Stanle emtssion over this
tinte span

HCD-27 950 b 5-11 6020 Spretal test - muxed H.ngﬁr(\\r‘()(,)z: emission
tmproved with lite to tune of cooling -water
inctdent, dechiming thereafter to pressnt
value of 6.5 Alem?

HCD-28 1000 b 5 4100 Special test - 1, suhstitned for Zriy, de-
creasing alter 800 nonrs

HCD- 3! 580 b 5 44031} Speaial test onamachiming, emisston constant at

1200 ltoar , tollowed by decreasing emission

after cool.nc-water tarlure
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Cathode

Diode** Temp.
(Cath, No.) (°C)
HCD-33 950
HCD-35 1030
HCD-37 700
HCD-38 1000
HCD-42 1050
HCD-43 1050
HCD- 44 oo
HCD-45 ooo
HCD-46 1050
HCD-48 1100
HCD-49 1050
HCD-58 1100
HCD-59 1106
HCD-60 1100
HCD-63 1100
HCD-65 1100

Table I - (Cont)

Life™® Initial Hours
Test Current on
Cond., (A/cm?) Life Remarks
b 3.75 2500 Special test on sintering; emission stable through
920 hours, falling off thereafter to 2,17 A/cm?
b S| 1880 Special test on copper coatings; emission constant
out to 1000 hours, declining gradually thereafter
to 1.9 A/cm® at end of test; rate of decline be-
cante more rapid after cooling-water failure
a 0. 050 5200 Stahle emission up to time of removal from test
b 4.7 2660 Special cathode containing nickel layer; stable
emission for 800 hours, followed by progres-
sive decline to 2.5 A/cm¢
b 9 1240 Special test using evaporated nickel layer on cathode
(see test); after pgeliminary test at TOOOC, re-
scheduled at 1050°C, 9 A/cm®; emission stable
to 400 hours, declining progressively to 3 A/cm
at 1240 hours
c t3.6 2710 Special cathode containing double the standard
amount of zirconium and prepared with reduced
compacting pressure (60 TSI); emission stable
at 13.4 A/cm
- -- ---- Philips cathode for noise rneasurement only
- -- ---- Not tested, Discarded due to short circuit anode-
cathode
c 13.5 2960 Same composition as [ICD-43, except that com-
paction pressure of 78 TSl was used
[ 37-46.5 500 Douhle zirconinm; 78 TSl compaction pressure
c 13 3000 Double zirconium. Special test of higher compac-
tion pressure at 95 TSI
c 29 720 Double zirconium mix., Emission declining after
200 hours
c 30 960 Double zirconium mix, Excellent life for this
current, Cathode preaged for 600 hours at
0. 100 A/cm? and 650°C
[ 30 850 Double zirconinm mix. Emission shows steady
decline after initial 40 hours
[ 30 725 Double zirconium mix. Steady declining emission
throughout life
< 10 an Double zirconium. Steady decline to 17 A/cmz at

900 hours

*Life-Tel! Conditions:
A - 0,050 A/cm?
b-3to10Afcm?
¢ - 30 Aleind

H‘Calhudcs nutmbered HCD-10, -19, -22, .23, -24, -29, -30, -34 and - 3¢ were not
placed on life test because of varions mechanmcat or etedtrical defects, such as open
heaters, leakers, cathode-to-anode shorts, excesnive gas, ete,, which oconrresd
during asvembly or processing, thux making them unsuitable for life test purposes,




Table II - Summary of Life Test Results of Tubes
Operating at End of Program

Life
Cathode Lifex Initial Nours
Diode Tgmp. Test Currcrp}l to
{Cath, No.) (c Cond, (Alemi™) Date Remarks

HCD-4 800 a G. 400 16,500 Stable emission at 0,370 Af(.'mZ

HCD-9 900 b 6 i6, 000 Stable emission te 10, 000 hours,
Declining cimiission to 1/2 initial
at 16, 000 -hour point

HCD-17 9uy b 1.7 15, 000 Emission increased at 10,000-honr
point._ Stable emission at 2,16
A/em? after 13,000-hour point

HCD-26 950 b 5 13,000 Eamission increasing with time,
stablizing at 6 Alem? after 11,000
hours

HCD-32 750 a 0. 160 12,200 Emission increaging with time; now
at 0,240 Afcm?®

HCD-40 650 a 0.075 11,000 Special test, Higher zirconium
content, Generally stable emission

HCD-47 650 a 0. 120 8,000 Special test; double zirconium, 78
TSI compaction pressure. Stable
emission with time

HCD-50 975 b 8 3,400 Double zirconinm,; emission decreas-
ing with time

HCD-51 600 a 0. 060 3,400 Double zirconium, Stahle emisgsion

HCD-52 975 b 9,75 2,400 Double zirconium 8% decline in
emission during this interval

HCD-53 975 b 8 2,400 Double zirconium, Steady decline in
cmission to 4.5 Afcm?

HCD-54 975 b 7.5 2,400 Double zirconium. Steady decline in
5.75 Alem?

HCD-55 650 a 0. 055 3,000 Double zirconium. Rising enission
to 0,088 A/cm

HCD-56 650 a 0,065 ¢,000 Double zirconrium, Steady emission
to 2000 hours

HCD-56 1100 c 29 1,200 Rescheduled to 1100° and condition c.
Emission fell to 1/2 initial during
this 1200-hour period

HCD-57 650 a 0. 105 1,600 Double zirconium, Steady emission

HCD-57 1100 ¢ 30 250 to 1600-hours. Changed to 11007,

HCD-57 650 a 0. 065 1,700 30 Alem?. Steady at this level for
250 heurs, Changed hack to ariginal
conditions, kmission steady at
approx. 1/2 of original valae

HCD-61 650 a 0, 080 2, 100 Double zireoniumy, Emission rising to
0. 130 Afem with time

HCD-62 975 b 9.2 1,900 Double zirconium, Eumssion steady to
600 hours. Slow decline to 7.7 Alcem?

HCD-64 975 b 8 1,775 Double zirconium, Steady decline to
5.95 Afcm? at 1775 hours

HCD-66 650 a 0. 085 2,400 Double zirconium,  Rising emission
trend to 0, 126 A/em? at 2400 hours

NCD-67 650 a 0,049 }, 650 Donble sirconivia,  Steady enussion
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ANALYSIS AND CHARACTERIZATION OF EMITTING SURFACE
OF OPTIMUM CATHODES

Amendment No. 1 dated 17 October 1966, to Technical Guidelines
TT29-A, outlines the task, "Where feasible, x-ray ernission spectroscopy
analysis of optimum cathodes will be performed',

Exhaustive investigation of composition and processing, as verified
by life testing, has established that the performance of the barium-strontium-
tungstate matrix cathode as defined in Appendix A is near optimum, Further,
as discussed previously, more recent modifications utilizing extra zirconium
give promise of extending the temperature range and useful life of the tung-
state cathode. Thus one cathode of each composition was fabricated and
delivered to Ernest F. Fullam, Inc,, Scientific Consultants, for analysis.
Before delivery, these cathodes were pre-tested, to ensure that emission
characteristics were of acceptable quality, and encapsulated in evacuated
glass tubes.

These cathodes were examined by reflection electron diffraction, elec-
tron microprobe analysis, and replicated for electron microscopy. Although
no significant differences could be detected between them, some totally un-
expected findings did come out of this investigation, as will be discussed
below,

To complement and broaden the scope of the analysis, two more cathodes
were delivered to Fullam, Inc. for additional tests. One cathode was newly
fabricated, but not activated or operated in vacuum. The second cathode was
removed from a life test diode. Before removal from the life test, the
cathode was purposely operated at a high rating to accelerate the depletion
of emission.

The report of this second series of investigations is reprocuced in total
in Appendix B. In summarizing the findings of the investigations, several
valuable concepts and some totally unexpected results are noted. Perhaps
the most novel was the discovery of the formation of barium zirconate
(BaZrO3) compound, and the change in its distribution during the life of the
cathode. From evidence obtained in this study, it is concluded that during
the useful portion of the life of the cathode, BaZrOj is present in concen-
trated form in the immediate vicinity of pores in the surface. As a cathode
approaches end of life, the quantity of BaZrO3 is diminished, and the distri-
bution of this compound over the surface becomes diffuse. In the final stages,
the barium is greatly diminished and the zirconium appears predominately

as ZrOZ.
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The function of strontium in the cathode is, for the present, obscure.
It has been demonstrated that it must be present in the tungstate activator
to achieve high emission. On unactivated cathodes, it can be detected at
the surface, but once the cathode is activated by current, the strontium dis-
appears from the emitting surface, as was disclosed by microprobe analysis.
However, it is still present within the body of the cathode, as shown by x-ray
diffraction.

During the course of extended operation of the cathode, several
physical and chemical changes occurred. A replicated surface of a fresh-
ly machined but unactivated cathode (under,a magnification of 10, 000X)
reveals the smooth and sheared grains of the matrix. A scanning electron
micrograph of this surface reveals the concentration of active emitting
material in the pores and grain boundaries.

As the cathode ages, the tungsten particles begin to recrystallize,
and definite crystal faces become evident. Coalescence occurs within the
tungsten grains with resultant enlargement of the pore areas. Eleciron
micrographs of replicated surfaces reveal the presence of dark particles,
identified as BaZrO3. After extended life, to the point of substantially re-
duced emission, an overall depletion of barium occurs, although the zircon-
ium level remains unchanged.

The phenomena governing the changes described -- namely, chemical
reduction, evaporation, and self diffusion in the tungsten grains -- are time-
temperature dependent. It is concluded that the life of the tungstate cathode
should be predominately dependent upon its operating temperature. This
bas been verified in life tests conducted at 1100°C under widely differing
current densities (4 to 46 A/cmz). These tests have resulted in essentially
equivalent cathode life relatively independent of the current density.

It was requested by the sponsoring agency that an effort be made to
determine the emission mechanism of the tungstate cathode. While the above
investigation gives valuable insight into the physical and chemical properties
of the tungstate cathode, and the manner in which these properties change
with time, a great amount of work may be required to develop a valid theoryvy
of how it emits,

In metals, electrons can move freely within the metal. However, to
remove the electrons from the metal into a vacuum space requires energy,
since the negatively charged electrons are strongly attracted by the positive
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charges within the metallic atoms. Heat is one such source of energy

which may move electrons up to higher levels where they can escape from

the metal surface. The highest energy possessed by any electron at 0°

Kelvin is less than that required to overcome the potential at the surface

to make escape from the metal possible, The difference between this high-

est energy and the energy that an electron must have to overcome the electro-
static binding forces is usually expressed in energy per unit charge, or electron
volts, and is called the work function.

Most common metals have work functions falling in the range of 3 to

5 electron volts. However, if these metals are coated with another metal,
_usually of the alkaline earth series, or more particularly, with the oxides

of these mect2ls. the work functions fall dramatically. For example, tungsten
has a work function of 4.5 electron volts, If a layer of barium metal is
sputtered on tungsten, the work function is reduced to the range of 2,11 to
2.29 electron volts, 3 Barium oxide on tungsten results in an effective work
function of 1.4 + 7 x 10-4 T, when T is the temperature in degrees Kelvin,

An intensive amount of investigation has been conducted over many
years on the barium oxide cathode, and its emission mechanisms. Author-
ities are still not in agreement on the many concepts proposed or expounded
by various investigators.

In the late 1920's, it was concluded that an excess of barium is ad-
sorbed on the oxide particles as a monoatomic layer, and the dipole layer
due to the adsorbed layer is responsible for the low work function. 43 This
concept was undisputed for many years, and in the mid 1940's, the emission
decay of oxide cathodes under Ligh pulse conditions was explained by means
of the adsorbed barium hypcthesis.6

Additional investigations cast doubt on the adsorbtion hypothesis.”?
With the advent of semiconductor theory,8 it was shown that several proper-
ties of oxide cathodes could be explained by semiconductor theories, Other
investigatorsgv 10,11, 12,13 experienced difficulty, however, in seeking a
semiconductor model for the oxide cathode which would explain its electron
emission properties.

New concepts were introduced by the dispenser and matrix types of
cathode, and theories pertaining to the operation of this class of emitters
have been generated. For example, it has been observed, 14 by comparing
the emission density of different poly-crystalline metal substrates, that the
metal with the highest work function when uncoated, shows the lowest work
function when coated with alkaline earth compounds.
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In an investigation of the adsorption of barium on individual crystal
planes of tungsten, 15 the work function of the (110) face was 6.0 eV before
coating, and was the lowest after coating with a thermally equilibrated
layer of barium. The clean, atomically rougher planes all have work
functions lower than the ionization energy of barium, znd no simple correl-
ation was found between the work function of the bare faces and the sequence
of the minimum work function after coating.

In an extensive rcview and analysisl6 of thermionic cathodes, the con-
clusion was reached that, "There is no fundamental difference between thin-
film-on-metal cathodes and oxide-coated cathodes. In both cases a mono-
layer (or less) of adsorbed atoms on a substrate determines the emission
properties, For a thin film cathode, it is desirable to use a substrate whose
work function is as high as possible in order that the adsorption of electro-
positive atoms becomes a maximum, "

In reviewing the properties of tungstate cathode and, in particular,
how its particular characteristics fall within the various theories, certain
facets stand out: (1) It is necessary to machine the surface of the tungstate
cathode after sintering in such a manner that the individual grains of tungsten
are cleaved or sheared. Such a procedure may expose preferential crystal
faces on the tungsten. (2) The average work function of the tungstate cathode
(Peff = 1.15+ 5.5 x 10°4 T) is lower than that obtained by barium metal
films on tungsten, thus eliminating this emission mechanism. (3) Micro-
probe analysis reveals a film of barium zirconate, BaZrO3, on the emitting
surfaces, and a heavy concentration of the compound in the grain boundaries
of the cathode. (4} Emission microscope displays of the emission pattern
reveal a verv patchy emitting surface, with the emission concentrated pre-
dominately from spots on the surface. This patchy emission behavior is
also evident from an analyeis of the noise properties of the cathode.

It would appear that if some means for increasing the number of emitt-
ing patches on the cathode could be found, the emission capability would be
correspondingly improved. This may explain the occasional cathode that
exhibits greater emission than that obtained from the average tungstate com-
position. In these instances, by some undiscovered quirk in the processing,
the number or size of active emitting sites is unusually high.
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POISONING OF TUNGSTATE CATHODES BY GASES AND
METAL VAPORS

Most thermionic cathodes are used in sealed vacuum devices. During
processing and outgassing of the internal surfaces of the device, the cathode
may be subjected to deleterious gases or high vapor-pressure metals. After
pinch-off, in the absence of continuous pumping, the low pressure existing
in the device may be altered by an increasing partial pressure of evolved
gases. Energetic electron beams impinging on metallic surfaces may also
evaporate metal which, in turn, may coat the surface of the cathode and
alter its emission properfies. Thus, a study of the effects of residual gases
or evaporated metal coatings on the high emission tungstate cathode was
undertaken during this program.

Gas pressure and gas composition are the major factors influencing
cathode poisoning at a specified cathode temperature. Also, in selecting a
method for conducting poisoning tests, other factors such as electrcde
spacing and anode voltage must be considered in comparing poisoning data.
One method -- based on the theory that cathodes are normally used in sealed
devices -- is to fill the device with a known partial pressure of contaminant
and observe the emission with time. This method leads to several difficul-
ties, however, Any pressure monitoring device attached to the tube may
introduce its own pumping action, or it may evolve gas in the absence of
external pumping. The gettering action of the cathode itself will alter, or
may even remove, the original contaminant gas. At best, the gas pressure
will vary continuously until it is finally adsorbed by the gettering action
usually observed in sealed-off electron devices.

A second method, dynamic in nature, involves the maintenance of a
specific flow of gas through the diode under test, providing a non-varying
environment for determining emission susceptibility to gas environment.
Gas flow through the diode.system is controlled at a specified system pres-
sure by balancing the input flow against the pumping rate of the vacuum
pump. Pressure readings are made with an ionization gage corrected for
gas sensitivities.!? Such a system (Figure 63) was employed in this pro-
gram, and in the previous studies of cathode poisoning reviewed below.

A demountable diode structure was utilized, and variable anode-to-cathode
spacing was provided by a water-cooled copper anode attached to a bellows
movement actuated by a 40-thread-per-inch drive screw. The cathodes
were processed under established optimized conditions.




Figure 63 - Vacuum Systermn Used for Cathode Poisoning Studies
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Cathode Poisoning by Gases

Five gases -- 02, CH4, COZ’ CO, and H2 -- have been evaluated in
previous studies.l’ ¢ These curstitute the residual gases normally found in
vacuum systems containing thermionic emitters. Water vapor, a contamin-
ant usually found in unbaked vacuum systems, was not recorded. Although
water vapor is believed to be the major cause of deterioration of tungstate
cathodes exposed to the atmosphere, measuring the background pressure of
water vapor at the vacuum levels necessary to operate thermionic cathodes
proved to be an elusive problem.

In one series of tests,l‘ standard composition (Appendix A) cathodes
were operated at 950°C with current densities of about 3 A/cm?, and with
100 volts on the anode. The poisoning effects of O,, CO, and CO, were
studied. Data taken in terms of degree of poisoning plotted versus time
are shown in Figures 64, 65 and 66.

Oxygen, at a pressure of 5 x 10'6 torr, dropped emission by only 0.5
percent during a 20-minute exposure. Increasing the oxygen pressure to
2 x 1072 torr dropped the emission by 6 percent. A 25-minute exposure to
a pressure of 6 x 10-° torr caused a 50-percent drop in einission. Strangely,
this cathode, sealed overnight in oxygen at a pressure of 2 x 10-5 torr,
exhibited a 4-percent recovery in emission.

Carbon monoxide at a pressure of 8 x 10'5 torr caused a 10-percent
reduction in emission during a 50-minute exposure. A rapid decrease of
30 percent occurred during an £-ininute exposure to CO at a pressure of
4x 1074 torr.

Carbon dioxide caused a reduction in emission of less than 1 percent
during a 70-minute exposure at a pressure of 5 x 1072 torr. A much higher
pressure, 1.2 x 10-4 torr, caused a 40-percent drop during a 6-minute
exposure. Emission continued to drop, however, when pressure was re-
duced to the original 5 x 1075 torr. When th~ CO, gas was removed from
the system, emission recovered completely.

In another series of gas poisoning studies made on standard composi-
tion tungstate cathodes,? the rate of poisoning and the subsequent recovery
rate observed when the contaminating gas was removed are plotted in Figures
67 through 73. The cathodes were of the type used in ultra-high resolution
(UHR) cathode-ray tubes, in which the ernitting diameter was 0. 010 inch.

The cathodes were activated at a base pressure of 2 x 109 torr. The emis-
sion conditions used in all of these tests were:
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Figure 64 - Emission Foisoning by Oxygen
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Figure 65 - Emission Poisoning by Carbon Monoxide
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Figure 66 - Emission Poisoning by Carbon Dioxide
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Figure 69 - Emission Poisoning by Carbon Monoxide
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Hydrogen was admitted to the system by means of a palladium valve, with
all other gases being admitted from glass flasks. Specific pressures, as
read on an ion pump, were maintained by balancing the gas input against
system pumping speed.

Hydrogen and methane both produced emission enhancement (Figure
67). These two gases have also been reported in other work!® to enhance
the emission in various cathode systems, but on larger diameter tungstate
cathodes (0.359-inch dizmeter); no change in emission was detected at pres-
sures up to 2 x 10-° torr.

The poisoning effects of O,, CO, and CO; (the oxygen containing gases)
at pressures as low as 1 x 10-7 torr are clearly evident from the curves of
Figures 68, 69, and 70. It is also noted that the smaller volume emitters
are more susceptible to poisoning than cathodes of larger volume, as is
shown in Figure 73, Variations in the degree of poisoning from a given gas
pressure result from several factors: (1) the degree of poisoning varies
inversely with temperature for a given gas pressure, (2) when the anode-
cathode spacing is increased, the poisoning susceptibility also increases,
and (3) anode voltage applied during gas exposure constitutes a variable. In
cathode systems poisoned by methane, an emission slump is found only i:
anode voltage is present., With oxygen, poisoning occurs whether emission
is present or not, 'fhus, a cathode can be irreversibly poisoned before it
is ever tested for emission capability,

A literature survey of cathode poiscning for various cathode systems
is given in Table III. The poisoning of barium calcium aluminate cathodes
by hydrogen was explainedl9 in terms of the barium-producing reaction in
a barium-aluminate cathode, in which the rezction product BaWQ, is
believed to be detrimental to emission. It was proposed that the BaWOy,
normally not present in a well-activated aluminate cathode, could appear
during life, and in the presence of hydrogen, result in the formation of
oxygen or water vapor, with subsequent decrease in emission.
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Table III - Literature Survey of Cathode Poisoning Results

Critical
Gas Type and Effect Pressure Temgerature
Cathode Type Neutral Activating Poisoning _(Torr) ("C) Reference
Barium calcim Ny 0, 1 x 10-7 1100 44
aluminate Ar H20 3x10-7 1100
H, CO, 1x 1076 1100
co Air 5x 1076 1100
CeHyg 1x 1075 1100
Barium calcium N, 0, 2 x10-8 1100 45
aluminate CO;, 1 x10-7 1100
co 2 x 10°7 1100
Barium calcium 0 2 x 1077 1160 46
tungstate CO2 5x 10°7 1100
co co 1x 1074 1145
L-cathode 02 1x10-7 1160 47
Barium aluminate 0, <1x 1076 1000 20
co, <1x10-® 1000
N, <1x10-6 1600
H, <1 x 10-6 1000
co co >1 4107 1000
Barium nickel matrix CcoO H20 2 x 10-8 900 21
cathode - activated N, CO, 8 x 10-8 900
by TiH, H, 0, 3x 1077 900
Oxide cathode N, HpO (o} -
H, Co, -
CHy4 CO -
co -

The same mechanism could also account for the enhancement of a cathode
by methane, if it is true that emission is improved with the removal of
BaWO, and its associated oxygen poisoning agent. Methane could react
with oxygen to form the less harmful CO and H;.

Impregnated tungsten cathodes display the behavior of both the oxide
cathode and also that of barium on a tungsten surface, with cathodes of high
porosity being predominately the former.20 Thus, pecisoning behavior
simnilar to that of oxide cathodes might be found in matrix cathodes if patches
of BaO are present in the pores or on the tungsten surface.

Both methane and hydrogen have been used to activate oxide ca.thodes.21
The enhancement of tungstate cathode emission by these gases could be
simply the activation of BaO in the pores of the matrix. Methane activation
leaves free carbon on the surface of the cathode through the dissociation of
CHy4. In the presence of oxygen-containing gases, carbon removal takes
place as CO, thus producing emission enhancement as long as CO pressure
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does not exceed certain equilibrium values. This CO equilibrium value is
determined by the methane pressure and the cathode temperature. Above
certain pressures, methane will poison the cathode,.

In an attempt to evaluate the effects of water vapor, a section of pyrex
glass in the vacuum system was heated to 300°C. Approximately half of the
gas evolved, at a pressure of 6 x 10-8 torr, consisted of water vapor. No
poisoning was noted at this pressure level.

The vacuum system was opened to air at a relative humidity of 70 per-
cent for a period of 15 minutes. After system bakeout, a pressure of 2x 10-9
torr was attained. The highest emission level reached after exposure to air
was 83 percent of that existing at the start of the test.

In summary, the poisoning level of the common gases for barium-activated
strontium tungstate cathodes was established. No unique poisoning character-
istics were noted, other than the su.ceptibility to deterioration by water vapor.
In unactivated cathodes, the reaction with water vapor can be observed by a
swelling and cracking of the matrix. On activated cathodes, the deteriora-
tion in emission by air exposure is more rapid. In one series of tests, the
emission capability dropped approximately 50 percent after each 4-hour ex-
posure to air, at a relative humidity of 55 percent.

Cathode Poisoning by Metal Vapor

The detrimental effects of residual gas in electron tubes is a well-
recognized phenomenon. The cathode poisoning resulting from metal coat-
ings accumulating on emissive surfaces is often overlooked, however. The
most prevalent sources of metal contaminants are: (a) evaporated films
arising from heated portions of the tube structare; (b) metal films trans-
ported by sputtering; (c) films resulting from dissociation of metal halides
or carbonyls; (d) residual metal films deposited on tube parts that have been
processed in contaminated hydrogen or vacuun: furnaces; (e) residual metal
films acquired through immersion plating of parts processed in contaminated
acids or other cleaning baths; (f) alkali-metal residues arising from the
difficult-to~-remove metal soaps often found in cutting oils and deep-drawing
compounds; and (g) accumulations of airborne metal particles, dusts, etc.

The effects of metal coatings on tungstate cathodes was studied by
evaporating the particular metal under consideration by electron bombard-
ment in an Alloyd Model 61-F-1 evaporation chamber. The cathode was
suspended facing the evaporation source. A glass microscope slide, held
at an equal distance from the source, was used as a means of monitoring
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the thickness of the evaporated metal, Evaporation was stopped when semi-
opaque coatings were reached on the glass, an indication of film thicknesses
in the 2000 to 5000 angstrom range.

After being coated by evaporalion, the cathodes were assembled in
diodes and aged at temperatures ranging from 800°C to 10500C, depending
upon the volatility of the coating element. After 15 hours of aging emission
data were taken. These data are labelled (A) in Table IV which summarizes
the results. The cathodes were then subjected to normal flashing at 1200°C
for 10 minutes, aged to equilibrium conditions, and retested for emission
capability. These data are labelled (B) in Table IV.

Elements having the least effect on cathodes were copper, nickel,
cobalt, iridium, and iron. Other metals clearly detrimental to emission,
in ascending order, are molybdenum, aluminam, boron, platinum, silicon,
beryllium, cerium and tantalum. Many other elements often detected or
present in electron tubes, ie., gold, silver, zinc, cadmium, tin, carbon,
silicon, manganese, palladium, zirconium, titanium, sulfur, etc., were
not examined due to termination of this particular line of research.

Two cathodes, heavily coated with nickel, were placed oy life test
at 1000°C and 1050 C, respectively. The lower temperatuge cathode ex-
hibited falling emission after 2000 hours, while at the 1050 C cathode tem-
perature, emission fell atter 1200 hours,

Published information 4223 pertaining to the deactivation of im-
pregnated-type cathodes by metal vapors indicates that nickel is a potent
poisoning agent, reducing emission to less than 25 percent of its initial
value in a 10-minute period.

In summary, all metal coatings evaluated were detrimental to emis-
sion in a widely varying degree. The tungstate cathode was far more
resistant to nickel than the commercial impregnated matrix cathodes.




Table IV - Zero-Field Emission and Effective Work Function
for Various Metal Coatings on Tungstate Cathodes

Cathode
Temp. I, betf
Evaporant °c) §A/cm2[ (EV)
Copper A 900 2,37 1.819
B 900 1.87 1.843
Copper* A 900 1,30 1.881
B (Data not taken due to cooling water failure)
Molybdenum A 950 1.25 1.974
B 950 1.25 1.974
Platinum A 950 0.58 2,055
B 950 0.71 2.034
Nicke) (Test No., 1) A 850 2,78 1,718
B (Heater opened)
Nickel (Test No. 2) A 900 3.20 1.790
B 900 3.11 1.794
Beryllium A 950 0.086 2.256
B 956G 0.485 2,074
Cobalt (Test No., 1} A 900 2.05 1.835
B 900 2,05 1.835
Cobalt (Test No. 2) A 900 1,45 1,870
B (Arbitrarily omitted)
Iridium A 900 1.75 1.851
B 90V 1.75 1.851
Cerium A 1050 0.185 2,371
B 1050 0,185 2.371
Boron A 950 0.43 2.086
B 950 2,00 1.925
Gilicon A 950 0.52 2.066
B 950 0.20 2.167
Magnesium?# A 900 1.41 1.873
B 900 0.69 1.945
Tantalum A (Arbitrarily omitted since tantalum is not volatile)
3 900 0.093 2.379
Iron A 950 2.80 1. 3889
B 900 1.33 1.877
Aluminum A 900 0. 34 2,018
B 900 1. 50 1. 867

A Before "flashing"
B After "flashing"

* In cathode mix, 0.068 weight percent
*% Impregnated, 0,77 weight percent
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SUBLIMATION FROM BARIUM-STRONTIUM-TUNGSTATE CATHODES

In addition to being directly dependent upon the life of the cathode,
long-life electron tubes are indirectly affected by the evaporation rates of
meaterials sublimed from the cathode, because these evaporated metals may
induce grid emission, electrical leakage, secondary emission, RF losses
or alter other tube characteristics.

A dozen or more techniques have been employed to measure evapor-
ation from cathodes.24 Nearly all of these have some particular disadvant-
age or shortcoming, and a compromise must be made for each procedure
relative to the sensitivity of the measurement, the accuracy and reproduc.-
ibility, the degree of complexity in equipment and procedure, and the
identification of the evaporated species.

In most instances, a knowledge of the total amount or rate of evapor-
ation is all that is necessary, since the composition of the cathode gives an
insight into the identity of the elements being sublimed. One method of
determining cathode evaporation employs a vacuum microbalance.2? The
weight of a heated cathode, attached to one arm of the balance, is recorded
as a function of time and temperature.

A modern and perhaps more simple means of obtaining cathode evapor-
ation employs the Deposit Thickness Monitor.” The operation of this instru-
ment is based on the property that the fundamental resonant frequency of a
quartz crystal is a linear function of its mass. Any material collecting on
the face of the quartz crystal lowers its resonant frequency. Ey measuring
the change of frequency, the sublimation rates and amounts from any source
can be calculated.?

The evaporation rates of various cathode systems as compiled from
published data?7?, 28,29 are shown in Figure 74, while sublimation results
obtained from the Deposit Thickness Monitor are plotted in Figure 75.

Other cathode systems and the technique from which the results were obtained
are shown as a basis of comparison., These rates are all plotted as a function
of temperature. It will be noted that fair agreement exists between the various
techniques.

*Sloan Instruments Corporation, Santa Barbara, California
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Not given is the previous history of the cathode prior to sublimation
measurements. Initial evaporation rates may have been high, tapering oif
with time. Thus, differing amounts mey be stated by various investigators,
depending upon how long at what temperature the cathode was operated be-
for sublimation was measured.

Giving the evaporation rate as a function of temperature can be mis-
leading, unless the corresponding emission capability for the particular
cathode system at the comparison temperature is known. In Figure 76, the
sublimation rate as a function of current density is shown30-38 " This plot
illustrates the outstanding characteristics of the tungstate cathode, ie., the
total evaporation in the continuous current ranges of 1 to 30 A/cm? is
approaching that of barium oxide on nickel for pulsed emission, From these
data, it appears that the sublimation from tungstate cathodes is approximately
two orders of magnitude lower than that of commercially available impreg-
nated cathodes at equivalent emission densities.

CATHODE NOISE

As specified in the technical guidelines for this contract, the determin-
ation of noise generated by the tungstate cathode became anocther of the
object of this study. To obtain comparison performance, the noise proper-
ties of a Philip's B cathode and an ordinary barium-oxide-on-nickel type
were measured in identical diode structures on the same equipment. The
associated procedures and analyses are discussed in the paragraphs which
follow.

Cathode noise, usually designated as shot noise, is the fluctuation of
the current drawn by a thermionic diode. It is well known3? that the fluctu-
ating components of the current have a uniform frequency spectrum and are
independent of the external impedance through which they flow. Figure 77
depicts a circuit diagram of a diode and its KF circuitry, without the associ-
ated circuitry for applying heater power and anode voltage. The noise power
delivered to resistor R will have the same frequency spectrum as the real
part of the impedance between the cathode and anode. The integrated power
will be:

12 :
P=1iR (1)
where 1 is the RMS noise current which is independent of R and the resonant
frequency (f,) but directly proportional to the equivalent bandwidth40 (B).
B is approximately equal to the half-power bandwidth for typical resonance
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Figure 77 - Simplified Circuit Diagram of Diode and
RF Circuitry Used in Noise Measurement

curves. If the noise power for a particular fo, R, and B is measured, then
the noise current (i) for any other fo, R, and B can be calculated. Such an

experimental procedure has been followed in evaluating the noise properties
of some of the cathodes studied under this program.

The test equipment used is diagrammed in Figure 78. The tuned
circuit of which the tube is a part has a resonant frequency (f;) of 30 mega-
hertz. The total shunt capacitance (C), measured across the diode terminals,
is 47 x 10712 farads. With the diode turned off so that the resonator is
loaded only by the external 200-ohm resistance, the measured Q is 14.5.
Thus, the resistance R into which the total noise power is developed is
given by:

1. L, (2)
R 1637 ohms av

where dI/d¥V'is the rate of change of diode current with diode voltage. The
combination of the amplifiers, attenuators, and noise figure meter forms a
sensitive pcwer meter. In the manual position, the noise figure meter is
simply a narrowband amplifier and square law detector. With the attenuators
adjusted to zero, full scale deflection was obtained with an input power of
9.72 x 1014 watts from a sine-wave signal generator tuned to 30 megahertz.
Varying the frequency of the signal generator revealed a half-power band-
width for the detector (B4 = 1. 29 megahertz). The half-power banuwidth

of the resonator is:

B_ = (3)

r 27 CR
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and the bandwidth of the two combined is

1,2 32 2 ,
B = -\/V[E (By +Br24)] * (BdBr)z '%(BdZJ’B %) (4)

r

A convenient normalization for the measured noise power is the

theoretical rioise power of a temperature-limited diode, which is expressed
as:

Po = 2elBR (5)

where e is the electronic charge (1.6021 x 10'19) in coulombs and I is the
DC diode current in amperes., In these terms, one expects to obtain results
similar to those shown in Figures 79, 80 and 81. These data are taken
from the published results of F, C. Williams,41 who measured the noise of
cylindrical diodes having oxide-coated cathodes. Figure 79 shows the diode
characteristic, Figure 80 shows the ratio (P/Po) of the measured noise
power to the temperature-limited noise power as it varies with arode poten-
tial for the same cathode temperature as the data of Figure 79. When the
emission is space-charge limited the noise is reduced by a factor which is
approximated by the expression:42

P 2 _ 1,932 kT
P I = v (6)

where k is Boltzmann's constant (0.8617 x 1074 electron-volts/degree)

and T is the absolute cathode temperature. In that region, the ratio of the
noise power to the temperature-limitad nnise power derreases with increan.
ing vol*tsge, as shown in Figure 80. In the vicinity of the knee of the diode
characteristic, the noise tends to approach P,, but it does not reach it

until well into what is normally considered the temperature-limited region.
That it finally does reach P, is demonstrated by the portion of Williams'
data showr. in Figure 81, which was obtained by extrapolating the diode
characteristic (Williams plots noise versus diode current, rather than
voltage).

Similar results have been obtained for the test diodes used in thie
program, Figure 82 shows P/I"o for an oxide-coated cathode (No, 1i2) at
various temperatures. Figure 83 shows the same data plotted in terme !
the ratio (P/I'“P ) of measured noise power to the theoretical noise power
of a space-chargg limited diode. Note that the noine approaches the thear.
etical values only at the extremey.
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Departures from theory in the region intermediate between the space-
charge and temperature-limited conditions can be described by a simple
model which assumes that the current is made up of a portion (IT) which is
temperature limited and gives rise to noise power 2el1BR, and a portion
(Ig) which is space-charge limited and gives rise to noise power 2e¢ FZISBR.
With this assurmption it is possible to calculate:

P
= Po
I = = I (7)
S 1 _ I-|
and IT SRRICY: (8)

Figures 84 through 87 show the result of this calculation. While as a valid
interpretation this may be oversimplified, it does give a graphic description
of the noise performance. Noise power in excess cf the theoretical value
results in a small I component, even when the total current closely approxi-
mates a 3/2 power law. Agreement between the measured and theoretical
noise in the temperature-limited case is marked by a vanishing I,. The
abscissa in these plots is the reading of a voltmeter connected across the
diode terminals. This is not the true potential difference between anode

and cathode due to the contact potential difference, as indicated by the fact
that the current extrapolates to zero for a slightly negative voltmeter reading.

Figures 88 through 95 show data taken on a tungstate cathode tube No.
HCD-67 over a wide range of parameters. As in the case of the oxide cathode,
the noise approaches the theoretical value asvmptotically in the space-charge
limited case. Agreement with the theoretical temperature-limited vzlue
within 20 percent over a wide range is taken as a verification of the calibra-
tion of the noise measuring apparatus.

Test results taken on a tube (No. HCD-9) in which the cathode and
anode are known tc be non-parallel demonstrate the effect of this factor. The
data shown i, Figures 96 through 99 illustrate a broadening of the knee of the
current-voltage curve and the corresponding intermediate noise performance.
The sensitivity of using I and I to describe the noise performance is illus-
trated by the wide undulations in these parameters due to the relatively small,
secondary variations in the measured noise, which are presumably due to
experimental error.
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The noise properties of a Philip's cathode were measured for com-
parison. The results for tube No. 116 are shown in Figures 100 through
103. The distinctive feature of these data is that the noise output remains
substantially below the theoretical value for voltages much greater than that
corresponding to the knee of the curve. This seems to indicate that about
half the available current comes from small centers of very high emission
density. The data shown in Figures 104 through 108 confirm this result for
a second Philip's cathode (*ube No. HCD-44).

One way to compare the noise performance of different cathodes for a
low noise application is to arbitrarily choose an operating point as that at
which the noise power reaches some multiple of the theoretical value for
the space-charge limited condition. A factor of 10 seems to give a reason-
able compromise between noise performance and emission density. The
result of applying this defirition to the data given in this report is shown in
Figure 109.

In summary, the noise properties of the tungstate cathode appear to
be comparable with those of other cathodes. One may expect the noise to be
reduced by space charge by a factor of:

P 19. 32 kT
= 2 e (9)
o
2
at a typical operating point (e.g., 2 A/cm  at 9000C). Cathode surfaces of
the types studied appear to be a composite of areas of widely different emis-

sion density.

It appears that significant improvements could be made in emission
density and in low noise performance if one coula reduce the areas of rela-
tively low emission. It is possible to develop a method of measuring the
uniformity of emission of cathode surfaces, based on the measurements
de:scribed here. If diodes were built with a uniform, measurahle anode-to-
cathode spacing, x, and allowing for greater anode dissipation so that space-
charge limited current could be drawn at voltages that were large compared
to the thermal energies, then:

A
1, e 2ot g i0 T —2 v (10)
s 2
X
where A  is the area from which the space-charge limited portion (I;) of the
current is obtained, By using this relationship, the distribution of emission

could be determined within the limitations of the assumed mocdel.
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EMISSION MICROSCOPE STUDIES

The emission microscope is another tool for examining the emissive
properties of a cathode., In this instrument, an image of the distribution of
current leaving the cathode is projected on a fluorescent screen. Different
current densities result in variations in brightness of the phosphor on the
screen, producing an optical picture correcponding to the emission variaticns
of the cathode.

Figure 110 is a sketch of the electron gun used in this emission micro-
scope study, and Figure 111 is a photograph of the actual assembly. The
gunr was designed to give a magnification of 300. The emission microscope
equipment is depicted in Figure 112.

Originally, the intention was to actually measure the variations in
emission by monitoring the current that passes through a hole in the plate
upon which the phosphor is deposited. By sweeping the cathode image across
the hole, a visual as well as a current correlation of the emission distribu-
tion could be made. To implement this, a 0.010-inch hole was made in a
phosphor-coated plate, and a Faraday Cage was positioned behind the hole
to ccllect the beam current passing through. Anticipations were that, using
full magnification, a 0.010-inch diameter portion of the cathode would pro-
vide an image 3 inches in diame'er on the viewing scresn. Assuming a beam
current of 0. 003 ampere, the actual current through the hol> would be the
ratio of the squares of the diameters, ie., (3)2/(0. 010)2 or 1/90, 000 of the
beam current, or 10-7 amperes, a value that can be easily ready by an
electrometer.

In actual practice, however, it was impossible to obtain an emission
image w'th beam currents in the milliampere range. Referring to the sketch
of Figure 110, the cloud of negative space charge accurmulating between the
cathode and G, completely obliterated the imayge, and gave a uniformly
bright display on the screen. The only conditions that could be found to pro-
duce sharp contrasting emission patterns were establisl.ed by making G,
positive, with respect to the cathode, and then reducing the cathode temper-
ature to the point where it was severely emission limited. Figure 113 is a
photograph of emission patterns under these conditions, at three different
temperatures. However, the total current to the screen was only a few
microamneres. Thus, the current through the aperture became so small
that stra charges and leakage currents completely obliterated any variation
of curiants i, the 1010 ampere intensity beam that penetrated the screen.
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Figure 111 - Electron Gun Used in Emission Microscope Study
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Figure 112 - Emission Microscope Assembly
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Figure 113 - Representative Emission Patterns
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If the analyzing aperture in the screen were made large enough to pass
measurable currents the resolution of the image would be ruined. Also,
running the cathode cool and current limited will not provide the emission
pattern encountered under actual operating conditions.

Figure 114 is a photomicrograph (500X) of the surface of a tungstate
cathode, clearly showing the granular surface and the cleaving of the
individual grains after machining. It was hoped that a correlation between
I the optical appearance of the emitter and the actual emission pattern, as

seen on the emission microscope, could be established. The only similarity
is that the emission comes from localized patches, but these patches appear
to come from much larger areas than the intergranular patches shown by
the cptical microscope.

To overcome the limitations encountered in the emission microscope,
a close-spaced diode was constructed to allow direct measurements of the
emissive surface of the cathode. A 0.002-inch diameter hole was drilled
in the anode, and a collector placed behind the aperture (see Figure 115).
Micremeter screw adjustments permitted smooth lateral movement of the
cathode parallel to, and at a controlled distance from, the anode. Typical
variation in emission across a cathode diameter of 0.110-inch is shown in
Figure 116.

The data for Figure 116 were transposed directly from a recorder
plot of collector current versus cathode position. Test conditions were
as follows:

Cathode Temperature 890 DCBRT

Main Anode Voltage 70 Volts

Main Anode Current 42 Milliamperes
Collector Voltage 80 Volts
Collector Current 5 to 11l Microamperes

Anode-Cathode Spacing ~0. 005 Inch

The absence of a screen around the collector permitted some secondary
electrons, released from the anode, to contribute to the collector current.
This effect was small, however, at the specified collector voltage. In
determining the variation in cathode work function, secondary electron
effects were essentially eliminated, as work function variations were baszd
on the difference between peaks and valleys in the emission-position plot.
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Figure 114 - Photomicrograph of Machined Tungstate Cathcde
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Figure 115 - Details of Diode Used for Analyzing
Emissive Surface

The work functions were calculated by: (1) estimating the area of the
cathode patch focused by the anode hole to be ~1/2X the hole area; (2)
assuming no contribution to the collector current by secondary electrons;
(3) assuming an effective work function for each patch, given by the
Richardson equation:

2 _e¢eff
j =A T e KT (11)

with ¢eff determined from work function tables. 3 These calculations
show a maximum change in work function of 0.07 eV across the cathode,
with the minimum value of 1.95 eV found near the center of the cathode.
By comparison, the effective work function calculated from the 6.8 x

101 A/cm? total cathode current density was 1.99 eV. The 0.07 eV vari-
ation in work function represents a doubling of emission at 8900CBRT'

Wide variance in resolution was obtained in the three methods for
examining cathode surfaces. A comparison of the optical microscope,
and anode-hole emission patterns shows an apparent decline in resolving
power in the technigqnes. The optical photomicrograph, Figure 114, clearly
resolves the five-micron diameter tungsten particles known to exist in these
cathodes. The emission microscope pattern in Figure 113 shows straight
elongated ""grains' which have widths corresponding to those expected for a
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300X five-micron particle. The grain length, however, appears several
times longer than expected. This may represent (1) lack of resolution of
the emission microscope or {2) a true representation of the machining effect
on the cathode emission. Several grains along a machined line would give
an elongated emission spot, with the expected curvature masked by slight
distortion in the emission pattern.

The resolution in the anode-hole scan is limited to approximately 75
microns. The major factor contributing to the poor resolution was the large
size of the anode hole. An order of magnitude improvement in resolution
should be possible with a hole diameter of approximately 0. 0005 inch.
Special techniques are required to provide holes as small as this, however.
With increased resolution, the anode-hole scan technique provides a simple
method for accurately mapping a cathode surface.

Further exploration with these techniques is definitely warranted in

determining the operating mechanism of tungstate and other cathodes toward
continued improvement in cathode performance.
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BUAINT SIS DLANDRSNUT FLLMEL

CONCLUSIONS AND RECOMMENDATIONS

The objective of this two-year program was an experimental study
of high-current density thermionic catiiodes possessing long life ar i exhibit-
ing reliable operation in electron tubes, The ma’n emphasis, as outlined in
Technical guidelines TT294, and dated i9 November 1965, called for (a)
the development of cathodes nperating at a current density of 50 MA/cmZ
for "tens of thousands' of hours at the lowest possible temperature, but with
an ultimate temperature objective of 500°C; (b) cathodes lasting thousands
of hours at emission levels in the 3 to 10 A/cm” range, and (c) cathodes
lasting hundreds of hours at current densities of 30 A/cm” and possessing
reasonable sublimation rates. Another objective was a study of the crit-
ical factors and mechanisms involved in achieving reproducible high
emission density cathodes.

This study has disclosed that the objectives can be achieved with a
pressed tungsten matrix cathode containing barium-strontium tungstate and
zirconium as the active ingredients. Objective (a) proved to be the most
difficult, and it was only during the latter part of this program that sustained
emission at low temperatures was reliably attained. Eight cathodes are now
operating stably on life test at low temperature. Although the 500°C target
was not attained, the 600°C objective has been demonstrated in life test diode
HCD -51. The remaining seven cathodes are on life test at 650°C. Several
of these -- namely, HCD-47, HCD-57, HCD-61 and HCD-66 -- all have a
0.050 A/cm” emission capability at 600°C, although they are on test at 650°C
and at higher current densities..Two cathodes, HCD-40 and HCD-47, are
well beyond 10, 000 hours on life test with no .adication cf emission deterior-
ation. Cathodes HCD-51 and HCD-55 are beyond the 5,000 hour mark with
similar stable characteristics,

From extrapolation of the data taken on life test diodes operatirg at
higher temperatures and highor current densities, and assuming that no
other failure mode is introduced or occurs, the projected failure time curve
for low-temperature conditions extends beyond ten-million hours, or
over 1000 years. While it is unrealistic to extrapolate cathode life with
such long leverage beyond existing data, the life versus temperature curves
do, nevertheless, fall within 1 well-behaved exponential pattern. It will
take many additional years of iife testing to verify the validity of the extrapo-
lated curve. For the present, it appears to be a reasonahle assumption that
the tungstate cathode in its present state of development wil' operate for many

tens of thousands uf hovvs at a te-nperature of 650°C or lowe:, at current
densities of 0.050 A/cm?,
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It is concluded that the addition of extra zirconium to the composition
increased the initial activity of the tungstate cathodes, and made the oper-
ation at temperatures of 650°C and lower practical. However, this more
active cathode composition exhibited declining emission with life when oper-
ated at high-temperature, a condition not encountered in the original cathode
composition, Cathodes HCD-48 and HCD-59 are the two notable exceptions
to this general observation. Additional studies and verification by life test
are needed to optimize a composition for a particular operating condition.

The final eighteen cathodes, processed in sequence and placed on life
test, all exhibit uniform characteristics. From this rather limited produc-
tion run, it can be concluded that tungstate cathodes can be manufactured
in large quantities with good reliability and reproducibility.

During the course of this two-year investigation, the importance of
the surface finish has been repeatedly demonstrated. During the final days
of this contract, it was discovered that certain cathodes that were difficult
to machine to achieve a defect-free finish, could be machined rapidly and
with excellent finish if the matrix were heated to about 200°C. The effect
of this technique on emission capability and life is unknown. This phase of
the development should be pursued, as it may be the key process in large-
quantity production of the tungstate cathode.

While the majority of the cathodes fall within fairly close emission/
temperature relationships, an occasional cathode, such as number HTD-48,
exhibits superior emission capabilities. Further studies may disclose the
reason for this superior performance, and allow the upgrading of the emis-
sion density capabilities by another 100 percent.

All of the cathodes studied under this program were of planar geometry.
It is recommended that investigations also be undertaken to fabricate and,
more specifically, to develop means of mounting and supporting tungstate
cathodes having cylindrical configurations.

Emission variations across the emitting surface of the barium-
strontium-tungstate matrix cathode, as disclosed by the emission micro-
scope and by current dissecting anode techniquzs, verify the existence of
patches of low-work-function, high emission density areas dispersed on a
high-work-function background.

These areas of high emission tend to be accentuated in a path parallel

to the direction of machining, thus lending additional emphasis to the inter-
dependence of high emission and proper {inishing procedures. Additional
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studies appear warranted in an attempt to discover means to increrase the
size and number of the high emission sites, with the objective of producing
cathodes having current densities still higher than those demonstrated with
the present tungstate compositions.

It was a general observation that good vacuum practice was essential
in producing uniformly high emission cathodes. During cathode outgassing
on the vacuum system, it was desirable to maintain pressures at 10” ' torr
or better. However, once the cathode had been activated and aged, tests
indicate that the tungstate cathode is no more susceptable to poisoning from
residual gases than other barium type emitters.

Actual operation of tungstate cathodes in high power electron tubes
has been rather limited in scope. Major applications include the General
Electric ZM-6601 multiple-beam klystron. A ZM-6601 tube containing ten
developmental cathodes has been operating for several years with each
cathode supplying a DC current of 1.6 A/cmz. Other tungstate cathodes
have been successfully used in developmental traveling-wave klystrons48
at emission levels of 5 A/cm%. The tungstate cathodes have demonstrated
their high-current capabilities in numerous sealed off beam tubes developed
on Contract DA 28-043 AMC-01719(E).
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Appendix A
PREPARATION OF BARIUM-STRCNTIUM-TUNGSTATE CATHODES

STARTING MATERIALS
Activator Compound [BaSSr(WO6)2]

The stoichiometric quantities of BaCOj, SrCO3 and WO3 (all Re-
agent Grade) required to torm 30 grams of the activator compound are
ball milled, together with 75 cc of methanol, in an all-molybdenum mill*
for 4 hours. The resulting slurry is then filtered, using a fine Buechner
funnel.

The filter cake is fired in a platinum crucible, in air, at 1400-1450°C
for 2 hours. After cooling to room temperature, the product is ground in
an Alundum mortar and refired as before. The refired product is then
ground in an Alundum mortar and screened through a 325-mesh sieve.

Cathode Mix

The following materials in the given weight ratios are dry ball-milled
in an all-molybdenum ball mill (see above) for 15 hours:

(1) BagSr(WOg), 2.813 g (9. 19 wt. %)
325 mesh

(2) ZrH; 0.188 g (0.61 wt. %)
Grade C - 325 mesh

(3) Tungsten 27.6 g (90.2 wt. %)

Type UB - 5,3
Purity - 99. 9% min.
Avg. Particle Dia. - 5 microns

*1, Mill - molybdenum cup, 2-3/4 inch dia. x 2-3/4 inch deep with
molybdenum cover plate

2. Grinding Media - 50 molybdenum pieces, 1/4 inch dia. x 1/4 inch long
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COMPACTION

95 tons per square inch

SINTERING

1500°Cp for 5 minutes in pure dry hydrogen, followed by 1840°Cy
for 5 minutes.

FINISHING
Machine (face) emitting surface, using tungsten carbide cutting tool.
STORAGE

Short-time storage (several days) in desiccator. Long-time storage
in evacuated glass containers,

BAKE-OUT

The exhaust tubing is attached to the vacuum manifold by means of a
Compression Port, (Varian No. §54-5052, or equivalent) and the tube is
baked at a temperature of 400 to 450°C for 2 hours, with an ultimate
vacuum of 2 x 1078 torr or better. The cathode is heated to 1200°C for
10 minctes, and the tube is pinched-off from the system. The rate of in-
crease of cathode temperature is determined by gas pressure, which is
limited to a maximum of 2 x 10-7 torr.

ACTIVATION AFTER BAKE-OUT

1. Cathode temperature is adjusted to IOSOOC, and sufficient anode
potential is applied to yield 1 to 2 A/cm? emission from the cathode for a
period of 16 hours.

2. After 16 hours of aging, the emission capability is determined by
maintaining cathode temperature constant at 950°C, and increasing E_ in
steps, recording E_, and I, at each step, and continuing until saturation is
indizated from a plot of the data on a 2/3 power emission graph paper.
This is termed the "Initial Emission Characteristic'. The tubes are then
ready for life test.
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SURFACE CHARACTERIZATION
OF TUNGSTEN CATHODES

The surfaces of two tungsten cathodes, BTA-104 and
BTA-45 HCD-25 have been characterized as part of a program
to define those features that enhance thermo emission. The
characterization included both electron microscopy and scanning
electron microscopy to observe the surface features. Electron
diffraction analysis to identify materials on the surface and
electron microprobe analysis to identify the elements and
distribution of the elements at the surface. Cathode BTA-104
had not been activated but had been w1achined while the second
cathode, BTA-45 had been run on a life test for 8, 500 hours
at 950°C.

The purpose of this analysis was to determine the differences
between the two cathode surfaces. In addition, comparisons would
be made between these cathcdes and the ones described in our
previous report of January 29, 1968, In this manner surfaces
of cathodes representing three different levels of activation

{none, activated, and after life test) will be discussed.
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The test samples were encapsulated in evacuated glass tubes
and remained in these tubes until analyzed. Each cathode was
remszved from the glass tube and as soon as practical examined
by reflecticon e}.;actron diffraction. The purpose for this was to
minimize the exposure to the atmosphere so that if there were any
crazing it would be kept to a minimum. These particular samples
did not show any evidence of crazing as was noted in the previous
work. Subsequent to the electron diffraction analysis each sample
was examined with the electron microprobe and then replicated
for electron microscopy. They were also examined in the
scanning electron microscope,

The scanning electron micrographs on sample BTA-104 are
shown in Figures 1 and 2, These show typical machined surfaces
at 3 different magnifications. Figures 3 and 4 are scanning electron
micrographs of sample BTA-45 which show recrystallization and
voids, The scanning images show an overall view of the surfaces
of each of the cathodes.

Electron micrographs of replicas from BTA-104 are shown
in Figures 5 through 8, These micrographs show relatively clean
surfaces. The dark ragged material is the replicating material

pulled from the crevices, and are shown more clearly in
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stereomicrographs, (Figure 13). In the previous report surfaces
of the activated samples had a film or a diepersion of small particles
spread over the surfaces; whereas the unactivated cathode surface
is clean and almost free of particulate material suggesting the
film forms after activation of the cathode.

Electron micrographs of replicas from sample BTA-45 are
shown in Figures 9 through 12. These micrographs show grains and
dark particles on the surface of the tungsten. The surfaces also
show the recrystallization growth of tungsten particles. The black
particles are material which have been lifted from the surface of
the cathode by the replicating plastic. The small round bubbly
structure is a replica of the same material. The dark ragged
material is the plastic which has gone into the crevices and has
been pulled out. This can be seen more clearly in the stereo-
micrographs shown in Figure 14, A group of particles from a
grain boundary of this specimen are shown in Figure 15. This
material has been identified as ZrOz by selected area diffraction.

lectron diffraction analysis was used to identify the crystalline
matzarial on the surfaces of the samples., Two methods of electron
diffraction analysis were used; reflection diffraction whereby the

actual samples are examined with a bearn about one millimeter in
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diameter (tlie beam being much larger than the structural features)
and selected area diffraction whereby the replica of the sample is
examined by a beam several microns in diameter; the bearn being
in the same size range as the microstructural features. Reflection
diffraction is sensitive to ounly the material within the first few
hundred angstroms of the surface.
X-ray diffraction whi;:h penetrates further than electron
diffraction was employad to identify the subsurface material,
The reflection electron diffraction pattern from sample
BTA-104 indicated strong tungsten lines with additional wzak
lines whose best fit was for SrWOy; BagSr(WOg),: SrZrO; etc.
type of material. X-ray diffraction, with its greater depth of
penetration, produced patterns from a similar sample which
also showed strong tungsten as well as additional weak lines
fitting SrWO4; BagSr(WOg), and ZrW,0Og structure. Several
other possible combinations were studied. Since the lines in
the electron diffraction pattern differ from the weak lines in
the X-ray pattein there may very well be two different end

products that are being observed at different levels from the

surface. In order to pin this down an additional sample was
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obtained from Mr. Bendley, one pink powder Ba.SSr(WO(,)2 as well
as a black powder BaSSr(WOé)2 mixed with tungsten. The pattern
from sample BTA-104 by both X-ray and electron diffraction had
weak lines and although these lines could be identified as
BagSr(WOg), they could also be matched with other compounds
therefore the conclusions are that scme change has occurred in
the initial firing or compacting of the cathodes.

Sample BTA-45 showed barium zirconate BaLZrO3 by electron
diffraction. This was also found on the previous samples which had
been activated, therefore it appears that once the sampile is activated,
BaZrOj is formed on the surface.

Electron microprobe analysis, is a technique used to determine
the elements present on the surface and the dictribution of these elements.
Traverses of the surface were made for the elements barium, strontium
and zirconium., The charts representiug tne distribution of these elements
for sample BTA-104 are shown in Figure 16, There one can observe
strong evidence of barium and zirconium. Small amounts of strontium
are also distributed across the surface. The peaks probably represent

the crevices or boundaries where the material is originally located
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during the sintering process. The charts in Figure 17 represent
traverses for the barium, strontium and zirconium across sample
BTA-45, It will be noted that the barivm content tends to be less
than that in BTA-104 and the strontium scan shows essentially
only background radiation. There is still a considerable amount
of zirconium present in BTA-45 as compared to BTA-104, There
is a change in scale factor which must be taken into consideration
on sampie BTA-104; the full scale value is a hundred counts per
second whereas on BTA-45 the full scale value is two hundred
counts per second, This shows the barium and strontium are
greatly reduced after the sample has undergone a life test, The
zirconium content tends to be unchanged in comparing the two
concentrations under study. No quantitative work has been done
in this phase of the study.
In summary, the cathode BTA-104 surfaces appeared to
be relatively clean as well as being a typical machine surface as
displayed by the scanning electron micrographs. A change in the
structure is indicated by the diffraction studies of the original material,
although precisely to what extent is not clearly defined. ¥urther study

would require additional work authorization. The electron microprobe
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showed the presence of barium, strontium and zirconium on the
surface primarily located at the grain boundaries in the sintering
operation. The characterization of the previous cathodes as
described in our report January 29, 1968 showed a particulate
material on the surface almost as a film. There was also a
strong indication of BaZrO3 and no evidence of strontium. These
cathodes had been just activated, that is with low emission ?:i'me.
Cathode BTA-45 has small round particles spread over
the surface of the cathode. Reflection electron diffraction showed
evidence of BaZrOj, the same as the previous cathodes. In addition,
the particles from grain boundaries consisted of ZrO, and this is
consistent with the data shown by the electron probe in that there
is a depletion of barium, and an absence of strontium, and little

change in the zirconium content, in the comparison of the machine

surface and a surface that has undergone life test.
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Figure 2. Scanning electron micrographs of the
surface of sample BTA-104

Plate 11768-2 2, 000X.
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Scanning electron micrographs of the
surface of sample BTA-45 HCD-25,

Top - Plate 41768-8 200X,
Bottom - Plate 41768-7 650X.
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Scanning electron micrographs of the
surface of sample BTA-45 HCD-25,

Plate 41768-6
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Plate # 5543-3 10, 000X.

Figure 5. Electron micrograph of replicated surface
of sample BTA-104.
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Plate # 5542-3 10, 000X,

Figure 6. Electron micrograph of replicated surface
of sample BTA-104,
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Plate # 0649-1

10, 000X.

Figure 7. Electron micrograph of replicated surface
of sample BTA-104,
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Plate # 0649-3 10, 000X,

Figure 8. Electron micrograph of replicated surface
of sample BTA-104.
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10, 000X,

Plate # 5546-1

Electron micrograph of replicated surface

Figure 9.

5.

HCD-2

45

of sample BTA
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Plate # 5546-3 10, 000X,

Figure 10. Electron micrograph of replicated surtace
of sample BTA-15 HCD-25,
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Plate # 5545-1 10, 000X,

Figure 1ll1. Electron micrograph of replicated surface
of sample BTA-45 HCD-25.
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Plate # 5311-2 10, 000X,

Figure 12. Electron micrograph of replicated surface
of sample BTA15 HCD-25,
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Figure 13. Stereographic electron micrographs of
replicated surfaces of sample BTA-104.

Top - Plate 5543 1&2 3, 600X.
Bottom - Plate 5542 4&5 3, 600X.
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Figure 14. Stereographic electron micrographs of
replicated surfaces of sample BTA-45 HCD-25.

Top - Plate 5545 3&4 3, 600X.
Bottom Plate 5544 3&4 3, 600X,
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Figure 15. Electron micrograph of an area with
particles on sample BTA-45 HCD-25
analyzed by selected area diffraction.
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Figure 16. Electron microprobe traversss on
sample BTA-104.
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ERNEST F. FULLAM, INC. 184

SCHENELZTADY N ¥




Appendix C

PREPARATION AND PROCESSING OF BARIUM-STRONTIUM
TUNGSTATE CATHODES CONTAINING EXTRA AMOUNTS
OF ZIRCONIUM HYDRIDE

STARTING MATERIALS
Activator Compound [BaSSr(Woé)ZJ

The stoichiometric quantities of BaCO3, SrCO3 and WO3 (all Reagent
Grade) required to form 30 grams of the activator compoungl are ball milled,
together with 75 cc of methanol, in an all-molybdenum mill® for 4 hours.
The resulting slurry is then filtered, using a fine Buechner funnel.

The filter cake is fired in a platinum crucible, in air, at 1400-14500C
for 2 hours. After cooling to room temperature, the product is ground in
an Alundum mortar and refired as before. The refired product is then
ground in an Alundum mortar and screened through a 325-mesh sieve.

Cathode Mix

The following materials in the given weight ratios are dry ball-milled
in an all-molybdenum ball mill (see above) for 15 hours:

(1) BagSr(WO,), 2.813 ¢ (9. 14 wt, %)
325 mesh

(2) ZrH2 0.376 g (1.22 wt. %)
Grade C - 325 mesh

(3) Tungsten 27.6 ¢ (89.64 wt. %)

Type UB - 5.3
Purity - 99. 9% min,
Avg. Particle Dia. - 5 microns

*1. Mill - molybdenum cup, 2-3/4 inch dia. x 2-3/4 inch deep with
molybdenum cover plate

2. Grinding Media - 50 molybdenum pieces, 1/4 inch dia. x 1/4 inch long
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COMPACTION

78 tons per square inch.

SINTERING

Temperature 1s raised at rate of 300°C per minute in pure dry
hydrogen until 1500° Cp is reached. At 15007°Cp, temperature is held for
5 minutes, then 1ncreased rapidly to 1840°CB and held for 2.5 minutes,
Power is cut and the cathode allowed to cool for 30 minutes before it is
removed from hydrogen atmosphere.

FINISHING

Emitting surface is machined (faced) using tungsten-carbide cutting
tool. Cutting feed of 0. 0003 inches per revolution is used.

STORAGE

Short-time storage (several days) in desiccator. Long-time storage
in evacuated glass containers,

BAKE-OUT

Tube is attached to vacuum manifold, and baked out at 4OOOC to 4500C
until a vacuum of 2 x 10™ " torr is r2ached. (Time will generally fall be-
tween 2 hours and 12 hours, depending on condition and complexity of the
tube.) Heater power is applied and the cathode outgassed -- not exceedmg
G x 10" ' torr pressure at B time while heating cathode to 1050° CT The
temperature is held at 1050°C until cathode is outgassed, then raised to
1200“CT and held for 10 minutes, following which time the tube is pinched
off from system.

ACTIVATION AFTER BAKE-OUT
Cathode temperature is adjusted to 10500C, and anode potential applied

to yield emission currents to 1 to 2 A/cm®. A niinimum of 16 hours aging
is usually required to reach full and stable emission.
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throughout the matrix in specific proportions are a barium-stronium-
tungstate compound corresponding to the formula BagSr (WOg);, and
zirconium, After processing, a surface {ilm of barium zirconate was
identified.

In addition to life testing of the standard-composition cathode, us da-
fined in Appendix A, studies were made of other compositions including those
containing greater zirconium content. During the last reporting period,
eighteen new cathodes, all containing extra zirconium, were started on life
test under widely differing emission densities and temperatures, The in-
creased zirconium appears to have stabilized the very low temperature
operation, and six cathodes are now beyond the 2, 000-hour point with no
downward deviations in emission levels,

An analysis of two tungstate cathodes, one of which had completed life
test, and the other a new and unactivated cathode, was made of electron
diffraction, electron microprooe, electron microscopy, and x-ray diffrac-
tion to gain an insight into the emission rmmechanisms of the barium-strontium-
tungstate cathodes. Structural and chemical changes that occur with life
were identified,

A review of the resistance to poisoning by various gases and metal
vapor deposits on tungstate cathodes was completed.

Sublimation rates for tungstate cathodes were reviewed and compared
to the rates of other cathode systems,

Noise properties of the tungstate cathode were determined. The noise
properties of a standard barium oxide-on-nickel emitter, and a commercially
available barium-aluminate cathode, were evaluated on the same equipmen
for purposes of comparison,

The emitting characteristics of tungstate cathodes were studied with
an emission microscope., The existence of local areas of high emission
density dispersed through other areas of low activity was verified at typical
operating levels in a diode containing a dissecting anode aperture and an
auxiliary current probe,




