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dependent methed patterned aftexr that of Moretti and Abbett, In-
addition, important comments are made with regard to the physical

and numerical nature of the method. Specifically, numerical results
are presanted for two-dimensioral ond axisymmetric parabolic and
cubic blunt bodies as well as blunted wedges and comes; these resulis
are presented for zero degrees angle of attack and for a calorically
prerfect gas with v = 1.4. The pumericel results are compared with
other existing theoretical and experimental data., Also, the cffects
of initial conditions and boundary conditions are systemstically
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the performance of the time~dependent method, 2 numerical experimeni
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influence of a slight pressure disturbance introduced 2t 8 poipt on
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TIME-I'EPENDENT TECHNIQUE

This report presents new reszalts for inviscid, calorically
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obtained with a time-dependent numerical method. In addition,
important commerits are made with regard to the physical and
numerical nature of the method.
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LIST OF SYMBOLS

a speed of sound

b abecizsa ~2 (L& body iu the X, ¥y plare

4 dummy variable

L characteristic leagth

M Msch number

P pressure (divided by free-stresn pressure)

P in p
radius of cylinder, sphere, or paraboloid

R tn p

I3 abscirese of the shock of tha X, ¥ plane; slso distance slong
surface of the body

t nondicensional time in physical coordinate systew

T nondimensional time in transformed coordinate system

u nocdimensional velocity im x direction in x, y plane

v nondimensional velocity in y direction in X, ¥ plane

Lj velocity of the shock in x direction in x, y plane

x abscigsa in 2 Cartesian frare in the physical plane

y ordipate in & Cartesian frame in the physical plane
ordinate in a Cartesisan framg iz ths iriusiormed piane

€:1 Cartesian reference frame along shock or body

V] 8 - b

Y ratlo of specific heats

0 density (uivided by free-stream density)
] angle betwaen tangent to shock and = axis

”

abscizsa in & Cartesian reference frame in the transformed
plane

] ln p -« 1n p
The subscript = indicates, as usual, free-stream copditions.
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ON HYPERSONIC RLUNT-BODY FLOW FIFLDS UBTAIRED WITH A
TIME~DEPENDENT TECHNIQUF

by
Jobn D, Anderson, Jr.
Lorenzo M. Albacete

P VAR S
Allen ¥ Winkelsani

INTRUDUCTION

Experimsental and analytical investigstions of supersonic and
hypersonic flow fields about blupt bories hive L. .revalent in
aerodynumic research for tne past two decades. This is in part
due to the practical use of blunt bodies for manned and unmanned
re-entry vehicles, as well as to the intellectually challenging
mathenmatical nature o7 the mixed suvsvnic-supersonic flow fleld
wbhich 18 chrracteristic of such bodies. However, as pointed cut
i reference (1), it is remarksable that the present state-of-the-
art has still not progressed to the puint where one specific ana-
lytical techanique for solving the blunt-body problem can be agreed
upon as being markedly supe-ior to all others., On the other hand,
a relatively rev technique has appeared ia the recent literature
which appears to have the potential for such pre-eminence amcog
ioviscid blunt-body molutions; namely, the time-deperdent approach
such as employed by Bohachevsky et al (refs. (2) and (3)), and more
recently by Moretti and Abbett (ref. (4)), and Moretti and Bliech
(ref. (5)). The present report supplements the above investigations
by further examipation and application of the time-dependent method
to wvarious two-dimensional and axisymwetric blunt bodies.

it is not withip the scope of the present report to give a
detsailed review of the various analytical apprcaches to ihe blunt..
body problem; irdeed, excellent descriptions of the significant
theories are readily available in the literature. (For example,
sse relerences (1), (6), and (7)) Ipstead, it is sufficient 2nd
pertinent to describe briefly the philosophy of the time-dependent
metbod, after which the specific purposssz of ihe present repouri
will be outlinped.

The time-dependent blunt-body approach entails the solution
of the unsteady partial differential equations which physically
describe the transient flow field; i.e., the equations contain
time derivatives of the local flow properties. Given a fixed
body shape and free~stream conditions, the solution begins by
assuming (somewhat, but not completely) arbitrary initial wvalues
for the flow field wariables and shock-wave shape and location.
The moluntioen thon procecds, using ine unsteady equations, to obtain
new values of the flow field varisblas and shock-wave shape in steps
of time. This solution is carriled cut numerically by a finite-
difference scheme using a high-speed digital computer. Following
a natursl relaxation process, the solutior asymptotically approaches a

E
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ateady state for larre values of time. For the present investigation,
this steady state is the desived result; the use of the time~dependent
aguations i8 just a means to ag ernd. However, the tiansiert numerical
variation of the flow fleld variables during tneir approach to the
steady state should approximste the actual physical relaxation asso-
clated with a flow wnich 18 artificially started wiith the assuune i
initial conditiors, (How well thirs transient process is epproximated
depeunds on how well the time-dependent difference equations spproxi-

mate the original governing partial differential equations.) Therefore,
the time-dependent approasch is also vseful for the analyses of

inherently transient problems; for example, the establishment of flow
akr~ut models ir _ _2Z_& wupe, and the interaction of a blast wave

with a re-entry vehicle (ref. (8)). Nevertheless, from the point of
view of the &teady supersonic blunt-body problem, thc mathematical
sdvantage obtained by use of the time-dependent method is that the
partial dif’erential equations are hyperiolic in time; this is in
coptrast tuv ibe stendy flow eguations which are elliptic in the sub-
sonic region and hyperbolic in the Supcrsonic region. This hyperpolic
nature of the time-dependent solution allows the use of a finite-
difference approuch sterting with assumed initial conditions &. a
given time. A considerably more detailed description of the time-
dependent m-ithod can be found in references (2) to {(5), and therefore,
no further elaboration wil?! be given here. However, for the purposes
of establishing nomenclature and for making this report somewhat
self-coptainad, the pertinen: eguations and numerical solution employed
in the preseat investigation will be outlined in a subsgquent section.

The present report gives new resuits for blunt-body flow fields
obtained with 2 time-dependent method patterned after that of Moretti
and Abbett (ref. (4)), and also makes some important comments with
regard to the physical and numerical nature of the method.
Specifically, the main purposes of the present report are fourfold:

(1) T» documeat numerical results for two-dimensional and
axisymmetric, supertonic and hypersonic flow fields about various
blunt body shapes; namely analytical shapes (parabolic and cubic) zs
well as blunted wedges ard blunted cores. Results are presented for
zero degrees angle of attack and for a calorically perfect gas with
Yy = 1.4.

(2) To compars numerical resuits with other existing theo-
retical and experimental dats.

(3) To systematically describe the effects of different
assumed initial conditions and differently obtalned boundary conditions
cen the convergeuce of tihe time-dependent numerical solutions.

{4) To describe the results of a numerical experimen!?
conducted to answer the foliowing guestion: JIf a slight pressure
disturbance 1s introduced at a point in the supersonic portion of
the blunt-body flow field, what is its region of influence and how
clearly is it defined by the time-depeunden. analysis employed in
the present investigation? The answer to this guestion has signifi-
cance with regard to the type of body configuration which .an be
realistically treated by the above analysis.
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ANALYSIS

Basic Equations and Transfurmations

Since our method of solution is patterned after Moretti and
Abbett’s anulyels, described 1n reference (4)., we give herea only a
synorseis of the procedure, intended primerily to permit discussilorp
of our results. The reader is thus referred to reference (4) for
the detaiils.

Chish o e

L4 TN

We are consldering the inviscid flow arcund 8 body, as shown
in figure la. The body BC (either two-dimensional or sxisymmetric) i
is assumed symmetric with reepect to the x axis; AD is an arc of N
the unknown shock wave; the location of C is suach that the flow is '
always supersonic along CD; the flow at infinity 1is uaiform, super-
sonic, and parallel to cvhne x axis,

The governing equations are:

=} 9 . 3 v o
Continuity 3% + vy {(pu) + 3y (pv) + K %7 0 W
x Momentum p oy, pu Su + pv M - o 2

3t ax PY 3y ax (2)

ov ov v op
y Momentum o Y pU 32 pv 3y 3y (3)

aé oé o

- & —— — = 4
Erergy 3T u e v 3y 0 (4)

In equation (1), K = 0 for the two~dimensional configuration,
and K = 1 for the axisymmetric case. In equation (4), ¢ = lpp ~
¥la p. The ensrgy equstion thus corresponds to

ps - D
Dt 0 Dt ('P'\?)
P
for & calorically perfect gas. The additional symbolism is
sunmerized in the list of symbols at the beginning of this report,

. (X2, yuy; THt (3)

where 6 = s-b, the local shock detachment distance. The definitions é‘
(5) transform the "obligue'" region of interest ABCD into a rectangular -
region, aAs shown in figure 1lb. o

ey
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In sddition, thke Zollowing veriecbles are defined:

; db L4
L3 ((~1) 5; - { ctn ¢
P®inp Br Juva-w +vc] /6
R= inp 5 4 (8)
where ¥ ia ths veloclty of the shock wave.
All the variablss ure ncoa-dimecssionnlizsd as follows: P and p .

gre divided by thelr fres-gtream values; the velccities are divided
by {p_/p_,] %; the lengthc are divided by a churacteristic length L;
&;.d thus the nod~dimensioual tims is the dimensional time divided by .
eons rgnern
L/ Pplfy
Ali of these opersilons result in the following nou-dimensional,
tracsformed equatiuns:

3K [: R C dv , 3y 3R . . v
C by d ormve T4 wm B v - r— ———— — SR —
Contiauity 3T Y + Y: + % 3 + 3y + vay + Ky 1 7)
X Momon tum E’.‘i ™ [}j. _B_E_ <+ vé."l + -E_ .._i.. )
: 3% 3¢ Vay T8 3 2
v [‘ ew v C oP p oP
y Momentum 3T B 3¢ +4 vs} + %3 YA §§] (9)
3k ad Ry |
Enexgy e {? ac ¥ “g;] (10}

Now. 1o the =pirit of rvefereunce (4), the flos field is divided
into “hree p&rts: The sLock ftself (AD), the body (BC), and the
"inner points' inside the rectangle ABCD,

Ioner Polnts and Firite Differences

We c¢onsider first the innor pojute. As indicated in the
introduction, the use of the unsteady equations (hiperholic in time)
enables us to empluoy a finite~diiference spproach r lxrting from the
initial ccundations at an initial time. The particilar finite-
dif;erence form is a matter of chuice. In this amalysis, after
Morettl ard Abbett, we use, for any flow variable g:

2 . 2
"y 9 . &) (LT)
ATY m s _-E. ___g - P St AN
g (T +21) =g () + 7 (T, OT + ) (T) o) (11)
Trat is, given initial crnditions for each variable, e¢uaticn (11) -

enables us to obtein its value at & later time. These values serve
in turn as "ipitial conditions" fcr the next time step, and the
process contlnues until the unsteady terms are negligible. This will
then be the final solution for the steady problem, approached
asymptotically wich time.
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All the terms in the right-hand side of (11) are known: {(T)
is known from the previovs time ste; and the first time derivatives
are given by the governirg equations (7) and (10). In these eguations,
the wphice derivetirves are computed by central finite-differances at
each pcint in &8 mesh which subdivides the inner region. The sacond
time derivatives are obtainecd by differentiating equations (7)
through (10). Symmetry is asaumed at the centerliane for the calcu-
lation of the space derivetives.

o R

For the axisymmetric casa, there will be indeterminate terms
at the centerline of the form 0/0. These may be calculated b, the
use of L'Hospital rule. .

T Ve TP IR

In these calculations, the step size AT is evaluated as the
minimum of A/1.5 a (M+l) where A is the smallest interval between
Ay and Ax, a 18 the speed of sound, and M the Mach number. This
satisfies the Courant-Friedrichs-Lewy stability criterion.

Finally, note that in obtaining the second time derivatives by

differentisting equations (7) to (10), the term %% will be encoun-

tered., From equation (6) this implies that ) must be known. This
term is couputed as follows: oT

T
This means that every time the inner points are calculated, the value
of W{(T4+AT), (that 1s the ''new" value of W), must be known. For this

reagon, the shock points must be computed first, before the interior
points, at the beginning of each step in time.

o . [}(T + AT) - W(T{] /0T 12)

Shock, Boay Points, and Characteristics

The vilues of the fiow variables behind the shock at T + AT

can be obtained frcm the Rankine-Hugoniot reiations for a moving

shock. Bui tnis means that a value tor W(T+AT) must be assumed,

since it is not known at the beginpring of each step in the compu-

ta.ion. H:owever, the values for the shock points can be obtained

in another way, compared to those obtained from the shock relations

with the assumed ¥, and matched by an iterstive process until they

do agree., This will give the true value of W(T+AT) as well as the

1est of tae unknowns. In the analysis of Moretti and Abbett, this

"other way" is by means of the characteristic equations fcr the set

of governirg relations written for a (§, 7, t) frame, where € and 7

are Cartesian coordinates normal and tangential to the shock resvec-
. tively, The assumption is made 1in obtaining the characteristics

that the governing eguations can be written as quasi-one-dimensional,

modified by ‘'forcing terms' containing derivatives in the tangential

directioca. That is, the characteristics are found in the (§, t)

plane. For the axisymmetric cass, the same assumptiions are made.

However, there exist in the characteristic equation ar added 'forcing

term” arising Irom the extra term in the continuity equation. This

i P,
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[ ad

is %% where ¥ is the component of the velocity in the w direction
psrpendicular to the (5, %) plras. This term bas & value of v/y, as

can be determined from geometric considerations. At any rate, the
characteristic esquation is still gquasi-one-dimensional, that is, the
characteristics are still found in the (&, t) plane. The details of

the itaration procudurs, the determination of the characieristic
linel, and the¢ integration of the compatibility equation, are given
in references (4) and (5).

A similar computation is performed at the body. The analysis
is simpler, since the body wall is fixed.

Pinally, the values for the points on the upper boundary are
extrapolated linearly from the inner values.

All the points in the flow fleld are thus accounte i for.

RESULTS

In genaral, the followipg results serve to complement those of
Moretti and Abbett (ref- (4)), and also lead to significant comments
with regard to the nature and practical use of the time-dependent
spproach of reference (4). In addition, interesting comparisons are
made with existing theoretical and empirical results, including the
useful correlations by Billig (ref. (9)) for shock-wave shape and
detachment distance. In particular, flow-field results have been
cbtained for the following blunt bodies at zero degrees angle of attack:

(1) Parabolic cylinder at M_ = 4 and 8, with the rross section
given by

b = 0.769 y2 - 1.0
(2) Cubic cylinder at M_ = 4, with the cross section given by

3
b =~ 0.427 y° - 1,0
{3) Bluotsd wadge =t H = 8, comnsisting of & uyx. indrical nose

of unit radius, a trapmsition section, and a wadge at an angle of

14 degrees with the horizontal. As explained later, the small

transition section is required to smooth the otherwise discontinuous
curvature at the junction point of the circular cylinder and the

wedge. This transitio: section is graphically determined, and its

deviation from the purely cylinder-wedge shape is small. .

(4) Paraboloid of revolution at M_ = 4 and 8, with the cross
section given by .
b = 0.769 r? - 1.0
(5) Sphere cone at M_ = 4 and 8, consisting of a spherical

noge of unit radius, a transition lection determined grephically,
and & cone afterbody with a 14 degree half-angle.
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All of the following results have been obtained for a calorically
perfect gas with vy = 1.4, 1In addition, the same grid sizs was

iised for all the numerical calculations; namely, a rectangle (see
figure lb) with ( from O to 1 and Y from 0 to 2, with equal increments
of 1/7 aiosng both the { and Y axls respectively.

The results will be given in four sections, First, new resultas
for several two-dimensional blunt-body flow fields will bLe presented
and compared with other available theories. Then, significant results
pertaining to the propagation of a pressure disturbance will be shown
and interpreted. Next, the latitude within which the initial condi-
tions can be "arbitrerily'" assumed will be examined und discussed
and the offect of diflerently obtained boundary conditions will be
presented. Finally, the results for the axisymmetric case will be
presented and compared with some existing theoretical and experimenial
data.

Two-Dimensional Flow-Field Results

To begin with, typical paths which the time-dependent solution
follows to a steady state are shown in figures 2 and 3 for the cese
of the parabolic cylinder at M_ =~ 4. Figure 2 shows the transient
behavior of W on the centerline, and figure 3 shows the time variation
of stagnation-point pressure. In both cases, the assumed initial
value is the proper steady-state value. Two poilnts are noted from
these figures: (1) the most extreme variations occur at early times
where the '"driving potential' towards the steady state is the
strongest, and (2) the steady state is rapidly approached (and for
practical purposes, is achieved) at large values of time. 1n uddition
to the above results, figure 4 shows the time-dependent shock-wave
motion for the parabolic cylinder at M_ = 4. Again, the rapid
approach to a steady state is obvious. After about 300 time steps,
the €inal shock shape and location are well defined. (The steady-
state results presented in this report are those obtained after
500 time steps.) Other indexes are also used to measure the degree
to which the steady state is achieved, such as the variation of
centerline entropy and position of the sonic line. All of thesc
indexes indicate that the steady state was achleved (practically
speaking) for the cases given in the present report.

Final steacy-state surface-pressure distributions, normalized
with respect to stagnatior point pressure, are given in figure 5
for the parabolic cylinder at M_ = 4 and 8. These results are
compared with the modified Newtonian Formula (ref. (10)). Figure 5
contains two anticipated results; namely, that the modified
Newtonian distribution underestimates the actual pressure distribution,
and that the actual bpregsure distribution 1s cioser to Newtoniak
at M_ = 8 than at M_ = 4. This type of comparison with modified
Newtonisn is typicar of two-dimensional blunt bodies; in practice,
pressure distributions over axisymmetric bodies agree more closely
with modified Newtonian than do two~dimensional pressure distributions,
as will be shown later.
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The fiual sinck shapas and sonic linas are shown in figure §
for the parubolic :ylinder at M_ = 4 and 8., The decreased shock-
detachment cistance &pd cownward sbift of the soniz line are both
chaeracteristic of ay iccrewsed Mach number. In addition, the
resulting shave of the uonic line is proper for tws-dimensional

blunt bodies st B_ > .. (I'or example, see reference (1).)

Figure 7 shows (k2 staady-state streamline direction field
for the parabclic cylirder nt M_ = 4, .

Figure 8, which shows the time variation of stagnation point
pressure for M_ = &, demonstirates a particularly interesting point -
when compared with figur>» 3, which i1s for M_ = 4, Starting with
gimilar ipitially aasscieed £low fields and shock shape, figures 3
and 8 demonptrate thai the spproxch to a steady state is aspproximately
# factor of 4 fastor at U v 8 than at M_ = 4. In fact, for = 8,
in(pys/p,) has converged %< within 0.1 percent of its steady-state
value by t = 1,0; thie iv in contrast tot = 4.0 for similar
convergence at ¥_ = 4, T.epe results prompt the following explanaticn.
The factor of 4 differeoce in relaxation time exists because the
local sound speed and the local flow velocity within the sheck layer
are both increassd by approxzimately a factor of two irn going from
M_ = 4 to M_ = 8., Consequently, relative to the fixed body, the
veloclity of a weak-p: sssure wave propagating downstream is increased
by a factor of 4, resulting in faster relaxation (by a factor of 4)
of the flow field to the steuady state. The above phenomena identify
the following simple gasdynamic mechanism. The rapidly changing
unsteady bow shock wave causes treonsient pressure changes immediately
behind the wave. 1In turn, the subsequent downstream propagation and
interaction cof these unsteady pressure waves constitute the primary
physical mechanism by which the unsteady flow field relaxes to the
steady state.

Results obtained for the culic cylinder at M_ = 4 are shown
in figures 9 and 10, which illuatrate the shock-wave shape and
surface pressure distribution, Agsaliu, the suock-wive shape is seen
to rapidly approach a steady cusite, and as before, the surface
pressure distribution is comparsd with modified Newtonian.

A two-dimensional configurationr 0of more practical importance
is that of a blunted wedge; thereinre, such results are presented in
figures 11-14 for M_ = 8, As an index of the convergence behavior,
figure 11 shows the time varintion nf stagnation point pressure.
Again, the rapid convergence v« th: stnaady state is obvious; In(p,/p.)
has converged to within 0.1 percent of its steady-state value by
t = 1.0, And again, the fasl reiavation assoclated with the Mach -
number 1is noted. In fact, the eagroachk to the steady state and the
relaxation time shown in figure .1 are comparable to those shown in
figure & for the parabolic cylindwy, thus indicating that relaxation
time is relatively independent of Lciy shape.
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Figure 12 presents the time-dependent hiow-shock wave motion, as
well as the fipal shock wave and sonic ling, Rapid couvevrgence is
also apparent in this figure. In addition, results ortained from the
correlation of Billig (ref. (9)) for final shock-wave shape and loca-
tion are alsu presented in figure 12, For s cylinder-wedge, the
correlatica is:

2 2 . 7
Fa1+? o | +¥_tan’8 V2 | g ctn?e
R R " ¢
o) ¢ 2 )
where R = (0,385 exp (4.67/H. )
e
end ﬁg - 1,386 exp [i.&/(M‘—J)0'7JJ (13)
R

6 is the shock detachment distarce. R is the cylinder radius, R, 1is
the shock vertex radius of curvature, acd £ is the shock angle
approached asymptotically for large y; in the prcaent case, 6 is the
attached oblique shock angle for the wedge afterbody. The results
presented in figure 12 show very good agreement between Billig's
correlation and present exact numerical solution.

P N

The steady-~state surface pressure distribution over the blunted
wedge as a function of the vertical coordinate, Y, is shown in
figure 13. (Al®o shown is the extent of the tramsition section
mentioned eariier,) Two points are noted from this figure: (1) the
proper supersonic weJge pressure is achieved asymptotically and
monotonically far downstream of the blun: nose; and {2) the pressure
distribution over the cylindrical portion compares favorably with
infinite Mach number circular cylinder results obtained by Fuller
using an inverse method (refs. (1) and (il)). At hypersonic speeds,
the pressure distribution is somewhat insensitive to M _. Consequently,
an infinite Mach number comparison is reasconably valid.

Figure 14 illustrates the sensitive transient behaviur of the
sonic lipe aAuring convergence to the steady state. Here agaln two
points are «f interest: (1) rapid convergence to a steady-state sonic
line 42 sivicus, and (2) tie movement of the sonic point on the bow
shock wave is considerably greater than on the body; in fact, ithe sonic
point movement or. the body is confined to & relati rely narrow region.

Figure 15 iliustrates the steady~state velocity distribution
along the stagnation streamline. The results are shown for the
parabolic cylinder at M_ = 4 and 8, the cylinder-wedge at M_ = §,
and the cubic cylinder at M_ = 8, The :sdiil of curvature af the
stagnation point for these Podies are 0.65, 1 and infinite,
respectively., In figure 15, U_ 1is thes velocity immediately
behind the normal portion of th8 shock, and 6 is the shock detach-’
ment distance. The fact that the velocity distribution is approxi-
mately linear has been noted in previous analyses (ref. (1)).
However, the exact nonlinear velocity distributions are identical
(within graphical sccuracy) for the giver two-dimensional cases (but
this was not so for the axisymmetric configurations, as will be seen
later). Consequently, it appears that for the two-dimensional cases
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tte exact velccity distribution aloag the centerline is relatively
indepeadent of both Mach number and body shape, Such independence
has been predicted by the closed-form approxinate snalysis of Li and
Geiger (ref. (12)). However, the approximate velocity distribution
obtained from Li and Geiger's formula differs somewhat from thse

present numerical resulis ar seen from figure 15,

Ou ike Propagation of 8 Wesk Pressurs Disturbapce

The following results are given in ans.=r to the guestion ssked )
earlier in the introduction; namely, if a slight pressure disturbance
is introduced at a poirt in the supersonic portion of the blunt-body
flow fiald, what is its region of i:1fluence and how clearly is it ’
defined by the time~dependent analysis employed in tie present
investigation? Towards this end, & numerical experiment was conducted
in which, first, the steady state was reasonably achieved (after 400
time steps) for the flows over the parabolic cylinder at M, = 4, and
than a smell n-otuberance was sxtended iato the flox from the body
surface at a point far downstream of the asonic point, asg shown in
figurz 16. The pressure disturbance caused by this protuberance was
subsequently observed as a function of time. Figures 17 and 18 show
the time variation of the body surface pressure at the various points
identified in figure 15. Note that the scale is the same for all
curves shown in figures 17 and 18, Also note that the expanded scale
gives the exaggerated illusion of m» time varying pressure before the
time of the disturbance; in reality, the steady state has been
achieved for all practical purposes by this time. These results show
that the protuberance indeed causes a noticesble pressure disturbance;
this disturbapnce was strongest at the protuberance, and decays both
downstream and upstream of the source. Note also the growing time
lag of the disturbance felt at points further away from the protuber-
ance. Of most consequence, however, is the fact that the effect of
the protuberance, which is far insids the supersonic region of the
flow field, is fed upstream, even tc the extent of the subsonic
portion of the flow field and all the way to the stagnation streamline.
This latter effect is graphically shown in figure 19, which compares
the time variations of centerline wave velocity for the cases with
and without the disturbance. As seen in this figure, the disturbance
is obviously felt sll the way to the centerline.

The upstream influence described above, which is coutrary to the
normal behavior in a steady supersonic flow, can be attributed to the
fact that the insertion of the protuberance initiates a new transient
flow field (ref. (13)); consequently, all regions of the flow field
can eventually be influenced by unsteady wave motion. In addition,
even though the disturbed pressures shown in figures 17 and 18 have
not settled to a steady state at the largest time considered, the .
nressures at the upctream locaticns appear i10 experieunce a “‘permanent
set,”" i.e., the pressures seem to be approaching steady-state values
different from the original steady-state values before the distur-
bance. This "pseudo-elliptic” behavior can be attributed to a

numerical effect; namely, the internal wave caused by the disturbance
is smeared over several mesh points, and because a course grid is

is employed, the wave can be felt some distance upstream, If at least
one of these mesh points is upstream of the sonic point (as in the

10
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present case) then the entire steady-s:ate subsonic region will be
affected. The abave rgsults have sigonificant practical implication;
namely, that the present anslysis should be applied to smooth con-
figurations.

It muat be emphasizgd thatl the preseni results do not degrade
or detract from the excellent and useful meihod presented in
reference (4); quite the contrary, the present authors have already
stated their opinion in the introduction that the time-dependent
method (such as formulated by Moretti and Abbett) may become pre-~
eminent among practical blunt-body solutions. Instead, the present
results provide some indication that the method (in its present
formulation) should be restricted to smooth bodies. Finally, it is
interesting to note that the method of reference (4) does indeed sense
the presence of a disturbance or internal wave, and such a wave mnv
be trgced rather cnzresly 5y L.auo vi vhe peaks in the pressure and
density distributions.

Expeximents on the Sensitivity of the Blunt-Body Sclution to Initial
Conditlons, Bedy Shape, and Boundary (Jonditions

In addition to t!:e above numerical experiment, other experiments
were performed to lnvestigate the sffect of initial coanditions, body
shape, &nd boundary conditions on the time-dependent blunt-body
solutions. These experiments indicate that such factors have a
definite influence on ta: "go'" or ''no~go' nature of the blunt-body
caumputer program. The assumed initial flow field (at time equal to
z-:10) is obtained from the following: (1) modified Newtonian pressure
distribution along the body surface, (2) isentropic expansion along
the body streamline, (3) assumed shock shape and detachment distance,
and (4) linear interpolation between the shtock and the body.

a, Effect of Initial Pressure Distribution

Solutions for a two-dimensional parabolic body were obtained
using initial pressure distributions which were factors of six above
and below the standard solution, In ecach case, the soluiion converged
to the same final results. From this it is concluded that the program
is not very sensitive tc initial pressure distributions, which can be
prescribed within an order of magnitude of the final pressure distri-
bution.

b, Effect of Shock Shape

Satisfactory results were obtained for a two-dimensicnal
parabolic body using both parabolic and cubic initial shock shapes,
with 6 = .37 at M_ = 4, However, the use of a hyperbolic shock shage,
§ = .37, did nvi lead to a converged solution. Hence, the initial
shock shape may iu2ve some influence on the program, and it appears
reasonable to run similar analytic shapes for both the body and the
shock. For blunted wedges and cones initial parabolic shock shapes
were satisfactory.

11

N et ek

e ol R il b 1 S Wit e

maw MhAW A




NOLTR 68-129

c, Effect of Shock-Datachment Distance

The initial shock-cdetachment distance, °in1tial is an

e S W,

i@portiant quaatiiy, aad cam be prescribed only within a certain
latitude. For example, using 2 two-dimensional parabolic body and
initial shock shape at M_ = 4 the program worked successfully for

6 initiml = 0.37 and 0.49, but it did not run for 6 initial = 0,55
or $.20. <Counmegquently, the initial shnock cannot be agsumed too close
or 100 far away from the body. If indeed ¢ initial is too large or
too small, the shock wave *ends to accelerate considerably faster
than shown on figure 2 at eariy values of time (accelerations an
order of magnitude faster cap occur). In turn, strong gradients of
the flow-field variables are produced behind the highly acceleratiung
wave, and consequently the finite-difference scheme using a fixed
course grid becomes inaccurate., This inaccuracy ultimately causes
dnmow mopeut wA Lhe gICSTsm T collapse.

d, EREffect of Body Shape

Successful rolutions were obtained for bodies witn coustant
and linear variations of dzb/dy , bnamely parabolic and cubic shapes,
respectively. However, the program did not run for those parsbolig
and cubic shapes which were characterized by high values of d<b/dy
(above approximately 6). In addition,_the program did not ruan for
hodies with local discontinuities in dzb/dy , namely, purely
henicylinder~wedge or sphere-cone shnpeg. The program became unstable
in the region of the discontinuity in d“b/dy“, i.e., where the body
curvature is discontinuous., When a transition soction was added to
the discontinuity, successful solutions were obtained.

e. Effect of Extrapolation to the Upper Boundary

As shown in figure la and as discussed earlier, the upper
boundary of the flow field is taken as a horizontal line within
the supersonic region. At any given time step, flow-field variables
along this boundary are obtained by linear extrapolation from points
below. Consequently, the upper boundary values do not exactly
eatisfy the continuity, momentum and energy equations, and tnerefore
final results for certain portions of the flow field may be com-
promised. Io order to make a preliminary investigation of this
effect, results obtained by using several different extrapolation
procedures were compared. These extrapolation procedures are:

(1) linear extrapolation

(2) reduced linear extrapolation (extrapolated increment
reduced 20 percent below that for strictly linear extrapolation)

(3) Shank’'s approximation (ref. (14))

We congider first the two-dimensional case. Preliminary data were
obtained for a cylinder-wedge in helium (y = 1.67) at M_ = 16. These
data show that procedures (1) and (2) give different surface pressure
results downstream of the right running characteristic from point D,
as shown schematically in the diagram below.
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Also, procedure (3) resulted in a collapse of the computer program,
hence no results were obtained. Obviously, for this case, the pro-
cedure for extrapolation to the upper boundary influences that part
of the flow field dowustream of the right running characteristic
from D (shaded region in the above sketch), and this fact should be
kept in mind when interpreting the present numerical results.
However, this anomalous behavior seems to be limited to the flow
field around composite shapes (such as a cylinder-wedge and sphere-
cone); the flow field around purely analytical shapes appears to be
rather inscnsitive to the extrapolation procedure, as will be
discussed further in a subsequent section dealing with axisymmetric
results. A complete resolution and understanding of this effect is
deferred for future investigation.

As an interim summary, the convergent or divergeni behavior
of the time-dependent blunt-body solution appears to be somewhat
dependent upon the 1unitial conditions and body shape, outside of a
certain latitude. Withiu this latitude, successful solutions were
obtained. However, it should be remembered trat a fixed grid size
(7x14) was employed for all the prasent results. A fiper grid might
reasonably lead to an even wider latiiude for successful initial
conditions and body shapes. Also, it is spparent that 2 substagtial
portion of the supersonic fiow field is affected by the extrapolation
procedure to the upper boundary.

Axisymmetric Flow Fleld Results

As for the two~dimensional case, typical paths which the three-~
dimonsional time-dependent solutiom follows to a stesdy state are
snown in figures 20, 21, 22, and 23. Figures 20 and 21 show the time
variation of wave velocity at the centerline for the paraboloid of
revolution at M_ =~ 4 and 8, respectively  Qualitatively, boih figures
are similar to the two-dimensional case, in which the most extreme
variations occur at early times, bult steady state is achieved earlier
in the axisymmetric case due to the three-dimensional relieving effect.
Figures 22 and 23 show the time variation of the stagpnation point
pressure for the paraboloid at M_ = 4 and 8, respectively.

13
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Figures 24 and 25 present the time-dependent shock~-wave motion
for the paraboloid at B = 4 and 3, respectively. After about 200
time steps, the final ehock shape uand location are well defined.

In figures 26 and 27 we have plotted the final, steady-state
surface pressure distributicns (divided by the stagnation point
pressure)} for the paraboloid at M_ = 4 and 8, respectively. We can
see that the Newtopian pressure dfstribution is in better agreement
with the axisymmetric case than with the two-dimensional case (cf.
figure 5). In addition, the pressure distribution is compared with
results obtained with the inverse method of Lomax and Inouye (ref. (15)).
(All data from this source were kindly provided by Mr. Robert Thompson
of the Naval Ship Research and Development Center, Washington, D. C,)

Figures 8 and 79 present results for the sphere-cone case
at M_ = 4 and J, respectively. We cen see again the close agreement
betwesn the modified Newtonian distiribution and the t re~dependent
results. These figures also show the overexpansion and Bubsequent
approach to the cone-pressure value, as indicated by Pc/Po. Note
that the absicissa in these figures is "s', the distance along the
surface of the body.

in addition, results from reference (18) (which uses a program
similar to Lomax and Inouye's, coupled with a method of characteristics
Suownstrean) ure included in figure 29. We see that agreement is
gocd up to ¢ ~ 0,8, a“ter which our pressure distribution falls below
both the Newtonian distribution and thet of reference (16). We
believe this to be due to the presence of ocur transition section,
which begins near this point. The exact location of the tremnsition
sectiou, and further comparisons with other methods, appear in the
next two figures. Figures 30 and 31 present the same results as
28 and 29 but covering a smalier region of the s coordinate shown in an
enlarged scale. This was done to facilitate comparison of our results
with existing theoretical and axperimental data for spheres. 1In
particular, figure 30 compares the present time-dependent calculations
for M = 4 with the inverse methnd of reference (15); the time-
dependent results of Moretti and Abbett (ref. (4)), the analytical
results of Van Tuyl obtained with rational approximations (ref. (17)}),
end the experirentazl data of Stallings (ref. (18)). Good agreement
is obtained over most of the spherical portion; bowever, some effect
in the region of the transition section is again noticeable.
Figure 31 shows similar results for M_ = 8.

Figure 32 shows the final shock shapes for the sphere-cone
at M_ - 4 and 8. As in the case of the cylinder-wedge, excellent
agrcsment with the correlation of Billig for ihe shock shape is
obtained for the sphere~cone. In addition, the shock shapes are
compared to ithe ones obtained with the method of reference (135) in
tigures 33 and 34 for M_ = 4 and 8, respectively. Once more,
excellent agreement is noted.
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A comparison of rhbock-detachment distance is made with the
iuverse nmnethod of Lomax and Inouye (ref. (18)) in the following table.
R is the local radius of curvature at the stagnation point. The
agreement is quite good.

£/

LY
Shape Mo Ref. (15)) Present results
Sphere 4 .1759 .1760
8 .1396 .1395
Paraboloid 9 4 .1264 .1284
b = 0.769 y= - 1.0 8 .098 .100
bParaboloid , 8 .1689 . 1687

b = 0.450 ya - 1.0

The velocity distributions four the sphere-cone at M_ = 4 and 8
are given in figures 35 and 36, respectively. The resultS are com-
pared to Van Tuyl's dlstrxbutlons (ref. (17)) and indeed excellent
agreement is nbserved.

For the axisymmetric case, figures 37 and 38 (which correspond
to firure 15 for the two-dimensional case¢) give the steady-state
velocity distribution along the stagnation streamline. Indeed, the
velocity distribution is approximately linear as expected, but, unlike
the two-dimensional results, the distributions are not exactly
independent of Mach number and body shape (although they are close).
Once more, the approximate velocity distribution obtained from Li
and Geiger's formule (ref. (12)) differs from our numerical results.

Figure 39 compares our sonic line for the M_ = 4 paraboloid
to the sonic line obtained with the method of reference (15). The
agreement is excellent. The agreement was not so good, however, for
the sphere-pOne case, probably because of the presence of the transi-
tico section, 1ocaied indeed in the neighborhood of the sonic point.

Finally, figure 40 illustrates the effect on the surface
pressure distripution about a paraboliod nt M - 4 of various extra-~
polation procedures to the upper boundary. ¥e can see that these have
l1ittle effect. On the other hand, the sphere-cone case is sensitive
to the kind of extrapolatlon procedure used; for example, a converging
solution using Shank's approximation could not be nbtained. Taken
in conjunction with similaer results for the two-dimensional case
(cf. (), p. 12), we are led tc believe that the flow fisld arcund
composite shapes (i.e., where there exist discountinuities in the
curvature) are particularly sepsitive to instabilities. But the flow
field arourd purely analytical shapes does not exhibit this sensi-
tivivy.
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New results for calorically peirfect, supersonic and hypersonic
fiow fiulds about blunt bodius at zero degrees angle of atiach have
Posn v wn v oo eom oo we et B Pt Tl o e L B W Ty B MM b4 -~ a3 Adlgtam b d raryy £ANN
NG e GEYSMOOU WHLALVH WWINKY ADQUITIA L viIlvDoT \ra MUPL T LLAL Gliftu auUuucLuLL AL T . \xX7 /),
and whicia proupt some significant comments with regard to tae nhysical
gnd oumericsl natare of the present itime-~-deperdent method. These

ro3uii 8 lead to the following conclusions:

{1} Pressure waves which originate behind tre initially
unrgteady, moving row &nock and which subseguentiy propagate and
interact downstream appear to ha the principal plysicul mechanism
by which the unateady flow fieid counverges to the steady state.
Congequertly, bhigher free-stream Mach numbers (and thus higher values
oi <vhe lockl spged of sound and f£low velocities within the flow
field) result ip preoportionall; shoiter physical convergence times.

«2) A pressure disturbance caused by a protuberance which
is suddealy introduced into the steady su,ersonic region can propagate
upstream &8s well as downstream, and can eventually affect all regions
of the fiow field. This behavior is a resuit of the unsteady wave
mpotion £nd new transient flow field inlitiated hy the disturbance.
However, the disturbed upstream surface pressures appear to approach
new steady--state valves which are displaced from the steady-state
values butore the disturbance. Trkis apparent 'pseudo-eliiptic"
venaviur is attributed to ithe smeuring out of the wave ovar the
rather coarse grid used in the finite-~dilference scheme,

(3) Billig's empiricai correlacion for bhow shock shape and
locat.on agrees very well with the present numerical solutions for
cylinder-vedges and sphere-cones.

{4) Whether the numerical solution coanverges or diverges
depends to some exftopnt on the assumed initial cenditions. These
initinl conditions, such as bow shock-wave shape and location, can
be nrblirarily assuwmed within a relatlvely wiae latitude. BEowever,
boyend this latitude, the initial conditlionus do not lrad to conver-
gence Therefore, tor prectical numerical reascus, tue initial
conditions can nct be completely arbitrary.

(5) Convergent solutions could not e obtained about body
shapes with a local discentinuity in the surfuce curvature., There-
forn, the pressal pumerical program is restricted to relatively .
spooth bodiex.

cylinder~wedge or sphere-cor:) 1is particularly sensitive to instabil-
ities, whereas the flow fleld around pnrely snalytical shapes does
not exhibit this senzitivity.

(6) The flow field around composite shapes (such as a . i

%ven though some of the above conclusions delineate restric- :
tions on the time~-depeandernt method as employed in the pressnt investi- 1
getion, empbasis must e made that all existing blunt-body solutioas
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with oiher techniques,

the time-dependent method has the advantage of being a direct method
(body-shape and free-stream properties are given) as well as being

able to calculate large porti
downstxeam of the sonic lina

ons of the supersonic flow field

{the exigting steady-state blunt=body

methods usually encounter difficulties in integrating downitream of
the sonic line). in addition, the time-dependent method does not

invclve any simplification or
. and in this respect it is an
anticipated that the time-dep
more cowplex body shapes thai.
. For thege reasons, and from e

reduction of the equations of change,
exact solution. Finally, it is
endent method will be able to treat
the existing steady-state methods.
Xperience gained during the present

investigation, the time-depeudert solution appears to have the

potential for pre-eminert app
sonic blunt-body problem.

Finally, slince the comp
additional information concer
method has very recently been
In general, reference 19 conf
studies, and in addition, it
flow-field calculations in a
stream Mach numbers and body

lication to the supersonic and hyper-

letion of the present studies,

uing the time-dependent blunt~body
pPresented by Moretti (ref. (19)).

.rms many of the findings of the present

presents a large number of blunt-body
systematic form for a range cf free-
shapes.
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