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ABSTRACT: New results are presented for inviscid, supersonic znd
hypersonic blunt-body flow fields obtained with a numerical time-
dependent method patterned after that of Moretti and Abbetto In
addition, important comments are made with regard to the physical
and numerical nature of the method. Specifically, numerical results
are presented for two-dimensional and axisymmetric parabolic and
cubic blunt bodies as well as blunted wedges and cones; these results
-re presented for zero degrees angle of attack and for a calorically
rerfect gas with y - 1.4. The nurerical 7asults are compared with
other existing theoretical and experimental data. Also, the offects
of initial conditions and boundary conditions are oystematicali
examined with regard to the convergence of the time-dependent u
cal solutions, and the point is made that the initl, conditions
not be completely arbitrary. Finally, in order to learn more about
the performance of the time-dependent method, a numerical epr
is conducted to examine the unsteady propagation and region of
infltence of a slight pressure disturbance introduced at a point on
the surface of a blunt body.
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This report presents now results for inviscid, calorically
perfect, sunerponic and hypersonic blunt-body flow fields
obtained with a time-dependent numcrical method. In addition,
important commentr are made with regard to the physical and
numerical nature of the method.
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LIST OF SYMBOLS

a Speed of sound

h abs'g: J i b U the X, y place

g dummy variable

L characteristic length I
M Mach number

p pressure (divided by free-stream pressure)
P Ln p
r radius of cylinder, sphere, or paraboloid

R fnp
a abscissa of the shock of the x, y plans; also distance along

surface of the body

t nondimennional time In physical coordinate system
T nondlmensional time iu trarsformrt coordinate system
u nondimensional velocity in x direction in x, y plane

v nondimensional velocity in y direction in x, y plane

w velocity of the shock in x direction in x, y plane

x abscissa in a Cartesian frare in the physical plane

y ordinate in a Cartesian frame in the physical plan.

Y ordinate in a rartm n fr... .. ia tk ike.A&UtLrMeQ plane
•,rI Cartesian reference frame along shock or body

s - b

y ratio of specific heats

p density (uivided by free-stream density)

6 angle between tahngnt +t M""i X-• x . :i6
Sabscissa In a Cartesian reference frame in the transformed

plane

4u lP ln p

The subscript * indicates, as usual, free-stream conditions.
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ON HYPZRSONIC RLUNT-BODY FLOW FIELDS UBTA1r4D WITH A
TIME-DEPENDENT TECHNIQUI

by

John D. Anderson, Jr.
Lorenzo M. Albacete
Allen F. Wlnkelmabu

INTRUDUCTION

Experiaental and analytical Investigations of supersonic and
hypersonic flow fields about blunt bo044 s h. I, vrevalent in
aerodynamic research for toe past two decades. This is in part
due to the practical use of blunt bodies for manned and unmanned
re-entry vehicles, as well as to the intellectually challenging
mathematical nature of the mixed subsonic-supersonic flow field
which is chrractoristic of such bodies. However, as pointed out
in reference (1), it is remarkable that the present state-of-the-
art has still not progressed to the point where one specific ana-
lytical technique for solving the blunt-body problem can be agreed
upon an being markedly supc:ior to all others. On the other hand,
a relatively new technique has appeared in the recent literature
which appears to have thE potential for such pre-eminence among
Inviscid blunt-body solutions; namely, the time-dependent approach
such as employed by Bohachevsky et al (refs. (2) and (3)), and more
recently by Moretti and Abbett (ref. (4)), and Moretti and Bliech
(ref. (5)). The present report supplements the above investigations
by further examination and application of the time-dependent method
to various two-dimensional and axisymuetric blunt bodies.

it is not within the scope of the present report to give a
detailed review of the various analytical approaches to the blunt-.
body problem; indeed, excellent descriptions of the significant
theories are readily available in the literature. (For example,
aee references (1), (6), and (7).) Instead, it is sufficient and
pertinent to describe briefly the philosophy of the time-dependent
method, after which the speci±ir pn.=of jraae•- 1• purj
will be outlined.

The time-dependent blunt-body approach entails the solution
of the unsteady partial differential equations which physically
describe the transient flow field; i.e., the equations contain
time derivatives of the local flow properties. Given a fixed
body shape and free-stream conditions, the solution begins by
assuming (somewhat, but not completely) arbitrary initial values
for the flow field variables and shock-wave shape and location.
The solution thon procea ds, using the unsteady equations, to obtain
new values of the flow field variables and shock-wave shape in steps
of time. This solution is carried Lut numerically by a finite-
difference scheme using a high-speed digital computer. Following
a natural relaxation process, the solution asymptotically approaches a

1i
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steady state for lar-e values of time. For the present investigation,
this steady state is the desired result; the use of the time-dependent
equations is just a mtans to an end. However, the trUnsLiert lumerical
variation of the flow field variables during tneir approach to the
steady state should approximate the actual physical relaxation asso-
ciated with a flow waich is artificially started with the assume!
initial conditions. (Hot well thiE transient process is Rpproximated
depends on how well the time-dependent difference equations a~proxi-
mate the original governing partial differential equations.) Therefore,
the time-dependent appronch is also m~eful for the analyses of
inherently transient problems; for example, the e9tablishncnt of flow
a&out models P - .:..k Luoe, and the interaction of a blast wave
with a re-entry vehicle (ref. (8)). Nevertheless, from the point of
view of tne steady supersonic blunt-Oody problem, thc mathematical
advantage obtained by use of the time-dependent method is that the
p~rtial dif~erentia] equations are hyperbolic in time; this is in
contrast to the stcaty flow equations which are elliptic in the sub-
sonic region and hyperbolic in the sup,rsonic region. This byperoolic
nature of the time-dependent solution allows the use of a finite-
difference approach sterting with assu-,ed initial conditions a, a
given time. h considerably more detailed description of the time-
dependent m~thod con be found in references (2) to (5), and therefore,
no further elaboration will be given here. However, for the pi'rposes
of establishing nomenclature and for making this report somewhat
self-containnd, the pertinent equations and numerical solution employed
in the present investigation will be outlined in a subsequent section.

The present report gives new results for blunt-body flow fields
obtained with a time-dependent method patterned after that of Moretti
and Abbott (ref. (4)), and also makes some important comments with
regard to the physical and numerical nature of the method.
Specifically, the main purposes of the present report are fourfold:

(1) T-" documeat numerical results for two-dimensional and
axisymmetric, superfonic and hypersonic flow fields about various
blunt body shapes; namely analytical shapes (parabolic and cubic) as
well as blunted wedges and blunted cones. Results are presented for

zero degrees angle of attack and for a calorically perfect gas with
y-1.4.

(2) To compare numerical results with other existing theo-
retical and experimental data.

(3) To systematically describe the effects of different
assumed initial conditions and differently obtained boundary conditions
on the convergence of the time-dependent numerical solutions.

(4) To describe the results of a numerical expert=ent
conducted to answer the following question: If a slight pressure 71

disturbance is introduced at a point in the supersonic portion of
the blunt-body flow field, what is its region of influence and how
clearly is it defined by the timo-depcudenL analysis employed in
the present investigation? The answer to this question has signifi-
cance with regard to the type of body configuration which -an be
realistically treated by the above analysis.

2
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ANALYSIS

Basic Equations and Transformations

Since our method of soluxion is patterned after Moretti and
Abbettm* analvsls, described in reference (4). we rive here only a
synoFsis of the procedure, intended primarily to permit viscussiop
of our results. The reader is thus referred to reference (4) for
the details.

We are considering the inviscid flow arcund a body, as shown
in figure la. The body BC (eitner two-dimensional or axisymmetric)
is assumed symmetric with reEpect to the x axis; AD is an arc of
the unknown shock wave; the location of C is such that the flow is
always supersonic along CD; the flow at infinity is uniform, super-
sonic, and parallel to tne x axis.

The governing equations are:

a a
Continuity .t + - (pu) + - (pv) + K f- . 0oy y (1)

momentum p bu au . - (2
+ pu - + PV a- ox (2)

yMomentum V+ Pu + pv v p (3)

at oxenu T •- y - oY

-nergy I + u v 0 (4)
at ax (y

In equation (1), K - 0 for the two-dimensional configuration,
and K - 1 for the axisymmetric case. In equation (4), l - In p -

yla p. The energy equation thus corresponds to

-s " 0 - D
D- D-- ( )

for a calorically perfect gas. The additional symbolism is
summarized in the list of symbols at the beginning of this report.

x-b

c --- , y I y; T a (5)

where 6 - s-b, the local shock detachment distance. The definitions
(5) transform the "oblique" region of interest ABCD into a rectangular
region, as shown in figure lb.

3
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In addition, Vie following varirbles are defined:

C' ~~ (C2 -%.' ctn aI
P In p Bn , [" C w+ VC1 /0

(vIP

where W is the velocity of the shock wave.

All the var•abLas are uon-dimensior.alized a& follows: p and p
are divided by their free-stream values; the velocities are divided
by [p /p1I *; the lengt'h are divided by a ch..ractae:istic length L;
aid Sus the noo-dimensioual time is the dimensiosal time divided by
L / Vip ',p.

All of these operations result in the following non-dimensional,
trarstormed equttions:

Coatiauity .R LB -f + + C +T + +

mL - Er-,2 + v- +Y ++ (+)

yMomentum +v av + Ca p bP (9

L C TYi
Now: in the spirit of reference (4), the flom field is divided

Into three parts: '"he sLock Itself (AD), the body (BC), and the
"inner ponats" insaue the rectangle ABCD.

Inner Points avd Finite Differences

We uonuider firet the inner poiute. As indicated in the
introduction, the use of the unsteady equations (h0?erhon.ic 4s tIme)
enabl6s us to employ a finite-diiference approach t, arting from the
initial conditions at an initial time. Thu parttc-L.ar finite-
dif.erený. form is a matter of choice. In this analysis, after
Moretti ard Abbott, we use, for any flow variable g: -

g (T + A^T) - g (') + ('T). &T + a2T 2 2 ((L)T

That is, given inittia crnditions for each variable. equattcn (11't
enables us to obtain its value at a later time. These values serve
in turrn as "initial conditions" fLr the inext time step, and the
process continues until the unsteady terms are negligible. This will
then be the "ihnal solution for the steady problem, approached
Rsymptotica ly with time.

4
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All the terms In the richt-hand side nf (111 are known: .fT)
is known from the previors time ste; and the first time derivatives
are given by the governiLg equations (7) and (10). In these equations,
the space derivatires are computed by central finite-differences at
each pcint in a mesh which subdivides the innar reggon4 The second :
time derivatives are obtained by differentiating equations (7)
thicngh (10). Symmetry is assumed at the centerline for the calcu-
lation of the space derivatives.

For the axisymmetrit cass, there will be indeterminate terms
at the centerline of the form 0/0. These may be calculated bi the
use of L'Hospital rule.

In these calculations, the step size AT is evaluated as the
minimum of A/1.5 a (M+l) where A is the smallest interval between
Ay and Ax, a is the speed of sound, and M the Mach number. ThiE
satisfies the Courant-Friedrichs-Lewy stability criterion.

Finally, note that in obtaining the second time derivatives by

differentiating eqiations (7) to (10), the term -2 will be encoun-

tered. From equation (6) this implies that 2! must be known. This
terns is computed as follows:

LW (T + AT) - W(T /6T (12)bT

This means that every time the inner points are calculated, the value
of W(T+AT), (that is the "new" value of W), must be known. For this
reason, the shock points must be computed first, before the interior
points, at the beginning of each step in time.

Shock, Bony Points, and Characteristics

The v-.lues of the flow variables behind the shock at T + AT
can be obtained from the Rankine-Hugoniot relations for a moving
shok. Bu. t4`5 means that a value tor W(T+_T) must be assumed,
since it is not known at the beginning of each step in the compu-
tation. However, the values for the shock points can be obtained
in another way, compared to those obtained from the shock relations
with the assumed W, and matched by an Iterative process until they
do agree. This will give the true value of W(T+&T) as well as the
rest of tae unknowns. In the analysis of Moretti and Abbett, this
"other way" ib by means of the characteristic equations f;r the set
of governirg relations written for a (•, r, t) frame, where ý and q
are Cartesian coordinates normal and tangential to the shock respac-
tiveiy. The assumption is made in obtaining the characteristics
that the governing equations can be written as quasi-one-dimensional,
modified by "forcing terms" containing derivatives in the tangential
direction. That is, the characteristics are found in the (ý, t)
plane. For the axisymmetric case, the same assumptions are made.
However, there exist in the characteristic equation an added "forcing
term" arising from the extra term in the continuity equation. This

5
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Is aw where W is the component of the velocity in the w direction
par~~~~a ------. E , rj .~ as~. Thi trrn ud a value OZ v/y, as

can be determined from geometric considerations. At any rate, the I
characteristic equation is still quasi-one-dimensional, that is, the
characterintics are st..ll found in the (ý, t) plane. The details ofthe i•eration .... +.u... A4 t.term'nat'on of the characteristic

lines, and tht integration of the compatibility equation, are given
in references (4) and (5).

A similar computation is performed at the body. The analysis
ts simpler, since the body wall is fixed.

Finally, the values for the points on the upper boundary are
extrapolated linearly from the inner values. i

All the points in the flow field are thus accountl for,

RESULTS

In genaral, the following results serve to complement those of
Moretti and Abbett (ref, (4)), and also lead to significant comments
with regard to the nature and practical use of the time-dependent
approach of reference (4). In addition, interesting comparisons are
made with existing theoretical and empirical results, including the
useful correlations by Billig (ref. (9)) for shock-wave shape and
detachment distance. In particular, flow-field results have been
obtained for the following blunt bodies at zero derees angle of attack.

(1) Parabolic cylinder at Me = 4 and 8, with the nross section

given by

b - 0.769 y2 - 1.0

(2) Cubic cylinder at Mm - 4, with the cross section given by

b - 0.427 - 1.0

of unit radius, a transition section, and a wedge at an angle of
14 degrees with the horizontal. As explained later, the small
transition section is required to smooth the otherwise discontinuous
curvature at the junction point of the circular cylinder and the
wedge. This transitiox section is graphically determined, and its

deviation from the purely cylinder-wedge shape is small.

(4) Paraboloid of revolution at M - 4 and 8, with the cross
section given by

b - 0.769 r - 1.0

(5) Sphere cone at M - 4 and 8, consisting of a spherical
noee of unit radius, a tranition section determined graphically,
and a cone afterbody with a 14 degree half-angle.

6
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All of the following results have been obtained for a calorically
perfect gas with y - 1.4. In addition, the same grid sizA was
used for all the numerical calculations; namely, a rectangle (see
figure ib) with C from 0 to 1 and Y from 0 to 2, with equal increments
of 1/7 aiong both the C and V axis respectively.

The results will be given in four sections. First, new result3
for several two-dimensional blunt-body flow fields will be presented
and compared with other available theories. Then, significant results
pertaining to the propagation of t pressure disturbance will be shown
and interpreted. Next, the latitude within which the initial condi-
tions can be "arbitrarily" assumed will be examined and discussed
and the dafeet of dif~erently obtained boundary conditions will be
presented. Finally, the results for the axisymmetric case will be
presented and compared with some existing theoretical and experimental
data.

Two-Dimensional Flow-Field Results I
To begin with, typical paths which the time-dependent solution

follows to a steady state are shown in figures 2 and 3 for the case
of the parabolic cylinder at M. - 4. Figure 2 shows the transient
behavior of W on the centerline, and figure 3 shows the time variation
of stagnation-point pressure. In both cases, the assumed initial
value is the proper steady-state value. Two points are noted from
these figures: (1) the most extreme variations occur at early times
where the "driving potential" towards the steady state is the
strongest, and (2) the steady state is rapidly approached (and for
practical purposes, is achieved) at large values of time. In addition
to the above results, figure 4 shows the time-dependent shock-wave
motion for the parabolic cylinder at M,, - 4. Again, the rapid
approach to a steady state is obvious. After about 300 time steps,
the final shock shape and location are well defined. (The steady-
state results presented in this report are those obtained after
500 time steps.) Other indexes are also used to measure the degree
to which the steady state Is achieved, such as the variation of
centerline eltropy and position of the sonic line. All of thesc
indexes indicate that the steady state was achieved (practically
speaking) for the cases given in the present report.

Final steady-state surface-pressure distributions, normalized
with respect to stagnation point pressure, are given in figure 5
for the parabolic cylinder at M - 4 and 8. These results are
compared with the modified Newtonian Formula (ref. (10)). Figure 5
contains two anticipated results; namely, that the modified
Newtonian distribution underestimates the actual pressure distribution,
and that thp artuk!n nresure distribution is closer to Newtonian
at M. - 8 than at M - 4. This type of comparison with modified
Newtonian is typical of two-dimensional blunt bodies; in practice,
pressure distributions over axisymmetric bodies agree more closely
with modified Newtonian than do two-dimensional pressure distributions,
as will be shown later.

7
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The lial sYL-otk shapan and manin linatz are shnwn in a4,,for the parubolic :ylindzr at M, - 4 and 8. The decreased shock-

detachment distance &ad cownwar• shift of the sonic line are both
characteristlc of a& ±.creased Mach number. In addition, the
resulting shave of thv uojonc line is propor for twz--dimanninnalblunt bodies at m, > m. (ror example, see reference (1).)

Figure 7 shows th4 steady-state streamline direction field
for the parabclic cylirder rt M. - 4.

Figure 8, which shows the time variation of stagnation point
pressure for , - 8, demonstrates a particularly interesting point
when compared with figuri 3, which Is for M - 4. Starting with
similar initially ass4uute, flo'a fields and sVock sihape, figures 3
and 8 demonstrate thae. the appro.4ch to a steady state is approximately
a factor of 4 faster at K - 8 than at M - 4. In fact, for m - 8,
ln(po/p.) has converged t, within 0.1 percent of ita steady-state
value by t - 1.0; this i5 in contrast to t - 4.0 for similar
convergence at Maj 4, Taeoe results prompt the following explanation.
The factor of 4 aliferecce in relaxation time exists because the
local sound speed and -he local flow velocity within the shock layer
are both increased by Lpproximately a factor of two in going from
Ma - 4 to Mhi - 8. Consequently, relative to the fixed body, the
velocity of a weak-piassure wave propagating downstream is increased
by a factor of 4, resulting in faster relaxation (by a factor of 4)
of the flow field to the steady state. The above phenomena identify
the following simple gasdynnatic mechanism. The rapidly changing
unsteady bow shock wave causes trmnsient pressure changes immediately
behind the wave. In turn, the subsequent downstream propagation and
interaction of these unsteady presoure waves constitute the primary
physical mechanism by which the unsteady flow field relaxes to the
steady state.

Results obtained for the cupric cylinder at M - 4 are shown
in figures 9 and 10, which illustrate the shock-wave shape and

MU)f~ee dL~ tkiiUUtjLO. Aai ~ h sht-kwv rhav lb "

to rapidly approach a steady rdte, and as before, the surface
pressure distribution is compArsd with modified Newtonian.

A two-dimensional configuratio of more practical importance
is that of a blunted wedge; thezef':re, such results are presented in
figureb 11-14 for M - 8., As an :1:ex of the convergence behavior,
figure 11 shows thewtime varlst;ron 71 stagnation point pressure.
Aga~n, the rapid convergence .c' tLh, steady state is obvious; ln(j/p..)
has converged to within 0.1 percent of its steady-state value by
t - 1.0. And again, the fast relaxation associated with the Mach
number is noted. In fact, the epproacch to the steady state and the
relaxation time shown in figura 11 are comparable to those shown in
figure 8 for the parabolic cylind,3-r, thus indicating that relaxation
time is relatively independent ok ,dy shape.

8
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Figure 12 presents the time-dependent bow-shock wave motion, an
well as the final &honk wave and sonic line, Ha"convargence is
also apparent in this figure. In addition, results o')tained from the
correlation of Billig (ref. (9)) for final shock-wave shape and loca-
tion are also presented in figure 12. For n cylinder-wedge, the
correlatica is. R( J t-

+- 1 + 11 + I R ctn 2 1R 1( c2 c

where ý - 0.386 exp (4.67/M2 )

nd Rc - 1.386 exp l.8/(M-J)° 75] (13)
iF 1

6 is the shock detachment distance. R is the cylinder radius, R. is
the shock vertex radius of curvature, and e is the shock angle
approached asymptotically for large y; in the picnnt case, 0 is the
attached oblique shock angle for the wedge afterbody. The results
presented in figure 12 show very good agreement between Billig's
correlation and present exact numerical solution.

The steady-state surface pressure distribution over the blunted
wedge as a function of the vertical coordinate, Y, is shown in
figure 13. (Also shown is the extent of the transition section
mentioned earlier.) Two points are noted from this figure: (1) the
proper supersonic wedge pressure Is achieved asymptotically and
monotonically far downstream of the blunt nose; and (2) the pressure
distribution o~er the cylindrical portion compares favorably with
infinite Mach number circular cylinder results obtained by Fuller
using an inverse method (refs. (1) and (i1)). At hypersonic speeds,
the pressure distribution is somewhat insensitive to M . Consequently,
an infinite Mach number comparison is reasonably valid.

Figure 14 illustrates the sensitive transient behavior of the
sonic live during convergence to the steady state. Here again two
points ara *1 interest: (1) rapid convergence to a steady-state sonic
line is• "vious, .d (2) the movement oi the sonic point on the bow
shock wave is considerably greater than on the body; in fact, the sonic
point movement or. the body is confined to a relatiely narrow region.

Figure 15 Illustrates the steady-state velocity distribution
along the stagnation streamline. The results are shown for the
parabolic cylinder at M - 4 and 8, the cylinder-wedge at M - 8,
and the cubic cylinder at M - 8. The -'adii of curvature at the
stagnation point for these bodies are 0,65, 1 and infinite,
respectively. In figure 15, U_ is the velocity immediately

behind the normal portion of th8 shock, and 6 is the shock detach-'
ment distance. The fact that the velocity distribution is approxi-
mately linear has been noted in previous analyses (ref. (1)).
However, the exact nonlinear velocity distributions are identical
(within graphical accuracy) for the given two-dimensional cases (but
this was not so for the axisymmetric configurations, as will be seen
later). Consequently, it appears that for the two-dimensional cases

9
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the exact velocity distribution along the centerline is relatively
independent of both Mach number and body shape. Such independence
has been predicted by the closed-form apnroxim=t. afaly,• 4 o- 00f T unl

Geiger (ref. (12)). However, the approximate velocity distribution
obtained from Li and Ceiger's formula differs somewhat from the
present numerical results ar seen from figure 15.
On the Propagation of a Weak Pressure Disturbance

The following results are given in ans..ýr to the question asked
earlier In the introduction; rpmely, if a slight pressure disturbance
is introduced at a point in the supersonic portion of the blunt-body
flow field, what is its region of iifluence and how clearly is it
defined by the time-dependent analysis employed in tie present
investigation? Towards this end, a numerical experiment was conducted
in which, first, the steady state was reasonably achieved (after 400
time steps) for the flow over the parabolic cylinder at M - 4, and
thin a small protuberince w-Y extanded Into tae flu* fromathe body
surface at a point far downstream of the sonic point, as shown in
figure 16. The pressure disturbance caused by this protuberance was
subsequently observed as a function of time. Figures 17 and 18 show
the time variation of the body surface pressure at the various points
identified in figure 16. Note that the scale is the same for all
curves shown in figures 17 and 18. Also note that the expanded scale
gives the exaggerated illusion of a time varying pressure before the
time of the disturbance; in reality, the steady state has been
achieved for all practical purposes by thiis time. These results show
that the protuberance indeed causes a noticeable pressure disturbance;
this disturbance was strongest at the protuberance, and decays both
downstream and upstream of the source. Note also the growing time
lag of the disturbance felt at points further away from the protuber-
ance. Of most consequence, however, is the fact that the effect of
the protuberance, which is far inside the supersonic region of the
flow field, Is fed upstream, even to the extent of the subsonic
portion of the flow field and all the way to the stagnation streamline.
This latter effect is graphically shown in figure 19, which compares
the time variations of centerline wave velocity for the cases with
and without the disturbance. As seen in this finire, the d±sturbancc
is obviously felt L11 the way to the centerline.

The upstream influence described above, which is contrary to the
normal behavior in a steady supersonic flow, can be attributed to the
fact that the insertion of the protuberance initiates a new transient
flow field (ref. (13)); consequently, all regions of the flow field
can eventually be influenced by unsteady wave motion. In addition,
even though the disturbed pressures shown in figures 17 and 18 have
not settled to a steady state at the largest time considered, the
pressures Rt the uPetream- 10stions appear to e npefleuce a "permanent
set," i.e., the pressures seem to be approaching steady-state values
different from the original steady-state values before the distur-
bance. This "pseudo-elliptic" behavior can be attributed to a
numerical effect; namely, the internal wave caused by the disturbance
is smeared over several mesh points, and because a course grid is
is employed, the wave can be felt some distance upstream. If at least
one of these mesh points is upstream of the sonic point (as in the

10
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present case) then the entire steady-s~ate subsonic region will be
affectpde Th" above results have Significant practical implication;.
namely, that the present analysis should be applied to smooth con-
figurations.

Tt m,,uet be em-phasized that the present results do not degrade
or detract from the excellent and useful meihod presented in
reference (4); quite the contrary, the present authors have already
stated their opinion in the introduction that the time-dependent
method (such as formulated by Moretti and Abbett) may become pre-
eminent among practical blunt-body solutions. Instead, the present
results provide some indication that the method (in its present
formulation) should be restricted to smooth bodies. Finally, it is
interesting to note that the method of reference (4) does indeed sense j
the presence of a disturbance or internal wave, and such a wRv- r.
he tracepd rather coarT=:y by i .• of vhe peaks in the pressure and
density distributions.

Experiments on the Sensitivity of the Blunt-Body Solution to Initial
Conditions, Body Shape, and Boundary Conditions

In addition to the above nlnnerical experiment, other experiments
were performed to investigate the effect of initial conditions, body
shape, and boundary conditions on the time-dependent blunt-body
solutions. These experiments indicate that such factors have a
definite influence on ta-z "go" or "rio-go" nature of the blunt-body
computer program. The assumed initial flow field (at time equal to
z-1o) is obtained from the following: (1) modified Newtonian pressure
distribution along the body surface, (2) isentropic expansion along
the body streamline, (3) assumed shock shape and detachment distance,
and (4) linear interpolation between the shock and the body.

a. Effect of Initial Pressure Distribution

Solutions for a two-dimensional parabolic body were obtained
using initial pressure distributions which were factors of six above
and below the standard . ..lut..etn. in each case, the suluLion converged
to the same final results. From this it is concluded that the program
is not very sensitive to initial pressure distributions, which can be
prescribed within an order of magnitude of the final pressure distri-
bution.

b. Effect of Shock Shape

Satisfactory results were obtained for a two-dimensional
parabolic body using both parabolic and cubic initial shock shapes,
with 6 - .37 at M - 4. However, the use of a hyperbolic shock Rhnnj
5 = .37, did not jead to a converged solution. Hence, the initial
shock shape may i-.ve some influence on the program, and it appears
reasonable to run similar analytic shapes for both the body and the
shock. For blunted wedges and cones initial parabolic shock shapes
were satisfactory.

11
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c. Effect of Shock-Detachment Distance

The initial shock-detachment distance, binitial is an

iMportaut qua&ti y, and can be prescribed only within a certain j
latitude. For example, using a two-dimensional parabolic body and
initial shock shape at Mm - 4 the program worked successfully for
6 initial - 0.37 and 0.49, but it did not run for 6 initial - 0.55
or 0.20. Coeusquently, the initial shock cannot be assumea too close I
or too far away from the body. If indeed 6 initial is too large or
too small, the shock wave *ends to accelerate considerably faster
than shown on figure 2 at early values of time (accelerations an
order of magnitude faster can occur). In turn, strong gradients of
the flow-field variables are produced behind the highly accelerating
wave, and consequently the finite-difference scheme using a fixed
course grid becomes inaccurate. This inaccuracy ultimately causes

• • ISA ph z j:c;-n tq collapse.

d. Effect of Body Shape

Successful rolutions were obtained for bodies witii constant
and linear variations of d 2 b/dy2 , namely parabolic and cubic shapes,
respectively. However, the program did not run for those parlboli
and cubic shapes which were characterized by high values of d b/dy•
(above approximately 6). In addition 2the Rrogram did not run for
bodies with local discontinuities in d b/dy , namely, purely
hemicylinder-wedge or sphere-cone shape. Te program became unstable
in the region of the discontinuity in d-b/dy', i.e., where the body
curvature is discontinuous. When a transition soction was added to
the discontinuity, successful solutions were obtained.

e. Effect of Extrapolation to the Upper Boundary

As shown in figure la and as discussed earlier, the upper
boundary of the flow field is taken as a horizontal line within
the supersonic region. At any given time step, flow-field variables
along this boundary are obtained by linear extrapolation from points
below. Consequently, the upper boundary values do not exactly
satisfy the continuity, momentum and energy equations, and therefore
final results for certain portions of the flow field may be com-

*-A T_ oA e 4- -- 1-- - - 1 -4 - __&Y~ L~. k 3 U. L~S ... - . . .. this
effect, results obtained by using several different extrapolation
procedures were compared. These extrapolation procedures are:

(1) linear extrapolation

(2) reduced linear extrapolation (extrapolated increment
reduced 20 percent below that for strictly linear extrapolation)

(3) Shank's approximatian (ref. (14))

We consider first the two-dimensional case. Preliminary data were
obtained for a cylinder-wedge in helium (y - 1.67) at M - 16. These I
data show that procedures (1) and (2) give different surface pressure
results downstream of the right running characteristic from point D,
as shown schematically in the diagram below.

12 I
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. jD Shock

y \ i
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Also, procedure (3) resulted in a collapse of the computer program,

hence no results were obtained. Obviously, for this case. the pro-
cedure for extrapolation to the upper boundary influences that part
of the flow field downstream of the right running characteristic
from V (shaded region in the above sketch), and this fact should be
kept in mind when interpreting the present numerical results.
However, this anomalous behavior seems to be limited to the flow
field around composite shapes (such as a cylinder-wedge and sphere-
cone); the flow field around purely analytical shapes appears to be
rather insensitive to the extrapolation procedure, as will be
discussed further in a subsequent section dealing with axisymmetric
results. A complete resolution and understanding of this effect is
deferred for future investigation.

As an interim summary, the convergent or divergent behavior
of the time-dependent blunt-body solution appears to be somewhat
dependent upon the initial conditions and body shape, outside of a
certain latitude. Withi" this latitude, successful solutions were
obtained. However, it should be remembered tLat a fixed grid size
(7x14) was employed for all the prosent results. A finer grid might
reasonably lead to an even wider latitude for successful initial
conditions and body shapes. Also. it in appasrent th.t a •. ubo•t.....

portion of the supersonic flow field is affected by the extrapolation
procedure to the upper boundary.

Axisymetric Flow Field Results

As for the two-dimensional case, typical paths which the three-
dimensional time-dependent solution follows to a steady state are
shown in figures 20, 21, 22, and 23. Figures 20 and 21 show the time
variation of wave velocity at the centerline for the paraboloid of
revolution at M - 4 and 8; rARnctije•1y QualitzVely, 'GUI. figures
are similar to the two-dimensional case, in which the most extreme
variations occur at early times, but steady state is achieved earlier
in the axisymmetric case due to the three-dimensional relieving effect.
Figures 22 and 23 show the time variation of the stagnation point
pressure for the paraboloid at V - 4 and 8, respectively. j

13
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Figures 24 and 25 present the time-dependent shock-wave motion
for the paraboioid at V - 4 and 6, respectively. After about 200
time steps, the final shock shape and location are well defined.

In figures 26 &nd 27 we have plotted the final, steady-state
surface pressure distributions (divided by the stagnation point
pressure) for the paraboloid at M - 4 and 8, respectively. We can !
see that the Newtonian pressure drstribution is in better agreement
with the axisymmetric case than with the two-dimensional case (cf.
figure 5). In addition, the pressure distribution is compared with I
results obtained with the inverse method of Lomax and Inouye (ref. (15)).
(All data from this source were kindly provided by Mr. Robert Thompson
of the Naval Ship Research and Development Center, Washington, D. C.)

Figures :8 and 19 present results for the sphere-cone case
at Me - 4 and $, respectively. We can see again the close agreement

between the modified Newtonian distribution and the t r-e-dependent
results. These figures also show the overexpansion and subsequent
approach to the cone-pressure value, as indicated by Pc/Po. Note

that the absicissa in these figures is "s", the distance along the
surface of the body. i

In addition, results from reference (16) (which uses a program

similar to Lcuax and Inouye's, coupled with a method of characteristics
6Swnstream) are included in figure 29. We see that agreement is
good up to r - 0.8, a~ter which our pressure distribution falls below
both the Newtonian distribution and that of reference (16). We
believe this to be due to the presence of our transition section,
which begins near this point. The exact location of the transition
section, and further comparisons with other methods, appear in the
next two figures. Figures 30 and 31 present the same results as
28 and 29 but covering a smaller region of the s coordinate shown in an
enlarged Lcale. This was done to facilitate comparison of our results
with existing theoretical and experimental data for spheres. In
particular, figure 30 compares the present time-dependent calculations
for M - 4 with the invarae methncd Of reference (1t) t÷ e -

depenaent results of Moretti and Abbett (ref. (4)), the analytical
results of Van Tuyl obtained with rational approximations (ref. (17)),
and the experiwTntal data of Stallings (ref. (18)). Good agreement
is obtained over most of the spherical portion; however, some effect
in the region of the transition section is again noticeable.
Figure 31 shows similar results for M. - 8.

Figure 32 shows the final shocK shapes for the sphere-cone
at M - 4 and 8. As in the case of the cylinder-wedge, excellent
at K -a- 4 and .A intecase... of teiclig ner -he dhock shape e s
obtained for the sphere-cone. In addition, the shock shapes are
compared to the ones obtained with the method of reference (15) in

figures 33 and 34 for M, - 4 and 8, respectively. Once more,

excellent agreement is noted.

14
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A comparison of Fhock-detachment distance is macip with the
iziverse method 01 Lomax and Inouye (ref. (15)) in the uol1J.wiug table,.
H is the local radius of curvature at the stagnation ,uoint. The
agreement is quite good.

Shap _M Ref. (15)) Presentre.ults

Sphere 4 .1759 .1760

8 .1396 .1395

Paraboloid 2 4 .1264 .1284
b - 0.769 y- 1.0 8 .098 .100

Paraboloid 2 .1689 .1687
b - 0.450 y _ 1."

Tne velocity distributions for the sphere-cone at M - 4 and 8
are given in figures 35 and 36, respectively. The results are com-
pared to Van Tuyl's distributions (ref. (17)) and indeed excellent
agreement is observed.

For the axisymmetric case, figures 37 and 38 (which correspond
to fir.ure 15 for the two-dimensional case) give the steady-state
velocity distribution along the stagnation streamline. Indeed, the
velocity distribution is approximately linear as expected,but, unlike
the two-dimensional results, the distributions are not exactly
independent of Mach number and body shape (although they are close).
Once more, the approximate velocity distribution obtained from Li
and Geiger's formula (ref. (12)) differs from our numerical results.

Figure 39 cowpares our sonic line for the M - 4 paraboloid
to the sonic line obtainea with the method of reference (15). The
agreement is excellent. The agreement was not so good, however, for
the sphere-cone case, probably because of the presence of the transi-
tio. .actioz, locxo indeed in the neighborhood of the sonic point.

Finally, figure 40 illustrates the effect on the surface
pressure distribution about a paraboliod r~t M - 4 of various extra-
polation procedures to the upper boundary. We can see that these have
little effect. On the other hand, the sphere-cone case is sensitive
to the kind of extrapolation procedure used; for example, a converging
solution using Shank's approximation could not be obtained. Taken
in conjunction with similar results for the two-dimensional case
(cf. (c), p. 12), we are led to believe that the, fit-& fIA A..U..

composite shapes (i.e., where there exist discontinuities in the
curvature) are particularly sensitive to instabilities. But the flow
field around purely analytical shapes does not exhibit this sensi-
tivity.
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New results tor caloriCally perfect, supersonic and hypersonicH

flow fields about blunnt bodies at zero degrees angle of atiach have
,Ga ir sz -% 9A &A VAA 16 ~ 0 %,1&A LU K IJ L.~1

and whichi pro..hpt some Lignificant comments with regard to tie 'ulysical
and numeinu.r1c Latare of the present time-depnedent method. These
rae.Luis lead to the following conclusions:

(1) Pressure waves which originate behind tk-e initially
Ur~~teady, moving t'ow anock and which subseqcilktl.y propagate and
4uteract downstream appear to bn the principal pliy~ical mechanism
by which the unsteady flow field converges to the steady stute.
Consequeptly, higher free-stream Mach numbers (and thus higher values
oi ~~ local speed of sound and flrjw velocities within the flow
field) result iD proportionally sho,-ter physical convergence tima~s.

'2) A pressure disturbance caused by a protuberance which
is siiddeaily introduced into the bteady sukaersonic re~gion tan propagate
upatream as w.ell as downstream, and can eventually affect all Tegions
o! the flow field. Thais behavior is a result of the unsteady wave
n~otion Fznd new transient flow field initiated by the disturbance.
H~owever, the d~sturbed upstream s~arf ace presslires appear to approach
new steady-.state valu~es which are displaced from the steady-state
values bofore the disturbance. This apparent "pseud,)-el).iptic"
behaviur is attribut~ed to the smenuring out of the wave ový,.r the
rather coarse grid used in the finite-di~ference scheme.

(3) Billig4's empirica.L correlaLCIon for bow shock shape and
locat--in ".grees very well with the present numerical solutions for
cylinder-wedges and sphere-cones.

(4) Whether the numerical solution converges or diverges
depcnds to sone extont on the assumied initial conditions. These
initial conditions, such as bow shock-wave shape and location, can
be krbitrarily asnum~ed within a rela-Livcly wiae latitude. However,
boeyod this latitude, the in1itial ConditiODS dcL not lead to conver-
g~encc Therefore, lor practical numerical reascas, tine- initial
condit.±ons cin not be completely arbitrary.

(5) Conv,;rgent solutions could not ')c obtained about body
shape6 with a local discoritinuity in the surface curvature. There.-
forin, the prtsant numerical progra~m is rentricted to relativaly
swooth bodies.

(6) The flow field around composite shapes (such as a
cylinder-wedge or spheie-coi s) is parti~cularly sensitive to incstahil-
ities, whereas the flow field around pu.ýrely analytical shapc.., does
not exhibit this aenk:Itivity.

Liven though s-ome of the above conclusioins delineate restric-
tions on the time-depeodent method as employed ini the jprusant investi-
gat4.on, amp-basis nurt ?)e made that all existing blunt-body solutionIs

16
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aee restricted in some respect. Tn pnmna-ri % -4+" L.-• .......thu time-dependent method has the advantage of being a direct method(body-shape and free-stream properties are given) as well as being
able to calct, late large portions of the supersonic flow fielddownstream of the sonic line Ithp aviat 4 w, stea .... . - I- -,. ..methods usually encounter difficulties in integrating downntream ofthe sonic line). In addition, -he time-dependent method does notinvolve any simplification or reduction of the equations of change,and in this respect it is an exact 8olution. Finally, it isanticipated that the time-dependent method will be able to treatwore complex body shapes thai, the existing steady-state methods.For these reasons, and from experience gained during the presentinvestigation, the time-depandent solution appears to have thepotential for pre-eminent application to the supersonic and hyper-
sonic blunt-body problem,.

Finally, s..nca the completion of the present studies,addlitiunal information conceruing the time-dependent blunt-bodymethod has very recently been presented by Moretti (ref. (19)).In general, reference 19 conf-rms many of the findings of the presentstudies, and in addition, it presents a large number of blunt-bodyflow-field calculations in a systematic form for a range of free-stream Mach numbers and body shapes.

I
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