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Abstract

The design equations for both single-channel and multi-
channel optimum least-squares (''Wiener") filters are derived
and discussed. Specific examples of such filters are presented;
for example, inverse filters, signal/noise ratio enhancement
filters, prediction filters, and maximum-likelihood filters.
The single-channel and multichannel Levinson recursion

algorithms for solving the design equations are discussed.
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Introduction

Levinson (1947) published an algorithm for recursively extending the length
of a digital filter, optimum in the least mean-square-error sense, designed to
change a given waveform into another desired waveform. The algorithm was extended
to the multichannel input case by Robinson, and to the multi-dimensional case
by Wiggins (Simpson et al., 1963).

The general wave-shaping problem includes as special cases the design of
inverse filters, prediction, interpolation, and smoothing filters, and the
algorithm is required in the design of maximum-likelihood filters of various
types (Kelly and Levin, 1964; Simpson et al., 1963). Good discussions of
optimum filter design have been presented by Claerbout (1963) and Treitel and
Robinson (1966).

There are two advantages to using the recursion algorithm instead of
designing the full-length filter directly: first, in the computation of a
single-channel filter of length L points, machine storage requirements are
reduced from a multiple of L? to a multiple of L words, and the number of
arithmetical operations is reduced from a multiple of L3 to a multiple of L2.
For the multichannel filter with N inputs, the storage reduction is from
N2L2 to N2L and the operational reduction is from N3L3 to N2L2. It was not
generally practical to design multichannel filters defore thz extension of

the single-channel algorithm.
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The second advantage is that the mean-square error, the quarntity one is
minimizing, can easily be calculated at each step of the recursion. Since the
error falls rapidly at first as the filter is extended and then tends to level
out, one can stop the process when the error fails to decrease significantly.
This saves computation time not only during the filter design but also later
when the filter is being applied to data.

Previous statements of the recursion algorithm (Levinson, 1947; Wiggins,
1965; Wiggins and Robinson, 1965; Robinson, 1963; Treitel and Robinson, 1966),
although adequate for programming purposes and as mathematical proofs that the
recursion gives correct answers, do not seem to me to offer the reader very
much insight into why the algorithm works. In addition, some of the published
discussions of the multichannel algorithm contain errors which are misleading
for the inexperienced reader.

The purpose of this report is to present a simple, easily understood
development and discussion of both the single-channel and the multichannel
recursion algorithms. Program writeups and listings are appended.

In order for this work to be self-contained, we begin with derivation
and discussion of the digital filter design equations the recursion is intended

to solve.

Single-channel wave-shaping normal equations

Civen a digital time series containing T+l points yg, Y)s:-e» Y W€
require a filter of length L+l points which does the best job in the least
mean-square-error sense of converting the inpi:r data series ; (we are
entitled to regard the polInts 7y Fyseces yr as the elements of a vector ;)

into some other deslred data series d with known elements dg, dyyeeey dT+L+1'



-3-

...’,
We denote the filter by £ and the output of the filter operating on the input

data ; by z:

L
-} ijk_j k=0, 1,..., T+L+1 (1)

z
kT4

Here and later we adopt the convention that all vectors are in a space of, say,
J dimensions, where J >> T+L, and that elements of the vectors are zero
outside the range of explicit definition here.

In matrix notation, (1) is

-+
T = Yf )
or
p - - = r T
Z9 Yo fo
z) 4 £,
z2 72 .
5 gooi;oo-o-o-ooooo yo fL
L] ] J
U yT yT"'l se e yl
Yo Y,
Zr4L41 T
- =t L .

The design criterion is minimization of the square of the length of the error

vector

o
"
N$

-4 (3)



we wish to minimize

2
9 L sz THLH L
E = le| = |z-d] =} y, £, - d (4)
£=0 gm0 t73d £

The minimum value of E 1is attained if all the partial derivatives of E with

respect to the fk’ k=0,1],..., L, are zero:

T4+L+1 L 2

k. 9 z 2 £
;.2 y, _, - d -0
3, A, o jho e T %
or
T+L+1 E
£25 t-k T M L2 OR

[The quantity in brackets is the error vector, 80 (5) says that the error vector
e is orthogonal or normal to ;; hence the name, normal equations.] We can

write this set of equations

% T§L+1 T§L+1
f Ye 1Y, = ¥, 4 k=0,1,...,L  (6)
4=0 3 t=0 t-k’t-§ t=0 t-k't

In matrix form this is

o

YYf = Y 0



that is
Yq
c
Y, Y
0
?2 ?[ Tu
; : (¢)]
L N ] yo
he -l
i -
dg
(8)
4,
ey

We can simplify these equations by introducing the transient autocorrelation

function

t=0 tit+s

-
vhere M 1is the range of definition of y. We can define a vector r whose

elements are given by (9). With the change of variables q = t-k, the quantity

fn brackets on the left side of (6) is
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T+L+1 T+L+1-k
- = T 10
L YerYe-) q§0 Y - kg (10)
The bottom limit on the second sum can be taken as zero, since yq = 0 for
q < 0. Introducing the transient crosscorrelation function
M-s
‘yd(s) = 8g F tZO ytdt+s (11)
the right side of (6) can be written
T4L+1 G g T+L-i-1-q 7 dt+k - B k=0, 1,00e, L (12)
=0 t-k t q=0 q
so that (6) is
L
fjrk—j - 8 k=0, 1,..., L (13)
j=0
It i{s easy to show that these definitions are consistent with the matrix
notation introduced above. We can define
ry r, r, cee T
r, I, r, eer Tp 4
R = YTY - r2 rl l.'o vee rL—Z (1‘)




so that (8) and (13) can be written

RE = 3 (15)

Minimum error energy:

The minimum value attained by the error energy ir obtained by substituting
* o + T 1o
the solution of (15) into (4): 1f f satisfies Rf = g, that is, Y Y=Y d,
-+ -»
and 1f the output is z = Yf, then

=% ;)T ETE > . *I*

-+ +>
(d-2z)= -2z d+ 22 (16)

- ald 4+ 27z - 260474
- 33+ 2% - 2%

e aTd + 272 - 2tTRt

- Td+22 - 2ahTvE

80

E =dd-zz (17)

so that the energy in the error vector is simply the energy in the desired
output minus the energy in the actual output.

The error energy can be calculated without actually constructing the
output Z: in (16) we can convert ;T; into ;TE instead of the other way

around, and since

TI-Fvd = £

we have

3
3

gnln =dd-fg (18)
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E, belng a sum of squares, cannot be negative; nor can it be greater than

ETE by (17), so {f we divide through (18) by ETE and define

T+
p-s/m-l-f—Té (19)
dd
we are assured that
0 PL 1

so that P can be used as a measure of the performance of a filter ? satisfying
R} - E; in particular, as the length of ? is extended, the performance can be

evaluated at each step in the recursion (Treitel and Robinscnm, 1966) .

The inverse filter:

Suppose the desired output dt 18 specified to be unity at time t = s and
gero everywhere else. If it were possible to achieve this desired output

perfectly, we would have

g = ; ijt-j = f*y = (0,0,...,0,1,0,...,0) (20)

and such a filter is called an inverse filter by virtue of the resemblance

between (20) and the definition of an inverse:

a @ b=1I

wvhere I is the identity with respect to the operator @ .

The right side of the normal equations (15) for the inverse filter 1is
just the (s+l)' st column of YT. The right side of equation (8) shows that
for L <8 ¢<T+l, g 1is an (L+l)-term segment of the input Yer in reverse
order: (y', ys-l""'ya-L)‘ For 0 <8 <L or T+l <8 < T+L+l, g has

fewer than L+l nonzero terms. We see that for s * 0 and s = T+L+l, E has only
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one nonzero element. The former case is the zero-delay inverse filter, which

satisfies
- -
Yo
0
-
Re= | © (21)
0 ]

The value of y, enters these equations only as a scale factor, which does not
affect the shape of the filter or of its output.

The zero-lag inverse filter thus depends not at all on the actual waveform
; (except trivially as a scale factor), but only on its autocorrelation ;.
Since the autocorrelation is symmetric -- LI ? does not depend on
the phase spectrum of the input data. We might expec: that the phase response
of the filter ; depends only upon some intrinsic property of the autocorrelation,
and it does: the phase spectrum of ? is such that the total energy in the
waveform ; i jJammed up as much toward the front of the waveform (toward fo)
as is consistent with ; satisfying (21). This concept of minimum encrgy
delay or minimum phase 1s the subject of a considerable literature (Robinson,
1954; Robinson and Treitel, 1965; Robinson, 1962).

The performance factor P of an inverse filter depends drastically on the
delay s at which the desired output is to occur. (Treitel and Robinson, 1966,
show examples for which the performance factor is 0.005 for s=0, but 0.860 for
8 = 15). A recursion exists (Simpson et al., 1963) which shifts the desired

output lag 8. This can be used to search relatively inexpensively for the

jag at which the performance factor can be maximized for given filter length.
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The prediction filter:

Suppose we request a desired output at time t consisting of the input itself
p time units ahead. This is an extrapolation problem of considerable practical
interest, for example, ip economics and weather forecasting.

The desired output 1is

dt - yt+p

Substituting this into (11) we have for the right-hand side vector of the

normal equations

T
gk - 2 ysda+k k-o’ 1’..0’ L
a=0
i
- y .y -
a=0 s’ s+p rp
so (13) becomes
p- - r - r -
Ty T, T, ..o T fo rp
T, T, T e Tpg £, - rp+1 (22)
r, T, Ty e rL-Z f2 rp+2
4 4 r 4 f 4
i L L-1 "L-2 0 JL LJ I p+L-1

The presence of a segment of the T vector on the right-hand side of (22)
1s interesting. A trivial prediction filter is that for p=0; in this case we

obviously have [ (1,0,...,0), i.e., T reproduces the input, as it was
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told to do. The next simplest prediction filter attempts to predict only one

unit ahead o time:

o r Iy eee Iy fo

r ro n ) tL_l fl

1 9} X Tg  eee Ty g £,

r, r,_y Tp-pcce ToO fL
i J L
The desired output is dt " Y41 The actual output 1is

)
z, = £y,
t  Lep KUK

and the error is

e =d -2z =Y - 2 £, Fiw
t t t t+l k=0 ki t-k

The form of the right-hand side of (25) suggests that we could define a

prediction error filter to get e, directly, as follows:

h0 =15 h, = —fj, j=12,...,L+1

3

The prediction error filter is thus one unit longer than the prediction

f1lter, and its output {is
L+l

e, = L hy
e T by MWk

ri

r2

X3

(23)

(24)

(25)

(26)



where t+l in (25) has been replaced by t

We can inquire what normal equations the prediction error filter h

satisfies: we write

ro

r

r2

L+l

where the cj, =0, L+l,

Let us use the notation

r ] ¢y
- n - 2
g " -
T+l .
Then (15) is
> »
Rf = g
and (27) can be written
| T
- _h——
i ) o

rn
To

3|
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r2

ry

in (26).

- o
F 1
So
&>
¢
L i

ho ] Co
h cl
hy |= ] €2

b CL+1

(27)

(28)

(29)
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-+ -+
But h, = - f by definition. So we have
pe ' -’T
L8 ' g, 1 o
-+ 7 -+
Multiplying this out,
> T2
rp -8 f = ¢
->
g8, -Rf = ¢ =0

the last step following from (23). From the previous discussion on error
+>T *
energ’, we know that gf' £ is the energy in the predicted output (equation 18).

The zero-lag autocorrelation is the energy in the input, so we have

+T>  +T+  »>T»
zZ 2 zZ Z

€g " Tg ~ =yy- = E

vhere E is the unpredictable energy. Thus the prediction error filter satisfies

- - = T po -1

) r, X, cee Trnl 1 E

r, ry r, vee Ty £ 0

rz tl to co e rL_l -fl 0 (31)
: - e - -

Except for the scale factor E, (31) is the same as the normal equations for
the inverse filter (equation 21). An heuristic argument as to why this
should be so was given by Claerbout (1963); a rigorous derivation was given

by Robinson (1954).
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The prediction error filter for spans greater than 1 1s not so slmple.

For example, for p = 2, we have

p= 1 - q ol T
ro ry T2 et Tras 1 c
r, L1 Iy e T4l 0 <,
r, r, Iy eer T -£, " c, (32)
42 fLel Lot Fo L ~t 142
| J - ! i
T + T
Deflning 32 t (Cz, C3.uoo’cL+2) [l 82 - (fz.t3,.-..tb+2) [l
(32) becomes
r | r ' 2T ] 1 c W
0 1 82 0
+ T o ==
r, l T,y L 3 0 - < (33)
s s R K Ex
Lﬂz ) 8 | ] 1. | “2 ]
Multiplying this out, we have
T 34
> > > (36)

g, ~RE=c, =0

Y
and all this can be calculated fron f and T. It is easier to construct the
predicted trace and subtract it from the input with the appropriate shift.
Alternatively, one can construct an approximation to the output of the

prediction error filter for span two by filtering twice with a unit-span

prediction error filter.
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General characteristics of the wave-shaping filter:

Returning to equations (14) and (15), we notice that the filter does
not actually depend on the waveform ; but only on its autocorrelation
function and crosscorrelation with the desired output. This fact is of
central importance in the analysis of stationary stochastic processes where
the waveform is a collection of random variables, whose correlation properties
nevertheless do not change with time; hence the correlation functions can be
measured using one sample of the noise, and the resulting filter will be
valid for othe: samples of the noise.

Notice also that the optimum filters of differ¢nt length, say L and
L+1, do not contain the same elements up through L terms; for example, the

one-point filter is
fo = 8o/xo

and the two-point filter is

fo rog80 — ri181

£, ' - I ro8) ~ I8

i

The Levinson recursion allows us to construct the filter of length
L+l from the filter of length L, Since we know the one-point filter
fo = 89/ry» we can recursively construct a filter of any length.

Notice that if g, = 0 (zero delay inverse), f is minimum delay,

since r, is greater than r,.
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The single-channel recursion algorithm

The single-channel normal equations (15) were:

r - - - pe -1
r, T, r, cee T, £, 8, (15)
r2 l‘l ro co e rL-z fz gz
r, 1 Tp-2 *°* Tp ) fL 8,

e b ad L -

R 18 an L+1 by L+l matrix; to store it requires (.+1)2 words, and to find
f - R'lz by inverting R would require (L+1)3 arithmetical operations. But
R 18 a Toeplitz matrix, i.e., all the elements on a given diagonal are equal, so
that ‘there are really only L+l different elements in R. The Levinson recursion
cleverly capitalizes on this fact to calculate ? directly from the two
vectors (rp, Iy,e.-, rL) and (g, 31""'3L) without ever storing the whole
matrix R. The saving in arithmetical operations comes from the fact th:t
extending the one-point filter to length L+l requires only a total number of
arithmetical operations proportional to (L+1)2.

The operation of the alyurithm is most easily understood from a concrete
example. We will take L = 2, and {llustrate the extension from length 3 to
length 4. Using primes to denote the unknown elements of the new filter, we

S
seek the solution f' of:



[}
T, r, r, ry fo &
r r r r £! g
1 0 1 2 1 1
- (37)
[}
r, r Iy 13 £, ]
| ]
L r, r, r, 1 98 L f3 83
[ J ] -

e - o .- p ﬁ
r, 1 fo 8o
L, T T £, = 8 (38)
r, I I £, 82

X Y L “ L e

We see the 3-by-3 R matrix of (38) in the upper left corner of the 4-by-4

patrix of (37), and the § of (38) in the upper part of the right-hand side
+ .

of (37). This suggests trying t.o express f' in terms of f &and aome other

unknown vector:

B n - 3 1
£ £, b}
f' f b'
1 1
- " N (39)
£ £, 1
f; 0 ba
s - L - he -j

The reason for splitting off the unknown scalar y and making the indices on

-+
b' go backward will appear later.
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We can also split ; into a part which depends or y and a part which

does not:

8o 1 8o 0 1
8 8 0
o o I , (40)
8> 82 0
83 rf v'
I | |

Now rf, v', and Yy are unknown. "eg" {g a Fortran-like symbol for "r dot £
as will be seen later.

From (40), we have
v'y +rf =g, (41)

Substituting (39) and (40) into (37), ve have

4 - ﬂ P - - -
¥g T ¥ r,1 £o b57 ‘ 8o 0]
T, Ty I} T2 £, b, 8, 0
+ , Yi" + Y (42)
T2 T Tg Ty £, b 8; 0
Ty r, t, T £ b; rf v'
rs onon) | L] [P [ LT LY.

ve can separate (42) into a set of equations which depend on y:

’ro fl rz ts T i b;ﬂ i 0 i
r, rg ) I b, - 0 (43)
rz rl fo fl b{ 0
Ty T, &) T ba v'

> 3 2 l o - L ol L -
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and a part which is independent of v:

o —1 = - . -1
r, T, T2 T £ 8o
r r r r f g,
1 0 1 2 1 - (44)
r, r, r, r f2 g,
L r, r, T, T, L 0 rf
- o - -

The top three equations of (44) are just (38) again. The bottom equation is

L
rf = Z re o oqf (45)
k=0 L-k+1°k
Using (41), we have
Y= (gy - rf) /v’ (46)

-+ > -+
Now all we need to extend f to f' are v' and b'. But the remarkable

symmetry of R allows to turn equation (43) upside down and inside out, and
identify it with (31), the equation defining an optimum unit-span prediction
error filter -- provided we have bg=1l, which we will show we can always do.

Then v' is just the error energy (the symbol v having been chosen to connote
varlance). The fact that (43) is backward w/th respect to (31) is unimportant
in the single-channel situation. For the mult ichannel filters, we shall see
that predicting backward in time {s fundamentally different from predicting
forward, the reason being that the crosscorrelation functions are not symmetric.

-
Thus far we have seen that in order to extend the wave-shaping filter f,

->
all ve need is a method for extending the backward prediction error filter b

We can anticipate that this will be a simpler task, since (31) is so much

simpler than (8).
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-+

-
At each step of the recursion we extend b to b', calculate V'

from
> +

(18), and then extend f to f' wusing (46), (45), and (39). Thus we turn

our attention to the problem of extending b.

-
Suppose we know b and v at this step of the recursion:

1 F -
rn rl 1'2-1 bz 0
T Ty r bl - 0 (47)
r r r b v

L 2 1 0“ L OJ L 2

Filling out b with a zero to length 4, substituting it into (43), and using

(47), we have:

p- o - -
4] 19 T2 l:'3-1 0 T e
ry =Ty I} rp ba| o 0
(48)
rp r} rg b, 0
r3 r, r r b J v
[ o L L

vhere e 1s yet unknown. We can rearrange (48) as follows, because of Toeplitz

symmetry of R:

-ro r, rz rj ] I bg v

ry, rog 1 r2 by 0

r ri r, r, b, 0 “
Lr3 r, I r, i L 0 J i e -

Now suppose we multiply both sides of (49) by a constant a (as yet unknown),

add the result to (48), and attempt to identify the result with (43):



_ - - 1 - - = T r -
T, r, T, r, 0 bo e v
r, r, I, r, b, bl 0 0

+ al=- * a
r, r, r, I, b, b2 0 0
Iy I, 5 I L 0 ¥ .
- J i L - . - ‘ _J -l L J
(43) was:
- T > ' - ' -1
o r r, r, b3 0
r, To r, T, bi 0
' [
r, r, T, r, bl 0
] ]
r r r r b v
L 3 2 1 0 g L ¢ d L -

The bottom equation of the a-dependent part of (50) determines e:

L

b
k§0 L-k+l

b (51)

k- €
Comparison of the top element of the right-hand side of (50) with the top
element of the right-hand side of (43) determines a:

e+wv =0
or

a = -elv (52)
similar comparison of the bottom elements determines v':

vimsv+ea =v-ellv (53)

and so finally:

+ ab k - 0,1,0-0,14 (54)

' ]
b " B tob

(50)
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Equation {54) is rather remarkable. Notice that it implies that b, is
<>
never changed during the recursion process, so b always remains a unit-span
prediction error operator, provided that we start with by = 1.

We now have everything necessary to extend f.

Summary of single-channel recursion:

Starting values: by = 1; f4 = go/ry; v = rg. Then for L = 0,1,2,...,

compute:

L
1. e s 2 r. b

k=0 L-k+lk
2. a " -e/v

' = .=

. 18 b K bk + abL-k k= 0,L+1
4, v' = v 4+ ae

L
5. rf = r £

k§0 L-k+l k

6. Y= (8L+1 - rf)/v!

7. £ = f

K K + yb

Loktl k=0,L+1

Notice that in order to construct a zero-delay inverse filter recursively,

ve need carry out only the first four steps.
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Normal equations for the multichannel wave-shaping filter

Suppose we have N input channels yi(t). 1 =1, N, and M output channels

z (t), j.= 1,M, related to the inputc by:

}
N L
zj(c> = 121 SZO fij(S) y (t-8) 3=1,M (55)

so that each input contributes to each output via the N-M filters fij(s)'
Suppose also that we have a given set of desired output functions dj(t),
j-1,M. Then we seek the set of filter coefficients which minimizes the set

of M error functions

T+L+1
E, = Z [zj(t) -d

3 (t))? = 1,M (56)
t=0

]
[We see from (56) that since the M outputs are decoupled as far as the
design criterion is concerned, we could just as well work with the single
output channel case, and superimpose the results.]

Substituting (55) into (56), we have

T+L+1 N L 2
E, = L, _
A I A A G B R

The Ej are all minimized when the partial derivatives with respect to the

filter coefficients all vanish: aEmlafkm(u) =0 form= 1,M; k = 1,N;

u = 0,L. Writing this out, we have:
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3k _ T+L+1 [ N L
— B _ & £, (s)y, (t-8) - d (t) ] y, (t-u) = 0
af, (v go 31 go im 7Y m k

k=1N; m=1,M; u=0,L

which we can write:

N L T4+L+1 T+L+1
£, (s) y,(t-8)y (t-u) = y, (t-u)d_(t)
{=1 sZO im tZO 1 i t§0 kT

k=1lN;: m=]1,M; u=20,L

We can define correlation functions as in the single-channel case:

T+L+1

r, (@ = tzo ¥y, (8)y, (t+q)

T+L+1

@ = L 7040

From the cross-gymmetry of the crosscorrelation function, we have

rhn(q) - rnh(-q)

Thus we can write (59):

3 l{' £ (s) (s-u) (u) -
L s) r, (s-u) = g (u m=1,M
1=1 s=0 1@ ik e u=0,L

(58)

(59)

(60)

(61)

(62)

(63)
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We can use (62) to make this set of equations resemble a matrix equation:

As an illustration, the set

L
T
L
s=0

of equations for N=2, L=2, M=2, {ig:

rki(u-s)fim(s) = gkm(u)

-

r11(0) r);(0) r) (-1) r2(-1) | r11(-2) £),(-2) £11(0) £,2(0)
r21(0) r2(0) | 1) (1) rop(-1) | 15,(-2) rp(-2)| | £5;(0) £,,(0)
r;(1) r, (1) r;; (0) r),(0) ry1(-1) ry;(-1) £11(1) £,,Q1)
r21(1) r(1) 1 1ry,(0) rp,(0) r21(-1) 1 (-1)| [ f21(1) £3,(1)
r1(2) ry;(2) (1) n (1) r11(0) 1r;,(0) £11(2) £,2(2)
r2)(2) ry,(2) r1 (1) ry;(1) r21(0) ry;,(0) £21(2) £3,(2)

-

l

-

(64)

g11(0) g)2(0)

g21(0) g5;(0)

g11(1) g2(1)

g2 (1) g22(1)

a8

811(2) g;2(2)

ézl(z) 822(2)

| J

The dashed partition lines we have drawn in (65) suggest a matrix formulation:

define

[ rj1(s) ry,(s) rlN(s)
ry) (8) r;(s) IZN(B)
ry; (8) Ty, (8) rNN(S) ]

-
£11(8) f£,,(s) fm(ﬂ)
f,1(8) f,,(s) fzu(s)

. ] G s 00000000
| a1 (8) £y (®) £ () J

(66)

(67)

(65)



811(9) 812(8) vee gln(ﬂ)W

821(9) 822(9) see SZM(S)
B, - (68)

gNl(s) gNz(s) e o gNM(s)j

b

We can now define supermatrices (matrices whose elements are themselves matrices)

‘1 T T
ro l'_l l'_z oo I'_L ro rl 1‘2 e e e tL
T T
tl to r—l cee t"L+1 tl to tl s e :L-l
T
R = r, 1, I, ver T 4o T, T} Ty eee Ty o (69)
L’L Ti-1 fL-2 't Fo 4 L fLf-2... Yoo

1 S
£ 8
£ 8
- 1 - 1
F G (70)
£, 82
£ &,
L b 4

From (62) we see that R {is symmetric and block-Toeplitz. The normal

equations (64) become simply:

RF = G (71)
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R 1s an L-by-L matrix whose elements are each N-by-N matrices;

F and G are both column vectors each of whose elements is an N-by-M matrix.

Recursion for the Multichannel filter

The Levinson-Robinson recursion for the multichannel waveshaping filter

goes as above, with the following exceptions:

]'

2.

Elements of the normal equations are matrices, not scalars.

Since crosscorrelations are not symmetric, superdiagonal elements
of R must be written rkT or r_,, rather than Ty

Since matrices do not necessarily commute, we must be careful

about the urder of elements in a product.

For reciprocals we need to use inverses.

Most important, the backward multichannel prediction error operator
is not simply the time reverse of the forward prediction error
operator. We find that instead of one auxiliary sequence ; , We
will need two, ; and g, which correspond to the forward and back-
ward prediction error operators. Instead of the single variance

and error terms v and e, we will need a variance and an error

term for both the forward and the backward prediction error operators.

As before, we illustrate the recursion for L = 2, We seek the solution



T T T-1 .
ro rl 1'2 I'J fo 80
T T
rp ry r) r £ 81
= (72)
T )
r ry ro rj £2 82
ry rp rp rp £} 83
! i | |
-’
where we know the solution f of:
i 1 [ 7
T T P
g T, T2 0 89
T
fl ro rl fl & gl (73)
r; T} Ty £, 82
L -t L - - J

and where now the r's, f's, and g's are given by (69) and (70)

+ +>
As before, we express f' in terms of f and an unknown correction:

R - R
£s £ b3
£1 ) 0, b} , %)
£ £, b
£3 0 b}
4 L .

+ +

where now Y and the elements of f and f' are N-by-M matrices, and the
>

elements of b' are N-by-N matrices.

We split E into a part which depends on Yy and a part which does not:

. e .0 -
g &y
Bl « |8 + [O© Y (75)
8, 8, 0
g, cf vb'

L . c b L d
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where rf 1s an N-by-M matrix and vb' is an N-by-N matrix. "vb" connotes

"yariance on the bottom"; we will later need a variance on thke top, error

on the top, and error on the bottom.

The bottom equation in (75) gives
g,y " rf + vb'y

s0 we have

y = (o) Xgy - o) (76)

We now substitute (74) and (75) into (72):

ot o - - - r
T T T 1 r [ |.1 W
rp r) r; I3 £o LY 8o 0
T T
Iy rg r] T2 £ s b3 81 0
Y - + Y
T
r; T Ty T 1| & b ' 82 0
r, r, r, T, 0 ba rf vb'
4 \ L R - | (77)
The y-dependent part of (77) is
pus 1 - 1 - -
Ty r? :§ rs b3 0
r, T, rf rg b, 0
T = (78)
rz rl fo fl b: 0
r, r, ¥, T b} vb'
| 2 1 0 0
| J L .
and the part which is independent of Y is:
T T Tﬂ f T = -
Tg T, T2 T3 0 8o
r rT T 3
1 To B T2 1| o | B (79)
T
r, r, Ty T, f2 8,
Lr3 I, r; I L 0 rf
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The top three equatlons of (79) are just (73) again. The bottom equation of
(79) determines tf:

rf = g r f (80)
Log LK+l K

+> -+ +>
Now all we need to calculate f' from . are vb' and b'.
Since the elements of R now are matrices containing crosscorrelations,
ve cannot rearrange (75) in the same way we got (49) from (48). It turns out

that to pull the same trick as was used in forming (50) and comparing it to

(43), we must define a forward prediction error operator ;', which satisfies:

i 1 r b r 1
o r? rg r§ aj vt'
r, Ty r¥ rg aj 0
= (81)
T ' 0
r, r Ty ) a;
r, r, r, r a} 0
3 2 1 0 3
L ol b = [. o

vhere vt' § vb'. (81) will play the same role equation (:9) did in the
single-channel case. Thus two auxiliary operators are required for the recursion
procedure, whereas the single-channel case required only one.

Suppose, then, that at this stage ;', g', vt', and vb' are unknown, but

that we know vt and vb, and a and b which satisfy:

- 1 - W od -
T T
Ig r) r ag vt
ry, Iy r.f a; - 0 (82)
L r, I, T a, ‘ | 0
[ T T T i 7 3 1
Iy, I, I, b2 0
T
r, r, n, b, = 0 (83)
r, r; I, b0 vb
| J L . L
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»>
We now [111 out a with a zero mattix and substitute into (81); using (82)

we have:

F 1 r r 1
T T T
g r; r; rj ap vt
T T 0
r, rp ry r; a) =
. - (84)
I r Io r as (]
r r r r 0 eb
L 3 2 ! 0. L J L J

s
where eb 1s an unknown N-by-N matrix. Similarly extending b, substituting

into (78), and using (83), we have:

- " - o - -
ry rf rg rg 0 et
r, Trp r? rg ba| o 0 (85)
r, r, rp rf b, 0
r; r, r; r, b, Vbj

L . a j! L

where et is an unknown N-by-N matrix.
Now we postmultiply (84) by an unknown N-by-N matrix a, postmultiply (85)

by an unknown N-by-N matrix B8, an! add:

- - r - \ - - - -
T T T
g ¥) T, Iy a, 0 vt et
T T
Iy T Y1 T2 3 la+ | P2 | - Ola +] 9 s
T
r, r, r, T, a, bl 0 0
r,r, r I, \ 0 b0 ‘ eb vb
L - L - - - / - J . J (86')

The top equation of the B-dependent part of (86) determines et:

L
et =
k=0

T
TL-k+l Pk (87)
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and the bottom equation of the a-dependent part of (86) determines eb:

L
eb = ] r (88)
Lo Lokl
Now let us postmultiply (78) by B, postmultiply (81) by a, and add:
T, r¥ rI rz a(',.1 b3 \ vt' 0
T 1)
ry ry rp r» ai b; 0 0
T a + 8 - a + B
r, r, r, T, aé b; 0 0
ry r, r; rg a; bo 0 vb'
L -l \ - o e - / L - - o (89)

We now identify (89) with (86). To do this, it turns out to be necessary to

select

(vt)a + et =0
or

-1
a = -(vt) et (90)

and

(vb)p + eb =0
or g=- (vb) 1 eb (91)

Substituting (90) and (91) into (86), we have

' ag 0 -et r(et)31
a) bz 0 0
R a + 8 - + (92)
aj by 0 0
0 b (eb)a -eb
L d L 0 J / - p 9 : o
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We can pet rid of the -et and the -eb simply by addiug (84) and (85) to (92):

a

a b,
R +

a, by

0 by

R |

0 W ap
b, a,
+
bl 82
b 0
0
| |

Now our ident!fication is complete if we put:

vt'

vb'

ak

1]
by

A time-saver:

The fact that the

vt + (et)B

vb + (eb)a

" At b ®

u bk + a

matrix

L-k+1®

et 1s always the transpose of the matrix

k = 0,L

k =0,L

vt + (et)B
0
0

vb + (eb)a

-

(94)

(95)

(96)

(97)

eb was

proved by J. P. Burg in 1962 (personal communication) and much more simply by

D. W. McCowan (personal communication) in 1966 as follows:

T

Premultiplying (84) by (0O, b;, by, bg), we have

(0, b3, bl, bg) R

.

ay
a)

a2

0

9

= (0, by, bl, by)

vt

eb

= eb

(98)

(93)
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the last equality following from the fact that we have b, = I throughout

the recursion process. Similarly premultiplying (85) by (ag, af. ag, 0) we

have
0 1 et W
b 0
2 T T
(ag, af, ag, 0) R - (ag, ay, a,, 0) = et (99)
b, 0
b vb
0
| 0 ) |

the last equality following from the fact that we have ay = I throughout the
recursion process. Since R = RT, it follows that the left side of (98) is the
transpose of the left side of (99), and hence that

et = ed (100)

Summary of the multichannel recursion:

Starting values: ag = by =1I; vt = vb = rg, f4 = ralgo. Then for L = 0,1,...,

compute:
]
l. et = 4 b
(Lo Lkt VK
2. eb = etT
-1
3. a = -(vt) " et
-1
4. g = -(vb) " eb
\ -
5. & = 8 b inf k=0,L

6. b' = b +a

k k¥ k=0,L
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7. vt' = vt + (et)B
8. vb' = vb + (eb)a
L
f

] r
Lo Lok

9, rf =
0. y = (vb')’l(gL+1 - rf)

11. ' = f +b

) Y
k k L-k+l k = 0,L

Some special cases of multichannel filters

Multichannel prediction filter: This predicts the input channels, making use

of the crosscorrelation between channels. For examples, see Claerbout (1964).
We take M = N, and

dj(t) - yj(t + p)

where p 1s the prediction span. The normal equations are:

r - r W
f r
0 P
£1 rp+l
R =
f r
+
L L. L.pL.J

Array sum prediction:

This predicts the array sum. For a single output,

N

) y,(t +p)
1=1

d(e) =

4 [



-36-

where p 1is the prediction span. We can predict the array sum at several

different spans simultaneously:
a.(t) = 2 7 ye+p) g =1,M
N i 3 ’

vhere , §=1,M, are a set of M different prediction spans.

P
The right-hand side contains matrices Bg» & ™ o,L:

N
1
(83)13 =N kzl PG s PJ)

Spatial interpolation: We take as input N-1 of the N input channels, and

as desired output the remaining input channel. The normal equation matrix
18 L+ (N-1)-by-L°(N-1), and the right-hand side contains matrices By s=0,1,,
where

(8)); = ryy(®

The frequency spectrum of the interpolation error output, formed by subtracting
the N'th channel from the interpolation filter output, can be used to determine

the spatial coherence of the data (Flinn and McCowan, 1967).

Equalization: The "equalization" filter simply attempts to convert each input

trace to the array sum, and hence {is identical to the N-output array sum
predictor at zero prediction span.
The equalization error output is a measure of the variability of the

wvaveform across the array (for an example, see Backus, 1966),

Signal-to-noise ratio enhancement: Suppose that the input channels consist

of signal mixed with noise, and we wish the output channels to contain only
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the signal. This situation can be handled within the framework we iiave
outlined above.

The inputs are:

yi(t) = ni(t) + si(t) i = 1,N (101)

where ni(t) represents the noise and si(t) the signal; we assume that the two
have different correlation properties across the array. The desired outputs

are:

dj(t) = sj(t) j = 1,N (102)

We may ask for fewer output channels in order to get a more effective
estimate of the signal. For example, if the signal is a wave travelling

across the array, we might ask only for the time-shifted array sum:
1 N
d(e) =% 1§1 8, (t - c) (103)

where 1s the time delay appropriate to the 1'th channel.

€4
The normal equations are set up and solved as before. Frequently we
measure the noise correlation functions and use a theoretical model for the

noise. In this case we have an adjustable parameter in (101), which becomes:

yi(t) = “1(0 + Asi(t) i{i=1,N (101a)

where )\ determines tihe signal-to-noise ratdo. If the actual inputs have a

different ) than that for which the filters were designed, the performance

is degraded.
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The optimum linear fllter with constraint:

The previous filters were deslgned using no criterion other than the
effleclency of converting one waveform into another. In some cases, however,
{t ts desliable to impose constraints on the filter.

As a simple exampte of the single-channel filter with a conatraint, we
consiider the maximum ountput energy filter (Claerbout, 1963). The design
criterion ls simply that when the input is a certa2in waveform x(t), the
encrgy in the output should be as large as possible. Obviously some sort of
constraint ts necded to keep the filter coefficients finite. We can choose

to require that the energy in the filter be unity:

L
{0 £2t) = 1 (104)
t=

The output energy is:

T+L+1 T+L+1 L
E = ] z7(t) = ) ] £(t - 1) x(¢) (105)
t=0 t=0 =0
Using a Lagrange multiplier, we seek to maximize
L
Q=E+ |1 - ] f£%v) (106)
t=0

Using the vector and matrix notation set up earlier (equations 2 and 2a),

we have:
Q=2Fz+A(1-¢ ¢

« ()T YE + A (1 -ETE)

-+
- TTYTYE + A (1 - £F £
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Using (14)9

T >
Q= RE +A[1- i f] (107)
1
Now 3Q/3X = O glves us the constraint, and 3Q/8fj = 0 gires:

-+ >
3Q. . gf-Xf = 0

or Rf = Af (108)
which is a simple eigenvalue equation. We sce that A is the largest eigenvalue
of the R matrix, and ; is the corresponding eigenvector. If we had chosen
to minimize the output energy when the input is x(t), we would find the smallest

eigenvalue of R and the corresponding eigenvector.

The actual output energy for this filter is:

> »> +>
E=sl2=tTRE= AETE = A
so that the eigenvalue 1s the output energy.

~

We could have arrived at equation (108) by arguing that maximizing ;T z

>
subiect to the constraint ?T f = 1 1s equivalent to maximizing the ratio

N A R i 1 (109)
£t £t

In a slightly more complicated version of this filter, we not only ask
that the output be as large as possible (in the energy sense) when x(t) is the
input, but also that the output be as small as possible when some other

waveform w(t) is input. This is equivalent to maximizing the ratio

+T +»
7 2z

%T-WT wt

(110)
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where W is a matrix formed from w(t) in the same way that Y was formad from
y(t)--see equation (2a)

writing the autocorrelation matrix of W as P = WTW, (110) becomes

T Rkt + aph) =0

> -

or Rf + APf = 0 {111)

which is a generalized eigenvalue problem. (111) can always be solved, since
correlation matrlces are non-negative definite. 1f L 1is not too large, we

can covert (111) into (108) by premultiplying by P-lz

@ IR)E + AE =0 (112)

The maximum-likelihood filter:

The maximum-likelihood or mirnimum-variance filter (the two terms are
synonymous if the input is a Gaussian random process) was designed by Levin
(Xelly and Levin, 1965). It is an example of a multichannel filter with a
constraint.

We assume a single output channel, and ask that the energy in it be as

small as possible, i.e., we wish to minimize

oT » T+ +1
E=2z z = )  22(t) (113)
t=0

We obviously need a constraint to keep the filter ccefficients from turning
out to be zero. Levin suggested a linear constraint based on prior knowledge
of the nature of the input. In Levin's case the input channels consisted of

signal and noise, but the signal was known to occur simultaneously on all the
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channels with the same waveform and amplitude:

yf(t) = “1(t) + s(t) i = 1,N (114)

Levin's constraint was that the sum (across channels) of the filter coefficients

should be a single splke at t = 0:

fi(t) = h(t) = (1,0,0,...,0) (115)

e~z

1=1

Using this constraint, the output is:

L
z(t) = u,(t=t) £,(1)
1=1 TZO i i
1 y+ 30
= . (t -1) £ (1) + s(t-t) f£,(1)
1=] 120 1 i 121 TZO i
or N L
z(t) = J I me-70) () + Ns(t) (116)
i=1 =0

Thus the effect of minimizing the power in the output by varying the filter
coefficients, under the constraint (115), is to reduce the first term on
the right side of (116) relative to the second term (since the second term
does not depend on the filter coefficients at all)--i.e., the effect is to
{ncrease the signal-to-noise ratto. Kelly and Levin showed that the output
signal is unbiased, i.e., that the signal comes through undistorted. The
filter can, of course, be desjgned so that the output signal arrives with

anv desired delay, {.e., the right side of (115) might be



h(t) = 0,0...,0,1,0,...

Actually, any waveform h(t) cou'd be used as a conatraint, e.g., the fmpulse
response of some desirable bandpass prefilter could be nsed as h(t), and thia
would save doing the prefiltering. It will be apparent later that there are
compensat ing advantages in using an h(t) which has a single ncnzero element.
The normal equations for the maximum-likelihoed filter arc considerably
more romplicated than in the case of the wave-shaping filter. Usirg Lagrange

sultipliers, the quantity we minimize is:

T4L+1 N L d
Q- |} ) ) y,(t-8)£, (8)
t=0 1=1 =0
L N
-2 ] A, T £,V - () (117)
v=0 i=1

vhere we have split off a factor of (-2) from the Lagrange multipliers for

later convenience.

Writing out 3Q/3fk(u) = 0, k=1,N; u=0,L, gives:

T+H+1 N L

:Zo 121 sZO yy(t-e) £(e) ylt-u) = A, (118)
analu = 0, u=0,L, gives:
N
I £, = h) (119)

i=1



We define R
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Using (60) and (62), we can write (118) as:

I.
Z r, , (s-u)
L, Tkl

L e b4

fi(s) = Au u=0,L
1 S

and F as in (69) and (70), as well as:

and a summing matrix
o Ny — N —»

h(0)

h(1)

h(L)

L

(120)

(121)

(122)

an L-by-N'L matrix, each row of which contains N adjacent ones distributed

as shcwn.

can write (119) as:

STF = H

and we can write (120) as:

RF - \9 ﬁ.

S can be thought of as a stretched unit matrix.

Using (122), we

(123)

(124)
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We need to solve (123) and (124) for F. Observe first that

sTs = NI (125)

where 1 1is the identity matrix. Starting with (123), we have:

sTR'lnF = H

sTR'lssTRF = NH

STRF = N(STR-IS)-lﬂ

sTRF = sTs(s"R 7 1s) " u
which 1s satisfied if

F =R s ) u (126)
This can be abbreviated

F = p(sTP)'lu (127)

P=Rls (128)

where
Notice that P 1is a sort of optimum multichannel filter in its own right,
since it is a solution of the normal equations R” = S. Because of this we
can compute P using the multichannel recursion, and form F by selecting
the j'th column of P(STP)-I, where the single nonzero element of H is the
j'th element.

Using (126), the output energy is:



£& 28 7.2 (YF)TYF = NHT(STR'IS)'IH (129)

When H contains only one nonzero element (say the j'th), the output error
1s thus N times the j'th diagonal element of (STR-IS)-I, 80 we can compute

the filter performance without actually calculating the output.
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