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CRACK GROWTH (N UNIDTRECTIONAL COMPOSITES
UNDER REPEATED LOADINGS

Edward M. wu*

ABSTRACT

A phenomenological description of the slow growth
of longitudinally oriented cracks in an orthotropic
plate is explored. Detail microscopic mode of crack
extension is dominated by crack skipping around the fibers.
This crack skipping contributes to the increase of re~
sistance to subsequent crack growth. Mathematical
models are used to relate experimental results of crack

growth under repeated loadings.

*Materials Research Laboratory, Washington University,
St. Louis, Mo,




el bed

~e———c

- Ex

Introduction J

The rupture process of structural rnaterial due to repeated loadings (Fatigue)

is generally classified into three stages. These stages are: nucleation of flaws, slow

growth of flaws to cracks of Griffith dimension, and finally, rapid propagation of
cracks to catastrophic failure. It is tha general consensus that a majority of the life
time of a structure is consumed in the second stage of quasi-equilibrium slow growth
of cracks [1]. Hence, an understanding and characterization of the slow growth of
cracks under repsated loading will contribute to a more reliable prediction of the

life of a structure. Previous investigators have attempted to characterize this crack
growth stage by employing concepts squivalent to limiting stress (Frost 8 Dugdale [2],
Liv [31), limiting strain (Head [4]), or energy stability (Paris [51, Liv (4], Cottereli

[71). These investigations are {imited to statistically homogeneous isotropic mate=

rials. In view of the recent Increass of composite materials in structural spplication,
it is desirable to extend these approaches to anisotropic materials. As an initial
attempt, the slow growth of cracks in orthotropic plates is explored. It is hoped that
this work will provide a foundation toward an understanding of general classes of aniso-

tropic and laminated bodies.

Among the aforementioned approaches in characterizing slow crack growth
In isotropic materials, the energy stebility or crack driving force concept appeared

to provide the most satisfactory description over a broad spectrum of crack growth




velocities. Furthermore, this approach also provides a link betwesn crack growth by
repeated loadings and the Griffith theory of fracture. This general approach is adopted

for our analysis of crack growth in orthotropic plates.

Phenomenological Description of Crack Growth

In this investigation, a longitudinally oriented crack ir a unidirectional fiber=
reinforced composite is examined. An attempt it made to relate the slow growth in
static fracture to that under repeated loadings. The Griffith=type condition, generally
employad in linear fracture mechanics, essentially assumes that the onset of cata-
strophic crack propagation Is a function of criticai energy (or driving forces as inter-
preted by Irwin [8]). Time effect is ignored and crack geumetry is assumed to be
independsnt of the magnitude and history of loading. In the fracture of composites,

these assumptions must be sxamined critically and modified whenever necessary.

The propagation pattern of a longitudinally oriented crack in a unidirectional
fiber-reinforced composite differs significantly from that in a homogeneows isotropic
medium [9]. The gross propagation trajectory in a unidirectional composite is co=
linear with the original crack both under symmetric and skew-symmetric loadings.
However, the latter has not been observed in isotropic materials. In fact, these pat-
terns uniquely coincide with the opening and forward shear modes envisioned by Irwin,
Treating & material as statistically homogeneous and orthotropic, its strain energy re=
lease rates or the equivalent parameters——stress intensity factors—can bw easily evalu~

ated. The critical stress intensity factors can be determined expsrimentally and they




proved to forrn a very satisfactory criteria [?]. To extend this treatment to crack [
growth under repeated loadings, a closer examination of crack growth resistance is N

required.

Fracture experiments in composites [10] indicated that a significant amount
of stable crack growth took place prior to fast propagation. Inasmuch as the slow
stable growth and fatigue are time-dependent processes, the associated anisotropic
viscoslastic rupture process must ba characterized and the expsrimentally determined

parameters clearly identified.

The effect of inhomogeneity due to the fibers must also be better understood.
Although the gross propagation trajectory of the crack is straight, microscope exami-
nation revealed that the crack propagation pattern is dominated by crack skipping
across the fibers [11]. A consequence of this crack skipping phenomenon is that the
amount of absolute crack extension increases the resistance of subsequent crack growth

and thus introduces a strorg geemetric effect on the crack growth history.

In repeated loadings, another important consideration is the locai modification
of inaterial in the neighborhood of the crack tip. This material meodification may take
the form of strain hardening in the case of crystailine matarials and of cold drawing
In the case of amorphous polymers. Thus, the three primary effects to be considered
in the description of crack propagation under repeated loading in composites are:
first, the viscoelastic rupture process; second, the crack growth history; and third, the

local modification of the material near the crack tip. The viscoelastic rupture of

isotropic homogeneous material was studied by Halpin (12]. The geometric effect




of crack growth history 1s treated In detail here, while the ramaining two effects for

composites are left for future investigation,

Analysis of the Geomatric Effact of Crack Growth

In this section, the geometric effect of crack skipping cumulated In the course
of slow growth is first examined. Its role in relation to the rate of crack growth under

repeated loading is then explored.

The crack skipping phenomena Is attributable to the strong orthotropy in
strength and stiffness of the composite [10]. In lsotropic materials, subcritical flaws
can be envisioned to distribute randomly over the body. Under the intensified stress
fleid in the nelghborhood of the main crack tip, the flaw which Is normal to the maxi=-
mum tensile stress (e:v'9 max Fig. 1a) will extend. The main crack then propagates by
joining with flaws in this direction. Under many loading conditions, e.g., skew=-
symmetric loads, this direction of propagation Is not co=linear with the crack. In
unidirectionally reinforced composites, however, the subcritical flaws are randomly
distributed but oriented along the direction of the reinforcing fibers. In this case, the
flaws which are oriented normal to the maximum transverse stress (d‘y max Fig. 1b)
are most likely to extend. Due to elastic orthotropy, the direction maximum trans«
verse stress Is in general not co=linear with the crack. Ergo, when these flaws are
joined with the main crack, it then gives the appearance of the crack skipping, while
leaving strings of fiber in the path of propagation. On the other hand, because the
strength of the fiber is usually much higher than the matrix, the crack is channeled

in the general direction of the matrix. According to the elastic stress analysls, this
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crack skipping shauld be random when subjected to pure tension (symmatric load)
and it should be oriented in the direction of shear when subjected to pure shear (skew-

symmetric load) [10].

Figs. 2 are closed-up photographs of the crack skipping modes. Fig. 2a shows
a crack which skipped randomly under tension. Fig. 2b shows a crack which skipped
in the direction of the shear force and Fig. 2¢c shows & crack which reversed its direc~
tion of skipping when the shear force was reversed. Figs. 2d and 2e are further evi-
dences of crack skipping., Fig. 2d shows a spacimen broken In tension with randomly
orlented strings of fiber still attached to both sides. Fig. 2e shows a specimen broken
under a combined tension and shear now with strings of fibers oriented In the direction

of shear force.

To assess the effact of these strings formaed by unbroken fibers, one can con-
ceptually remove these stringers and replace them by singular forces [10]. In the
course of summing up the effect of these forces, several difficulties arise. First of all,
the number of stringers formed cannot be conveniently evaluated experimentally.
Secondly, the total effect of the stringers cannot be obtained by simply using the singu-
lar force solution as Green's function integrating over the length of crack extension
because a singular force exerted at the crack tip is also involved. Both of these prob-
lemns can be allaviated by assuming that the effect of the stringers 13 equivalent to
normal and shear forces distributed over the length of crack growth. Thess distributed
forces are functions of the stiffness of the reinforcing fibers as well as the relative dis-

placerment between the top and bottom of the crack surfaces. These forces can be
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evaluated if the precise geometry of crack skipping is known. However, since these
can, at best, be predicted in a statistical manner, it would be far more practical to
assurme that they are uniform as illustrated schematically in Fig. 3. Their effective
magnitude p and t shall be determined experimentally. The effect of these
stringer forces are analyzed first and their combined sffect with externally applied
forces shall be arrived at by superposition. The linear elastic boundary value problem,
shown in Fig. 4, can be solved by the method described in Ref. [13]. Consider the

shear force alone first in the mapped plane (Fig. 4b), the boundary conditions are:*

*‘2 2 "&2(_\_ '-CTQ T\ —k.lr", t\] "I:,\_R
&"1 = 'I':"T\,
; . )
2= ot m-m«m,\} T T
N
’R-'J- T Tg T.

where o is a point on the unit circle and @, s arbitrarily chosen as the starting

point.

Substituting Eq. (1) into Eq. (30) in Ref. [13] and upon evaluating the inte=-
g als, the following result can be arrived at:

RSP CITU R\ FUE. T S SV SR U R N
O ey ’s')[“ TR EE O : o
-+ ‘2&".{‘*-\\\——-\-—‘—- -l*\l - f.
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*The same notations as in Ref. [13] are used here.




o

"~

et 0NN R BN NS WP NS PG BN AU OEN BN OEP BEE DE0 MW e i

"~ nu

Froceeding in a similar manner, the results, for uniformly distrituted no-mel forces

(Fig. 3b), ave:

& - .&—i\ ; -l l‘}:\ - = (78 i_ - >(t“_‘ \’ YI‘ - »\ )
§A(g) -+ *“\ _S \\( \[ 'S S} R.I» \:—' =N \,L{‘_ T‘S‘\‘ (.A.'_\,v\;
B QD — R S - 'k 2
! (\ \)\ \" ‘.z'\ V- g‘. \\\ - t\l : *)
' ) (3)

Using these complex potentials i")\g ) , the stress distribution can be deter=-

mined for standard relations given by Lekhnitskil [14].

Since both flaw nucleation and crack growth initiate from the vicinity of
the crack tip, the solution can be specialized for this region by taking the limit of
_{3\'\3 when { approaches unity ( { = 1 being the crack tip). Performing the

limiting process on Eq. (2) and (3), and noting that

¢ f - ¢ ‘,.Ad ‘AL "-’J:\
}LS ‘,‘.ﬁ s ( o

the following results can ke obtained, for a disiributed shear, t, over A a:

han CD"!‘\ « T t(.\ “‘"‘CC‘ ~|/\\‘Al‘ 4
- Ty, \ L '-\ @
and for a distributed tension, p, over A a

iw\ > g\‘ 1 S»u C.C'Z ‘(.‘.\. '}'\x.‘,.\%
(\ E

C =l W 15)

From these results, together with the relationship given by Eq. (3) in Ref. [8], the

strass intensity factors can be obtained directly. Using the subscript s to denote the




stress intensity factors associated with the stringers, for the distributed tension and

shear, respectively, they are:

Ry ¢ =20 e (420

(6)

L‘as = - 2L At ee '(u—-aa
T

As stated earlier, the macroscopic crack propagation modes are precisely
mode | and mode 1. Consequently, the strain energy release rates can be directly

related to the stress intensity factors by (Cf. Ref. [15]):

: Ul \ ALY
g- W s
\ 4 \l.

(,\ » L‘; \ii.}[“( _(:_t: M!\; :h(k(_.( \X )

Thus, for the cases under consideration, the strain energy release '3' and

kiz are aquivalent parameters. For the sake of simplicity in computation, stress

intensity factors are used in this study.

If k; are used to denote stress intensity factors when the effect of stringers is
ignored, then the actual stress intensity factors at the crack tip can be obtained by

superposition in the form:

(8)

|




Since both kh and k2s are negative (Eq. 6), the stringers formed by crack
skipping tend to retard the crack growth, or tantamountly, they increase the material
resistance to crack growth. From Eq. (6) and (8) it can be seen that the longer the
crack growth ( A a), the greater the resistance to crack growth. Insofar as crack
oropagation by repeated loading is a quasi-equilibrium crack growth process, the
growth resistance in such composite should increase with the loading cycles. This
phenomena can be characterized by modifying the Cotterell-Kraffs [4, 161 model

for fatigue crack growth in isotropic materials.

In Kraffs model [16], the instability of a crack is defined when the slope of

the crack resistance denoted as R is tangent to the driving force denoted as 5\1 .

Since 3 and (k)2 differ by a constant which is a function of the material
(Eq. 7), the sama relationship exists as indicated schematically in Fig. 5. In the first

cycle of loading, the critical state is ki « In the second cycle, due to crack growth
1

A 3 the growth resistance increases as Indicated as R2 which raises the critical

polint to ki « In a similar manner, the cumulated crack growth A 2, raises the
-T2

critical state to a still higher point kzc . This phenomena differs from those ohserved
3

in the {sotropic case in that the experimentally ocbserved crack resistance curve in
isctropic materials and the critical stress intensity factor, for all practical purposes,
are independent of crack length and growth history. Although in metals the crack
resistance curve changes somewhat in the initial cycling drive to strain hardening, it

stabilizes in subsequent cycles,
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In order to modify Cotterell's [6] model for fatigue crack propagation for
this class of composites, it is necessary to hypothesize that the shape of the crack
resistance curve R is unique and that it Is independent of crack length but is a
function of the mode of the externally applied load P(8)*, history of crack growth

A a, time t, and temperature T, i.e.,

R =4 qo L.u.,.t,T) (%)

Projecting the shape of the crack resistance curve R schematically in
Fig. 6 for one mode of loading (8 = constant) a crack propagation model for repeated
joad can be obtained. For a crack of initial length a, under a repeated load of con=
stant amplitude, so the crack growth would follow the appropriate crack resistance
curve to length 2 until the load is released. In the second cycle, the crack would
follow a higher resistance curve (higher because of the growth (n1 - ag) and grows
fo a,. Similarly, in the third cycle the crack would foliow a still higher resistance
curve and grows to 2y This process is continued until In the last cycle is tangent to
the load curve at which time rapid fracture occurs. Accordingly, if the function sug-

gested by Eq. (9) is known, the number of cycles to fracture can be estimated.

Since the time-temperature effect is kept constant in this study, only the first
two parameters in Eq. (9) are considered. Since crack growth resistance is a material
property, the hypothesis that the crack resistance curve is unique has to be tested

experimentally. If the resistance curve is indeed unique, then the growth history

*@ is the angle between the load vector and the crack; ie., & = ;- is tension
@ = 0 shear.
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offect can be determined using the parameters k . given In Eq. (6). !

{

Experimantal Observations

The goals in the experimental observation are: first, to investigate the
increase in the critical point of instability both under tension and under shear
(8 = -g- and @ = O, respectively, under the notation used in Eq. 9); second, to
explore whether the crack resistance curve is unique when the mode of load is the
same (8 = constant); third, to check whether the mathematical models are ade-~

quate in characterizing the crack growth history; and finally, to estimate the effec-

tive tension and shear forces (p and t in Eq. 6) induced by the stringers.

The materials used in the experiments are 3M Scotch=ply Type 1002 uni-
directional fiberglass reinforced plastic plates 0.05 inch thick. In each specimen,
one straight crack is cut parallel to the reinforcing fibers. Rectangular specimens
6 inches wide by 10 inches long were used for symmetric loading tests in which tension
Is applied perpendicular to crack and fiber. Cantilever baam specimens 4 inches high
by 10 inches long were used for skew=symmetric loading tests. It was estoblished in
Ref. [14] that the cantllever beam was equivalent to a pure shear fracture test when
a crack was located along the neutral axis. The experirnental set-up and procedure
are similar to those desceibed in Ref. [9]. Briefly, the procedure consists of using a
motor-driven camera to record the crack length in the process of loading. An event
marker in the load recording chart is synchronized with the load to the crack length
recorder on the film. From these records, point wise crack growth resistance can be

computed from which a continuous curve can be drawn. The specimens were subjected
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to approximately four cycles as shown schematically in Fig. 5. In the first cycle,
load was increased while the crack growth was closely monitored. When the com-
bination of load and c.ack propagation appeared to have reached or slightly passed
the Instability point (the point of tangency of the driving force and the resistance
curve), the specimen was rapidly unloaded. This was repeated for the second and
third cycles and in the fourth cycle the specimen was loaded all the way to fracture.
In the symmetric load tests, the loading program was zero to maximum tension (up
to instability) for four cycles. In the skew=symmaetric load tests the loading program
was zero to maximum shear in alternate directions for four cycles. The typical crack
resistance curves thus obtained for tension and shear respectively are shown in Figs. 7
and 8, The stress Intensity factors k' are computed where the stringer forces are
not taken into consideration. They are computed by the relationships (8, 16]

k‘ = /s and k2 = g%/a— where @ s the tension, a is the half crack length

and Q the shear forca A the transverse cross section area.

The critical values plus other pertinent information is tabulated in tablas I
and Il for tension and shear,respectively. From Figs., 7 and 8 it can be noted that,
with experience, the specimens were loaded very close to or sometimes past the critical
point in the repeated loading process. This experience, however, was not gained with=-
out cost; the missing specimen numbers in tables 1 and Il were broken in rhhnlurning

process.

Both of the figures and the tabulated values show clearly that the critical point

rose in repeated loadings.
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To explore whether the crack resistance curve is unique, the crack resistance
curves are normalized and compared. Fig. ? represents the normalized data of the
crack resistance data from four specimens, subjected to tension. Fig. 10 represents
the data from four specimens subject to shear. Within the realm of our experimental
scatter, the crack growth resistance curves appear to be unique. However, significant
differences exist batween the resistance curve for tension and shear which are apparent
when they are compared in Fig. 11. It can be concluded then that the form of the
crack growth resistance curve is independent of crack length but dependent on the

mode of loading.

To examine the validity of the mathematical model for characterizing crack
skipping, Eq. (8) can be rearranged; together with Eq. (6) we have,
R N G )
(10)
e hos 35 o™ (034
If the mathematical models are adequate, the stress intensity factors k‘ and
k, should be constants and Eq, (10) in a graph of ky versus Whe :..',‘\(L_‘;Za‘_"i“‘\
should be straight lines. Data from tables I and II presented in this form are shown
in Figs. 12and 13 . Here too, within our experimental scatter, the mathematical
models provide very close characterization indeed. The intercepts in the ordinates
should be the critical klc and k2c for static fracture tests. This compared very
favorably with previously obtained results [8]. Finally, the effective tension and

shear, p and t, can be evaluated easily from Figs. 12 and 13. The slopes of the
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straight lines are ZE = 570 and -2;' = 1560 respectively, which give the values

p = P00 psi and t = 2500 psi. It is worth noting that p is limited by the "peel
strangth” of the fiber fror the matrix. The value evaluated above is certainly not

far from the "peel strength" reported in other investigations. Furthermore, from the
same model, the maximum value of t is limited by the tensile strength of the fiber.
In this case, t is substantially less than the strength of glass fiber which does not con=
tradict the observation that the glass fiber stringers remained intact after fracture

(Ftg. 1 and Fig. 2).
Conclusions

This Investigation is an Initial step in the attempt to better characterize the
fatigue of fibrous composite materials. One of the primary effects, the geomatric

history effect of crack growth, was explored.

It was observed that the crack rasistance curve appeared to be independent of
crack length and of crack growth history for a given mode of loading. Howaver, the'
crack resistance curves for tension and for shear are distinctly different indicating that

they are functions of the mode of loading.

It was also observed that under small number of repeated loadings deliberately
designed to provide large amounts of crack growth, the crack growth resistance in-
creased with the number of cyclic loads. This increase in crack growth resistance was
successfully characterized by a mathematical model in which the growth history can

be related to static fracture strength, The magnitude of the distributed stringer forces
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estimated by means of this model also agreed well with other
findings. With this model, thke geometrical effect of crack
growth can be characterized and Cotterell's mechanics of iso-
troplc fatigue crack growth can be modified for unidirectionally

reinforced composites.
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