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ON THE FREQUENCY FILTERING OF TRANSIENT NOISE SIGNALS

Prepared by:
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ASPC:Aclass oftransient random signals ismodeled as the product of a

deterministic, square integrable envelope function and a Gaussian random process

..

: having a well-defined power spectrum. The passage of an ensemble of such random
signals through a linear filter is studied with particular emphasis on the mean
and variance of the total output energy. It is found that an important role is
played in these considerations by the covariance function between values of the
energy density spectrum of a sample function evaluated at different frequency
arguments. Accordingly, the form of this function is derived and portrayed as a
surface lying above a two-dimensional frequency plane. Examples of these spectral
covariance surfaces are presented and discussed for both rectangular and decaying
exponential pulses of both broad and narrow band Gaussian noise, and their general
characteristics are identified. Finally, the problem of idealized narrow band

~filtering is specifically approached and approximate expressions derived for the
-3 mean, variance, and normalized standard deviation of the output energy of a narrow

'7. band filter excited by rectangular pulses of narrow band Gaussian noise. The
,i, approximate relationships of the filter bandwidth, pulse duration, and underlying

"',

*- noise spectrum are explored for their effects on spectral resolution and statistical
1.5 stability, leading to an uncertainty principle. The implications of these findings

for spectral analysis and monopulse signal processing are discussed in the light of
[ ' ithis uncertainty principle and the limitations it imposes on the simultaneous
• ' precision of frequency resolution and spectral amplitude.
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ON THE FREQUENCY FILTERING OF TRANSIENT NOISE SIGNALS

In a previous paper (NOLTR 67-25), a class of random signals was modeled as the

product of a transient, deterministic envelope waveform and a continuing random
process, and the autocorrelation and spectrum of this class studied in some detail.

In the present report, this study is extended to treat the covariance properties
of the random transient spectra and the statistical characteristics of the outputs
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Chapter I

INTRODUCTION

In the predecessor of this report, reference (a), a study was made of the

statistical characteristics of a class of transient, random waveforms appearing
similar to sonar reverberation and EER returns, by assuming a relatively simple
mathematical model for these phenomena and following the statistical implications
of the model to their logical conclusion. The intent of that study was to prepare
the groundwork for a theory that would provide some guidelines for predicting the
result of operating on such waveforms for purposes of signal processing and/or
measurement. Also raised were certain philosophical questions about the extent to
which accurate predictions of random transient phenomena could be made and about
the measurement interpretation of the harmonic spectrum of such signals. This
report deals with a considerable amplification of the latter point.

The model treated in reference (a) is shown in Figure 1. It consists of
generating an ensemble of random transient waveforms by the simple expedient of
multiplying a continuing, stationary, zero-mean random process by a deterministic,
square-integrable transient which is taken to be zero for t < 0. By considering
an infinite ensemble of stationary random processes and a single transient "envelope
waveform," one generates an infinite ensemble of non-stationary random transients
each differing from the other in detail, but all characterized by the same time-
varying variance, as the following shows.

If we denote a typical output ensemble member by s(t), the continuing station-
ary input process by n(t), and the multiplying transient waveform by e(t), then
evidently

s(t) = e(t) n(t) (1)

If 02 is the variance of n(t), and o2 that of s(r), then since e(t) isn 5
assumed deterministic and hence does not enter into the averaging process for the
variance,

02 (t) = e2 (t)a2  (2)

5 n

which, as noted above, is a function of time.

For each member s(t) of the ensemble of random transients, one can compute
the time autocorrelation function defined by
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00

ss s(t) s(t+ T)dt (3)

and the Fourier integral

1 00 ow

f() 2 s(t) e-Jut dt (4)
211 0

The _nergy density spectrum of the ensemble member is then given by

s W 21 S(w) S( = 2HIS(w)12  (5)

where the superscript bar denotes complex conjugation. From the Wiener-Khintchine
relation, we know also that

Co

SS2 f ) ( -) dt (6)
-CO

which is to say that the time autocorrelation function of equation (3) and the
energy density spectrum of equation (5) constitute a Fourier transform pair.* If
the time autocorrelation function and energy density spectrum are computed for each
of a large number of sample waveforms, they will turn out to be different from
sample to sample since they result from operations on randomly different waveforms.
Thus, for every value of their arguments, these quantities are random variables
which may be considered statistics of the ensemble. It is not possible to speak of
a single deterministic, predictable autocorrelation function or spectrum valid for
the entire ensemble, since each ensemble member will yield a different function
which can not be predicted with exactitude before the event.

'4 Since the time autocorrelation function and energy density spectrum of a random
transient are random variables, parameterized in a sense by their respective argu-
ments, it becomes interesting to study the expected values of these variables and
also their variances. In practical terms, the expected values represent the average

*NOTE: The convention of reference (a) will be followed here in that autocorrelation

functions and spectra for "energy" (i.e., transient) signals will be denoted 4 and
D respectively (using upper and lower case phi); whereas autocorrelation functions
and spectra for "power" (i.e., continuing) signals will be respectively denoted
and T (upper and lower case psi).

3

.'.' p ..-----------------------'- 'p.-.
<", ji
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at a point obtained over a large number of samples, and the variances indicate the
extent to which the spectrum and autocorrelation of a single sample can be expected
to depart from the average at a point. In reference (a), these means and variances
were derived both in general and in particular simple cases where the spectral
character of the continuing process and the form of the envelope transient were
specified. The principal results were the following:

If s(t) = e(t)n(t) and 4ss(T) and ss(w) are given by equations (3)-
(6), then

E[4s (T) ] = n (-) (T) (7)

ss nn ee

and

2SS()] f lnn(x) ee(X)ex dx (8)

where E['] denotes an ensemble average, Pnn(T) is the autocorrelation function

of the continuing stationary process and 4ee(T) is the autocorrelation of the

envelope waveform. The second of these relations can be expressed as

COE[,SS(W)]= Y (u') W e (to w')d'
nn ee

-00

(9)
= 'nn") ®R (ee

where T(nn() is the power spectral density of the noise process, e(w) is the

energy density spectrum of the transient envelope, and T represents the operation
of convolution. The expected value of 4ss(t) is thus seen to be the product of
the autocorrelation functions of the two signals whose product forms the random
transient, and not surprisingly the expected value of the energy density spectrum
turns out to be given by the convolution of the power density spectrum of the
continuing stationary process and the energy density spectrum of the envelope
waveform.

If n(t) is further restricted to be a Gaussian random process, the following
expressions for the variances can be derived:

co

Var[ss (T)] = 2 f p (U, T) [2n(u) + n (U+T) nn(U-T)] du (10)
ss 0 ~ ~ppnnn n

where 4pp(U, t) is the autocorrelation function of
pp

p(t, T) B e(t) e(t-T) (11)

4

....................................
i .,
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that is

=pp(U, T) f p(t, T) p(t + u,T ) dt (12)
0

Var[c4ss(w)] {E[ss (w)]}2

(13)

+ 21 f f e(t~e(U)n(t-u)e-J(t+u)dt duI 2

The study reported here is an extension of the approach described in reference
(a) and concentrates on the energy density spectrum of random transient signals.
In particular, it will be aimed at predicting the result of frequency filtering
such waveforms and at the somewhat broader question of describing the distribution
of energy over the spectral band of the signals. If one considers a narrow band
filter, for example, and passes an ensemble member through it. the output energy
observed is an indication of the "strength" of the signal in the particular
frequency band passed by the filter. Upon repeating the experiment with other
ensemble members, however, it will be found that in general this output energy will
vary from sample to sample and is thus a random variable parameterized not only by
the characteristics of the random transient ensemble, but also by the bandwidth and
center frequency of the filter. It is of interest to know the expected value and
variance of this output energy as an aid to measurement planning or performance
prediction, and this is the task undertaken in the following pages. It will be seen
that the resulting analysis bears a strong resemblance to that underlying traditional

* . power spectrum measurement, which indeed can be viewed as a special case of the more
general problem treated here. One of the goals of the present study is the develop-
ment of a proper interpretation of the energy density spectrum of a transient signal
and its relationship to physical measurements of the signal energy.

5



-'-4

NOLTR 68-124,

>i

Chapter II

FREQUENCY FILTERING OF RANDOM TRANSIENT WAVEFORMS

To study the effects of frequency filtering on random transient signals, one
need only make a fairly straightforward application of linear system theory. If
the filter of interest is modeled as a linear system with impulse response h(t),
it is well known (reference (b), Chapter 13) that if s(t) is the input to the
filter, then the output f(t) is given by

f(t) = f s(x) h(t-x) dx (14)
0

which is the convolution of the input signal and the impulse response of the filter.
In terms of energy density spectra this becomes

4ff() - IH(w) 2 P (W) (15)ss

where DSs(W) and Off(w) are the input and output spectra, respectively, and

H(w) is the system function of the filter, given by the Fourier transform of h(t):

.00

H(w) = f h(t) e-jWt dt (16)
-CO

Since -Pss(w) is a random variable, it should come as no surprise that for

every value of w, ff(w) is a random variable also. From equation (15),

however, it is immediately obvious that

E[Off(w)] =IH(w)l E[- W2

(17)

-P

I IH(w) 12 [T n(W) e(W)]

6
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where E[4s (w )] is given by equations (8) or (9). Similarly,

Var [Dff(w)] = fH(w)l 4 Var[4s(o,)] (18)

with Var [(D (W)] given by equation (13). Since the second term of equation (13)

is always positive, it is apparent that

Var [ss (w)] > {E[$ss(w)]12 (19)

and in turn that

Var [ ff(w)] > {E[Pff(w)]} 2  (20)

This is to say that the standard deviation of ff(w) will always be larger than

the mean of 2ff(w), regardless of H(w), which implies that the distribution of

4?ff(w) is rather broad for every w. In practical terms, this means that in

calculating Dff(w) for a number of sample functions and comparing the results for

some given w, a large variability will be found. If one is seeking a statistic of
the random transient ensemble that remains fairly constant from sample to sample,
the value of Pff\w) at a point clearly falls far short of the ideal. The situa-

tion here is rather similar to that faced in attempting a spectral analysis on the
basis of the so-called "periodogram" (reference (c), rage. 107-108) which can be

shown to have little statistical reliability as an estimate of the deterministic
spectrum of a stationary continuing stochastic process, unless a number are computed
and ensemble averaged.

To gain a possibly more reliable statistic for the ensemble of random transients
processed through the filter H(w), we will consider .iteti,3tng the o,.tput spectrum
2 ff(w) over all w to obtain an expression for t'.e total -.ergy in f't). An

important special case will be that in which IH(w)I is very narrow compared to the

spectral width of s(t), in which event the filter, with a tunable center frequency,
provides in some sense an empirical measurement of 4s (w). It will be important to

examine the statistical reliability of such measurements, i.e., the extent to which

a single measurement accurately reflects the ensemble as a whole. This evidently
has an important bearing on the validity of attempting to measure or predict the
spectrum of a sample random transient to arbitrary precision.

A diagramatic representation of the problem of interest ib shown in Figure 2.

Let F(H) represent the total energy of s(t) remaining after it is passed through

the filter H(w). In terms of f(t), the output signal,

co

F(H) = f f2 (t) dt (21)
-7

k7
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and in terms of the various spectra,

F(H) f 4ff(w) dw f -: H(w012 4) (w)dw (22)

-~ F(H) is a random variable whose mean is given by

EIIF(H)] = f JH~o)J 2  E[$ (W)]dw
ss

-00

(23)
00

= f jH(w)12 [T nn(W) ® Pee(") dw by equation (9)

r.To find the variance of F(H), we will use the relationship

Var[F(H)] =E[F()]-{[H]} (24)

F2(H) = f IH~a3)12 % (w)dw f jH~wo)j 2 %(pco')dw'
-CO -00

(25)
00 00

=~ f f IH~w)DH IHGJ,')1 2 4'55(w) 4, (w')dwdw'

Taking the expected value yields

00 00

EIIF2(H)] f f IH(w)12 jH(w')j 2 E[,Fs (W) 'P (w')]dwdwt  (26)
55O 55

-:Now using equations (23) and (24),

Var[F(H)) f ! jH~o)1 2 tH(n')12 EE%(w) W o (w?)ldwdwl
-00c -CO

(27)

-0 f IHG±)12 E[%5(w)]d -0 f IH~Qo')I 2 E[%P s(w')]dw'

9
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A little manipulation then gives

Var[F(H)] f f JH(W)J2 IH(w')1 2 {E[O WO W)]

- E[,D$ (01iY E(D 5 (w'5J1 dwdw? (28)

The quantity in the brackets can immediately be identified as the covariance
of 0 (W) and Zs (W') since it can be easily shown that

asa

Cov(x, y) E(xy) - E(x)E(y) (29)

(see reference (d), Ch. 8, Sec. 2). We may thus finally write that

Var[F(H)] = I f JH(w)1 2 IH(w')1 2 Cov[O ss(w), ss( )]dwdw' (30)

At this point, it is well to pause for an interpretation of the results
attained thus far. In the situation considered here, sample members of an ensemble
of random transients, generated according to the description in Chapter I, are
passed through a linear system represented by H(w). As noted above, each sample
input waveform will have a different computed spectrum s (w), and hence each output

55
waveform will have a correspondingly different spectrum Off(w). The quantity of

interest here is the total energy of the filter output, denoted F(H) and given by
the integral of Off(w) over all w. F(H) is a random variable whose mean is given

by equation (23). This is the result to be expected in averaging the total output
energy over a large number of sample transients. Graphically, E[F(H)] can be
visualized as the area under the curve formed by plotting E[Oss(w)] over all

frequencies and then weighing by the function IH(w)12 . The square root of the
variance of F(H), namely the standard deviation aF(H), is an indication of the
spread e the probability distribution of the total output energy about its mean.

02 is given by equation (30) above and can be interpreted as the volume under
4 F(H)
a surface defined over the w - w' frequency plane. The height of this surface
above the plane is given by the product of Cov[Oss(w), ss (W')] and

IH(w)12 IH(w')1 2. Alternatively, one can visualize a "spectral covariance surface"
whose height above the w - w' plane is given by the function Cov[oss(w), ss(W')].
The variance integral can be considered to yield the volume under such a surface
after each volume element has been weighted by IH(w) 12 IH(w')12. The spectral
covariance surface thus plays a central role in the study of the frequency filtering
of an ensemble, particularly when JH( J) is relatively constant, and its properties
will be examined in the next chapter.

z1

10
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Chapter III

SPECTRAL CO VARIANCE SURFACES FOR RANDOM TRANSIENT ENSEKBLES

In this chapter, we shall study the properties of the covariance of (or
between) values of 4, (w) for two arguments w' and 01' From elementaryss
statistics,

Cov($ 5 5s(w), %sw')] =Ef-DS(cM 4()&~)] -E[% 5 5 (m) E[q1'SS W' (31)

If the Fourier Transform of s(t) is given by

S(w 1 -L.- f s (t)jJ't dt, (32)
2H 0

then

(w) M 211 SMw SMw 211j5 (w)j2 (33)

Recalling that s(t) e~tn(t),

( ) M2H oetn~ e -Jtdt f e(x)n(x)ejw dx

0

(34)

-~ ~ f.....~ . e(t)e(x)n(t)n(x)e ~ w t dt dx
211H

Changing one of the variables of integration to a t-x yields

00 00

1 -~j &a
(W f 21f e(t)e(t-a)n(t)n(t-a)e dt da (35)

In taking the expected value, we use the fact that n(t) is stationary such that

E[n(t)n(t-a)] T nn' (a) (36)
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.1 and that I e(t)e(tra)dt s*()(7

Ths, E[4 (Wlj 1 e(t)e(t-a)* Wae~ wa da
ss 211 dt 0n

(38)

-Ja
1 f *(a)*p (ae da
211-~ ee nnf -

which was previously given ex cathedra as equation (8).

Similarly, the product 0, (W) 4) (W) may be written as

4' (w) t$ (w,)

f f f f e(t)e(x)e(u)e(v)n(t)n(x)n(u)n(v)e' e-w(U-v)dt dx du dv (39)4112
0 00 0

If n(t) is a Gaussian random process, it may be shown (reference (e), page 93)
that

E[n(t)n(x)n(u)n(v)] = np(t-x)pn (u-v)

(40)
+ t1nn n(x-v) + '*nn (t-v)pn (x-u)

and therefore,

fffe(t)e(x)e(u)e(v)p (tx~ (u-v)e e- dt dx du dv
=41I-x nnjw'(u-v)

00 0000C

ff -JW(t-x) iw' (u-v)+ 411 fff f e(t)e(x)e(u)e(v) nn(t-u)1pnn(x-v)e- e- dt dx du dv
0 00 0

(41)

+ 4~ I f f f e(t)e(x)e(u)e(v) p (t-v) pnn(x.-u)eJiw"t-x Xe-Jw (u-v) dt dx du dv

12
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which will be abbreviated as

E[,s(SS) Dss(w')] = 1+ 12 + 1 3 (42)

where I1, 12, and 13 represent the three integrals of equation (41).

I, can immediately be written as

1 J.0f0e (t)e(x)n (t-x)e - j w(t - x ) dtdx f -f u)e(v)n (u-v)e-'(u-v)
1 = 0- 0 nn 0tx 0 dudv (43)

Considering the expected value of both sides of equation (34) shows that

= E[4is(w)] E[, (W')] (44)

Continuing
(45)

___ -j(cia+W'u)i 00o co co ,V)I2 f4j f e(t)e(u)nn(t-u)e dtdu f f e(x)e(v)*nn(x-v)e dxdv
0 0 0 0

Noting that the two double integrals are complex conjugates of each other, one
writes

o e(t)e(u)n(t-u) dtdu 2(46)12 2HN o o46

Now using the change of variables a = t-u,

12 = [~_~_ fe(t)e(t-a) n (a)e-Jwt e-' (t-a) dadt
2 0 nn(47)

12H f (a)ejw'a{ f e(t)e(t-a)e - j ( W+ w' ) t dt}da
-0 0

A further simplification can be wrought by using the function defined in
equation (11):

p(t, x) e(t)e(t-x)

13
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12 may ow b c-OLxp6ss-1 a

12.-- P i, -x - ( +~ w)e~w dt-- 1

Similarly it may be shown that2

:3IP W. (3 - Ad~()P & , ) e dxj (5D)

N~J Iote that I Ismerely equal to 12 with w' replaced by (-w'). Pinally, by7

ColssL) O $ 9 W)] - E[o.,(W) 0s (W')] -EI0 86(w)J L1 58(A')

11 + 12 +I3 11 (51)

124+13

s )2

68W X

+ 12Pn(P(w W w') xd

f where P(w, x) is given by equation (48).

I Some fundamental properties of the spectral co~variance function can be
* I appreciated at once by considering the form of equation (52). First we note that

due to the vrery definition of covariance, the 'uznction will not be c!;anged in*
.4 4 value if w a~'d w' are interchanged. From equation (52), it is apparent tnat

*replacing w' by -w' will similarly have no effect on the value o-I the function.
From these two facts, it becomes obvious that to and -w are also interchangeable,

and thus that Coy [C8 5 Wu, 0 5 W') is an even function of w and w' separately
and also a symmetrical function of w and w'. Geometrically, this means that
the covariance function, defined as a surface over the to - w' plane, must be

symametrical about the vertical planes defined by the equations wo - w' and J
W M -to' and preserve the same sbape (except, of course, for a rotation) above &
four quadrants of the wo -w' plane. Coyv [0,,M(w, C5 (W')] can thus be sa:..i to

14
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possess a cruciform symmetry about vertical planes inclined 450 with respect to

those defined by the equations w' = 0 and w = 0. This is shown in Figure 3.

Evidently, it is necessary to study the function only in a single quadrant to

visualize it everywhere. Another interesting property of Cov [(4s (W), s (4') ]

that emerges directly from equation (52) is that it is always positive. This was t
by no means obvious at the outset, since two random variables may in general

exhibit negative covariance even if it can be shown that they are separately
awWand W) are here). Values of a sample spectrum foralways positive (as D ssman ssm)

two different arguments are therefore always positively correlated. It is not

really clear at this point what deeper significance this may hold.

To continue this investigation of the form of the spectral covariance surface,

it is necessary to turn to specific expressions for the envelope function. Accord-
ingly, the two forms treated in reference (a) will be considered: a rectangular

pulse of duration T seconds, and a decaying exponential pulse having a time
constant of T seconds.

For the first of these, shown in Figure 4,

e(t) = 1, 0 < t < T
(53)

= 0, elsewhere

From equation (11), for 0 < x< T,

p(t, x) =1, x < t < T
(54)

=0, elsewhere

and for -T < x < 0

p(t, x) = 1, 0 < t < T + x (55)

IV

=0, elsewhere

Evidently for lxi > T, p(t, x) = 0 everywhere. The function p(t, x) is
plotted in Figure 4 as a function of t with x treated as a parameter. Now
taking the Fourier transform with respect to t as in equation (48) yields

T - ox sinwx-/T+x
(- -TL - (12-\ 2PR ( w x )  211 xH e (56)

for -T < x < T and - < w < o.

where the subscript R on PR(w, x) denotes the rectangular pulse case.

15
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e (t)

'S. T

p(t,x) FOR 0 <,x<T p(t, x) FOR -T~ x <0

x T T+x T

FIG.4 RECTANGULAR ENVELOPE FUNCTION AND ASSOCIATED p(t,x).

e (t)

e

p(t,x) FOR x >O p(t,x) FOR x <0

-x/T -x/T ext/

x t

FIG.5 EXPONENTIAL ENVELOPE FUNCTION AND ASSOCIATED p(t,x).
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When Ix] > T, PR(w, x) = .for all w.

For the exponential envelope case, shown in Figure 5,

e(t) - e t t>0

(57)

= 0, t< 0

Accordingly, for x > 0,

p~tx) x/T J 2t/T _

(58)

= 0 t t<x

and for x < 0,

p(t' X) e exIT e 2t/T t> 0

(59)
= 0 t t<0

Frmequation (48), with PE(w, x) denoting the Fourier transform appropriate to
the decaying exponential case,

-x/T
P~w~) 1 e -JWbX

PE (w ) 211 2 +e ,- < W< C (60)
T

for x > 0

x/T

P (w, x) -C < W C (61)E 211 2 +j
Tw

for x < 0

Having derived expressions for P(w, x) in the two envelope cases of interest,
it is now possible to continue the development by substituting these into equations
(49) and (50) for I (w) w') and I (w, W'). Again using the subscript R to denote
the rectangular envefope cases

T '.n s (w+w') (T-I x)rM) 2

-TIx 21 s'~ ' 2 j~ )2- (62)

(ww)T TTjjsin (w+wI)) 12
- ji~ 2-- - nn 2H ((+.r)(TIxJ e 2 x

18
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Noting that the integrand, except for the exponential, is an even function of x,
and using the Euler relations, one writes

S -j ( ,') T T sin(wTxo')(
2 1 1e- Y 4nn(x)(T-x) (w)(.2.)Cos (W-W'Y.) dIx (63)=o

The magnitude of e-2 is unity, and the integral is real, so

T sin(w+w') (Tx dx
2(i nx) (T-x) cos(w-w') _x dx (64)

Recalling that 13 (w, w') = 12 (w, -W'), we have

I3-- f )nn (x)-x)w) ) cos(W+W')- dxl (65)

(w1) (T) J

The sum of equations (64) and (65) gives the covariance function for the rectangular

envelope case when nn (x) is the autocorrelation function associated with the
input noise process.

For the exponential envelope case, the same procedures yield the following
results:

C" I n(~ /T eJW Ix 2

12E(ww') 1 ( 72 ( -x [-o + e-JwX]dx (66a)

2
1_,) i1 f, (x)e-X/T[eJ'wx+e-jxl]dx (66b)

(E=41 2 )2 + (W 0 nn

or defining

C-x/T

Ia f , (x)e [cos w'x + cos wx)] dx (67a)

19
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"' -x/T
f Wnn(X) e [sin w'x + sin wx] dx (67b)

0

k-x/T
c  f xn(X) e [sin w'x - sin wx] dx (67c)

CovE[ Ms , (W I (1 2~2 C + 1 2 1  (68)+s = + +'

+ 1 1

=4H 2+ (W W1)2 a2 C

Further progress toward a description of the spectral covariance surfaces un-
fortunately requires the use of specific expressions for the input noise autocorre-
lation functions. This, to be sure, destroys the generality of the results (which
to some extent has been sacrificed already by using specific envelope functions),
but by carefully choosing the noise spectra of interest, one can arrive at fairly
general conclusions about the form of the covariance surface for an arbitrary noise
type. In reference (a), two examples of idealized noise spectra were treated, and
the same will be used here. These are the rectangular broad band snectrtun, based
on zero frequency, and a rectangular narrow band spectrum centered at some w 0
The two spectra are portrayed in Figure 6.

The first can be described mathematically as

T nn (w) = No, -2 < w < 2

(69)

= 0, els'where

The corresponding autocorrelation function is

sin W2 T

(T) = 2N 2 W 2 T - < T < (70)

The second spectrum is given by

nn(u) = No, °I < Jwj < W (71)9nn (w o) - 2

0, elsewhere

20
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lp"T) sin4(A)-
cos oi30*F , -< < < (72)

where W2 - W
2 W the half bandwidth (73a)

1+ 2
o 2 , the center frequency (73b)

These expressions have been used in equations (64), (65), (67), and (68) to

derive integral representations for the spectral covariance surfaces of both
rectangular and decaying exponential bursts of both broad and narrow band noise.
These expressions have in turn been evaluated on the IBM-7090 computer at NOL to

gain an understanding of the form of the surface. Indeed, much of the manipulation

At leading up to the final expressions for Cov[4s (w), %ss(w')] was specifica±±y

intended to reduce the problem to one of evaluating Gaussian quadratures - a task

amenable to a computer algorithm. We will now consider several of the cases in
detail.

A. Rectangular Pulse of Low-Pass Broad Band Noise

For the rectangular function described in equation (53) it is easily

shown that'>':€(T) = T - ITI, -T < T < T (74)
":2" ~ee' -- -

=0, elsewhere

Thus, from equation (38),: i1 -j,,x

sE[$ss(w)] 2H ee( nn(X)e dx-00 (75)

1i T
- f(T-x) (x) cos wx dx

0

and from equations (64) and (65),

Cov[ Ps(w), %ss(w')] =

T sin(w+w') -2  2
S n(X)(T-x) Cos (W W') dx

(76)

-T sin( -_') - 2
S+ n(X)(T-x) cos (W_-') dx

22
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It is also convenient to recall that

Var[ ( ) M = Cov[(D (W), 4) Mb3 (77)
~~iss SB sS

or from equation (76) with W

Var[~55 w)] 1 Fsin wi(T-x) dx

T 2~

+ . ff )n(x)(T-x) cos wx dx j2(78)

/ Fp (W)]12
'2R s.,w +{[

where in the last expression we have used equations (64) and (75).

To obtain the final expressions, we substitute pnx) from equation (70)
above into equations (75), (76), and (78),

E[ D u) 2N wT T
ss x ( sin w2x csw x(9

0 2x

Covj7t' (), 1 mt)] 411 2w2
2T2

FT sin W2X n ww)L-.2

-T W x ( - )c COB (Wi + wr)(2 )dx

4 ~180)

- T w ' 2/ Cos (W - Ed

23
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Var(4) (wa)) { E[-D w)}
ss SB

(81)

4N0 w 2W 2  sinw2x sinw(T-x) 12

For greater generality of presentation, these expressions will be normalized
and parameterized by defining the following quantities, as in reference (a):

q 2H1 the number of periods of the highest noise frequency
contained in a pulse length. (82 a)

rw expressed as a fraction of w(82b)

s - t ,Wt expressed as a fraction of W2 - (82c)

The (w2

Tegeneralized expressions then become

E ( D (r)] 2q f (1-x) sn2qx cos 2llqxr dx (83)II 0
Coy [ (r), 4 (s)]Nss s

r fl(l) sn2lx ing(-x)(r+s) (-)d

102Iqx THq (l-x)(r+s) olq

4q2  + (84)

[ K~.x sin 2llgx sin llq(l-x)(r-s) co qxrsdj

Var N[(Ds(r)] { E [4P (r)])2

Nss N ss

K 12

+ 4q2 [f (1-x) sin 2llgx sin 2flr(l-x) d I (85)
02IHqx 2Hqr(1.-x) x

24
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The normalization included in the above three equations is described in
Appendix A and has been chosen such that

00

f EN[,ss(r)] dr = 1 (86)
-00

The relationship between the normalized and unnormalized versions is
given by the following:

= 2NoT EN[ s(r = (87a)
W2

Cov[D (w) (D (w')] 4N 2T2 CovN[s (r -), 4, (s = .- )] (87b)
ss ss 0 N 4N w2 ss W2

with a corresponding expression for the spectral variance.

A Fortran IV computer program was written to calculate and plot the normalized
results derived above. Because of the symmetry properties of CovN[¢ss(r), (Ps(s)],

it is necessary to study the behavior of the function only over the upper right-
hand quadrant of the r-s plane. Similarly, since EN[ss(r)] is an even

function of r, it is presented only for r positive. The reader will recall that
this data applies to the case where an input noise process with a rectangular low
pass spectrum, as in Figure 6a, is gated by a rectangular pulse of duration T, as
in Figure 4. The most important parameter of the situation is q, defined to equal
the number of periods of the highest noise frequency contained in the pulse
duration T - the higher q becomes, the longer becomes the "piece" of the input
process gated by the pulse. The results are plotted against frequency variables

expressed as a percentage of the highest noise frequency W2 . Hopefully, this
approach will divorce the data from particular parameter values.

Figure 7 shows a plot of EN[pss(r)] for this case with q = 10.0. Because

q is appreciably larger than unity, reciprocal spreading arguments show that the

energy density spectrum of e(t) is considerably narrower than the power spectrum
of n(t). Thus, the convolution implied in the calculation of EN[ss(r)] yields

a spectrum of approximately the same shape and width as that of n(t). (The width
of E[ ss (a)) is therefore approximately w2, and that of EN[¢ss(r)] about

W2/ 1 in units of the variable r.) The normalized expected spectrum is seen

to bi roughly rectangular with amplitude approximately 1/2 and half-width unity.
This checks the normalization which was intended to set the area under the curve

equal to unity. The "tail" of the spectrum, extending beyond r = 1.0, is the most
obvious effect of the gating process on the input spectrum.

Figure 8 shows a plot of the standard deviation of Pss(r) as a fraction of

the mean of ss(r), i.e.,
u(r) "AarN[ Pss (r)] (88)

EN[ss(r)D ]

25
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FIG.7 SPECTRAL EXPECTED VALUE FOR A RECTANGUL.AR BURST OF LOW-PASS
BROAD BAND NOISE WITH q =10.0.

1.5-

0 1

05510 . .

r = w/w 2I2
- FIG.8 NORMALIZED SPECTRAL STANDARD DEVIATION FOR A RECTANGULAR BURST

OF LOW-PASS BROAD BAND NOISE WITH q =10.0.
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As noted above, this ratio must always be greater than unity, and near the
origin achieves its maximum value of /2 . This is because it can be shown from
equation (75) and the first form in equation (78) with w = 0 that

VarN[ ss(0)] 2{EN[Fss(0)]}2 (89)

The fact that for large values of r, aN(r) 1 1 implies that

VarN[Z ss (r) [ r)]}2  for r>>O (90)

or alternatively, that I2R( ,W) of equation (78) makes negligible contribution
to the variance for w>>O.

A three-dimensional rendering of the normalized spectral covariance surface
for the upper right-hand quadrant of the r-s plane is shown in Figure 9. It is
seen that the surface has the form of a sharp, narrow ridge symmetrical about the
plane r = s, running from the origin to the point r = s = 1 and then tapering
off. From equation (77), we know that the height of the surface above the line
r = s is a measure of VarN[Dss(r)]. Accordingly, the height of the surface at

the origin is roughly twice that found elsewhere along the line r = s, in agreement
with equations (89) and (90).

As an aid to relating the height and length of the covariance ridge to the
parameters of the random transient, let us examine the r-s plan- itself as shown
in Figure 10. As noted several times before, the covariance sut'ace is symmetrical
about the plane defined by the relationship r = s. Consider any line in the
r - s plane parallel to that representing r s. T'he tquation of c uch a line is

s = a+r

OR (91)

s -r a

where a is the intercept on the s axis. Evidently, along such paths, s and r
have a constant difference equal to a. In the present case, such lines represent

the loci of points for which the arguments of the covariance function have a given
(normalized) difference equal to a. Similarly, .±nes lying P-mvndi:ula: to the
symmetry axis have equations of the orm

s + r = b (92)

and on such loci, the sum of r and s is a constant. in pi.:ticular, since
(s + r)/2 is the arithmetic average of the two normalized frequency arguments,
such a line represents the loci :f points for which the center frequency of the
two is constant and equal to b/2. Furthermore, it can be shown that a translation
of magnitude d parallel to the direction of the line r = s produces a change
in the center frequency equal to d/2- while leaving the center frequency unchanged.

27
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FIG.10 IMPORTANT LINES IN THE r - s PLANE.
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IT FIG.1 1 NORMALIZED SPECTRAL VARIANCE FOR A RECTANGULAR PULSE OF
LOW-PASS BROAD BAND NOISE WITH q =10.0.
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Returning now to the case portrayed in Figure 9, Figure 11 shows essentially
a section through the covariance surface along the plane of symmetry r = s. This
can be interpreted as a graph of VarN[4s(r)] plotted along an axis scaled by a

factor of v. Along the line r = s, the covariance arguments have zero differ-
ence, and the covariance reduces immediately to the variance. From another point
of view, one obtains a section through the plane of symmetry by graphing the
variance as a function of r, and then "stretching" the graph along the r axis

by a factor of 2 -. In Figure 12 are shown two plots of CovN[-Dss(r), $s (s)]

where a constant center frequency has been chosen as a parameter and the covariance

plotted as a function of the difference between the two arguments. In other words,

we portray COvN(r? s) where

r = c + d/2 (93a)

and

s = c -d/2 (93b)

This is an even function of d, so only half of each plot has been presented. From
the discussion immediately above, it becomes obvious that such graphs represent
cross-sections of the covariance surface perpendicular to the plane of symmetry
and intersecting the latter above the point r = s = c. The normalized frequency
difference d represents a translation perpendicular to the plane of symmetry of
length d//7T. The family of graphs thus represents a series of cross-sections of
the surface, taken perpendicular to the axis of the "ridge".

In Figures 13 through 17, a similar series of graphs are shown for the case
of a rectangular pulse of low-pass broad band noise with q = 1.0. It is seen that
the covariance surface now appears as a relatively smoothly sloping "pile" which
decreases gradually in all directions with distance from the origin. Recalling the
definition of the parameter q, the difference between the two random transient
examples treated thus far is that in the former case, where q = 10.0, a relatively
large number of cycles of the highest frequency present in n(t) are found in pulse
length T, whereas for q = 1.0, only a single cycle is possible. The q = 10.0 case
essentially presents a longer "piece" of the noise process n(t).

Some general characteristics of the spectra of rectangular noise pulses can be
immediately discerned by studying Figures 7 through 17. It turns out that an inter-
esting parameter of the random transient spectrum is its effective width, essentially
defined as that positive frequency spread for which E[%s (w)] is significantly
different from zero. It will be recalled that this expected value can be expressed
as the convolution of the energy density spectrum of the envelope function and the
power density spectrum of the underlying noise process. Roughly slzaking, the width
of the convolution of two even functions is equal to the sum of the widths of the
functions themselves. The justification of this approximation is discussed in
Appendix B. If one spectrum is significantly wider than the other, the width of the
convolution of the two will essentially be that of the former. In the present case,
the positive frequency width of the (double-sided) noise process spectrum is simply
W2  (or 1 in terms of the normalized frequency variables). The energy density

spectrum of a rectangular pulse of length T and unit amplitude is given by

30



NOLTR 68-124

q 10.0 (RELATIVE MAGNITUDE: 1.0 HERE

CORRESPOND.S TO ACTUAL VALUE
r- OF .247)

c = (r + s)/2, THE CENTER FREQUENCY

d = r - s, THE DIFFERENCE FREQUENCY
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FIG.12 SECTIONS THROUGH THE SPECTRAL COVARIANCE SURFACE FOR A
RECTANGULAR PULSE OF LOW-PASS BROAD BAND NOISE WITH
q = 10.0.
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FIG.13 NORMALIZED SPECTRAL EXPECTED VALUE FOR A RECTANGULAR BURST
OF LOW-PASS BROAD BAND NOISE WITH q = 1.0.
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FIG.14 NORMALIZED SPECTRAL STANDARD DEVIATION FOR A RECTANGULAR
BURST OF LOW-PASS BROAD BAND NOISE WITH q = 1.0.
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wT
T2 Sin2 2 -0 0(94)

4' (.) = 2- , - < ,
ee 211 (T) 2

as was shown in reference (a), page 27. The first zero for w > 0 occurs when
the argument of the sine in the numerator equals H , or when

2H= (95)
T

This point may be taken to define the positive frequency width of the double-sided
energy density spectrum of the envelope, and hence by the arguments presented
above, the effective positive frequency width of the spectrum of a rectangular
pulse of low-pass broad band noise can be said to be

W = + 211 (96)
2 T

or when normalized to the same basis as the frequency variables r and s,

W22H
- + 2 = + 1/q (97)

WN - 2 W2Tq

where q is defined in equation (82a). When q = 10, as for the case portrayed
in Figure 7, WN = 1.1, whereas for q = 1.0, as in Figure 13, WN = 2.0. The

size of the effective spectral width is mirrored directly in the form of the
spectral covariance function. It is seen empirically that the spectral covariance,
centered above the line r - s, falls to zero beyond the point r = s - W . In

N
other words, the covariance between the values of the spectrum at two points will
be small if either argument lies outside the region of significantly large expected
value. This is well demonstrated in the q = 10.0 case where the covariance surface
falls sharply away for either r or s > 1 (see Figures 9 and 11) and in the
q - 1.0 case where the surface is essentially of zero height for either r or s > 2
(see Figures 15 and 16).

In seeking the width of the covariance "mound" in a direction perpendicular
to its axis, one sees from Figures 12 and 17 that it is on the order of 2/q. This
implies immediately that the longer the random transient becomes with respect to

the period of the highest noise frequency, the narrower becomes the spectral co-
variance function about its plane of symmetry. Thus, when q = 10.0, the width
of the ridge is considerably less (by a factor of 10) than the width when q = 1.0.
The peak at the origin, which arises as a consequence of equation (89) dies off for
r, s > l/q. This is especially clear in Figure 9 for the q = 10.0 case.

In general, the volume lying under the covariance surface can be said to be
concentrated over the r - s plane area shown in Figure 18. This region is
bounded by the lines:
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WN

/AREA Ir/

FIG. 18 THE REGION OF APPRECIABLE COVARIAI' :F FCR ,RC ANGULAR PULSE
-~ OF LOW-PASS BROAD BAND NOISE AS DELINEATED IN THE r - s PLANE.
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r =WN (98a)

s =WN (98b)

s = r + /q (98c)

s = r -/q (98d)

The peak at the origin lies roughly above the area bounded by the lines r = 1/q
and s = I/q.

When q>>l, the different sections of the covariance surface become separate
and well-defined. This is shown particularly well by Figure 9. Near the origin,
one finds a high narrow peak over an area roughly I/q on a side. The largest
section of the surface is the narrow ridge that runs diagonally from the peak at
the origin to the vicinity of the point r = s = 1.0, where it decreases sharply
to insignificance. The height of the ridge is fairly constant along its length
and equal to half that of the peak at the origin. This shows that for large q, the
values of the empirical spectrum at two arguments do not co-vary strongly unless
the arguments are close together, and conversely that spectral amplitudes for widely
differing arguments are practically linearly independent.

When q is on the order of unity, l/q is of the same order as WN, and the
various regions of the covariance surface fuse together such that no separate
identifications can be made. In this case, the surface becomes much more smoothly
varying and spreads away from the plane r = s, as was seen in Figure 15. This
implies that significant covariance exists between widely separated points on the
spectrum and that a high degree of dependency is present between far removed sections
of the spectrum.

The areas of non-negligible covariance delineated in Figure 18 agree well with
intuition. Certainly one would exrect a strong covariance between the spectral
amplitudes of two points only when the expected spectral amplitudes themselves have
appreciable magnitude and can be said to arise from something more than chance. The
width of the ridge essentially indicates that two spectral values do not co-vary if
their normalized arguments differ by more than Ar = I/q. There is a well known
approximate frequency resolution theorem which states that for any random time
function of duration T, energy density spectrum values are statistically independent
if their arguments have a difference of at least Aw - 2R/T. (See for example
reference (f), section 6.1.1). Since by definition

w2T
q

211

1 = 2H =Ar (99)

q W2T
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and in terms of the unnormalized frequency variables,

A2 = 11Ar = 2 (100)2A T

Thus, the form of the covariance surface bears out the prediction of this particular

frequency resolution theorem.

B. Rectangular Pu,.se of Narrow Band Noise

We now turn to consider spectral covariance functions for narrow band

random transients, again assuming a rectangular envelope function. Expressions for

this noise spectrum and the corresponding autocorrelation function have already
been given in equations (71) and (72). Again the various statistical measures will
be presented in normalized versions in which

WoT

q 2H the number of periods of the noise center frequency
contained in a pulse length. (lOla)

r = , w expressed as a fraction of w0. (101b)
- O O

, w' expressed as a fraction of wo. (101c)

Ao
z the noise bandwidth as a fraction of the center (lOld)

0 frequency.

The resulting expressions, obtained precisely as in the broad band case, become:

E (sin coszx cos 2co qrx dx (102)
2q (-x Hqzx2lq

0

such that

f EN[ ss(r)]dr 1

and

E[%s (w)] = 4N°T EN[ ss(r = (103)
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CovI ss(r), ss(s)]

-sinqzx sin lq(l-x)(r+s) uX

U qzx si q fq(l-x) (r+s)

4q + (104)l2
f (l-x) sinflqzx sin 11q(l-x)Cf-s)Lqzx cos 2Nqx lq(l-x)(r-s) cos Hqx(r+s) dx

with
Cov[ P  W) 'D 2T2 Cov r = s--), r = ')] (105)

C°[ss() ss( )  0 16o[ss Wo 'ss

Two examples of the rectangular pulse of narrow band noise are shown in the

figures to display the characteristics of the corresponding spectral covariance

surfaces. In Figure 19, is shown the spectral expected value for a narrow-band

random transient with q = 50.0 and z = 0.1. This is to say that the length of

the transient is such that 50 cycles of the center frequency can be contained

therein, and that the bandwidth of the underlying noise process is 1/10 the center

frequency. Using spectral convolution arguments as before, the positive frequency

spectral width will be on the order of

W = 41 + 2Aw (106)T

and normalization with w as the basis yields
0

WN + z (107)
N q

In the present example, WN = .14, as is borne out by the graph of Figure 19.

The spectral covariance surface for this case is rendered three-dimensionally in
Figure 21, and in section in Figure 22. A plot of the normalized spectral vari-

ance is shown in Figure 20. It will be recalled that such a graph can be interpreted

as yielding a section of the covariance surface through the plane of symmetry.

Because of the relative compactness of E[ ss w)], the covariance surface is a

short, &harply peaked ridge symmetrically placed about the plane r = s and

concentrated between r = s = 1 - z and r = s = 1 + z. As before, the sections
of Figure 22 are taken at right angles to the axis of the ridge.

The corresponding set of figures is shown for the case where q = 10.0 and
z - 0.01. Here the bandwidth of n(t) is very small compared with the center

40



NOLTR 68-124

q=50.0 z=O.1
6-

S4

z

2-

0 _L

0.8 0.9 1.0 1.1 1.2
r = w/w

FIG. 19 NORMALIZED SPECTRAL EXPECTED VALUE FOR A RECTANGULAR BURST
OF NARROW BAN D NOISE WITH q =50.0 AND z =0. 1.

q=50.0 z=0.I
30

20--2

z
Io-

10

0.8 0.9 1.0 1.1 1.2
r = w/w

FIG.20 NORMALIZED SPECTRAL VARIANCE FOR A RECTANGULAR BURST OF
NARROW BAND NOISE WITH q =50.0 AND z =0. 1.
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CoyN Eo (r), (Dss)3

(RELATIVE AMPLITUDE)

q =50.0

S z= 0.1
2.0

"1.5

.4p

0%

FIG.21 NORMALIZED SPECTRAL COVARIANCE SURFACE FOR A RECTANGULAR
PULSE OF NARROW BAND NOISE WITH q = 50.0 AND z - 0.1.
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(RELATIVE MAGNITUDE: 1.0 HERE
q = 50.0 "I.. CORRESPONDS TO ACTUAL VALUE
z = 0.1 OF 23.00.)

c = (r + s)/2, THE CENTER FREQUENCY

0.75 d = r - s, THE DIFFERENCE FREQUENCY

•0 ,o 0.50

'II

.4

0.25

0.16 0.12 0.08 0.04 0 0.04 0.08 0.12 0.16
d (FREQ. DIFF/To)

FIG.22 SECTIONS THROUGH THE SPECTRAL COVARIANCE SURFACE FOR A
RECTANGULAR PULSE OF NARROW BAND NOISE WITH q 50.0
ANDz 00.1.
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frequency, and also small compared to the spectral width of the envelope function.
As a result, the spectral expected value (Figure 23) is practically identical with
that of the envelope (which has the familiar sin 2x/x2 form), and in turn the co-
variance peak is more widely spread and smoothly rounded around the vicinity
r = s = 1 (see Figures 23, 25, and 26). Here the spectral width is approximately
equal to 2/q since z is relatively so small.

In general, it is found for the rectangular narrow band case that the

covariance peak is found over an area delineated in the r - s plane by the lines

r =I + WN/2  (108a)

r = - WN/2 (108b)

s = 1 + WN/2 (108c)

s = 1 - WN/2 (108d)

s = r + 1/q (108e)

s = r - 1/q (108f)

as in Figure 27. Again, this representation agrees with the interpretation
offered for Figure 18 and the rectangular broad band case.

C. Random Transient Ensembles with Decaying Exponential Envelopes

A number of examples of EN[4ss(r)] and CovN[ss(r), 4,s(s)] have been
computed and graphed for random transient ensembles generated with decaying
exponential envelopes. In these studies, the parameter q has been defined,
analogously to equations (82a) and (101a), with T now taken to represent the
time constant of the exponential decay. q here represents, then, the number of
periods of a typical noise frequency contained in the time constant. For a given
underlying noise process, the various spectral statistics for the exponential
envelope cases do not differ in any gross manner from their counterparts in the
rectangular envelope cases with identical q( i.e., from those arising from
rectangular random transients whose envelope length is equal to the exponential
time constant). The only appreciable difference observed is that the spectral
width is slightly narrower in cases where the spectral width of the envelope is a
significant part of the total, and that the transverse width of the spectral co-
variance ridge is somewhat reduced, although it is still well approximated by 2/q.
These effects are demonstrated in Figures 28 ard 29 which compare the results found
for exponential and rectangular envelope narrow band random transients with q = 10.0
and z = 0.1. These changes are not unexpected, since the energy density spectrum
of a decaying exponential pulse is significantly narrower than that of a rectangular
pulse whose length is set equal to the time constant. This is shown in Figure 30.

One may say, then, that the approximate delineation of the region of
appreciable covariance set forth for the rectangular transients (Figures 18 and 27)
applies, for most practical purposes, to the exponential envelope cases also. It
may safely be concluded that the detailed shape of the envelope function is
relatively unimportant for the form of the spectral statistics, and that the envelope
duration - or some consistent measure thereof - is the most important envelope

44

? . . . . . .•A A A A



NOLTR 68-124

q = 10.0
z = 0.01

.44--

Z"' 2

0.8 0.9 1.0 1.1 1.2

FIG.23 NORMALIZED SPECTRAL EXPECTED VALUE FOR A RECTANGULAR
BURST OF NARROW BAND NOISE WITH q = 10.0 AND z = 0.01..

q = 10.0
z = 0.01

S20-

0.8 0.9 1.0 1.1 1.2

r WIW/(d

FIG. 24 NORMALIZED SPECTRAL VARIANCE FOR A RECTANGULAR BURST
OF NARROW BAND NOISE WITH q = 10.0 AND z =0.01.
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1.+WN/2--/

/2/

/ If

0 I , /210I+ 2 r=~
N N

FiG.27 THE REGION OF APPRECIABLE SPECTRAL COVARIANCE FOR A RECTANGULARL PULSE OF NARROW BAND NOISE DELINEATED IN THE r - s PLANE.
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q = 10.0
1.0 z = 0.1 /

0.2- J ENVELOPE

00.

0.9

r =/10.0

ri 0.8

FIG .28 COMPARISON OF THE SPECTRAL EXPECTED VALUES FOR RECTANGULAR
AND DECAYING EXPONENTIAL PULSES OF NARROW BAND NOISE WITH
q 10.0 ANE z 0.1.
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feature for the determination of the spectral character of the random transient
ensemble, This is particularly true when the transient duration is such that it
contains many cycles of a typical noise frequency, i.e., when the parameter q is
large.

This concludes our discussion of random transient spectral covariance surfaces.
It is hoped that the reader has been given sufficient grasp of the concepts involved
to permit him to continue on his own to explore special cases of interest.
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Chapter IV

IDEAL BAND PASS FILTERING OF RANDOM TRANSIENT WAVEFOPMS

In this chapter will be studied the problem of passing an ensemble of random
transients through an idealized narrow band filter whose system function is given
by the expression

H(w) = 1, w B < i, < W + B (109)
-c 2

= 0, elsewhere

where u is the center frequency of the filter, and B is its bandwidth, both
in radians/second. H(w) is portrayed in Figure 31.

A few words are in order about this filter function. First we note that such
a device is physically non-realizable. The impulse response h(t) is given by the
Fourier transform of H(w):

00 +B/2
h(t) f f H() eJWt d 1 c cos t

2:q~~ _ 2B/2

inB (110)

2
BCO co Wt, -Oc t~o

and is non-zero for t n. implying that the device responds before the arrival of

a stimulus. This is a physical impossibility (at least in this world). Since the

filter of ecuation (10q) is unrealizable, one might wonder why it will be studied

here. Of course, the honest answer is that it is mathematically tractable, but it
should be pointed out that if an arbitrarily long time delay is allowed between the

input and output (essentially by relaxing the specification to permit non-zero
phase), such a filter function can be realizably approximated to any accuracy (see,

for example, referetice (g), pp 240-241). At the same time, the filter function of

equation (109) is a convenient matheriatical abstraction which provides a means for
describing the band-wise content of a random transient spectrum and particularly
the degree of variability to be expected in band-pass filtering. This will provide

a strong indication of the magnitude of these effects in real world cases with
realizable filter functions.
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H (w)

B. B~F H_________
1~0 W,_wc C

FIG.31 IDEAL NARROW-BAND FILTER FUNCTION.

Coy [(s() '(D,(0')]

SPECTRAL COVARIANCE
SURFACE

/l I

w -B/2

B/2Cw-

0

.0T FIG.32 VAR EF(H)J PORTRAYED AS THE VOLUME OF A PRISM LYING UNDER THE
SPECTRAL COVARIANCE SURFACE.
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4Tith this justification, we shall proceed. From equations (22) and (109), one
may immediately find that

-WC+B/ 2  w6+B/2
F(H) = f s (p ) dw + I s (w) dw (111)

ss
-c-B/2 -

and thus F(H) is indeed an expression for the area of ss(w) lying between the

frequencies (wc - B/2) and (wc + B/2). Since '1 (u) is an even function of w,
.9.. ss

w +B/2

F(H) = 2 f Ds (w)dw (112)
7 W -B/2c

and further,

w)+B/2

E[F(H)] = 2 f E[4ss( )]dw (113)
Wc-B/2

c

Similarily, from equation (30)

-wc+B/2 -wc+B/2

Var[F(H)] = f Cov['ss(W), Dss(w')] dw dw'
-Wc-B/2 -w c-B/2

-Wc+B/2 ic+B/2

c c
+ f f Cov[ P s(), (W')] dw dw'

-Wc-B/2 c-B/2 (114)

wc+B/ 2 -w +B/2

c
+ f f Cov[?ss(W), 4s (w')] dw dw'

W -B/2 -w -B/2

C C

*wc+B/2 wc+B/2

+ f f Cov[(s (W), s()) d dw'
W -B/2 w -B/2 s ) d

4c c
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By the symmetry properties of the covariance function, this becomes

w +B/2 w +B/2

Var[E(H)] = 4 f f Cov[4ss(W), #s(D')] dw dw' (115)
the ssT cB/2 wcB/2

Thus, the expected value of the output energy is given by twice the area under
the curve of E[$ss(w)] between w = w - B/2 and w = w + B/2 whereas the

variance of the output energy is found to be equal to four times the volume of a
prism bounded above by the covariance surface and lying over a square in the

- W' plane bounded by the lines

= Wc + B/2 (116a)

U) = +c + B/2 (116b)c -

as shown in Figure 32. Having arrived at an expression for Cov[ 5ss(,), Dss(W')]
using the methods of the last chapter, it is straightforward, at least conceptually,
to compute E[F(H)] and Var[F(H)].

In practice, an accurate computation of the output energy expected value and
variance is an exceedingly tedious business. Several attempts have been made to
perform the calculation by digital computer, using multiple numerical integration.
On the IBM-7090 at NOL, the computation time for a single point on a typical graph
of Var [F(H)] was on the order of 30 minutes! It appears, then, that an accurate
computer calculation of these measures is completely out of the question, and one
is forced to the use of approximations which, while lacking accuracy, nonetheless
indicate and preserve the magnitudes of the important trends in the various
statistical functions. An example of such an approximate method will be detailed
now.

For our example, we shall examine the ideal frequency filtering of a rectangu-
lar pulse of narrow band noise, characterized by the parameters q and z defined
previously. The spectral covariance surface of such a signal has been treated in
the preceding chapter, and its features portrayed in Figures 19 through 27. Of all
the examples treated in this study, this is the one of most widespread interest
and generality, particularly since the results retain sufficient accuracy to pre-
dict the effects of filtering any shaped pulse of narrow band noise of approximately
the same duration as the rectangular pulse, in accordance with the discussion at
the close of Chapter III.

In the discussion that follows, the normalized and parameterized versions of
the expected values and covariances will be used. To start the present approximate
approach, the spectral expected value (of Figure 19 or 23) will be represented as
a rectangular function of width WN centered at r = 1.0. The height of this
function will be taken to be the maximum value of the expected value expression
computed from equation (102). This maximum will be dencted ME, and thus
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EA[ss(r)] = ME, I - WN/2 < 1 + WN/2

0, elsewhere (117)

where EA[ss(r)] represents the approximate normalized spectral expected value.

E[F(H)] is found from the expression of equation (113):

wc+B/2

E[F(H)] 2 f E[4,ss()] d,
Wc-B/2

Using also equation (103) and defining wc' = wc/Wo and B' B/wo,

wc+B/2
E[F(H)] = 8NoT f EN[4ss(r = w/ 0

) ] dw

wc-B/2

c, (118)

= 8No OT f E[ ss(r)] dr
Wc'-B'/2

Now denoting the approximate value of E[F(H)] by EA[F(H)], we have that

(c'+B'/2

E[F(H)] EA[F(H)I = k f EA[ss(r)] dr (119)
Wc'-B'/2

where

k 8NoWoT (120)

The integral of equation (119) can be visualized as proportional to the area of
overlap of two rectangular functions: one fixed - representing the random transient
spectrum (equation (117)), and the other sliding - representing the tunable filter
as the latter's center frequency is swept across the frequency range of interest.
This is shown in Figure 33. The resulting output energy expected value express-ions can be considered a function of wc', or by defining

W c - Wo (121)
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E

EA[ r)]

ME

1 (FIXED)

IH (12

w!c (TUNABLE)

IH IE A I oss r EA[F(H)] - AREA OF OVERLAP

1 i-" -r A
''A

C 1-

FIG.33 AN INTERPRETATION OF THE CALCULATION OF EA [F(H)] AS THE AREA OF
OVERLAP OF TWO RECTANGULAR FUNCTIONS.
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as the normalized frequency difference between the center of the filter function
and that of the underlying noise spectrum, as a function of A. Clearly, there
are two cases to consider:

A. For B' < WN,

WN - B1

EA[F(H)] = MEkB', 0 < JAj - 2

-. B= MEk ? _A , < IA! B (122)
E.: 2 2 2

B' + WN

0 , J 2

B. For B' > WN,

B' - WN

EA[F(H)] = MEkWN, 0 I jAl i 2

=NE[ Bt + WN  B' - WN< JAI < B' + WN2 N 2 -- 2 (123)

B' + WN
= 0, 1 > 2

These functions are shown in Figure 34 and represent approximate expressions for
the expected value of the filter output energy as a function of the filter center
frequency wcP when the input is a rectangular pulse of narrow band noise centered
at wo"

Corresponding approximate expressions involving the spectral covariance
function are somewhat harder to formulate and handle. For our present needs, the
spectral covariance surface can be reasonably well approximated by a right hexagonal
prism erected over a base in the r - s plane delineated by the equations (108) and
shown in Figure 27. The height of this prism is taken to be the maximum value of
the expression of equation (104), denoted Mc . A three-dimensional rendering of
the approximated surface is shown as Figure 35.

The variance of the filter output energy is expressed by means of equations
(115) and (105):
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EA[F(H)]

M kB'B'NE

-W -B' B'-W W -B' W +B' A-N N N N Ac-w0
7.2 2 2 2o

E AI(H~lB'> W-N

-W '-B' W N-B' B'-W N W N B' c 0N N N_

22 2 2

FIG.34 APPROXIMATIONS FOR THE EXPECTED VALUE OF THE OUTPUT ENERGY

OF A NARROW BAND FILTER WHEN EXCITED BY A RECTANGULAR PULSEOF NARROW BAND NOISE.
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A (Dr'(1, )

41.0

I W /2
I//

1 0

FIG.35 AN APPROXIMATION FOR THE FORM OF THE NORMALIZED SPECTRAL
COVARIANCE SURFACE FOR A RECTANGULAR PULSE OF NARROW BAND
NOISE.
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c +B/2 w +B/2

Var[F(H)] = 4 f I Cov[#ss(W), ,ss(w')] dw dw'
W -B/2 wc-B/2

wc+B/2 wc+B/2

64 N 2T2  I I CovN[,s(r = - 4w ss(s = d-)idw dw'
0

S-B/2 w -B/2 0 0

C

W? c+Bt/2 w' +B'/2

= 64 N 2T2w 2 1 1 COVN[4s(r), ss(s)]dr ds (124)W' -B'/2 w' -Bt/2

C c

If we denote the approximate covariance surface as CovA[ ss(r), ss(s)],

W1 +B'/2 w'c+B'/2
Var[F(H)] VarA[F(H)] = k2  f f Cov[s(r) #s(S)]dr ds (125)

W 1 c B '/2 w t c B '/2
C C

where k is again given by equation (12). The integral of equation (125) can be

interpreted as yielding the volume under the approximate covariance surface lying
above a square in the r - s plane bounded by the lines:

r= (t + B'/2

(126)

S Wt + B'/2
C-

Note that this "filter square" has the same axis of symmetry (r s) as the spectral
covariance surface itself. A geometrical portrayal of the generation of the curve
of VarA[F(H)] versus w'c is sh-wn in Figure 36. There we see that as w

changes, the filter square slides up and down the line r = s, cutting out a
changing volume under the covariance surface proportional to the output energy
variance. In the present approximation, where the surface is of constant height
over a sharply delineated area, outside of which it is identically zero, the
integral of equation (125) becomes proportional to simply the area of overlap
of the filter square and the hexagon representing the base of the covariance
surface. The constant of proportionality between the overlap area and the approxi-
mate variance is the height of the surface, taken here to be Mc, the maximum
normalized covariance. To compute VarA[F(H)] as a function of the filter center
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COVARIANCE BASE /

fl.'

AREA OF OVERLAP /w

S FILTER SQUARE
"I I

/ I I

4I I
0 I I -

FIG.36 A GEOMETRIC INTERPRETATION OF THE APPROXIMATE OUTPUT ENERGY
VARIANCE AS PROPORTIONAL TO THAT AREA OF THE "COVARIANCE
HEXAGON" OVERLAPPED BY THE "FILTER SQUARE".
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frequency, one lays out the covariance hexagon as a function of the random transient
parameters (q and z) and calculates the area of overlap as the filter square glides
up and down the 450 line in the r - s plane. Since WN =2 + z > 1 always, the

q q
geometry of the situation leads to three distinct cases depending upon the normal-
ized filter band-width B':

A. 0 < B' < l/q:

Var [F(H)] = M k2B'2 0 <
A c < 2

M .k2 2-(Bt+ I (B'tW)2 WN-B' - WN+B' (127)
c L N )161 4- 91 2 <1AI< 2

B '+WN

= 0, IAI> 2

B. 1/q < B' < WN:

VarA[F(H)] = fck2[ '  -l] , . _ WN-B'2

B+W-21 aI WN-B' WN+B'- 1 (128)= L 2 IA 2

= M [k2 2-(B'+WN)IAI + 4 B'2 q 2

B '+WN

o,JA > 2
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C. B' > WN:

[2WN 1 1 B'-WN
M k2 .-- ,VarA[F(H)1 M _

Mk2B'+WN-2AI i- B'-WN B'+WN 1 (129)
c q7 2 2 q

r (B'+WN)2 B'+WN  1 <JI< B'+WN
MCk 2LA2 _ (B'+WN)IAI + 4 2 q 2

B'+WN
2

The three resulting variance functions are shown in Figure (37).

In the light of practical measurement and signal processing problems, a most
interesting quantity in the present context is the standard deviation of F(H)
normalized by the mean. This statistic essentially indicates the spread of the
probability distribution of F(H), and hence the amount of variability to be
expected in the filter output energy from sample to sample of the random transient
ensemble. The approximate normalized standard deviation, here considered a function
of B' and A, is denoted R(B', A) and is given by

vVarA(F(H) ]1
R(B', A) (3

EA[F(H)]

At the moment, we are almost in a position to compute this function. All of the
approximate expressions for the expected value derived above can be written in
the form

EA[F(H)] MEkfj(A, B', q, z) (131)

Similarly for the approximate energy variance,

VarA[F(H)] Mck2 f (A, B', q, z) (132)
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Thus,

R(B', ) /f2(A, B', q, z) (133)
ME fl(A, B', q, z)

In the present example (i.e., that of passing a rectangular pulse of narrow
band noise through the filter), it is found empirically (by direct calculations)
that the maximum value of EN[$ss(r)] comes when r = 1. Similarly, the maximum
value of COvN[Dss(r), Dss(s)] occurs when r = s = 1. Thus we may write, from

equations (102) and (104), that

sinllqzx
ME = 2q f (l-x) lqzx cos2 2qxdx (134)

fsinllqzx sin 2JHq(l-x) 12

dx o

S (i-x) Jqzx cos 211qx 211q(1-x)" dx (135)

4q2  "

, siHqzx cos2  2lqx dx j

It is also found empirically that in equation (135), the first squared integral is

negligible compared to the second. Thus Mc ;M2, and v /cME drops out of the

ratio of equation (133). R(B', A) may now be computed from equations (122), (123),

and (127) - (129). Again, there are three cases to consider, depending upon the
relative magnitude of B':

A. For 0 < B' < l/q:

B '+WN
R(B', A) = 1, 0 < IAI < 2 (136)

2

undefined elsewhere.

B. For 1/q < B' <WN:

/2B'q-l WNB,

R(B', A) = qB' 0 < AI < 2
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2v/q(B'+WN- 21AI) - 1 WN-B' WN+B' 1< JAI <
q(B'+W N -21A) ' 2 -- - 2 q

(137)

WN+ B ' 1 WN+B'
2 q < -AI 2

undefined elsewhere

C. For B' > WN:

2 q-1 B'-WNR(B', A) = N  , 0 < JI < 2(138)
'qWN - -- 2

2/q(B'+W N - 21A I ) - 1 B'-WN Bt+WN 1

q(B'+W N - 21A]) 2 -- 2 q

B'+WN 1 B'+WN

2 q -<- -<

undefined elsewhere

The standard deviation ratio is shown in Figure 38 for the three cases defined
above.

Another way of presenting the same data is to choose a given filter center
frequency (which plays the role of a parameter) and then to study the output energy
as a function of the filter bandwidth for a random transient ensemble of given
parameters. In the present example, if we center the filter on wo(i.e., wc = WO) ,

A becomes zero, and the normalized standard deviation as a function of B' becomes

R(B', 0) = 1, 0 < B' < 1/q

72W q-1 1 < B1 < WN  (139)
B'qq -

/2WN q-l , B' > WN
WNq

This function is plotted as Figure 39.
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R (B',)
O_<B' I1/q:

-(B'+W N)/2 0l (B' +WN )/2

Tj~ BI~WNR (B'A

-(B' + WN)/ 2 -(W N_ B')/2 (WN- B')/2 (B'+W N)/2

II

-rWI -I

\UYYN/(~(B' W )/2W)/

THE ENERGY OUT OF A NARROW BAND FILTER WHEN EXCITED BY A REC-
TANGULAR PULSE OF NARROW BAND NOISE.
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R(B',O)

A=O(,,c = %

W~q

I I B'
0 W

/q N

FIG.39 THE NORMALIZED STANDARD DEVIATION OF THE ENERGY OUT OF A
NARROW BAND FILTER AS A FUNCTION OF NORMALIZED FILTER
BANDWIDTH WHEN THE FILTER IS CENTERED ON THE CENTER FRE-
QUENCY OF THE UNDERLYING INPUT NOISE PROCESS.
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The expressions presented above fot EA[F(H)], VarA[F(H)], and R(B', A) only

roughly represent the actual functions, and one naturally inquires about the
accuracy of these approximations. It appears that EA[F(H)] and Var [F(H)] are
useful principally for their portrayal of the rough functional dependence of the
output energy mean and variance on the filter band-width and center frequency
and the random transient parameters. Hence, a fairly good idea of the effects of
parameter changes can be gained from the treatment given above, but not too much
reliance should be placed on the exact functional form derived nor on the absolute
magnitudes arrived at for the energy mean and variance. For R(B', A), on the
other hand, which is probably the function of most interest, several of the un-
certain factors cancel each other out, and the approximation well represents the
actual state of affairs in both magnitude and rough functional form. The author
feels that the approximation presented for R(B', A) is correct to within 20% of
its actual value, with higher accuracies for small A and cases where q is much
larger than unity. The basis for this estimate is a comparison of the approximate
results with the values found for several points by an accurate numerical integra-
tion (at an enormous expense in computer time). These agreed to within 10%.
Naturally, by devising more elaborate approximations for the spectral covariance
surface, one could achieve any degree of accuracy required in the final result.
For a wide variety of purposes, the present degree of complexity is adequate to
provide considerable insight into the frequency filtering of random transient
waveforms. At the very least, these results provide order of magnitude estimates
for the statistical uncertainty of the filter output energies, and they thus pave
the way for the preparation of adequate measurement programs and monopulse process-
ing studies. If greater precision is required, the methodology for achieving it is
clear from the above treatment.

What, then, have we found? Given a random transient generated by multiplying
a narrow band Gaussian process by a square-integrable deterministic envelope, the

results gained here enable one to estimate with reasonable accuracy the amount of
variation from sample to sample in the output energy of narrow band filters to
whose inputs such random transients are applied. The results presented have been
derived in particular for rectangular envelopes, but as the discussion at the end
of the last chapter indicates, they apply also to any envelope function of
approximately the same length, the detailed structure of the envelope playing
little role in the final outcome.

The collected results can be placed in best perspective by considering the
inter-relationships of the three band-widths which arise in treating the problem.
These are:

1. The band-width of the underlying noise process, 26w. In its normalized
version, this has been denoted Z(z = 2A)

0

2. The band-width associated with the envelope spectrum. If the nominal

length of the envelope function is T, this is on the order of 4l/T, or when

normalized, 2/q(since q = woT)
• . 2H

3. The filter band-width B, or in its normalized version B' B/wC .
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As we have noted above, the normalized approximate average spectral width
for a random transient ensemble is given by

WN  2 + z,
q

i.e., the sum of the normalized noise and envelope spectral width. The r - s
plane area of significant covariance changes its shape in accordance with the
relative magnitudes of 2/q and z. If z is small compared to 2/q, WN 2/q,
and the transverse width of the covariance peak becomes comparable to its length,
as in Figure 25 (where z = 0.1 and q = 10.0). For larger z, the width of the
ridge becomes narrow compared to its length, implying that )ss(w) and %sW)
covary strongly only when wm w'. Such a case is shown in Figure 21 (where
z = 0.1 and q = 50.0). As noted above, the variance of the filter output energy
can be visualized as the area of overlap between the "filter square", whose side
is length B', and the covariance area referred to above (see Figure 36). In
situations where 2/q << z and WN-, it is evident that this variance de-
creases as q increases, i.e., as the transient lengthens in terms of a typical
noise period, since the width of the ridge goes as 1/q while its length, propor-
tional to WN, remains constant.

The square of the output energy mean, EA2[F(H)], can be interpreted in turn
as being proportional to the overlap area of the filter square and a square whose
side is of length WN, as shown in Figure 40. (This emerges from equation (119)
and Figure 33). Thus, R2 (B', A) can be interpreted as the ratio of two areas
overlapped by the filter square - that overlapped on the covariance hexagon, and
that overlapped on the "expected value square". (See also Figure 40.) From this
viewpoint, it becomes immediately obvious what degree of statistical reliability
can be expected from measurements on random transients represented in the r - s
plane as covariance hexagons. We see, for example, that R(B', A) can never exceed
unity since the covariance hexagon is contained entirely within the expected value
square. Furthermore, when B' < 1/q. the filter square can be contained entirely
within the covariance area, and R(B', A) must always be unity, as shown by
equation (136) or Figure 39. This immediately implies a very significant fact:
that it is completely impossible to obtain consistent, i.e., repeatable, filter
output energies for an arbitrarily narrow filter band-width. For high spectral
resolution, naturally B' should be as narrow as possible, but this very narrowness
destroys the stability of the measurement, and a trade-off becomes decidedly neces-
sary. An uncertainty principle is at work here: the more narrowly we try to
isolate the amount of spectral energy in a given frequency band, the less precise
the estimate becomes in a statistical sense.

At the cost of spectral resolution, more stable estimates can be produced by
increasing B', i.e., the band-width of the analyzing filter. This is precisely
demonstrated in Figure 39 for the special case of w'3 = 1 (A = 0). For given q
and WN, however, there is a lower limit to the normalized standard deviation,
given by

/2qWN-l /2qz+3 //2TAw+3H (140)Rmin(B', A) _ (10
WNq qz+2 TAw+211
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W.

E -EA[F(H)I AREA OF OVERCAP

/ EXPECTED VALUE SQUARE

0 1lW 4/2 1+WN/2

S/

1+WN/2  EXPECTED VALUE SQUARE/

COVARIANCE
HEXAGON

0, E [ F(H)l

'I ~WN AL'

-, FITE SQUiAREAR(~A

1~~~ 2/ E[F(H)1

40 1 WN/2 1+W /2

FIG.40 A GRAPHICAL INTERPRETATION OF THE DETERMINATION OF R 2(B',A) AS THE RATIO
OF TWO AREAS OVERLAPPED BY THE FILTER SQUARE.
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reached when Bt W In Figure 40, this is when the filter square becomes theN"
same size as the expected value square. Note that at this point virtually all
spectral resolution has been sacrificed, and still the spectral estimate cannot
be made arbitrarily precise. This is a direct consequence of dealing with random
functions of- finite length.

For given q and with B' < WN (in an attempt to salvage some spectral resolu-
tion) the minimum value of normalized standard deviation achievable is given by

i(B, A) = W2B'q-l
min qB' ,B1 qWN (141)

Note that from our parameter definitions,

B WoT BT (142)
Btq = - X--i 21

Thus, for large B'q products,

iB Al l B' < WN (143)R m in ( B ' , =,-

which is essentially the result found in reference (h), section 5.4.5, for the
normalized standard deviation of a spectral measurement performed with the band-
width of the analyzing filter (B) small compared with the band-width of the process,
when the filter output is observed and averaged for T seconds. An alternative
approach for this special case is presented in Appendix C, Equation (143) is a
theoretical confirmation of the rule-of-thumb frequently quoted in spectral analysis
that a large band-width-time product is necessary for statistical accuracy.

The uncertainty principle referred to above may be stated explicitly as follows:
if the bandwidth of the analyzing filter is less than the effective spectral width
of the ensemble, i.e., if B' < WN, the minimum normalized output energy standard
deviation is given by equation (141). We have also seen that for large B'q products
that

Pmin (B', A) /4 , B' < WN

which implies immediately that

R2 (B', L) > B' < W (144)
BT (

If T is considered a constant of the situation, then we may say that
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BR , B' < WN and B'q > > 1 (145)
B2(B ' , A) >- --l,

that is, that the product of the analyzing bandwidth and the square of the normal-
ized energy standard deviation (the normalized energy variance) will always be
greater than 4J/T (which may belidentified, as in equation (106), as the effective
double-sided spectral width of a square pulse of length T). R2 (B', A) can be
interpreted as a measure of the precision with which the total energy in the band
of interest can be specified, since it represents the variance of the probability
distribution for the energy in the band. The smaller this variance becomes, the
less variation is found in the band-wise energy content of different samples, and
thus the more precisely this energy can be predicted before the event. Similarly,

* B reflects the extent to which the fine structure of the ensemble spectrum can be
resolved by the filter, since this is the bandwidth over which the spectrum will be
smoothed or averaged. Naturally, spectral details of width B or smaller will not
be distinguished by a filter of that band-width, but the smaller that B becomes,
the hi~her becomes the spectral resolution obtainable. We of course would like B
and R (B', A) to be simultaneously as small as possible so that spectral resolu-
tion and amplitude stability are both high. Equation (145) demonstrates immediately,
however, that it is impossible to attain arbitrarily high precision in both resolu-
tion and amplitude at the same time since the product of the frequency and
amplitude "uncertainties" must always exceed 4H/T. Thus, a decrease in the
uncertainty of the spectral amplitude comes at the expense of a concomitant

increase in the averaging band and thus a decrease in spectral resolution. The
single parameter that determines the lower limit of the uncertainty product is the

effective length of the envelope function T, and in general, the simultaneous

uncertainty varies in inverse proportion to this quantity.

It is also seen above that there is a definite lower limit to the normalized

standard deviation for an ensemble of given parameters, and this is reached when

B' = WN. This lower limit is precisely the standard deviation of tne total energy
of an ensemble member and, our uncertainty principle notwithstanding, cannot be

reduced by further sacrifices of frequency resolution, since indeed there is none

left to sacrifice. The situation here is such that the uncertainty relation stated
is not unrestricted, and that not only are we prevented from attaining arbitrarily

high amplitude precision and frequency resolution simultaneously, but there is even
a limit on the extent to which the latter can be traded for the former. This limit
is given as a function of the ensemble parameters in equation (140).

The foregoing should provide the interested reader with at least some insight
into the spectral distribution of energy in narrow band random transients. The

extension to the broad band case is straightforward and leads to the same basic
principle - that a trade-off between spectral resolution and statistical reli-

ability is always necessary, and that there is a certain lower limit to the
normalized energy standard deviation which is determined by the parameters of the

ranidom transient ensemble, and which cannot be avoided no matter what kind of

filtering is employed. In all cases, as B' - 0, the filter output energy
approximates the so-called periodogram for %ss(w), for which it can be shown that

R(B', A) > 1, making it an inconsistent estimate of (s(S ) in the statistical

sense (see reference (c), pp 107-108).
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Chapter V

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

The theory set forth in the present report is a logical extension of the
methods outlined in it3 predecessor (reference (a)), and the treatment of random
transient frequency filtering given here has wide application in areas of present
interest. These fall into two broad classes: spectral analysis of transient
random waveforms; and monopulse signal processing applications where the effects
of sample-to-sample variations are important. These will be treated separately.

One of the central problems of traditional spectral analysis is the empirical
estimation of the power spectrum cef a continuing stationary process, given a sample
record of some finite length T. The "intuitive" approach of computing the squared
magnitude of the empirical Fourier transform of the sample record and dividing by
T provides the so-called periodogram of the record. Unfortunately, the periodo-
gram is a random variable for every value of w which has at all points a standard
deviation at least as large as the mean, no matter how long the sample record is
taken. Contrary to intuition, then, the periodogram is not a consistent estimator
of the power spectrum as T increases without limit. For this reason, a number'
of alternative methods have been devised which provide power spectral estimates
averaged over a band of frequencies as opposed to attempting a point estimate.
In the well-known work of Blackman and Tukey (reference (i)), these estimates are

obtained by weighting the empirical autocorrelation function, before it is Fourier
transformed, to yield band-integrated power spectrum estimates of high statistical
reliability. Similarly, Bendat and Piersol (reference (h)) provide a rough
description of the use of narrow band filters for empirical spectrum measurement.
In both approaches, it is found that the price paid for higher statistical reli-
ability is longer sample lengths, or decreased spectral resolution, or both. For
resolving the spectral fine structure of the process of interest, the analyzing
band-width should be as narrow as possible. Unfortunately, the narrower this
bandwidth, the less precise the estimate becomes. For ease of computation and data
handling, the sample length should be as short as possible. Unfortunately, the
shorter the sample taken, the larger becomes the standard deviation of the estimate.
Indeed, as noted above at the close of Chapter IV, this standard deviation, as a
percentage of the mean, is on the order of i/vIB , and for arbitrary accuracy, a
trade-off between the two factors is necessary.

Many of these same considerations apply to the analysis of energy spectra
for random transient waveforms, and indeed the estimation of a process spectrum
from a sample function of length T can be considered a special case of the
transient spectral problem: that in which a rectangular envelope function of
length T is selected, and one seeks from the separate realizations of the
resulting random transient ensemble to estimate nn(w) for the underlying noise
process. There is, however, a difference in emphasis. In the case of random
transient spectral analysis, one has no control over T, or the effective length
of the signal, and is faced with the task of making the best of the situation in
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deriving a meaningful spectral description. In a theoretical approach, where there
are reasonable grounds for assuming the form of e(t) and Tnn(w), the present theory
provides expressions for the expected value of the random transient spectrum at a
point and also its variance. As we have seen, this variance is rather large, no
matter what the effective length of the transient. We have thus learned very little
about the spectrum of a single sample since the probability distribution for the
spectrum at a point is so widely spread. One way out is to formulate predictions
of the spectral energy lying in non-zero bands since for these the normalized
standard deviation will be on the order of IBT , where B is the analyzing band-
width (here in hertz). Naturally, spectral resolution is sacrificed in this
approach, but this is the price that must be paid for statistical consistency. In
this world, one never gets something for nothing.

In an experimental approach, where one is given a collection of realizations
of the random transient process, and the problem at hand is to determine the
spectral character with no a priori knowledge about the source, filtering to an
arbitrarily narrow frequency band jestroys the repeatability of the results from
sample to sample, and an average value may or may not constitute a reasonable pre-
diction for the result to be found in dealing with an individual sample. Probably
the best course of action here is to calculate the empirical means and variances
as a means to estimating limits on the sample-to-sample variations. It must always
be kept in mind that it is simply impossible to predict the energy density spectrum
of a single transient with simultaneous arbitrary precision in spectral resolution

and amplitude. This is particularly true in cases where the effective width of the
envelope spectrum is significantly larger than that of the noise process, since
increasing the analysis bandwidth does not produce a decrease in the standard
deviation of the results until this bandwidth becomes commensurate with the effect-
ive spectral width of the transient itself.

In monopulse signal processing situations where either the signal of interest,

or the interfering noise, can be modeled as a random transient of the type assumed
in this work, the results found here predict the extent to which filter output
energies vary from pulse to pulse. Admittedly, narrow band filteling represents
but one of many processing techniques that might be employed. Still, it is pro-
bably the most basic and indicates the kind of effect to be expected in more
general situations. In predicting the signal-to-noise ratio at the output of a
narrow band filter, or in predicting the results of thresholding operations
following such filtering, the statistical deviation LILUm sample to sample must be
considered. If the system is tailored too closely to the expected value of the
output energies, it may well malfunclion when those samples arrive, which, because
of the inherent statistical nature of the ensemble, yield output energies signi-
ficantly different from the mean. Obviously, this difficulty can be alleviated by
increasing the filter bandwidth and thus decreasing the statistical spread, but
often this deteriorates the signal-to-noise ratio out of the device, and another
difficult nroblem of trade-offs appears. For reasonable statistical stability,
the product of the effective pulse duration and analyzing bandwzidth should be
appreciably greater than unity, but admittedly this may not always be possible.
It should be noted that the absolute lower limit for the output energy standard
deviation as a percentage of the mean is on the order of //TN no matter what
filter bandwidth is used. For certain random transient ensembles, therefore,
particularly those whose effective spectral width is controlled by the envelope
spectrum (and thus is on the order of l/T), the output standard deviation will
always be large, no matter how it is analyzed. Ultimately, the use of narrow
band filtering must be approached with care in monopulse processing systems with

77



NOLTR 68-124

particular attention to the opposing demands of finer resolution (and enhanced
signal-to-noise ratio) and statistical stability. This study provides some in-
sight and theoretical guidance in seeking an intelligent compromise.

Suggestions for Future Research

There are several avenues of future research in both theoretical and experi-
mental directions that can be proposed at the present time. In the latter area,
it would be of great interest to generate an experimental ensemble of random
transients and to subject representative sample functions to narrow band filtering
in an attempt to test the predictions of the present theory. These experiments
could be very efficiently performed using digital computer signal processing
techniques. In particular, after producing a suitable random transient ensemble
and recording its members on magnetic tape, it would be straightforward to sample
and digitize the sample functions for computer analysis using digital filtering
and Fast Fourier transform techniques. This would provide an immediate check on
the appropriateness of the assumptions and simplifications used throughout and
would lend a good deal of insight to the practical implications of sample-to-sample
variations. Ultimately, these methods could be used to study the statistical/
spectral properties of transient noise phenomena from the real world, such as EER
returns and sonar reverberation. This would help in evaluating the model chosen
and in selecting appropriate parameters for characterizing the signals of interest.
It should be added that it may well be feasible to generate random transient sample
functions entirely within the computer, using digital filtering techniques on a
table of random numbers, and thus doing away with any "analog" portions of the
experiment altogether. It remains to be seen which approach will be the most
effective.

Many interesting questions have been raised on the theoretical front. As the
reader has certainly noticed, the final results of the study have come out of a
gross simplification of the spectral covariance surface. The proposed experimental
study may well show that this approximation is inadequate, and in that event, a
better characterization will be necessary. One is faced with the problem of devising
expressions for the form of the surface which retain satisfactory accurac:- while
remaining in the realm of mathematical tractability. Perhaps an approach along the
lines of an expansion in orthogonal functions would be appropriate here.

The narrow band filter is but one example of a linear system, albeit one of
4 great practical and theoretical importance. It would be desirable to extend the

present theory to embrace more general linear systems with transient random inputs.
In particular, the correlation properties of the input and output of such systems
and the notion of optimum linear filtering when signal or noise or both are random
transients are of both practical and academic interest. The application of double-
frequency Fourier transforms (see reference (h), Chapter 9 and reference (m),
Chapter 12) is another area that bears study since there is a strong resemblance
between that body of techniques and those developed here.

The study reported above has attempted to illuminate certain aspects of the
behavior of transient random signals. In particular, it has concentrated on the
problems that arise, due to the pulse nature of the waveforms, in seeking to
formulate a meaningful description of the energy density spectrum of such signals.

mong the most interest n finrincy hqve heen thp uncertainty relations that exist
between spectral amplitude and frequency resolution and their implications.in
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practical measurement and processing situations. This is but one aspect of a
very general problem in scientific research; that of defining and coping with the
inherent uncertainties and imprecision of scientific measurements. Certainly
the realization that there are definite limits on our ability to resolve the
detailed properties of natural phenomena has been one of the touch-stones of
modern science, leading to overall average statistical descriptions. For this
reason, it is not inappropriate to close with these perceptive words of
Max Born (reference (j)):

"The concept of chance enters into the very first steps
of scientific activity in virtue of the fact that no observa-
tion is absolutely correct. I think chance is a more
fundamental conception than causality; for whether in a
concrete case a cause-effect relation holds or not can only
be judged by applying the laws of chance to observations."

EDWARD C. WHITMAN
Magnetics and Electrical. Division
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APPENDIX A

The Spectral Normalization Problem

As noted in the main text, the purpose of the spectral normalization is to
divorce the results of the analysis from specific parameter values, insofar as
this is possible. For this reason, frequency variables have been expressed as
ratios of actual frequency to the "typical" frequency of the underlying noise
process (02 in the broad band case; w, in the narrow), and the length of the

envelope has been expressed in terms of the number of "typical" noise periods
contained in it. Where needed, time variables are normalized by division by the
envelope length T. As an example, consider the rectangular pulse of broad band
noise for which

sin 3 T
E(4 2N T 1 2 -T < t< T (A-1)

0, elsewhere

By Fourier transformation,

2N w2T T I \ sinw2Td (A-2)E[( Ml 21 COSWOTE[%s(w)] f s

0

From Parseval's Theorem it is known that

00

f E[ss (w)] dw = E[ ss(O)] = 2N 02T, (A-3)

which is the average total energy. Now introducing the parameters

x = T (A-4a)

T
q w°2T. --2H (A-4b)

,___ (A-4c)

r

and substituting these into equation (A-2) yields a function of r:

- A-1
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2N0'ss 2T) f 1x sinlq Cos 211qxr dx (A-5)

such that E[O5 (W)I = [4'ls(r w

Now from equation (A-3) we know that

0 0 

'f E[O 5 (w)] dw f fEL Of dw =2N w T (A-6)
-0 -00 S

Making a change of variables in the second integral yields

co 

00

f E O r =W dwf wE[Ot (r~ldr =2N T(A7I- s r ci 2 ss 2
00 W2'- -00

Thus,
O0

fE[O' (rY)dr =2N T (A-8)

For convenience, we ask that the normalized average total energy be unity.
Evidently this is attained for the function

ENcssr) 2N T E[ 5() (A-9)
0

d which gives

2 f sin2Hqx
EN (~r)] = H (l-x) 2qx cos 2llqxr dx (-0

w T
2or since q=

2H1

E r] 2q f (l-x) sin2glx cos 2llqxr dx (A-11)
EN(Os 2flqx

0

A- 2
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It is easily seen from above that

f E ( s (r)] dr = 1 (A-12)

-0 N ss

and that

E[*ss(w)] 2NoT EN= (A-13)

The extension of this normalization to the covariance expressions is straight-
forward and results in a definition of COVN[ss(r), 4 ss(s)] such that

Cov[ ) M? W)] = 4N 2T2 CovN = s = (A-14)¢°[ss() ss(0 [')] ( = 4N sss( )

One goes through a similar procedure to obtain the analogous expressions for the
narrow band cases.

There is one disadvantage to the present normalization which may mislead the
unwary unless it is pointed out. We know that E[4ss(M)) is the Fourier transform

of E[ss (T)] and vice-versa. What can be said of the Fourier transform of

ssEN[tssCr)]? From equation (A-il) one can see that

sin2Hqx J2:fqrx
E N[Dss(r)] =q -1 (l-1xj) 2Ttqx e dx

-I

(A-15)

1 21q lxi sin x e-jxr
= j f (il 2Hj) x dx

-21q

Thus EN [P (r)] and the function

N11 si -1q

i) x -2Hq < x < 2Hq (A-16)V'(x) = -2Hq x ,-- -

= 0 , elsewhere

A-3
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are a Fourier transform pair. This is not the expression one gets from equation
(A-i) by setting 2NoW 2T = 1 and substituting the parameters of equations (A-4).
As a matter of fact, under these conditions, equation (A-i) becomes

E[#s(X)] - (1 - x sin2Rgx - x < 1 (A-17)
[ssW (1 lxi) 2I1qx

0 , elsewhere

and thus is not the Fourier transform of EN[%s(r)].

A-4
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APPENDIX B

THE "WIDTH" OF THE CONVOLUTION OF TWO FUNCTIONS

In the main body is made the statement that in an approximate sense, "thewidth of the convolution of two even functions is equal to the sum of the widthsof the functions themselves." This approximation sees constant use in practical
treatments of modulation, transient analysis, and sampling theory. This appendix
gives explicit justifi ation for the cases of major interest in this report.

If f(x) and g(x) are two real functions, their convolution, subject to certain
existence conditions, is given by

c(x) f(x) g(x) = f f(u) g(x-u)du = f g(u) f(x-u)du (B-l)

If f(x) and g(x) are both even functions, then

g(x-u) = g(u-x) (B-2a)

and

f(x-u) f(u-x) (B-2b)

and thus

c(x) f f f(u) g(u-x)du = f g(u) f(u-x)du = fg(-X) (B-3)

where *fg(x) is the cross-correlation function of f(x) and g(x) defined asfg3

fg(x) -f f(u) g(u+x)du (B-4)

Furthermore, when both functions are even, 4fg(x) = 'fg(-x) and thus

c(x) = fg(x) (B-5)

B-17
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which is to say that the convolution of f(x) and g(x) is the same as their cross-
correlation function. In the present application, we deal with power and energy
density spectra, which are indeed real, even functions, integrable over the whole
real line. In the low pass cases, these functions are concentrated at the origin
and tend to zero as their arguments approach +- or - . One can thus define a
spectral half width W which represents the positive frequency range for which the
spectral amplitude differs significantly from zero. In band pass situations, a
spectral width can similarly be defined for the spectral concentration around the
center frequency. Admittedly, the criteria one uses to define the snectral width
are arbitrary and subject to question, but if it is consistently defined in the
problem of interest, the interpretation should be unambiguous.

As an example, consider the case where both convolved functions are rectangular
pulses of unit amplitude, entered at the origin:

f(x) 1 1, -A < x < A (B-6)

= 0, elsewhere

g(x) = 1, -B < x < B (B-7)

= 0, elsewhere

Assuming that A > B and using equation (B-3), we find that

c(x) = f(x)®g(x) = x + A + B, - A - B < x < - A + B

= 2B , A + B < x < A - B (B-R)

= A+B-x, A- B < x < A+B

0 , Ix > A+B

This is shown graphically in Figure B-1. If the function half-widths are defined
as the positive frequency spread for which they are non-zero, it is evident that

Wf W A (B-9a)

W =B (B-9b)g

and that

Wc A+ B Wf +g (B-IO)

c fB-2
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which confirms the result. This is a very important special case, since in
practice one often approximates spectra of arbitrary shape as rectangular idealiza-
tions whose amplitude is set equal to the maximum value of the spectrum of interest
and whose "equivalent width" is chosen to set the area under the approximation equal
to that under the actual curve.

Another example of interest is that where f(x) and g(x) are both double
sided decaying exponentials:

f(x) e - < x < (B-II)

-jxl/B
g(x) e < x < W (B-12)

with A > B. A reasonable measure of the function half-width in this case is that
point where the function amplitude falls to l/e times its value at the origin.
This gives

Wf = A (B-13a)

W =B (B-13b)
g

From equation (B-3), we find that

AB ('e-x/A -ixI/B) AB e-IxI/A -Ixi/B'\c(x) f(x) W 'g(x) - e
A + B e B (B-13)

-0 < X < c

The constituent functions and the resulting convolution are shown for two cases in
Figure B-2. If the half-width of the convolution is taken as the argument for
which the amplitude falls to l/e times its value at the origin, the following table
of computed results can be derived using equation (B-13):

Wf = A W =B W + W W c- 1 (1/e)f g c

1.0 0.9 1.9 2.06

1.0 0.5 1.5 1.59

1.0 0.25 1.25 1.29

1.0 0.1 1.1 1.11

B-3
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One again concludes that Wc ;Wf + W with the approximation becoming better and
g

better as g~x) becomes increasingly narrow with respect to f(x).

The generality of this conclusion is made even more plausible by those inter-
pretations of the convolution integral which treat g(-s) as a "scanning function"
which slides along f(x) to generate a smoothed version of the latter (see refer-
ence (k), p 323, and reference (1), p 71). Naturally, the wider g(x) becomes, the
more broadly will f(x) be smoothed out, and the width of the smoothed version
will be proportional to the sum of the widths of f(x) and g(x).

It is easily seen in this graphical interpretation that in cases where one of
the two convolved functions is of band pass nature and the other of low pass
character, the resulting convolution will yield a smoothed (broadened) version of
the former centered at the original center frequency with an equivalent width
approximately equal to the sum of the double sided width of the two constituents.
This is precisely what is done in the familiar spectral interpretation of amplitude
modulation.

B-4
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-A

g (x)

-B B

2B

-A A

I -- B A+BA-B A+B

FIG.B-1 THE CONVOLUTION OF TWO RECTANGULAR PULSES.
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APPENDIX C

An Alternative Approach to the Narrow Band Filtering Problem
with a Solution for an Important Special Case

Consider passing a random transient ensemble through the narrow band filter
given by equation (109) and Figure 31. By equation (113),

W+B /2

E[F(H)] = 2 f E[,s(w)] dwo (C-1)
W -B/2
C

Now by equation (8) this is

w, +B/2
C C -jWx

E[F(H)] 1 f f inn(X) ee(x)e dx dw (C-2)

0 -B/2 -o
C

Interchanging the order of integration yields

0wc+BI2

E[F(H)] f nn(x) ee(X) f e-j x dw dx
WcB/2 (C-3)

xB
~~~sin --- _Jx

B f 2 (x)
S¢nn( ee(x) xB e cdx

2

since Wnn(x) and Wee(X) are both even functions of x.

From equation (115), we know that

wc+B/2 wc+B/2

Var[F(H)] = 4 f f Cov[ss(w), ss(w')] dw dw' (C-4)
Wc-B/2 wc-B/2

C

C-1

JI
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where CoV[Dss(w), Oss(')] is given by equations (41) and (44) as

Cov[($ 5(W), s'sSs(W')] -
(C-5)

1 I I [ e(t)e(x)e(u)e(v) nn(t-U) nn(X)eiwtxei (~tdx du dv

0 00 0

+ 1 -jw(t-x) -jw'0 0 0 0

=n ff f f e(t)e(x)e(u)e(v)1Pnt* Pn n -w~ xe- w(u-v)dt dx du dv

When equation (C-5) is used in equation (C-4), some judicious manipulation makes
it possible to perform the integrations on w and w'. The following expression

emerges:

i CO OD 0 CO O

VarIF(H)] f f f f e(t)e(t-a)e(u)e(u-b)
-0 0- 0 (C-6)

I*nn(t-u)*nn(t-a-u+b) + nn(t-u+b)*nn(t-u-a)]

*4-

sin aB/2 sin bB/2 eJWo(a-b)dt du da db
aB/2 bB/2

Now let us consider the special case where the effective noise bandwidth is much
larger than the analyzing filter bandwidth, which in turn is much larger than the
effective bandwidth of the envelope function. This implies that nn(x) is very

much nattower thaft sin Ba/2 , which in turn is much narrower than the envelopeBa/2

autocorrelation functions, An approximate solution for this case is found by
assuming that the noise correlation function can be well represented by the Dirac

71 delta function:

'nn(T)= NoI O () (C-7)

Then, from equation (B-3),

c-2

* . . . . .



NOLTR 68-124

B f 140ij0(x) ee(x) ei B2 -jwx xE[F(H)I I- xB/2 e d

'a (c-8)I
E F(H) I -N f =t)dn ee(-'

* 0

*Substituting equation (C-7) into equation (C-6) yields:

NO2B2

- 0 0

sin aBI2 sin bB/2 -jw0 (a-b)
aBI b/2 e dt du da db

(C-9)

CO 0000O00

+ B2NO2 f f ff e(t)e(t-a)e(u)e(u-b).10(t-u+b)1j0 (t-u-a)

sin aB/2 sin bB/2 jo(a-b) td ad
aB/2 bB/2

*The integrand of the first integral is zero except where

t-u t -a-u +b =0 (ClOa)

and that of the second is zero except where

t-u + b t-u-a 0 (GlOb)

This implies in both cases that a =b. Thus, integrating on u and a yields

a' arFH~l 2N 0
2B2  sin bB/

Vafl) fe(2 2tb)sn B2 dt db (C-11)f1 f0 e0 te 2 tb (bBI2) 2

C-3
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where we have used the integral properties of the Dirac delta function. Now define
the autocorrelation function of the square of the envelope function:

~e2e2(T) f e2(t)e2(-)d (C-12)

and with this at hand, -
4NO 2B2  O22b i2b/ deare (H(b) (bB/2)'Z d (C-13)

0

Now recalling that sin bBI2 has been assumed to be much narrower than the
bB/2

envelo~e autocorrelation function,I

Var[F(H)] 4NO2B2  2 ()fsin2 bB/2 (14n2 'e e2(O) (bB/2) 2  db(-4

Consulting a table of integrals then yields

Var[F(H)] 0 '~2 2(0) f N 2  fe4 )d (C-15)
e e 0

Finally, forming the ratio

v'Var F(H)
R(H)E[F(H)] (C-16)

which is the normalized standard derivation of the output energy for this case,
we find that

- f ue4 (t)dt

R (H) =O (C- 17)

r e2(t)dt

c-4
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When e(t) is a rectangular pulse of length T, the ratio of integrals becomes
merely I/T-. Thus for this case,

R(H) 2 Al (C-18)

which is exactly the expression found using the method of spectral covariance
surfaces (see equation (143)) and which is quoted in reference (h) as arising
in a "well-resolved" spectrum analysis. Of course, all of the above derivation
after equation (C-6) is heuristic rather than rigorous, but it provides an
interesting confirmation of a previous result and demonstrates the importance
of considering the relative size of the several bandwidths involved.

C-5
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