AD NUMBER

AD839361

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Critical Technology; JUL 1968. Other requests shall be referred to Department of the Army, Fort Detrick, Attn: Technical Release Branch, Frederick, MD 21701.

AUTHORITY

AMXFD ltr, 9 Feb 1972
SOMETHING ABOUT THE SYMBIONS OF MOSQUITOES


The descriptions of the digestive apparatus of the Culitidos of Le Danteq, Nuttall and Shipley and Sageaudinn are classic. We will deal here with the most interesting of these.

After a muscular pharynx is a thin esophagus which dilates at the end to form a still quitinose proventricle. The back of this forms a valve with a a fifteener which separates it from the middle intestine. On the walls of the proventricle there are microscopic quitinos projections which stem from each cell separately. They strongly resemble those described in Calliphora by Berlesse but they are longer and more slender. Here the esophagus forms three evaginations, two dorsal and one ventral. This one is a large sac which extends underneath the digestive tube as far as to fill a great part of the abdomen attaining its greatest development in the Anopheles. Nuttall and Shipley consider the three to be food reservoirs. Other authors noticing that similar sacs in other diptera occasionally contain food think it very likely that such diverticula serve as storehouses. Schaudinn calls the ventral
diverticulum a sucking stomach (Saugmagen), which will fill up with blood during suction and which would empty itself immediately into the middle intestine. Nuttall and Shipley give it the same meaning, but to Berlesse it is a simple air sac, destined to maintain the shape of the body when the digestive tube is empty and to leave room for it when it distends upon filling up with blood. These two functions do not seem contradictory as we have observed that the mentioned diverticulum appears as a virtual cavity in fasting mosquitoes, while it appears muscular when the animal sucks blood.

During the fasting period the lower part of the proventriculus is folded inside the part close to the middle intestine, which dilates giving it a pear-shaped appearance. Some authors mistakenly call this entire area cardia. The name stomach, confirmed by comparative anatomy, would better suit it.

With the ingestion of blood the proventriculus disinvaginates and dilates to the shape of a winebag, its cells separated by a gelatinous substance like quitina (?). This gelatine will surround the mass of blood during its passage to the middle intestine and will form a kind of peritrophic membrane although it is of a different origin than that of the rest of the insects.

The wall of the middle intestine, of endothermic
orin is very monotonous. It is made up (a in Pic. VI, fig. 3) of prismatic cells with a thick nucleus which in in apical part have a protective sheet stretched vertically, called rhabdorium.(b). For some authors the rhabdorium should also have an absorbent function. These are the cells which separate the digestive enzymes.

In the middle intestine the digestion and absorption of the food takes place, we don't know if through the same mechanism as Boissezon says these are separated into absorbent and secreting cells to better fulfill these functions. The secreting rhythm is not the same during fast (secretion of hunger) as during contact with food. We, along with Boissezon, also differentiate two kinds of cells for these two secretions.

In the posterior area the so-called piloric valve separates the middle intestine from the posterior intestine which again becomes quinine. On the outside the middle intestine is surrounded by a strong musculur tunic and has a profusion of tracheas.

Forty years ago Schaudinn pointed out the existence of some chainlike fungi in the ventral sac of the Anopheles which until then was supposed to be only an air sac. The function of these fungi
are presumed to contain inorganic enzymes and at the same time would release a gas in heavy bubbles. Schaudinn supposed that these enzymes are the ones which produce in inflammation of the bite. He saw that the gas produced was CO₂ as it clouded barium water. These fungi, which he presumed to be capable of great importance to the insect, were of great importance in the eggs. For Schaudinn they would be hereditary residing in internal tissues from which they would pass to the eggs.

More recently, Hertig and Wolbach have found them again in Culex. In the testicles and ovaries of the males and females there are slender little intercellular canes similar to gram-negative Rickettsiae. Some of other species have been identified with Schaudinn's fructiferous forms but in others the same result was not obtained.

Therefore, it is not a case of casual infection. These studies prove that they are real specific symbiontes which in all probability intervene in the nutrition of the host.

I have used for my first investigations three species of very abundant hematophages Culicidae: Anopheles, Culex and Aedes (Stegomia), hunting them by the simple means of placing on them, when they are poised, a large diameter test tube. By introducing into the same tube which served to capture
them a strip of paper where they could poise, they can be kept alive for several days.

I effected the fixing "in toto" in formaldehyde deacidified using chalk in the ratio of 10 to 100; I have made the cuts before inclusion in celodene. For dyeing I have used various techniques: especially the first variant of Rio-Hortega to the tonoargent in method of Achucarro, and Pic-Hortega's silver carbonate method.

Treatment of the whole insect offers the grave inconvenience of defective inclusion. Even in the most favorable cases there always remains a limit marked by the quinine. For this reason the body silhouette of the body breaks away as soon as rather fine cuts -10 u- are tried. These are necessary for the histophysiologic studies as the cells of the mosquito are very small.

I am now trying another procedure, not lacking in difficulties either. It consists in a previous dissection of the organs (digestive tube, salivary etc.) before fixing and including them. But this can not be done when the digestive tube is full of blood, which is the most interesting case.

The mosquitoes which have just sucked blood have at first sight the abdomen dilated and full of it. It can be observed in a sagittal cut (Pic. VI)
Fig. 47. That the wall of the middle intestine is
inspissated (a) and its cells have lost height. The
inspissated content has zones more altered than others
where the red blood cells have hemolyzed and some
have broken, showing only membranes. These zones
where hemolysis has started are distributed with
preference to the back (c") and in a central mass
(c-c') which advances from the cardias.

In drawing in detail (pic. VI. fig. B) this zone
of hemolysis, there are seen among the red blood
cells (f), more or less altered; a profusion of
bacillary bacteria, on occasion lumped together and
also forming chains. The hemolysis situated in the
vicinity of the groups of bacteria are hemolyzed,
and broken, while leucocytes are always unaltered (g).
This fact makes me suppose that the bacteria are
there to cause hemolysis. The role of this preparatory step would limit it in digestion, as the
real digestive action is the exclusive work of the
digestive juices, separated by the cells of the
middle intestine, which would surely go to the
interior of the mass of blood through the peri-
trophic gelatine (e).

Boissezon, in his work on the digestion of
blood in Culex, says that hemolysis and later
crystallization are produced by the action of the
digestive juices. But, he does not mention these bacteria at all which he probably has not seen. As can be observed in pic. VI, fig. A, this accumulation of bacteria penetrates to the interior of the mass of compressed blood and it forges galleries and sponges it with the help of the gases released, aiding in this way the digestive enzymes which have to act from the periphery.

If, as Nuttall and Shipley suppose, the blood absorbed passes previously through the esophageal diverticula, it seems very likely that it iced itself with the bacteria contained in these. In this was the gelatinous ampule surrounds both and constitutes a nutritious bin already prepared for easy digestion.

Considering the Sauzmagen of Schaudinn as a bacteria reservoir, that is, of hemolitic enzymes, the proventricle and its annexed diverticula would be the real stomach where the food would be prepared before passing to the middle intestine.

We do not have enough elements to identify these bacteria. In Culex they are deplobacillus sometimes simple and more rarely forming chains (fig. I, a). In Anopheles they are rounded and always form short chains similar to yeasts (fig. I, b). It is necessary to identify them to use adequate bacteriologic methods and if possible obtain cultures.

It gives me great pleasure to make use of this
Fig. I.—Símbolos de Culex (a) y de Anopheles (b) con gérmenes rojos humanos.
(Obj. Zeiss inv. hom. 90X; oc. 20X.)

Fig. I. Symbiontes of Culex (a) and of Anopheles (b) with human red blood cells.
(Obj. Zeiss inv. hom. 90X; oc. 20X.)
Fig. 4.— Sagittal cut of *Culex* 2 hours after sucking blood. Method: Río-Ortega's silver carbonate: a, wall of the middle intestine, distended; b, mass of blood not hemolyzed; c, d, e', e", principal zones hemolysis with abundant bacteria; d', d", Malpighi tubes; e, ovule; f, posterior intestine.
Fig. B. Details of the previous figure at g' level. 
1. wall of middle intestine; cells in different phases of secretion; b, rabdorium; c, basal membrane of the epithelium; d, heavy drops of digestive juices; e, surrounding of gelatine with bacteria; f, hematites more or less hemolysed, with abundant compressed bacteria and in chains; g, unaltered leucocytes.
publication to thank Prof. Alvarado for the interest he has had in following my modest investigations.

Laboratory of Comparative Physiology of the Jose Acosta Institute of Natural Sciences.

Bibliography

Nuttall and Shipley

LeDantec
1901. Patologie Exotique, Paris

Schaudinn

Thompson
1905. Alimentary canal of the mosquito

Jordan
1913. Vergleichenden Physiologie.

Hertig & Wolbach

Hecht

Boissezon

Buchner
1930. Tier und Pflanze in Symbiose.

Baeza Cuellar
1933. Estudio medico de los Culicidos hematofanos.