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ABSTRACT

(Distribution Limitatiin Statement No. 2)

A computational code is developed for investignting
the dynamics of high-altitude nuclear bursts. The code can treat
either one- or two-dimensional problems having either plane, cy-
lindrical, or spherical symmetries. Electromagnetic and radiation
transport effects are included, as are the effects of charge and cur-
rent distributions. The numerical procedure computes the change
during a time step of a property within a computational cell in terms
of the fluxes of the property crossing the faces of the cell during
the time step. The fluxes are computed by the method of charac-
teristics. Use of a movii.g mesh permits the code to follow con-
tact discontinuities in the field properties. Procedures for
incorporating nonequilibrium thermodynamics are developed.
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NOTATIONS

Quantities with subscript asterisks are dimensional

quantities without subscript asterisks are nondimensional quantities.

2

A,/L. ; cross-sectional area of a cell of revolution
% £

; 8peed of sound of specie: ¢

1/2 . .
B, /[E*(IJ.O*eO*) ] i magnetic flux density

4
40, T, /p*Ui i Boltzmann number
Pyt, L, ; Bouguer number

magnetic flux-density (dimensions:

Webers/m> in rationalized mks; emu (gauss) in

Gaussian

/U, ; speed of light

de

—a—%“ ; specific neat at constant volume
(04 pm

dimensional speed of light

distance along ray i from =z axis to intersection of
ray i and arc j

2 2 ) )
ea + (ua/Z) i mean energy per unit mass of speciles ¢

E /E, ; electric field intensity

b R
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ok

Ry

f (a1t

& (1)

J‘a(z)

p*qe*LD*

; reference electric field intensity

M*Eo*

electric field intensity (dimensions: volt/meter in
rationalized mks ; esu (statvolt/cm) in Gaussian)

eR*

; radiative energy density
4
4cr*T* /c*

4 .
h*v*nRv*/(%*T*/c*vR*) ; energy density of photons
of frequency vy
dimensional radiative energy density
eaJ‘/U: ; internal energy per unit mass of species ¢
dimensicnal radiative energy density

fa*/(M*U:/L*); force per particle on species ¢

in addition to pressure stressand electromagnetic
torces i

dimensional force per particle on species ¢

54 = * * . *

(r*, C.» t*) ; distribution function for photons of
frequency Vye

distribution function of species «

Kmawa(l) ; mass source term for species ¢
F 1 Y9y (u )xB .
Pofm *m o B+ +Km w_(u)

o o

momentum source term for species o
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4 (3

4 (1)

+,(2)

oR

o

Ji+1/2
ox

v+

1+

2+

= 9 o 2
(F +-—-E)+me(e+u/2);
o o o

. o
1 - - . .
B°B“f [eRvnRu( Tve! Jw,v]du +ma <ua>

m

energy source term for species ¢«

5 Zp[ua rol! Jua)-jva];

eénergy source term for photons of frequency p

B - 3
5 QRVZ a uoe u +Sva)

energy-flux source term for photons o frequency p

- . 13 » . »
| u, - ug | 5 relative velocities of particles of species

a and R
distance across a cell in the radial direction

maximum number of rays in the mesh
- —

- - -y - -
unit identity tensor ; (@« I =T1I:-a = a)

maximum number of arcs in column (i+1/2)

dP .
{u )=z f @ & hydrodynamic characteristics
on Po?y

eRU :l:‘/3_ QRUn ; characteristics of the equations of
radiation transport

B, % ES i electromagnetic characteristics
2

B, %=E i electromagnetic characteristics
S, S1

x1




J
Vo

Vo

[ |

Vo

JUO!*

J
VoK

o
1% Cl*

cross section for induced emission at frequency yp
by unit mass of species ¢« ; dimensions are area/mass

JT.*/j._,t i current density

JVOt* s

4
4n,0, T, / VR

spontaneous emission coefficient for energy at frequency
V by unit mass of species ¢ ; dimensions are energy/
mass . frequency

N*qe*U* : 1'efer¢.=.'nce current density

electric current density (dimensions: amp/m2 in
rationalized mks ; esu(statamp) 10 m® in Gaussian)
N*k*T*

2
Py Uy

M*w*L*/p*U*; nondimensional parameter indicating
relative importance of chemical reactions and hydro-
dynamic convection in changing the mass at a point

Boltzmann constant

L, /Ly,

1/2

3k, T €
¥ %o
i Debye length

2

N__qu*

reference length

length of arc j in column i+ 1/2




Ry

g

RV*

oy

o]

Pyl U uEu ey

N, Uy

reference particle mass

maz/M* i mass of a particle of species ¢
3

number of species under consideration
reference particle density
rectangular Cartesian coordinate normal to a cell surface

number density of photons of frequency Ve
number density of photons of all frequencies

na*/(p*/M*) i number density of particles of species ¢

P
Ry

4
40, T b / C*UR*

i radiative pressure tensor

dimensional radiative pPressure tensor

=il

18
37’

ﬁa*/(P*Ui) i partial pressure tensor of species vy

5R*/40* Ti i radiative heat flux vector

‘/Il*u* C*fRV*dC*
) i heat flux vector for photons of
4O*T*/VR* frequency Ve

component of aRV normal to a cell surface

xiii
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va

Vo *

xiv

dimensional radiative heat flux vector
A /lo.U) ; heat fl tor of ;

0l*/ p*U*) ; heat flux vector species
q*/qR* ; charge density

magnitude of the charge on the electron (positive)
N*qe* ; reference charge density

charge density (dimensions: coulombs/m3 in ration-

alized mks ; esu/cm3(statcou1/cm3) in Gaussian)
3y. , -

Ra*/(w*U*)' rate of generation of particles of

- -
species ¢ in unit phase space volumn =t (u, r)

= 3
U . . -
Ra*/(w* 4) ; rate of loss of particles of species q

0 . ’\ - =
in unit phase space volume at (u, r)

. /L

ol Ly 5 position vector

dimensional position vector

s./LZ

w! Ly ; surface area

S
Vo %

n
Vo

cross ~section for scattering of a photon of frequency v
by unit mass of species ¢; dimensions are area/mass

s

tY*Z ; entropy per unit mass of species x
T,/ Y%

rectangular Cartesian coordinate tangential to a cell
surface

rectangular Cartesian coordinate tangential to a cell
surface and normal to 5, '




w_(1)
G’va (u)

wa (e + u2/2)

A —ar

reference temperature
t*/(L*/U*) ; time (T)

dirnensional time

N
i Z p {4 ); mass velocity of the mixture
P a=1 &
Ew /U* i velocity of a particle of species ¢
%

reference velocity
- A
().
L3 ;
V*/ w«  volume

(_u'&) -u diffusion velocity of particles of species ¢
:a - (ﬁ'a) ; thermal velocity of a particle of species ¢

— —
ua - u ; mean thermal velocity of a particle of species ¢

W*/U* i velocity of cell surface
A

Wn*/U* s We
. (1)/w* i rate of generation of particles of species ¢
b3

per unit volume

v—v.a *(_u')/(w*U*) i rate of generation of particle momentum

of species ¢ per unit volume
2
wa (e + u2/2)/(w*U*) i rate of generation of particle
b '

energy per unit volume

reference source rate (particles generated per unit
volume per unit time)

Xv




Bi+1/2,j

brii1/2,;

At

At

At

b2i41/2,

ijk

ijk

0%

"
va

Dy

xvi

angle between ray i and the negative z direction

angle between arc j in column i+ 1/2 and the
positive z direction

radial increment of arc j in column i+ 1/2
At*U*/L,;< ; time step

stable time step for a one-dimensional calculation in
the radial direction

stable time step for a one-dimensional calculation in
the axial direction

axial increment of arc j in column i+ 1/2

antisymmetric three-tensor

+1, if i, j, k is an even permucation of 1, 2, 3
-1, if i, j, k is an odd permutation of 1, 2, 3

0 , otherwise

primary electric constant in rationalized mks units
(8. 854 x 10~12 coulomb/volt « m)

1/(4m)in Gaussian units

cross-sectional area factor

0, plane geometry

T s cylindrical geometry

4, spherical geometry

A
"o */ #*

dimensional mass absorption cross section of species ¢
for photons of frequency v ; dimensions are area/mass

T S ————— e




L reference mass absorption cross section; dimensions
are area/mass
) Primary magnetic constant in rationalized mks units
o (4m x 107" weber/amp - m); 47 in Gaussian units 4
UR reference photon frequency
%
vr direction cusine between outward normal to cell
surface and r (or x for plane geometry) direction
v, direction cosine between outward normal to cell
surface and z direction, v, = 0 for spheical geo-
metry
A .
v unit outward normal to the surface of a volume element
v, photon frequency
N
p Z 0, i mass of mixture per unit voiume
Qo
a=1
Py pa*/p* ;i density of species ¢ :
Py reference mass density (mass pPer unit volume) l
g, Stefan-Boltzmann constant {
() denotes the Boltzmann average: for any quantity ¢, ,
o = fo,firt @ats fr @ad |
|
.
i
xvii
!
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SECTION 1
INTRODUCTION

In recent years a great deal of effort has gone into the
detailed computation of the structure of atmospheric niclear bursts.
The numerical procedures developed for these calculations assume the
exivtence of conventional hydrodynamic collisional coupling of the explo-
sion debris to the ambient atmosphere; thus, strong shock waves are
assumed. This assumption certainly is valid for altitudes below about
80 kilémeters Or so, and the numerical results for low altitude explosions

appear valid,

The assumption of strong collisional coupiing of the
debris to the ambient atmosphere is no¢ necessarily valid at higher
altitudes; however; as a result, present computational techniques do
not give reliable information concerning the effects of high yield, high

altitude explosions,

i PROBL

The information which is required and which existing
techniques do not give concerns high yield explosions at high altitudes.
The means by which such explosions couple to the atmosphere and the
gross effects of the explosions are to be determined. In particular,
techniques capable of computing the transient structure of the expanding
debris of an explosion in the megaton range at an altitude between 100
and 500 km are desired. The computed structure is to include late-time

effects, including disturbances of the earth's magnetic field.

N e o i — - : | Ee———— —




2. REVIEW OF EXISTING METHODS_

Existing attempts to treat high-altitude explosions either
assume conventional coupling and apply ordinary hydrodynamic computer
codes with a more rarefied atmosphere, or assume there is no
coupling until the debris has expanded to some ""coupling length, '* after
which conventional hydrodynamic coupling is invoked. The assumption
that conventional collisional coupling always exists obviously breaks
down at some point: at a sufficiently high altitude, the mean free path
for ambient ions becomes greater than the debris radius, ard the con-
ventional momentum transfer process disappears. The range of altitudes
in which this coupling breakdown occurs is not known; however, because
the energy released by the explosion so disturbs the ambient temperatur\e
and ionization that estimates of the effective mcan free path for momentum

transfer are not reliable,

Existing methods of accounting for the coupling break-
down do so by attempting to estimate an effective mean free path or
""coupling length." Various processes have heen postulated as ultimate
sources of the coupling: examples include the ""Longmire Piston, " in
which the motion of the ioni‘zed debris generates a magnetic field that
turns or "picks up ' the ambient ions; two-stream instability, in which
‘the electric field between the debris ions and the ambient ions grows in
an unstable fashion until it becomes strong enough to pick up the ambient
ions; and the cnllisional model, in which the mean free path for direct
collisions is es‘imated on the basis of the relative velocities of the debris
and ambient ions. All of these postulated coupling processes require
rather involved mathematical formulations which are not usable in
existing hydrodynamics codes. As a result, the only calculations which
have been made with these processes are approximate analytical calcula-

tions solely intended to demonstrate the possibility that the process is

= A" v



significant. No detailed calculations intended to show the actual effect

of such processes have been made.

3. SUMMARY OF THE PRESENT APPROACH

Because of the potential significance of coupling pro-
cesses of the type discussed above, a physics code is developed which
can handle the mathematical formalism ascuciated with these coupling
processes. A suitable coding technique exists and has been used on
transient irteraction problems in the past; further, the‘code has been
redeveloped to the point where it is useful for studying the detailed
behavior of the pProposed coupling models. This code, which is an
Eulerian code with a floating mesh, employs the characteristic flux
differencing technique: the changes in all Properties during a time-
step are caused by the fluxes of those properties across the surface of
the cell during the time-step. Because surface fluxes in a raretied gas
do not involve thermodynamics or kinetic Processes such as collisions,
it is possible to construct the entire finite-difference code without such
models. These models are added in subroutine form for the evaluation
of properties such as partial pressures ard sound speeds within each
cell. This differencing procedure has the great versatility of permit-
ting a complete change of the kinetic and thermodynamic models to be

made merely by changing a few subroutines.

This code structure will be useful for carrying out
detailed one-dimensional studies of the interaction of debris and
ambient ions for each of the postulated coupling processes. The results
of the more effective of these processes can be scaled into ""coupling
laws,' which might be used in a two-dimensional calculation of the gross
expansion. In addition, two-dimensional studies can be rnade for those
coupling mechanisms which are inherently two-dimensional; the "Longmire

Piston" with its streaming debris, perpendicular magnetic field, and




turning of the ambient ions is an example of a coupling process which

must be treated as at least two~dimensional.

In addition, numerical studies for evaluating the several
coupling mechanisms and calculating the gross expansion structure of

high-altitude explosions can be carried out.




SECTION 11

FORMULATION OF THE PROBLEM
AND METHOD OF SOLUTION

The problem being treated here is that of developing a
computer code which can be used for the dual purposes of (1) testing
the efficacy of Proposed mechanisms for coupling the ;iebris from a
high-altitude explosion to the ambient atmosphere, and (2) computing
the overall features of explosions for which the coupling mechanisms
have been determined. The method of treating this problem consists
of using the governing equations in a form that is valid regardless
of the coupling mechanism, selecting an appropriate numerical pro-
cedure for solving these equations, and developing (and coding as sub-

routines) models of the Proposed coupling mechanisms.

l. STATEMENT OF THE EQUATIONS AND BOUNDARY CONDITIONS

A mathematical description of explosion Phenomenology f
must involve conservation of mass, momentum, and energy; probably
must include radiative phenomena; and must account for electromagnetic |
effects. In addition, a set of constitutive equations is required, includ-
ing equations of state and of electrical conductivity. Finally, appropriate

boundary conditions must be Prescribed.

The interacting explosion debris and ambient atmosphere
may consist of molecular, atomic, and ionized species plus electrons.
It is assumed that there are N such species present, including elec-

trons; an individual species is denoted by subscript alpha. The symbols

5 .

>
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used in the following equations are defined in the Glossary, and the

normalization is discussed in Subsection II-2 below.

a. Hydrodynamic Conservation Equations

The equations expressing the conservation of mass,
momentum, and energy of species o are obtained by taking moments
of the Boltzmann equation for species a (Appendix I). The resulting

conservation equaiicns are

Mass:

apa by 3
v ik (pa(ua>) = Km w (1) (1)
Momentum:

:_t(pa G’a)) i (pa(aaﬂacx) & Ba)

= pg(Fy /mq) + Kmg Wy (u) (2)
Energy: |
st bate) + 7 (patali) + &, - (i)
= -3-5G+Pa(§a/ma)'(%>

+ Kmg wy(e + u%/2) (3)

Equations 1 through 3 are valid for nonequilibrium

flow as well as equilibrium flow. The Wq terms on the right-hand

sides of these equations represent sources and sinks of mass, momen-

tum, and energy resulting from particle collisions. In the event of

equilibrium flow, these source terms, which derive from the collisional

term in the Boltzmann equation, vanish, and the pressure tensor
is given by the equilibrium equation of state. In the event of

nonequilibrium or of chemically-reacting flow, these terms are

AN i
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evaluated by approximating the collisional terms in the Boltzmann
equation by experimentally determined c~ogg sections for the collision

in question (see Appendix I).

b. Radiation Transport Equations

Equations for the energy density and heat-flux vector
of radiation of frequency v are obtained by taking moments of the
Boltzmann equation for the distribution function of photons of energy '

hv (Appendix III). The resulting equations are ' ,

de
1 RV - _ ) |
T ot TV'QR, = - Bu%pa[ﬁwaeR\J (1 ) JVG)-JV ] 4

Ye)
1 R'V -t : -

Equations 4 and 5 are valid for any radiation con-
dition. The terms on the right~-hand sides of these equations represent
sources and sinks of radiative energy and heat flux resulting from l

absorption, emission, and scattering.

c. Maxwell's Equations

Maxwell's equations must be normalized into a form

which can be related to a wide variety of initial conditions in order to
be convenient for general computational purposes. It is shown in
Appendix IV that either the rationalized mks form or the Gaussian

form of Maxwell's equations can be normalized into the following set:

V'E = iq (6)
VB = o0 (7)
7




TXEOE - T% (8)
= £] 1 3E
TXB = T e w ut

Equations 6 through 9 are valid for the electro-
magnetic fields in any moving medium with no inaccessible charges
or currents; that is, all charges and curvents are assumed accounted
for by the moving particles of the medium, and there are no polariza-

tion currents.

d. Constitutive Equations

The field equations listed above must be complemented
by a set of constitutive equations which govern the transport properties
of the fields in the medium of propagation. Thus, Equation 2
requires an equat'ion for the partial pressure tensor of species a (or
for the transport of momentum) and Equation 3 requires an equation
for the heat-flux vector of species & (or for the transport of energy).
Similarly, Equation 5 requires an equation for the radiative pres-
sure tensor (or for the transport of radiative momentum), while
Equation 9 requires an equation for the current (or for the transport
of charge). These constitutives represent moments of the nonequi-
librium distribution functions, and generally are not known. However,
it is possible to postulate various models for these needed equations,
and it will be shown (Subsection III-2c) that these constitutive equations
do not affect or enter into the differencing technique for the numerical
code. As a result, it is possible to change the constitutive equations

used in the code merely by changing the corresponding subroutines.

A number of models for the hydrodynamic constitutive

equations are availatle; these models usually are based either on the
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Chapman and Enskog perturbation theory for the nonequilibrium dis-
tribution function (Reference 1), or on extensive experimental data.
The simplest models having any physical reality for the hydrodynamic
constitutive equations (and the ones which are being used for the initial

numerical work with the code) are

=3 3
Py Pa, ky To, I (10)

%
and

Q, = 0 (11)
Equation 10 is a valid equation for nonequilibrium flow, but is an
approximate model because shearing stresses have been ignored

(see, for example, Section 2, Chapter IX of Reference 2). In normal-

ized form, Equations 10 and 11 are

o _ 3
B = %xgx (12)
and
o = 13
—y 0 (13)

== A satisfactory constitutive equation for the radiative
Pressure tensor appears to be that given by the Milne-Eddington

approximation (which has been used successfully in astrophysics):

R, = i »
It can be shown that Equations 4 angq 5 with Equa;tion 14 lead

to the correct radiation transport formulae in the optically thick and
optically thin limits as well as in the limit of isotropic radiation.
Equations 4 and 5 with Equation 14 are similar in form to the
equations obtained in the first approximation in the spherical-

harmonic method of neutron transport theory; in that theory it is




known that the odd approximations are more accurate than the suc-
ceeding even approximations (Reference 2). A final comment

on the validity of Equation 14 is that it deals with the transport of
radiative momentum, and that radiative momentum considerations

only enter in a relativistic theory. Consequently, Equation ]4

is expected to be a satisfactory constitutive equa‘ion in a nonrelativistic

theory.

The necessary constitutive 2quation for the current
density in Equation 9 is straightforward as long as all of the charges
move by convective flow and no conduction currents exist; this equation

is
io= Tngq ) (15)
a

If problems involving conduction currents are to be treated, it will be
necessary to develop an expression for the conductivity oi {‘:e flowing

gas. The initial numerical work, however, will rely on Equation 15,

e. Coupled Equations

The momentum and heat transfer effects governed by
the radiation transport equations and Maxwell's equations must be
coupled into the hydrodynamic equations to provide a complete des~

cription of the physics of the problem.

As shown in Appendix IV, the electromagnetic com-

ponent of the force term in Equation 2 has the normalized form

u xB |
Foo= E%(EJF “C> (16) -

10
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Similarly, the electromagnetic component of the normalized work term

in Equation 3 is shown to be

E-% (17)

-—)
Ky vy =

ol

The heat added to species O by absorption of radiative energy is given

by Equation 273 of Appendix III as
9 '
s(Pea)y = BB, f lEeRvn r,(1- Tug) - dug |av (18)

Coupling Equations 16 through 18 into Equations 1

through 3 gives the coupled hydrodynamic equations:

w
a—:’+V°(pa(aa)) = Kmgw(l) (19)

F (4 YxB
1 %, g -
= p —a-+%'r-n-—<E+ g >+Kmawa(U) (20)

Pa o (o 9QE 2
+E;(ua)'<1?a+-—”—z-—>+Kmawa(e+u/2) (21)

The force 1'-‘.“ in Equations 20 and 21 is included to

Provide an easy means of adding the gravitational acceleration at a

future date.

11




£, Boundary Conditions

Appropriate boundary conditions must be provided on
the boundary of the region of interest. In mathematical terms, the
boundary requirement is that all characteristics crossing into the
region of interest from the exterior region must be known. In the
case of Maxwell's equations, this statement means that either there
must be no charges or currents in the exterior region (in which case
the boundary conditions are those of the fields at infinity) or the time-
dependent fields on the boundary must be prescribed ahead of time.
The boundary conditions for the radiation transport equations are
similar to those for Maxwell's equations:  either there must be no
emission, absorption, or scattering in the exterior region (in which
case the boundary condition is that of constant flux from infinity) or
the time-dependent radiation fields on the boundary must be prescribed

ahead of time.

The boundary conditions required for the hydrodynamic
equations depend upon whether the flow within the boundary is super-
sonic or subsonic relative to the boundary. If the flow is supersonic
relative to the boundary and crossing out of the region of interest, there
can be no characteristics entering the region of interest (hydrodynamic

‘characteristics propagate at the speed of sound) and no boundary con-
ditions are needed. In any other case, however, the flow on the

exterior of the boundary must be prescribed.

For all of the numerical calculations planned for the
near future, these boundary conditions will be satisfied by assuming
that the fields at the boundary are identical to the undisturbed fields

at infinity.

12




<. NORMALIZATION

The normalization of the equations listed in Subsection
II-1 is indicated in the notations; tnis normalization is intended
to ensure that the only quantities in Equations 4 through 9 and 12
through 21 which arse not of order unity are the parameters c, By,
£, X, 7, Bo, and K. These parameters are measures of the rela-
tive importances of the various physical processes represented in
these equations. Thus, c is the ratio of the speed of light to the
characteristic hydrodynamic velocity, and is a Ineasure of the impor-
tance of transient radiative and electromagnetic effects. Large ¢
implies :}hat radiative energy transport occurs on a time scale which
is short compared to the hydrodynamic time scale, and therefore,these
effects become quasi-steady, Small ¢ (c of order unity) implies that
radiative and electromagnetic transient effects are important, and
therefore, the radiative and electromagnetic energy densities in
transit are important, B,, the Bouguer rumber, is a measure of the
relative opacity of the radiating gas, Large B, implies there
are many optical path lengths in a characteristic geometric length,
and therefore,absorptive and emissive properties of the gas are
important., Small B,, implies that a characteristic geometric is short
compared to an optical path length, and therefore,the absorptive and
emissive properties of the g2s are unimportant. £, the ratio of the
geometric scale length to the Debye length, is a measure of the rela-
tive lengths of the hydrodynamic and electromagnetic fluctuations.
Large £ implies that a geometric scale length contains many fluctu- l
ations of the electromagnetic fields, and therefore, the charge and I
current densities (the sources of the fluctuations) are important. |
Small £ implies that the electromagnetic fluctuations are not impor- f

tant over a geometric scale length, and therefore, the charge and

13




curreni densities are unimportant. ¥, which is very nearly the

square of thi: reciprocal of the Mach number, is a measure of the
relative energies of random motion and directed motion in the gas.
Large X ‘implies that the thermal energy of random motion is large
compared to the directed energy of the streaming motion, and there-
fore,pressure effects are important. Small ¥ implies that tle

thermal energy of the random motion is small compared fo the

directed energy of the streaming motion, and therefore, j vessure
effects are unimportant. 7 is a measure of the relative importance

of the hydrodynamic momentum of a particle and of the impulse
delivered to the particle in unit time by the local electric field. Thus,
large 7 implies that electromagnetic effects are not important,

while small 7 implies that such effects become dominant. By, the
Boltzmann numb->r, is a measure of the relative importance of radiative
energy transport and of convective energy transport. Large B, signi-
fies that radiative transport is important, while small B, signifies -
that radiative transport ié unimportant. K is a measure of the rela- l
tive importance of the change in particle density of a species caused
by chemical reactions and the change caused by hydrodynamic convec-

tion. Chemical reactions are important for large K ‘and unimportant !l

for small K,

3. CAPABILITIES OF AVAILABLE FINITE-DIFFERENCE METHODS

The problem outlined in Subsection ILI-1 is of such com-
plexity that only a numerical solution appears possible. There are a
number of finite-difference methods available, but nearly all of these
methods have limitations which preclude the possibility of treating
the above equations in their full generality. Such limiting techniques

include the conventional Eulerian and Lagrangian procedures as well

14




as the Particle-in-Cell approach. By reviewing these Procedures,
however, it is possible to define the desirable features of a more

general numerical approach, and then to outline such an approach.

a. Eulerian Methods

Eulerian finite-difference methods, which are frequently
used for two-dimensional problems, proceed by applying the governing
differential equations at a set of discrete points in space. The differ-
entials in the equations are approximated by finite-differences between
the fixed points. Because of the fixed ceometry associated with these
methods, Eulerian procedures are readily able to compute shearing
stresses an1i to treat tangential jorces. This capability is a necessity
for the complex Problems considered here because of the shearing
8tresses associated with magnetic field and the resulting nonequality

of the diagonal components of the hydrodynamic pPressure tensor,

One of the major disadvantages associated with Eule. ian
methods is that they are unable to maintain sharp contact discontinuities
between two separate fluids. This inability arises because the fluid
characteristics at a point represent the average characteristics of the
fluid in a small volume surrounding the point; thus, when u contact
discontinuity enters such a velume, the sharp di‘iscontinuity is repre-
sented by an average at the point at the center o'f the volume. In
this fashion, the contact discontinuity becomes Smeared out after a
few computational cycles. A detailed study, including a numerical
example, of this smearing of contact surfaces is given in Subsection
2 of Appendix F of Reference 3. Unfortunately, many of the problems
considered here have interacting gas streams or colliding shock waves
which produce contact surfaces; consequently, this inability of Eulerian
methods to Properly represent such contact surfaces is a strong disad-

vantage of these methods.
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A second disadvantage associated with Eulerian methods
is that they generally are unable to treat non-rectanguiar boundaries.
This inability results from the finite-difference approach of representing
differentials by differences taken between successive points of the com-
putational net. It is straightforward to treat tl e problem of rectangular
walls by imposing symmetry on the fixed points in the computational
network, but similarly satisfying procedures for other geometries are
lacking. In the problems considered here, however, the constraints
impos=d by the atmospheric variations and the earth's magnetic field
may dictate a nonrectangular boundary for the numerical prablem.

As a result, this limitation of Eulerian nrethods is a disadvantage.

b. Lagrangian Methods

Lagrangian computational methods refer to a specific
set of fluid particles rather than to a set of spatial points. Newton's
laws are applied to these representative points to obtain the
motion of the fluid as a whole. Becauvsc i “.grangian methods follow
individual fluid particles, such techniqu.s are able to represent con-
tacl surfazes between two gases; as discussed above, this ability is

important for the problems to be treated.

The major disadvantage of Lagrangian methods is that
they do not treat shearing stresses satisfactorily. This difficulty
arises because the calculation of the stresses is based upon the geo-
metric distances between the fluid particles, and the calculation of
these distances becomes unacceptably tedious after the fluid has under-
gone some distortion because of the shearing stresses. As discussed in
Subsection II-3a, however, shearing stresses are important in the
Present application, and the inability of Lagrangian methods to handle

them is a serious disadvantage.




c. Particle-in-Cell Technique

The Particle-in-Cell (or PIC) technique represents an
attempt to gain the advantage both of Eulerian and Lagrangian methods
by superimposing a set of Lagrangian mass points on a set of Eulerian
volume elements. The fluid stresses are computed on the basis of the
Average properties of all of the mass points in each of the volume
elements, and the motion of the fluid is computed by using these
stresses to détermine the acceleration and velocity of each of the
mass points. , The use of volume elements permits this technique to
treat shearing stresses, while the presence of mass points allows
good-reprgsentation of contact surfaces. As a result, the PIC tech-
nique ha’s advantages over the Eulerian and J.agrangian methods des-

cribed above.

The disadvantage of being unable to treat nonrectangular
boundaries remains. however. The Presence of this disadvantage is
becauge of the use of Eulerian difference procedures for computing the
stresses on the mass points, and results in exactly the same way as

the rectangular boundary requirement discussed in Subsection II-3a,

A further disadvantage of the PIC technique is that the
mass points are part of a Lagrangian net and there may be only a few
points of each species in a given Eulerian cell,  As a result, it is
difficult to represent the smooth change in the density of a species because
of chemical reactions by changing the number of mass points in the
cell. Consequently, the PIC technique shares the Lagrangian disadvant-

age of not being well suited for chemical nonequilibrium.

d. Characteristic Flux Method

A method which uses moving Eulerian cell boundaries

to follow contact discontinuities is able to overcome the disadvantages
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of all of the above methods. Such a method is discussed in great
detail in Reference 3. The basic concept of this method is that of
choosing an Eulerian spatial mesh and applying the governing equa-
tions in integral form, rather than differential form, to the mesh.

The resulting computational equations give the changes in fluid proper-
ties within a cell in terms of the fluxes of mass, momentum, and
energy of the fluid crossing each face of the cell. Because the fluid
Properties are assumed constant within each cell, however, the
Properties on any face of the cell must be given in terms of a simple
wave emanating from within the cell (Section 29, Reference 4). Thus,
the fluxes crossing the cell surface are computed by the method of
characteristics, and no distances to cell centroids are needed.
Furthermore, the determination by the method of characteristics of
the fluxes crossing each cell face is based upon velocities relative to

the cell face; thus, the Sulerian grid can move through the gas.

A computational procedure based upon this character-
istic flux method has all of the advantages of the above methods without
any of the disadvantages. Thus, the use of integral equations replaces
calculations of gradients with calculations of forces and fluxes on cell {
surfaces. Because the Eulerian cell surfaces do not become distorted by
the shear flow, these force and flux calculations remain straightforward.
At the 3ame time, the movable cell boundaries permit good representa-
tion of contact discontinuities. For example, cell surfaces can be
aligned with and allowed to move with material interfaces; thereby,
preventing the usual smearing of the interfaces into adjacent cells.

Such a technique was used successfully in Reference 5 in treating the
contact surface formed by the colliding shock waves when a reentry

vehicle penetrates a blast wave.
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The characteristic flux technique also is able to treat
chemical nonequilibrium without difficulty, Since the procedure is
an Eulerian pProcedure, masses are computed by the use of continuous
densities rather than by the use of discrete mass points. Ags a result,

reaction rate equations can be coupled into the procedure directly.

Finally, the characteristic flux procedure can treat
boundaries of any geometry. This ability results from the replace-~
ment of gradients in the differential equations by fluxes cros sing cell
walls in the integral equations. Thus, it only is necessary to align
cell surfaces with the boundary to treat arbitrary geometries. For
example, ellipsoidal as well ag spherical bodies were treated in

References 3 and 5.

4. METHOD OF SOLU TION
M

As discussed in Subsection II-3, the characteristic flux
numerical method is the only available procedure which can treat with
the required generality Equations 4 through 9 and 19 through 21
along with the associated boundary conditions. Consequently, these
equations are integrated over a cell volume, and the method of char-
acteristics is used to obtain the required fluxes crossing the cell

surfaces.

The Eulerian cells are referred to a moving mesh,
As discussed in Subsection II-2.d, such a mesh makes it possible to
maintain interaal interfaces in the gas; subroutines are provided for
determining the mesh motion required for the following of the inter-
faces. In addition, the use of a moving mesh makes it possible to
have the compuiational mesh expand with the flow (as in the case of

the expanding debris from an explosion); thereby,permitting a constant
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number of cells, with the resulting uniform accuracy, to cover the

entire flow field. This tyre of motion obviates the need for rezoning

the mesh periodically by adding or deleting cells.

Finally, all of the calculations involving the constitu-

tive equations are carried out in subroutines; thereby, facilitating the

changing of such equations as new models are developed.




SECTION III

FORMULA7ION OF THE PHYSICS CODE

A general physics code is developed to treat the equa-
tions presented in Section IT under a wide selection of boundary conditions.
This code is developed by integrating the governing equations over the
volume of a cell and then using the method of characteristics for the
computation of the field properties on the surfaces of the cells. The
constitutive equations are added as subroutines. The computational
mesh is set up in a general form which permits selection of plane,
cylindrical, or spherical geometries in either one- or two-dimensions
as needed. A method for causing the mesh to move in such a way as
to follow a set of prescribable interfaces is developed. A stability
analysis of the resulting code is carried out, and detailed flow charts

of the code are presented.

l. INTEGRATION OF THE EQUATIONS

The equations are integrated in such a way as to be
correctly represented in either one- or two-dimensions and in either
plane, cylindrical, or spherical geometry. These three coordinate
systems plus a typical computational cell in each system are illustrated
in Figure 1. The geometvical definitions which specify a cell in any of
these systems are shown in Figure 2. The field properties represented
by Equations 4 through 9 and 19 through 21 are assumed to be con-
stant within each cell during a time step and constant on each face of
each cell during the time step. The equations are then integrated over

the volume of a cell and over a time step.
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Figure 2,  Cross-Sectional Geometry of a Cell
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a. Hydrodynamic Conservation Equations

Equations 19 through 21 with the cell integration

indicated are

/dv/dt%+$-(p (3 ))-J(l)] = 0 (22)
v At _at a a a

i = - - = -l
Joof, ofrati 7 by« 2) -3,

= 0 (23)
and
3 - = = - =]
’/‘r.dV[ dt[ﬁ(paea)+ v (paca<“a> + Pa (i) + Qa)
R RC (24)
where
$,() = Km w (1) (25)
_ Fo 1 % [« Gic,)x-ﬁ a
J'a(Z) = pa[-r;; + 71’?1; <E + g + Kmd.wa.(u) (26)
and
$.(3) = BoBuf[eRVnRVO-JVG)- j\,a] dv
P = 9 .
+ m—i(ﬁq) ‘(Fa + -ﬁ" E)+ Km_ wa(e+uz/2) (27)

The integrations in Equations 22 through 24 are carried out over the
volurne of a cell, V, and over a time step, At. In carrying out these
integrations, it is assumed that the time rates of change and the source

functious, &, within each cell are constant during the time step. The
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divergence term is converted to an int 'gral over the cell surface by
means of Green's theorem, and the resulting propert.:ies on the cell
surfaces are assumed constant during the time step. In integrating
the unsteady term in these equations, it must be remembered that

the cell volume is a function of time because of the moving mesh; thus,
this term is integrated by parts, and the resulting expression for the
rate of change of cell volume is replaced by an integral over the sur-
face of the cell of the normal component of the velocity of the surface.
These integration procedures are carried out in Appendix V for repre-

sentative scalar and vector equations.

Making use of the model ‘ntegrals provided by Equa-
tions 319 and 331 and by Equations 320 , 339, and 369 of
Appendix V, the integrated forms of Equations 22 through 24 become

(pavy“/z' dia (pav)i+1/::, j+l/2

+ At Z (W - (u) >S+
cell Pa{Va - € O'n
faces

At
"Wz, g2V, g2t Ry (Y
ces

(pav<ua'r>)i+1,2, ks 3 (pGV(“ar))

o A JER SN TN O
faces

i+1/2, j+1/2\vi+1/2, jtl/2

i+l/2, j+1/2

+ 2ANFy +dg_(2)

A
PRt w S> (29)
2 .ce n
faces
25
{ e BORE fle a f
: 2~ .(:‘ T e —————.. __-—4-P m:



(puv(“@z))i-ulz’ HUS b (PGV(“%))M/Z, j+1/2

+4t ; [Pu,( uaz) (Wn - <u°->n)- Pu-zr Vr© l:“x'zz\)z]s

aces

At
\/ + = WS
. . . . c 11
itl/2, J+1/2<1+1/2, j+1/2 " 2 fages n

+Jaz(2) (30)
and {
it1/2, j+1/2 =
(puvea) ¥ (paveu)m 12, j+1/¢
-
+At) [ouea(wn- (uo_)n)- (Purr(uar>
faces

fi ¥ P("rz(u‘lz) + Q("r)\)r ) (]P"'zr("l"‘r>
T P(l-zz<“0-z) + Qq’z)vz]s

at Z;
43170, j+1/26,i+1"2- 2tz face wns) .

aces

In Equations 28 through 31, W

nh 18 the velocity of the

cell surface along its outward normal, <u°')n is the velccity along the
outward normal of the cell surface of species &, and v, and v, are

the direction cosines between the r and z axes and the outward normal
to the cell surface. The index (i+1/2, j#+1/2) denotes properties evalu-
ated within cell (i+l/2, j*+1/2); raised indices denote properties evaluated
at the end of the time step, while 1;>Wered indices denote properties evalu-

ated at tha%qvbeginning of the time step.

b. Radiation Transport Equations

Equations 4 and 5 with the cell integration indicated

are
26
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eR = -t
dV/dt YicvQ +J(,(1)] = 0 (32)
‘/‘; ae L O Ry
and =
vl dt|——+cV-Bp +3 (2] = o (33)
v At o b Y
where
(1) = cBu;pa AVgeR,, (1 -Jva)- jvg (34)
and
4(2 = <ByQg aZpanva(l - Jva+s\,a) (35)

assumptions and in the same manner as Equatiors 22 through 24. The
resulting integrated forms are
i+l/2, j+1/2 _
(eva) (eva)iH/Z, j+1/2
+ At Z[e W -clop v_+Q v]S-
11 ] z
f:ges ® ' R"1' - R\’z )
4 (1). « 3 WS 36)
ARSI 7} J+1/2 1+x/2 J+1/2 2 cell (
feces
1+1/2 jtirz2 . _
( ) (QR\) V)i+1/z, 172
2 | |
Qr W -c( V.+ PR v)]s
cel. r z
faces RV Vrr Vrz
: |
* Z”ACPRvge "‘g\’r(z)m/z, j+1/2(Vi+1/2,j+1/2
At
+ = 7 e WS (37)
faces
i
27 I ‘
— — - ="‘V‘1
e - =N B ~nh: ——;&1
\ 1

Equations 32 and 33 are integrated with the same




( 1+1/2 /e _ (QRv V)i+1/2, 402

{ 2 QRv W, -c(PR vr+Pszzvz)] s

faces

LB Z}
"0, J+1/z< i+1/2, j+1/2* 7 cell Wns> 439
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c. Maxwell's Equations

Equations 6 and 7 will always be satisfied if they are
satisfied by the initial conditions; consequently, they need not be differ-

enced. Equations 8 and 9 with the cell integration indicated are

defthaa—?+chE] = 0 (39)
v e

and -
/dedtaaf: chB+£J] = 0 (40)
\' At

Equations 39 and 40 are integrated with the same
assumptions and in the same manner as Equations 22 through 24.

The resulting integrated forms are

i+1/2, j+1/2

(B,.V) = BrV%102, 5172
+ At ;e;l (Br Wy + ¢ Egv,) S (41)
aces

i+1/2, j+1/2

(BzV) (BZV)i+1/z, j+1/2
+ At czel:I (Bz Wn-cEgvy) S (42)
faces
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i+1/2, j+1/2
(ExV) (Erv)i+1/2, j*l/2
;1 (Erwn"cBe\)z)S
faces |
£j ( + 8 z; W s) (43)
r 1 "n
itl/2, j+1/2 1+1/2, J+1/2 ngces
and
1+1/2 j+l/2
" Ezv)i+1/2, j+1l/2
2 (E; W, +cBevr)S
faces
Y < g Z; W s> (44)
Z. cell ™n
i+l/2, j+1/2\'i+1/2, J+1/2 Fl Py 3
2. GCHARACTERISTIC SOLUTIONS ON CELL BOUNDARIES
Equations 28 through 31, 36 through 38, and 41
through 44 all contain terms evaluated on the faces of the computational
cells. These terms represent fluxes of the property in question across
the cell faces, and are calculated by the method of characteristics.
a. General Theory
The various field properties governed by the above inte-
grated equations are considered to be constant within each cell; thus,
the cell faces constitute a region bounding a region of constant field. As
shown in Section 29 of Reference 4, however, the field in a region
adjacent to a region of constant state must be a simple wave emanating
from the region of constant state. The leading edge of this simple wave
Propagates along the undisturbed characteristic of the constant state, and
in the limit of small differences between the constant state and the cell
t
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\
surface, the entire simple wave can be approximated by a single char-
acteristic. In the same way, the flow on the cell surface must be given
by a characteristic coming from the cell on the other side of the cell -
surface; thus, the fields on the cell surface are given by the splution

of two characteristics.

b. Characteristic Equations '

In the absence of znonuniformities in the fields, charac-
teristic properties are properties Whic:‘h remain constant on specific
space-time paths. These characteristic Properties are to be referred
to the cell surfaces; consequently, it is convenient to introduce a local
rectangular Cartesian coordinate systh on each cell surface as depicted

in Figure 3,

Figure 3. Cell-Surface Coordinate System
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In terms of this coordinate system, it is showr in

. Subsection VI-1 of Appendix VI that the hydrodynamic characteristics

are

Fy,
Jo, = (ug )& Fa 45
ap = Yo, Paa (45)

and that Jg + is constant on the path

n = n ot ag(Mgt+l)t (46)
while Jy is constant on the path
n = ngtag(Mg-1)t (47)

where ay is the speed of sound of species O and

M, = (uan)/aa (48)

Similarly, it is shown in Subsection VI-2 of Appendix VI

that the radiation transport characteristics are
Juy = eg %3 AR, (49)
and that J,, " is constant on the path

n = ng+ct//3 (50)

while J,,  is constant on the path
n = ng-cth3 (51)

where QRvn is the component of (-T'I'R\J along o

Maxwell's equations are treated in Subsection VI-3 of
Appendix VI. It is shown that Maxwell's equations have two sets of

characteristics:
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Jl, = Bg tEy, (52)

and

I; Bg, t E (53)

- 4 2 |
Further, .]'1+ and J, are constant along the path

n = ng- ct (54)
while J; and JZ_,_ are constant along the path

n = ng+et » (55)

c. Characteristic Propertiea on Cell Boundaries

The characteristics listed in Subsection IlI-2b define
the properties on the cell boundaries. Thus, let cell 1 lie on the nega-
tive n side of the cell surface and cell 2 on the positive n side. Then,
if

-1 <M, <1 (56)

Equations 46 and 47 show that

Vot cell surface = (Jas) )
and
(Ja")cell surface ”“-)z (58)
Equations 45 and 57 give
Ry
<ua'n>ce11 surface <ua'n>1 +/ dFy/Paza (59)

cell surface

Assuming that the integrand in Equation 59 is nearly constant because

of the assumed small difference between properties on the cell surface
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and those in the adjacent cells,

¢ ) - Pc"cell surface
Yan cell surface (po,acx,)1

(uan>l + m (60)

Similarly, Equations 45 and 58 lead to

Pa PO.

1l surface 2
(ugy) - —t (wap), - ——2— (41
Yan’cell surface Para), 22" Togaal, (61)

Solvirg Equations 60 and 61 for the cell surface properties,

(/,30.3-(1)1 <“0.n>1 + (paaa)2<uan>2+Pa1 'Puz

<u("1'1>ce11 surface (pc',ac,)1 + (paaa)z
| (62)
and
(Paao,) ZPO‘1+ (Po,aa.) lpaz+(paaﬂ.)l (paau.)z(<uan>1 "<ua,n>2)
Po‘cell surface (pq,aq)1+(pqaa)2 |

(63)

The density on the cell surface ‘s obtained by use of '
Equation. 397 of 4Appendix VI. Thus, if

<u0‘n>cell surface 20 (64) ,

the gas on the cell surface is deemed to have come from cell 1, and

‘PO.

Qa
cell surface 1 ,
Pacen surface Pq, + 2 (65)
%0,
!
Similarly, if
<“0.n> <0 f (66) <

cell surface
the density is given by

Py - P,y
P + cell surface 2 (67)
a2 aazz

Pa

cell surface
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With Pq and 0y known on the cell surface, the
remaining thermodynamic properties on the cell surface are found by
application of the chosen model of the equation of state. The velocity
tangential to the cell surface' is taken equal to the tangential velocity

in the cell from which the gas crosses the cell surface.

If Equation 46 is not satisfied, the flow is super-
sonic; such a condition means that the g2s moves faster than either
characteristic. In this case, the flowing gas drags its characteristics

with it. Thus, if
Mg 21 (68)

the flow is supersonic from cell 1 into cell 2, and both characteristics
on the cell surface come from cell 1. In this case, the flow properties

on the cell surface are identical to those in cell 1:

<u"‘n>ce11 -surface b <u"‘!1>1 (69)

po'cell surface = Pa, (70)

Pacen surface = Pay (71)
Similarly, if

Mg = -1 (72)

the flow is supersonic from cell 2 into cell 1 and

<u("n>ce11 surface = <ua‘n>2 (73)
1:,"'cell surface = P°'Z (74)
Pacell surface = Pa, (75)




If the cell surface itself is moving, the selection of
the appropriate set of cell surface properties is based upon the motion
of the characteristics relative to the moving surface. Since the char-
acteristics move at the local speed cf sound, these choices may be

summarized as follows:
1. If

<u°n>l = .‘Ql = wnzc (76)

the flow is ‘upersonic from cell 1 into cell 2 and Equations 69 through

71 are app:ipriate;

2. 1f
Wn - Clap), - ag, 20 (77)

the flow is svpersonic from cell 2 into cell 1 and Equations 73 through

75 are aprropriate;

3. If neither of inequalities 76 and 77 holds, the flow is subsonic
relative to the cell surface, and Equations 62 through 67 are

appropriate.

The characteristic surface properties are simpler for
the equations of radiation transport because these characteristics
Propagate at a speed of c/\/3—; consequently, there is no practical
case in which the cell surface can outrun a characteristic. Thus,

Equations 50 and 51 show that

v cen surface - (v (78)
and
Vgl gustine = (Jv.), (79)
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inserting Equation 49 into Equations 78 and 79 and solving for
the cell surface properties by the same method as used in Equations

60 through 63,

9 ®Rv, +eRVa +‘/5(QRVn1 -QRVn;) )
e = r
RVcell surface 2
and
Q ARy *QRvg, *(¢Rv, -eRy ) V3 (81)
R\)ncell surface 2
Similarly for Maxwell's equations, Equations 54 and
55 give
(J1+)cell surface (J1+)j'f (82)
(1 ')cell surface (J1+)1 (83)
(JZ+)cell surface (JZ+)1 (84)
and
(JZ-)cell surface (JZ-)Z , (85)

Using Equations 52, 82, and 83 and solving for the

surface properties gives

(le) 1+(le)a+(Esz)a-(ESZ)1

e —

(le)cell surface 2 (86)
and
(E..) _ (E52)1+(ESZ)3+(BSI)9-(le)1 (87)
82'cell surface 2
Similarly, Equations 53, 84, and 85 give
B i (Bsz)1+(Bsz‘)£(Esl)1-(Esll% (86)
82"cell surface 2
36
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and
(Esl)1+(Esl)a+(Bsz)1 '(Bsz)a

(Esl)cell surface 2 (89)

3. CONSTITUTIVE EQUATIONS

As discussed in Subsection II-1d, the values of the

collision cross sections and of the various reaction rates will be assumed

known. The values initially selected will be obtained from a cursory check

of the literature. Since the purpose of the initial one-dimensional calcu-
lations is the testing of the sensitivity of the numerical volution to the
various parameters of the Problera, such a choice of cross sections and
reacticn rates is a satisfactory method of gaining a starting point for a
parametric study. A more thorough evaluation of these parameters will
have to be undertaken for the two-dimensional overall-effects code,

however.

The detailed study of initial conditions that may be
refuired for predicting the debris behavior of specific bursts is being
postponed, at least until the two-dimensional code is ready for running.
If the parametric studies pProposed for the one-dimensional code indj-
cate a lack of sensitivity to the precise initial conditions, then such

. detailed studies may not be warranted.

a. Source Effects

The continuity equation for species a requires a
knowledge of the volume production and/or loss rate of the species.
We have begun to investigate the various cross sections and reaction
mechanisms which contribute to the rates. Among these are ioniza=
tion, charge tranéfer, dissociation, and recombination of free electrons
with positive ions. The following summarizes the Preliminary results
of our survey to date.

i
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(1) Capture and !oss of electrons by fission fragments

Bell (Reference 6) and Bohr and Lindhard (Refer-
ence 7) have shown that the capture and loss cross sections, 0. and
Ot » respectively, of a highly ionized particle of atomic number Z
and ionic charge z moving with velocity v in a target gas of moder-

ately high atomic number Z, are given by

a ZtIIS 2 2

. 2(vo/ ) mag (90)

oy ztzl3 24/3 z-3(v/vo)2 wao?' (91)

Here v, is ¢/137 and vaoz is the area of the first Bohr orbit

(8.8a07 7 cm?).

When charge equilibrium is attained as the fission
fragment moves through the gas, the capture and loss cross sections
are equal. The common cross-section under equilibrium conditions

is then approximately

5 s (2 zt)llz(ﬁvl)uaoz ' (92)

and the average ionic charge is

” - Z4/152t1/15(l) - (93)

Vo

(2) Iorization of air by debris ions

Perhaps the currently most useful estimate of the
cross section o; for ionization of a gas by high-speed ions is that from

Firsov (Reference 8). His result, derived for atomic systems, is

i Uo[(v—\;)lls - ]2 cm® (94)

qQ
)

= T S
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where v is the relative speed of the colliding pair of particles and

0o and v, are determined by the relations

.. 3.3x107!5 eml. o . _2.3x10" et soc”
° T T 373 T
(Zo+ 252! (Z1+ Z2)°!

(95)

Here, 2, and Z; are the atomic numbers of the incident and target
particles, resp;ectively, and L is the smaller of the ionization energy

(ev) of the two colliding particles.

Recent measurements by Fite et al (Reference 9)
on ionization in air, N, and A~ gases by incident beams of A{,+ ions
have produced the data shown in Figure 4. Included in this figure are
the t}ieoretical cross sections, predicted from Equation 94 for AL+
ions in argon and atomic nitrogen. It is seen that the experimental
curves do not exhibit quite as strong a velocity dependence as does the

Firsov cross section. In addition, the data for N, are higher than

0 T T T I T T T
' o ]
L T REFERENCE ¢ N
== ==THEORETICAL (Equafion 94)
7 AlR e
N: 6 /_—-'__—-Nzl
:ev
o /
X 5 Ar ]
) -,.-l"'—-.-ﬁ.r a"#’ ']
4 ~ ’-.-"' =
— = ###
] -
7 s’
3 ] 1 l”" L** | | |
0 1 2 3 4 5 & 7 ]
V x 10-7 (cm/sec)

Figure 4. Ionization Cross Sections as a Function of Velocity

for AL+ in Ar, N;, and Air
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that predicted for N. It seems reasonable, however, that in dealing
with diatomic molecules,the value of 0, derived for atoms should be
increased somewhat. This would then bring the theoretical and exper .-

mental curves more into line.

(3) lonization of air by debris electronsg

The available data on electron-induced ionization ir
various gases have recently been summarized by Kieffer and Dunn (Rei-
erence 10). In particular, the cross sections for ionization of N, ©,
N, Oz, NO, N+ and Li+ by electrons with energy between about 10 ev
and 10 kev are available. If the electrons are in equilibrium at a tem-
perature O_, then the rate coefficient a for production of ions M+

by the process
e+ M - M+ 2e (96)
is given by

a = ( o;v )e (97)
e

Here + is the electron speed, 0; is the ionization cross section, and
the brackets indicate an average over all speeds. If we use the data
presented in Reference 10, together with an assumed velocity distribu-
tion for the electrons, a as a fqn’ic!:ion of electron temperature can be
obtained. This has been done (Reference 11) for ionization of atomic
oxygen and nitrogen by assuming a Maxwell-velocity distribution. The
results are shown in Figure 5. Similar results can easily be obtained

for the other species by munerical integration of the cross section data.

(4) Dissociative ionization of air molecules

Data have been obtained (Refere-_:e 10) on the dis-

sociative ionization process
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Figure 5. Ionization Rates for Atomic Oxygen and Nitrogen
Versus Electron Temperatures.
e+Mg"M+M++Ze (98)

for electron energies between about 10 ev and 1 kev and product ion
(M+) energies greater than 0. 25 ev. Results for N, and O; are

shown in Figures 6 and 7.

(5) Dissociation of air molecules by fast atoms

Gerasimenko and Oksyuk (Reference 12) have com-

puted the cross section for dissociation of diatomic molecules in collision
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with atoms. It turns out that the qQuantum mechanical expression for

the cross section which they derive gives results which differ at most

by about 20 percent from the classical expression. We will, there-

fore, adopt the simpler classical expression for the dissociation cross

section.

The dissociation cross section can be written as

2 Th
°p = Z/ cj(T)w(T)dT
j=1JD

(99)

where cj(T) is the cross section for elastic scattering by o':e of the

atoms of the molecule, T is the energy transferred elastically to the

atom, D is the dissociation energy and w(T) is the probability that

dissociation will occur. Tm’ the maximum energy transferred elas-

tically, is given in terms of the energy E of the incident atom and the

masses M and Mj of the incident and target atoms, by

Tm = YE
where
4MMj
Y = 2
(M+Mj)

(100)

(101)

The summation in Equation 99 is over the two atoms in the molecule.

Classically, w =1, i.e., the molecule will defi-

nitely dissociate if the energy transferred elastically to one of the

molecular atoms exceeds the dissociation energy. For a Coulomb

interaction potential, we have (Reference 12),

21re4ZZZ-Zu dT
I
Mj v T

(102)
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where U is the reduced molecular mass, v is the relative speed
between incident and target atoms, and Ze and Zje are respectively
the nuclear charges on incident and target atoms. If T, >> D, as will

usually be the case, Equations 99 and 102 yield

2 4 2 2
op = ZE-e “<le+ Z‘;_) cm’ (103)
v D M]_ hﬂa

It is not difficult to use the more accurate screened-
Coulomb interaction or the Thomas-Fermi function to obtain 2 slightly

more accurate expression for the cross section.

In addition to the collisional effects discussed above,
the decay rates from thermodynamic nonequilibrium to equilibrium are
expected to be important at higher altitudes. These decay equations are

generally given in the form

dt = w(cpla 9z, ve ey @N: T) (104)

where @1, @3, ..., ®N arethe N properties which are out of equilib-
rium and T is the temperature. The function ®w in Equation 104
frequently is aighly nonlinear, and recourse must be had to numerical
means of integrating the equation. These rate equations frequently have
very large time constants, however, ard conventional Runge-Kutta tech-
niques therefore do not work well. However, a modification of a method
suggested by Certaine (Reference 13) has been developed; this modifica-

tion appears accurate and efficient in terms of computer time.

The function w in Equation 104 is approximated by

wg = ~-Dg, +B(t) (105)
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where
10w, dwg
D = .Zfj—(0) + 2 At 106
z[a%n acp‘l({, (106)

) = Be (107)

If Yoy Tepresents the equilibrium value of property

¢, in a heat bath at temperature T, Equation 105 shows that

Bl) = g, D (108)

Equations 107 and 108 give

At
®, (At)eDAt - 9, (0) /(; cpa*(t) DeDtdt

At dg
/ [_q_(%*ent) - ]dt (109)
o L3t |

Using the approximation

dy, ¥ (At)'Cpa (0)
= = = — (110)
Equation 109 gives
' -DA
@, (Bt) -9q (Bt) = [cpa(o)-cpa*(O)]eDt-
!
9y (Ot) -¢pq (0) |
L]y |

Equation 111 is computed inthree steps: ‘

” |




(1} The approximations

awa
= - = (0 112
D acpa( ) (112)

and

Pay(Bt) = @, (0) (113)

are used, and a preliminary value of ®q (Ot) ie computed;

(2) Using the preliminary value of coa (8t), final values of D and

Pe 5 (8t) are comput&i;

(3) The final values of D and @, (At) are used in Equation 111 to
' %
obtain the final value of ¥q (Bt).

Equation 111 has been coded and tested by being
employed to calculate the relaxation to equilibrium of a mixture of
G:, 05, 0, and O' with initial conditions of 10, 000 °K and
100 percent o*. The computed relaxation was checked against results

obtained by Runge-Kutta techniques and found satisfactory.

c. Correctness of Treatment

The treatment of the constitutive equations as dis-
cussed in Subsection III-3a is decoupled from the computation of the
fluxes crossing the cell surfaces as discussed in Subsection 11I-2.

The correctness of this decoupling is seen by recalling that the sur-
face fluxes have to do with the transport of mass, momentum, and
energy across the cell surfaces. As pointed out by Chapman and
Cowling (Reference 1), however, the transport of molecular

properties in a rarefied gas is caused almo .. :ntirely by the free motion
of the particles between collisions and only .. ligibly to the transf

at collisions over the distance separating the two colliding particles.

46




B

Thus, for the rarefied gases considered here, particle collisions and
molecular relaxations can have no effect upon the surface fluxes.
Consequently, the decoupling of the collisional effects from the sur-

face flux calculations is valid.

4 BOUNDARY CONDITIONS

The appropriate types of boundary conditions and
the means by which they may be computed follow directly from the
cell surface properties given in Subsection III-2c. The boundary con-
ditions must be such that these surface pProperties can be computed;
generally, this requirement means that all of the fields outside of

the boundary must be prescribed,

In the case of the hydrodynamic equations, how-
ever, an additional type of boundary condition arises if the flow is
supersonic out across the boundary. In this case, Equations 69
through 71 show that the surface properties on the cell boundary
are given by tne properties in the last cell within the boundary.

Thus, the external fields need not be prescribed for this case.

In addition, it is possible to replace the surface
property calculations of Subsection IlI-2c by specified surface proper-
ties. For example, if a cell surface is known to coincide with a
hydrodynamic shock wave, a subroutine containing the Rankine-
Hugoniot relations can be used for the calculation of the cell surface

properties.

5, ESH GE

The finite difference equations of Subsection III-]

have been written in a generalized geometry which facilitates the

47

e - y, it P AR S —— B i =




g o e

aligning of the cell sides with any discontinuities in the flow. This
generalized cell geometry coupled with the motion of the mesh implies
that the cross sections of the cells are quadrilaterals, but not necess-

arily rectangles.

a. One or Two Dimensions

Three coordinace systems are used: plane, cylin-
drical, and spherical. In the first two of these, computations may be
chosen to be either one- or two-dimensional; calculations in the spheri-
cal system must be one-dimensional. The ability to choose between
one- and two-dimensional calculations results from the surface flux
technique of differencing the equations: a one-dimensional calculation
is achieved if two of the cell sides are dropped from the summations
in Equation- 28 through 30, 36 through 38, and 41 through 44 .
This dropping is achieved by setting the flag NDIMEN equal to unity.
In addition, the z-component equations may be neglected in some of
these calculations (but need not be). The resulting calculations will
be executed as quickly as if the code had been written specifically for

one-dimensional calculations.

b. General Quadrilateral Shapes

The general quadrilateral cross section of a cell
is depicted in Figure 2. In the case of cylindrical geometry, this
Ccross-sectional area is revolved around the z axis (Figure 1) to gen-
erate the computational cell. In the case of spherical geometry, the
cell is a spherical shell, as illustrated in Figure 1. The choice
between these three geometries is made by setting the geometry
option word, IGEOM, equal to one for plane geometry, two for cylin-

drical geometry, and three for spherical geometry.
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c. Method of Specification

The parameters. needed to specify the cells are
depicted in Figure 2. Each cell is bounded by two rays and two
arcs; cell (i+1/2, j+1/2) is bounded by rays i and i+l, and by
arcs j and j+l. These rays and arcs intersect to form the four
corner points of the cell: (i, 3 (i+1, ), (i, j+1), and (i+l, j+l).
The totality of cells between any two rays is referred to as a

column of cells.

The arcs constitute the moving portion of the mesh.
As a result of this moticn, the arcs may become discontinuous as

shown in Figure 8.

i+l
Fd
,"i —
f‘, s
. ”
z v -
‘ o rd _.‘_

Figure 8. Discontinuous Arcs

The rays, however, are fixed straight lines during any one calcu-
lation. Thus, cell (i+1/2,j+1/2) is completely specified if the
angles a. and @,,1 ©f the adjacent rays are given, if the intercepts
z, and Z. of the rays onthe z axis are given, and if the dis-
tances di,j’ di, +1° di+1,j and di+1,j+1 along rays i and i+l
from the z axis to the corners of the cell are given.
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As can be seen from Figure 2, all of the areas and
volumes associated with a cell are computable in terms of triangles
and triangles of revolution about the z axis. Thus, the development
of the formulae for the cell geometry is straightforward. The results

are summarized in Appendix VII.

The first ray (i=l) and the last ray (i=I) are consid-
ered to be external boundaries, and have their surface fluxes pre-
scribed in subroutines. In this fashion, the changing of boundary

conditions is reduced to the changing of a few subroutines.

In the same way, the first arc (j=1) and the last arc
(j=-Ji+1/2) are considered to be external boundaries. In addition, the
moving mesh can accommodate itself to moving boundaries; thus, any
number of internal arcs may be aligned with discontinuities in the
internal'flow. For example, a contact surface might be represented
by arc j=5 in column (i+1/2), arc j=6 in column (i+3/2), and so
forth. All of these arc boundaries, both external and internal, have
their surface fluxes prescribed in subroutines; thus, external condi-

tions and internal discontinuities are easily changed.

In any given column, the arcs which are not associated
with either external boundaries or internal discontinuities are positioned
along the rays in such a way as to provide equal spacing between the
discontinuities. Thus, the location of the points of intersection of all
non-boundary arcs with the rays can be computed if the points of inter-
section of the boundary arcs are given. For example, if arc j=Ji+1/2
has intersections with rays i and i+l located at di, 7 and di+1, 39
and if the next boundary arc is an internal boundary on arc j=N with
points of intersection at d. and d,

i, N itl,
points of intersection are located at

N; then the intermediate




d -d
_ i, N~ i, 7J
di,j - di,j+1 * TIT-N (114)
and
i+1, N - %41 J
- KA 2
Ll er, o1t T-N =)
d. Multiple Boundaries

As can be seen by an examination of Figure 8, the
moving mesh may cause the face on ray i of cell (i+1/2,j+1/2) to
share ray areas with the faces of several cells in the next column,

In such a case, the characteristic property calculations of Subsection
III-2c are carried out on each portion of the face, and the summations
in the integrated equations of Subsection III-1 are taken over all portions
of the cell face. The ray area formulae in Appendix VII can be used

for the computation of each of these partial cell-face areas.

This technique of summing the fluxes on multiple bound-
aries has been used successfully in References 3 and 5. The method

ensures the conservation of Mmass, momentum, and energy.

6. MESH MOTION

To follow the motion of the external and internal
boundary arcs (if they move), it is necessary to allow all of the arcs to
move. Thus, the motion of the boundary arcs is determined by the kine-
matics of the boundary, and the motion of the reinaining arcs is scaled

to maintain equal arc spacing between boundaries.

a. Node Velocities

The nodes are the points of intersection between the arcs

and the rays. Those nodes which lie on arcs corresponding to internal
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or external boundaries have their velocities determined by the velocity
of the arc normal to itself. The means of computing these node veloc-

ities.can be e;cplained with the aid of the geometry depicted in Figure 9:
r

4

Z<
Figure 9. Node Velocity Geometry

The geometry illustrated in Figure 9 is easily calculateq from the for-
mulae of Appendix VII. The arc velocities, W; and Wz, are given

by the kinematics of the boundary; for example, a contact surface moves

at the local material velocity and a shock wave moves at that velocity

which renders the pressure, density, and velocity jumps across the dis-
continuity compatible with the Rankine-Hugoniot equations. These kine-
matic velocity calculations are included in the internal or external boundary

subroutines appropriate to the arc in question.

In terms of the definitions illustrated in Figure 9, the node

velocity is

- 4(,1 WQISin Ya+ 'LQW]_I sin Y]_]
Vn = -[ ’Ll + ’{/2 (116)

The velocities of the nonboundary nodes along a ray are
scaled to maintain equal node spacings between boundary nodes. For
this purpose, Equations 114 and 115 are used with the distances

replaced by the node velocities.
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b. Cell Surfaces

The surface faces of the <:lls on the fixed rays do not
move, but the faces on the arcs do move. The velocity of an arc face
normal to itself is evaluated by calculating the volume swept out by
the arc face during the time step and dividing this volume by the product
of the face area and the time step. This procedure is used to ensure
that volume is conserved by the floating mesh. Thus, if the position of
node (i, j) at the start of the time step is d (0) » the position at the

end of the time step is

d1,j(At) = di’j(O) v 5Ot (117)

1L,)

where vi,j is the velocity of the node along ray i as given by Equa-
tion 114 or Equation 116 . The node positions before and after the
time step are used in the cell volume formulae of Appendix VII to
obtain the volume swept out by the cell face during the time step, AV,

The velocity of face (i+l/2, Jj) is then found from

1

-AV/(S * At) (118)

Wie1/2, 5 +1/2, j
In previous calculations with this type of moving mesh
(Reference 5), it has been found necessary to recompute the velocity
of any internal boundary arcs according to Equation 118 for the sur-
face flux calculations; the velocity so computed differs only slightly
from the velocity given by the kinematic subroutine corresponding to
the a.rc, but this slight difference is sufficient to cause inaccuracies

because of lack of conservation of volume.

7. STABILITY ANALYSIS AND TIME-STEP CALCULATION

The stability analyses used on these equations is based

upon the von Neumann necessary condition as presented by Ricatmyer
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(Reference 14). The equations are linearized, the amplification
matrix is found, and the eigenvaluee of the amplification matrix are

determined. Stability requires that these eigenvalues be less than unity,

a. Two-Dimensional Stability

It is shown in Subsection B. 3 of Appendix 3 of Reference
3 that the two-dimensional code will be stable if the time step is chosen
to satisfy the inequality

Atr Atz

TRp— g
S m,vor

(119)

where At, and At, are the time steps for which the one-dimensional

calculations in the radial and axial directions, respectively, are stable.

b. One-Dimensional Stability

For the hydrodynamic equations, it is shown in Appendix
G of Reference 3 that the numerical method given here is stable in

the radial direction if the time-step At,. satisfies the inequality

h
- (120)

Atr = |ur| +a

in every cell of the mesh and for each species. Here, h, is the dis-
tance across the cell in the radial direction, u,. is the velocity in the
radial direction, and a is the speed of sound within the cell. A simij-
lar expression holds for the axial time step, Atz . Equation 119 is
valid if the cell surface properties of Subsection 3. 2. 3 are evaluated
at the start of the tiine step. It is found in Reference 3 that the time
step permitted by Equations 119 and 120 is sufficiently long to allow

large percentage changes (as much as 50 percent) of the flow properties
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within a cell. Since larger percentage changes would raise the ques-

tion of accuracy, this time-step limit is considered satisfactory.

For Maxwell's equations and the equations of radiation
transport, however, the situation is somewhat different. If the cell
surface properties are evaluated at the start of the time step, it can

be shown that the stable time step must satisfy the inequality

At, < h./c (121)

r =
where c is the speed of light. Obviously, Equation 121 presents

far too stringent a limitation on the time step for a Practical numerical
Procedure. However, if the cell surface properties are evaluated at
the end of the time step, it can be shown (Appendix VIII) that the numer-
ical procedure is stable for any time step. Consequently, this option of
evaluating .he surface pProperties at the end of the time step is chosen
for Maxwell's equations and the equations of radiation transport. In

the case of one-dimensional calculations, the resulting numerical equa-
tions are easily inverted and solved directly, but in the case of two-
dimensional calculations, an implicit set of equations results, Although
there exists a number of relaxation methods for solving implicit equa-

tions, r.o method has been selected yet,

8. ORDER OF COMPUTATIONS IN THE CODE

The general flow of logic in the code is indicated in detail
in the flow charts in Appendix II. The various formulae presented in this
section are coded into subroutines and called as needed. The flow charts

not only show the flow logic, but also give the FORTRAN II coding used.

The code does not yet contain Maxwell's equations or the

equations of radiation transport. Furthermore, the code has not yet

. . "
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|
been completely checked out, although some test calculations have
been run successfully.

A few minor subroutines are not shown in the flow
charts.
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SECTION 1V
DISCUSSION

A numerical techniqu.e has been developed, but not

yet fully tested, for the study of the dynamics of high altitude nuclear

bursts.

1. METHOD OF USE

The numerical technique developed here can be used

for both one~dimensional and two-dimensional studies,

a. One-Dimensional Coupling Studies

It is proposed to use the physics code described above
in a series of one-dimensional calculations to study the coupling to the
atmosphere of the debris from a high altitude explosion. Separate
studies are proposed for collisional coupling, electromagnetic pickup,

and pickup by scattering off of magnetic turbulence.

The collisional coupling studies will be carried out by
~use of expressions for the rate of change of momentum caused from
collisions. These expressions are functions of the collision cross sec-
tions; it is proposed to vary the densities, energy of the debris, and
Cross sections within their range of uncertainty to observe the transi-
tion from collisionless flow to fully coupled flow. Scaling laws for this

transitional region can then be developed.

The two-stream instability also can be studied with the

one-dimensional physics code. Two neutral streams of ions and electrons
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are allowed to approach one another in the absence of collisional
terms. The presence of the complete Maxwell's equations in the code
ensures that any electric field generated by density perturbations will
be computed. This type of computation should give information as to
the effective role of the two-stream instability in the coupling process.
Here again, scaling laws giving the magnitude of the perturbation and

the degree of pickup can be developed.

The one-dimensional code also can be used for studies
of coupling by scattering Of ions off of magnetic irregularities, The
magnetic field is assumed to be trapped in the hydrodynamic turbulence
in accordance with the model of Reference 15. The turbulence itself
is computed by introducing a turbulent viscosity coefficient into the code,
and using the scaling laws of Kolmogorov's theory (Section 32, Refer-
ence 16). The cross-section for scattering is given in Reference 15.

By ccupling the scattering off of the magnetic irregularities to the
general flow by means of the Physics code, it will be possible to de-

duce whether or not such a phenomenon can cause coupling,

b. Two-Dimensional Studies

The physics code discussed above also has been developed
in a two-dimensional form (both plane and cylindrical symmetries). It
is proposed to use this form of the code to study ""Longmire'" coupling

and to compute the gross structure of the expanding debris,

The concept of ""Longmire' coupling is fundamentally
two-dimensional, because it involves the generation of a magnetic field
by a stream of ions and a turning of additional ions by the magnetic
field, The ability to remove the collisional terms from the code plus

the presence of Maxwell's equations in the code permits the simulation
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of this coupling. The computation is set up in cylindrical coordinates.

A small region of ionized particles in the center of the computational
mesh is given an initial outward velocity, and the ambient conditions
outside this expanding region are taken as those of an ionized gas at
rest in a magnetic field. The initial expansion energy, degree of ioniza-
tion, and initial density can be varied in a Parametric study of this form
of coupling, If coupling does occur, appropriate scaling laws can be

deduced.

Once scaling laws for the various types of coupling have
been deduced, it will be possible to use the two-dimensional code for
studies of the overall expansion of the debris from high altitude explosions.
These scaling laws can be introduced at the expanding outer boundary of
the debris in the same fashion as the Rankine-Hugoniot equations are

introduced at the outer boundary of conventional hydrodynamics codes.

It is worth noting that the numerical Procedure developed
here can be used either as an Eulerian procedure or as a Lagrangian
Procedure. In a one-dimensional calculation, for example, the code
will be Eulerian if the mesh is fixed in space; on the other hand, the
code will be Lagrangian if each cell surface is caused to move at the

local fluid velocity,

¢. FURTHER DEVELOPMENT

The proposed physics code is capable of yielding detailed
numerical information on the problem of the coupling of the debris of
high altitude nuclear explosions to the ambient atmosphere. The code
is also capable of incorporating this information in a manner suitable
for the computation of the late-time debris structure. Most of the
code as described in the foregoing section has been written but not

debugged. Maxwell's equations have not yet been coupled into the code,




and the theory for the treatment of Maxwell's equations in two

dimensions is not yet complet::.

For the one-dimensional code, therefore, it is pro-
posed that the first task be the debugging of the existing code. There
are many solutions of channel flows which may be used to demonstrate
the accuracy of the code. The second proposed task is the development
of subroutines for the various thermodynamic and kinetic models, It
is suggested that an equilibrium air equation of state be coded into a
subroutine, and that a set of reaction rate equations for the decay from
a nonequilibrium state to the equilibrium state be developed and coded.
In addition, icis suggested that this second task include the development
of subroutines which give the source of momentum due to particle col-
lisions and due to scattering off of magnetic irregularities. These last
two subtasks will involve finding or developing mathematical expressions

for the cross-sections for the proposed reactions.

The third task proposed for the one-dimensional code
is the adding of Maxwell's equations to the code and the suosequent de-
bugging. The theory of the characteristic flux method as applied to
Maxwell's equations in one dimension is completely developed, and the
relevant stability analyses have been made. These equations can be

coded in a fashion which is stable for any time step.

For the two-dimensional code, itis proposed that the
first task be the debugging of the existing code. The blast penetrat’ .n
calculations of Reference 3 can be used as one stancdard during the de-
bugging, aud the point explosion results given in Sections 11 and 12
of Chapter IV of Reference 17 can be used as a second standard. These

proposed standards cover the cases of strong interactions of high energy

o0
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streams with associated material interfaces and of high energy

release in a small region.

The second task proposed for the two-dimensional
code is the development and introduction of the appropriate thermo-
dynamic routines. These routines would include all of those developed
for the one-dimensional code, plus all of the scaling laws for coupling
developed by use of the one-dimensional code. The latter class of
thermodynamic routines would S€rve as proven coupling laws which can

be used in the computation of the overall structure of the expanding debris.

Finally, it i3 proposed that a method be developed for
coupling Maxwell's equations into the two-dimensional code. The charac-
teristic flux technique has been apolied to these equations, but the resulting
stability matrix is not explicitly solvable and has not been evaluated numer-
ically. Itis suggested that evaluation of the stability matrix be undertaken,
and that the equations be added to the code if proven stable. If the equations
are not stable, itis suggested that attempts to generate a stable technique

be undertaken.
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APPENDIX I

CONSERVATION EQUATIONS FOR A REACTING
NONEQUILIBRIUM MIXTURE OF GASES

The derivation of the usual hydrodynamic conservation
equations for a nunreacting mixture of gases from Boltzmann's equa-
tions is given in many texts on physical gas dynamics. A similar
derivation is presented here in order to demonstrate and document
the consistence cf the definitions used in Sections II and III of this

report.

1L, DEFINITION OF KINETIC PARAMETERS

Assume a chemically-reacting mixture of gases, and
assume that all interactions are weak; i.e., no electromagnetic or
radiative collision effects. Assume N species, including electrons

(the species may be ionized).

Let pa denote the mass per unit volume of species a,

and let p denote the mass of mixture per unit volume:

\

N
P = o; Py (122)

Let fa('ﬁ, T, t) be the single-particle distribution function for species

Q@ andlet
n, = number density of particles of species «
My = mass of a particle of special a

Then

03




n (%,t) = ffadua (123)
and
Pe(Tt) = mn (7,1 (124)
The mean velocity of particles of species a is defined
as
- uafadua
(uy) Sy o
ffaduu.
= L f= 3 125
" n fua £, a4, (125
a
The mass velocity of the mixture, ?1, is defined as
N
-y 1 bad
S SRR 2
P a=1 e

The thermal velocity of a particle of species a, ?’aa
is defined as

:v.a = ﬁa- (T:'u) (127)

Note that IEquation 127 is hot the conventional definition of thermal
velocity, which is expressed in terms of the mass velocity of the
mixture. It is felt that for the situations considered here, which are
nowhere near being equilibrium mixtures, species temperatures are
better based on the motion of the individual species than on the motion
of the mixture. The latter motion is given by the mean thermal vel-

ocity of a particle of species a, (V,), defined as

(V) s ﬁa -0 (128)
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obviously,

v, - (Vo) = T-(Uy (129)

-t

The diffusion velocity of particles of species a, Va, is usually defined

as

v = <Ga> -u (130)

Thus, Equation 129 becomes

-t

Vo~ () = -V, (131)

2. BOLTZMANN EQUATION FOR SPECIES o
:

Using tensor notation, the time-rate-of-change of species

@ within a fixed volume in , T) space is
d &
% fffadudr
afa, - -
/fw dudr (132)

This change results from two physical phenomena: 1) particle flux

d
3 (P V)

across the surface of V; and 2) particle sources within V. The

change arising from particle fluxes is

d i
Et-(no‘v)flux = - {fam vids (133)
where
o, = generalized velocity of a particles in

(U, Ty) space,

V. = unit outward normal to S,

o~
Ut
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and

S = bounding surface of V.

Using Green's theorem on Equation 133
d .[;( i
- \'s = - Jltw) dv (134)
at (”G )ﬂu.x o )'i

For the three position variables,
= u (135)

and for the three velocity variables,

-

P o
T =

Fo [my (136)

where F; is the force on a particle of species 0. Notethat u' is

i
not a function of r~ within the integral, so

(137)

Also, note that the only velocity-dependent forces on particles are

the Lorentz forces:

i ijk
Fa o« e Bkuj
oF
a a .«
_i o -—-eleBku
du Bul
~ glik b By (138)
= 0
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Using Equations 136 and 137 in Equation 134 gives

d _ i
E‘nﬁv)ﬂux = -‘/;cp fa’idv (139)

a. Source Terms

The particle sources within the six~-dimensional volume
V are (1) creation of particles within physical space by chemical or
nuclear processes; and (2) creation of particles within velocity space

by scattering from another element of velocity space. Note that the

nuclear processes involved here may emit or absorb photons, and
the numerical processes being developed for these equations can treat
photons as well as other species. Let the particle sources be defined

as follows:

Ro. = number of particles of species Q generated ﬁ
per unit time in unit phase space volume around
point (4, 7) by all processes;

Ea. = number of particles of species G lost per unmit
time in unit phase space volume around point
(4, ?) by all processes.

Then
d ( ( &=
- (nV = - dv (140)
dt\'a )sources ./;, Ro Ra')
But
d [ d /[ . d (
- = i —— 141
& (%) & (R flux | dt nyY) (141)

sources

Combining Equations 132, 139, 140 and 141 >

of

a i —_ 3
’/“,-:;dv = -./\;cp fa’idv"-_/\;@ﬁ-Rﬂ,)dv (142)
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Noting that the volume of integration in Equation 142 is arbitrary,

the Boltzmann equation results:

df of F of
a = a Q o} -
——— ¢ e | —— [ -
St +u 32 ) —_rau Ra RO. (143)

The source rates in Equation 143 are net rates result-

ing from all possible reactions; thus,

(2)

R = + R (144)
a 0- a N
By oy * By, s BY
where
(2)
Ra. By = rate at which particles of species B and vy
?
react in two-body collisions to form particles
of species o, and
(3)
R = rate at which particles of species B and Y
a, By;é

react in three-body collisions (in the presence

of species §) to form particles of species «

Equation 144 obviously can be generalized to include higher than

three-body collisions, but such effects seem unimportant.

There is a similar equation for Ea:

: ZR (2) Z

=]
i

145
as.v (145
where
(@ = rate at which particles of species a and B
ah react in two-body collisions to annihilate par-
ticles of species @, and
68
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and
_ 3

RaB Y rate at which particles of species @ and B react
»

in three-body collisions (in the presence of species

Y) to annihilate particles of species a.

It should be remembered that the terms ""form" and "annihilate' as
used in the above definitions refer to an element of six-dimensional
phase space, and include scattering from one element of velocity space

to another element of velocity space.

The above source rates car be expressed in terms of
Cross sections as follows. Suppose that a particle of species O and

a particle of species B traveling with relative velocity

g 7 9 -ugl (146)
have a cross secticn for the reaction
a,B-v,8,¢ (1?17)
of
n({iY, B0 B 2gg) (148)

where the cross section depends upon the velocities of the product

particles. Then the rate of formation of particles v,8,€¢ because of this

particular two-body interaction, rYée B is
rY5€,Q3(uY' Uy, U » T, t /:/;‘ u ,r, . B(uB, T, t)
gaB . Q(uY, u6, a d QB) du duB (149)

The rate of formation of any one species by two-body collisions is

(2)

Y’ aa(u ’ 1' t = ./../.ryée, QB(uY' us, Ugs T, t) du6 due (150)
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It is clear that if a standard form (such as the Maxwellian) for the
distribution functions f(1 and fB can be assumed, and if the cross
sections, (1, are known, the int~grals in Equations 149 and 150

can be evaluated, at least numerically, ahead of time.

The rate of loss of species a beczuse of this two-

body collision is

(2

Ry ('ﬁa, 3, t) = ./]../ fa('ﬁa, I, t) fB('ﬁB,'i-', t) Bag

. Q(uy’ U, ue;gas)qu du6 due duB (151)
Consideration of the integrals in Equations 149 through
151 makes it clear that the two-body source rates must satisfy the

following '"Compatibility Relation'

- (2) _ =2 £
Rop 49y = py 4% = IRy qp @,
“(2) (2)
= ﬁ"a,aa di, = ﬁ"e,as 4 (152)
b, Reduction to Spherically Symmetric Intermolecular Potential

That the above definition of two-body source rates is
a satisfactory generalization of the definition given in standard texts
on nonequilibrium kinetic theory may be seen as follows. Suppose
that no nuclear or chemical process takes place during the two-body
interaction: then particle Y is the same particle as particle a,
particle & is the same particle as particle B, particle € does
not exist, and the interaction degenerates into a two-body scatter.ing.
Because the integration over dﬁ‘q reduces to a delta function at Ge =0,

Equations 149 and 150 give
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(2)

R (57 [l g,

. Q(uY, ua;gaB)dua duB due5 (153)

If the intermolecular potential is spherically symmetric,

Q(IIY,IIG; aB)dﬁb - Q(w,gas)dw | (154)

where w is the angle of scattering (this expression is merely the
statement that conservation of angular momentum in an elastic ‘we-
body collision shows that the scattering cross section can only
depend upon the relative velocity of the two approaching particles
and upon the angle of scattering (see, for example, Section 3. 2 of
Reference 18), Furthermore, if & and GB are specified, the con-
servation of momentum allows calculation of Iia (mathematically,
=0 except for the curve ?la = 'ﬁa( w, GB«”' Thus, Equations 153
and 154 become

(2)

R (GY,?, t) = fﬁa[ﬁa(w,ﬁa),?, t]fB(a’B,?, Y,
 8ag a (4 8yg) dw iy (155)
In a similar fashion,
0, 5,5, ) W W, Ty = 0fv,g)auas, (156

B

Thus, Equation 151 becomes

_(2 -~ - 5 -
Ra. = .[/;a(ua' T, t) : fB(uB, r, t) gas ‘0 (w, gas)dw duB

For an elastic two-body collision, specification of §

(157)

causes ﬁa and 'ﬁB to become definite functions of 36. Thus, Equa-

tion 155 can be written
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R, (.59 - jﬁa[aa(ay,ab, w),?,t;l'gas-ﬂ(w,gas)
. fs[ﬁs(ﬁy,ﬁa,w),?, t] dil, dw (158)

Now interchange the indices in Equation 158 and note that conserva-

tion of momentum requires that gu.B =g

Yé
(2) o " e .
R, (G,%t) = _/ﬁa [uY(ua. g w). r.t] " Ep ﬂ(‘”. 2qp)
. fé[ (u uB,W) ]dﬁB dw (159)

Now let Yy~a' to represent particle a after the collision, and

6 = B’; Equations 157 and 159 give

(2) (2)
Ra - Ea = jﬁfa’fs’_fafs) ga,BQ(w' aB)dwdﬁB (160)

Equation 160 , except for minor differences of notation, is identical
with the source rate equations usually given in texts on nonequilibrium
kinetic theory (see, for example, Equa‘tion 3.34 of Reference 18).
Thus, Equations 150 and 151 are satisfactory generalizations of the

source rate terms in the Boltzmann equation.

o Source Rates for Three-Body Collisions

The three-body source rates can be treated in & similar
fashion. Thus, assume that particles a, B, and y approach a col-

lision region wiih velocities ?10,’ HB, and ﬁy, and define

md +mu +mu
BB (161)

3 m+m+m
a Y

B

Let the cross section for the reaction

-
u

a,B;y = 6,¢ (162)
be
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Q(ub.ua | U uB;uy) (163)

y where the notation denotes that particle Y may not enter into a chemi-
cal or nuclear reaction, but serves only to carry off excess energy.

It should also be noted that particle € need not be Present (u = §(0));
for example, in the case of molecular recombination, atoms a and B
recombine into molecule § with particle Y serving to conserve
energy. The flux of particles of species O towards the collision area
is fa(“a.' r, ) | u, - u3 | » With similar expressions for the fluxes of
particles of species B and Y. Then the rate of formation of particles

6 and € due to this particular three-body interaction, rée agy is

Voe aey(u SR -/]]i“a'% -] - 3 -,
Y fa(ua.' r, t) i fﬁ(uﬁ’ r, t)' fY(uY’ r, t)
: n(aé,ae Ty 'ﬁs;ﬁy)dﬁa diy G, (164)

The rate of formation of any one species, 4, by three-body processes

is then
(3)
RG.GB;Y(ué'?' t) i} ﬁ&e, GBY(ué’ Ues T t) du, (165)

The rate of loss of particles of species 4 due to this three-body pro-

cess is

3 . . - .
Res, y(ua' Ts t) B fffﬁaa"% . IHB-u3| . Iu\('u3I
. fa('ﬁa, 'r',.t)- fs(ﬁs,?, t)' fY(ﬁY,?, t)

. Q(ub, u, Iua, uB;uY> qu dut5 due duB (166)

: It is clear from Equations 164 through 166 that the three-body source

rates must satisfy the following ""Compatibility Relation: "
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/'_(3) . —3 3
RaB,Ydua = RB@.YduB = ﬁé,GB:Ydué

(3)
Re. ag;y

dd_ (167)

With the source rates in Equation 144 defined, Equa-
tion 143 can be used to generate the conservation relations needed

for the numerical study of high-altitude coupling effects.

d. Equation of Change

Let xa('ﬁ) represent some parameter associated with

species Q. Then the equation of change is

G. fd -.G. alfd. =
L —_— gt a2 P 168
of3c T UST R du _/;( (ROL Ra)du (168)

o, ) — 3 " .
f w8 frlo)® - 2fix a

)
T3 (na (Xq >) e
Similarly
f afa 3 -
2.9 o - STy -\ - = - 170
Xqi 37 du /;? (fa Xau) du ¥ (na<xaua’) (170) %
Also ;
F_  of
o [« R )
‘/;(Gx—n: ﬁdu B 3 xam f di - G.Bu (xa. a./m du
(1 71)
Now . !
) Ea fa uama.x
. — a = — - 1
5T \Xa o £y Jd8 Xg = £ 0 (172)
a a 2N
. ua‘min
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because

fa (_ﬁamax)

Also, as indicated in Equation 138

o) -

3%- f.:a = 0 (174)

thus, Equation 171 becomes

F 2 Foo }
X, — — du = o Jf ——c g, X. du
(o ma du Q my u a
na =
= - ] 9 ey 175
= <FG. Vo X ) (175)
o4
Finally
/;(a(Ra R = A [Xa] (176)

where VLX ] denotes the time rate of change of Xq Per unit volume

(r t) because of chemical, molecular, and nuclear interactions,

Using Equations 168, 170 » 175, and 176,

a‘a{ (na<xa.>) +- (na<xaaq)) = % <§a ’ -V'.ﬁxa> + v [Xa] (177)

3, CONSERVATION EQUATIONS

The "Conservation' equations required for the numeri-
cal work are obtained by choosing Xq @8 the mass, momentum, and
energy of a particle of species a. To handle the excited states
of the atomic and molecular species, it is convenient to enumerate the
possible internal energy states of species a; thus, if state GB

B=1,2,... » Na) denotes one of the possible internal energy states

75

-

T

-




of species B, the corresponding internal energy is denoted by eaB
(internal energy per particle). Furthermore, statc GB itself will
have a distribution function, fo‘B (@,T t), which gives the number of
particles of species a in internal energy state GO‘B per unit velocity
volume and unit physical volume at time t. It is clear that the over-

all distribution function for species O is given by
Ng
£8,5,1) = : fag (G, 7, t) (178)
B=

Let y(U) be an arbitrary function of velocity only.

Then, as in Equation 125

ﬁm%ﬁ

1 -
) = — = - d 179
Wy TfaT- oy V£ du (179)
Similarly .
1 f =
s, =i d 18C
(Vog) e J ¥ fap & (180} :
where
- 2 181
nag ffaB du (181)
Substituting Equation 178 into Equation 179 '
Na
n(y) = ,wZ;faB dd
B= ®
2
= ¥ fo du
g=1/ P
N
= % o (o) (182
B:l B B
by use of Equation 180 .
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By use of

ma = maB = ll!a

Equation 182 gives

N
e = 3 b (184)
a i B
where
- 185
PaB naamas (185)

a. Conservation of Mass

Let
Xg = my = mo‘ﬁ (186)
Then
ax, = 0 187)

and Equation 177 gives

5% (a,ma) + 7 - (Ragmy (a,) = A[mas] (188)
Summing Equation 188 over all Gs

Nea

~ ::B‘“a'("“e(ﬁ“e)) 'A['““e]} =0 e

Multiply Equation 182 by m, = maB:
N .
a
Pl = 2-:1 Pag(¥ag) (190)
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Equations 189 and 190 show that

op

<o+ (pg( ) = A[ma] (191)

where A [ma] is the time rate of change of mass of species QO per
unit volume at (7, t) because of chemical, molecular, and nuclear

processes.

b. Conservation of Momentum

Let
= j
Xag = myu (192)
where u’ is the x’ component of u. Now,
= = - P i_@_ j )
<Fa vﬁxa) = My Fo. aui >

i j
ma<Fa. éi Y

ma<F£) (193)

Using Equation 193 in Equation 177
Pa

o™

g

':T(PG.B(-“.(;B )) + V- (Paa<aa,sﬁas )) (fa) + A[ma-‘;as] (194)

Summing Equation 194 over all g8 and using Equation 190

aa_t@amtx)) + 3'(pa<ﬁaﬁa>) = ’:—i (§°‘> +Y [maﬁa] i

where A[maaa] is the time rate of change of momentum of species

@ per unit volume by chemical, molecular, and nuclear processes.
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c. Conservation of Energy

Let

XG’B qu +-—g'—_.. (196)

Here

. m .
F - v - - & o
(F, VaXg) <F“ i(€°‘B +Tuuj)>

i
™My Fa ujw-i— ;
n

ki

L]

m(F ujaj>

< gl ) Ly

Using Equations 196 and 197 in Equation 177

2
m, Uy
3 a s ““s
e 35) 5 oo 2
- m 2
Syt dd o

eq, = eaB/ma (199)

Defining

internal energy per unit mass of

]

species Q in state B

Equation 199 becomes |
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2
p o Uqg,
= -—ai( a.aas>+Amae“B+—2g (200)

Summing over all g and using Equation 190 to effect
2
pa(ua) ZSPO‘B(ua‘B > » Equation 200 gives
N

e, + 3'(23(31112)43‘ aP eq, (g )
ata 2 ‘a o sz=:1a3 B %g

pa = — Na' | ' uasz
= =(F T )4 B;Ama eag + = )| (201)

m a

Q

where Ny ]
Pty = gpdﬁ ®ag (202)
But
; N
Bz__flp“Be“B(G“B ) = Paea(ua) + Bépaseas(wx )= Pye ()
= )
= paea(ua) + £ QCLB (203)
where
6% = Pog e“B(G“B -4) (204)

is the excitatio's heat flux vector of species a, 60, arises from the

B

fact that the excited states of species O may have different velocity
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distributions than the ground state; indeed, because different excited
states result from different sets of collisions, it seems probable that

the distribution functions of the various excited states will differ dur-

i

ing some nonequilibrium period. If fo‘B = TB- fa » then
a

('ﬁas -'ﬁa) = 0 and 60‘5 = 0. In general, however, a diffusive

heat transfer within species a due to the existence of excited states

with unequal distribution funciions will exist.,

Using Equations 203 and 204 in Equation 201 the

energy equation becomes

o~ 2 -2
aa_t(paea) +9 '(pamaea.)) = ¥ [paéa(<1;'> B _“;_)
2

)

NG. p ug
- ~ [+ - o
-V Z Qqs+-r;w(Fa‘uu>+Alma(ea+—Z—')J (205)
B=1 (o )
where
2
&g = e+ <-‘-2‘i.> (206)

2
is the total energy per unit mase of species o, and A[ma(ea + —u;-)J

is the time rate of change of the total energy of species a per unit

volume at (7, t) because of chemical, molecular, and nuclear Processes,

Equations 191, 195, and 205 are the required
conservation equations. They can be written in more conventional
form by use of the pressure tensor and the heat flux vector. The

pPressure tensor for species 0 is defined as

ij

" i J 207
PG'B paB<Vaﬁ VaB > ( ) ;
{
1
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where the ;;QB are given by Equation 127

Summing over all 8,

N

o e ) g - o
= p< <u>( -(u’>)> :

pa(va va:]) ‘ (208)

Note that the thermal velocity of an excited particle of species a is
referred to the mean velocity of species a, and not to the mean

velocity of tl?e excited level:

Vag = Ugg - (Ty) (209)
Consider the term

n = pytatud) (210)
From Equation 208

P;J = pa(u;u‘: 5 ua:,(ual) - ual(ua']) + (ual) (ua:, )

n-p [<uaj> Cug )+ Cugty (udy - <uai><ua">]

or

L o)+ pgluy (ud) (211)

Substituting Equations 210 and 211 in Equation 195
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Seated) + (83 4yt PED); = b IR

a
(212)
Now consider the term

Coa@dE) W

from Equation 205

The heat flux vector for species @ is defined as

i Pa, i j ar i
Q, = ?(v“vavaj)+§ QO’B (214)
Now
b e )R- ) (- o
g ) (5 - 28+ ) ?)
Thus
(v vava Yy = (u;'u:) 2{u uj)(ua Y+ (u )(u )

" i) Cu + 260 (ud) ey - (o ()

<( - (u )>-2(Uq)uua-u(u )>

Using Equation 213 in Equation 215 (215)
(v;vivaj) = - Z-E- 2(uy, )< (u ) u -(u ))>
- 2w @ Gl - (uh)) (216)
Noting that |
<uoiL - (u;)> = (u;) - (u;) = 0 (217)
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and using Equation 208 , Equation 216 gives

. . i pij
i J I a
v_va.V = =2 = -2u,,)—
(Vg vagva) Py (g Py

Subatituting Equation 218 in Equation 214

Na
i - - i _ ij ’ i
Q = B -BI(u)+ BE=1 Q“B
or IQ‘(1
i _ . i : ij ’s i
Bo= - - Bug) gl ‘ag

Using Equations 213 and 219 in Equation 205 gives

%(paea)J' (pa8a<u;>),i . Qoli - (Paij<u°'j>),i

a

2
Pa i Ug
t o (Fy uo, )+ A[maéa * T)J

Now consider the term

L = <Fa%>
NG. .
= fo Flu dd
=1 B @

As discussed immediately prior to Equation 138

(218)

(219)

(220)

(221)

» the only velocity

dependent force is perpendicular to the velocity, so Equation 221

becomes
. N(I
1 —~
= F d
vos 5 D ea
B=1
i -
= Faffauidu
= Fa1<u°'i>
84
p—— f

(222)

B &




Using Equations 221 and 222 » the energy equation

becomes
'aa_t (Paea)*‘ v -[pmeama) + B, - (t'la)’

- 2
R . ue \]-
- PaFa (By) + A[ma(ea+ ;)J (223)

mg
2
Yo
where A[maéa + TX is the time rate of change of energy of species

Q@ per unit volume by chemical, molecular, and nuclear processes.

The quantit,

N,
wy (@) = g /(Ras* ‘ Ras*)cpaa* &g, (224)

%

gives the rate at which particles of épecies QO carrying property P,

are generated per unit volume., Let

Wy = reference rate of particle generaticrn per unit
volume (225)
Then
No (Ro,, - Rag,) 9,
*
wyil) = X / - (226)
B=1 *
and Equation 191 becomes
3, |
_a. 3. = 5 227
= v P, (U, Km_w,(1) (227)

Similarly, Equation 195 becomes
a - S . - - ::
a—t(pcx(ua)) vV (pa<ua> (ua) B Pa)

= pa<f“a/ma> +Km w_(d) (228)
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and Equation 205 becomes
) o - =
'a‘{(paea) ol (Paea.<“a> + Fa <“o.>)

= -7 60. & pa(ﬁa/ma) * (G

+ Kmawa(e + uZIZ)

The appropriate nondimensional forms of the conserva-

tion equations are Equations 227 through 229.

(229)
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APPENDIX II

FORTRAN GLOSSARY AND FLOW CHARTS

A quantity in parentheses after a definition is the algebraic

equivalent of the quantity being defined.

A(L, J, N)

ARCCS (L, J)

ARCL{L, J)

ARCSN(L, J)

AREA(L, J)

AREARC(L, J)

AREARY(L, J)

AREARY(l, J)
AREARY(2, J)
AREARY(3, J)
AREARY(4, J)

CELVOL(L, J)

CS(1)

speed of sound of species N in cell J of
column I+L-1( <L s2;1<Js<MAXJIC;
1 <N < NSPEC)

cosine of angle between arc J in column
I+ L -1 and positive z axis (lsL<2;
1 £J < MAXJ);(cos Bi+%,j)

length of arc J incolumnlI+ L -1
t <L<2;1=<J7s<MaxJ)

sinc of angle beiweewn arc J in celumn
I+ L -1 and positive z axis(l <L <2;
l <J <MAXJ); (sing, , .,

) (sin BH"&' J)

cross-sectional area of cell J in column
I+L-1(Q <L <21 <J<MAXJ)

area of arc face J incolumn I+ L -1
Q<L=<21<7sMAXT); (S, , )
i+%,.)

(@ <L<4127<MAXICO); (S, . ,)
) jtE

i
area of face on ray I+ 1 of cell J in column I
area of face on ray I+ 1 of cell J in column I+ 1
area of face on ray I+ 2 of cell J in column I+1
area of face on ray 1 of cell J in column 1

volume of cell J in column I+ L - 1(l <L <2;
1 <J s MAXJC)

cosine of angle between ray I and negative z axis
(L <1 <IBMX); (cos a;)




CV(I, J’ K)
Ccv(1, J,4N-3)

CV(i, J, 4N-2)

CV(I, J, 4N-1)

DALPHA (I)

DEEZEE (I)

DELT
DELTAR
DELTAZ

DFRND (I, N)

DNODE(L, J)
DNODE(1, J)

DNODE(2, J)

DNODE(3, J)

DNODE(4, J)

(] =IsICMX; 1 sJsMAXJIC; ) <K <4 - NSPEC)

total z-maomentum of species N in cell J in

column I ((pNquz)Hi, J'+'7£)
total r-momentum of species N in cell J in

column I ((pNqur)i+%,j+%)
total energy of species N in cell J in

column I ((pNV6N)i+%’ j+%)

sine of the angle between rays 1 and I+1
G<1s IGMX);(uin(am - )

distance along z-axis from intersection of ray I
to intersection of ray I+ 1 (1 <1 s ICMX),

(241 %)

time step

r-increment along arc currently being treated
z-increment along arc currently being treated

distance along ray I from reference point to
the node formed by the imtersection of floating

boundary N with ray I1(1 <I<IBMX;2 <N < 4)

(1sL.s4;1stMAXJ)

distange along ray I from reference point to the
node formed by the intersection of ray I and
arc J in column I

distance along ray I+ 1 from reference point to
the node formed by the intersection ofray I+1
and arc J in column I

distance along ray I+ 1 from reference point to
the node formed by the intersection of ray I+ 1
and arc J in column I + 1

distance along ray I+ 2 from reference point to the
node formed by the iutersection of ray I+ 2 and arc
J in column I + 1
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DRBND(I)

DSTBLY(L)
DSTBLY(1)

DSTBLY(2)

" DSTI

DST2

DVOL(J)

DZBND(I)

EB(N, L)
EB(N, 1)

EB(N, 2)

EBO(N)

EINT(L, J, N)

GAM(L, J, N)

GAMMA (N)

GASCST(N)

r-increment along last arc in column I
l <I<ICMX); (or, , .

( ko itd, Jmax)

(L sL=<2)

minimum distance hetween the arc boundaries
of a cell

minimum distance between the ray boundaries
of a cell

maximum possible ray-segment length
maximum possible arc-segment length

volume changé of cell J in current column
during time-step (1 < J < MAXJ)

z-increment along last arc in column I
f <I<ICMX); (82, , . )

% imax
(l <N s<NSPEC;1sL <2)

internal energy per unit mass of species N on
cell boundary currently being treated

internal energy per unit mass of species N on
first arc of next column downstream

internal energy of species N per unit mass on
the boundary for a problem with constant boundary
conditions (1 < N s NSPEC)

internél_ energsr pPer unit mass of species N in
cell J ofcolumn 1+ L -1 (1 s L s2;
1 < J < MAXJC; | <N s NSPEC)

ratio of specific heats of species N in cell J
of columnI+ L-1{l sL <2;1sJ<MAXJC;
1 < N < NSPEC)

coastant ratio of specific heats for species N
treated as a perfect gas (1 < N < NSPEC)

constant gas constant for species N treated as
an ideal gas (1 < N s NSPEC)




h—._.———-—__-—-—

B S T

IBCD nimber of cycles between which BCD output
is desired
IBMX total number of rays
ICMX total number of columns
IEXTM flag denoting time-dependent boundary conditions
s 0 constant boundary conditions
IECXTM {2 1 time-dependent boundary conditions
IGEOM geometry option word
1, plane geometry
IGEOM 2, cylindrical geometry
3, spherical geometry
IMESH flag denoting whether or not the mesh moves
£ 0 fixed mesh
Hipsy {2 1 floating mesh
(Note: A fixed multi-column mesh in which the
cells differ in geometry from column to column
must be treated as a floating mesh, )
ISLIP flag denoting whether or not arcs must be continuous
at rays
£ 0, arcs are continuous across rays
ISLIP . .
2], arcs are not necessarily continuous across
rays
KTAPE tape number for BCD input tape
MAXJ maximum number of arcs permitted in any column
of the mesh
MAXJIC maximum number of cells permitted in any column
of the mesh
MTAPE tape number for binary restart input tape
MXFARC maximum number of floating boundaries permitted

in any column of the mesh
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NARC(N, L)

NDIMEN

NDIMEN

NFRARC(I, N)

NMOMEN

NMOMEN

NSPEC
NTAPE

NTOT(L)

P(L, J, N)

PB(N, L)

PB(N, 1)
PB(N, 2)

PBO(N)

RGAS(L, J, N)

92

arc number of the Nth free arc in :olumn I+ L -1
NAKC(1,1) = NARC(1,2) = 1 (2<N=<4;1<1L < 2)
number of dimensions

1, one column

2, more than one column

arc number of the arc which represents floating
boundary N in column 1I. NFRARC(I,N) = 0

if floating boundary N does not occur in column I,
(L=sI<ICMX;2s<N<x4)

number of momentum equations being treated

1, radial momentum only
2, radial and axial momentum

number of species under consideration
tape number for binary restart output tape

total number of free arcs in columnlI+ L, -1
(1 =<L<2)

partial.pressure"of species N in cell J of
column I+ L-1(lsL=s2;1sJs<MAXJIC;
1 < N < NSPEC)

( <N sNSPEC; 1 s L s2)

partial pressure of species N on the cell
boundary currently being treated

partial pressure of species N on the first arc
of the next column downstream

partial pressure of species N on the boundary
for a problem with constant boundary conditions
(1 =N < NSPEC)

gas constant of species N in cell J of column
I+L-1(Q<sLs<21=<JsMAXJIC; 1 < N < NSFEC)




RHO(L, J, N)

RHOB(N, L)

RHOB(N, 1)

RHOB(N, 2)

RHOBO(N)

SFLUX(L, J, K)

SN(I)

SORCE(K)
SORCE(4N-3)

density of species N in cell J of column
I+L -1 (lsLsZ;lstMAXJC;
l <N« NSPEC);(pa)

( =N <NSPEC; 1 < L < 2)

density of species N on the cell boundary
currently being treated

density of species N on the first arc of the
next column downstream

density of species N orn the boundary for a
problem with constant boundary conditions

fluxes of mass, momentum, and energy across
the surfacesofacell (1 sL <5 1 <J < MAXJC;
l sK 54. NSPEC)

(1, fluxes entering cell J in current column
across arc J
2, fluxes entering cell J in current column
across arc J+ 1
J 3, fluxes entering cell J in current column
across upstream ray
4, fluxes entering cell J in current column
across downstream ray
\3, fluxes entering cell J in next column
across downstream ray of current column
4N-3, flux of axial momentum of species N
4N-2, flux of radial momentum of species N
4N-1, flux of energy of species N
4N , flux of mass of species N

gine of the angle between ray I and the negative
z-axis (1 <1< IBMX); (sin a,)

( <X =s4. NSPEC)

z body-force on species N in cell being treated
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SORCL(4N-2)
SORCE(4N-1)

SORCE(4N)
SVOL;L)

T
TBCD
TBIN

TIBIN

TULT

UB(J)
UFREE(L, N)

UN(L, J, N)

UNB(N, L)
UNB(N, 1)

UNB(N, 2)

UNBO(N)

94

r body-force plus radial Pressure balance on
species N in cell being treated

work and heat added to species N in cell being
treated

mass source of species N due to chemical

reactions

volume swept out by arc J+ 2 - L, bounding
cell J in current column during the time-step

time (t)
time counter for BCD output
time counter for binary restart output

time increment between which binary restart
output is desired

time desired at end of run

velocity normal to itself of arc J in the current
column (1 <J < MAXJ)

velocity of the free boundary on arc N of column
I+L-1 normal toitself (1 <L s 2; 1 s N s MAXJ)

if applied to an arc: velocity normal to arc J of
species N incell J+ L - 2 of the current column;
if applied to a ray: velocity normal to ray I of
species N incell J of column I+ L - 2

(l sL s2;1<7J<MAXJ; 1 s N s NSPEC)

(t sN<NSPEC;1sL<2)

component normal to boundary of velocity of species
N on the boundary currently being treated.

component normal to boundary of velocity of species
N on first arc of next column downstream

component normal to boundary of velocity of
species N on the boundary for a problem with
constant boundary conditions (1 € N < NSPEC)




UR(L, J, N)

USTBLY(L)
USTBLY(1)

USTBLY(2)

UT(L, J, N)

UTB(N, L)
UTB(N, 1)

UTB(N, 2)

UTBO(N)

UZ(L, J, N)

VNODE(L, J)
VNODE(1, J)

VNODE(Z2, J)

VNODE(3, J)

——y—————— e - -

ol S—.

radial component of velocity of species N in
cell J of column I+ L -1 (-1c<2;
1 <. 2 MAXJ; 1 < N £ NSPEC)

(lsL=s2)

maximum speed of a characteristic normal to an
arc

maximum speed of a characteristic normal to
a ray

if applied to an arc: velocity tangential to arc J
of species N incell J+ L - 2 of the current
column;

if applied to a ray: velccity tangential to ray I
of species N in cell J of column I+ L -2
(l=sL=s21=7J<MAXJ; 1 < N s NSPEC)

(1stNSPEC;lsLsZ)

component tangential to boundary of velocit; of
species N on the boundary currently being treated

component tangential to boundary of velocity of
species N on first arc of next column downstream

component tangential to boundary of velocity of
species N on the boundary for a problem with
constant boundary conditions (1 < N < NSPEC)

axial component of velocity of species N in
cell J of column I+L-1 (1 <L s2;

1 $J < MAXJ; 1 <N < NSPEC)
(=L=<31xJ3<MAXI)

velocity along ray I of the node formed by the
intersection of ray I and arc J in column I

velocity along ray I+ 1 of the node formed by the
intersection of ray I+ 1 and arc J in column I

velocity along ray I+ 1 of the node form=:d by the
intersection of ray I+ 1 and arc J in column I+1
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Sat time counters:
BCD output counter: TBCD = U,
Binary restart output courter: TBIN = 0. .

!

Input all data necessary ta run
problem: CALL INPUT

Set the tima-step parameters:
STBL(I) = DSTI

STBL(2) = DST2

USTBLY(I) = 0.9
USTBLY(2) = 0.0

'

- Begin swaeping through mesh:
DO1IC = I, ICMX

4

Corry out all calculations needed
ta advonce the cells in column IC:
CALL COLUMN )

/

Begin search for the minimum
distances between the rays, STBL(2),

The MAIN program

sets the counter indices, calls for input, calls for tha

advancement af the cells, cantrals the
output of data, computes the time, and

and between the arcs, STBL(1), in
the mesh: DO 2 ID = |, NDIMEN

4

22510y > os1aLy (D)7

Yer | The minimum distance

DSTBLY (1D) in. the current column
is not a is less than the minimum
new minimum distance in any

previous column .

i

Set the new averall minimum:
STBL (ID) = DSTBLY (ID)

Loop not
Loop } completed  campleted

1 CONTINUE

Loop not
campleted

time counters: T = T + DELT;

Ancther cycle is camplsted. Advance
TBCD = TBCD + DELT; TBIN = TBIN + DEL

'l:here are Yes do nat change
time-dependent with time

houndary conditions

Update the unsteady boundory

Na
< IEXTM > 07 / Boundary canditians

canditians: CALL EXTIME

computes the stoble time-step for the next cycls.

Yas Output BCD data:
TBCD 2 TIBCD? CALL BCDOUT

BCD output TBCD =0

is desired :

J

No
Y, Out binary data:
TBIN > TIBIN? it CALL BINOUT
lmary output T8IN = 0.

Na is desired l

Yes

Computatian
No is finished

Compute the fime required for tha
fastest characteristic ta cross
between the closest arcs:

TAUI = STBL(1/USTBLY(I)

What is NDIMEN? = =

g 2 -D. .aray

2-D. Must charocteristic
also consider

ray characteristic
4

Compute the time required for the

fostest characteristic ta cross

between the closest rays:

TAU2 = STBL(2)/USTBLY(2)

Compute the two-dimensional

stoble time=step:

TAUI = (TAUI ¢ TAU2)/(TAUI + TAU2)

Cop— 1EXTM >07?

" limit on the YES| Unsteady boundary
time-step canditions may
) limit the time-step

Caleulate any limit which the
boundary conditions place an
the time=step:
CALL TIMSTP

Set the time-step: DELT = TAUI
Reset the time-step parameters:
Lo STBL(1) = DSTI

STBL(2) = DST2

USTBLY(1) = 0.0

USTBLY(2) = 0.0

Figure 10. Flow Chart of MAIN Program
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Subroutine ADVNGE computes the fluxes
crossing the orcs between the cells of
the current columa, opplias the boundary
condition o! the lost orc of the current

column, ond odvonces tha cells of the
current column,

Compute the number of cells in the column:
JC = JAMX(IC) - 1

!

Begin colculotion of Fluxes on arcs and advoncement

of cells: DO1J =1, J Gyl =y + )

y
J<JdC? e

pemmscse? Last coll
Another [yes

cell vxisis

For each species, compute the pressure, density, and 4

normol ond tongentiol components of velocity on ar¢ J:

DO 11 NS = 1, NSPEC

CALL WALL (A"),d,NS),A(1,d1,NS), PO, J,N9), P(1, 41, NS),UB(Ji),
UN(1,J1,NS, ,UN(Z,JI,NS),UT(I,JI,NS),UT(Z,JI,NS),GAM(I,J,NS),
GAM(I,JI,NS),RHO(I,J,NS),RHO(I,JI,NS),NS, i

11 CONTINUE

Compute the intarnol snergy per unit mass for each
species o ore J: CALL THERM2(J)

!

Compute the fluxes of mass, mamentum, ond snergy
of soch species ertering cell (1C, J) ocroms orc J1;
CALL FLUX (2,4,41,1C, AREARC(1,J1), UB(J1), 1)

!

Compute the sources of moss, momentum, ond energy

For each species, compyte
the fluxes of mass, momentym,
and energy entsring ths iost
vl of the column ocross the
lost are:

CALL BCJAMX(IC)

of each species within call (IC, ) during the
time=step: CALL SOURCE (J)

¥

Begin odvoncing the cells, Loop through the species:

JO 5 NS = 1, NSPEC

. Loop through the conservotion equotions for
species NS: DO 6 NCE = 1,4

3

Compute the number of the equotion being
odvonced: NEQ = 4 « (NS~1) + NCE

What is NMOMEN? >

Compute the net rcte of penerotion of property
NEQ In cell (IC,J) duriag the time-step:

Rofiol momentum
only

Eq. NEQ represents
on oxiol momentum
equotion ond is
not needed for

this coleulotion

ﬁr
Do CONTINUE I'E'r

completed comletad

# Rodiol ond
oxiol momentum

j No
Nees LW Eq. exists,

Advonce it.

DO 9 NS1 = 1, NS
§ "RCE(NEQ) = SORCE(NEQ) + SFLUX(NSI, J, NEQ)
9 CONTINUE

Advonce property NEQ in call (IC, J):
CV(IC,J,NEQ) = CV(IC,J,NEQ) + DELT , SORCE(NEQ),

in column Mo There it ancther
L cell In this column

Beset the flux Indices for the nest calis
SFLUR(, J1, NEG) = - SFLUX(2,d, NEG)

Figure 11. Flow Chart of Subrout'ne ADVNCE
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ARCIIC)

Set index equol to maximum orc number
in column IC: JAMXC = JAMX(IC)

!

Begin computotion of arc velocities ond
of cell volume chongas during the time- .
step: DO 1 JA = 1, JAMXC; JA] = JA - I

Subroutine ARC computes the velocity of eoch
ore In the column narmal to ltself, the volume
chonge of each cell in the column during the
time=step, the fluxes of eoch species crossing
the first arc, ond the fostest chorocteristic
speed relotive to ony orc

IMESH >07? Fixed

Flooting | Yes mesh
mash

Compute the volume swept out by orc JA
during the time-step: CALL VOLUME (1,IC,

JA,1,VNODE(),JA) « DELT, VNODE(2,JA) « DELT,

SVOL(1), DUMMY); Compute the velocity of
arc JA normal to itself:
UB(JA) = - SVOL(1)/(AREARC(1,JA) « DELT)

y

Arc JA does not move during the
time-step: UB(JA) = 0.

The volume swept out by orc JA
is zero: SVOL()) = 0.

4

Begin computing the velocities of eoch species

normal-ond tongentlol to orcs JA and JAI: <t

DO 7 NS = 1, NSPEC

=] JA>LIM

First Interior or

/ orc

Compute the velocities in cell (iC,JA)-

normal ond tongentiol to orc JA:

UN(2,uA,NS) = - UR(1,JA,NS) « ARCCS(1,JA) +
UZ(1,JA, NS « ARCSN(1,JA)

UT(2,JA,NS) = UR(1,JA,NS) o ARCSN(1,JA) +
UZ(1,JA,NS) » ARCCS(1 1JA)

lost orc

Compute the velocities in cell (IC,JA1)

normol ond tongentiol to arc JA:

UN(1,JA,NS) = - UR(1,JA1,NS) o ARCCS(1,JA) +
UZ(1,JA1,NS) « ARCSN(1,JA)

UT(1,JA,NS) = UR(1,JA1,NS) « ARCSN(1,JA) +
UZ(1,JA1,NS) « ARCCS(1,JA)

!

Test the charocteristic speed of species N$

relotive to orc JA to determine whether it

is the fastest in this column:

CALL STBLTY(A(1,JA, NS), = UN(Z,JA,Ns),
- UB{JA), USTBLY(1)

A

Test the chorocterlstic speed of species NS

relotive 1o orc JA to determine whe!’ or it

is the fostest in this column:

CALL STBLTY(A(1,4A1,NS), UN(1,JA,NS),
UB(JA), USTBLY(1))

Y6 1h < JAMXC?
There is o

cell beyond No | Arc JA is the

orc JA boundary orc
H Loop not

=1 7 CONTINUE

completed
Loop ¢ completed
Restore volume swept out by No
Loop '"°' 1 CONTINUE orc to prepare for colculotion First orc REie
completed of next cell: SVOL(2) = SVOL(1) Yes| Interior or
Loop | completed last arc
4

Compute the mass density, energy
density, pressure, ond veiocities
narmal ond tongenticl to the first
orc for sach species on the first
arc: CALL BCJI(1)

!

Compute the fivxes of mass, momentum,
ond energy for eoch species crossing  «
into the first cell of column IC ocross
the first ore: CALL FLUX(1,1,1,IC,

- AREARC(1,1), UB(1), 1)

Compute the volume chonge ot
cell (iC,JA1) during the time-
step: DVOL(JA1) = SVOL(2) - SVOL(1)

Figure 12. Flow Chart of Subroutine ARC

S A e e N — ———




Subrautine ARCGEO computes
the length of o yiven arc, the
sine and cosine of the angle
which the arc mokes with the
positive 2 axis, and the ares
of the celi face farmed by the
are,

Campute the redial and axial

increments of the current arc

fram those of the previous

arc and from the incremental

distanc~s between the ares

along the bounding rays of

the calumn:

DELTAR = DELTAR + DD2 » SNQCI)
- DD1 » SN{IC)

DELTAZ = DELTAZ + DD! « csc).
- DD2 « CS(ICY)

ARCGEC(IC,

Ja, L, Do, DD2)

Y= I1C+) »
JAMXC = JAMX(IC)

What li MEHIMENT

MII'D

Arg lengthi gnd
onglen mal nepded
I GaTaTyTeTS
Tt o
I wrlor areg Yau | Lawt ore In column
o calyme
L

Rediel and exial ingraments of are
given by INPUT doto:

DELTAR = DRBND(IC)

DELTAZ = DZBND(C)

p !

=

Compute the length of the gre:

ARCL(L,JA) = SQRTF(DELTAR o DELTAR + DELTAZ « DELTAZ)

Compute the sine ond the ¢osine of the angle
which the orc mokes with the pslv_ly'o z axis:
ARCSN(L,JA) = DELTAR/ARCL(L,JA)
ARCCS(L,,JA) = DELTAZ/ARCL(L,JA)

Plane | What s l_—-\OEOM? 13 Spherlep!

y

otty Naws

v Y

4 14
2 iCyllntlul geamatry

-

Plane geometry facror
is unity:
51 =1,9

Compyte cylindricel foctor:
Li=2eL=12= 01+
$1 = 3,1415927 « (DNODE(LY, JA)

'+ SNOC) + DNODE(L2,JA) « SNACI))

Compute spherical factor:
S1 = 12,56837 « DNODE(L,JA)
* DNODE(L,JA)

y

Compyte the araa of the cell foce which this
orc forms:
AREARC(L, JA) = S) » ARCL(L, JA)

RETURM

Figure 13. Flow Chart of Subroutine ARCGEO
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Subroutine COLUMN computes the geometry
of each cell in the column and the velacities
of the free arcs and nodes in the calumn,

Campute next cal ber: pplies the boundary canditions an the
iCl =iC+ 1 first and lost rays of the mesh, and
Determine number of cells in colls for the flux camputations and the
calumn IC: JCI = JAMX(C) - 1 advancement of each cell.
Determine number of cells in
calumn iC1: JC;' JAMX(QCY) - ) Caleulote the
geometry of
Yes No Yes Yes oll of the cells
Lost LIC bl No! o First cal L= LR Flaati in the first
atin
calumn Nalinteriar firgy Fixed|No o oop 9 | calumn: CALL
] | | Compute the fluxes mlh* GMTRY(), 1, NDIMEN)
| af each species
-:"—dcﬂﬁu > 07 i What is NDIMEN? entering eoch < mme——
et Voi] Flagting  is the I 1t 2] 2-D. Another el afthe fir Compute the dersity, radial and
mesh column Galomn extits calumn across oxial valacities,and Internal
No the first roy, energy for each species in
Compute the velacity of sach |ME$}E———‘ Determine the each cell of the firs? calumn:
free nude an the last ray: Floating | Yes F"";‘d fos.m' character- CALL THERMO(1,JC1,1)
N1 = NTOT(1) +h mes istic nomal ta
DO 26N = 1, NI 2 the finst ray: Pie
N2 = NARC(N, 1) C:ITIJI‘:.D:'. gc'amony CALL BCI(ICY) Fices IMESH > 0?
SINGI = SNBMX) » of all of the cells in Y.
ARCCS(1,N2) + CSIBMX) the next calumn: L—— mesh N :,I:,?,ﬂ"'
» ARCSN(1,N2) CALL GMTRY(2,IC1,2)
= Begin computatian af the free
VNODE(2,N2) r 5 4
UFREE(), N2)/SING] arc velocities In calumn 1 and )
26 CONTINUE Compute the density, rodiol and " free node positians an ray 1:
oxial velacitles, and internol DO BN = 1, MXFARC
N ] energy for each species in R K e
Compute the fluxes of each soch cell of calumn IC1, Compute . Determine which arc in calumn 1
specles acrass the lest ray, the velacities of each species represents free boundary N:
=1 ond determine the fastest in soch cell af calumns IC and N2 = NFRARC(I,N
characteristic normal ta the iC] normal and tangential ta
last ray: CALL BCIBMX ray 1C1: CALL THERMO(2,JC2,IC1)
Na‘ IMESH > 07 ) N doe Yo e
< > s not represent a
4 7 pri
Fix%d Yes| Flaating exlst in calumn | free boundary
] mes
et Campute the velocity af arc N2
Compute the velacities Begin camputatian of the free .rc normal to Iself:
aof all nodes and arcs velacities in calumn I1C1 and the . CALL BCFJN(1,1,N2)
in the calumn, and the r" free node velocltles an ray IC1: " . A
fluxes of each specles DO 17 N = |, MXFARC i . Compute the velacity of node N2
acrass aach are and A 4 élonattoy 1:
ray face in the column; Determire which arcs in calumns 1C VNn(gDE{I .Nz) = UFREE(1,N2)/(SN(1)
advance each cell and |Cl-represent free boundary N: & ARCCS'(I N2) + CS(l)" ARCSN(1, N2))
of the calumn; and NI = NFRARCAC,N); N2 = NFRARC(IC1,N) = L
t all #
::::d.: bP:’::':' b No TR Compute the dlstance alang roy |
A from the reference polnt to free
caleulatian of the Free bounder
- 4 Y node N at the end af the time-step:
next calumn: N does not L,
CALL DIFFEQ(C) it ih Campute the velacity of arc DFRND(1, N) = DFRND(I,N) +
calumn IC) N2 nomal ta ltself: | VNODE(I'N” » DELT
r CALL 8CFIN(C),2,N2) —
3 - i
Compute geametric factor for ‘m'hn.d 8 CONRMUE completed

ore N2: SING2 = SN(IC)) «» -IG_\ [
ARCCS(2,N2) + CS(CI) » ARCSN(2, N2) > 07 P P Gy

‘ Yes : 'Ir'f" M axish anly
- N1 > 0? | Campute g ric foctar for | 1 calumn IC1 1
Free boundary No are NI: SING) = SNQCI) « Campute the velacity af
N _docl not ARCCS(1,N1) + CSQC1) » free nade N an ray iC):
.;.;' In ; ARCSN(1,N1) VNODE(3, N2) =
either column
Yo UFREE(2, N2)/SING 2

N2 > 0?
,L::P Free boundary !ree bound, l Campute the velacity of
ey 17 CONTINUE N exists anly N exists in free node N an ray ICI:
P In eolumn iC { both ealumns VNODE(2,N1) = (ARCL(1,N1) »

Loop o L UFREE(2, N2)/SING2 +
pleted Campute the velacity of free node ARCL(2,N2) » UFREE(1,N1Y/
Nen ray IC: SINGI)Y/(ARCL(1,N1) +
VNODE(2,N1) = UFREE(1,N1 VSING) ARCL(2,N2))
VNODE(3,N2) = VNODE(2,N1)
1. . e

Figure 14. Flow Chart of Subroutine COLUMN
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L

Subroutine DIFFE.) computes the
velacities of oii of the nodes on
both rays of the current column,

Begin computation of veiocities of all nodes
in the column. Stort with the nodes
between arc 1 ond the next free are:

NI = 1 Determine the totei number of free
arcs in the column: N2 = NTOT(1)

computes the fluxes of aoch species
crossing il the roy and orc foces
of the column, advances each
cell in the coiumn, end resets
J the parameters needed for the

| calcuiotion of the next column,

Y

Begin colculoting the velocities of the nodes
between successive pairs of free orcs:

DO 25N = 2, N2
[ ]

Determine the orc number corresponding to
free bourdory N: N3 = NARC(N, 1),

Set innermost orc to be computed this

pats: N4 = N3 - |

Are N4 Iy
oho o free

Determine the number of cells between
frae ores NI ond N3: FAD = N3 - NI

boundary

node valoci e

1

¥ Determing the incremento) valocity changes

Reset outermast fras
arc index: N1 = N3

between nedes an roys IC and IC1:
DVI = (VNODE(1,N1) - VNODE(1, N3))/FAD

DV2 = (VNODE(2,N1) - VNODE(2,N3))/FAD

%@NH nue_]

compleled Loop | complated

1

Compute the fluxes of mass,
momentum, and energy of eoch
spacies entering the celis of
column IC ocross roy iCi,

n—”'-.@ = ICMX? >
Traat

-3

Set the outermost orc
to be computed:
N5 = NI + 1

i) e

1 Yas | RayICl
ray IC ahiaily %

Determine the fastest treated DO 28 N6 = N., né

choracteristic normai to e N7 = Né -

roy IC): CALL RAY(C) VNODE(I, Né) = VNODE(1, N7) - pv1
Compute the velacity of sach VP JDE(2,Né6) = VNCDE(2,N7) - DV2
orc in the column, the volyme 28 CONTINUE

Compute the nade velocities due

arcs NS through N4:

chenge of each ceil during the
time=step, the fluxes of eoch

=< species entering the flrst ceil

across the first arc, ond the
fostest characteristic relotive
to ony erc: CALL ARC(IC)

|

Compute the fluxes of each spacies crossing ail
of the orcs in the column, opply the boundory
condition ot the lost orc af the coiumn, ond
odvance eoch specias in soch cell of the
column: CALL ADVNCE(C)

!

Comput-. the free node positians on roy IC1 of
the end of the time-step, rezone the mesh

if nacesiory, ond reset the parometars

needed for the caiculotion of the next coiumn:
CALL RESET(iC)

Figure 15. Flow Chart of Subroutine DIFFEQ
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Subroutine FLUX computes the
fluxes af mass, momentum,
and energy of soch species
cromsing the prescribed
boundory af the prescribed

Mo
IFRST = 1% Set p
DD 3 NS = 1, NSPEC
s Bi(4, NS) = 1,0
threugh B2(¢, NS) = 0.0

3 CONTINUE
IFRST = |

Loop through ali of the species.
DO ANS = 1, NSPEC

1

Store the internai energy per unit mass on the
boundory and the normai component of velocity on
the boundary for species NS:

BI(3,NS) = EB(NS,L)  82(3,NS) = UNB(NS,L)

Set the angie facton on the boundary:

IC1 = iC + 1; 820, NS) = SNQCI) B2(2,Ns) = C50C1)
Compute the axial, Bi(i,NS), ond the

rodial, B1(2,NS), veloclties of species NS

on the boundary:

BI{1,NS) = B2(1,NS) o UNB(NS,L) + 82(2,NS) » UTB(NS,L)
BI(2,NS) = B2(2,NS) » UNB(NS,L) - 82(1,NS) + UTB(NS, 1)

No Yeou
JFLX < 37
Ray X Are

Boundary Boundory

Set the ongie foctors on the boundary:

82(),NS) = ARCSN(1,J2) B2(2,NS) = - ARCCS(1,)2).
Compute the axial, BI(1,NS), ond the ronTol,

B1(2,NS), velocities of species NS on the

boundary: .

B1(1,NS) = B2(),NS) » UNB(NS,L) - 82(2,NS) » UTB(NS, L)
B1{2,NS) = B2(2,NS) » UNB(NS,L) + B2(1,NS) » UTB(NS, L)

t

L]

Compute the mass fiux, AV(NS), of species

NS croming the boundory:

AI(NS) = RHOB(NS,L) » (UNB(NS,L) = U) o AREAR
Compute the partioi pressure force, A2(NS),

due o species NS an the boundary:

A2(NS) = PB(NS,L) » AREAR

and exiol momentum
momentum only

Compute the fluxes of specles
NS croming the boundary,
DO NI N2= NI, 4

1

Compute the equatian number:
NEQ = N2 » NS

[ ]
Compute the flux:
PSI(N2) = AI(NS) » BI(N2,NS) + A2(NS) * B2(N2, NS)
SFLUXAFLX,Ji, NEQ) = SFLUXQOFLX,J1,NEQ) = PSI(N2)

< 1FLX > 37 ,LNo

Ye1| Dowrstreom
ray boundary

Store flux entering cell AC + 1, J2X
SELUXQFLX + 1,J2,NEQ) = SELUXQFLX + i,J2,NEQ) + PSi (N2)

Loop not '__-'—'I_;
11 CONTINUE

compieted

Loop completed

Figure 16. Flow Chart of Subroutine FLUX
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4 CONTINUE
Loop compieted
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Subroutine GMTRY congum the node position of eoch node formed
i

by the arcs in column

the lengths, ores of revolution, ond ongles
from the Z oxis of each orc in the column; the volume ond cross=sectionol

area of each celi in the column; ond the minimum perpandiculor cell

height end width in the column,

Begin computation af volumes, orees,

lengths, and ongles for eoch cell in
the calumn: DO 4) = 1, JAMXC

¥

JARC2 = JARCI - |

Choose innermost untreated orc ond
next orc aut: JARCI = JAMXC + 1 - J;

1

Compute the arecs, lengths, ond ongl.s
omnociated with arc JARC1:
CALL ARCGEO(IC, JARCI .L,DDNODE(1,NT),

St the stobility test lengths equoi ta the

moximum roy segment between arcs, DST1, and

to the maximum arc length, DST2, o given

in INPUT: DSTBLY(1) = DSTY; DSTBLY(2) = DST2

1

initiolize parometers: NFC = 1; NT = 1;
NFP = 1;iC1 = IC+ 1

 }

Beyin computation of node spacings on rays
1C ond iC1 due to ores in column IC:
DO I N = 2, MXFARC

X

identify arc which coincides with free
boundory N: NFA = NFRARC(IC, N)

No e
NFA >—°3-/ Free boundory
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