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ABSTRACT 

(Distribution Limitation Statement No.  2) 

. « 

A    J • A comPutational code is developed for Inve.tl^H«« 

rent distributions.    The numerical nV«^ ge and CUr- 
during a H^*. »f        7      numerical procedure computes the change 
during a time step of a property within a computational cell in terms 

tt^:xzo£ TLpnperty cro88ing the face8 of the ceiidu^r"8 

erist^s     n,'      . 8 *" comPuted by the method of charac- 
tac   d r'   .      •      a mOVii-g me8h Permit8 the "de to follow con- 
tact discontinuities in the field properties.    Procedures fo^ 
incorporating nonequilibrium thermodynamics are developed- 
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NOTATIONS 

Quantities with subscript asterisks are dimensional 

quantities; quantities without subscript asterisks are nondimensional quantities. 

2 
A*/L*    ;   cross-sectional area of a cell of revolution 

a 
a 

c 

a , 
a* 
r— ; speed of sound of species a 
'* 

.1/2 
B*^E*^0s!ef0si!)  '   ]   J   magnetic flux density 

in 

o 4or*T*/P*u
Jü    

;   Boltzmann number 

u P«X*L*   '   Bouguer number 

B* magnetic flux-density (dimensions: 
2 

Webers/m     in rationalized  mks; emu (gauss) 
Gaussian) 

c C*/U*    ; speed of light 

(de 
T^r  I     J   specific heat at constant volume 

«/^ 

c* dimensional speed of Light 

di.j distance along ray   i   from   z axis to intersection of 
ray   i   and arc   j 

a ea+ ^Ua/2^   ;   mean energy Per unit mass of species   a 
—* _. 

£*/&%  i   electric field intensity 

Ix 

'■~-;       -^t- "i"        . ■     inn. 
-*— 

\ 



Rv 

* o* 
;   reference electric field intensity 

electric field intensity (dimensions:   volt/meter in 
rationalized mks ; esu (statvolt/cm) in Gaussian) 

'R* 

4a *T* /c« 

radiative energy density 

h*,/*nRy*/(4a«T*/C*IW   ;   energy density of photons 
of frequency   v 

'R« 

rv 

'RS; 

a 

a« 

Rm 

f^u, r, t) 

J (1) 
a 

dimensional radiative energy density 

,2 e     /U^c   »   internal energy per unit mass of species   a 

dimensional radiative energy density 

- 2 , F     /(M^U^/L^);   force per particle on species   a 

in addition to pressure stress and electromagnetic 
forces 

dimensional force per particle on species   a 

(r^t  c^,  t^)   ;   distribution function for photons of 

frequency   i/ 

distribution function of species   a 

Km w   (1)     ;   mass source term for species   n 

V2' a 
a       1    ^ 

m 
+ T ^   S +   _« 

<u   ) x B 

a a 

momentum source term for species   a 

+ Km   w    (u.) 

\ 



-V3) 

^(1) 

J (2) 

'oc* 

i+1/2 

a± 

y± 

l± 

'/[' BoB../ K./o-.d -J - ■"■ w-vh'^v 
a 

+ K m w   (e + u  /2) 

energy source term for species   a 

energy source term *>r photons of frequency   u 

energy-flux source term for photons of frequency   v 

' ^ " U|8 '     ;   relative velocities of particles of species 

a   and   ß 

distance across a cell in the  radial direction 

maximum number of rays in the mesh 
-•       -• 

unit identity tensor   ;   (a • f =  f-  a    =   a) 

maximum number of arcs in column (i+1/2) 

.P      dP 
< 

2± 

Uan' :t   / Tir    '   hydrodynamic characteristics 

eRu ±1r   QRvn  ''   characteristics of the equations of 

radiation transport 

BS    * Eq       '   electromagnetic characteristics 
1 02 

BS2  * 
Es     ;   electromagnetic characteristics 

xi 



ua 
voc* 

va* 

vm 

1 

cross section for induced emission at frequency   u 
by unit mass of species   of;   dimensions are area/mass 

jhji/jjj,   ;   current density 

va 
i/a« 

4V*T#/1'R« 

VO!* 

I 

K 

k., 

spontaneous emission coefficient for energy at frequency 
V   by unit mass of species   « ; dimensions are energy/ 
mass .  frequency 

N*qeS!cU* '   1'eference current density 

electric current density (dimensions:   amp/m2 in 
rationalized   mks ; e8u(statamp) 10 m2 in Gaussian) 

*  *   « 
2 

M#W«1VP«U*;   nondimensional parameter indicating 
relative importance of chemical reactions and hydro- 
dynamic convection in changing the mass at a point 

Boltzmann constant 

D;! 
;  Debye length 

reference length 

'i+l/2,J length of arc   j   in column   i + 1/2 

xii 

^-rt—fc— 
'■' ?   '■"-"*-■■'■—gi-'-HrMi. u ,.UIITI_I_.. 
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a 

N 

P 

P 

■ <« 

591 

M« reference particle mass 

ma*/M«   ;   ma8S of a Particle of species   a 

number of species under consideration 

N* reference particle density- 

rectangular Cartesian coordinate normal to a cell surface 

nRl/« number density of photon» of frequency   y, 

nRt number density of photons of all frequence les 

na "a*/^*^**  ;   numb«r density of particles of 

P Ru* 
Ry 4~7"" I   radiative pressure tensor 

P_ dimensional radiative pressure ten 
Rfjj: 

species   rv 

nsor 

1   5        ? 
a 3    a 

.2. 
a Pa«/^*U*^   '   Partial pressure tensor of species   ry 

R QR&/
4cr*T* ;   radiative heat flux vector 

Q /h*U*'*fRv*d% 
Rv ~T     ZJJ" ;   heat flux vector for photons of 

*   ♦'"lU frequency   y 

QRt/n component of  QRy   normal to a cell surface 

xlil 

\ 

■ 

^ 



QD dimensional radiative heat £lux vector 

3 

Q ^a«/^D*U«^   '   heat flux vector of species   a 

^ q*^(1R*    '   char8e density 

qe magnitude of the charge on the electron (positive) 

«Ij^ N^q       ;   reference charge density 

% charge density (dimensions:   coulombs/m     in ration- 
alized  mks  ;   e8u/cm3(8tatcoul/cm3) in Gaussian) 

R
a 

Ra*/^W*U*^'   rate of 8eneration of particles of 

species   oc   in unit phase space volumn tt (u, r) 

R
a 

Ra*/^W*U*^  '   rate of loss of particles of species   a 

in unit phase space volume at (u, r) 

-» -•   . 
r r*'^ '   position vector 
-» 
r^ dimensional position vector 

2 
S S^/L,^     ; surface area 

S 

s 
a 

S 

va x 

S cross -section for scattering of a photon of frequency   v 
by unit mass of species   a;   dimensions are area/mass 

5"    ;   entropy per unit mass of species   OL 

*     * 

Sj rectangular Cartesian coordinate tangential to a cell 
surface 

82 rectangular Cartesian coordinate tangential to a cell 
surface and normal to   s. 

xiv 



T>j( reference temperature 

* V<VU*)   '   time (T) 

*# dimensional time 

N 

7 EPAS): u 

a n 

V 

v 

<v   > 
a 

n 

o    ^i Pa{XXnf) ''   mass velocity of the mixtur« 
(7=1 

U" U
a«/U* ;   velocity of a particle of species   a 

U* reference velocity 

<" >„ <» > ■ 0 a 
3 

a 
<Ua>"U   ;   diffu8ion velocity of particles of species   a 

Ua " <U
a >     ;   thermal velocity of a particle of species   oc 

-*        -t 

ua - u   ;   mean thermal velocity of a particle of species   a 

W*/u*    «   velocity of cell surface 

W W 
n* /U#   5   W.   C 

W«(1) Wa*(1)/w*   ;   rateof generation of particles of species   a 
per unit volume 

-    ,  . -.      -f 

Wa[U) Wa*<uJ/(w«Uje)  i   rate of generation of particle momentum 

of species   a   per unit volume 

V6 + u2/2)        wa^
e + u2/2)/(w,^)   ;   rate of generation of particle 

energy per unit volume 

w* reference source rate (particles generated per unit 
volume per unit time) 

xv 



a. angle between ray   i   and the negative   z   direction 

^i+l/Z.j 

Ar. 
i+l/2.j 

At 

At 
i 

At 
z 

Az 
i+l/2.j 

IJk 

o* 

VOL 

VWt 

angle between arc   j   in column   i + 1/2   and the 
positive   z   direction 

radial increment of arc   j   in column   i + 1/2 

At^U/L,    ;   time step 

stable time step for a one-dimensional calculation in 
the radial direction 

stable time step for a one-dimensional calculation in 
the axial direction 

axial increment of arc   j   in column   i + 1/2 

antisymmetric three-tensor 

+ 1,     if  i,  j,  k   is an even permutation of 1,   2,   3 

- li     if  i. ji k   is an odd permutation of 1,   2,   3 

0   ,     otherwise 

primary electric constant in rationalized   mks   units 
(8. 854 x 10"12 coulomb/volt •  m) 
l/{4tr)in Gaussian units 

cross-sectional area factor 

0 ,       plane geometry 

IT ,       cylindrical geometry 

4 ,       spherical geometry 

VOL*!    * 

dimensional mass absorption cross section of species   OL 

for photons of frequency   v ;   dimensions are area/mass 

xv 1 

—-        ■       ■!■■    ■■Il^.ll» 



o* 

R* 

z 

A 

'a 

< > 

reference mass absorption cross section; dimensions 
are area/mass 

uirTZ™*^ COn8tant ^ ration^^ed   mks   units 
14* x 10      weber/amp •  m);   4ff   in Gaussian units 

reference photon frequency 

direction cosine between outward normal to cell 
surface and   r   (or   x   for plane geometry) direction 

direction cosine between outward normal to cell 
surface and   z   direction.    ^ = 0   for sphe-ical geo- 

unit outward normal to the surface of a volume element 

photon frequency 

N 

X  O      ;   mass of mixture per unit volume 
a=l 

pa*^p*   '   den8ity of species  a 

reference mass density (mass per unit volume) 

Stefan-Boltzmann constant 

denotes the Boltzmann average:   for any quantity  <p . 

<<Pa> - /^(u)fa(u)du//yu)da 

xvil 

-t-^. 
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SECTION I 

INTRODUCTION 

In recent years a great deal of effort has gone into the 

detailed computation of the structure of atmospheric n.clear bursts. 

The numerical procedures developed for these calculations assume the 

exigence of conventional hydrodynamic collisional coupling of the  explo- 

«on debris to the ambient atmosphere; thus,   strong shock waves are 

assumed.    This assumption certainly is valid for altitudes below about 

80 kilometers or so.  and the numerical results for low altitude explosions 
appear valid. 

The assumption of strong collisional coupling of the 

debris to the ambient atmosphere is not necessarily valid at higher 

altitudes;  however; as a result,  present computational techniques do 

not give reliable information concerning the effects of high yield,  high 

altitude explosions. 

l'       PROBLEM pEFINTTTr7N 

The information which is required and which existing 

techniques do not give concerns high yield explosions at high altitudes. 

The means by which such explosions couple to the atmosphere and the 

gross effects of the explosions are to be determined.    In particular, 

techniques capable of computing the transient structure of the expanding 

debris of an explosion in the megaton range at an altitude between 100 

and 500 km are desired.    The computed structure is to include late-time 

effects,   including disturbances of the earth's magnetic field. 

\ 
\ 
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2.      REVIEW OF EXISTING METHODS 

Existing attempts to treat high-altitude explosions either 

assume conventional coupling and apply ordinary hydrodynamic computer 

codes with a more rarefied atmosphere, or assume there is no 

coupling until the debris has expanded to some "coupling length, " after 

which conventional hydrodynamic coupling is invoked.    The assumption 

that conventional collisional coupling always exists obviously breaks 

down at some point:   at a sufficiently high altitude,  the mean free path 

for ambient ions becomes greater than the debris radius,  and the con- 

ventional momentum transfer process disappears.    The range of altitudes 

in which this coupling breakdown occurs is not known;  however,   because 

the energy released by the explosion so disturbs the ambient temperature 

and ionization that estimates of the effective msan free path for momentum 

transfer are not reliable. 

Existing methods of accounting for the coupling break- 

down do so by attempting to estimate an effective mean free path or 

"coupling length. "   Various processes have been postulated as ultimate 

sources of the coupling:    examples include the "Longmire Piston, " in 

which the motion of the ionized debris generates a magnetic field that 

turns    or "picks up  " the ambient ions; two-stream instability,  in which 

the  electric field between the debris ions and the ambient ions grows in 

an unstable fashion until it becomes strong eno igh to pick up the ambient 

ions; and the collisional model,  in which the xnean free path for direct 

collisions is  e 5 imated on the basis of the relative velocities of the debris 

and ambient ions.    All of these postulated coupling processes require 

rather involved mathematical formulations which are not usable in 

existing hydrodynamics codes.    As a result,   the only calculations which 

have been made with theae processes are approximate analytical calcula- 

tions solely intended to demonstrate the possibility that the process is 

• 
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significant.    No detailed calculations intended to show the actual effect 

of such processes have been made. 

3.     SUMMARY OF THE PRESENT APPROACH 

Because of the potential significance of coupling pro- 

cesses of the   type discussed above,  a physics code is developed which 

can handle the mathematical formalism a.Bociaf d with these coupling 

processes.    A suitable coding technique exists and has been used on 

transient interaction problems in the past; further,  the'code has been 

redeveloped to the point where it is useful for studying the detailed 

behavior of the proposed coupling models.    This code,  which is an 

Eulerian code with a floating mesh,   employs the characteristic flux 

differencing technique:   the changes in all properties during a time- 

step are caused by the fluxes of those properties across the surface of 

the cell during the time-step.     Because surface fluxes in a raretieü gas 

do not involve thermodynamics or kinetic processes such as collisions, 

it is possible to construct the entire finite-difference code without such 

models.    These models are added in subroutine form for the evaluation 

of properties such as partial pressures and sound speeds within each 

cell.    This differencing procedure   has the great versatility of permit- 

ting a complete change of the kinetic and thermodynamic models to be 

made merely by changing a few subroutines. 

This code structure will be useful for carrying out 

detailed one-dimensional studies of the interaction of debris and 

ambient ions for each of the postulated coupling processes.    The results 

of the more effective of these processes can be scaled into "coupling 

laws." which might be used in a two-dimensional calculation of the gross 

expansion.    In addition,  two-dimensional studies can be made for those 

coupling mechanisms which are inherently two-dimensional; the "Longmire 

Piston" with its streaming debris,   perpendicular magnetic field,   and 

"     '- Ml». 
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turning of the ambient ions is an example of a coupling process which 

must be treated as at least two-dimensional. 

In addition,  numerical studies for evaluating the several 

coupling mechanisms and calculating the gross expansion structure of 

high-altitude explosions can be carried out. 

; 



SECTION II 

FORMULATION OF THE PROBLEM 
AND METHOD OF SOLUTION 

The problem being treated here is that of developing a 

computer code which can be used for the dual purposes of (1)   testing 

the efficacy of proposed mechanisms for coupling the debris from a 

high-altitude explosion to the ambient atmosphere,  and (2)    computing 

the overall features of explosions for which the coupling mechanisms 

have been determined.    The method of treating this problem consists 

of using the governing equations in a form   that    is valid regardless 

of the coupling mechanism,  selecting an appropriate numerical pro- 

cedure for solving these equations,  and developing (and coding as sub- 

routines) models of the proposed coupling mechanisms. 

l'     STATEMENT OF THE EnTTATToNs AND RnTTMnARY CoNnTTTnMg 

A mathematical description of explosion phenomenology 

must involve conservation of mass,  momentum,  and energy; probably 

must include radiative phenomena; and must account for electromagnetic 

effects.    In addition,  a set of constitutive equations is required,  includ- 

ing equations of state and of electrical conductivity.    Finally,  appropriate 

boundary conditions must be prescribed. 

i 

The interacting explosion debris and ambient atmosphere 

may consist of molecular,  atomic,  and ionized species plus electrons. 

It is assumed that there are   N   such species present,   including elec- 

trons; an individual species is denoted by subscript alpha.    The symbols 

\ 



used in the following equations are defined in the Glossary, and the 

normalization is discussed in Subsection II-2 below. 

a' Hydrodvnamic Conservation Equations 

The equations expressing the conservation of mass, 

momentum, and energy of species   a   are obtained by taking moments 

of the Boltzmann equation for species   a   (Appendix I).    The resulting 

conservation equations are 

Mass: 

^a    * 

Momentum: 

d) 

■     Pa<Fa/ma> + Kmawa(u) (2) 

Energy:  u. 

^(paea) + ^ • (Paea<%> + Pa ' <V) 

=     ^-Qa + PalFa/maj^^) 

+ Kmawa(e+u2/2) (3) 

Equations   1   through   3   are valid for nonequilibrium 

flow as well as equilibrium flow.    The   wa   terms on the right-hand 

sides of these equations represent sources and sinks of mass,  momen- 

tum,  and energy resulting from particle collisions.    In the event of 

equilibrium flow,  these source terms, which derive from the collisional 

term in the Boltzmann equation,   vanish,  and the pressure tensor 

is given by the equilibrium equation of state.     In the  event of 

nonequilibrium or of chemically-reacting flow,  these terms are 

^- 'ii—- 
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evaluated by approximating the collisional terms in the Boltzmann 

equation by experimentally determined .ross sections for the collision 

in question (see Appendix I). 

b. Radiation Transport Equations 

Equations for the energy density and heat-flux vector 

of radiation of frequency   v   are obtained by taking moments of the 

Boltzmann equation for the distribution function of photons of energy 

hv   (Appendix III).    The resulting equations are 

c   at + ?'5RV      "     -»»^VRvf-JvJ-jJ        (4) 

1 aQRv   -    3 
C ~ + V*pRv      =     -^QRV^VVJ1-^^) (5) 

Equations   4     and   5    are valid for any radiation con- 

dition.    The terms on the right-hand sides of these equations represent 

sources and sinks of radiative energy and heat flux resulting from 

absorption,  emission,  and scattering. 

c Maxwell's Equations 

Maxwell's equations must be normalized into a form 

which can be related to a wide variety of initial conditions in order to 

be convenient for general computational purposes.    It is shown in 

Appendix IV that either the rationalized mks form or the Gaussian 

form of Maxwell's equations can be normalized into the following set: 

V • E      =      £q 

V • B 
(6) 

(7) 

i ■ <  ■ 
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V x E 

V x B 

c at 

c c at 

(8) 

(9) 

Equations    6    through    9    are valid for the electro- 

magnetic fields in any moving medium with no inaccessible charges 

or currents; that is, all charges and currents are assumed accounted 

for by the moving particles of the medium,  and there are no polariza- 

tion currents. 

**• Constitutive Equations 

The field equations listed above must be complemented 

by a set of constitutive equations which govern the transport properties 

of the fields in the medium of propagation.    Thus,  Equation   2 

requires an equation for the partial pressure tensor of species   a   (or 

for the transport of momentum) and Equation    3    requires an equation 

for the heat-flux vector of species   a   (or for the transport of energy). 

Similarly,   Equation    5    requires an equation for the radiative pres- 

sure tensor (or for the transport of radiative momentum), while 

Equation    9    requires an equation for the current (or for the transport 

of charge).    These constitutives represent moments of the nonequi- 

librium distribution functions,  and generally are not known.    However, 

it is possible to postulate various models for these needed equations, 

and it will be shown (Subsection lU-Zc) that these constitutive equations 

do not affect or enter into the differencing technique for the numerical 

code.    As a result,  it is possible to change the constitutive equations 

used in the code merely by changing the corresponding subroutines. 

A number of models for the hydrodynamic constitutive 

equations are available; these models usually are based either on the 
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Chapma„ a„d Enskog p„turbiti()n theory tn the nonequil.brium ^^ 
.r.bution tmction (Re£erence 1)(  ^ ^ ^^^^ ^^^^^ ^ 

The stapU,. models having iny ^.^ ^^ ^ ^ hydro 

»«.ittiv. equa.ions («a th. one8 which are b.ing U8ed for eh. .^ 

numerical work with the code) are 

pa. % k* Ta. ? 
and 

—• 
Qa * 

(10) 

(11) 
Equation   ,o   i-valid equation for nonequUibrlum floWj  but .s an 

approximate model because shearing stresses have been ignored 

see   for e^p!. Section Z. Chapter « o, Reference 2).    X. norma, 
izedform.  Equations   10   and   11   are 

P a a     a (12) 
and 

(13) 

A satisfactory constitutive equation for the radiative 

pressure tensor appears to be that given by the Milne-Eddington 

approximation (which has been used successfully in astrophysics)- 

-— i 
(14) 

It can be shown that Equations   4    and   5    with Equation   14   lead 

to the correct radiation transport formulae in the opticaUy thick and 

bP.ic.Uy thin Hmits as „eil as in the limit of isotropic radiation. 

Equations   4    and   5    with Equation   14  are similar in form to the 

equations obtained in the first approximation in the spherical- 

harmonic method of neutron transport theory; in that theory it is 

>»^ ,  ■e* 
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known that the odd approximations are more accurate than the suc- 

ceeding even approximations (Reference 2).    A final comment 

on the validity of Equation   14   is that it deals with the transport of 

radiati/e momentum, and that radiative momentum considerations 

only enter in a relativistic theory.    Consequently,   Equation   14 

is expected to be a satisfactory constitutive equation in a nonrelativistic 

theory. 

The necessary constitutive equation for the current 

density in Equation   9     is straightforward as long as all of the charges 

move by convective flow and no conduction currents exist; this equation 

is 

a (15) 

If problems involving conduction currents are to be treated, it will be 

necessary to develop an expression for the conductivity ot the flowing 

gas.    The initial numerical work, however,  will rely on Equation   15 . 

e. Coupled Equations 

The momentum and heat transfer effects governed by 

the radiation transport equations and Maxwell's equations must be 

coupled into the hydrodynamic equations to provide a complete des- 

cription of the physics of the problem. 

As shown in Appendix IV, the electromagnetic com- 

ponent of the force term in Equation    2    has the normalized form 

Fa ir\E+—; (16) 
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Similarly, the electromagnetic component of the 

in Equation    3     is shown to be 
normalized work term 

The heat added to species   a   by absorption of radiati 

(17) 

by Equation   273   of Appendix III as 

3 

ive energy is given 

SK)Ä    =     ^Vhv^v^^aj-Jvjdv (18) 

Coupling Equations   16   through   18   into Equations  1 

through   3     gives the coupled hydrodynamic equations: 

(19) 

Pa|ma 
+ W^r\E+~^-;J+Kmawa(u ) (20) 

V-Qa+B0B dv 

Sr^-fa^j^-a^a^"^) W 

The force  Fa in Equation.   20   and  21   I, inoluded to 

prov.de an easy mean, of adding the gravitational acceleration at a 
future date. 
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i- Boundary Conditions 

Appropriate boundary conditions must be provided on 

the boundary of the region of interest.    In mathematical terms,  the 

boundary requirement is that all characteristics crossing into the 

region of interest from the exterior region must be known.    In the 

case of Maxwell's equations,  this statement means that either there 

must be no charges or currents in the exterior region (in which case 

the boundary conditions are those of the fields at infinity) or the time- 

dependent fields on the boundary must be prescribed ahead of time. 

The boundary conditions for the radiation transport equations are 

similar to those for Maxwell's equations:    either there must be no 

emission,  absorption,  or scattering in the exterior region (in which 

case the boundary condition is that of constant flux from infinity) or 

the time-dependent radiation fields on the boundary must be prescribed 

ahead of time. 

The boundary conditions required for the hydrodynamic 

equations depend upon whether the flow within the boundary is super- 

sonic or subsonic relative to the boundary.    If the flow is supersonic 

relative to the boundary and crossing out of the region of interest,  there 

can be no characteristics entering the region of interest (hydrodynamic 

characteristics propagate at the speed of sound) and no boundary con- 

ditions are needed.    In any other case, however,  the flow on the 

exterior of the boundary must be prescribed. 

For all of the numerical calculations planned for the 

near future,  these boundary conditions will be satisfied by assuming 

that the fields at the boundary are identical to the undisturbed fields 

at infinity. 
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c. NORMALIZATTDM 

The normalisation o£ the equation, listed in Subsection 
II-l is indicated in the notations;   tnis normslization is intended 

to ensure that the only quantities in Equations   4  through   9  and   12 

through   21   Which are not of order unity are the parameters   c.    B 

i.   K,  Ji,   B0,   and  K.    These parameters are measures of the rell- 
tive importances of the various physical processes represented in 

these equations.    Thus.    <=   is the ratio of the speed of light to the 

characteristic hydrodynamic velocity, and is a measure of the impor- 

tance of, transient radiative and electromagnetic effects.    Large   c 

»plies «hat radiative energy transport occur, on a time scale which 

i. short compared to the hydrodynamic time scale, and therefore.these 

effects hecome quasi-steady. .mall   c   (c   of order unity) implies that 

radiative and electromagnetic transient effects are important, and 

therefore, the radiative and electromagnetic energy densities in 

transu are important.    Bu.    «he Bouguer number,  is a measure of the 

relative opacity of the radiating gas.    Large  Bu   implies   there 

are many optical path lengths in a characteristic geometric length, 

and therefore,absorptive and emissive properties of the gas are 

important. Small ^   Unpll.. that a characteristic geometric is short 

compared to an optical path length, and therefore.the absorptive and 

emissive properties of the gas are unimportant.   X.    the ratio of the 
geometric scale length to the Debye length, is a measure of the rela- 

tive lengths of the hydrodynamic and electromagnetic fluctuations. 

Large  t implies that a geometric scale length contains many fluctu- 

atmns of the electromagnetic fields,   and therefore.the charge and 

current densities (the sources of the fluctuation.) are important 

Small  £ implies that the electromagnetic fluctuations are not impor- 

tant over a geometric scale length,   and therefore.the charge and 

13 
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current densities are unimportant.    K,   which is very nearly the 

«quare of th: reciprocal of the Mach number,  is a measure of the 

relative energies of random motion and directed motion in the gas. 

Large    K   implies that the thermal energy of random motion is large 

compared to the directed energy of the streaming motion,  and there- 

fore, pressure effects are important   Small   K   implies that the 

thermal energy of the random motion is small compared to the 

directed energy of the streaming motion,  and therefore, j -essure 

effects are unimportant.    ^   is a measure of the relative importance 

of the hydrodynamic momentum of a particle and of the impulse 

delivered to the particle in unit time by the local electric field.    Thus?, 

large   W.   implies that electromagnetic effects are not important, 

while small   ft   implies that such effects become dominant.    B0.  the 

Boltzmann numbor,  is a measure of the relative importance of radiative 

energy transport and of convective energy transport.    Large B     signi- 

fies that radiative transport is important, while small B0  signifies 

that radiative transport is unimportant.    K   is a measure of the rela- 

tive importance of the change in particle density of a species caused 

by chemical reactions and the change caused by hydrodynamic convec- 

tion.    Chemical reactions are important for large   K   and unimportant 
for small   K. 

3-       CAPABILITIES OF AVAILABLE FINITE-DIFFERENCE METHDra 

The problem outlined in Subsection U-l is of such com- 

plexity that only a numerical solution appears possible.    There are a 

number of finite-difference methods available,  but nearly all of these 

methods have limitations which preclude the possibility of treating 

the above equations in their full generality.    Such limiting techniques 

include the conventional Eulerian and Lagrangian procedures as well 

14 
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as the Particle-in-CeU approach.    By reviewing .heSe procedures 
however, i, „ po88ible to deflne the ^.^ ^^^ ^ ^ ^ 

genera! numerical approach,  and then to outline such an approach. 

a' Eulerian Method« 

Eulerian finite-difference methods, which are frequently 

used for tw^dimensional problems, proceed hy applying the governing 

deferential equations at a set of discrete points in space.    The differ- 

enfal, in the equations are approximated by finite-differences between 

the fixed points.    Because of the fixed ,eometry associated with these 

methods,  Ku^erian procedure, are readily able to compute shearing 

stresses anl to treat tangential forces.    This capability is a necessity 

for the complex problems considered here because of the shearing 

stresses associated with magnetic field and the resulting nonequality 

of the diagonal components of the hydrodynamic pressure tensor. 

One of the major disadvantages associated with EuU ian 

methods is that they are unable to maintain sharp contact discontinuities 

between two separate fluids.    This inability arises because the fluid 

characteristics at a point represent the average characteristics of the 

flmd in a small volume surrounding the point; thus, when a contact 

discontinuity enters such a volume,  the sharp discontinuity is repre- 

sented by an average at the point at the center of the volume.   In 

this fashion,  the contact discontinuity becomes smeared out after a ■ 

few computational cycles.    A detailed study, including a numerical 

example,  of this smearing of contact surfaces is given in Subsection 

of Appendix  r of Reference 3.    Unfortunately, many of the oroblems 

considered here have interacting gas streams or colliding sho'ck waves 

wh.ch produce contact surfaces; consequently,  this inability of Eulerian 

methods to properly represent such contact surfaces is a strong disad- 
vantage of these methods. 

15 
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A second disadvantage associated with Eulerian methods 

is that they generally are unable to treat non-rectangular boundaries. 

This inability results from the finite-difference approach of representing 

differentials by differences taken between successive points of the com- 

putational net.    It is straightforward to treat tl e problem of rectangular 

walls by imposing symmetry on the fixed points in the computational 

network,  but similarly satisfying procedures for other geometries are 

lacking.    In the problems considered here, however,  the constraints 

impost by the atmospheric variations and the earth's magnetic field 

may dictate a nonrectangular   boundary for the numerical problem. 

As a result, this limitation of Eulerian rrethods is a disadvantage. 

. 
b. Lagrangian Methods 

■ 

Lagrangian computational methodb refer to a specific 

set of fluid particles rather than to a set of spatial points.    Newton's 

Taws are applied to these representative points to obtain the 

motion of the fluid as a whole.    Because 1 rgrangian methods follow 

individual fluid particles,   such technique are able to represent con- 

tact surfaces between two gases; as discussed above,  this ability is 

important for the problems to be treated. 

The major disadvantage of Lagrangian methods is that 

they do not treat shearing stresses satisfactorily.    This difficulty 

arises because the calculation of the stresses is based upon the geo- 

metric distances between the fluid particles,  and the calculation of 

these distances becomes unacceptably tedious after the fluid has under- 

gone some distortion because of the shearing stresses.    As discussed in 

Subsection II-3a.  however,   shearing stresses are important in the 

present application,   and the inability of Lagrangian methods to handle 

them is a serious disadvantage. 

16 
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c. Particle-in-Cell IVrhnio«,«» 

The Particle-in-CU (or PIC) technique repre.en.s an 

attest to gain .he advantage both of Enlerian and Lagrangian methods 

by superimposing a set ol Lagrangian mass points on a set of EuUrian 

voJume elements.    The fluid s.r re computed on the basis of the 

average properties of all of the mass points in each of the volume 

elements, and the motion of the fluid is computed by using these 

stresses to determine the acceleration and velocity of each of the 

mass points     The use of volume elements permit, this technique to 

treat shearing stresses, „hile the presence of mass points allows 

good-repysenta.ion of contact surfaces.    As a result, the PIC tech- 

nique has advantages over the EuUrian and J.agrangian methods dee- 
cribed above. 

The disadvantage of being unable to treat nonrectangular 

boundaries remains.,  however.    The presence of this disadvantage is 

because of the use of Eulerian difference procedures for computing the 

stresses on the mass points,  and results in exactly the same way as 

the rectangular boundary requirement discussed in Subsection II-3a. 

A further disadvantage of the PIC technique is that the 

mass points are part of a Lagrangxan net and there may be only a few     - 

poxnts of each species in a given Eulerian cell.    As a result,  it is 

difficult to represent the smooth change in the density of a species because 

of chemical reactions by changing the number of mass points in the 

cell.    Consequently,  the PIC technique shares the Lagrangian disadvant- 

age of not being well suited for chemical nonequilibrium. 

d. taracteristic Flnv Matv.nj 

A method wbich uses moving Eulerian cell boundaries 
to follow contact discontinuities is aKi» *.^ ^.ontinuuies is able to overcome the disadvantages 

17 

\ 



of all of the above methods.    Such a method is discussed in great 

detail in Reference 3.    The basic concept of this method is that of 

choosing an Eulerian spatial mesh and applying the governing equa- 

tions in integral form,  rather than differential form,  to the mesh. 

The resulting computational equations give the changes in fluid proper- 

ties within a cell in terms of the fluxes of mass,  momentum,  and 

energy of the fluid crossing each face of the cell.   Because the fluid 

properties are assumed constant within each cell,  however,  the 

properties on any face of the cell must be given in terms of a simple 

wave emanating from within the cell (Section 29,  Reference 4).    Thus, 

the fluxes crossing the cell surface are computed by the method of 

characteristics,  and no distances to cell centroids are needed. 

Furthermore,  the determination by the method of characteristics of 

the fluxes crossing each cell face is based upon velocities relative to 

the cell face; thus,  the Eulerian grid can move through the gas. 

A computational procedure based upon this character- 

istic flux method has all of the advantages of the above methods without 

any of the disadvantages.    Thus, the use of integral equations replaces 

calculations of gradients with calculations of forces and fluxes on cell    » 

surfaces.    Because the Eulerian cell surfaces do not become distorted by 

the shear flow, these force and flux calculations remain straightforward. 

At the same time,  the movable cell boundaries permit good representa- 

tion of contact discontinuities.    For example,  cell surfaces can be 

aligned with and allowed to move with material interfaces; thereby, 

preventing the usual smearing of the interfaces into adjacert cells. 

Such a technique was used successfully in Reference 5 in treating the 

contact surface formed by the colliding shock waves when a reentry 

vehicle penetrates a blast wave. 
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The characteristic flux technique also is able to treat 

chemical nonequilibrium without difficulty.    Since the procedure iß 

an Eulerian procedure,  masses are computed by the use of continuous 

densities rather than by the use of discrete mass points.    As a result 

reaction rate equations can be coupled into the procedure directly. 
■ 

Finally,  the characteristic flux procedure can treat 

boundaries of any geometry.    This ability results from the replace- 

ment of gradients in the differential equations by fluxes crossing cell 

walls in the integral equations.    Thus,  it only is necessary to align 

cell surfaces with the boundary to treat arbitrary geometries.    For 

example,  ellipsoidal as well as spherical bodies were treated in 
References 3 and 5. 

4-       METHOD OF SOLUTTON 

As discussed in Subsection II-3,  the characteristic flux 

numerical method is the only available procedure which can treat with 

the required generality Equations   4  through   9   and   19  through   21 

along with the associated boundary conditions.    Consequently,  these 

equations are integrated over a cell volume,  and the method of char- 

acteristics is used to obtain the required fluxes crossing the ceU 
surfaces. 

The Eulerian cells are referred to a moving mesh. 
As discussed in Subsection 11.3. d.   such a mesh makes it possible to 

maintain internal interfaces in the gas; subroutines are provided for 

determining the mesh motion required for the following of the inter- 

faces.    In addition,  the use of a moving mesh makes it possible to 

have the computational mesh expand with the flow (as in the case of 

the expanding debris from an explosion);   thereby.permitting a constant 
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number of cells,  with the resulting uniform accuracy,  to rover the 

entire flow field.    This type of motion obviates the need for rezoning 

the mesh periodically by adding or deleting cells. 

■ 

Finally, all of the calculations involving the constitu- 

tix'e equations are carried out in subroutines;  thereby,facilitating the 

changing of such equations as new models are developed. 

■ 

■ 

■ 

■ 
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SECTION m 

FORMULATION OF THE PHYSICS CODE 

A general physics code is developed to treat the equa- 

tions presented in Section II under a wide selection of boundary conditions. 

This code is developed by integrating the governing equations over the 

volume of a cell and then using the method of characteristics for the 

computation of the field properties on the surfaces of the cells.    The 

constitutive equations are added as subroutines.    The computational 

mesh is set up in a general form which permits selection of plane, 

cylindrical,   or spherical geometries in either one- or two-dim en lions 

as needed.    A method for causing the mesh to move in such a way as 

to follow a set of prescribable interfaces is developed.    A stability 

analysis of the resulting code is carried out.  and detailed flow charts 

of the code are presented. 

l'     INTEGRATION OF THE EQUATIONS 

The equations are integrated in such a way as to be 

correctly represented in either one- or two-dimensions and in either 

plane,   cylindrical,   or spherical geometry.    These three coordinate 

systems plus a typical computational cell in each system are illustrated 

in Figure 1.    The geometrical definitions which specify a cell in any of 

these systems are shown in Figure 2.    The field properties represented 

by Equations   4   through   9   and   19   through   21   are assumed to be con- 

stant within each cell during a time step and constant on each face of 

each cell during the time step.    The equations are then integrated over 

the volume of a cell and over a time step. 
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a' Hydrodynamic Conservation Equations 

Equations   19   through   21   with the cell integration 
indicated are 

,23, 
and 

'At 

(24) 

where 

VD      =     Kmawa(l) (25) 

V'     •    PJI.^^^K^H (26) 
and 

^^ -fe ^Tf^+K^w^+tt^) (27) 

The integrations in Equations 22 through 24 are carried out over the 

volume of a cell. V. and over a time step. At. In carrying out these 

integrations, it is assumed that the time rates of change and the source 

functions.   ■*.    within each cell are constant during the time step.    The 
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divergence term is converted to an int .gral over the cell surface by 

means of Green's theorem,  and the resulting properties on the cell 

surfaces are assumed constant during the time step.    In integrating 

the unsteady term in these equations,  it must be remembered that 

the cell volume is a function of time because of the moving mesh; thus, 

this term is integrated by parts,  and the resulting expression for the  ' 

rate of change of cell volume is replaced by an integral over the sur- 

face of the cell of the normal component of the velocity of the surface. 

These integration procedures are carried out in Appendix V for repre- 

sentative scalar and vector equations. 

Making use of the model -ntegrals provided by Equa- 

tions  319    and   331    and by Equations   320.    339,  and   369   of 

Appendix V. the integrated forms of Equations   22   through   24   become 

(p v)i+1/2'J+1/2 

(VX+l/.-i, j+i/; 

+ At S'«K-<v> 
faces 

^W. j+i/2lvi+i/2, J+I/2 
+ T hi w

n
sl 

faces (28) 

Mv) i+l/Z, j+1/2 : Kv<"V)i+1/2. j+1/2 

Ifa^t^^V <"a„>) -^rrvr -Par,vz]S + 

/., 
^^V'W.J^W.JH« 

2  .cell 
faces '.- (29) 

L 
"" '■■       ii 
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Ü^ [Pa<X> K- <ua>n)- Pa2p Vr . ^ J, 

^.«^W 

and 

1/2. j+l/2Vi+l/2f j+1/2 + TfceU  W
n

S ) (30) 

+ At Äl}k^a(wn-<ua)n).(parr<uar) 

+ Parz<uaz>+QarK-(pazr<uar> 

+ Pazz<V> + QazK]s 

'a(3)i+i/2, j+l/2(Vi+l/2. j+1/2 + T SA W„S) 
\ faces       / 

+A. (31) 

In Equations   28  through   31 .    Wn   is the velocity of the 

cell surface along its outward normal,    (v^)      is the velocity along the 

outward normal of the cell surface of species   a,    and  v,.   and  vz   are 

the direction cosines between the   r   and   z   axes and the outward normal 

to the cell surface.    The index   (i+1/2. j+1/2)   denotes properties evalu- 

ated within cell   (i+1/2. j+1/2) ;   raised indices denote properties evaluated 

at the end of the time step, while lowered indices denote properties evalu- 

ated at thet*|>eginning of the time step. 

b' Radiation Transport Equations 

Equations   4   and   5   with the cell integration indicated 
are 
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Jy   At l öt 
+ C7'QRV 

+ -M1 ] 

Xdvitd,F^+c'"^+^2) 
^V V' ] 

where 

and 

^(2)      =      c ^QRVE^VJI-JV^SVJ 

(32) 

(33) 

(34) 

(35) 

Equations   32   and   33   are integrated with the same 

assumptions and in the same manner as Equations   22   through   24 .    The 

resulting integrated forms are 

L     vV+l/2, j+l/2 / \ 

:ell   KWn- ^R-.v^Q^  vz)]s - + At 
faces 

■^ (1) tv At 
vl ^+1/2, j+l/2ri4\/2, j+i/2 + T c 

^ f i 
cell 
ces 

WS 
n (36) 

V     vr  / \ «Vy >l/2. j+l/2 

+ At   c^TifQ^^„^(PR      vr+pR      v\] 
facesL     vr V    vrr ^Vyz Z/J 

+ 2riAcPR        -ir    (2)       , (y 

+ f  Äl  ^iS1 
faces 

(37) 
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I 
■ 

and ■ 

(Qp    v)i+1/2'J+1/2     =      (QK   V) 
j+1/2 

+ At 
»a L gl.i0**.*'****'*'^*, **•    >j zz 

^i+i/z^j+i/zri+i/z, j+i/2
+T c^fi wns) 

\ faces        / 
(38) 

c. Maxwell's Equations 

Equations 6 and 7 will always be satisfied if they are 

satisfied by the initial conditions; consequently, they need not be differ- 

enced.    Equations   8   and   9   with the cell integration indicated are 

jH>[if-H 
and 

JW*M- c 7 xB + £j ] = 

(39) 

(40) 

Equations   39   and  40   are integrated with the same 

assumptions and in the same manner as Equations   22   through   24 . 

The resulting integrated forms are 

.BrV,-'^"      .      W^m 

+ At   hi (BrWn+ CEQV^S 
faces 

(BV)i+l/2.j+l/2      = 
l*sV,i+l/2, j+1/2 

+ At   e§  (Bz Wn 
faces 

c Ee vr) S 

(41) 

(42) 
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(ErV)l+1/2, j+l/2      m 

,' 
i+1/2. j+l/2 

+ At clli (ErWn-cBevz)S 
faces 

i+1/2, j+l/2Vi+l/2, j+l/2+ 7 clfl  WnS) 
faces        / 

and 

(43) 

i+i/2,j+i/2 

«   'i+1/2, j+l/2 

+ At SA <EzWn*cB0vr)S 
faces 

- £ 
jzi+l/2,j+l/2(Vi+l/2, j+l/2+ T  m WnS) 

\ faces       / 
(44) 

2'       <^ARACTEKISTIC SQLUTTQ^ ON CELT. ^OTTMnA^yxrc 

Equations   28  through   31 t    36   through   38 , and  41 

through  44   all contain terms evaluated on the faces of the computational 

cells.    These terms represent fluxes of the property in question across 

the cell faces, and are calculated by the method of characteristics. 

a' General Theory 

The various field properties governed by the above inte- 

grated equations are considered to be constant within each cell; thus, 

the cell faces constitute a region bounding a region of constant field.    As 

shown in Section 29 of Reference 4.  however,  the field in a region 

adjacent to a region of constant state must be a simple wave emanating 

from the region of constant state.    The leading edge of this simple wave 

propagates along the undisturbed characteristic of the constant state,  and 

in the limit of small differences between th, constant state and the cell 
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surface, the entire simple wave can be approximated by a single char- 

acteristic.    In the same way,  the flow on the cell surface must be given 

by a characteristic coming from the cell on the other side of the cell 

surface; thus,  the fields on the cell surface are given by the splution 

of two characteristics. 

1 

b. Characteristic Equations' 

In the absence of nonuniformities in the fields,   charac- 

teristic properties are properties whic'b remain constant on specific 

space-time paths.    These characteristic properties are to be referred 

to the cell surfaces; consequently,  it is convenient to introduce a local 

rectangular Cartesian coordinate systim on each cell surface as depicted 
in Figure 3. 

. 

, 

Figure 3.    Cell-Surface Coordinate Syst em 
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In terms of this coordinate system,  it is shown in 

Subsection VI-1 of Appendix VI that the hydroJynamic characteristics 

a 

a a 

are 

Ja±     =     <uan>±y 

and that   JQ^   is constant on the path 

n "     "o+aaCMa+nt 

while   Ja_   is constant on the path 

n "     no+aa(Ma-l)t 

where   aa   is the speed of sound of species  a  and 

(45) 

(46) 

(47) 

M« 
(■ Wh (48) 

Similarly,  it is shown in Subsection VI-2 of Appendix VI 

that the radiation transport characteristics are 

Jv±      =      eR   ± ./S" Qp 

and that   Jv+   is constant on the path 

n =     n0+ct//r 

while   Jv_   is constant on the path 

n =     no - ct//T 

where   QR^   is the component of  Qj^   along  ^. 

(49) 

(50) 

(51) 

Maxwell's equations are treated in Subsection VI-3 of 

Appendix VI.    It is shown that Maxwell's equations have two sets of 

characteristics: 

Si 

\ 



Jl. l± 

and 

B8. ± "Eg 

J2±     =      B82 ± ESl 

Further,    Jj      and   J^     are constant along the path 

n n0 - ct 

(52) 

(53) 

(54) 

while   Ji _   and  J2     are constant along the path 

n no+ ct (55) 

Characteristic Properties on Cell Boundaries 

The characteristics listed in Subsection III-2b define 

the properties on the cell boundaries.    Thus,  let cell 1 lie on the nega- 

tive   n   side of the cell surface and cell 2 on the positive   n   side.    Then, 
if 

-1 <Ma < 1 
■ 

Equations   46   and   47   show that 

IJfl+J cell surface 

and 

(Ja.) cell surface 

(Ja+)1 

(JaJ. 

(56) 

(57) 

(58) 

Equations   45   and   57   give 

<"an> cell surface 

Al 
("ttn), + /        dPa /Pa*a 

cell surface 

(59) 

Assuming that the integrand in Equation   59   is nearly constant because 

of the assumed small difference between properties on the cell surface 

3^ 

■ -■•■ 



and those in the adjacent cells, 

<uan> cell surface 
cell surface (paaa), 

X 

Similarly.  Equations   45   and   58   lead to 

al (uan>i+ ¥^r1   w 

<uan) 
"a 

cell surface 
cell surface 

(uan>2 - 
Pa: 

^aaa) 
(61) 

Solving Eqt^tions   60   and   61   for the cell surface properties. 

<uan> cell surface 
(/Jaaa)1<uan)1+(paaa)?(Uan>?+pai .pa2 

(Paaa)1 + (paaa)2 

and (62) 

Pa cell surface 
.   ^^zPai^a^iPaz^a^^aaq)^^^,-^^,) 

(Pe,aa)1+(paaa)2 

(63) 

The density on the cell surface Ij obtained by use of 
Equation   397  of Appendix VI.    Thus,  if 

^cell surface  ^  0 

the gas on the call surface is deemed to have come from cell 1, and 

(64) 

Pacell surface      *     % + 

Similarly,  if 

^n)    „ cell surface 

the density is given by 

Ptt tm -   P/v cell surface        al 
2 ' 

aa, 
(65) 

<  0 
(66) 

Pa cell surface ^2 + 
acell surface '    ^Z 

^7 (67) 
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With   Pa   and   Oa   known on the cell surface,  the 

remaining thermodynamic properties on the cell surface are found by 

application of the chosen model of the equation of state.    The velocity 

tangential to the cell surface is taken equal to the tangential velocity 

in the cell from which the gas crosses the cell surface. 

If Equation     46   is not satisfied,  the flow is super- 

sonic; such a condition means that the gas moves faster than either 

characteristic.    In this case, the flowing gas drags its characteristics 
with it.    Thus,  if 

Ma  ^   1 (68) 

the flow is supersonic from cell 1 into cell 2, and both characteristics 

on the cell surface come from cell 1.    In this case,  the flow properties 

on the cell surface are identical to those in cell 1: 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(u<Vcell surface 
■ («On), 

p 
acell surface 

s P«I 

Pacell surface 
= Paj 

Similarly,  if 

Ma   <  -1 

the flow is supersonic from c ell 2 into cell 1 and 

^•n'cell surface 
= 

<"*n>Z 

p 
acell surface 

= P«2 

acell surface 
= Pa2 
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If the cell surface itself is moving,  the selection of 

the appropriate set of rell surface properties is based upon the motion 

of the characteristics relative to the moving surface.    Since the char- 

acteri.tic. move at the local speed cf sound, these choices may be 

summarized as follows: 

1.   If 

<u*n>l ■•*! - Wn>C (76) 

th. flow i. supersonic from cell 1 into cell 2 and Equations   69  through 
71   are appi ipriate; 

i.   If 

Wn- <'an>2 -^2^° (77) 

the flow is svpersonic from cell 2 into cell 1 and Equations   73  through 

75   are appropriate; 

3.    If neither of inequalities 76 and 77 holds,  the flow is subsonic 

relative to the cell surface, and Equations   62   through   67  are 

appropriate. 

The characteristic surface properties are simpler for 

the equations of radiation transport because these characteristics 

propagate at a speed of   c/^/T;   consequently,  there is no practical 

case in which the cell surface can outrun a characteristic.    Thus, 

Equations   50   and   51   show that 

v+'cell surface 

and 

(Jv.) cell surface 

(Jv^ 

(Jv.) 

(78) 

(79) 

J5 
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BKL —^_ 

■■ 

Inserting Equation   49   into Equations   78   and   79   and solving for 

the cell surface properties by the same method as used in Equations 

60   through   63 , 

d 

and 

vcell surface 2 

QRv =     QR^+Q^ + K-eRvJ/A m) Kvncell surface 2 ^81) 

Similarly for Maxwell's equations.   Equations   54   and 

(82) 

(83) 

(84) 

(85) 

Using Equations   52 .    82 , and   83   and solving f^ the 

surface properties gives 

(B    ) (BSl)i-KB8l)+(E82)-(E82)i 

^«^cell surface "      * H 2 ^ (86) 

and 

(E    ) .      (3Es2)^(^2)a-KBs1)a-(BSl)i 
(EaZ)ceU surface "      2  (87) 

Similarly, Equations   53 , 84 ,  and   85   give 

^^'cell surface =      2 * l (88) 

55 give 

(Jl   ) 1  Vcell surface = ,Jl+'ä 

(Ji   ) 1-'cell surface 
s (Jl+), 

^^^cell surface 
■ (Wi 

and 

<J2-)cell surface 
= (J2.)2 
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and 

(E    ) sl cell surface 
(E8 ) +(E8 ) +(B8 ) .(B8J 
 >i_i ^ 3 & i Zg 

2 (89) 

3.       CONSTITUTIVE EQUATTONS 

As discussed in Subsection II-ld,   the values of  the 

collision cross sections and of the various reaction rates will be assumed 

known.    The values initially selected will be obtained from a cursory check 

of the literature.    Since the purpose of the initial one-dimensional calcu- 

lations is the testing of the sensitivity of the numerical solution to the 

various parameters of the problem,   such a choice of cross sections and 

reaction rates is a satisfactory method of gaining a starting point for a 

parametric study.    A more thorough evaluation of these parameters will 

have to be undertaken for the two-dimensional overall-effects code, 
however. 

The detailed study of initial conditions that may be 

required for predicting the debris behavior of specific bursts is being 

postponed, at least until the two-dimensional code is ready for running. 

If the parametric studies proposed for the one-dimensional code indi- 

cate a lack of sensitivity to the precise initial conditions, then such 

detailed studies may not be warranted. 

a. Source Effects 

The continuity equation for species   a   requires a 

knowledge of the, volume production and/or loss rate of the species. 

We have begun to investigate the various cross sections and reaction 

mechanisms which contribute to the rates.    Among these are ioniza- 

tion,  charge transfer,  dissociation,  and recombination of free electrons 

with positive ions.    The following summarizes the preliminary results 
of our survey to date. 

il 

—r 

i' "• 

I _ 

\ 



i 

t1)   Capture and 3oss of electrons by fission fragments 

Bell (Reference 6) and Bohr and Lindhard (Refer- 

ence 7) have shown that the capture and loss cross sections,    a     and 

ol .  respectively,   of a highly ionized particle of atomic number   Z 

and ionic charge   z   moving with velocity   v   in a target gas of moder- 

ately high atomic number   Zt   are given by 

ac      -      zt        z (vo/v)    irao (90) 

a.       -      7 2/3 „4/3   -3.   .    .2       ?. ul      -      Z-t       z        z    (v/vo)    irao (9!) 

Here   VQ   is    c/137and   irao    is the area of the first Bohr orbit 

(8. 8x10'17 cm2). 

When charge equilibrium is attained as the fission 

fragment moves through the gas,  the capture and loss cross sections 

are equal.    The common cross-section under equilibrium conditions 

is then approximately 

and the average ionic charge is 

•   ■ 24/1V/,5(t) 

(2)  Ipnization of air by debris ions 

Perhaps the currently most useful estimate of the 

cross section   ^   for ionization of a gas by high-speed ions is that from 

Firsov (Reference 8).    His result,   derived for atomic systems,   is 

vi/5     nz 

-W ■ ■! CTi       ~      Uo!ITr I        ~ 1l       cm 
2 

(94) 

id 
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where   v   is the relative speed of the colliding pair of particles and 

ao   and   v0   are determined by the relations 

3. 3x10 -15 

(Zi+Z3) 2/3 cm   ;     v0 
2. 3X10 

(Zi+Z2) 5/3 cm sec 

(95) 

Here,    Z,   and   Za   are the atomic numbers of the incident and target 

particles,   respectively,  and   fc   is the smaller of the ionization energy 

(ev) of the two colliding particles. 

Recent measurements by Fite et al (Reference 9) 

on ionization in air,    r^   and   A-   gases by incident beams of  A^+   ions 

have produced the data shown in Figure 4.    Included in this figure are 

the theoretical cross sections,  predicted from Equation   94   for   A^ 

ions in argon and atomic nitrogen.    It is seen that the experimental 

curves do not exhibit quite as strong a velocity dependence as does the 

Firsov cross section.    In addition,  the data for   ISfe   are higher than 

10 

9 

8 

7 

E 
-H     6 

"o 
x 
b 

REFERENCE 9 
 THEORETICAL (Equation 94) 

f 

V x 10"/ (cm/sec) 

Figure 4.    Ionization Cross Secti ons as a Function of Velocity 

for   A*,     in   Ar,   N2.  and Air 
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that predicted for   N.    It seems reasonable,  however,  that in dealine 

with diatomic molecules,the value of   ao   derived for atoms should be 

increased somewhat.    This would then bring the theoretical and experi- 

mental curves more into line. 

(3)   lonization of air by debris electrons 

The available data on electron-induced ionizatioa ir 

various gases have recently been summarized by Kieffer and Dunn (Ref- 

erence 10).    In particular, the cross sections for ionization of   N,   O, 
+ + 

Hs.  Qa,   NO,  N    and   Li     by electrons with energy between about 10 ev 

and 10 kev are available.    If the electrons are in equilibrium at a te~i- 

perature   Q^,    then the rate coefficient   a   for production of ions   M+ 

by the process 

e + M  -•   M    + 2e (96) 

is given by 

a     =       <^iv>e (97) 
e 

Here   w   is the electron speed,    oi   is the ionization cross section,  and 

the brackets indicate an average over all speeds. If We use the data 

presented in Reference 10,  together with an assumed velocity distribu- 

tion for the electrons,    a   as a funcition of electron temperature can be 

obtained.    This has been done (Reference 11) for ionization of atomic 

oxygen and nitrogen by assuming a Maxwell velocity distribution.    The 

results are shown in Figure 5.    Similar results can easily be obtained 

for the other species by numerical integration of the cross section data. 

(4)   Dissociative ionization of air molecules 

Data have been obtained (Refer*»- je 10) on the dis- 

sociative ionization process 
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3        5     7     10 20    30       50   70   100 200   300     500      1000 

ELECTRON TEMPERATURE (ev) 

Figure 5.    lonization Rates for Atomic Oxygen and Nitrogen 
Versus Electron Temperatures. 

e+Ma   -*   M+M++2e 
(98) 

for^ electron energies between about 10 ev and 1 kev and product ion 

(M )   energies greater than 0. 25 ev.    Results for   ^   and   Ofe   are 

shown in Figures 6 and 7. 

(5)   Dissociation of air molecules by fa «t ^0 ms 

Gerasimenko and Oksyuk (Re/erence 12) have com- 

puted the cross section for dissociation of diatomic molecules in collision 
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Figure 6.    Cross Sections for the Dissociative Ionisation of 
Molecular Nitrogen Yielding Product Ions with Kinet 
Energies Greater than 0. 25 ev. 
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with atoms.    It turns out that the quantum mechanical expression for 

the cross section which they derive gives results which differ at most 

by about 20 percent from the classical expression.    We will,  there- 

fore,  adopt the simpler classical expression for the dissociation cross 
section. 

The dissociation cross section can be written as 

2     fTm 
aD   =   Z^   ajmwmdT (99) 

where   ^(T)   is the cross section for elastic scattering by one of the 

atoms of the molecule.    T   is the energy transferred elastically to the 

atom.    D  is the dissociation energy and   w(T)   is the probability that 

dissociation will occur.    Tm.    the maximum energy transferred elas- 

tically.  is given in terms of the energy   E   of the incident atom and the 

masses   M   and   Mj   of the incident and target atoms,  by 

T =      YE 
m ^ (100) 

where 

Y 
4MM. 

^TTJ? ,101' 
The summation in Equation   99   is over the two atoms in the molecule. 

Classically,    w = 1 ,    i. e., the molecule will defi- 

nitely dissociate if the energy transferred elastically to one of the 

molecular atoms exceeds the dissociation energy.    For a Coulomb 

interaction potential,  we have (Reference 12), 

.  27re   Z   Zi li JT 
ajdUT    .    —W-^ (1o2) 

M-  v T 
J 
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where  M   is the reduced molecular mass,   v   is the relative speed 

between incident and target atoms,    and   Ze   and   Zje   are respectively 

the nuclear charges on incident and target atoms.    If   T     » D,    as will 

usually be the case.  Equations   99   and   102   yield 

iirZ2e4u/2,2     2j-\ 
2r       l772 + "~2J 

v D      \Mi      Ma / 

2 
cm (103) 

It is not difficult to use the more accurate screened- 

Coulomb interaction or the Thomas-Fermi function to obtain a slightly 

more accurate expression for the cross section. 

In addition to the collisional effects discussed above, 

the decay rates from thermodynamic nonequilibrium to equilibrium are 

expected to be important at higher altitudes.    These decay equations are 

generally given in the form 

dcp 
—    =     (»(cpi.Cte.  ...» CpN, T) (104) 

where  cpx, cfe,  . .., cpN  are the   N  properties which are out of equilib- 

rium and   T   is the temperature.    The function  ou in Equation   104 

frequently is highly nonlinear, and recourse must be had to numerical 

means of integrating the equation.    These rate equations frequently have 

very large time constants,  however,  and conventional Runge-Kutta tech- 

niques therefore do not work well.    However,  a modification of a method 

suggested by Certaine (Reference 13) has been developed; this modifica- 

tion appears accurate and efficient in terms of computer time. 

The function  üU in Equation   104   is approximated by 

%      =      -Dcpc + ß(t) (105) 
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where 

D "4^ ,+^:(i (i06' 
Equations   104   and   105   lead to 

If  ^a*   represents the equilibrium value of property 

cpa   in a heat bath at temperature   T. Equation   105   shows that 

' m      =     ***D (108) 

Equations   107   and   108   give 

- £%<***^-^Y (i09' 
Using the approximation 

dt Jt (HO) 

Equation   109   gives 

-DAt e ^(At).cp%(At)      =     [cpa(0).cpfl)j((0)J 

k.^t)-^ (0)1 
- ■■    " Z—d. n 

D • 2r (' 

Equation   111   is computed in three step 

D    At -(l-e-DAt) (111) 
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(1)   The approximations 

D    '    -aT'01 (U2) 

and 

^«^    =    ^(0) (113) 

are used,  and a preliminary value of  cpc(At)   is computed; 

(2) Using the preliminary value of   ^ (At),  final values of   D   and 

Vo«^*)   are computed; 

(3) The final values of   D   and   %(At) are used in Equation 111 to 

obtain the final value of  cpa (At). 

Equation   111   has been coded and tested by being 

employed to calculate the relaxation to equilibrium of a mixture of 

Cfe,  Qs , O,    and   O     with initial conditions of 10, 000 0K and 

100 percent   0+.    The computed relaxation was checked against results 

obtained by Runge-Kutta techniques and found satisfactory. 

c Correctness of Treatment 

The treatment of the constitutive equations as dis- 

cussed in Subsection IHOa is decoupled from the computation of the 

fluxes crossing the cell surfaces as discussed in Subsection III-2. 

The correctness of this decoupling is seen by recalling that the sur- 

face fluxes have to do with the transport of mass, momentum,  and 

energy across the cell surfaces.    As pointed out by Chapman and 

Cowling (Reference 1),   however,  the transport of molecular 

properties in a rarefied gas is caused almo   ,   entirely by the free motion 

of the particles between collisions and only .     ligibly to the transf 

at collisions over the distance separating the two colliding particles. 
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Thus,  for the rarefied gases considered here, particle collisions and 

molecular relaxations can h^ve no effect upon the surface fluxes. 

Consequently,  the decoupling of the collisional effects from the sur- 

face flux calculations is valid. 

4-       BOUNDARY CONqmnMy 

The appropriate types of boundary conditions and 

the means by which they may be computed follow directly from the 

cell surface properties given in Subsection Ul-Zc.    The boundary con- 

ditions must be such that these surface properties can be computed; 

generally,  thxs requirement means that all of the fields outside of 

the boundary must be prescribed. 

In the case of the hydrodynamic equations,  how- 

ever,  an additional type of boundary condition arises if the flow is 

supersonic out across the boundary.    In this case.  Equations   69 

through   71    show that the surface properties on the cell boundary 

are given by tne properties in the last cell within the boundary. 

Thus,  the external fields need not be prescribed for this case. 

In addition,   it is possible to replace the surface 

property calculations of Subsection III-Zc by specified surface proper- 

ties.    For example,   if a cell surface is known to coincide with a 

hydrodynamic shock wave,  a subroutine containing the Rankine- 

Hugoniot relations can be used for the calculation of the cell surface 
properties. 

5.       MESH GBQMEXflX 

The finite difference equations of Subsection III-l 

have been written in a generalized geometry which facilitates the 
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aligning of the cell sides with any discontinuities in the flow.    This 

generalized cell geometry coupled with the motion of the mesh implies 

that the cross sections of the cells are quadrilaterals,  but not necess- 

arily rectangles. 

a- One or Two Dimensions 

Three coordinate systems are used   plane,   cylin- 

drical,  and spherical.    In the first two of these,  computations may be 

chosen to be either  one- or two-dimensional; calculations in the spheri- 

cal system must be one-dimensional.    The ability to choose between 

one- and two-dimensional calculations results from the surface flux 

technique of differencing the equations:    a one-dimensional calculation 

is achieved if two of the cell sides are dropped from the summations 

in Equationr   28   through   30 ,    36   through   38 ,  and   41   through   44 . 

This dropping is achieved by setting the flag NDIMEN equal to unity. 

In addition,  the z-component equations may be neglected in some of 

these calculations (but need not be).    The resulting calculations will 

be executed as quickly as if the code had been written specifically for 

one-dimensional calculations. 

b. General Quadrilateral Shapes 

The general quadrilateral cross section of a cell 

is depicted in Figure 2.    In the case of cylindrical geometry,   this 

cross-sectional area is revolved around the z axis (Figure 1) to gen- 

erate the computational cell.    In the case of spherical geometry,  the 

cell is a spherical shell,  as illustrated in Figure 1.    The choice 

between these three geometries is made by setting the geometry 

option word,   IGEOM,   equal to one for plane geometry,  vwo for cylin- 

drical geometry,  and three for spherical geometry. 
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c. Method of Specification 

The parameters, needed to specify the cells are 

depicted in Figure 2.    Each cell is bounded by two rays and two 

arcs; cell   (i+l/2. j+l/2)   is bounded by rays   i   and   i+l.   and by 

arcs   j   and   j+l .    These rays and arcs intersect to form the four 

cornerpointsofthece.il:    (i, j),   {i+1,j)(   (i. j+l),  and (i+I. j+l). 

The totality of cells between any two rays is referred to as a 

column of cells. 

The arcs constitute the moving portion of the mesh. 

As a result of this motion,  the arcs may become discontinuous as 
shown in Figure 8. 

x, r 

-j-1 

Figure 8,    Discontinuous Ar ca 

The rays,  however,   are fixed straight lines during any one calcu- 

lation.    Thus,  cell (i+l/2,j+i/2)   is completely specified if the 

angles   a.   and  a.^    of the adjacent rays are given,  if the intercepts 

z.   and   zi+i    of the rays on the   z   axis are given,  and if the dis- 
tances   d d d ^   J 

i.j'       ij+l*      i+l,j   and   di+i   j+1    along rays   i   and   i+l 
from the z axis to the corners of the cell are given. 
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As can be seen from Figure 2, all of the areas and 

volumes associated with a cell are computable in terms of triangles 

and triangles of revolution about the z axis.    Thus, the development 

of the formulae for the cell geometry is straightforward.    The results 

are summarized in Appendix VII. 

The first ray   (i=l)   and the last ray   (i=l)   are consid- 

ered to be external boundaries,  and have their surface fluxes pre- 

scribed in subroutines.    In this fashion,  the changing of boundary 

conditions is reduced to the changing of a few subroutines. 

In the same way, the first arc   (j=l)   and the last arc 

^i+lfZ1   are considered to be external boundaries.    In addition,  the 

moving mesh can accommodate itself to moving boundaries; thus,  any 

number of internal arcs may be aligned with discontinuities in the 

internal flow.    For example,  a contact surface might be represented 

by arc   j=5   in column   (i+1/2),    arc   j=6   in column   {i+3/2),    and so 

forth.    All of these arc boundaries,  both external and internal,  have 

their surface fluxes prescribed in subroutines; thus,   external condi- 

tions and internal discontinuities are easily changed. 

In any given column,  the arcs which are not associated 

with either external boundaries or internal discontinuities are positioned 

along the rays in such a way as to provide equal spacing between the 

discontinuities.    Thus, the location of the points of intersection of all 

non-boundary arcs with the rays can be computed if the points of inter- 

section of the boundary arcs are given.    For example,   if arc   i=J 

has intersections with rays   i   and   i+1   located at   d        and   d 
... i, J i+1, J' 

and if the next boundary arc is an internal boundary on arc   j=N  with 

points of intersection at    d.^ N   and   d.+ KN;   then the intermediate 

points of intersection are located at 
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d- M - d,  T 
d. =      d +-ii_N_lii 
^J ij+l J - N (114) 

and 

d.   ,        - d d^,   •      =      d               |     x+l. N       i+l.j 
i+l, J i+l.j+l J - N  (115) 

d. Multiple Boundaries > 

As can be seen by an examination of Figure 8,  the 

moving mesh may cause the face on ray   i   of cell   (i+1/2. j+1/2)   to 

share ray areas with the faces of several cells in the next column. 

In such a case,  the characteristic property calculations of Subsection 

III-Zc are carried out on each portion of the face,  and the summations 

m the integrated equations of Subsection lU-l are taken over all ^.^ 

of the cell face.    The ray area formulae in Appendix VII can be used 

for the computation of each of these partial cell-face areas. 

This technique of summing the fluxes on multiple bound- 

aries has been used successfully in References 3 and 5.    The method 

ensures the conservation of mass,  momentum,  and energy. 

6'      MESH MOTION 

To follow the motion of the external and internal 

boundary arcs (if they move),  it is necessary to allow all of the arcs to 

move.    Thus,  the motion of the boundary arc. is determined by the kine- 

matics of the boundary,  and the motion of the remaining arcs is scaled 

to maintain equal arc spacing between boundaries. 

a. Node Velocities 

The nodes are the points of intersection between the arcs 

and the rays.    Those nodes which lie on arcs corresponding to internal 
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or external boundaries have their velocities determined by the velocity 

of the arc normal to itself. The means of computing these node veJoc 

ities can be explained with the aid of the geometry depicted in Figure 9: 

Figure 9.    Node Velocity Geometry 

The geometry illustrated in Figure 9 is easily calculated from the for- 

mulae of Appendix VII.    The arc velocities,    W1   and   W3,    are given 

by the kinematics of the boundary; for example,  a contact surface moves 

at the local material velocity and a shock wave moves at that velocity 

whxch renders the pressure,  density,  and velocity jumps across the dis- 

continuity compatible with the Rankine-Hugoniot equations.    These kine- 

matic velocity calculations are included in the internal or external boundary 

subroutines appropriate to the arc in question. 

velocity is 
In terms of the definitions illustrated in Figure 9.  the node 

n rtiWa/sin Ya + taWn/sin v/l 
(116) 

The velocities of the  nonboundary   nodes along a ray are 

scaled to maintain equal node spacings between boundary nodes.    For 

this purpose.  Equations   114   and   115   are used with the distances 
replaced by the node velocities. 
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b. Cell Surfaces 

The surface faces of the call« on the fixed rays do not 

move,  but the faces on the arcs do move.    The velocity of an arc face 

normal to itself is evaluated by calculating the volume swept out by 

the arc face during the time step and dividing this volume by the product 

of the face area and the time step.    This procedure is used to ensure 

that volume is conserved by the floating mesh.    Thus,   if the position of 

node   (i,j)   at the start of the time .tep is   d     (0),    the position at the 
end of the time step is 

d.   .(At) d.   .(0) + v.   . • At 
i» J i. J (117) 

where   v.^.   is the velocity of the node along ray   i   as given by Equa- 

tion   114   or Equation   116.    The node positions before and after the 

time step are used in the cell volume formulae of Appendix VII to 

obtain the volume swept out by the cell face during the time step,    AV. 

The velocity of face   (i+1/2, j)   is then found from 

W 
i+l/2,j ■W^i/zj'^) (118) 

In previous calculations with this type of moving mesh 

(Reference 5),  it has been found necessary to recompute the velocity 

of any internal boundary arcs according to Equation   118   for the sur- 

face flux calculations; the velocity so computed differs only slightly 

from the velocity given by the kinematic subroutine corresponding to 

the arc,  but this slight difference is sufficient to cause inaccuracies 

because of lack of conservation of volume. 

7-      STABILITY ANALYSIS AND TIME-STEP CALCULATION 

The stability analyses used on these equations is based 

upon the von Neumann necessary condition as presented by Rlchtmyer 

53 

\ 



(Reference 14).    The equations are linearized,  the amplificati. 

matrix is found,   and the eigenvalues of the amplification matrix 

determined.    Stability requires that these eigenvalues be less than unity. 

ion 

are 

a. Two-Dimensional Stability 

It is shown in Subsection B. 3 of Appendix 3 of Reference 

3 that the two-dimensional code will be stable if the time step is chosen 

to satisfy the inequality 

AtrAtz At 
-    Atr + At (119) "•r T "•'« 

where   Atr   and  Atz   are the time steps for which the one-dimensional 

calculations in the radial and axial directions,   respectively,  are stable. 

b. One-Dimensional Stability 

For the hydrodynamic equations,  it is shown in Appendix 

G of Reference 3 that the numerical method given here is stable in 

the radial direction if the time-step   Atr   satisfies the inequality 

h. 
Atr    S 

!ur|+a (120) 

in every cell of the mesh and for each species.    Here,    hr   is the dis- 

tance across the cell in the radial direction,    ur   is the velocity in the 

radial direction,  and   a   is the speed of sound within the cell.    A simi- 

lar expression holds for the axial time step.    At   .    Equation   119   is 

valid if the cell surface properties of Subsection 3. 2. 3 are evaluated 

at the start of the time step.    It is found in Reference 3 that the time 

step permitted by Equations   119   and   120   is sufficiently long to allow 

large   percentage changes (as much as 50 percent) of the flow   properties 
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within a cell.    Since larger percentage changes would raise the ques- 

tion of accuracy,  this time-step limit is considered satisfactory. 

For Maxwell's equations and the equations of radiation 

transport,  however,  the situation is somewhat different.    If the cell 

surface properties are evaluated at the start of the time step,  it can 

be shown that the stable time step must satisfy the inequality 

Atr    <    hr/c 
r (121) 

where   c   is the speed of light.    Obviously,  Equation   121   presents 

far too stringent a limitation on the time step for a practical numerical 

procedure.    However,  if the cell surface properties are evaluated at 

the end of the time step,  it can be shown (Appendix VIII) that the numer- 

ical procedure is stable for any time step.    Consequently,  this option of 

evaluating .he surface properties at the end of the time step is chosen 

for Maxwell's equations and the equations of radiation transport.    In 

the case of one-dimensional calculations, the resulting numerical equa- 

tions are easily inverted and solved directly,  but in the case of two- 

dimensional calculations,  an implicit set of equations results.    Although 

there exists a number of relaxation methods for solving implicit equa- 

tions,  no method has been selected yet. 

8-      ORDER OF COMPUTATIONS IN THE C.nnr. 

The general flow of logic in the code is indicated in detail 

in the flow charts in Appendix II.    The various formulae presented in this 

section are coded into subroutines and called as needed.    The flow charts 

not only show the flow logic,  but also give the FORTRAN II coding used. 

The code does not yet contain Maxwell's equations or the 

equations of radiation transport.    Furthermore,  the code has not yet 
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been completely checked out. although .ome t.« calculations have 
been run successfully. 

charts. 
A few minor subroutines are not shown in the fl ow 
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SECTION IV 

DISCUSSION 

A numerical technique has been developed,   but not 

yet fully tested,   for the study of the dynamics of high altitude nuclear 
bursts. 

1.      METHOD OF USE 

The numerical technique developed here can be used 

for both one-dimensional and two-dimensional studies. 

a- One-Dimensional Coupling Studies 

It is proposed to use the physics code described above 

in a series of one-dimensional calculations to study the coupling to the 

atmosphere of the debris from a high altitude explosion.    Separate 

studies are proposed for collisional coupling,   electromagnetic pickup, 

and pxckup by scattering off of magnetic turbulence. 

The collisional coupling studies will be carried out by 

use of expressions for the rate of change of momentum caused from 

collisions.    These expressions are functions of the collision cross sec 

tions; it is proposed to vary the densities,   energy of the debris,   and 

cross sections within their range of uncertainty to observe the transi- 

tion from collisionless flow to fully coupled flow.   Scaling laws for this 

transitional region can then be developed. 

The two-stream instability also can be studied with the 
one-dimensional physic code     Two no.if^i    * F  y oae.     iwo neutral streams of xons and electron! 
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are allowed to approach one another in the absence of collisional 

terms.    The presence of the complete Maxwell's equations in the code 

ensures that any electric field generated by density perturbations will 

be computed.     This type of computation should give information as to 

the effective role of the two-stream instability in the coupling process. 

Here again,   scaling laws giving the magnitude of the perturbation and 

the degree of pickup can be developed. 

The one-dimensional code also can be used for studies 

of coupling by scattering j{ ions off of magnetic irregularities.    The 

magnetic field is assumed to be trapped in the hydrodynamic turbulence 

in accordance with the model of Reference 15.    The turbulence itself 

is computed by introducing a turbulent viscosity coeffxcient into the code, 

and using the scaling laws of Kolmogorov's theory (Section 32.  Refer- 

ence 16).    The cross-section for scattering is given in Reference 15. 

By coupling the scattering off of the magnetic irregularities to the 

general flow by means of the physics code,  it will be possible to de- 

duce whether or not such a phenomenon can cause coupling. 

b. Two -Dimensional Studies 

The physics code discussed above also has been developed 

in a two-dimensional form (both plane and cylindrical symmetries).    It 

is proposed to use this form of the code to study "Longmire" coupling 

and to compute the gross structure of the expanding debris. 

The concept of "Longmire" coupling is fundamentally 

two-dimensional, because it involves the generation of a magnetic field 

by a stream of ions and a turning of additional ions by the magnetic 

field.    The ability to remove the collisional terms from the code plus 

the presence of Maxwell's equations in the code permits the simulation 
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of this coupling.    The computation is set up in cylindrical coordinates. 

A small region of ionized particles in the center of the computational 

mesh is given an initial outward velocity,  and the ambient conditions 

outside this expanding region are taken as those of an ionized gas at 

rest in a magnetic field.    The initial expansion energy,   degree of ioniza- 

tion.   and initial density can be varied in a parametric study of this form 

of coupling.    If coupling does occur,  appropriate scaling laws can be 
deduced. 

Once scaling laws for the various types of coupling have 

been deduced,   it will be possible to use the two-dimensional code for 

studies of the overall expansion of the debris from high altitude explosions. 

These scaling laws can be introduced at the expanding outer boundary of 

the debris in the same fashion as the Rankine-Hugoniot equations are 

introduced at   the outer boundary of conventional hydrodynamxcs codes. 

It is worth noting that the numerical procedure developed 

here can be used either as an Eulerian procedure or as a Lagrangian 

procedure.    In a one-dimensional calculation,  for example,  the code 

will be Eulerian if the mesh is fixed in space; on the other hand,   the 

code will be Lagrangian if each cell surface is caused to move at the 

local fluid velocity. 

2.      FURTHER DEVELDPMTTMT 

The proposed physics code is capable of yielding detailed 

numerical information on the problem of the coupling of the debris of 

high altitude nuclear explosions to the ambient atmosphere.    The code 

is also capable of incorporating this information in a manner suitable 

for the computation of the late-time debris structure.    Most of the 

code as described in the foregoing section has been written but not 

debugged.    Maxwell's equations have not yet been coupled into the code. 
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and the theory for the treatment of Maxwell's equations in two 

dimensions is not yet completu. 

For the one-dimensional code,  therefore,  it is pro- 

posed that the first task be the debugging of the existing code.    There 

are many solutions of channel flows which may be used to demonstrate 

the accuracy of the code.    The second proposed task is the development 

of subroutines for the various thermodynamic and kinetic models.    It 

is suggested that an equilibrium air equation of state be coded into a 

subroutine,  and that a set of reaction rate equations for the decay from 

a nonequilibrium state to the equilibrium state be developed and coded. 

In addition,   ic is suggested that this second task include the development 

of subroutines which give the source of momentum due to particle col- 

lisions and due to scattering off of magnetic irregularities.    These last 

two subtasks will involve finding or developing mathematical expressions 

for the cross-sections for the proposed reactions. 

The third task proposed for the one-dimensional code 

is the adding of Maxwell's equations to the code and the suosequent de- 

bugging.    The theory of the characteristic flux method as applied to 

Maxwell's equations in one dimension is completely developed,   and the 

relevant stability analyses have been made.    These equations can be 

coded in a fashion which is stable for any time step. 

For the two-dimensional code,   it is proposed that the 

first task be the debugging of the existing code.    The blast   penetraf  n 

calculations of Reference 3 can be used as one standard during the de- 

bugging,  and the point explosion results given in Sections 11 and 12 

of Chapter IV of Reference 17 can be used as a second standard.    These 

proposed standards cover the cases of strong interactions of high energy 
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streams with associated material interfaces and of high energy 

release in a small region. 

The second task proposed for the two-dimensional 

code is the development and introduction of the appropriate thermo- 

dynamic routines.    These routines would include all of those developed 

for the one-dimensional code,  plus all of the scaling laws for coupling 

developed by use of the one-dimensional code.    The latter class of 

thermodynamic routines would serve as proven coupling laws which can 

be used in the computation of the overall structure of the expanding  debris. 

Finally,  it ij proposed that a method be developed for 

coupling Maxwell's equations into the two-dimensional code.    The charac- 

teristic flux technique has been applied to these equations,   but the resulting 

stability matrix is not explicitly solvable and has not been evaluated numer- 

ically.    It is suggested that evaluation of the stability matrix be undertaken 

and that the equations be added to the code if proven stable.    If the equations 

are not stable,  it is suggested that attempts to generate a stable technique 
be undertaken. 
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APPENDIX I 

CONSERVATION EQUATIONS FOR A REACTING 
NONEQUILIBRIUM MIXTURE OF GASES 

The derivation of the usual hydrodynamic conservation 

equations for a ncnreacting mixture of gases from Boltzmann's equa- 

tions is given in many texts on physica! gas dynamics.   A similar 

derivation is presented here in order to demonstrate and document 

the consistence cf the definitions used in Sections II and III of this 
report. 

1. DEFINITION OF KINETIC PAB AV.^TTDC 

Assume a chemically-reacting mixture of gases, and 

assume that all interactions are weak; i. e..  no electromagnetic or 

radiative collision effects.   Assume   N  species, including electrons 

(the species may be ionized). 

Let pa   denote the mass per unit volume of species   a. 

and let p   denote the mass of mixture per unit volume: 

N 
P ^Pa (122) a= 

Let   fa(^ 7. t)   be the single-particle distribution function for species 
a   and let 

na       =      number density of particles of species   a 

ma      =     mass of a particle of special  a 

Then 
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n (r, t)      =      ff   du 
ex «^ a.     a (123) 

and 

as 

Pa(r,t)      =      mana(r.t) (124) 

The mean velocity of particles of species   a   is defined 

J  a a     a 
<%> 

/fad% 

is defined as 

v a 

The mass velocity of the mixture,    u.    is defined as 

1      N 

a=l 

The thermal velocity of a particle of species   a,  va, 

=     V <%> (127) 

Note that Equation  127   is not the conventional definition of thermal 

velocity,  which is expressed in terms of the mass velocity of the 

mixture.    It is felt that for the situations considered here,  which are 

nowhere near being equilibrium mixtures,  species temperatures are 

better based on the motion of the individual species than on the motion 

of the mixture.    The latter motion is given by the mean thermal vel- 

ocity of a particle of species   a,   <^a>,    defined as 

<va>      s   aa-3 (128) 
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obviously. 

V<va> a.<v (129) 

The diffusion velocity of particles of species   a. V       i8 U8ually defined 
as 

a <ua) - u (130) 

Thus,   Equation 129 becomes 

a        a' (131) 

2• BOLT2MANN EQUATTON FOR SPTrgTrfi   Q 

Using tensor notation, the time-rate-of-change of specie« 
a   within a fixed volume in   (u, r)   space is 

dt 

r 
= ffw*** (132) 

This change results from two physical phenomena:   1)   particle flux 

across the surface of  V; and 2)   particle sources within   V.    The 

change arising from particle fluxes is 

dF^flux /fa(pVd8 (133) 

where 

cpj        =      generalized velocity of  a  particles in 

^"a» ra)   8pace, 

vi unit outward normal to   S, 
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and 

S      =      bounding surface of   V. 

Using Green's theorem on Equation   133 

^Mflux    =      -/M.<*V (134) 

For the three position variables. 

i i 
cp       =      u 

(135) 

and for the three velocity variables. 

i du1 

Fa/ma (136) 

where  Fa  is the force on a particle of species   a.    Note that  u1   is 

not a function of   r1   within the integral,   so 

i 
u (137) 

Also,  note that the only velocity-dependent forces on particles are 

the Lorentz forces: 

F*       «     eijk B, u. 

a 5       iik 

au1 au1        k J 

e      6ijBk (138) 
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Using Equations   136   and   137   in Equation   134 

^V,flux     s      "X^i 

gives 

dV (139) 

a. Source Terms 

The particle sources within the six-dimensional volume 

V are (1)   creation of particles within physical space by chemical or 

nuclear processes; and (2)   creation of particles within velocity space 

by scattering from another element of velocity space.    Note that the 

nuclear processes involved here may emit or absorb photons, and 

the numerical processes being developed for these equations can treat 

Photons as well as other species.    Let the particle sources be defined 
as follows: 

Ra      =     number of particles of species  a   generated 

per unit time in unit phase space volume around 

point   (u,r)   by all processes; 

Ra      =      number of particles of species   a   lost per unit 

time in unit phase space volume around point 

(u, r)   by all processes. 

Then 

IM sources fK-ta) dV (140) 

But 

*M ■ IM« 'IM 
sources 

(141) 

Combining Equations   132,    139.    140   and   141, 

/•afa r 
(142) 
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Noting that the volume of integration in Equation   142   is arbitrary, 
the Boltzmann equation results: 

of of       F        öf a    -      a      a        a — 
öt 37      ma     "i^"     -      Ra - R

a (143) 

The source rates in Equation   143   are net rates result- 
ing from all possible reactions; thus. 

R it a'*y\fa\*r.. <144) 
where 

(2) 
Ra, ßv rate at Which Particle8 of species   ß   and   y 

react in two-body collisions to form particles 

of species  a,   and 
(3) 

Ra,ßY;6       =      rate at which particles of species   ß   and  y 

react in three-body collisions (in the presence 

of species   6)   to form particles of species  a 

Equation   144   obviously can be generalized to include higher than 

three-body collisions,  but such effects seem unimportant. 

a 

R 

There is a similar equation for   R 

where 
(2) 

Ko ~      rate at which Particles of species   a   and   ß 

react in two-body collisions to annihilate par- 

ticles of species   a,   and 
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and 

_(3) 
Raß, Y      "      rate at which particles of species   a   and   ß   react 

in three-body collisions (in the presence of species 

Y)   to annihilate particles of species  a. 

It should be remembered that the terms "form- and "annihilate" as 

used in the above definitions refer to an element of six-dimensional 

phase space,  and include scattering from one element of velocity space 

to another element of velocity space. 

The above source rates ca, be expressed in terms of 

cross sections as follows.    Suppose that a particle of species   a   and 

a particle of species   ß   traveling with relative velocity 

gaß        =      'W (146) 

have a cross section for the reaction 

a^Y,6.e (147) 

of 

Om . u . u : e    \ 
(148) 

where the cross section depends upon the velocities of the product 

particles.    Then the rate of formation of particles   Y, 6. €   because of this 

particular two-body interaction.    T is 
YSe.aß   1B 

*gaß,n(vVVgaß)dVS (149) 

The rate of formation of any one species by two-body collisions is 

(2)   / ^ 
RY. aß U

Y' 
r' V      =     j/r

y6e aß(uY. u6, u£,;. t) du   dnc      (1 50) 
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It is clear that if a standard form (such as the Maxwellian) for the 

distribution functions   ^   and  fß   can be assumed,  and if the cross 

sections,    0,    are known,  the integrals in Equations   149   and   150 

can be evaluated,  at least numerically,  ahead of time. 

The rate of loss of species   a   because of this two- 
body collision is 

' n(v V V«aß)dVS6 d^ dS (151) 

Consideration of the integrals in Equations   149   through 

151   makes it clear that the two-body source rates must satisfy the 

following "Compatibility Relation" 

fs™* f-{Z)  - fW 

/(2)     ^ r  (2) 
=    A,aßdu6   =    A,aßd3

e (152) 
^ Reduction to Spherically Symmetric Intermolecular Potential 

That the above definition of two-body source rates is 

a satisfactory generalization of the definition given in standard texts 

on nonequilibrium kinetic theory may be seen as follows.    Suppose 

that no nuclear or chemical process takes place during the two-body 

interaction:   then particle   y   is the same particle as particle   a, 

particle   6   is the same particle as particle   ß,    particle   e   does 

not exist,  and the interaction degenerates into a two-body scattei mg. 

Because the integration over   du^ reduces to a delta function at u    = 0 
e       ' 

Equations   149   and   150   give 
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uY'u6i8a0/auaaußdu
6 (153) 

If the intermolecular potential is spherically symmetric, 

nf'Saß)d^ (154) 
n(uv*u ;g   )du, 

\ Y    6 oa0/    6 \ 'saßy 

where   a,   i8 the angle of scattering (this expression is merely the 

statement that conservation of angular momentum in an elastic two- 

body collision shows that the scattering cross section can only 

depend upon the relative velocity of the two approaching particles 

and upon the angle of scattering (see.  for example,  Section 3. 2 of 
Reference 18).  Furtheimore#   if  ,   ,„,  ^   ^ ^.^   ^ ^ 

servation of momentum allows calculation of  ua   (mathematically 

^ = 0   except for the curve  ^   =  \{^)),    Thus,  Equations   153 
and  154   become 

(2). 1 7 
R

V iS'H ■ j^a^(«.«B>
?.']',(v;-; 

• g, •aß "(•"•O dtudu 
ß (155) 

In a similar fashion, 

nM6'V%ßK<a6<V*ß     "     fi(^«aß)du,dS       (156) 

Thus,  Equation   151   becomes 

-(2) /T Ra      =    yAlV^^^S^.tjg^.a^g   )d.duß 
(157) 

For an elastic two-body collision,  specification of  u 

causes   ^   and  3^   to become definite functions of  u   .     Thus.   Equ'a- 
tion   155   can be written 
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(2) 
R 

Now interchange the indices in Equation   158   and note that cons er va- 
noi 

(2) 

tion of momentum requires that   e      = a 6aß     8Y6 

Now let   Y - a'  to represent particle   a   after the collision, and 

6-ß';   Equations   157   and   159   give 

(2)     _(2) 
Ra    " Ra =     i/(£aV-fafß)ßaßn(^gaß)^duß     (160) 

Equation   160 ,  except for minor differences of notation,  is identical 

with the source rate equations usually given in texts on nonequilibrium 

kinetic theory (see,  for example.   Equation   3. 34   of Reference 18). 

Thus,  Equations   150   and   151   are satisfactory generalizations of the 

source rate terms in the Boltzmann equation. 

c- Source Rates for Three-Body Collisions 

The three-body source rates can be treated in r similar 

fashion.    Thus,  assume that particles   a,  ß,   and   y   approach a col- 

lision region wuh velocities   ua, ug,    and   u  ,    and define 

It =       _a a      ß ß       Y Y 
3  ™   +™   +™ (161) 

ma+mß + mY 

Let the cross section for the reaction 

a,ß;Y -6.e (^2) 

be 

Id 
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\ o    e '   a'   ß   v/ (163) 

where the notation denotes that particle   Y   may not enter into a chemi- 

cal or nuclear reaction,  but serves only to carry off excess energy. 

It should also be noted that particle   e   need not be present   (3    = 6(0)); 

for example,  in the case of molecular recombination,  atoms   a   and  0 

recombine into molecule   6   with particle   Y   serving to conserve 

energy.    The flu« of^particles of species   a   towards the collision area 

18    fa(V r' 7 ' ^a " ^3 ' '     with similar expressions for the fluxes of 

particles of species   ß   and  Y .    Then the rate of formation of particles 

6   and  C   due to this particular three-body interaction,   T is 
^e,aßY 

VaPY^VV''') 
8      M\-*3\-\%-y-\ny-n3\ 

•^ö^f'vVM^a^S^Y   (164) 

The rate of formation of any one species,    6,   by three-body processes 
is then 

(3)        , 

The rate of loss of particles of species   a   due to this three-body pro- 
cess is 

_(3) 

* nK'"e I vS{TlY)d3Y dS d\ d% (166) 

It is clear from Equations   164   through  166   that the three-body source 

rates must satisfy the following "Compatibility Relation:- 
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4(3)  -        /i<3) rw 

=      /R du (167) 

With the source rates in Equation   144   defined,   Equa- 

tion   143   can be used to generate the conservation relations needed 
for the numerical study of high-altitude coupling effects. 

d' Equation of Change 

Let  xa(u)   represent some parameter associated with 
species   a .    Then the equation of change is 

f   laf« aC      F      8| I    I   a,    -»      a       a       H 

J  a|ot hv     ma     33 d"     =    /Xa(VR>u (168) 

Now 

A 
=    Ä(na<Xa>) (169) 

Similarly 

Au-^dil   =    Z^. (laXau)dS     =     V.(na<x^a))     (170) 

Also 

No» C7') 

yS«-^-^     -     k^f =0 (172, 
L JA» 

min 
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because 

Also,  as indicated in Equation   138 

=     0 

thus.  Equation   171   becomes 

öu      a 

(173) 

(174) 

a, , -»    •* 
ma      a     u 'V 

Finally 

W 

(175) 

(176) 

vhere   n^]  denotes the time rate of change of xa   per unit volume 

»*   (r,t)  because of chemical,  molecular,  and nuclear interactions. 

Using Equations   168,    170,    175 , and   176. 

3-       CONSERVATION EQUATIONS 

The "Conservation" equations required for the numeri- 

cal work are obtained by choosing  ^   as the mass, momentum,  and 

energy of a particle of species   a.    To handie the excited states 

of the atomic and molecular species,  it is convenient to enumerate the 

possible internal energy states of species   a;   thus,  if state   a 
(0 = *' 2 ^   denote8 one of the possible internal energy states 
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of species   ß ,   the corresponding internal energy is denoted by  ea 

(internal energy per particle).    Furthermore,  state  a     itself will ^ 

have a distribution function,    f^^rt),    which gives the number of 

particles of species   a   in internal energy state   f-     per unit velocity 

volume and unit physical volume at time   t.    It is clear that the over- 

all distribution function for species   a   is given by 
N„ 

fa(u,r,t) 2^  fdpCu.r.t) (178) 

Let   ijffu)   be an arbitrary function of velocity only. 
Then, as in Equation   125 

<*a> 

Similarly 

du (179) 

<^> 

where 

not '0 =     ßxpdn 

dG (18C) 

(181) 

Substituting Equation   178   into Equation  179 

N 

na<*a> 

0=1 

N. 

\|t faß du 

0=1 

by use of Equation   180 

ZrnaQ<ta, ■0^0 (182) 
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By use of 

m a = ma0 
■ 

Equat ion 182 gives 

a t 
ß=l 

Pac 

where 

Pa ß  =:   ^ß^g 

a*      Conservation of Mag« 

Let 

\x     =     ma     =     ma 

Then 

(183) 

(184) 

(185) 

(186) 

7- 
u\ 

and Equation   177   gives 

Summing Equation   188   over all  a 
8 

Multiply Equation   182   by  m   « ma   : 

N 

3=1 r^' 

H 

(187) 

(188) 

(189) 

(190) 

T 
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Equations   189   and   190   show that 

dp 

(191) 

where  A [mj   is the time rate of change of mass of species   a   per 

unit volume at   (r, t)   because of chemical,   molecular,  and nuclear 
processes. 

b'       Conservation of Momentum 

Let 

Xa 0 m, u' a 

where   uJ   is the   x-1 
component of  u.    Now, 

(192) 

■     ma<Fa> 

Using Equation  193   in Equation  177 

(193) 

£(pa0<V) + MVSV)     =     l~<Fa>+A[ma^]    (194) 

Summing Equation   194   overall   ß   and using Equation   190 

where   AJn^uJ   is the time rate of change of momentum of species 

a   per unit volume by chemical,  molecular,  and nuclear processes. 
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Here 

Conservation of Enerav 

Let 

\ 

2 
m u 

<*« • '3XS> ■ ^iK^-S)) 
' "^.S^ 
s     ma<r

ft
iujV> 

=     ma<^,%> 

(196) 

(197) 

Using Equations  196   and   197  in Equation   177 

•     ^-^{«»V^S] (198, 
Defining 

%     "     ea&/xna (199) 

=      internal energy per unit mass of 

species   a  in state   (3 

Equation   199   becomes 
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^4y-[^^4}] 
Pafl - 

^[".(•VT* (200) 

Summing over all   0   and using Equation 190 to effect 

2 Ä 
Pa(ua>   = Zpafl<"afl

2). 
0 

LrfPttpV^g ).    Equation   200   gives 

4K#^<VaH-i %%<s> 

p_ 
m l<'a-\>+^[.a(%4) (201) 

where 

a a mPa^eae (202) 

But 

fe',a»VS>   ■ Va<V+EpwV.paea<üa 0 = 

0=1 

where 

Qa 0      s ^VSs'V 

(203) 

(204) 

is the excitatiox heat flux vector of species   a .     $.    arises from the 

fact that the excited states of species   a   may have different veloci ity 
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distributions than the ground state; indeed,   because different excited 

states result from different sets of collisions,  it seems probable that 

the distribution functions of the various excited states will differ dur- 

Tin 
ing some nonequilibrium period.    Jf       f»        -      I ( n. 

^ß ~  a '    then 

a 
(S ■:Sa>    =   0    and   %   =   0-    In general,  however,  a diffusive 

heat transfer within species  a   due to the existence of excited states 

with unequal distribution functions will exist. 

Using Equation»  203   and   204  in Equation   201     the 
energy equation becomes 

N N, 
—* 

- 7 • 
P 

where 

«a ,       ^ (206) ■"¥> 
is the total energy per unit mass of species  a,   and aim (e   + ^2-)] 

is the time rate of change of the total energy of species  a  per unit 

volume at   {r,t)   because of chemical,  molecular,  and nuclear processes. 

Equations   191,    195,   and   205   are the required 

conservation equations.    They can be written in more conventional 

form by use of the pressure tensor and the heat flux vector.    The 

pressure tensor for species   a   is defined as 

Si      =     %<vi0
va0

J) (207) 

8] 
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where the   va     are given by Equation   1 27 
P 

Summing over all   ß , 

P1J 

Na 

2L» PüR 

Na 

=     pa<vava> (208) 

Note that the thermal velocity of an excited particle of species   a   is 

referred to the mean velocity of species   a,    and not to.the mean 

velocity of the excited level: 

vaß      =      ^ - (ua) (209) 

Consider the term 

11        =    pa<ualua> (210) 

From Equation   208 

PaJ    ■    '>*<*tt-*<!<*a>-*a<^*<\><^» 

or 

^     =    p«j + Pa<-<xl><^> (211) 

Substituting Equations   210   and   211   in Equation   195 
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—   

Now consider the term ^ 

Zy 

^.^># 
(213) 

frc»m Equation   205 

The heat flux vector for species  a  is defined as 

Qa    "    T (vava ^j >+ L ^ <214) 

Now 
i    i 

Vf, v« va- a  <x    j 

Thus 
ij..    \ ,   ?.    2 

(ua-<uÖ>)(l,a-2ui<"aj>+<V>2) 

WaV     ■     <">«>-2<->>i><Ua.)t<ua
i><u0>2 

Using Equation   213   in Equation   215 (215) 

<vav;Na4>      =     -2^- a  a '^j £-2<v^-<-v>)(»i-<"i>)> 
«««jX»^^-<«,!>> (216) 

Noting that 

(217) 
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   _..  

and using Equation   208.  Equation   216   gives 

<valvajva> 
V ,ij 

■2 ^- - 2<un.> ~ 

Substituting Equation 218    in Equation   214 

3     3=1     B 

Q a -ftT 

or 

Using Equations   213   and  219   in Equation  205   gives 

+^<'aS>+4(".f.*:r)j 
Now consider the term 

<Fa^i> 

•N, 

(218) 

(219) 

(220) 

(221) 

As discussed immediately prior to Equation  138 ,  the only velocity 

dependent force is perpendicular to the velocity,   so Equation   221 

becomes 

Is wSVi** 
^ / f« u- du ay a * 
F^^ua.) a.       1 (222) 
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Using Equations  221    and   222 , the energy equation 
becomes 

^(%ea)+Hpc^a<ua>+V<M 

ma, 

where    ijn^ + ^J   , s the time rate of change of energy of species 

a per unit volume by chemical, molecular, and nuUear processes. 

The quantity 

Pj^*     %/%/** (224) 

gives the rate at which particles of species  a   carrying property cp, 

are generated per unit volum*.    Let 

WaM   "   kh.-\) 

w , reference rate of particle generation per unit 

(225) volume 

Then 

and Equation   191   becomes 

Similarly,  Equation  195   becomes 

a 

(227) 

=     pa<fa/ma>+Kmawa^ (228) 
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at' 

and Equation   205   becomes 

+ KrtiaWaJe + u /2J (229) 

The appropriate nondimensional forms of the conserva- 

tion equations are Equations   227   through   229 . 
,.' 
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APPENDIX II 

FORTRAN GLOSSARY AND FLOW CHARTS 

A quantity in parentheses after a definition is the algebraic 

equivalent of the quantity being defined. 

A(L. J, N) 

ARCCS (L. J) 

ARCL(L, J) 

ARCSN(L, J) 

AREA(L, J) 

AREARC(L, J) 

AREARY(L, J) 

AREARY(1, J) 

AREARY(2, J) 

AREARY(3, J) 

AREARY(4, J) 

CELVOL(L, J) 

CS(I) 

88 

speed of sound of species   N   in cell   J   of 
column   I+L-lO^LsZMsJs MAXJC; 
1 s N s NSPEC) 

cosine of angle between arc J in column 
I + L - 1 and positive z axis (l «: L <: 2; 
1 ^ J £ MAXJ);(cos e.   i   .) 

length  of arc   J   in column I + L - 1 
(isL^ZMsJs MAXj) 

sine of angle between arc   J   in column 
I + L - 1   and positive   z   axis(l <: L s 2; 
1 ^ J^MAXJ);   (sine.^i  •) 

cross-sectional area of cell   J   in column 
I+L-l(liLi2;l5js MAXJ) 

area of arc face   J   in column   I + L - 1 
(1 s L s 2;   1 s J s MAXJ) ; (S    ,   .) 

(l <: L ä 4; 1 s: J s MAXJc); (S.   .  ,) 

area of face on ray   I + 1   of cell   J   in column I 

area of face on ray   I + 1   of cell   J   in column I + 1 

area of face on ray   I + 2   of cell   J   in column I + 1 

area of face on ray   1   of cell   J   in column   1 

volume of cell   J   in column   I+L- 1(1 sLs2; 
1 s J S MAXJC) 

cosine of angle between ray   I   and negative   z   axis 
(1 si ^IBMX); (cos C^) 

WIMii|l 
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CV(I. J, K) 

CV(I, J,4N-3) 

CV(I, J, 4N-2) 

CVa, J, 4N-1) 

DALPHA (I) 

DEE ZEE (I) 

DELT 

DELTAR 

DELTAZ 

DFRND (I, N) 

DNODE(L, J) 

DN0DE(1, J) 

DNODE(2, J) 

DNODE(3, J) 

DNODE(4, J) 

(l S I s ICMX; 1 s J <; MAXJC; I < K Ä 4 . NSPEC) 

total z-momontum of species N   in cell   J  in 
column I   ((pNVuNz,i+ijH) 

total   r-momentum of species   N   in cell J  in 
column  I   iißNy%r)i+hi+h) 

total energy ol specie»   N   in cell   J   in 
column  I   ((PNVeN)i+4i.+i, 

»ine Of the angle between rays   I  and 1+1 
Cl slSlCMX)}(8in((*      -a.)) 

distance along  «-axis from intersection of ray 1 
to intersection of ray I + 1 (l s i s ICMX)- 
(aUl ' V 
time step 

r-increment along arc currently being treated 

«-increment along arc currently being treated 

distance along ray  I  from reference point to 
the  nod« formed by the intersection of floating 
boundary   N  with ray  I (l s I s XBMX; 2  ^ N s 4) 

(l « L « 4; 1 « J s MAXJ) 

distance along ray I  from reference point to the 
node formed by the intersection of ray  I  and 
arc   J in column I 

distance along ray  1+1 from reference point to 
the node formed by the intersection of ray  I + 1 
and arc   J  in column  I 

distance along ray  1+1   from reference point to 
the node formed by the intersection of ray   I + 1 
and arc   J  in column  I + 1 

distance along ray 1+2 from reference point to the 
node formed by the intersection of ray 1+2 and arc 
J  in column I + 1 
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DRBND(I) 

DSTBLY(L) 

DSTBLY(l) 

DSTBLY(2) 

DST1 

DST2 

DVOL(J) 

DZBND(I) 

EB(N, L) 

EB(N, 1) 

EB(N, 2) 

EBO(N) 

EINT(L, J, N) 

GAMCL, J, N) 

GAMMA (N) 

GASCST(N) 

r-increment along la.Pt arc in column I 
(1 ^ I s ICMX); (Ar.   , ) 

1+*'Jmax 
(1 ^ L s 2) 

minimum distance between the arc boundaries 
of a cell 

minimum distance between the ray boundaries 
of a cell 

maximum possible ray-segment length 

maximum possible arc-segment length 

volume change of cell   J   in current column 
during time-step (l <: J <: MAXJ) 

z-increment along last arc in column I 
^ -.'Is ICMX); (Az.   i ) 

■• ^max 
(1 s N s NSPEC; 1 s L s 2) 

internal energy per unit mass of species   N   on 
cell boundary currently being treated 

internal energy per unit mass of species   N   on 
first arc of next column downstream 

internal energy of species   N   per unit mass on 
the boundary for a problem with constant boundary 
conditions (l s N s NSPEC) 

internal energy per unit mass of species   N   in 
cell   J   of column  I+L-l(lsLs2; 
1 s J £ MAXJC; 1 s N s NSPEC) 

ratio of specific heats of species N in cell J 
of column I+L-l(l«:Ls:2;l<:j<; MAXJC; 
1 s N s NSPEC) 

ccastant ratio of specific heats for species   N 
treated as a perfect gas (l <: N s NSPEC) 

constant gas constant for species   N   treated as 
an ideal gas (1 s N «s NSPEC) 
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IB CD 

IBMX 

ICMX 

IEXTM 

IECXTM 

IGEOM 

IGEOM 

IMESH 

IMESH 

ISLIP 

ISLIP 

KTAPE 

MAXJ 

MAXJC 

MTAPE 

MXFARC 

nimber of cycles between which BCD output 
is desired 

total number of rays 

total number of columns 

flag denoting time-dependent boundary conditions 

fS   0 constant boundary conditions 
Vs   1 time-dependent boundary conditions 

geometry option word 

Af   plane geometry 
J2,    cylindrical geometry 

3,    spherical geometry 

flag denoting whether or not the mesh moves 

(£ 0 
U i 
(s 0   fixed mesh 

floating mesh 

(Note: A fixed multi-column mesh in which the 
cells differ in geometry from column to column 
must be treated as a floating meah.) 

flag denoting whether or not arcs must be continuous 
at rays 

f« 0 ,  arcs are continuous across rays 
1» 1 f arcs are not necessarily continuous across 

rays 

tape number for BCD input tape 

maximum number of arcs permitted in any column 
of the mesh 

maximum number of cells permitted in any column 
of the mesh 

tape number for binary restart input tape 

maximum number of floating boundaries permitted 
in any column of the mesh 
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NARC(N, L) 

NDIMEN 

NDIMEN 

NFRARC(I, N) 

^T1561' 0f the   ^   free arc in ^l«n«   I + L -1 
NAKCd. 1)   =   NARCd. 2)   =   1 (2 . N . 4; 1  . L ^ 2) 

NMOMEN 

NMOMEN 

NSPEC 

NTAPE 

NTOT(L) 

P(L, J, N) 

PB(N, L) 

PB(N, 1) 

PB(N, 2) 

PBO(N) 

RGAS(L, J, N) 

I 
number of dimensions 

1, one column 
2, more than one column 

arc number of the arc which represents floating 
boundary   N   in column   I.    NFRARC(I, N) = 0 
if floating boundary   N   does not occur in column I 

(1 ^ I ^ ICMX; 2 s N s 4) 

number of momentum equations being treated 

II,    radial momentum only 
2,    radial and axial momentum 

number of species under consideration 

tape number for binary restart output tape 

total number of free arcs in column I + L - 1 
(1 s: L s 2) 

partial pressure of species N in cell J of 
column I+L-l(lSLs2:l3:j^ MAXJC; 
1 ^ N s NSPEC) 

(1 ^ N s NSPEC; 1 s L s 2) 

partial pressure of species   N   on the cell 
boundary currently being treated 

partial pressure of species   N   on the first arc 
of the next column downstream 

partial pressure   of species   N   on the boundary 
for a problem with constant boundary conditions 
(ISNs NSPEC) 

gas constant of species   N   in cell   J   of column 
l4L-l(l5Ls2;lsJs MAXJC; 1 <: N < NSPEC) 
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RHOCL. J, N) 

RHOB(N, L) 

RHOB(N, 1) 

RHOB(Nl 2) 

RHOBO(N) 

SFLUX(L, J, K) 

K 

SN(I) 

SORCE(K) 

SORCE{4N-3) 

density of species   N   in cell   J   of column 

1 s N s NSPi:c);(p ) 
a 

(1 s N s NSPEC; 1 s L s 2) 

density of species   N   on the cell boundary 
currently being treated 

density of species   N   on the first arc of the 
next column downstream 

density of species   N   on the boundary for a 
problem with constant boundary conditions 

fluxes of mass,  momentum,  and energy across 
the surfaces of a cell (l * L * 5; 1 * J s MAXJC; 
1 äK A4- NSPEC) «AJ^, 

n. fluxes entering cell   J  in current   column 
across arc   J 

fluxes entering cell   J  in current column 
across arc   J + 1 

fluxes entering cell   J   in current column 
across upstream ray 

fluxes entering cell   J  in current column 
across downstream ray 

fluxes entering cell   J  in next column 
across downstream ray of current column 

2. 

4, 

4N-3k flux of axial momentum of species   N 

4N-2, flux of radial momentum of species   N 

4N-1, flux of energy of species   N 
V4N    , flux of mass of species   N 

Sine of the angle between ray  I   and the negative 
z-axis (1 s I s IBMX); (sin a.) 

(l s K s 4 • NSPEC) 

z body-force on species   N   in cell being treated 
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SORCE(4N-2) 

SORCE(4N-l) 

SORCE(4N) 

SVOL(L) 

T 

TBCD 

TBIN 

TIBIN 

TULT 

UB(J) 

UFREECL. N) 

UN(L, J, N) 

UNB(N, L) 

UNB(N,1) 

UNB(N, 2) 

UNBO(N) 

r body-force plus radial pressure balance on 
species   N   in cell being treated 

work and heat added to species   N   in cell being 
treated 

mass source of species   N   due to chemical 
reactions 

volume swept out by arc   J + 2 - L   bounding 
cell   J   in current column during the time-step 

time   (t) 

time counter for BCD output 

time counter for binary restart output 

time increment between which binary restart 
output is desired 

time desired at end of run 

velocity normal to itself of arc J   in the current 
column    (l s J s MAXj) 

velocity of the free boundary on arc   N   of column 
I + L - 1   normal to itself (l s L i 2; 1 <: N s MAXj) 

if applied to an arc:   velocity normal to arc   J   of 
species   N   in cell   J + L - 2   of the current column; 
if applied to a ray:   velocity normal to ray  I   of 
species   N   in cell   J   of column   I + L - 2 

(1 s L s 2; 1 s J s MAXJ; 1 s N s NSPEC) 

(1 s N s NSPEC; 1 s L s 2) 

component normal to boundary of velocity of species 
N   on the boundary currently being treated. 

component normal to boundary of velocity of species 
N   on first arc of next column downstream 

component normal to boundary of velocity of 
species   N   on the boundary for a problem with 
constant boundary conditions  (l s N «: NSPEC) 
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UR(L, J, N) 

USTBLY(L) 

USTBLY(l) 

USTBLY(2) 

UT(L.J,N) 

UTB(N,L) 

UTB(N, 1) 

UTB(N, 2) 

UTBO(N) 

UZ(L, J, N) 

VNODE(L. J) 

VNODE(l, J) 

VNODE(2, J) 

VNODE(3, J) 

radial component of velocity of species   N  in 
cell   J   of column  I+L-l   (l k L ä 2- 
Iss MAXJ; 1 s: N ^ NSPEC) 

(1 s L fi 2) 

maximum speed of a characteristic normal to an 
arc 

maximum speed of a characteristic normal to 
a ray 

if applied to an arc:   velocity tangential to arc   J 
of species   N   in cell   J + L - 2   of the current 
column; 
if applied to a ray:   velocity tangential to ray   I 
of   species   N in cell   J   of column   I + L - 2 

(1 s L « 2; 1 ?; J s MAXJ; 1 s N s NSPEC) 

(1 s N s NSPEC; I s L s 2) 

component tangential to boundary of veloci'/ of 
species   N   on the boundary currently being treated 

component tangential to boundary of velocity  of 
species   N   on first arc of next column downstream 

component tangential to boundary of velocity of 
species N on the boundary for a problem with 
constant boundary conditions (l s N s: NSPEC) 

axial component of velocity of species   N  in 
cell   J   of column  I+L-l   (lsLs2; 
1 « J s MAXJ; 1 s N s NSPEC) 

(1 s L ^ 3; 1 s J s MAXJ) 

velocity along ray   I   of the node formed by the 
intersection of ray  I   and arc   J   in column   I 

velocity along ray  I + 1 of the node formed by the 
intersection of ray   I + 1   and arc   J   in column I 

velocity   along ray   I + 1 of the node formed by the 
intersection of ray  I + 1   and arc   J   in column   I + 1 
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(MAIN j 

Sat time counters: 
BCD output counter:  TBCD = 
Binqry restart output courtt«:  TBIN ■ UN = 0.   I 

Th« MAIN proaram 

—H th« counter indicm, calls for input, calls for tlij 
advancement of the cell», controls the 
output of data, computes the time, and 
computes the stable time-ftep for the next cycle. 

Input all data necessary to run 
problem: CALL INPUT 

■*-( TBCO » TIBCD? > 
Yes 

No 
BCD output 
is desired 

Output BCD data: 
CALL BCDOUT 
TBCD   = 0. 

ZZD— 

Set the time-step parameters: 
STBL(l) = DSTI 
STBL(2) = DST2 
USTBLYd) = 0.0 
USTBLYQ) = 0.0 

Begin sweeping through mesh: 
DPI IC = I, ICMX m 

Carry out all calculations needed 
to odvunce the cells in column IC: 
CALL COLUMN 

TBIN s TIBIN? Yes 

No 
Binary output 
is desired 

j Out binary data; 
CALL BINOUT 
TBIN « 0. 

T . TULT? 
Yes 

No 
Computation 
is finished 

.ENOi 

Compute the lime required for the 
fastest characteristic to cross 
between the closest arcs: 
TAUI = STBLQi/USTBLYd) 

Begin search for the minimum 
distances between the rays, STBL(2) 
and between the arcs, STBL(I) 
the mesh:   DO 2 ID = I, NDIMEN 

STBL (ID)>DSTBLY(ID)? 

Y« 

DSTBLY (ID) 
is not a 
new minimum 

The minimum distance 
in the current column 
is less than the minimum 
distance in any 
previous colu-nn 

Set the new overall minimum: 
STBL (ID) = DSTBLY (ID) ZI 

<wEr is NDIMEN? 

2-D.   Must 
also consider 
ray characteristic 

l-D.     -o ray 

characteristic 

Compute the time required for the 
fastest characteristic to cross 
between the closest rays: 
TAU2 • STBL(2VUSTBLY(2) 
Compute the two-dimensional 
stable time-step: 
TAUI e (TAUI • TAU2)/(TAUI ♦ TAU2) 

No 

Loop not 
completed 

•^^WnNU^- 
J"       i<        Loop not 

completed     completed 

I CONTINUE 1 
Loopleompleted 

Another cycle is completed.   Advanc 
time counters:   T = T + DELT; 
TBCD ; TBCD ♦ PELT; TBIN ■ TBIN 

        » 

n ^1 + DELJ 

IEXTM>0? 
No 

N ^■EXTM>0?>> 

limit on the YES 

time-step 

Unsteady boundary 
conditions may 
limit the time-step 

Calculate any limit which the 
boundary conditions place on 
the time-step: 
CALL TIMSTP 

There ore 
time-dependent 
Soundary conditions . 

Yes 
Boundary conditions 
do not change 
with time 

Update the unsteady boundary 
conditions:   CALL EXTIME 

Set the time-step:   DELT = TAUI 
Reset the time-step parameters: 
STBL(I) = DSTI 
STBL(2) = DST2 
USTBLYd) • 0.0 
USTBLY(2) = 0.0 

Figure 10.    Flow Chart of MAIN Program 
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Sabroutlnt AOVNCC eompuf,, »h« flux« 
erowlnj iht ore« b.tw.en the ctlls of 
th« eurr«nt column, opplli thf boundary 
eondiKon ai th, lost ore of th» eurron' 
column, and odvonc« thi cells of the 
current column. 

Compute the number of celli in »he column; 
JC ■ JAMX(IC) -  I Zl 

Begin calculation of fluxet on ara and advancement 
of celli;   DPI J » 1, JC; jl = J + I 

I 
J <JC?   > No 

Lait cell 

For each ipeciei, compute the preiiure, deniity, and 
normal and tangential component! of velority on arc J- 
DO II NS •  I, NSPEC 

CALLWAU{A'I,J,NS),A0,J1,NS),P(I,J,NS),P(I Jl NS) UKJil 

n cÄÜENS,'"HO(,'J'h:S,'"HO(,'J,^s) ^';' 

For each speciei, compute 
the fluxei of ma», momentum, 
and energy entering the last 
'ell of the column aero» the 
I ait arc; 
CALL BCJAMX(iq 

Compute the internal energy per unit man for «ach 
ipeciei o.; arc J:   CALL THHM2(J) 

[ Compute »he fluxei of man, momentum, and energy 
of each ipeciei ertering cell (IC,J) acrpn arc Jl: 
CALl FLUX (2,J,J1,IC, ARtARCOJl), UB(JI), 1) 

Co(r,pu»e »he source« of man, momentum, and energy 
of each rpecles within cell (IC,4) during »he 
»ime-step;  CALL SOUIICE (J) 

ZE 3 
BjginaJ^cin^h.^ells.   Loop through the ipeciei. 

rCZ Loop through the coniefva»lon equotiom for 
ipwiei NS:   D0 6 NCC = 1,4 HI 
Compu»e »he number of »he equation being 
advanced:   NK5 - 4 » (NS-I) + NCE 

^ WhatiiNMOMEN?> 

Radio) momtnfum 
only 

Radial and 
axial momontum 

<  ^in3iriggsi5r 

Compute »he ne» rc»e of penera'ion of property 
NEQ in cell ()C,J) during »he time-itep; 
0O9NSI  = 1, N.« 
f-SCEfNEQ) - S0(1CE(NEQ) ♦ SFLUX(NSI, J, NEQ) 

9 CONTINUE 

Eq. NEQ repreienti 
an axial momentum 
equation and is 
not needi J for 
»hil calculation 

Ye« Advance i». 
I Advance 
| CV(IC,J, 

properly NEQ In cell dC,J): 
NEQ) ^ CV(IC,J,NEQ) » PELT . SORCE(NEQ)( 

Loop no» 
comple»ed com tie»ad 

( 

Figure 11,    Flow Chart of Subroufne ADVNCE 
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Set index equal to maximum arc number 
in column IG JAMXC ■ JAMX(IC) 

Subroutine ARC computes the velocity of each 
arc in the column normal to itielf, the volume 
change of each cell in the coluim during the 
time-ttep, the fluxes of each species crossing 
the first arc, and the fastest characteristic 
speed relative to any arc 

Begin computation of arc velocities and 
of cell volume changes during the time- 
step;   DO 1 JA = 1, JAMXC ; JA1  = JA -  1 

A 
1 

<IMESH >0?   VjrS- 
'   Fixe 

Floating  Yes mest Floating 
mesh 

led 
mesh 

Compute the volume swept out by arc JA 
during the time-step:  CALL VOLUME (I,IC, 
JA,l,VNODE(1,JA) .  DELT, VNODE(2,JA) *  DELT 
SVOL(I), DUMMY); Compute the velocity of 
arc JA normal to itself: 
UB(JA) ■ - SVOL(l)/(AREARC(l,JA) e DELT) 

Arc JA does not move during the 
time-step:  UB(JA) • 0. 
The volume swept out by arc JA 
is zero:   SVOL(l) = 0. 

Begin computing the velocities of each species 
normal and tangential to arcs JA and JA I: 
DO 7 IMS =  1, NSPEC 

No/*- 
JA>I? JT" 

Interior or 
lost arc 

Compute the velocities in cell (IC.JA) 
normal and tangential to arc JA: 
UN(2,üA,NS) • - UR(1,JA,NS) . ARCCS(I,JA) 

UZ(1,JA,NS e ARCSN(1,JA) 
UT(2,JA,NS) ■ UR(1,JA,NS) . ARCSNO.JA) ♦ 

UZ(1,JA,NS). ARCCS(1,JA) 

Test the characteristic speed of species NS 
relative to arc JA to determine whether it 
is the fastest in this column: 
CALLSTBLTY(A(I,JA,NS), - UN(Z,JA,Ni(, 

- UB(JA), USTBLY(I)) 

Compute the velocities in cell (IC.JAl) 
normal and tangential to arc JA: 
UN(1,JA,NS) - - UR(1,JAI,NS) . ARCCS(I,JA) 

UZ(1,JA1,NS) . ARCSN(1,JA) 
UT(1,JA,NS) = URCI^AI.NS) . ARCSN(I,JA) * 

UZ(1,JAI,NS) e ARCCS(I,JA) 

L 
Test the characteristic speed of species NS 
relative to arc JA to determine whe:' «r it 
is the fastest in this column: 
CALL STBLTY(A(1,JA1,NS), UN(1,JA,NS), 

UB(JA), USTBLY(l)) 

Yes 
There is a 
cell beyond 
arc JA 

[JA < JAMXC? 

No 

i 
Arc JA is the 

> boundary arc 

[Loop not 
completed 

7 CONTINUE 

l Loop not 

completed I CONTINUE H 

Loop completed 

Restore volume swept out by 
arc to prepare for calculation 
of next cell:   3VOL(2) = SVOL{l) 

Compute the mass density, energy 
density, pressure, and velocities 
normal and tangential to the first 
arc for each species on the first 
arc:  CALL BCJI(I) 

No 
First arc 

Loop! completed 

<JA>1?> 
Yes Interior or 

last arc 

Compute the volume change of 
cell (IC.JAI) during the time- 
step:   OVOL(JA1) ■ SVOL(2) - SVOL(I) 

I 
Compute the fkxes of mass, momentum, 
and energy for each species crossing     • 
into the first cell of column IC across 
the first arc:  CALL FLUX(1,1,1,IC, 

- AREARCd,!), UB(1),1) 

«/RETURN I 
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Subroutin« ARCGEO computtl 
th« length of a yivtn ore, th« 
•ine and cosine of the angle 
which the arc mokes with the 
positive Z oxis, and the areo 
of the cell foce formed by the 
ore. 

ICi ■= IC + I 
JAMXC ' JAMX(IC) 

I ] 
Compute the radial and axial 
increments of the current ore 
from those of the previous 
ore and from the Incrementol 
diilanr-1 between the arcs 
along the bounding ray« of 
the column; 
DELTAR = DELTAR + 002 . SN(1CI) 

- 001 • SNflC) 
DELTAZ - 0ELTA2 ♦ 001 . CS(IC) 

-002 e CSflCl) 

Radial and axial Increments of art 
given by I NUT dato: 
OELTAR = ORSNOflC) 
OEITAZ - OZBNOOC) 

-,  o    i ^aiepxmeii 
Compute the length of the arc: 
A»CL(L„IA) . JQRTF(DEITAII . OflTA» ♦ DILTAZ . DELTAZ) 
Compute the sine and the cosine of »ho angle 
which the arc fflabas with the pmitlv'e i axis: 
A«CSN(UA) • OftTAH/A«CI.(l.,JA) 
ARCCSa.JA) • D?ITAZ/AIICL(L,JA) 

Wan«    1 

geometry <^ What Is IQtOMTVJaSgl 
ii _ .       r        geometry 

Plan« geometry factor 
Is unity; 
SI • 1.0 

2 | Cyllndnaal geometry 

Compute cylindrical foeior: 
LI • 2 « L - 1) L2 • LI +  I 
$1 - J.UI5W7 • (DNODi(ll,JA) 

SNflC) ♦ 0NODE(L2,JA) . SNflCI» 

Compute 
ore forms 
AREARC( 

Coiii(»il«spherieol foctor: 
SI » \i.iU37 ' ONOOEd.JA) 

DNO0E(L,JA) 

»b« oreo of the cell foe« which this 

SI • ARCL(L,JA) 

Figure 1 3.    Flow Chart of Subroutine ARCGEO 
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Compute nmt column number: 
IC1 - IC + 1 
Determine number of cell« in 
column IC:  JC1 - JAMXJC) - 1 
Determine number of cell» in 
column ICl;  JC2 - JAMXQCI) - I 

Subroutine COLUMN compute» the geometry 
of each cell in the column ond the velocittei 
of the free arcs ond node» in the column, 
appliei the boundary condition! on the 
fim and lort rayt of the meih, and 
calls for the flux compulotiom and the 
advancement of each cell. 

No 

Fiired < 

Yet, 

Lait 
column 

IC • ICMX? 

No 

IMESH > 0? 

Yell Floating 

y.1  • 
•v-DTrhiX 

I nt«rior 
column 

•^NoN 
IC - I? 

Yei 

Firit column < IMESH > 0? 

firtt 
column 

What it NDIMEN7 

it the ' 
column 

Compute the velocity of each 
free node on the lait ray: 
Nl - NTOT(I) 
DO 2« N • I, NI 
N2 = NARC(N, 1) 
SING! - SN(IBMX) • 

ARCCS(I,N2)+ CSflBMX) 
• ARCSN(I,N2) 

VNOOE(2,N2) - 
UFREE(1,N2)/SING1 

26 CONTINUE 

< 

2-0.   Another 
column exiiti 

IMESH > 0? 
No 

Floating 
meih 

Ye« 
MX!' 

me>J) 

Calculate the geometry 
of all of the cell« in 
the next column: 
CAI.LGMTRY(2,IC1,2) 

Compute   hi- fluxes of each 
«pecie« acrou the lait ray, 
and determine the fciteit 
characteristic normal to the 
la» ray:  CALL BCIBMX 

Compute the fluxe« 
of each «pecie« 
entering each 
cell of the first 
column across 
the first ray. 
Determine the 
fastest character- 
istic normal to 
the first ray: 

CALL tcngci) 

Fixed 
mesh 

Calculate the 
geometry of 
all of the cell« 
in the flrjt 
column:  CALL 

GMTRY(I,I,NDIMEN) 

I  

Compute the density, radial and 
axial velocities,and internal 
energy for each «pecie« in 
each cell of the first column: 
CALLTHERMO(l,JC1,l) 

No 

Fixed ' 
mesh 

Compute the density, radial and' 
axial velocities, and internal 
energy for each «pecie« in 
each cell of column Id .   Compute 
the velocitie« of each «pecie« 
in each cell of columns IC ond 
ICl normal and tangential to 
ray ICl:   CALL THERMO(2,JC2,|CI) 

No 

Compute the velocitie« 
of all node« and arc« 
in the column, and the 
fluxe« of each «pecie« 
across each arc and 
ray face in the column; 
advance each cell 
of the column; and 
reset all parameter« 
needed for the 
calculation of the 
next column: 
CALL DIFFEQflC) 

Fixi 
mes 

< IMESH > Ö?y 

ih 
Ye. Floating 

mesh 

Begin computotion of the free j~ 
velocitie« in column ICl ond  he 
free node velocitie« on ray ICl: 
DO 17N ~  I. MXFARC 

IMESH > 0? > 

Yes Floating 
mesh 

Begin computation of the free 
arc velocitie« in column 1 and 
free node positions on ray 1: 
DOBN - I, MXFARC 

z 
Determine which arc in column I 
represents free boundary N: 
N2 - NFRARCd.Nl  

hfo, 

Free boundor;^" 
N does no» 
exist in column 1 

Determine which arcs in columns IC 
and ICl represent free boundary N: 
Nl = NFRARCQC.N); N2 - NFRARC(ICI,N) 

No 
Free boundary 
N does not 
exist in 
column ICl 

■< N2 > 0? > 

tYti 
Compute the velocity of arc 

DN2 normal to itself: 
CALLBCFJN0C1,2,N2) 

Compute geometric factor for 
arc N2: SING2 « SNflCI) . 
ARCCS(?,N2)4 CSQCI) ' ARCSN(2,N2)I 

N2 > 0?_> 
Arc N2 does 
represent a 
free boundary 

Yes 

Compute the velocity of arc N2 
normal to Itself: 
CALLBCFJN(r,l,N2) 

  
Compute the velocity of node N2 
along ray 1; 
VNODE(l,N2)- UFREE0,N2V(SN(I) 

« ARCCS(I,N2) 4 CSQ) ♦ ARCSNQ,N2)) 

Compute the distance along ray 1 
from the reference point to free 
node N at the end of the time-step: 
DFRND(I,N)- DFRND(1,N) + 

VNODEd.N2} . DELT 

Nl  > 0? 
Free boundary 
N does not 
exist in 
either column 

Loop 

*  .""'rl17 CONTINUE I 
completed L———™™J 

LoopXCom- 
• • pleted 

No 

vYes 

Compute geometric factor fo 
arcNl: SING1 * SNflCI) 
ARCCS(I,N1)+ CSflCI). 
ARCSN(I,NI) 

N2 » 0? 
Free boundary 
N exists only 
in column IC 

■V Yes 

Tree boundary   I ^ 

Compute the velocity of 
free nde N on ray ICl: 
VNODE(3,N2)- 

UF:REE(2,N2VSING2 

Free boundary 
N exists in 
both column« 

Compute the velocity of free norie 
Non ray ICl: 

VNODE(2,NI) . UFREE(l,N!l/SINGl r 

Compute the velocity of 
free node N on ray ICl: 
VNODE(2,Nl)= (ARCL(1,N1) . 
UFREE(2,N2)/SING2 + 
ARCL(2,N2) • UFREE(1,N1)/ 
SING11/(ARCL(1,NI)4 
ARCL(2,N2)) 
VNODE(3,N2) ■ VNODE(2,Nl) 

Figure 14.    Flow Chart of Subroutine COLUMN 
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I    OIFFEQOC)    1 

Begin computation of velocitie» of oil nodes 
in tho column.   Start with tht nod« 
btfw»«n arc 1 and th« next fro« arc: 
Nl ■ 1     Oetermirw the total number of free 
ore« in the column;   N2 ■ NTOT(l) 

1 
J 

y 

Jubroutine DIFFEJ computes the 
velocitie» of all of the nodes on 
both rayi of the current column, 
compute» the fluxes of each specie 
croning all the ny and arc facet 
of the column, advance! each 
cell in the column, and reset« 
the paremeten needed for the 
calculation of the next column. 

Begin calculating the veleeitiei of the nodes 
between successive pain of free arei; 
DO 25 N « 2, N2 

Determine the arc number eorreipendi 
free bourdary N: N3 - NARC(N,1) 
Set innermost arc to be computed this 
pom   N4 ■ N3 - 1 _J 

Compute the fluxes of moss, 
momentum, and energy of each 
species entering the cells of 
column IC ocross ray Id . 
Determine the fastest 
characteristic normal to 
ray Id:  CALL RAY(IC) 

Determine the number of cells between 
free arcs Nl and N3:  FAD • N3 - Nl 

Determine the Incremental velocity changes 
fcetween nodes on royt IC and ICI: 
DVI - (VNODEO.NI) -VNODE(I,N3)VFAD 
DV2- (VNODE(2,N1) - VNODE{2,N3)i/FAD 

Compute the velocity of each 
are In the column, the volume 
change of each cell during the 
time-step, the fluxes of each 
species entering the first cell 
across the first arc, and the 
fastest characteristic relative 
to any ore;  CALL ARCflC) 

Set the outermost arc 
to be computed; 
N5 - Nl + I 

X 
Compute the node velocities due 
to arcs NS through N': 

DO 28 N6 « Hi H4 
N7 - N4 - 1 
VNODB(1,N«)-VNODE(l,N7)-DVt 
Vr JDE(2,N4)-VNCDE(2,N7)-DV2 

28 CONTINUE 

Compute the fluxes of each species crowing all 
of the arcs In the column, apply the boundary 
condition at the last are of the column, and 
advance each species In each cell of the 
column;  CALL ADVNCf QC) 

CompuK the free node positions on ray ICI at 
the end if the time-step, rezone the mesh 
if necessary, and reset the parameten 
needed for the calculation of the next column; 
CALL RESETflC) 

f      RETURN       J 

Figure 15.    Flow Chart of Subroutine DIFFEQ 
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Subroutine FLUX computes the 
flux« of mail, momentum, 
and energy of «ach spoci«! 
ctouing the preictibed 
boundary of the p'escribed 
cell. 

Loop through all of the ipecler 
DCMNS -  I, NSPtC 

Set uaramelent 
0O3NS - 1, NSPEC 
BI(4, NS)' 1.0 
>3(4, NS)= 0.0 
3 CONTINUE 
IWST » I 

Store the Internal energy pet unit mau on the 
boundary and the normal conponenf of velocity on 
the boundary for ipeciei NS; 

H(3,NS) ■ EB(NS,L)      M0,N5) • UN»(NS,L) 

Set the angle facton on the boundary; 

ICI - IC ♦  I; M(1,NS) - SN(IC1> §2(J,NS) - CSflCI) 
Compute the oxiol, 81(1,MS), and the 
radial, ll(2,NS), veloclllei of ipeclet NS 
on the uoundary; 

• 1(1,NS) - K(I,NS) . UNB(NS,L) * I2(2,NS) . UTKNS,L) 
"(2.NS)- M(2,NS) . UN»(NS,L) - 12(1,NS) . UT»(NS,L) 

«ay ^ rAle 

feundory laundary 

Set the » .gl« factor* on the boundary: 

•2(1,NS) - A«CSN(I,J2)! MO, MS) > - ARCCS(I,J2). 
Compute the axial, 91(1, NS), and the ro'Iol, 
•I (2, NS), veloclllei of ipeclet NS on the 
boundary: 

»1(1,NS) - «(l.NS) e UN^(NS,l) - »2(2,NS) . UTWNS.L) 
»l(2,NS) • K^NS) e UN»(NS,L) ♦ Md^S) . ur«NS,L) 

Compute the mau flux, Al(NS), of ipeciei 
NS croulng the boundary: 
AI(NS) - «HCH(NS,L) . (UN((NS,l) - U) , 
Compute the partial prauure force, A2(NS), 
due to ipeciei NS on the boundary: 
A2(NS) - n(Hi,L) . AREAR 

ADEAR 

Nl •  I No 

hM  1 
and oxiol 

NMOMEN • IV 
Yei 

'Radial 
momentum 
only 

Compute the fluxei of ipeciei 
NS craning the boundary, 
PO II N2 • Nl, 4 3^ 

*j Nl ■= 2 | 

Compute the equation numbe 
NEQ - N2 • NS 

I 
mber: 

Compute the flux: 

MI(N2) - A1(NS) • (MN^NS) 4 A2(NS) • W(N2,NS) 
SFLUXOFLX,JI,NEQ) - SFLUX(IFLX,J1,NtQ) - PSI(N2) 

IFLX > 37 

Yei Dawmtream 
ray boundary 

Store flux entering cell (IC ♦  I, J2> 

SFLUXJFLX *  l,J2,NEQ) - SFLUX(IFLX •  l,J2,NeQ)» PSI(N2) 

~ ~      T~ Loop nor 

conipUted 

Loop not 

11 CONTINUE 

compI«t«d 

I Loop completed 

^CONTINUE   I 

[RETURN j 

Loop completed 

Figure 16.    Flow Chart of Subroutine FLUX 
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Subrauhn. GMTOY compu... »h. no« petition of .«h »d, fon^.d 
by Ih. mc. in column id; )ko Itngth., ar.m of roveluHon, and onoUi 
from th« Z axil ofooch are in »ho column; «ho volumo and cnunoctlonol 
area of each coll in »ho column; and tho minimum porpondiculor coll 
height and width In tho column. 

Bopin computation of volumes, are», 
longtht, and anglot for each coll in 
tho column:  DO 4 J - I, JAMXC 

Chooio innormoit untreated arc and 
noxt arc out:  JARCI - JAMXC +  I  - J; 
JARC2 • JARCI - I 

Camputo tho orem, longtht, and ongl i 
aüoeiotod with arc JARCI; 

CALL ARCGEOflC,JARCI ,L, DDNODEfl, NT), 
D0NODE(2,NT)) 

Sot tho liability ten longtht equal to tho 
maximum ray togmont between arci, DSTI, and 
to tho maximum arc length, DST2, at given 
in INPUT:  DST»LY(1) . DSTI; DSTILY(2) • DST2 

< 

1-0, arc 
length not 
Important 

JARC * NAfC(NT,L)? 

^< WhatiilDIM?   > 

Yoi 
JARCI li 
a free are 

2   2-D, f tott br mlnlmuw arc longth ^^ 

'JSI^~ 'ARCLq.JARCI)?^^.     m 

JARCI )'li 
tho 
minimum 

Change tho 
»pacing index 
to select the 
node ipncing 
beyond JARCI 
NT■ NT - I 

DSTBLYß) 
already is 
tho minimum 

No 

No 

V 

JARCI it tne 
flat coll in 
tho column 

< JARC2 > 0?"^ 

Set (ho     " 
new 
minimum 
OSTILYß) 
ARCia, 

JARCI) 

Initialito peramoten:  NFC ' 
NFP - I; ICI - IC + 1 

I 
1; NT - I; J 

Begin computation of node ipaelngi on rayt 
IC and ICI due to aret In column IC 
DO 1 N - 2, MXFARC 

I D—i 
Identify arc which coincides with free 
kpundory N:   NFA « NFRARCQC, N) 

IT 
NFA 

Yet 
There It a cell 
corresponding to JARC2 

Compute tho volume and crott^^^^^^^^^^^^^^ 
leetionol area of cell (IC, JARC2): 
CALL VOLUME (2,IC,JARCI,L,DDNODE(l,NT), 

DDNODE(2,NT),CELVOL(L,JARC2),AREA(L,JARC2)) 

rC Begin computation of geometry on the 
roytIC and ICI;  DO II IS » I, 2 m 

Arc NFA does 
represent a 
free boundary 

E^ No 

Ye» 
Free boundary 
N does not 
exitt in thit 
column 

Compute the number of ray segments between 
thit and previous free beundariet: 
FAD ■ NFA - NFP 
Compute the node »pacings on rayt IC 
and ICI between thit and previous free 
beundariet: 
^25!!''NTI' fl>"N0(IC,NFC) - DFRND(IC,N)VFAD 
DDNODCCNT) . (DFRND(ICI,NFC) - DFRND0CI,N)1/FAD 

Co.,-out» :ne potltiont of tke ISS formed 
bv ..e JARC2 and rayt IC and ICI; 
ISI - L2 + IS - I 

DNO0E(ISI,JARC2) - DNODE(ISI,JARCI) 
* DDNODE(IS,NT) 

< What li IDIM? > 

l-D Ray segments 
unimportant 

2-0, ray 
togmont 
areat needed 

H: •f7 
1 Loop completed 

CONTINUE t- 

impule roy 
segment areat 
between 
nodes JARCI 
and JARC2i 
CALL RAYGEO 

Loop | completed 

Initialize angle foeter lor ttability 
length calculation:  Fl » 1,0 

^ What it IDIM? > 

1-0, No 
angle 
correction 

fRETURNU,  

2-0, angle 
correction is 

Compute minimum 
cell spacing in each 
direction: 
DO ISIS = I, ? 
OSTBLYflS) = DS.-BLYOS) 
18 CONTINUE 

Compute minimum angle 
In column for perpendicular 
proiection of stability 
lengths; 
00 I5J »  I, JAMXC 
DO 16 IS • I, 2 
ISI - IC + IS + 1 
F2= SNfliI) . ARCCS(L,J) 

+ CSflSI) . ARCSN(L,J) 
IF (F2 - FI) 17, 16, 16 
17 Fl > F2 
16 CONTINUE 
15 CONTINUE 

Record total number of free boundaries 
found In column thut far;  NT =  NT >   I 
Ratet previous free boundary Index:  NFP 
Store number of are which represents 
pretenl free boundary;   NARC(NT,L) ■ NFA 
Store pretent free boundary number:   NFC ■ N 

         i      _  
I   1 CONTINUE  HI 

Loop completed 
Record total number of free aret In column. 
NTOT(I) - NT.   Record total number of arcs 
In column:   JAMXC - JAMX(IC) 
Set node potltiont for the nodes formed by 
arc JAMX and rayt IC and ICI: 
0NO0E(L2,JAMXC) • DFRND(IC,NN) 
0NO0E(Ll,JAMXC) * DFRNDflCI.NN) 

Initialize 
parameters 
LI - 2 • L 
L2 - LI  - 1 

Figure 17.    Flow Chart of Subroutine GMTRY 
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I .. 

Begin computation of fluxei 
cioMing ray IC  i   I. 
JC2MIN » 1, TSIDEO = 0 

■ Compute next column 
Jmbtr:  IC1 ■ it +  I 

Compote number of 
cells in column IC: 
JCI ■= JAMXJC) - 1 
Compute number of 
cell» in column IC): 
JC2 = JAMXflCI) - 1 

Subroutine RAY compute» the Fluxn of each 
»pecie» ctaulng the downitroam ray of 
the column, and determine» the fdtteit 
characteri«tic» normal to that ray. 

Column IC 
has as 
many cells 
at 
column IC1 

Yes Column Id 
hat more 
cells than 
column IC 

Begin computation of fluxtl 
crossing each cell face 
on ray ICI: 
0O6JI - 1,  'C1 

d 

Cells (IC,J1) and (ICI,J2) 
have their entire ray ICI 
baundoriei in common. 
Set fractional parameten: 
JC2MIN - Jl; JC2MAX = Jl; 
PARTOI.JI). 1.0 

Begin computation of the fluxes 
on the ray ICI face of cell (IC1,J1): 
DO ISJ2 - JC2MIN, JC2MAX 

IMESH > 0? >^  
r   Floating 

Compute species index 
N • 4 • NSPfC 
Initialize fluxes: 
0O4JI . », J 
D0 5NI - 1, N 
SFIUX(3,J1,NI) 
SFLUX(4,JI,N1) 
SFLUX(S,JI,N1) 

5 CONTINUE 
4 CONTINUE 

SFLUX(5,J1,N1) 
0.0 
0.0 

mesh 

Begin sweep through species: 
D016NS « 1, NSPEC 

f 
Compute the flow properties of 
species NS on the ray ICI face; 
CALL WALL(AC1,JI,NS), A(2,J2,NS), 
P0,JI,NS), P(2,J2,NS), 0., UN(1.JI,NS), 
UN(2,J2,NS), UT(I,J1,NS), UT(2,J2,NS), 
GAM(1,JI,NS), GAM(2,J2,NS), RHO(l,JI,NS), 
EHO(2,J2,NS), NS, 1) 

Compute the dowmtream and upttream 
characteristic speeds of species 
NS relative to the ray ICI boundary: 
CALL STBLTY(A(1,JI,NS), UN(I,JI,NS), 

0., USTBLY(2)k 
CALLSTBLTY(A(2,J2,NS), 
- UN(2,J2,NS), 0., USTBLY(2)) 

r^CONTINuTT- 

Cell (IC1,J2) is the lost 
cell in column ICI needed 
to match the ray ICI face 
of cell (ICJI): 
JC2MAX = J2. 
Store the amount of the 
ray ICI face of cell 
(ICI,J2) paired so far: 
TSIDEO = TSIDEN 

Begin computation of the fraction of the 
cell face on ray ICI of cell (IC,J1) which 
alto bounds cell (ICI,J2).   The mnemonic 
for this fraction it PART(J1,J2). 
0O9J2» I, JC2 
PARTgi,J2) = 0.0 

9 CONTINUE 

All of the available ray 
ICI face of cell (IC,JI) 
is needed to match the 
ray ICI face of cell 
(ICI,J2): 
tiART(Jl,J2)- I.  - SPART 

Loop not 

Loop I completed 
completed 

Set fraction of face of ee 11 (I C, JI) which 
it already paired:  SPART» 0.0 
Select flrtt uncompleted cell in column ICI: 
J2 - JC2MIN 

Compute area which can be covered 
using all of previoutly covered area 
of cell (ICI, J2) plut all non-paired 
ray turface from cell (IC,JI): 
TSIDEN - TSIDEO + (1. - SPART) 
• AREARY(I,JI) 

No J 
■^ TS10EN > AREARY (2,J2)T^ 

Yet    Notollof avcii'jt Not all of aviiüdble 
ray face area <:f 
cell 0C,JI) it needed 

Compute the fraction of the ray face area of 
cell (IC.JI) needed to match the ray face area 
of cell (!C1,J2)! PARTtJI,J2)- 

(AREARV;?,J2) - TSIDEO^AREARYO, JI) 

Compute the thennodynamic propertiet of each! 
tpeciet on the boundary:   CALL THERM2(J2)    I 

Compute the fluxes of each tpeciet on the 
boundary:  CALL FLUX(4,JI,J2,IC, 
PARTgi,J2) . AREARYd.JI), 0.0, I) 

Loop not      > T 

* 
Set already paired area fa zero for next ce. 
in column ICI:   TSIDEO • 0.0. 
Compute new already paired fraction of ray 
face of cell (IC.Jl):  SPART - SPART + PARTg 

r fCII,J2)| 

<. JC2 > J2?J^ 
No 

completed 
H   li CONTINUE  | 

Loop I completed 3 
Select 
next ce 

Ye» 
Put any extra 
ray area in 
cell JC2 

Select first uncompleted cell in 
column ICI:   JC2MIN - JC2MAX 

Loop not 

completed  j   6 CONTINUE    ^ 

|  J2' J2-»'TT- J 
Loop 

completed •IRETURNJ 

Figure 18.    Flow Chart of Subroutine RAY 

104 

■ 



( RESET (IC)  J 

Compute the number of 'he dowmrrtom 
royr  ICI = IC +  1 

I 

Subroutine RESET computes the 
fr»« boundary nod* poiiliom on the 
downttwom ray of the column at iht 
tnd of the time-«tep, colls for 
raioning of the mesh if necessary, 
ond resets the parameter! needed for 
fht calculation o, the next column. 

Begin camput ition of the positions of the 
fn» nod*' on ray ICI at the and of the 
Hm«->frp;  DQ 1 N = I, MXFARC ] 
Determine which ore in column IC 
coincides with free boundary N: 
NFA » NFRARCQC.N) 

—ZU 
Arc NFA do« 
represent a 
free boundary 

NFA > 0? 

Y« Free boundary N 
do« not exist 
In column IC 

■^   IC ■  ICMX? 

Ft»e nod« N on ray ICI .«suits 
from an arc in column IC.    Sat 
index:   NP • 2 

Free boundary 
N may exist 
in column ICI 

Determine which arc in column ICI 
coincides with free boundary N: 
NFA - NFRARC(ICItN) 

Camput* the distance along ray 
ICI from the reference point 
to free nod* N at the end 
of the time-step: 
DFRND(ICI,N) = DFRNO(ICI#N) + 

VNODE(NP,NFA) . DELT 

I 

< NFA >'o? > 
bk 

Arc NFA do« 
represent a 
fr** boundary 

completed 
-| I CONTINUE im 

Loop i compl*t*d 

Free boundary 
N does not exist 
in column ICI 

Ft»* nod* N on ray ICI results 
from an arc in calumnlCI. S*t 
ind*x:   NP « 3 

Tut for and 
carry out needed 
rezoning: 
CALL REZONE 

—c= 

^ ISLIP > 0? 
Afamoy   >        i - 
become ^ I   *"• WWH 
discontinuous        1 «ontinuoui 

.No 
There is 
another 
column 

<* <ICMX? 

Far each species, reset 
got parameters In 
cell (ICI,JA); 
DO ISNS - I.NSPEC 
A(I,JA,NS) - A(2,JA,NS) 
EINT(I,JA,NS)- EINT(2,JA,NS) 
P(I,JA,NS) - P(2,JA,NS) 
I1H0(I,JA,NS)- RHO(2,JA,NS) 
RGASO.JA.NS) - RGAS(2,JA,NS) 
UR(I,JA,NS). UR(2,JA,NS) 
UZ(I,JA,NS) - UZ(2,JA,NS) 

GAM(I,JA,NS). GAM(2,JA,NS) 
15 CONTINUE 

Y.s 

Determine number of ores In 
n*xt column! JAMXC • JAMXflCI) 

f 
Y« 

fl*gin resetting indices 

C*ll (ICI,JA) 
exists 

< JA < JAMXC? > 

No   I   CM (ICI 

Reset the geometric 
parameters In cell (ICI,JA): 
AREA(I,JA). AREA(2,JA) 
CELVOL(l,JA). CELVOL(2,JA) 
AREARYQJA)- AREARYP.JA) 

u 
Reset arc parameters: 
A«CL(I,JA)-ARCl(2,JA) 
ARCSN(I,JA). ARCSN(2,JA) 
ARCCS(I,JA)- ARCCS(2,JA) 
AREARC(I,J  J • AREARC(2,JA) 
DNODE(l,JA). DNODE(3,JA) 
DNODE(2,JA) ' DNODE(4,JA) 

t 

Cell flCIJA) 
does not exist 

10 CONTINUE 

Loop completed 

Reset the numbe 
of free arcs: 
NTOT(I). t;fOT(2). 
For «ach species, 
reset the column 
parameters: 
DO 16NS « I, NSPEC 
EB(NS,I). EI(NS,2) 
PB(NS,I). PB(NS,2) 
RHOB(NS,l). RHOB(NS,2) 
UTB(NS,I). UTB(NS,2) 
UNB(Nj,l). UNB(NS,2) 

116 CONTINUE 

For each fr** nod* 
in column ICI, reset 
the discontinuous 
arc parameters: 
Nl - NTOT(I) 
DO U N = I, Nl 
NARC(N,I) = 

NARC(N,2) 
N2 - NARC(N,I) 
UFREE(I,N2) = 

UFREE(2,N2) 
VNODE(l,N2) = 

VNODE(2,N2) 
14 CONTINUE 

Figure 19.    Flow Chart of Subroutine RESET 
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Compute ray number: 
IC1 = IC + IS - 1 
Compute arc number: 
Jl = JA + 1 

Set area 
index:   IS) ■ 4 

106 

^r<iZ^> Yes 

ray 
Inner 
ray 

Initialize the area of the face 
of cell (IC,JA)on raylCl: 
AREARY(IS1,JA)= 0.0 

Spherical 
geometry. 
Ray area 
not needed 

< 

I 
What is IGEOM? 

> 

Cylindrical 
geometry 

Compute cylindrical area factor: 
Gl = 3.1415927. SN(IC1) • 

(2.0 • DNODE(L,Jl)+ DON) 

Subroutine RAYGEO 
computes the area of 
a prescribed ray face 
of a prescribed ceil. 

Set area 
index:  IS1 in 

1 
Plane 
geometry 

Plane geometry 
area factor 
is unity: 
G) = 1.0 

I          1 
Compute the area of the face i 
ofcell (IC,JA)onraylCl: r 
AREARY(IS1,JA)= Gl • DON       I 

Figure 20.    Flow Chart of Subroutine RAYGEO 
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There it no 
centrifugal 
pressure 
correction 
in plane 
geometr : 
X = OX 

Cylindrical 
geometry 

Spherical 
geometry 

Set the cylindrical 
geometric factor: 
X = 6.2831854 

Set the 
spherical 
geometric 
factor: 
X = 8.0 

Compute the radial momentum 
source for each species 
due to the centrifugal 
pressure correction: 
DO 5 NS = 1, NSPEC 
NEQ = 4 * NS - 2 
SORCE(NEQ) = X * AREA(1,JA) 
• P0,JA,NS) 

5 CONTINUE 

11 

f   RETURN  j 

Subroutine SOURCE computes the sources of mass, 
momentum, and energy for each species within the 
given cell.   This version of the subroutine is for a 
chemically inert mixture of gases which do not collide 
with each other. 

Figure 21.    Flow Chart of Subroutine SOURCE 
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.■ 

4 
THERMO (L, 

. JC, IC) 

Sweep through oll ipecles: 
D0 6NS = \r NSPEC 

SubrouliiM THERMO eompulM th. density, 
rodiol and arial velocitiei, and internal 
energy of each ipeciei in each cell of 
column IC.   THERMO alu conputet rite 
velocitiei at each ipecies in columr» IC 
and IC-1 normal and tangential to ray IC. 

Compute the axial velocity, radial velocity, 
energy, and density indices for species NS: 
NVA = 4 • NS - 3; NVR = 4 • NS - 2; 
NEN = 4 « NS - 1; NDENS = 4 . NS 

Begin computation 
of species NS ineoc 
D07J = I, JC 

of the flow properties 
ach cell of column IC: U 

Compute the density and radial velocity of 
species NS in cell (IC,J): 
RHO(L,J,NS) = CV(IC,J,MDENSJ/CELVOl(L,J) 
U8(L,J,NS) ■ CVOC,J,NVR)/CV(IC,J,NDENS) 

< What is NMOMEN? 

kth radial and 
axial momentum 

>i Rodioi 
momentum 
only 

Compute the axial velocity of species NS 
intell (IC,J): 

UZ(L,J,NS) ■ CV(IC,J,NVA)/CV(IC,J,NDENS) 

H 
Conpute the internal energy 
per unit man of speries NS 
In cell »CJ): 
EINT(l,J,NS)" 

CVOC,J,NENVCVOC,J, NOENS) 
- »JR(L,J,N$) . ma.J.NS) 
♦ UZ(l,J,NS) • UZ(L,J,NS)^2.C 

Compute the velocities of species NS in cell 
(IC,J) normal and tangential to the 
upstream ray: 

UN(2,J,NS) - UR(2,J,NS) • CSflC) ♦ UZ(2,J,NS) • SNflC) 
WV.J.™) ■ UZ(2,J,NS) . CS(IC) - URCJ.NS» • SN(IC) 

Compute the partial pressure, speed 
of sound, ratio of specific heat«, 
and gas constant of species NS 
in cell tC.J):  CALL THERMI (L,J,NS) 

Yes 

Compute the column number of the previous 
column:   ICMI t IC - 1 
Determine the number of cells in 
column ICMI;  JCMI ' JAMXflCMl) - I 

Begin comp-jtation of velocities in 
column ICMI normal and tangential to 
roylC:  DO 8 J ^ 1. JCMI 

T 

Interior 
or last 
ray 

<,C>,?> 
No    First 

4 

First 
ray 

♦1 7 CONTINUE 

Yes 

Compute the velocities of species NS in cell (ICMI,J) 
normol ond tangential to ray IC. 
UN(1,J,NS) = UR(I,J,NS) • CS(IC) ♦ UZ(1,J,NS) • SN(IC) 
UT(I,J,NS) = UZ(I,J,NS) • CSOC) - UR(I,J,NS) • SN(|C) 

Interior 
or Ist 
ray 

Loop 

Loop not 

completed 

No 

completed 

First 
ray 

Figure 22.    Flow Chart of Subroutine THERMO 
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D«fin« needed otithmelic function!- 
5CRV1f(A,S)=  A •  B 
SCI1V3F(A,|,C)= SCRVIFCA.B) . |. (A 
SCRV4F(A,»,C,D)g (A . (8 * C)) ♦  R. 

Compuli column indices    ICI  =  IC +   I 
LI - 2 • I - 1; L2 - LI + I 

Subfoulin. VOLUME compul,: the 
volume between two preicribed 
arci or between two (ucceuive 
pofitlomof the some ore.   Undtt 
given condition«, the lubroutine 
alia coit!p.jt3i the crouiectionol 
otea of o prescribed cell of 
revolution. 

I Compute common geometric terms- 

Compute plane volume terms- 
X • 0.5 

Y - SaviF(DOI,SN(IC)) 4 
SCRV1F(t)D2,SN0C)) 

Plane < What islGEOM? 

|TcyÜndri 
mS        Spheric 

Compute cylindrical volume terms- 
X ■  1.0471974 

Y * SCRV3F(DOI,SN(IC),2.0 • 0NO0E(LI JA» * 
VI. SNflC) • SN(IC1) ' SCRV3F(DD2, 
SN(ICI),2.0 • DNODL'L2,JA)) 

Z ■ SCRV4FM,DNODE(LI,JA),DDI,V2) • SN(IC) H 
SCRV4F(V2.DNODE(L2,JA).DD2,v;) . SN(ICI) 

Compjte the volume of cell flC.JA - ])■ 
VOL ^ X ♦ (Y . DEEZEE(IC) t Z . DALPHAQQ)    P" 

What is ICALC? 

Volume 
' and area 

WhotisiGEOM? 

■ f Cylindrical 

a 

> Spherical 

Compute cylindrical area term-: 
W ■ DEEZEEflCJ/2.0 
X ■ DALPHA(ICl/2.0 

Y = SaviF0Dl,SNOC))4 SCRV1F(DD2,SN«C1)) 

I Z 
eel 

mz 
Compute the cnu-sectional oreo of 
--II  (IC,JA   -   1); 

IEAR =  w • Y -i   X • Z > 

1 
Compute spherical volume terms- 
X . 4.1887790 
Y ■ 0.0 

Z = SaV4F(Vl,DNOD£(LI,JA), 
0DI,V2) 

Compute spherical area terms; 
W =  1.5707964 
X ■  0.0 
Y - (2.0 • DNODE(Ll,JA) * 
Z = 0.0 

DDI) • DDI 

Figure 23.    Flow Chart of Subroutine VOLUME 
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1 

Subfourir« WALL computes 
'he prtuurt, dernily, and 
normal and 'angentiol 
componenti of velocity of 
'he given »pecies on the 
prtlcrifaad Mil boundary. 

Compute th« velocity of th« cHaracttrlitlc 
leaving the boundary in the upitreom 
cell, VI, and in th« dowmlream call, V2: 
VI » i>     - AI; V2 ■ UN2+ A2 

At leait 
on« choroc'erijtic 
propagates 
upitrcam from 
th« cell 
boundary 

No characterUrici 
propagate upllreom 
from th« cell 
boundary 

V2 > U? 

Charoctarittici 
propagate in 
«ach direction 
from th« cell 
boundary 

> 
No 

Yel 

N" choracterittic« 
p. jpogote dowm'reom 
from th« cell boundary 

Information an th« boundary cornel both from 
UMtraam and dawnitraam.   UM th« 
charactariitlc solution lor th« boundary 
prop«rti«i: 

TERMI = Al  • RHOI; TERM2 - A2 • RH02- 
TERM3 = TERMI + TERM2 
PB(NS,L) - (TERMI • P2 + TERM2 • PI -t 

(URM1 • TERM2 • (UNI  - UN2))1/TERM3 
UN8(MS,L) = ((PI - P2) 4 TERM2 • UN2 

4   mM\ • UNII/TERM3 

Compute th« boundary 
damity using th« upstream 
C«ll properties: 
RHOB(NS,L) ' RHONEG(Pl, 

RHOI,GAMl,GAM2, 
PB(NS,L)) 

: rotting ^_ Molt croui 
th« boundary 
comet from 
upstream 

UN»(NS,L) >U7 
> 

No 

Malt crossing 
'he boundary 
comes ftom 
downstream 

All information en th« 
boundary com« from 
upllreom,   UM upstream 
properties: 
PB(NS,L) * PI 
RHO»(NS,L) = RHOI 
UNB(N5,L) ■ UNI 
UTB(NS,L)= UTI 

All information on th« 
boundary com«! from 
downstream,   Use 
downttieom properties: 
PB(NS,L) = P2 
RHOB(NS,L) « RH02 
UNB(NS,L) = UN2 
UTB(NS,L) = UT2 

Comput« th« boundary 
density using th« 
downstream cell properties: 
RHOB(NS,L)- RHONEG(P2, 

RH02,GAM2,GAMI, 
P»(NS,L)) 

Set th« 'angentiol velocity 
on th« boundary equal to 
th« tongantiol velocity in 
fh« upstream cell; 
UTB(NS,L)= UTI 

•/   RETURN   \, 

1  
Set th« tongantiol velocity 
on th« boundary equal to 
It» longenliai velocity in th« 
downstream ceil: 
UTB(NS,L) = UT2 

Figure 24.    Flow Chart of Subroutine WALL 
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APPENDIX III 

EQUATIONS OF RADIATION TRANSPORT 

l-        GENERAL EQUATIONS 

The equations of radiation transport may be derived 

in the same manner as the equations of hydrodynamics {Appendix I). 

Thus, the photon distribution function,    f^^ , c, . t,).    denotes 

the number density of photons at point   £#, t,)   having velocities in the 

increment   dc+   about   c^   and frequencies in the increment   dv^ 

about   v^   (the subscript asterisks denote quantities with physical 

dimensions).    The number density of photons at point   (Z^t)   is 
then 

nRv«      =     /fRv«( W y dc^ (230) 

where the integration is carried out over all velocity space.    The 

total number density of photons of all frequencies is 

nR*       ■   £**»*&* (231) 

Since the energy carried by a photon is   h^,    the total 

radiative energy density at point   (r. , tj   is 
♦ * 

** "♦' 

eR*       =    r^^^Rv^d^ (232) 

In equilibrium,  however,  it can be shown that the value of   eR)j{   is 

(Section 4 of Chapter XI.   Reference 2) 

eR*        "      ^T'/S (233) 

nz 



Thus, an appropriately normalized radiative energy density is 

eR» 

611 4aT4/c (234> 

The energy den.ity of photon, of frequency   V,,   .Rv<„    may be defined 
by the relation 

'o Rv*av* (235) 

Defining the normalized value of   eRv   by the relation 

eR        =    ireRvdV (236) 

and using Equations   232   through   236 , there results 

The radiant heat flux vector at point   (?. , t .   i, de£i 

e 

% 11^)   is defined as 

QR
* 

= sy*s&*w\i, «"«Ss^RV« (238) 

By dtrect comparison with Equations   232   and   234 ,  the appropriate 

normalization for   QR   is seen to be 

QR* 
Q 

R 4a T 4 (239) 

Proceeding as in Equations  235   through   237 , the normalized heat 

flux vector for photons of frequency   v&   is seen to be 

113 

I 



lRv 
/h«v*c*fRv*dc, 

4a T 7 v 
(240) 

Definitions   230 .   237 , and   240    involve moments of 

the photon distribution function.    This distribution function is given 

by a Boltzmann-like equation similar to the Boltzmann equation in 

Appendix I; since photons cannot accelerate,  however,  the form of 

the equation for photons is slightly simpler.    As derived in Reference 

2 (Section 3 of Chapter Xi),  the equation for the photon distribution 

function is 

örfRv«+ ^'VRV* 
/afRv»\ 

interactions 
(241) 

where the term 
'interactions     account8 ^r all changes in the 

distribution function due to scattering,  absorption,  and emission. 

Integrating Equation  241    over all values of   c 

*K XdJ.+/ %' W* ** • A^r)dZ'   (242) 

where 

V    • c 

interactions 

(243) 

because   r^   and   c^   are independent variables.    Interchanging the 

differential and integral operators and normalizing according to 

Equation   237 ,   Equation   242   giveg 

ae 
RV 

öt RV (*). 
(244) 

interactions 
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Taking the first moment of Equation   241    by rnultiplyi 
by   c^   and integrating over   c      jivee 

ying 

Stl/ /• 
C*Vdc*+7*      c^iKv   dc^ = {K/^R^^ 

Multiplying by   ^V^   ,    dividing by   Ao^f,    and u 

240   gives 

nteractions 
(245) 

sing Equation 

r^- Q       + v    • '0*1 ic*h*v-.fou <ic 
at«    Rv     * 4a*T*AR* 7^     ldt* QRV/ (246) 

interactions 
The radiative pressure t 

XI,   Reference 2) 
ensor is defined as (Equation   2. 1 3 ,   Chapter 

Rv. - AvRv.^dc, Rv* s s (^47) 

where 

Since pressure is an 

(248) 

energy density,   it is convenient to normali 

PRV   in the same fashion as   eRv; thus,  as in Equation  237 . 

P 
PRV, 

Rv 
4/C*VR« 

Introducing Equation  249   into Equation   246 

or 

RV      L* -►       ^ 
1 UA Rv   * 

ao Rv ■v.      + cV ' p at RV 
(!V) 
\ St /i 

interactions 

interactions 

(249) 

(250) 
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2.        SPECIFIC TERMS 

a.        Interaction Terms 

The interaction terms on the right-hand side of Equa- 

tions   244   and   250   represent sources of radiative energy and heat 

flux due to absorption,  emission,  and scattering.    These terms depend 

upon the properties of the material through which the photons are 

propagating,  and can be expressed in terms of absorption,  emission, 

and scattering coefficients.    The following discussion of these effects 

is based upon Reference 19   (Sections 3 through 5). 

b. Absorption 

The volume rate at which species   a   absorbs photons 

of frequency   v   is given by the product of the photon flux,    c^    ; 

the absorption coefficient per unit mass.   H va   ;   and the density.* 

POL. 
: 

U* fRV*)abs a 
i«HvaJj<

c*fRv)j{ (251) 

Multiplying by   h^.    integrating over velocity directions,  and using 
Equations   230   and   237  gives 

v at yab8 u*  ? Pa* H 
*    a 

va* C* eRv (252) 

Introducing the Bouguer number. 

where H^   is a reference absorption coefficient.  Equation   252 
becomes 

(^53) 
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(Üsv) 
V at /abs 

- c Bu eRv E PaK 
va (254) 

Treating the heat flux vector similarly. 

ffsv) 
\ at   /abs 

L*  f^^RvM. 
— EP« 1, U*      ^V/v» t^/-* 

cBuQR^rpaKva 
a 

(255) 

c' Spontaneous Emission 

The rate at which unit mass of species   a   emits energy 

at frequency   v   in the direction   c,   is given by the emission coefficient. 

Jvcu •    Thus, 

at; (fRv* v*) sp em EPa 
a * J va5jt (256) 

Integrating Equation  Z56    overall^,    dividing by   4a  T 4/c vR 

and using Equations  230    and   237   gives 

m sp em (257) 

* 
where 

Vtt^ /jva. dS (258) 

in the net rate of emission of radiant 

mass of species   a.    Defining 
energy at frequency   v   per unit 
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'VOL 

'va 
4^a*T*4/c«V 

(259) 

and using Equation 253 ,  there result« 

m sp em c Bu E Pa J 
a va (260) 

"   Jva*   is not a unction of the direction of energy 

emission,  as seems reasonable for spontaneous emission,  there will 

be no net direction of the emitted energy; thus,  there is no change 

the heat-flux vector due to spontaneous emission- 
te in 

m sp em (261) 

d. Induced Emission 

The rate per unit volume at which species a is stimulated 

into emitting photons of frequency   v^   in the direction   c^   is given by 

the product of the photon flux,    c^    ;   the coefficient of induced 
emission per unit mass.    J 

vou 

\K  /in 

and the density,   p 

em a va/*^ (262) 

Equation (262) is similar to Equation   251    for absorption; thus,   by 

analogy with Equations  254    and 255 

1 'In em 
cB 

a ^a va   va 

and 
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In em 
cB   5      2^p   J     tL 

»   Rv a   aJvaHva (264) 

e« Scattering 

Since scattering changes the direction of a photon but 
does not involve the absorption of 

ative energy density at a point- 
energy,   it cannot change the radi- 

scat (265) 

The effect of scattering on thl heat-flux vector may be 

determined by considerations similar to those for absorption.    The 

differential rate at which photons of frequency   v^   are scattered by 

solid angle   .   out of direction   c,   by species   a   is defined as 

>     *  /scat 

Where  Sva (1»)   is the cross section for 

"aC* ^\ ^mdm (266) 

scattering one photon through 
•he solid angle  ..    Th. net heat-fta !„„ (rom direction   .     is thus 

fet'Rv,,11*^3*) 

where 

scat * * * * a   % Rv^ yx^wd«, 

:AVRv^?^Sva, 

=    fi va. ySva^du) 

(267) 

(268) 
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is the cross section for scattering a photon into any direction.    Inte- 

grating Equation   267   over all   c^   and using Equation   240 

fin     ^ l* cAv»?PvA
sva,JfRvA <&* 

8cat * 4°*T*/\ 

=    "cBuSRv^aSvaSa WV 

Equation   269   shows that scattering cannot change the 

direction of the heat-flux vector.    Thus, the radiative energy approach- 

ing a scattering region may be divided into pencils of radiation coming 

from many different directions; Equation   269   shows that each of these 

pencils will be attenuated by the same attenuation constant, 

C Bu a   a SvaHva '    Con8equently,  the ratio of the number of photons 

in any one pencil to the number in any other pencil will be unchanged 

as a result of the scattering.    The net heat-flux vector,  therefore, 

will not change direction as a result of the scattering. 

f. Final Equations 

Combining Equations   244.   254,    260,    263 , and 

265   gives the equation for the radiative energy density: 

1 ^     S    Ä 
C—+7'QRV      =        -B ^afva^-O-Ü      <270) 

Similarly,  combining Equations   250 ,   255 ,    261 

and   269  gives the equation for the radiative heat-flux vector: 

l^Rv     *    3 
ö_-+^PRv   =      -BuQ^i^H^l-j^+sJ      (271) 
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Energy Absorbed by One Spe cies 

The net rate at which radiant energy is absorbed into 
U..rnU energy of species   a  is obtained by integrating Equations 

"4 ,   260 ,   and   263   over all frequencies: 

m cB. dv (272) 'abs by a JuPa/[eRvKvaf1 " Jva) " ^va] 

as written in Equation   272     tho >.-ij--i.- q 72 ' the radia^ve energy density is normalized 
With respect to radiative parameters; that is.  the normalization is as 

shown in Equation   234 .    The hydrodynamic energy density,  however, 

is normalized by the term p^ .    Changing the 

Equation   272   accordingly. 
normalization of 

m abs by a 

,<r.T.4A 
"A dv 

where 

BoBu/[eRvHRv(l.JvJ.Jvajdv 

B. ^^ 

^U*3 

is the Boltzmann n\mib 

(273) 

(274) 
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APPENDIX IV 

MAXWELL'S EQUATIONS 

For convenient computational application to a wide 

variety of problems,   Maxwell's equations must be normalized into a 

form which can be related to a similarly wide variety of initial conditions. 

1. RATIONALIZED   MKS   UNITS 

Maxwell's equations in rationalized   mks   units are given 

in Table 1-1 of Reference 20 as 

—* —» 
eo/* '   E« % (275) 

V  g« - 0 (276) 

*XE* "        'iU (277) 

and 

Equations  275 through 278 are to be normalized into a 

form convenient for studying the flow of ionized gases.   For this purpose, 

the reference for the charge density is taken as the reference particle 

density multiplied by the charge of the electron,   and the reference 

electric field intensity is taken as the field iniensity which this reference 

charge density would generate if divided into positive and negative charges 

separated   by a Debye length.    Since the Debye length represents the 

distance of charge separation at which the energy density of the eleatric 
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field equals the energy density of the thermal motion,  it !B felt that 

thxs choice of normalization will yield a nondimensional electric field 

of order unity throughout the gas.    Tha magnetic flux-density is then 

normalized by equating the energy density of the reference magnetic 

flux-density to that of the reference electric field intensity. 

^ 

The reference charge density,    q       .  i8 thus 

(279) 

Assuming that the length scale for variaUons in the electric field is 

the Debye length.    L^ .   Equation   275   gives 

D« 

or 

E, 

4R# 

N^e.LD. 

o* 

(280) 

(281) 

The Debye length can be estimated by equating the 

energy density of the field   E^   to the thermal energy density of a 

gas without   internal structure at a characteristic temperature   T    • 

.2 

= _£_   1VT   1-     in 
(282) 

Co»"CJ* 3 

~2~     =        TN.k.T* 

Sub.titu.mg   Equation jg,   int0 Equat.oii   2e2   and ^^ ^ 

""D* 
^k.T.c *   * o» 

N,q 2 

1/2 

(283) 
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The reference magnetic flux-density is now computed 

by equating the energy density of the reference electric field intensity 

to that of the reference magnetic flux-density: 

.2 
B^ 
2K 

0*    * 

O* 

or 

B E*KjnJ 
1/2 

o« o, (284) 

or 

Applying normalizations   279   and   280  to Equation   ?75 , 

V   E   —-±       =      qN q 

* eo« *  e* 

V •   E 

where 

Äq (285) 

7 •   B 

VS. 

Similarly,  Equation   276   becom es 

Using normalizations   281   and   284   in Equation   277 

(286) 

(287) 

E*    -»      -• 
-r6- 7 x E 

gives 

c# L*  at 

or 

V x E 1 ^5. 
c    ^t (288) 
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Choosing 

N  q   U 
(289) 

:omes as the reference current density.   Equation   278   becc 

/ N,q    L     rr -. \ 
=    M     IN  q    TT 7 ,      *ne»   D:!C

U»     aE \ 

or 

V x B iL +_L il. 
c c     at (290) 

2.        GAUSSIAN UNITS 

Maxwell's equations in Gaussian units with the current 

density measured in   esu   are given in Table 1-1 of Reference 20 as 

V E* = 

* »je 

4ffqv 

y* X B* 

__i_ as^ 
"c*   ät* 

iÄ-x_L als 
c«   ^t* 

(291) 

(292) 

(293) 

(294) 

As for the rationalized   mks   units,   the reference charge 
density is defined as 

'R* *  e* (295) 

For the reference electric field intensity.   Eq 
nation   291   then gives 
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E, = 
4ffN.q    L^ 

N«q   L_ e«   D« 

if 

in  C Olio tsi -» «% .._4i. 

1 
4if 

(296) 

(2^  7) 

Equating the energy density of the reference electric 

field to the reference thermal energy density of the gas, 

E* 3 
Sir 2   ^«N1« (298) 

Substituting from Equation ^ 296   and solving for   LD^ 

1/2 

^V 

e* 

1/2 

»si ' '  e* 
(299) 

Computing the reference magnetic flux-density by equating 

the energy density of the reference electric field to that of the refei 

magnetic field, 
:rence 

R2 P2 B» E^ 
STT 8rr 

or 

B* E (M    €      )1/2 

»K^o^o«' (300) 
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if 

in Gaussian units. 

4n (301) 

Applying normalizations   295   and   296   to Equation   291 , 

V .   E        = xq 
(302) 

Similarly,   Equation   292   becomes 

V •   B       = o 

Using normalizations   296   and   300   in Equation   293   gi 

(303) 

gives 

or 

7 X E 

-LE ^hL 

-L il_ 
c   at (304) 

Choosing 

1 
*He*  * (305) 

as the reference current density.    Equation   294   bee 

—♦ 

V 

omes 

or 

.    x E*B = L.        * 

V x B 

47rNJ,q 

iL+ _L^i 
c c     at (306) 
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3' FORCE AND WORK TERMS 

Normalized expressions also are required for the force 

exerted on and the work done to a charged particle by the electro- 

magnetic fields. 

In rationalized   mks   units,  the force on a charged particle 

is (Table 1-1,  Reference 20) 

and the work done on the particle is 

Fa*' % =        qas!eV % (308) 

The force is normalized with respect to mechanical units: 
.=• 
F 

F - ttdc 
a "        2~ (309) 

Inserting normalizations   281 ,    284   and   309   into Equation   307 

Lq     L.E^, * e*   *   * 

gives 

N^q     L^E 
g + U*0a

xg(^o//2]      (310) F« =  2   1« 
PA 

Using the fact that 

1 
Mo*€o*      " 2 (311) 

in rationalized   mks   units.   Equation   310   becomes 

q   /    u  x B\ 
Fa = \*r      —J (312) 
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where 

n m^) 
The normalization of the work term.    Equat:. 
identical: 

F   • u 
a      a 

(313) 

on 308 , is obviously 

(314) 

In Gaussian units,   the force is   (Table 1-1.   Reference 20) 

Inserting normalizations   296       300      X^A   ina   ■ ™»    WV ,  and   309   into Equation   315 

s N*q
e.

L*E*      r    u 
ct\ c 

gives 

*>*"« 

i/il 
XB(^fo^     J (31 6) 

Using Equation   313   plus the fact that 

in Gaussian units.   Equation   316   becom 

q 
F -        _J 

a 7n 

(317) 

i«   /        U    X B \ 

es 

(318) 

Since Equation   308   is valid for the work in Gaussian units 

as well as in rationalized mks units,  it is clear that Equation   314   is the 

correct normalized form of tiie work term for Gaussian units as well as 
for rationalized   mks   units. 
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APPENDIX V 

INTEGRATION OF THE EQUATIONS 

The integral equations developed in Subsection III-l 

have two general forms;   these are 

/"£.[*♦ ?• ?♦,.] =      u (319) 

and 

£*£*[% "3*"*Z**2] (320) 

Equations  319 and 320 are to be integrated over a cell volume.    V . 

and over a time step.    At .  in plane,  cylindrical,  and spherical 

coordinates. 

1. EQUATION 319 

The first term of Equation 319   may be written as 

CH*<*V>-*%] (321) 

where   äcp/öt   is assumed uniform throughout the cell,  and the cell 

volume is a function of time because the mesh moves. 
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If the cell surfac 

change of cell volum 
e moves with velocity   w,   the rate of 

e over a small increment of cell surface i, 

,/öV 
lV dt/ 

-      A 
W-  1/ dS 

(322) 

where   y   is the unit outward normal 

that property   «p   is constant on each el 
to the  cell surface.    Assuming 

the time step,   the rate   at which 

of surface element   dS   is 

ement of the cell surface during 

property   <p   changes due to the motion 

Integrating Equation 323 , 

<pW •  v dS 
(323) 

<P 
5V 
at dS 

(324) 

Inserting Equation  324   in Equation   321 , 

fdvf Jy   At 
dt^ 

at (<pV)      ■ / ldt/*>w- i dS (325) 

Replacing the surface integral by a summation over the faces of the 

cell,   and assuming that the properties on each face of the cell remain 

constant during the time step.    Equation 325   becomes 
t. 

V At . opii cell 
faces 

where   Wn   is the component of   W normal to the cell face. 

(326) 
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Using Green's theorem on the second term of Equation 

319   gives 

fry I**} .   l*ßt* - »^s   mn 
faces 

where 

^i = ?'  ^ (328) 

and   0   has been assumed constant on each cell face during the time 

step. 

The last term in Equation 319   is integrated under the 

assumption that the  source term,    ^ ,    i8 constant throughout the 

cell volume for the entire time step: 

But using Equation   324 , 

V(t) = V(0) +   A dt fdS W •   V 

= V(0) + t £   WnS (330) 
cell 
faces 

Substituting Equation   330   into Equation   329 , 

XdvXdt^ = " • ^ [^+^c?u w"s] <»■' 
faces 
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Combining Equations   326,   327,   and  331.   the 

integrated form of Equation  319   is 

teV) 

faces 

(332) 

2. EQUATION 320 

Equation   320   i. a vector equation and,   because of the 

rotation of the unit vector, in curviUnear coordinatea.   Green', theorem 

■a not applicable to vector integrands.    Consequently,   it is necessary to 

separate Equation   320  into its scalar components, and apply Green's 

theorem separately to each component.    As can be seen from the sym- 

metry of the computational cells illustrated in Figure 1,   i. suffices to 

constder the   x   and   z   components of Equation   320   for plane and 

eyhndrical geometry, and it suffices to consider only the   x component 

for spherical geometry.    Consideration of the remaining components 

will not yield new information because of the symmetries involved. 

A 
Let   I   denote a unit vector in either the   x   or   z 

direction .    Then the required components of Equation   320   are given by 

Xdv/tf- at + *■ 
^!"*A-'       -»      A     -» 1 
* • X+ I '  v xu) + I . 4 I   =o (333) 

Noting that   ^   is a constant vector, 

A.M 

at 
3 ^    s 

(334) 
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^ '  7 ' X       = V .  U • X) (335) 

and 

^n"* -♦-♦A-»-»A -.-.A 
l»   7 Zte       = CO •   7 X ^ + 7 •   CÜ X -t,     =     7 .   (CÜ X O        (336) 

Applying Green' s theorem to Equation, 336   gives 

/ dV i •   7 X J    = JdS u •  u XI (337) 

by use of the vector identities.     Combining Equations  333 through 

335   and   337 , 

Xdvi>[iH-^-32] 

•4     «it 
,    A      ,A      -♦       -«A 
dt i/ •  (-t . x + a> x ^)    =    0 (338) 

Equation   338   cannot be approximated in the same man- 

ner as Equation   320   bee .use the integrands contain geometric factors 

which are not constant throughout the cells in curvilinear coordinates. 

Thus,  the   z   and   x   components of Equation   338   must be considered 
separately. 

a, z Component of Equation 338 

As discussed above,  the   z   component of Equation   338 

is required only for the plane and cylindrical geometries.    As shown 

in Figure 1. however, the angles between the   z   axis and the normals 

to the cell sides are constant for a given cell regardless of the value of 

y   or   6.    Consequently,   the integrands in the   z   component of Equation 

338   are constant,  and the equation may be approximated analogously to 
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Equation  319.     Using Equation 325     th* u, g ^Muation  j^s,   the symbol   r   to represent 

•«.«   X   in pla„e gecne.^ or   r   in cyUndrical geometryj  and ^ 

»ymbol   9   to represent either   y   in plane geometry   „   9   .n 

cylmdrzcal geon^e.ry,   the   .   component of Equation   ,38   becom 
es 

faces 

(^z-2 
+ X2r.r + ^.J S -^     v 

2z    t i (339) 

where 

'9 (340) 

for the „U. 8hown in Mgure 1.    „are.    p,   i. the direction coaine 

between the outward „orma! to the cell face and the   r (or x) axis 
and  p2   ,. the äilection cos.ne ^^ ^ ^^ ^^ ^ ^ ^ 

dee and the   z   axis. 

b* r   Component of Equation 338 

In the cylindrical and spherical geometries,   reference 

to Etgure 1 shows that the angle between the   x  axis and the normal 

to a side of the cell is not constant over the entire side of the cell 

Consequently,  the detailed integrations must be carried out for ft,,, 
two geometries. 

For plane geometry,   however,   these geometric factors 

are constant on the sides of the cells    anH «,- 4«* ie ceus,   and the integrated equation may 
be written down by analogy to Equation   339   : 
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""^SSSMSBHBBB 

<*.\    -    ^'.Z "{£[(*,-f^)wn 
faces 

{Xxx^x + **MV* ' V^f " VÜ        (341) 
In carrying out the integration for the cylindrical and 

spherical geometries,  it must be remembered that the radius,    r,  is 

never negative while the   x   coordinate may be negative.    Consequently, 

these integrations must be carried out only over the half cell for which 
x  is positive. 

For the cylindrical geometry,  the half cell of integration 
is given by 

2        e   S    2 (342) 

Thus,   Equation  338   becomes 

XdrXdz£/2
rd9idt[^cos9-vH 

+    J'2r cos 6 - ^    sin 6   +      /" dA   /"dt 
J    lJA(B=ltlZ)      -it 

+      / dA  fdt+   f dlf       H{1) de   fdtl 
JA(B=-itll)      At        Jc    /-t/2 ^t   J 

[(Xrr^r + **?* + Xr A)008 0  *{*&*, + X 

+ Xez^)8in 0 + fve - ws^)C08 e ■ ('V 
' VM   jsin 9=0 r   z]        J 

ee^e 

(343) 
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where   J^di   denotes   the line integral around the cell at fixed   e . 

HI)   is the value of   r   on this path,   and   A   is the cross-sectional area 
of the cell as shown in Figure 2. 

On the face   A(e = ff/2) , 

and 
(344) 

"9 

On the face   A(e = 

V = r 

and 

- ff/2) , 

v 

(345) 

(346) 

On the faces   - n/Z < ß < n/Z , 

(347) 

e 
and 

constants 

(348) 

Using Equation8   344   through   348   ^ ^^.^   343   and 

performing the   0   integration. 

^ee 

i/n      /  dAxfifl + 2 / toU)di(x   V '/Me= -77/2) öe        Jc ^rr  i 

Arz   z        9 ̂ | = ° (349) 
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...... ■..., 

Noting that 

and 

/ dV      = f dr f dz f    rdB (350) 
SV JLr     Az     Jo 

yds     =        fdiT  nu) ae (351) 

for the full cell,    Equation   349   becomes 

'  "»"«l " ^ I? idA XM    '    " (352, 

The integrated form of Equation   352   can be written 

by analogy to Equation 339 : 

faces 

ta/r + *rzV* ' V.)]S + Z*A*ee - ^rVt0) 
(353) 

The integration for spherical geometry is handled 

similarly to that for cylindrical geometry.    In the spherical case,  the 

half cell of integration is given by 

- ir/2 s 9 s ff/Z     and   - rr/2 ^ <p s ff/2 (354) 

In this coordinate system,  the   x   component of   Equation   338   becomes 
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sin 9 

dA 

Xdu1
2rd<p^/2

rco^d9&(^co8^ose-^ 
- ^ sin cp cos Bj + J>2T COS 0 cos 9 - J      sin 

- ^    sin «p cos 9   +     / dA+     / 
J    lJA{e=ir/2) JA{e=-ir 

pf/Z rtf/2 

-ff/2 "-ff/Z 

+ ^2
r2d^/2

r2COSVdT[(x^ + ^e 

+ Wv)Bin e - (Vyr + x^^e + V^)sin ^cos 9 

+ (Ve " w90C08 ^cos 9 - (^r^ - Vr) 

-  \itiQUr - UirV^sin tp cos 9]!   =   0 

sin 9 

(355) 

where   ^   is the radius of the inner face of the cell and   r    = r    + Ar 

is the radius of the outer face. 

On the face   A(9 = ir/2) , 

V 
and 

(356) 

(357) 

■I-«J..-4.-IIII 1 .1. nmm ^1 
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On the face   A(8 = - ff/2) , 

<P 
and 

'8 

(358) 

(359) 

On the faces   r^ = constant and   r    = constant. 

and 
«P 

constant 

(360) 

(361) 

Substituting Equations   356   through   360   into Equation 

355   and carrying out the angular integrations. 

-it l\      I  at      2d  4(8= Ä(8=ff/2)        ee 

^(8= -ir/2)      ee   L 1 fl     2 r2J 

(362) 

Noting that 

dV Av      = 4,/^,! dr (363) 

and 

r 47rr (364) 
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for the full cell.    Equation  362   becomes 

V 
U '   r 

ldt{dAXBB    =    0 (365) 

The integrated form of Equation   365   can be written by 
analogy to Equation   339 : 

1 o (cellLV  r       2     2r/    n 
face s 

js + 8%e - ^rVt0} ^rr-rl8 ^ «%e " ^J (366) 

By letting   r   and   Q   .«present   x   and   y   in plane 
geometry,   defining 

V = 0 
(367) 

in spherical geometry,   and defining 

0    ü. 
i 

spherical geometry 

it is possible to combine Equations   341        353   anH   ^AA   •  . -» -»-«i ,    J3J   and   366   into one form: 

(0    in plane geometry 
ff   in cylindrical geometry i^g) 
4    in snh--'--1  ' 

<^'t. =    (*r
v'to-'{£[(*,-f^rK 1 

facei 

{*rrVr + *rzV
z ' Vz) S+2T?A^ö-^rVt0| 

(369) 
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APPENDIX VI 

CHARACTERISTICS 

The field properties on the cell face» are evaluated by 

the use of character!sties.    The theory of characteristics for the 

hydrodynamic equations of a perfect gas in equilibrium is given in 

Reference 4 .   In this appendix, the theory of characteristics is 

extended to a mixture of gases out of equilibrium, to the equations of 

radiation transport, and to Maxwell's equations. 

I.        HYDRODYNAMIC EQUATIONS 

The gas in each ?ell of the mesh is assumed to be at 

a constant state; this state is characterised by a pressure tensor 

defined by (see Equation   207 , Appendix I) 

2 
P 

a P.J v v > a    a a (370) 

and a kinetic temperature defined by   (see Equation 2.13, Chapter IX. 
Reference 2), 

or 

Ik*T
a* 

|KT 2     a 

1 .  2   . 
''.    a«     a* 

1 ,   2. 
&    a   a (371) 

The   normal pressure of species   a  is defined by 
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a 
1 5      ? 
3    a 

■r- <v   . v > 3       a      a (372) 

Equations   371   and   372   give 

a n   K T 
a      a (373) 

as the kinetic relation for the species   «  in th e cell in question. 

Now consider a plane with a constant flow on each side 
as depicted in Figure 25 

A 
s 

(     ), ( h 

Figure 25.    Surface Coordinate Syst em 

u A A 
where   n   and   s   are unit 

vectors in the directions normal and cangen- 
tial to the plane,  respectively. 

In terms of these coordinates.    Equation 19   i, 

50 

~+   i^M*   W* (374) 

where Equation   25       has been used,  and Equation   20     is 

iK<U
an>)+^(Pa<V>2+P^n)=  V^ 

where   Equation   26   has been used. 

(375) 
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But 

1  -      =5 
ann 3 Pa 

: I       =    Pa (376) 

where the assumption of constant flow within the cell implies that the 

pressure tensor is isotropic. 

The First Law of Thermodynamics gives 

de = T dS    - P   d f~M /377\ 

This version of the first law (with the various species decoupled) is 

valid for the flow across a boundary because the effects of collisions 

are volume effects and disappear from the integrals for sufficiently 

small cell size.    Thus,  the several species may be considered to 

flow across the cell boundaries without interfering with one another. 

Now 

de 
a 

;v«dv(w^r)T «'V        <378' 

also 

ae«   \ / as a 
V^tJh/        "W^jj^c (37" 

a 

Forming 

Fa e
a " TaSa (380) 
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it is clear that 

a    1 
WTpJ a IT 

a a a 

and 

P (381) 
a 

bF 

,aT ") 
Of'jC 

de 
a /as 

S    - T   '     a 

a'Pa \     alp 
a 

/öS   i 
c     - s   - T   —2L 

a 

(382) 

But the First Law gives 

de a dS 

ax 
a 

a'p a\ ax =   c 

a a'p va 
a 

Xhus 

(&F 
a 

ax 
alP 

a 
a 

(383) 

Equations   381   and   383   give 

ap a 
ax 

a/p, a 

as 
a 

J^JIr 
a 

(384) 

Xhus 

de 
a X    dS    - P    d(l/n   ) 

— 

\ 
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or 

de a c      dT   + 

or 

c      dT   + 
\*P a 

a\ST 
a/o a 

a 

d(l/pa) (385) 

c„« dT    " T    dS T
a&)  d<1/'V \     a'o. 

(386) 

Thus 

ÖT 
a 

l^^/s 
a 

c        13T   I va   \    a /p 
a 

(387) 

By use of Equation   373 , 

/9P a 
9T 

Ob 
n   K 
a 

a 
(388) 

Thus,  Equation   387   becomes 

3T 
a 

^^s 
a 

T 
—SLn K c        a 

va a    va (389) 

Now   consider 

i a 

a      /a     a 
a(l/pa)\   ma 

a 

K 
m 

a a 
9P, a 

öd/pa) 

[dT     " 

a 
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or 

ap 
a 

\WpJl 
a 

K 
m 

a 

XT   O 
a a 

m 
a 

T p2 ..yk 
a^a       c 

1 + 
K 

m   c 
a va 

Using Equation   373   in Equation   390 , 

ap 
o: 

t^tJIs 
a "V 

fv       fj +_     K 
m   c 

a  va 

(390) 

y  P 
a   a 

(I/o   ) a 
(391) 

where 

a 1 + 
K 

m   c 
a va 

(392) 

Ignoring volume effects,  which do not contribute to the 

surface flux terms.  Equation   374   becomes 

öpa _    dp 

äT + <V> TJT + Pa ^ <uan> = o (393) 

If the changes between regions (1) and (2) are small 

(ensured by sufficiently small cell size^    th* fi« y o"ietix ceil size;,  the flow processes will be 
nearly isentropic.    Thus, 

ap 
a 

at 

But 

ÖP^\       äp 
a y 

aP 
a'S at 

a 
(394) 

'öP a 
ap 

a'S a 

äpa/a(i/pa) 

P^7^^ =   (iv^7v^a 
(395) 
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■ .   . 

and 

a 
a 

(396) 

Thus,  Equations   391 ,    395 , and   396   give 

2 
ap. a 
ap 

a'S 
a 

a 
y P p a   or a 

_1_ 
2 

i 
(397) 

where 

a - (y   P   /P  ) 
1/2 

(398) 

is the local speed of sound for species   a . 

ap, a 
at 

Using Equation 397 . Equation   396   becomes 

i aP~ a I  « 
2     at a a 

(399) 

Similarly 

ap 

an 

Defining 

M 
a 

a 

<u     > 
an 

a 
a 

Equation   393   becomes 

ap  a 
an (400) 

(401) 
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dp 

a. a 
rf-  +   a     -2- <u     >   +-« « 

Pa    an 
=   0 

In the same way,   Equation   375   b ecomes 

M       5P 

(402) 

JVi       of I    Z       \  a_      a , a    .      ,                   a M   + i)   OP 
~ aT + TT <u    > + 2<u    > -2- <u    > + \ a      /       a 
a
a

a      at at        an          'an'ön^an^4         p           "gT = 

Adding and subtracting Equation   402   to Equation 
(403) 

403 

M    ± 1   ap 
34   <llan> + ^7 "^ +   ^K * ') Ä <U

0n> 

(M   + 1 4 M )    OP 

a 8n =     0 (404) 

Multiplying Equation   402   by   1^   and subtracting   from Equation 404 

a 

Rear ranging 

h 1 öP 

-^ > ±-J a 
ot      an o   a öt 

• a a 
+   a   (M   ± lW-^-<u     > 

a \   a      / [ 8n N  cyn^ 

1 9P    1 1 a 
pa an =    0 

(405) 

(406) 
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Define 

P     dP 
<u     >   =t   f   a --« 

P   a (407) 

Then the final characteristic equation is 

3J a± 
dt +   a (M   ± i\ -L j      =    o 

a\  a      /an    a± (408) 

Over an interval of constant   a.    and 

solutions 

M
a •   Equation   408   has the 

a± a± n - a   (M   ± l) t (409) 

ThU8'    Ja+   " con8tant along the phase patht 

n " aa(Ma + ^   =     constant 

or 

"       a0*»arK+l)t 

and   Ja_   is constant along the trajectories 

n - a     (M    - l\t   = 

(410) 

constant 

or 

n   + a   /M    - l)t 
0      a\   a      I (411) 

2'        RADIATION TRANSPORT EQUATIONS 

The characteristics for the equations of radiation 

transport are found in the same manner as for the equations of 
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hydrodynamics.    The mathematical derivaton appears much simpler 

to the present case, however,   because the equations are linear. 

As in the case of the hydrodynamic equations,   the volume 

source terms do not enter into the determination of surface properties. 

Thus,  assuming constant radiative properties in a cell and using the 

same   (n. s)   coordinates as used for the hydrodynamic equations. 
Equations 25 and   26   become 

3e 9Q, 

at    + c "ir-    =   o 
and 

(412) 

at    + 3 —gr (413) 

Equation 35     has been used in reducing Equation   26  to Equation   ^ 

Multiplying Equation 412 by a constant     . ^    ^^ ticoya. constant,    a .  and adding and subtracting 
Equation 413 to the resulting equation gives 

iK±Q
RJ^^(aQRwi±^.) 

(414) 

Rear ranging 

äH^W^) *3rä!r(< eR.±3aQR.n)=       0 (415) 

The 
arguments of the differential operators in Equation 415 

identical if 
are 

a 

or 

3a 

/vA" (416) 
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Defining 

J|* = eRu±^QRVn (417) 

and using Equations   416   and   417   in Equation   415   gives 

Equation  413   has the solutions 

Thus,    J^+   is constant on the trajectories 

n = n0 + ctZ/T 

and   J^_   is constant on the trajectories 

(419) 

(420) 

n0-ct/^ (421) 

3- MAXWELL'S EQUATIONS 

As in the case of the hydrodynamic equations,  the 

characteristics for Maxwell's equations are found by neglecting source 

effects in the equations: thuta,  the appropriate forms of Equations   29 

and   30    are 

dB -      - 
-rr-  +   c 7 X E        = 0 St (422) 

and 

aE -    -» 
"aT   - C 7 X B = 0 (423) 
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The presence of the vector product in these equations necessitates 

coordinate system on the surface 
the defining of a rectangular Cartesian 

of the cell as depicted in Figure 26: 

./^rf~* 
cell surface 

Figure   26.     Three-Dlmensional Surface Coordinate System 

As illustrated,  the coordinates   fn    «      =,  w 
orainates   (n,   Sj,   s2) form a right-handed system. 

Remembering fcat the assumption of uniform field pro- 

perties on each side of the cell surface implie. that the only derivatives 

whzch exist are   9/at   and   a/9„ .    Equation8 422   and   ^   ^^ ^ 

and 

as. 

at 

as. 

at 

ÖE, 

at 

aß. 

at 

aE. 

on 

+ c 

aE, 

an 

+ c 

as. 

an 

- c 

as. 

an 

(424) 

(425) 

(426) 

(427) 
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■ 

Adding und subtracting Equations. 424   and   427   gives 

Similarly,  Equations   425   and   426 

(428) 

give 

«K^.)*e^K*\) (429) 

Defining 

1± B        ±   E (430) 

Equation  428   shows that J1+ is constant along the path 

n0-ct (431) 

while   J,     is constant along the path 

n. + ct (432) 

Similarly,  defining 

2± Bs    *** 
2 1 (433) 

Equation 429 shows that J      is constant along the path 

= n   + ct (434) 

while   J       is constant along the path 

n0-ct (435) 
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APPENDIX VII 

GEOMETRICAL FORMULAE 

The formulae for the cell geometry are developed as 

outlined in Subsection III-5c.     To minimi.e loss of signifi- 

cant figures,  an distances along a ray are measured from arc 

j = jmax (the clo8e8t arc ^ ^e   z   axis).   It is convenient to define 

the distance between two successive arcs ( Figure 2   ); 

Adi.j + l/2     =    dij   "   diJfI (436) 

The radial and axial increments on arc   j   in column  i+1/2   are 

Ari+l/2,j     =    Ari+l/2.j+l     +    Adi+l.j+l/2sinai+i 

"   Adi,j+l/28inai (437) 

and 

Azi+1/2J     =    Azi+l/2.j+l     +    Adi,j+l/2C08ai 

"   Adi+lJ+l/2C08a
i+i 

The length of arc   j   in column  i+1/2   is 

Wj=   ((Ari+l/2j)2   +(Azi+l/2j)?ll/2 

(438) 

(439) 

and the angle that this arc makes with respect to the positive   z   direc 
tion is given by 
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and 

8in P       . -     Ay It 

cos  3.        , -      AT A 

(440) 

, 

(441) 

It is 

ulae: 
convenient to define the following auxiliary form 

■ 

*'Vi = k\frm***s (442) 

=    d. Ad * ^x, ^M . iJ+l      i+lJ+1/2  +VlJ+l
Adi,j+i/2 

+ Ad.   .., ,, Ad 

c =    d.   .      d 5 i,J,+l    i+l,j+l 

(443) 

(444) 

(445) 

(446) 

( n      „^   ^^"^^"^^y^muiae, thevoXumeofcell 
(1 + l/2,j+l/2)   is given by 

i+l/2j+l/2     =    8i(ViAz   +   V28inAa) 

where in plane geometry 

=     1/2 

\    = (ViMV. +1 

v2     .   j2 

Az 

sin Aa 

zi+i " zi 

sin(a        - a.) 
i+l i; 

(447) 

(448) 

(449) 

(450) 

(451) 

(452) 
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in cylindrical geometry 

gl        "    ^ 

■ 

vi   = *& +VinVi*ai+1 +^3) 3'i+l 

'2       =    (Vi8100!  ^Vi+l^ i+1 

Az z.^,    -   z. l+l i 

sin Aa       =    8in{a.   ,   -   a ) 
i+l i' 

and in spherical geometry 

gl 
= 4n/3 

vl 
= 0 

vz = 
^4 

äz = 0 

Bin da _ 1 

The surface area of arc  J   in column  i+1/2   is 

S. «    S. S, i+1/2 J -ft 

where in plane geometry 

in cylindrical geometry 

Sj    =    rr(l 

(453) 

(454) 

(455) 

(456) 

(457) 

(458) 

(459) 

(460) 

(461) 

(462) 

(463) 

(464) 

(465) 

i+l,jSinai+l   +   di,j'inai) (466) 



and in spherical geometry 

S =      4TTdf 1 J (468) 

(469) 

The area of the face of cell   (i+1/2. j+1/2) on ray   i   is 

SiJ+I/2     =    glAdi,j+l/2 

where in plane geometry 

(470) 

g,     =     1 

in cylindrical geometry 

g,     =    TT(2d.   .   ,    +   Ad ^ «in n 1 i,j + l ai,j+l/2, 8inai 

and in spherical geometry 

Ij     =     0 

(471) 

(472) 

(473) 

Note that spherical geometry does not require   S 
iJ+1/2 * 

The cross-eectional area of cell   (i+1/2, j+l/2)   is 

Ai+l/2.j+l/2    "    82S3   +  83S4 (474) 

where in plane geometry 

(475) 
g2     =    g3     =    0 

(plane geometry does not require   A ^ 
i+l/2.j+l/2^ 

in cylindrical geometry 

g,     =     (z 
i+1 V/ 

g3   =   sin(ai+1 - »^/a 

(476) 

(477) 
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S3    '    Vlh   +   ^tJ i+1 

S       =    3" 
4    '       2 

and in apherical geometry 

g2    •    rr/2 

g,    =    0 

S3    =    ^j+1   +Ad
j+1/2)^/2 

(478) 

(479) 

(480) 

(481) 

(422) 

' 

I 

■ 

—^——- I 



■ 

■ 

• 

:     ' ;       ■       ■     /■       ■- 

■■    ■      .   '! 

■      ■     ■ 

■ 

«%fb   -l .."■;,   W)tti 
(This Page i* Intentionally Left Blank) 

i 

■ 

■ ■ 

■ 

■ 

■      ■     • 

■ 

, ■ 

■ 

■ 

■ 

: 

161 



APPENDIX VIII 

STABILITY ANALYSIS 

The equations of radiation transport in characteristic 

form,  Equations 418  of Appendix VI. and Maxwell's equation» in 

characteristic form,  Equation» 42« and 429    Pi Appendix VIf are all 
of the general form 

at 3r w (483) 

where 

c     >      0 
(484) 

Integrating Equation 483 pver a time step and over the 
volume of a cell in a fixed one-dimensional mesh gives 

Tn+l/2 
J*^l/2   *C4C+1      " J*J (485) 

where cell (n+1/2)  is bounded by q«U surface»  n  and n+1, lowered 

indices denote properties evaluated at the beginning of the time step, 

and raised indices denote propertiee evaluated at the end of the time 
step. 

To study the growth of any one Fourier component 

of J± , it is convenient to assume an exponential variation: 

r± exp i k(n+l/2) Ar - wmAt ,I±n+l/2= J
±«*P*jKtn+i/i)Ar - wmAtl (486) 
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where   k   is the wave number and  W   i. the frequency of the Fourier 

component under study. 

According to Equation 483 ,   j+   propagates in the 

positive   r   direction while   J_   propagates in the negative   r direction. 

Thus,   the characteristic boundary properties are 

and 

n 

_n 

Tn-l/2 
(487) 

■/■■■      ' 

jn+1/2 
(488) 

Substituting 486 through 488   into Equation 485 yieids the two equations 

and 

+ n+1/2"       ..+ i 

-.<■■■   tgj 

.^1/2[1 + c,«(1,.-^)] 

n+1/2 iTmfc ^ . xj 

I 

■■ ■ • 

T 

a 

b 

Using the notation 

c At 

1 - cos k Ar 

■ sin k Ar 

:■■ 

Equations   489   and   490   can be written in the matrix form 

jH+l/^l 
+ 

fn+l/2 

+ n+1/2 

_-n+l/2_ 

(489) 

(490) 

(491) 

(492) 

(493) 

(494) 
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where the ampUfic»     ^ matrix,    G ,  is given by 

I + T(a + ib) 

0 

u 

1 
1 + T(a- ib) 

(495) 

The matrix  G  i» ^ np^mal matrix,  »ince. if G* denotes 
the Hermitian conjugate of  G, it is obv^us that 

 *        * 
GG   ■• G G (496) 

Since   G  is a normal m.trix. the neces^y end „uf^ient condition 

for the stability of Equations  485   i. that the eigenvalue« of the matrix 

G   satisfy the relation (Equation   4t 25 , Reference   14 ) 

|X| s l+0(At) 

or, for the present application 

XX s        i 

The eigenvalues of the matrix  G  are 

1 
1 + T(a ± ib) 

Consequently,  for either eigenvalue. 

(497) 

(498) 

(499) 

\\ 
U + T(a + ibj)[i + r(a - ib)] (500) 
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and requirement   498   gives 

(1 + aT)2+b2
r

2 

(501) 

Because   a . 0   according to Equation 492.  inequality 501 is satisfied for 

all   T   ^   0 .    Thus.  Elation   485  is stable for any positive time step. 

■     ■ 

'. .   ■ ■    -       ■   ■ 

. 

[■I. 

■ 

■ ■ 

■ 

. 

■ 

: 

■ 

- . 

■ 

' 
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