UNCLASSIFIED

AD NUMBER

AD836766

LIMITATION CHANGES

TO:
Approved for public release; distribution is unlimited.

FROM:
Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; MAR 1968. Other requests shall be referred to Office of Naval Research, Code 427, Washington, DC 20360. This document contains export-controlled technical data.

AUTHORITY

onr notice, 27 jul 1971

THIS PAGE IS UNCLASSIFIED
SEMI-ANNUAL TECHNICAL SUMMARY
for the period ending 31 March 1968

to
ADVANCED RESEARCH PROJECTS AGENCY

RESEARCH ON ELECTROMAGNETICS FOR PROJECT DEFENDER
ARPA Order No. 529 Program Code No. 5730

Report
R-1295.6-68

for
Office of Naval Research
Contract Nonr-839(38)

POLYTECHNIC INSTITUTE OF BROOKLYN
SEMI-ANNUAL TECHNICAL SUMMARY
for the period ending 31 March 1968

to
ADVANCED RESEARCH PROJECTS AGENCY

RESEARCH ON ELECTROMAGNETICS FOR PROJECT DEFENDER
ARPA Order No. 529 Program Code No. 5730

Date of Contract: 1 February 1964
Expiration Date: 31 August 1969

Report
R-1295.6-68
for
Office of Naval Research
Contract Nonr-839(38)

Submitted by: Rudolf G. E. Hutter
Principal Investigator
Professor of Electrophysics

POLYTECHNIC INSTITUTE OF BROOKLYN
333 JAY STREET, BROOKLYN N. Y. 11201
ACKNOWLEDGEMENT

The work reported herein was sponsored by the Advanced Research Projects Agency, ARPA Order No. 529, Program Code No. 5730, and was monitored by the Office of Naval Research, Washington, D.C. under Contract No. Nonr-839(38).
ABSTRACT

This report contains a compilation of abstracts of papers which were either accepted for publication or were published. The papers are on the subjects of Fluid Dynamics, Electromagnetics and Plasmas. The work described was carried out under an ARPA contract, Order No. 529. This summary also contains a listing of papers submitted to journals, lectures, internal reports and staff activities.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Summary of Research</td>
<td>1</td>
</tr>
<tr>
<td>A. Fluid Dynamics</td>
<td>1</td>
</tr>
<tr>
<td>B. Electromagnetics</td>
<td>2</td>
</tr>
<tr>
<td>C. Plasmas</td>
<td>6</td>
</tr>
<tr>
<td>III. ARPA-Related Activities, Lectures, Consultants, Papers Submitted to Outside Journals, and Internal Reports</td>
<td>7</td>
</tr>
<tr>
<td>A. ARPA-Related Activities</td>
<td>7</td>
</tr>
<tr>
<td>B. Lectures</td>
<td>10</td>
</tr>
<tr>
<td>C. Consultants</td>
<td>13</td>
</tr>
<tr>
<td>D. Papers Submitted to Outside Journals</td>
<td>13</td>
</tr>
<tr>
<td>E. Internal Reports</td>
<td>14</td>
</tr>
<tr>
<td>IV. Personnel</td>
<td>15</td>
</tr>
<tr>
<td>Distribution List</td>
<td>v</td>
</tr>
<tr>
<td>DD Form 1473</td>
<td></td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The Polytechnic Institute of Brooklyn is conducting a broad interdisciplinary theoretical and experimental research program in plasma aerodynamics, electromagnetic scattering theory and experimental plasma research applicable to both the immediate and long-range interests of the ARPA Ballistic Missile Defense Program. Emphasis is being placed on fluid dynamics, electromagnetic radiation and their interaction with media characteristic of the ballistic missile defense environment.

II. SUMMARY OF RESEARCH

In this section are presented abstracts of technical papers which have been either published or accepted for publication during the reporting period covered by this report.

A. FLUID DYNAMICS

This note represents comments made by Professor H. Weymann on a recent publication of Lederman and Wilson entitled "Microwave Resonant Cavity Measurement of Shock Produced Electron Precursors". Professor Weymann misinterpreted the experimental data presented by Lederman and Wilson; this note corrects this misinterpretation by explaining the data and the experimental set-up in a little more detail.

The diffraction of an acoustic pulse from a line source by a transparent elliptical cylinder is treated as a formal boundary-value problem. The solutions interior and exterior to the cylinder are represented in terms of eigenfunction expansions of Mathieu functions. Perturbation theory is used to eliminate the difficulty arising from the absence of an orthogonality relation between the angular functions for
the interior and exterior regions of the cylinder. A general asymptotic expression valid for short times after the arrival of the wave front is given for the reflected, transmitted, and diffracted pulses.

B. ELECTROMAGNETICS

Part I: A theoretical examination is presented of the influence of a dispersive medium on the time-harmonic TE and TM modal field structure of electromagnetic waves in a cylindrical waveguide of arbitrary cross section when the medium is in relative motion with respect to the waveguide walls. The modal field structure observed both in the reference frame F' attached to the medium, and in the reference frame F attached to the waveguide walls, is determined in closed form. The results presented for the modal fields observed in F' are valid when the medium moves with nonrelativistic speed v.

Contact is made with the standard relativistic discussion of TEM waves in slowly moving dispersive media involving the Fresnel drag coefficient, and it is noted that the customary restrictions on v for numerical accuracy of the results can be inadequate. The theory is applied to two special cases.

The nonreciprocal phase shift exhibited by a waveguide filled with moving media is also discussed.

Part II: The detailed modal field structure has been determined for electromagnetic waves propagating in a uniform cylindrical lossless waveguide of arbitrary cross section filled with a moving medium. The medium is assumed to be homogeneous, isotropic, and nondissipative, but may be dispersive. It moves uniformly, with a constant speed v, parallel to the axis of the waveguide. The solutions obtained are exact closed-form functions of the space variables, time, modal wave frequency,

*Work was done in part under Contract No. AF-49(638)-1402.
and propagation factor, and they hold for any value of the magnitude of v, from zero up to the speed of light in vacuum.

The electromagnetic power flow in the waveguide is investigated and shown to display characteristics that differ considerably from those associated with the stationary medium case. The general theory is applied to several types of moving media, including nondispersive media and the idealized low-temperature plasma.

A uniform plane, electromagnetic wave which is attenuated as it travels through a dispersive, homogeneous, isotropic medium is demonstrated to have a phase which is not Lorentz invariant. The attenuation can be caused by dissipation in the medium, or because the frequency of the wave is below cut-off frequency of the medium. A generalized set of relativistic Doppler equations for the attenuated plane waves are derived and used to study some of the general properties of this wave. It is shown from the Doppler equations that an attenuated wave which is time-harmonic in one inertial reference frame is not time-harmonic in all other inertial reference frames. This result has important consequences in the formulation of the constitutive relations which characterize the medium. The Doppler equations are also utilized as a basis for studying the drag effect for attenuated waves in moving media. The basic method of analysis in this paper utilizes the rigorous electromagnetic field equations in conjunction with Minkowski's extension of the theory of Special Relativity for material media.

This paper is concerned with the excitation of electromagnetic (optical) and pressure (acoustical) creeping waves on an infinite perfectly conducting circular cylinder immersed in a compressible plasma.

*Work was done in part under Contract No. AF-49(638)-1402.
** Work was done in part under Contract No. AF-19(628)-2357.
The problem is virtually the same as that treated by Wait (1965). However, the formulation is different from Wait's and lends itself more readily to a ray-optical interpretation (via asymptotic analysis), thereby emphasizing the coupling mechanism between the optical and acoustic fields.

This paper develops geometrical optics ray techniques for problems of transient electromagnetic wave propagation in inhomogeneous, lossless, dispersive, dielectric media. The method results in a series expansion of the fields about the wavefronts. The theory is applied to solve a few illustrative problems dealing with wave propagation in a cold isotropic plasma. Special attention is given to the fact that in all physical media the wavefronts must propagate at the speed of light in vacuum. This physical requirement does not seem to have been incorporated into the mathematical models used in previous works dealing with geometrical optics techniques for solving transient electromagnetic wave problems.

When a charged particle moving at uniform velocity crosses a boundary between two media with different electrical properties, a pulse of electromagnetic energy is emitted. This phenomenon is basically unlike either bremsstrahlung or the Cerenkov effect in that the charge will radiate even though it does not accelerate or move faster than the phase velocity of light in the medium.

Various theoretical \(^1\) and experimental \(^2\) aspects of transition radiation have recently been the subject of extensive study. It has been proposed that the effect might be useful in the generation of microwave power and as a diagnostic tool for the study of metals and plasmas.
It is clear that the effect is fundamentally a transient process. It is, therefore surprising that the transient character of the fields has hardly received notice. Previous investigators have concentrated on determining the frequency spectrum of the radiation fields. We, on the other hand, will deal directly with the problem of finding the fields as a function of time.

In order to illustrate the essential characteristics of the processes involved, a specific problem will be considered. For the problem selected an exact closed form solution is obtained in a form amenable to physical interpretation. It is found that before the time of impact the entire field may be represented in terms of an image picture, which is a generalization of the static case. Even after impact the image picture remains valid, but only in certain regions of space. At impact, a sudden burst of energy is liberated. This energy then propagates outward from the impact point in a manner to be discussed later. It is to be expected that the solution of the present problem will aid in the understanding of transition radiation in more complicated configurations, for which no closed form solution is available.

The method used to evaluate the transient is patterned after that given by Felsen. A representation of the solution in terms of Fourier integrals will be obtained; these will then be reduced to such a form that they can be evaluated by inspection.

E. Ott and J. Shmoys, "Transition Radiation and the Cerenkov Effect", to be published in the Quarterly of Applied Mathematics.

The analysis of transient radiation emitted by a line charge moving at a constant velocity at right angles both to itself and to a plane interface between two dielectric half-spaces has been generalized to include the possibility of Cerenkov emission in either medium. Just as in the special case of charge velocity lower than the wave velocity in either medium, the exact solution of the problem is obtained, but with additional pole contributions. The wavefront configuration corresponding to various relative values of the three velocities is obtained and discussed. In particular, the build-up of Cerenkov radiation as the line charge enters a medium with sufficiently high dielectric constant is studied.

In this paper a similarity principle will be derived for a class of transient diffraction problems in cold, lossless, isotropic plane stratified plasmas. The similarity principle will be utilized to obtain an exact closed-form solution to the problem of a magnetic current source whose density is a delta function (in space and time) situated either in or above a homogeneous plasma half-space. This solution will be interpreted in terms of rays and group velocity. An independent solution to the half-space problem will also be obtained using asymptotic techniques. Exact and asymptotic solutions will be compared and discussed.

C. PLASMAS

The positive column of a slightly ionized gas discharge confined by cold, insulating walls is described by a set of nonlinear fluid equations. The inertia, space charge, and collision terms are retained. A zeroth-order solution uniformly convergent to the exact solution in both plasma and sheath regions is derived using asymptotic boundary-layer analysis. The value of potential at the wall is calculated by means of a kinetic model. It is found that the density at the wall can be a significant fraction of the value at the center and that it vanishes only in the low electron temperature limit. The original Bohm criterion is recovered as a necessary condition for sheath stability and is interpreted to mean that the ambipolar sound speed (1) asymptotically separates the plasma from the sheath, and (2) is the maximum ambipolar diffusion velocity.

The nonlinear equations governing the diffusion of magnetized plasmas do not admit steady-state solutions when the magnetic field
intensity exceeds a critical value. This may explain the onset of instabilities leading to anomalous diffusion.

An experiment is described in which resistive instabilities have been observed. Diagnostics of a hydrogen toroidal plasma indicate that a current varying plasma sheet breaks up into separate filaments. Experimental data for three distinct filament configurations agree well with the theoretical predictions.

III. ARPA-RELATED ACTIVITIES, LECTURES, CONSULTANTS, PAPERS SUBMITTED TO OUTSIDE JOURNALS, AND INTERNAL REPORTS

A. ARPA-RELATED ACTIVITIES

Dean Martin H. Bloom is a member of the Atomic and Molecular Physics Panel of the Institute for Defense Analyses (IDA).

Dean Bloom is Associate Editor of the Journal of Ballistic Missile Defense Research, published by IDA for ARPA.

Professor Leopold B. Felsen is a member of a special sub-panel of the Arecibo Ionospheric Observatory (AIO) Evaluation Panel.

Participation at meetings relevant to the program included the following talks:

October 1967:

a) Conference on Application of Plasma Studies to Re-Entry Vehicle Communications at Wright-Patterson Air Force Base, Dayton, Ohio:
 J. W. E. Griemsmann R. G. E. Hutter S. Lederman

b) ARPA Institutes Fiscal Review, The Pentagon, Washington, D. C. :
 M. H. Bloom F. R. Eirich R. G. E. Hutter
 R. J. Cresci L. B. Felsen E. Levi
 J. Fox
c) M.H. Bloom conferred with Mr. McLain and Dr. S. Scala on "Time Dependent Flow Field Analysis"; also visited ARPA, both meetings at The Pentagon, Washington, D.C.

d) Several members of the Department of Electrophysics of PIB presented papers at the meetings of URSI as well as the IEEE Group on Antennas and Propagation, held at the University of Michigan at Ann Arbor. Among these presentations was a paper by A. Hessel, G. Knittel and A.A. Oliner entitled "On the Theory of Resonances in Phased Array Antennas".

e) M.H. Bloom attended the Wake Quench/Seed Specialists' Meeting at the Aerospace Corporation, San Bernardino, California, and the AIAA Organizing Committee Meeting held in Anaheim, Calif.

November 1967:

g) ARPA-IDA Conference on Turbulence Experiments and Flow Field Calculations. Meetings were held at ARPA and IDA, Washington.

M.H. Bloom G. Moretti

h) M.H. Bloom presented a lecture at a Colloquium at the University of Pennsylvania, Philadelphia, entitled "Aerodynamics at High Altitudes: Review and Extensions".

i) J.T. LaTourrette attended the 24th Anti-Missile Research Advisory Council (AMRAC) Meeting at the USN Postgraduate School in Monterey, Calif.

j) K. Chung presented a paper entitled "Decay Process in the Afterglow Cathode Discharge Arc Plasma" (co-authors: D. Ross and D.J. Rose), at the Annual Meeting of the Division of Plasma Physics, American Physical Society, Austin, Texas.

December 1967:

m) D.S. Wilson had a discussion with R. Vaglio-Laurin and M. Hoffert at New York University on the Precursor Problem and Temperature of Precursor Electrons.

n) Mr. Kent Kresa, Program Manager of BMD, ARPA, Washington, visited Dean M.H. Bloom and others at the Long Island Graduate Center of PIB.
Dr. Peter Franken, Director of ARPA at The Pentagon visited Professor G. Gould at the Long Island Graduate Center.

M. H. Bloom conferred with Col. R. M. Dowe and Mr. K. Kresa; also with Mr. J. Persi; and Mr. MacArthur of the Office of the Director of Defense Research and Engineering, to discuss materials problems. These meetings were at The Pentagon.

January 1968:

M. H. Bloom visited the Institute for Defense Analyses in Arlington, Va. for discussion of research program and relationship to classified ARPA objectives.

AIAA 6th Aerospace Sciences Meeting held in New York City:
M. H. Bloom presented a paper entitled "Electron Density Distribution in the Near Wake" (co-authors: S. Lederman and G. Widhopf).
S. Lederman presented "Experiments on Cylindrical Electrostatic Probes in Slightly Ionized Hypersonic Flow" (co-authors: M. H. Bloom and G. Widhopf).
Other attendees: B. Grossman M. Pierucci E. M. Schmidt

A seminar in "Strong Interactions in Aerodynamics" sponsored by the American Institute of Aeronautics and Astronautics Professional Study Series in New York City. The instructors were M. H. Bloom and S. G. Rubin.

BMD Meeting held in Washington, D.C.
J. W. E. Griensmann E. Levi

D. S. Wilson presented "Precursor Ionization in a Pressure Driven Shock Tube and Its Relevance to the Re-Entry Problem" at Bell Telephone Laboratories, Whippany, N.J.

February 1968:

M. H. Bloom presented a seminar on "Interaction Aerodynamics" at Syracuse University, Department of Mechanical and Aerospace Engineering.

R. J. Cresci gave a seminar on "'Slingshot' - An Advanced Test Facility" at the Naval Ordnance Laboratory, White Oak, Md.

S. Lederman presented a talk entitled "Plasma Diagnostics by Means of Microwaves and Electrostatic Probes" at New York University.

L. B. Felsen and E. Levi visited Drs. Marple and Bern at the Riverside Research Laboratory in New York City for discussion of work on scattering from wakes.
March 1968:

bb) Visit to Professor J. Jarem at Drexel Institute of Technology, Philadelphia, Pa. for discussion on electromagnetic scattering from missile wakes:
 L. B. Felsen E. Levi S. Rosenbaum

cc) E. Levi attended at Ballistic Missile Defense Meeting at The Pentagon, Washington, D. C.

dd) M. H. Bloom visited the Office of the Director of Defense Research and Engineering at The Pentagon for a conference on re-entry vehicles.

Meetings to be held in April:

PIB Symposium on Turbulence of Fluids and Plasmas
Annual ARPA Institutes Review Meeting (Host: Polytechnic Institute of Brooklyn)

B. LECTURES

There have been many formal seminars and informal discussion groups; a partial listing is given here:

October 1967:

I. Haber
An Experiment to Measure Transition Radiation in Gaseous Plasma

H. Derfler
Instabilities in Plasmas
Institute for Plasma Research
Stanford University, Calif.

C. Shih
Problems connected to "Low Frequency Confinement of a Plasma Column"

G. Moretti
Numerical Experiments on Time-Dependent Techniques for Steady Inviscid Flows

J. Pirraglia
 Clarification of Cyclotron Damping

R. Chimenti
Spectroscopic Study of a Toroidal Discharge

K. Stuart
Experimental Observation of Resistive Instabilities in a Toroidal Plasma
Some Recent Work in Electrohydrodynamics

November 1967:

P. Rabinowitz
R. A. Gross
Columbia University
New York, N. Y.

E. Torrero
B. Riley Tripp
Head, Electronics Techniques Section
Cornell Aeronautical Lab.
Buffalo, N. Y.

N. H. Lazar
Thermonuclear Div.
Oak Ridge National Lab.
Oak Ridge, Tenn.

Laser Plasma Diagnostics
The Physics of Strong Shock Waves
The Equivalent Dielectric Tensor of Plasma
Scattering of Electromagnetic Waves from Plasmas
The Use of a Target Plasma in High Energy Injection Experiments

December 1967:

E. Levi
K. Chung

Singularities in the Fluid Dynamic and Vlasov Equations
Characteristics of Hollow Cathode Discharge Plasma and its Weak Turbulent Spectra
Cerenkov Radiation in Plasma

L. Silverstein
K. Stewartson
Ohio State University and University of London

Laser Heating of Plasmas, Part I
Hypersonic Boundary Layers
Coupling Between Electrostatic and Electromagnetic Waves on Plasma Columns

L. Silverstein
J. Bach Andersen

Laser Heating of Plasmas, Part II
January 1968:

R. Hutter
H. Farber
Development of a Beam Plasma Amplifier

B. Singer
Raytheon Laboratories
Stamford, Conn.
Radiation from a Source in a Periodically-Stratified Medium, Part I

A. Oppenheim
Bremmsstrahlung in Plasmas

B. Singer
Raytheon Laboratories
Stamford, Conn.
Radiation from a Source in a Periodically-Stratified Medium, Part II

A. Bers
Department of Electrical Engineering and Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Mass.
Stability Criteria and Analysis for Plasmas and Dispersive Media

R. E. Barrington
Defence Research Telecommunications Establishment
Defence Research Board
Department of National Defence
Shirley Bay, Ottawa, Canada
Very Low Frequency Waves Observed in the Ionosphere

February 1968:

W. Grossman
Richmond College
City University of New York
New York, N. Y.
Two Dimensional High-β Equilibrium in Mirror Devices

K. Chung
Study of Unstable Electrostatic Ion Cyclotron Mode - A Preliminary Description

Leon N. Zadoff
Fairchild-Hiller Corp.
Republic Aviation Div.
Farmingdale, N. Y.
Resistive Instabilities of a Viscous Fluid

E. L. Rubin
Topics in the Numerical Calculation of Time-Dependent Shocked Flows, Part I

J. Jarzem
Electromagnetic Scattering from Random Surfaces

Head, Department of Electrical Engineering
Drexel Institute of Technology
March 1968:

E. L. Rubin
Topics in the Numerical Calculation of Time-Dependent Shocked Flows, Part II

F. Stone
Multi-Stream Approach to Instabilities in Beam-Magnetoplasma Systems

E. L. Rubin
Topics in the Numerical Calculation of Time-Dependent Shocked Flows, Part III

I. Haber
Transition Radiation in an Inhomogeneous Plasma

P. Serafim
Quasi-Linear Theory of Plasmas in Magneto-static Fields

During the course of this six-month period, Dr. Nathan Marcuvitz (of NYU) presented a lecture series on Plasma Turbulence.

C. CONSULTANTS

Dr. Nathan Marcuvitz of New York University.

D. PAPERS SUBMITTED TO OUTSIDE JOURNALS

E. INTERNAL REPORTS

IV. PERSONNEL

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y. Avidor</td>
<td>Research Assistant</td>
</tr>
<tr>
<td>M. H. Bloom</td>
<td>Professor</td>
</tr>
<tr>
<td></td>
<td>Dean of Engineering</td>
</tr>
<tr>
<td></td>
<td>Director, Gas Dynamics Research</td>
</tr>
<tr>
<td>K. Chung</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>R. J. Cresci</td>
<td>Professor</td>
</tr>
<tr>
<td>E. Dawson</td>
<td>Research Assistant</td>
</tr>
<tr>
<td>H. Farber</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>L. B. Felsen</td>
<td>Professor</td>
</tr>
<tr>
<td>J. W. E. Griemsmann</td>
<td>Professor</td>
</tr>
<tr>
<td>R. G. E. Hutter</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>D. Jacenko</td>
<td>Research Associate</td>
</tr>
<tr>
<td>K. R. Jolls</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>S. Lederman</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>E. Levi</td>
<td>Professor</td>
</tr>
<tr>
<td>J. Librizzi</td>
<td>Research Assistant</td>
</tr>
<tr>
<td>E. Malloy</td>
<td>Research Assistant</td>
</tr>
<tr>
<td>G. Moretti</td>
<td>Professor</td>
</tr>
<tr>
<td>A. Pal</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>R. Pepper</td>
<td>Research Associate</td>
</tr>
<tr>
<td>M. Pierucci</td>
<td>Research Associate</td>
</tr>
<tr>
<td>P. Sasman</td>
<td>Research Associate</td>
</tr>
<tr>
<td>E. Schmidt</td>
<td>Research Associate</td>
</tr>
<tr>
<td>P. E. Serafim</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>P. Sforza</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>F. Stone</td>
<td>Instructor</td>
</tr>
<tr>
<td>K. Stuart</td>
<td>Research Assistant</td>
</tr>
<tr>
<td>G. Widhopf</td>
<td>Research Assistant</td>
</tr>
<tr>
<td>D. S. Wilson</td>
<td>Assistant Professor</td>
</tr>
</tbody>
</table>
Air Force Cambridge Research Laboratory
Attn: Dr. A. T. Stair (CROR)
L. G. Hanscom Field
Bedford, Mass. 01730

Air Force Office of Scientific Research
Attn: Dr. M. C. Harrington
1400 Wilson Blvd.
Arlington, Virginia 22209

Air Force Weapons Laboratory
Attn: Capt. William Whittaker
Kirtland Air Force Base
Albuquerque, N. M.

Army Missile Command
Attn: AMCPM-ZER-R
Redstone Arsenal
Huntsville, Alabama 35808

Army Missile Command
Attn: AMSMM-RBM
Redstone Arsenal
Huntsville, Alabama 35808

Army Missile Command
Attn: AMSMM-RNM
Redstone Arsenal
Huntsville, Alabama 35808

Army Research Office
Attn: Dr. Hermann Robb
Box C. M. Duke Station
Durham, N. C. 27706

Army Technical Intelligence Agency
Attn: ORDLI
Arlington Hall Station
Arlington, Virginia 22314

Bureau of Naval Weapons
Special Projects Office
Attn: Comdr. Julian, SP-25
Munitions Bldg.
Washington, D. C. 20360

Central Intelligence Agency
Attn: OCR Standard Distribution
2430 E St., NW
Washington, D. C. 20505

Defense Atomic Support Agency
Attn: Dr. C. Blank
The Pentagon, 1 B 697
Washington, D. C. 20301

Defense Atomic Support Agency
Attn: Dr. T. Taylor, Deputy Director, Scientific
The Pentagon, 1 B 697
Washington, D. C. 20301

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Institute for Defense Analyses
Attn: Dr. A. Hochstim
400 Army-Navy Drive
Arlington, Virginia 22202

Institute for Defense Analyses
Attn: Dr. D. Katcher
JASON Library
400 Army-Navy Drive
Arlington, Virginia 22202

Institute for Defense Analyses
Attn: Dr. J. Menkes
400 Army-Navy Drive
Arlington, Virginia 22202

Institute for Defense Analyses
Attn: Dr. H. Wolfhard
400 Army-Navy Drive
Arlington, Virginia 22202

National Aeronautics and Space Administration
Attn: Applied Materials and Physics Div., Code SL
Langley Research Center
Hampton, Virginia 23665

National Aeronautics and Space Administration
Attn: Mail Stop 213
Langley Research Center
Hampton, Virginia 23665

National Bureau of Standards
Attn: Dr. E. L. Brady
National Standard Reference Data Center
Washington, D. C. 20234

National Bureau of Standards
Attn: Dr. Karl G. Kessler, Chief
Atomic Physics Div.
Washington, D. C. 20234
The Rand Corporation
Attn: Dr. R. Hundley
1700 Main Street
Santa Monica, Calif. 90401

The Rand Corporation
Attn: Dr. Robert E. LeLevier
1700 Main Street
Santa Monica, Calif. 90401

The Rand Corporation
Attn: Library
1700 Main Street
Santa Monica, Calif. 90401

RCA-Victor Co., Ltd.
Research Laboratories
Attn: Dr. A. I. Carswell
1001 Lenoir Street
Montreal 30, Ont., Canada

Rocketdyne Division
North American Aviation, Inc.
Attn: Dr. S. A. Golden
Physics Group
6633 Canoga Avenue
Canoga Park, Calif. 91304

SAMSO (SMYSE)
Norton Air Force Base
California 92409

TRW Space Technol. Labs.
Attn: Dr. L. Hromas
1 Space Park
Redondo Beach, Calif. 90200

Sperry Rand Research Center
Attn: Dr. Philip M. Stone
North Road (Route 117)
Sudbury, Mass.

Stanford Research Institute
Attn: Dr. C. J. Cook, Director
Chemical Physics Div.
333 Ravenswood Avenue
Menlo Park, Calif. 94025

Stanford Research Institute
Attn: Dr. Carson Flammer, Mgr.
Mathematical Div.
333 Ravenswood Avenue
Menlo Park, Calif. 94025

United Aircraft Corporation
Research Laboratories
Attn: Dr. Russell G. Meyerand
East Hartford, Conn. 06118

University of Alabama
Attn: Dr. Erich Rodgers
Physics Department
P. O. Box 1921
University, Alabama 48106

University of California
Attn: Dr. Herbert P. Broida
Department of Physics
Santa Barbara, Calif.

University of California
Attn: Dr. Keith A. Brueckner
University of California
San Diego
P. O. Box 109
La Jolla, Calif. 92038

University of California
Lawrence Radiation Laboratory
Attn: Dr. Marvin Mittleman
Box 808
Livermore, Calif. 94551

University of California
Attn: Prof. Kenneth Watson
Physics Department
Berkeley, California 94704

University of Chicago
Attn: Dr. John Light
Chemistry Department
Chicago, Illinois

University of Chicago
Attn: Prof. C. C. J. Roothaan
Department of Physics
Chicago, Illinois

University of Florida
Attn: Dr. Alex Green
Physics Department
Gainesville, Florida 32603

General Applied Science Labs.
Attn: Dr. Frank Lane
Merrick and Stewart Aves.
Westbury, L. I., N. Y. 11590

University of Michigan
Attn: Dr. Otto LaPorte
Physics Department
Ann Arbor, Michigan 48106

University of Minnesota
Attn: Prof. H. J. Oskam
Department of Electrical Engineering
Institute of Technology
Minneapolis 14, Minn. 55414

University of Pittsburgh
Attn: Professor Wade File
Pittsburgh, Pa. 15214

Dr. A. Hertzberg
Director, Aero. Lab.
University of Washington
Seattle, Wash. 98105

Westinghouse Electric Corp.
Attn: Dr. A. Phelps
Research Physicist
Research Laboratories
Pittsburgh 35, Pa.
Report Title:

Research on Electromagnetics for Project DEFENDER

Seminal Technical Summary for period ending 31 March 1968

Principal Investigator: Rudolf G. E. Hutter

Abstract:

This report contains a compilation of abstracts of papers which were either accepted for publication or were published. The papers are on the subjects of Fluid Dynamics, Electromagnetics and Plasmas. The work described was carried out under an ARPA contract, Order No. 529. This summary also contains a listing of papers submitted to journals, lectures, internal reports and staff activities.
Nonlinear plasma waves
- Plasma sheath
- Kinetic theory
- Precursor
- Langmuir probe
- Near wake
- Shock waves
- Instabilities
- Moving media
- Ray optics
- Scattering
- Transition radiation
- Cerenkov radiation
- Electron density, microwave measurement

Instructions
1. **Originating Activity:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. **Report Security Classification:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

3. **Group:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

4. **Report Title:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals immediately following the title.

5. **Author(s):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If necessary, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **Report Date:** Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7. **Total Number of Pages:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

8. **Number of References:** Enter the total number of references cited in the report.

9. **Contract or Grant Number:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

10. **Project Number:** Enter the appropriate military department identification, such as project number, subgroup number, system numbers, task number, etc.

11. **Originator's Report Number(s):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

12. **Other Report Numbers:** Enter any other report numbers (either by the originator or by the sponsor), also enter this number(s).

13. **Availability/Limitation Notices:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
 - (1) "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 - (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through...
 - (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through...
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through...

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

14. **Supplemental Notes:** Use for additional explanatory notes.

15. **Sponsoring Military Activity:** Enter the name of the departmental project office or laboratory sponsoring the research and development. Include address.

16. **Abstract:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (1), (2), (3), or (4).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

17. **Key Words:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rels, and weights is optional.