NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; FEB 1966. Other requests shall be referred to Department of the Army, Fort Detrick, Attn: Technical Releases Branch, Frederick, MD 21701.

AUTHORITY
Fort Detrick/SMUFD ltr dtd 14 Feb 1972
DDC AVAILABILITY NOTICE

Reproduction of this publication in whole or in part is prohibited. However, DDC is authorized to reproduce the publication for United States Government purposes.

STATEMENT #2 UNCLASSIFIED

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be done only with prior approval of Department of the Army Fort Detrick Frederick, Maryland 21701

att'n: Tech. Reviewer
DANGER OF INFECTION IN THE TUBERCULOSIS LABORATORY

(Following is the translation of an article by Jacobin Albrecht,
Department of Medicine, Trier, published in the German language
periodical Tuberkulospraxis, "The Tuberculosis Doctor," vol. 15, 1961,
pages 563-566. Translation performed by Constance L. Last.)

Differing reports appear in the literature about the extent and the
frequency with which microbiological-laboratory personnel are exposed to
an occupational infection. Brinkmann (3) believes that medical technicians
are only minimally endangered if they work carefully. They are only en-
dangered under special circumstances, such as a liquid spray containing
bacteria. According to Jensen (5) an accidental infection which could be
called an occupational illness can only result from spilling liquids or
injection. On the other hand Reitzman and Medem (11), Sulkin and Pike (14),
William and Lidwell (16), and Long (7) feel that lab infections occur
relatively frequently and point out that even when careful techniques are
used the risk of infection cannot be avoided.

An investigation to clarify these opposite points of view must seek
to answer the following questions.

1) What possibilities exist in a laboratory, where safety-measures
are followed, that a pathogen could escape uncontrolled and endanger the
personnel?

2) Is the frequency of TB infection of lab personnel higher than in
other similar occupational groups?

1) As has been demonstrated in many reports (2,6,11,15,16,17) almost
every lab manipulation can lead to the production of aerosols, which can
trap germs. The danger from this source is all the greater to personnel
because the production of an aerosol occurs unnoticed and remains un-
detected. Since the source is very often quite close to the face of the
worker, an infection through inhalation may occur. The germs can also be
suspected in air without a water "jacket." The particles occur in many dif-
ferent sizes. The moisture of the larger drops evaporates rapidly in the
dry lab air, and in this dry germs result. If drops are spilled on lab
benches the dried germs may then mix with air particles. They may actually
be carried in the air attached to dust particles.

Many laboratory procedures lead to aerosol production, and thus sus-
pension of infective materials (1,2,6,9,11,16); blowing out of pipettes,
scraping of loops, working with mortar and pestle, infected animals, freeze-
drying apparatuses, and lyophilized cultures. Aerosols are also formed
when cultures are shaken, mixed, stirred, or centrifuged. These procedures

1.
are similar to waves, which produce aerosols containing salt, hitting the ocean shores. If the culture is in a closed container, then the aerosol escapes only upon opening of the container. This, as well as the fact that the tops (or caps) of the container are infected, is often not considered by lab personnel (15,17). When a culture flask breaks - e.g. by centrifuging - a polydisperse aerosol results. This contaminates not only the immediate spot itself, but also a great part of the surrounding area and air in the room.

The following reasons substantiate that lab-infections occur by means of aerosols more frequently than is commonly assumed: a) the origin and manner of aerosol formation are generally unknown; b) for this reason personnel think that some techniques are harmless, when they are really a danger to their health; c) aerosols are produced unseen and unnoticed; d) because these particles remain suspended in air infection may occur long after the production of the aerosol; e) the usual safety precautions are insufficient.

2) The studies of Sulkin and Pike (14) in the USA give an indication of the danger of lab personnel. They tabulated 1342 lab-infections from the literature and through a questionnaire. The trained technical personnel of diagnostic laboratories were most concerned. 153 cases (11.4%) were of TB nature, 24 of which were definite (mostly skin tuberculosis), 101 probable cases, and 28 possible cases, were obtained in the laboratory. Riggins (12) reported that in the USA the TB morbidity of student-nurses, lab technicians, and medical students was greater than for other hospital personnel. These findings show that another factor is involved for lab personnel, above mere contact with patients. Reid (15) reported that in England from 1949-1953 pathologists and technical personnel had a higher rate of TB infection which lead to incapacitation than similar occupations. The author concludes that lab-work in pathology and bacteriology is associated with the danger of an illness of tuberculosis of the lung.

The finding that personnel working in labs where TB-infected materials or TB cultures are under study become infected more frequently than people in other professions, appears to be in contradiction with other reports that few accidental TB infections occur in the TB laboratory. From several reports (1,7,9,11) it is now clear that an unseen danger exists in the form of infectious aerosols. Also the number of investigations that can produce infective aerosols is increasing. Everybody realized the danger of a spray of tuberculosis. But, very often people are not aware that infectious aerosols occur daily in the lab. These do not occur only by accident, as breaking of a culture flask, but also during different common procedures which are normally thought to be harmless. In this way people get infected lungs. Schroeder (13) reported that a technician became infected with TB in a laboratory. This undoubtedly occurred via the aerosol route.

2.
On the basis of the answers to the questions which were posed earlier the following requirements must be considered:

1) The Ta-laboratory should be considered to be just as dangerous to infection as a hospital ward where Ta is treated.

2) Association with cultures of Tubercle bacteria and technical manipulations of Ta infected materials are just as contagious as contact with Ta patients.

3) Insofar as safety measures are possible and meaningful, the accident prevention program about infections must consider aerosols, as is already the case in England.

4) Finally, the source of a tuberculosis infection should be quickly ascertained if it occurs in lab personnel. It should be quickly determined whether the infection was contracted on the job in the laboratory, or whether it was contracted during outside activities. If a real non-occupation-associated source is not established the assumption can be made that it was contracted in the laboratory, since here a danger exists... risks are conscious...

Summary: Tuberculosis hazards for the laboratory personnel of sanatoria

Many procedures commonly carried out in microbiological laboratories are liable to result in the production of infected sprays or aerosols. Although the possibility of infection by airborne particles has hitherto received little attention in the observation by English and American authors that the frequency of tuberculosis among laboratory personnel is higher than among comparable occupational groups clearly indicates that it constitutes a very real risk.

Bibliography: