DDC AVAILABILITY NOTICE

Qualified requestors may obtain copies of this document from DDC.

This publication has been translated from the open literature and is available to the general public. Non-DOD agencies may purchase this publication from the Clearinghouse for Federal Scientific and Technical Information, U.S. Department of Commerce, Springfield, Va.

STATEMENT #0 UNCLASSIFIED

This document is subject to U.S. export controls and each transaction to foreign or foreign nationals may be made only via print medium.

DEPARTMENT OF THE ARMY
Fort Detrick
Frederick, Maryland 21701

Attn: Tech Rel Bn.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
SPECIFIC ANTIGEN PROPERTIES
OF KERATOCONJUNCTIVITIS EPIDEMICA INCLUSIONS

(Tests Using the Immunofluorescent Method)

Orvosi Hetilap Dr. Peter Geck, Dr. Gyorgy Imre,
(Medical Weekly) Dr. Istvan Nasz, and
No. 105, 1964, pages 439-441 Dr. Pal Dan

Army Public Health and Epidemiological Station, Dr. Imre Korchmaros,
Budapest Medical School, Eye Clinic No. II, and Microbiological No. II, and Microbiolog-
al Institute (Honved Kozegzesseggyi es Jarvanyugyi Alomaz, al station (Honved Kozegzesseggyi es Jarvanyugyi Alomaz,
Budapesti Orvostudomanyi Egyetem, II. Szekliniksa es Mikro-
biologiai Intezet)

Isolation of virus, serological tests and independent experimental infections prove that keratoconjunctivitis epidemic (in the following: k.c.e.) is caused by adenovirus type C (Javetz et al. (11), Kitsui and Jaweta (15), Bietti and Brua (2), Bhitsu et al. (17), Quilligan et al. (23)). Other adenoviruses can cause similar diseases (Fowle et al. (5), Friscottii (6), Weeber and Rowe (5), Kahan and Beladi (12), Bhitsu et al. (17), Koscky (14), Nasz et al. (10), but those may be differentiated on the basis of clinical signs. This was demonstrated during the course of the k.c.e. epidemic that occurred in Hungary in 1961-1962 (Beladi et al. (1), Nasz et al. (20)). Nasz et al. (19), and Korchmaros and Imre (15) reported on a triple laboratory infection by type 8 adenovirus; typical k.c.e. formed on both eyes of the infected.

During the acute conjunctivitis phase of k.c.e. characteristic inclusions may be seen in the epithelial cytoplasm of the conjunctiva (Wright (22), zur Heiden (22), Lawrence et al. (15), Sie-Soon-Lian (25, 26), Silva (27), Lepri (15), .Maccy (7), Imre et al. (16), and Koscky (21)). The rela-
tionship between the k.c.e. inclusions and the causative agent of the disease has not been established; it is unclear whether they are identical with agglomerations of virus particles, or whether they are metabolic products resulting from interaction between the virus and the host cell. In an investigation of this question we applied the immunofluorescent method described by Coons and Kaplan (4). In a previous report we described demonstration of k.c.e. inclusion bodies by the immunofluorescent method (Imro, Korchmaros and Ceck (3)). Using convalescent serum we established that the k.c.e. inclusion bodies have an antigen character and that the corresponding antibodies may be found in the serum of patients convalescing from k.c.e. The object of this work consists of immunofluorescent examinations made with immunoserum, produced in rabbits, against various adenoviruses. Through these examinations we intended to prove the specific antigen nature of k.c.e. inclusion bodies.

Materials and Method

Collecting Scrapings: Scrapings were taken by means of a knife or brush from the lower overlapping fold of the conjunctiva and from the plica semilunaris region. The smears were dried at room temperature, and were fixed for ten minutes with methylalcohol.

Virus Strains Used for Producing the Immunoserum: Immunoserum were produced against adenovirus strains 3, 4, 5, 6, 7, 8, and 11. With the exception of type 8 the virus strains used were type-strains, provided by Dr. Krech (Switzerland) and Dr. Dreyzin (Soviet Union). The type 8 strain was isolated in the course of the k.c.e. epidemic in Hungary during 1961 and 1962 (Nasz et al. (20)), and with the use of type specific immunoserum provided by Dr. Huebner (USA) it was established that it belonged to type 8. The virus antigen was produced on Detroit-6 tissue culture, and following repeated freezing and thawing the cell remnants were separated from the virus suspension by centrifuging, after which it was used for immunization.

Immunoserum Production: Immunoserum was produced in rabbits by intravenous injection of a total of eight doses at weekly intervals for a period of four weeks. Immunization was begun with 1 milliliter of virus suspension, and the dose was increased by one-half milliliter up to a maximum of three milliliters, which dose was continued. The rabbits were sacrificed by draining the blood eight days after the last inoculation. The immunoserum were controlled with complement fixing and hemagglutination inhibition tests, and
partly with neutralization tests, and then were stored at
-10 degrees Centigrade until used.

Immunofluorescent Staining Method: The immunofluo-
rescent staining method described by Coons and Kaplan (4)
was utilized. The smears were stained indirectly with a
high titer rabbit antiserum produced in goats, which was
marked partly with Lissamine-Rhodamine B-200 fluorochrome
and partly with fluorescein isothiocyanate, according to the
method of Chadwick (3) and Rigno (24). The fixed smears
first were processed with unmarked immunoserum in a damp
chamber for 30 minutes, and following washing and drying
they were brought into contact with marked rabbit antiserum
in a damp chamber for 30 minutes. This was followed by
washing and drying again. The stained smears were examined
with a Leitz fluorescence microscope, at 250 to 400 magnifi-
cation. Blue light was used.

Table 1.

<table>
<thead>
<tr>
<th></th>
<th>On 1st-10th Days of k.c.e.</th>
<th>On 10th-20th Days of k.c.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjunctival Scraping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>33 (66 %)</td>
<td>7 (31.8 %)</td>
</tr>
<tr>
<td>Conjunctival Scraping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>12 (12 %)</td>
<td>15 (68.2 %)</td>
</tr>
</tbody>
</table>

Results

Scrapings were taken from the conjunctiva of k.c.e.
patients on 122 occasions. In 20 cases two smears were
made at the same time, and in two cases eight smears were
prepared. Giemsa stain was used in staining 122 smears.
The appearance of the inclusions is shown in Table 1.

The k.c.e. inclusion bodies were uniformly stained
blue by the Giemsa; they are round or oval in shape, and
always are located in the cytoplasm of epithelial cells
(Figures 1-4). These inclusion bodies also were found in
k.c.e. cases caused by laboratory infection with type 3 ad-
enovirus (13, 13). As a control, 20 other scrapings of
conjunctival inflammations were examined, using Giemsa
stain, including 5 from acute conjunctivitis cases, 3 chron-
ic conjunctivitis, 1 each from allergic conjunctivitis and
blepharitis conjunctivitis, 1 malaria, 2 trachomatous conjunctiva,
1 pemphigus conjunctivitis, 5 keratitis herpetica, and 1 smear
was made from a healthy conjunctiva. No inclusion bodies
were found in any of these 20 cases, including the cases
clinically considered to be trachoma.

- 3 -
For the purpose of immunofluorescent staining scrapings were taken on 38 occasions from the conjunctiva of 26 k.c.e. patients. The course of the disease was typical in all 26 cases, and typical inclusion bodies were found in all 26 using the Giemsa stained smears. In the course of immunofluorescent staining 17 smears were made with the type 5 adenovirus immunogold. Examination under the fluorescence microscope revealed strongly fluorescent formations indicating a specific bond in the cytoplasm of individual epithelial cells in 15 of the 17 smears. Their shape, size, location and frequency of appearance corresponded to those of k.c.e. inclusion bodies. Their shape was round or oval, and the border of the cellular nucleus generally appeared concave in the vicinity of the inclusions (Figures 5 and 6). The contour of the bodies and the cell nuclei was fairly...
readily distinguishable, primarily because of their auto-
fluorescence. In several cases cells containing shapes with
strong fluorescence indicating the specific bond were marked
off on the smear and later stained with Giemsa. In every
case typical inclusion bodies were found at the site of the
strongly fluorescing formation, exactly in the same cell and
at the same point (Figures 7-8 and 9-10). In no instance
was strong fluorescence indicating specific bond found in
the cell nuclei.

Figures 5-6. K.c.e. inclusions in conjunctival epithelial
cells (immunofluorescent staining, using type 8 adenovirus
immunoserum).

Figures 7-9, and 9-10. Identical cells or inclusion bodies
stained by the immunofluorescent method (with type 8 adeno-
virus immunoserum) and with Giemsa stain.

As a control, immunoserum produced with other types of
adenovirus were used in 21 cases. Immunoserum of adenovirus
types 3, 4, 5, 6, 7, and 11 was used in staining three smears,
each, and three smears also were made with normal rabbit serum.
The Giemsa-treated pairs of the smears in this case also were
inclusion-positive. However, immunofluorescent staining was
negative in all 21 cases. In no instance was strong fluo-
rescence indicating specific bond found within cells in the
control smears. In view of the fact that eight scrapings,
côc, were taken from the conjunctiva of two patients, we were able to stain smears from the same patient with immune-sera of types 3, 4, 5, 6, 7, 8 and 11 adenovirus, and with Giemsa stain. In both series the stain was positive (typical inclusion bodies could be seen in smears stained with Giemsa) only in the smear treated with the type 8 adenovirus immune-serum. As a control five smears made of other conjunctival inflammations also were stained with type 8 adenovirus immune-serum. No specific staining was found in these control cases.

Conclusions

In the course of the k.o.e. epidemic in Hungary in 1961-1962 characteristic inclusion bodies were found in 88 percent of conjunctival scrapings taken from first to tenth day patients. The k.o.e. inclusion bodies may be well distinguished from trachoma inclusions, and cannot be found in other conjunctival inflammations, either. Because of this examination of conjunctival scrapings may be well used for the purpose of differential diagnosis. Through immunofluorescence tests it was established that specific staining may be observed in the cytoplasm of individual epithelial cells in smears deriving from the conjunctiva of k.o.e. patients which had been treated with type 8 adenovirus immunoserum. These formations were strongly fluorescent, indicating that an antigen-antibody bond had been formed at the site. Their identity with k.o.e. inclusions is proved by the following:

(1) The smears were derived from the conjunctiva of patients with typical k.o.e., and characteristic inclusion bodies were found in their paired slides that had been stained with Giemsa.

(2) The shape, size, location, and frequency of occurrence corresponded to those of k.o.e. inclusion bodies.

(3) When cells containing fluorescing formations were marked on the slide and the smear was stained with Giemsa, typical inclusion bodies became visible at the exact same points of the same cells, at the site of the fluorescing formation.

(4) The immunofluorescent staining of inclusion negative scrapings also was negative.

Other types of adenoviruses also have been cultured from k.o.e. or clinically similar cases, in addition to type 3 adenovirus (types 5, 6, 8, 11, 14, and 18). In conformance with this, in the examination of the antigen specificity of the inclusion bodies it appeared of interest to conduct control tests with types 3, 4, 5, 6, 7, and 11 adenovirus immune-sera. All the tests performed with the control sera were negative; the inclusion bodies were not stained in the cases of treatment with heterologous immune-sera. The extraordinary sensitivity of the immunofluorescent staining
method is indicated by the fact that only the inclusion bodies of smears treated with type 3 adenovirus immunoserum fluoresced. The above proves the similarity of the antigen properties of the inclusion bodies to the antigen structure of type 3 adenovirus, and indicates that the inclusions in part or entirely contain pathogenic virus particles in addition to the presence of any possible metabolic products. This agrees with the observation that inclusion bodies rarely may be found in scrapings taken after the tenth day of k.o.e. Small acidophilic granules occasionally may be observed surrounding the inclusion bodies. Fluorescence corresponding to these formations was not found in any of the smears, and thus we cannot substantiate the concept of Sie-Be-Mian (26), to the effect that these granules are elementary pathogenic bodies. According to the foregoing the immunofluorescent procedure enables early and rapid identification of the pathogen at the beginning of k.o.e. epidemics, or in the initial phase of the disease.

Summary: A keratoconjunctivitis epidemic occurred in January in 1961-1962. Characteristic inclusion bodies were found in the epithelial cytoplasm of 85 percent of the scrapings taken during the acute phase of the disease. Through immunofluorescent tests it was established that these inclusion bodies have specific antigen properties which conform to the antigenic nature of type 3 adenovirus, which may be considered as the main pathogenic agent in this epidemic. According to this the inclusions of keratoconjunctivitis epidemic partly or entirely contain the pathogenic virus particles.

BIBLIOGRAPHY


3. C. S. Chadwick et al., Immunology, No. 1, 1958, page 315.


