NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies and their contractors; Critical Technology; DEC 1959. Other requests shall be referred to Hq. Space and Missile Systems Organization, Attn: SMSD, Los Angeles, CA 90045.

AUTHORITY
USAF Space and Missile Systems Organization ltr dtd 10 Apr 1972

THIS PAGE IS UNCLASSIFIED
Convaair Astronautics

This document is subject to special export controls and each item is manufactured only with prior approval of:

Convair, Inc., El Segundo, Calif., 90245

(27-29427, 27-29122 & 27-29402) int. SMED

ASE-27-013

DEPT. 537-6

ENGINE SYSTEMS DESIGN GROUP

DEC 15 1959

LIBRARY

Prepared by

J. J. Morgan

Checked by

L. M. Nelson

Approved by

D. S. Jenkins

Revisions

No. Date By Change Pages Affected
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Functional Checkout Philosophy For The Purge Box

This test will take place when there is no missile on the launcher. This test should be run approximately every 6 months and be so timed as to coincide with missile rotation.

Part of the test will consist of making audible leak checks, therefore this test should be run when there is a minimum of activity at the launcher.

Install CVA 27-29061 (Disconnect Inst'l, - Capping Rise-Off) at the launcher rise-off.

Audibly check the supply line from the NCU to the purge box - no leakage allowed. Audibly check all lines from the purge box to the rise-off panel - no leakage allowed.

In the following paragraphs where purge lines are called out, the first callout will be effective for 65-2 and on, the second callout, in parenthesis, will be effective for 65-1 and 117L.

See that the hand bleed valve on line TOL (T10) and TFL (T9) are closed. Energize solenoid P17. The gauges on lines TOL (T10) and TFL (T9) should read 500 psig. De-energize solenoid P17. Open the hand bleed valves on the two gauges. Allow the pressure to decay and then close the hand bleed valves.
See that the hand bleed valve on line TOD (T3) is closed. Energize solenoid P19. The gauge on line TOD (T3) should read 500 psig. De-energize solenoid P19. Open the hand bleed valve on the gauge. Allow the pressure to decay and then close the hand bleed valve.

See that the hand bleed valves on lines TOP (T11) and TSF (T3) are closed. Energize solenoid P18. The gauges on lines TOP (T11) and TSF (T3) should both read 500 psig. De-energize solenoid P18. Open the hand bleed valves on both gauges. Allow the pressure to decay and then close the hand bleed valves.

Energize solenoid P6. The gauges on lines TOL (T10) and TFL (T9) should read 1000 psig. De-energize solenoid P6. Open the hand bleed valves on the two gauges. Allow the pressure to decay and then close the hand bleed valves.

Open and time the Ground Oxidizer Fill and Drain Valve - maximum time 3 seconds. Close and time the Ground Oxidizer Fill and Drain Valve - maximum time 3 seconds.

Energize solenoid P3. The gauge on line TOP (T11) should read 1000 psig. De-energize solenoid P3. Open the hand bleed valve on the gauge. Allow the pressure to decay and then close the hand bleed valve.
Energise solenoid P4. The gauge on line TOD (T8) should read 1000 psig.
De-energise solenoid P4. Open the hand bleed valve on the gauge.
Allow the pressure to decay and then close the hand bleed valve.

Energise solenoid P1. The gauge on line TSF (T3) should read 1000 psig.
De-energise solenoid P1. Open the hand bleed valve on the gauge.
Allow the pressure to decay and then close the hand bleed valve.

Energise solenoid P5. The gauge on line TOD (T8) should read 1000 psig.
De-energise solenoid P5. Open the hand bleed valve on the gauge.
Allow the pressure to decay and then close the hand bleed valve.

Energise solenoid P8. The gauge on line MFP (X20) should read 1000 psig.
De-energise solenoid P8.

Energise solenoid P14. The gauge on line MFO (X2) should read 1000 psig.
De-energise solenoid P14.

Energise solenoid P15. The gauge on line MPG (X3) should read 1000 psig.
De-energise solenoid P15.

Open and time the Ground Fuel Fill and Drain Valve. Maximum time – 3 seconds.

Close and time the Ground Fuel Fill and Drain Valve. Maximum time – 3 seconds.
Energize solenoid P7. The gauge on line TFL (T9) should read 100 ± 20 psig. De-energize solenoid P7.

Connect a 0 → 1000 psig gauge to line NPP (X21). While observing the gauge energize solenoid P20. The pressure should build up slowly to 1000 psig. De-energize solenoid P20. The pressure should decay to 0 psig.


Energize solenoid P23. The gauge on line NPG (X19) should read 425 psig. De-energize solenoid P23.

If any of the above solenoid checks indicate a system malfunction, all plumbing up to the manifold should be leak checked. A leaky solenoid will, in general, leak from the supply to the vent port when de-energized. If this is the case the leakage can be felt by placing a finger over the vent port. Solenoids found defective should be replaced. A bad solenoid, when energized will also leak from the supply to the vent port, generally with much greater flows than when in the de-energized position. Some failures will be attributed to electrical malfunctions. These are generally found by using continuity checks, both internal to the solenoid and the wiring from the controls to the solenoid.
See that the hand bleed valves on lines TOL (T10) and TFL (T9) are closed. Energize solenoid P6. The gauges on lines TOL (T10) and TFL (T9) should read 1000 psig. De-energize solenoid P6. Open the hand bleed valve on line TFL (T9). Observe the gauge on line TOL (T10) for a pressure decay. If the gauge decays more than 10 psig in 5 minutes the first check valve up stream of the gauge in line TOL (T10) is defective. Replace the check valve.

Close the hand bleed valves on lines TOL (T10) and TFL (T9). Energize solenoid P6. The gauges on lines TOL (T10) and TFL (T9) should read 1000 psig. De-energize solenoid P6. Open the hand bleed valve on line TOL (T10). Place a finger over the vent port of solenoid P7. If a pressure build-up is sensed the check valve down stream of solenoid P7 is defective. Replace the check valve. If no pressure build-up is sensed and the gauge on line TFL (T9) decays more than 10 psig in 5 minutes the check valve up stream of the gauge is defective. Replace the check valve.

Close the hand bleed valve on line TOL (T10). Energize solenoid P5. The gauge on line TOL (T10) should read 1000 psig. De-energize solenoid P5. Place a finger over the vent port of solenoids P4 and P5. Leaking indicates the check valve associated with solenoid P4 and P5 is faulty. Replace the check valve that is faulty.
Repeat this same procedure for the check valves associated with solenoids: P1, P3, and P6.

Close the hand bleed valve on line TGF (T11). Energize solenoid P3. Vent and disconnect the Inert Fluid Fill Line NCS (FF). Use soap solution to check for leakage. If there is any leakage replace the check valve in the Inert Fluid Fill Line. (65-1 & 2 only)

Vent and disconnect the Trichloroethylene Flush Supply line, TPS (T7) from the Purge Box. Energize solenoids P3 & P18. Soap check for leakage at the connect point of line TPS (T7). If there is any leakage replace the check valve which prevents flow from line TGF (T11) back into the Trich manifold.

Close the hand bleed valve on line TBF (T3). Energize solenoids P1 and P18. Soap check for leakage at the connect point of line TPS (T7). If there is any leakage replace the check valve which prevents flow from line TSF (T3) back into the Trich manifold.

Close the hand bleed valve on line TGD (T8). Energize solenoids P5 and P19. Soap check for leakage at the connect point of line TPS (T7). If there is any leakage replace the check valve associated with solenoid P19.

Close the hand bleed valves on lines TOL (T10) and TFL (T9). Energize solenoids P6 and P17. Soap check for leakage at the connect point of line TPS (T7). If there is any leakage replace the check valve associated with solenoid P17.
Return the system to its original configuration.

The purge box at the S.M.A. should be checked once every 12 months. This procedure should be used noting that the purge box at the S.M.A. does not have a Trich manifold, Fuel and Lox Ground Fill and Drain Valve control or Fuel Fill Line Pressurization control.

The filter on the nitrogen inlet line (27-02105-1) must be replaced every 18 months.