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I. INTRODUCTION

This document constitutes MATHEMA TICA's Final

Report on project work undertaken for the Office of Naval

ST,

Research under contract N00014-66-C-0215, The central
aim of the research undertaken in this project was to inves-
tigate the application of mathematical game theory to ASW
detection problems.

The major findings, conclusions, and recommenda-
tions which have resulted from this project are described in
Chapter II, ""Game-Theoretic Models for ASW'", in non-
technical language. Chapter III, "Game-Theoretic Analyses |

of ASW Problems'', consists of a series of technical papers ‘
|

examining various facets of ASW problems and models.

The work on this project was performed by the follow-

ing members of MATHEMATICA's staff: Norman I. Agin,

Michel L. Palinski, Harold W. Kuhn, John P. Mayberry, ;

v ] and Francis M. Sand. |
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II.1 Construction of Game-Theoretic Models

.
——

The basic aim in the research undertaken thus far

3 has been to introduce strategic choices into the problem of
; submarine-~submarine detection and to introduce them in a
: way that can be analyzed by the mathematics of game theory,
* - This research has consisted of a sequence of models which
l have incorporated successively more strategic features and
T} more paraméte':s designed to better represent the real
2N situation.
"z To understand the basic structure of these models, it
,) is useful to recall the underlying theory in which they are set,
- namely, zero-sum two-person game theory. This theory
] l of conflict deals with situations in which two opposing parties
E’ l make strategifz choices that control their actions throughout

a particular contest. The rules of the game define precisely

the strategies available to each of the opposing parties, and

PR
4

determine the outcome ior each player, when a specific stra-

tegy is chosen by each party. This outcome is measured by

——— ”
.-.:n-s.]

!
[

a numerical payoff to each player as a result of the contest

'M“?

g » T B
| Nesmanid M
.
\
-

ard which is a functicn of the strategies chosen by the twe

parties to the conflict. If there zre but two parties to the

Sousmwng

conflict and if what one wins the other loses, then the game

is called zero-~sum two-person and assumes a particularly

Aot
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w
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simple formal s{ructure. Namely, the game may be described
by the sets X and Y of stra:tegies available respectively to
the first player and to the second player, and a real-valuéd
function £(x,y) defined for every rhoice of x ¢ X and

Yy ¢ Y. (Conventionally, f is taken to be the payoff paid to
the first player by the second player.)

In various applications the strategy sets X and Y
take on different forms. For instance, they may be chosen to
be finite discrete sets -~ in which :ase, the payoff function
is a matrix with real entries. In other cases, they may be
taken to be all probability mixtures of a finite set of distinct
elements -~ this is the familiar case of ""mixed strategies'
for finite zero-sum two-person games. In other instances,
the sets X and Y may take a structure dictated by the
essential features of the context under study. For example,
if the sccond player is a transiting submarine crossing a
rectangular barrier, Y may consist of all possible speeds
at which he may travel, if we believe that this is the ouly
relevant parameter in the problem.

The structure of the models studied in our research
may now be explained within this framework. First, and very
important in its consequences, all of our analyses have been

carried out with the payoff function giving the probability of

first detection. (Here and throughout the reports the first

=4 -4 g
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player is a submarine patrolling the barrier and the second
player is a submarine transiting the barrier.) Whatever the
strategy spaces X and Y used for the patroller and tke
transitor, respectively, the first step in fully defining the
game has been to compute the probability of first detection
if the patroller chooses x ¢ X and the transitor chooses
Y e Y.

A second important {eature of the analysis is the

choice of a solution concept for the games after they are de-

fined. Two distinct approaches have been adopted. The
first is a technique which has been used in situations which
are either too cornplicated to pernllit a solution with strategic
choices on both sides or have a ''reasonable" fixed strategy
for cune of the players. (An example of the latter is provided
by a "house'" strategy for card games such as Blackjack.)
Precisely, if we fix the strategy of the second player to be
Y ¢ Y, the problem of the first player becomes simply:
Find x = X so as to maximize f(x,?) . If we were certain
that the second player would use y then the first player
surely can do no better than pluy x .

The second solution concept which has been used ex-
tensively in our analyses has bcen that of a largest assured

Baxgg or, somewhat more technically, of a maximin strategy.

The motivation of this is clear. For each (patrol) strategy
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x there is a counter (transit) strategy y that minimizes the
probability of first detectica. The value of this probability
is given by m]irn f(x, y); it is the worst that the first player
can gain if he plays x. He then chooses x so as to maxi-
mize this probability, giving him a probability of first detec-

tion equal to

max m}}n f{x,y) .

This probability is a "'sure thing" for him; he may do better
if the second player does not counter him optimally but on the
average he will do at least as well. It is also true that this

is the highest probability of first detection that he can assure

himself.
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. 2 Analysis of Models: A Summary of Results

We are now in a position to describe how the sequence

t .g of models that have been analyzed has been built up. The

' . first models were studied with the fiist solution concept.

! } Namely, various classzs of patrol strategies X were played
{ .. against an essentially fixed transit strategy y . This tech-

nique is appropriate tn the optimization of certain key para-

I meters in the set X . It is well suiied to such questions as;
‘ ‘Nhat is the optimal angle for a bow-tie patrol against transits
' ] in one direction? This technique of simple optimization against
! -.} a fixed opponent's strategy (which may be a probability mix of
‘ a class of strategies) is closge in spirit to the kinds of ques-
} 7] tions posed in gaming and simulation approaches to the sub-
% K marine-submarine problem.
::l What kinas of strategy spaces X and Y have been

studied? For the patrol submarine, the emphasis has been

L |

1]
Nbwrormnnard

largely either on the pattern of patrol (varying the param .ers

of the pattern) or on the speed of the patrol (keeping the pat-

ro oy

§ tern essentially fixed). For the transiting submarine the

[ L. 1
[

emphasis has been largely placed either on the location of a

"

straight line transit through the barrier or on the speed of

[T ]
| T

the transit. Fach choice of a strategy space leads to techni-

'{E cal problems pecuvliar to that choice and hence to assumptions &
®

! designed to make the analysis more tractable. (For example, %
1 @
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if we are comparing patrol patterns, assumptions can be
made to make the detection depend oalv on the closest ap-
proach distance of the two submarines.) With these assump-
tions, the following results were obtained (using maximin
probability of detection as the principal solution ccrcept).
(1) A basic preposition which has been widely ignored
i-n ASW analyses is tnat there can be 10 sea exercise, no
simulation, and no game theoretic analysis without the definite
specification of three factors:
(2) the information available to the parti-
cipants as to the context of the action;
(b) the technological possibilities (such
as speeds, maneuverability, and detection
capabilities) available to the participants;
(c) the objectives of the participants in
terms of quantified measures or payoffs.
In Chapter III of this report, '"Game-Theoretic Analyses of ASW
Problems! the effects of incorrect specification of these fac-
tors are discussed and illustrated by examples. It is shown
that, individually, each of these factors, if incorrectly for-
mulated, can lead to solutions which are seriously misleading.
Specifically:
(2) The analysis of speed games having an objective

of secure detection was compared with the simpler one of

.8-
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detection, and various approaches were suggested for the

solution of these more complex games. Most of the approaches

e

led to the same mathematical model: the "'Difference Game't,

which is partially solved in Chapter III, Section 3 of this re-

port. Optimal strategies require both the patroller and the

S §

iw
S Lot

transitor to use slow speeds.

4

(3) Extending the previous MATHEMATICA work on
matrix games, a new series of analyses has been undertaken

in which different range laws are compared. This leads to a

P

more general definition of Secure Sweep Width covering the

& e }

minimax strategies in a competitive situation. The previous

definition was applicable only for '"games against nature',

=

i.e., situations in which the transitor chose at random.

(4) Continuous payoff functions representing range

&

laws analogous to those studied in the matrix games were

v |

introduced, and it was shown that optimal mixed strategies

retained essentially the same character as in the correspond-

Er -y

ing matrix games. In particular, the optimal strategies re-

quired only a finite number of puints of entry (for the transi-

FE Y

tor) and points of defense (for the patroller).

e )

(5) A repeated game with incomplete information on

H

the transitor's side was analyzed. This was an attempt to

B

model the learning aspects of the detection-evasion situation.

It led to the result that the game should be played (i.e., the

-9-
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patrol and transit strategies chosen) as if all payoffs were
the average of what the transitor could reasonably expect,
given his incomplete information. This type of analysis has
the potential of providing an important link between informa-

tion and strategy in repetitive situations.

-10-
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II.3 The Problem of Secure Detection vs Detection

The patroller's mission is in the first place to detect

the transitors. Other events may then follow: localization

AU AT T SR 3 o R R SR £l o

and classification in peacstime (possibly also trailing); finally,

e T U,

approach and kill in wartime. But there is a considerable

e -.:,.‘;,.-?‘}'

difference between detection and secure detection in either

peace or war. Secure detection means that the patroller is

L i

not detected by the transitor in the process of detecting the

co A

transitor. The advantages of secure detection are manifold;
in wartime it may spell survival, while in peacetime the
information on enemy submarine movements is gained with-
out revealing our submarine movements to the enemy.

A game-theoretic model which uses the concept of
secure detection in its definition of objective is likely to dif- . i
fer substantially from a model based either on detection or on
evesion. Not only is the measure of effectiveness different,

hut :he optimal strategies also turn out to be quite different.

Nl et £t S N T ATE AAR

In particular, optimal patrol patterns have been found in sim-

ple games of secure detection which are quite different com-

(o S S o

pared to the previous one-way street of detection only.

A

Unfortunately the mathematical difficulties ¢ analyzing se-

TR AT

cure detection probabilities are rather more severe than in

A

the case of detection probabilities. We have considered a

Fopioin it

-11~
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compromise model which approximates the probability of se-

cure detection by a weighted combination of the two probabili- g;

: ties: (i) that the patroller detects the transitor, and (ii) e
; that the patroller evades detection by the transitor. In a sim- §S
J i ple analysis of patrolling strategies using only the speed -'é
j, variable it has been found that for purposes of maximizing s

1 N

detection probabilities the patrolling submarine should pe

[ 2

moving at maximal speed for a fraction of the patrol cycle,

e

- A

while for purposes of evasion he should never excsed that

speed at which self-noise is known to take a sharp upward

S o,
Fuld

£
¢

turn as a function of speed. What recommendation will the

game-theoretic analyst make if the mission emphasizes both ?;

’ 1 detection of transitors and evasion? The answer will in fact :
i ' depend on the relative importance of the cpposing parts of ff
; the objective. ™
‘ By examining a hypothetical case in which it is :
:- assumed that there is zero probability of a counterdetection i
]

following detection, we show in Chapter III, Section 1, that

b

the compromise objective function is the difference between

the probabilities of detection and counterdetection. This

| ™
Wﬁ'g

model is called ""The Difference Game'" and a generalization

of it allows a utility weight to be applied to evasion of counter-

e

detection. In Chapter III, Section 3, the solution is found for

e

all cases where evasion is rated at least as important as

-12-
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detection. The solution requires both the patroller and the
transitor to move at their quiet speeds for optimization with

respect to the same weighted difference function. It should

be pointed out that the assumptions for the transitor are the
same as for the patroller but with signs reversed. The tran-
sitor, in other words, is emphasizing detection of the patrol-
ler at least-as much as evasion of detection. The earlier
analyses of speed games with simple detection probability
objective functions (see refs [5] and [6])* showed that optimal
transit speed according to the model could be faster than
quiet speed, but ignored the possibility that the resulting
secure sweep width for the transitor might be l28s than for
the patroller. In some cases (depending on ratio of noise
function slopes) this actually did occur, invalidating the solu-
tion on logical grounds. The present analyses, although they
do not solve the cases where the patroller rates detection
more important than evasion, correct the error for an import-
ant class of game-theoretic models including the ''equal im-
portance" case which is rzpresented by an unweighted differ-

ence of detection probabilities.

A4

* References are to the Bibliography on p. 109,

~]l3-
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II. 4 The Analysis of Position of the Pati: oller within a Zone
{Matrix Games)

By keeping speed, other strategic variables and exo-
genoue parameters constant, it is vaesible to analree the rela-
tionship between detection range laws and the casice of patrol
positions (and transit lanes). The zos2 mey ho divided into an
indefinitely large number of lanes; by oc' viring wue or Jore
of these lanes the patz-'oller is said to &% « j. a.vion withi

the barrier zone.

B N O
v,

1

n traneit lanes

Figure 1. 1

No question of patrol path configuration in two dimensions is
involved. Each patrol path is evaluated only in terms of the
fraction of patrol cycle time spent in each position. In ref. [6],
MATHEMATICA's previous analysis of the position strategies,
two types of strategy were distinguished.

(i) The on-station strategy. The patroller occupies a

-14-
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lane and remains close to its center.

- (ii) Continuous-motion back-and-forth strategy. The
patroller moves at constant speed back and forth from end to
end thus dividing up a patrol cycle uniformly among the lanes.

In all cases the tr_:ansitor was assumed to come straight
through the zone at constant speed. Mixed strategies could
be interpreted in terms of a unique random choice of a pure
strategy, or as a time mixture assigning appropriate fractions
to different lanes. -The range laws considered were of the
cookie-cutter type except for the 3-lane analysis of Appendix
IV which included’'a range law of the form (0, p, 1, p, 0) where
the probability is 1 only for the lane actually occupied. The
continuous-motion patrol agssumed that the probability of detec~-
tion was 2q (not necessarily the same as p) at the center and
q at the edges.

In this report the position-strategy analysis is extended
in two ways. )

(i) A more realistic range law is assumed and the
matrix games are solved in Chapter III, Section 4. The range
law incorporates a linear decrease in the probability of detec-
tion symmetrical}y outward from the center, dropping grad-
ually off to zero at a finite range.

(ii) The division of the zone into a finite number of

lanes and positions is replaced by the more realistic assump-

-15-
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tion of a continuum of lanes and positions in Chapter IL, Sec-
tion 5. The range law described above is replac 1 by its con-
tinuous analog, i.e., a triangular-shaped function. Again the
extreme range is finite, but there is a continuous variation in
probability of detection unlike the discontinuc:us cookie-cutter
range law.

While the results for these new game-theoretic models
are not easily described in a few words, three salient features
may be noted: |

First, there are a finite number of favored lanes and
positions, and in the case of the matrix games this number is
generally less than the total number of lanes. Even when the
transitor is permitted to enter the zone at any point across the
entire width, optimal minimax strategy calls for the use of
only a small number of lanes. Similarly and symmetrically,
the patroller's strategy requires him to ignore the majority
of positions in favor of the few. This result is naturally re-
lated to the assumed form of range law, but ref {4] shows that
it is qualitatively similar to the results found in the analysis
of continuous convex games with bell-shaped kernels. For
these zames also there are only a finite number of pure stra-
tegies which are used to define the optimal mixed strategies.

| Second, a salient feature of the results described in

III. 4 and I11. 5 is the general behavior of the value of the game,

-16 -
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as the parameters change. Cousider a zone of width D and

the triangular detectioa law extending from x -d to x+d

.
D+ad

is a good approximatiu.a to the value of the game in most

when position x is occupied by the patroller. Then

cases*; thus a secure sweep width** (SSW) of % is as-
sured by the use of the minimax strategies by both submarines.
For example, if d is very much smaller than D, a SSW of
approximately d is achieved: this is only half of the corres-
ponding figure for a cookie-cutter range law. Now consider
a smaller zone (or, equivalently, larger range of probable
detection) and let D = 2d . Then the SSW is just (2/3)d .
Finally, we have also extended the concept of secure
sweep width to a strategic confrontation. The ""secure sweep
width" concept, introduced in ref [8], is intended to be a
numerical measure of the patroller's ability to detect the
transitor without being previously counterdetected. It is
defined as the width of frontage over which target crossings
are equally likely at all points, times the {raction of targets
on which the patroller makes secure detection. In other

words, it is the product of the zone width D with the proba-

* Except when d is nearly as largeas D .

*% The concept is extended in the natural way for non
uniform transits; see next paragraph.

-17-

SRR AT, - b




bility of the patroller detecting the transitor, given that the
transitor is assumed to use all transit lanes with equal pro-
bability. This last assumption makes of this definition a non-
strategic measure since the transitor is not endowed with the
possibility of making strategic choices to counter the patrol-
ler's strategy. If we change and extend the definition of
SSW by allowing the transitor to adop: strategic choices and
assign both participants minimax strategy choices then the
models studied give SSW's under varying range laws. Thus,
if a patroller is assumed to make secure detection of any tran-
sitor within d distance an SSW of approximately 2d is found.
On the other hand, if a patroller is assumed to detect a tran-
sitor with probability 1 - x/d, if x < d is the distance be-
tween the subs, and not detect otherwise, then the SSW is
approximately dD/(d + D) .

It appears that the SSW concept, which is intended to
give a rough measure of ability to detect, can in fact be a
truly strategic measure. To be precise this suggests the

definition: secure sweep width is the width of frontage over

which the transitor may attempt crossings times the proba-

bility of the patroller detecting the transitor wheu both par-

ties use minimax strategies. Thie definition will remain usus-
ful even when the transitor is known to employ a different

strategy so long as the patroller is using the minima. strategy.

-18-

bt 4

.| LR s, o
-~

Woon

e o

way
——d

4 omnn }
W s

Lt 3
. -

res

y

S
T
ol Wk aad &

tand

TAART M w W Vgt

.

PG 3
{revegt

£

[y
Ao

eV - s —

o e —— -

PO S

o e

T




- 3 £~ 2 ’»M.Nz

-
Sy

ey

-

,\
]

o oy
awvonsd

P onoms

«

e B PR

CESSARTIEATY

Py

Analogous deiinitions of SEW can be constructed for other
strategy concepts, and in the simplest case of a uniform
natrol the new definition proposed is equivalent to the previous

definition.
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II.5 Conclusions

Considerable effort has been devoted to the study of
problems concerning submarine-submarine detection by
mathematical analyvsis, gaming and compnter simulation.
MATHEMATICA has, from Ma.yl_l.965 to the present,been re-
viewing for QNR* the question: '"How can the theory of games
be fruitfully applied to the study of ASW detection and evasion
strategies?!" We initially considered patrols by an individual
submarine in a known rectangular zone; subsequently, while
the results for a single zone have been extended iand improved,
attention has also been devoted to the construction of barrier
models in @ more general setting. For reasons which are
detailed below, MATHEMATICA's investigators have concluded
that the mathematical theory of games cannot, at present, pro-
vide a suitable methodology for completely analyzing the stra--
tegic alternatives which are available to patrolling submarines
-- even in the restricted case of a single submarine patrolling
a fixed zone. (By analogy with economics, we might express
this viewpoint differently by the statement that the micro- stra-
tegies are inadequately represented in any mathematical models
which can be formulated at present.) We anticipate that game-

thecretic methods, in combination with other analytical ap-

*Under contracts Nonr 4937(00) and N00014-66-C-0215.
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proaches, will provide useful and practical insights for the

H

Bervecn
> owm——

macro-strategies of large barrier situations,rather than

complete formal solutions.

$er \)am:

These conclusions should not be regarded as mainly

negative, because only the most elementary of practical prob-

& vy
]

lems in other fields possess complete mathematical solutions.

bout

[y
(SIS 2

There are two primary difficulties at present:

First, the information which MATHEMATICA has ob-

‘r,»-.uwl

tained on the determinants of patrol and transit strategies -~

such as the range laws of sonar detection, the effects of sea

80 ot

state and speeds¢ of both patrolling and transiting submarines

on sonar detection and counterdetection, the effects of depth

of the submarine, convergence zones, thermal layer and so
F [ forth -- seems to be at present a large, cc:aplex, and poorly

structured body of data, and is therefore not easily provided

-

as an input to the conventional game-~-theoretic models of stra- '

tegic conflict. (Such models might be used either to generate

| somuiet

hypotheses, or to test and verify hypotheses; the data require-

}

| POw AT

»

ments would be somewhat different.)

A

Second, the variables, which are known to determine

[ty

the probability of a detection or counterdetection, are numerous

and interdependent.in complex ways. We have firm information
® 7

about so few of these potential interactions that a useful

X2

g mathematical theory is almost inaccessible at present. Such a
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theory apparently would require the analysis of strategies as
functions of several control variables; the resulting mathe-
matical problems are difficult even to formulate, and still
more difficult to use as a basis for practical results of im-
portance for application to the real ASW situation.

Both in on-going research and in the sea exercises
that are undertaker to test the various reconqmended modes
of patrolling and barrier design, a large body of information
is being built up about ASW and its interface with oceanography.
MATHEMATICA's analysts, on the basis of their familiarity
with that body of information, have found that the current
level of sophistication in understanding and structuring that
data does not appear to permit a successful mathematical
analysis of the patrol and transit strategies at the zonal level.
Several game-theoretic results have been obtained by MATHE-
MATICA which can serve as a beginning for a mathematical
theory of barrier detection in the large: for example, mini-
max speeds for certain detection-and-evasion conflict models
have been derived (with other parameters held constant). These
show that, the greater the emphasis on evasion (by the patroller)
the more plausible is the recommendation of slow speed.
Another example is the investigation of the relationship be-
tween probability of detection and range law. The investigation

has led to an extension of the concept of Secure Sweep Width to
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the strategic situation. As a third example, we have studied
a repeated game, the irdividual steps of which are opportu-
nities for detection and counter-detection. It is assumed
that the patroller knows more about his own range of detection
under the prevailing environmental conditions than does the
transitor, and the patroller may choose whether to make use
of this information. The transitor may be able to infer (from
observiny the patroller's strategic moves in the steps, which
are called "stage games') something about the unknown range
law of the patroller. This analysis shows, in one particular
case of interest:

(2) that the patroller cannot profit by using his infor-
mation in a strategic mode, and

(b) that the transitor, to optimize, must play the
average game expected under his prior beliefs about the
patroller's detection capability.

Such results are obtained from zonal analysis, but be-
cause of the previously described complexities they are really
of limited value for the improvement of ASW patrols, within
the zone. We feel that the generalization of the task to the
overall discussion of barrier strategy would permit the use
of the results in an interesting and potentially valuable theory.
For instance, if the relative positicning of a number of sub-

marines of differing detection capabilities were analyzed, the
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methodolog); of MATHEMATICA's described work on Matrix
Games could be brought to bear. ,
Game theory requires precise detailed infromation on

the three factors mentioned above, (and discussed in greater

_ detail in the next Chapter) for its successful application to

ASW. Whenever some of this information is lacking, the
partial analysis will yield only qualitative results. Whereas
such results may provide meaningful insights into the princi-
ples of a rather -la.rge systems problem such as barrier de-
sign, they do not at present appear to be very practical at
the level of components such as a patrol zone. For a suc-
cessful strategic analysis of the zonal problem the require-
ments are at least the following:

(a) The functional relation between detection range
and its determinants -- patrol speed, oceanographic condi-
tions, target speed, depth,etc. ~- should be known and para-
metrized.

(b) The forms and limits of strategic behavior allowed
to the patrolling and transiting submarines must be clearly
spelled out. Excessive complexity and variety here creates
difficulties for the analyst.

(c) The objectives must be formally stated, inasmuch

as the solutions will depend critically on them. Several alter-

native objectives may be used, requiring separate analyses and
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leading of conrse to distinct solutions. In view of the variety

d

cf missions to which a barrier submarine is assigned in

peacetime and war, there is clearly a necessity for several

gL

of these alternative analyses.
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II.6 Recommendations

As a result of the conclusions presented above,
MATHEMATICA recommends:

(i) that the attempt to model the single patrol zone
ASW problem as a game be discontinued for the present;

(ii) that further research be conducted. on the use of
mathematical models of ASW barriers as a whole at a higher
level of aggregation than the zonal unit;

(iii) that the work which MATHEMATICA and other
investigators have begun, on the effects of range law detec-
tion on optimal strategies, be continued; and

(iv) that the above work should make use of recent
advances in the theory of Repeated Games of Incomplete

Information.
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The purpose of this section is to discuss several

o

basic questions which underlie any analysis of the conflict

situation involving one or more submarines patrolling a bar-

Semmmrséy
Nroanrnnd

% rier and one or more submarines attempting a transit across

[ T=]
-

the barrier. The'se questions arise whether the analysis

proceeds via sea exercises, simulation, gaming, or game

2 §
LS T

(23K

« theoretical models. They have been largely ignored in pre-

H

3 vious ASW anzlyses and our purpose is to show, by simple

f ZRSI
LIS

examples, how this neglect has influenced the results ob-

tained and restricted their practical usefulness.

Lo
e

A first step in any analysis of the patrol-transitor

M!

3 conflict is the definition of the actions open to the parties

involved and their objectives in the conflict. This is true

[ R ot ]
Wememvn-4

whatever the nature of the analysis. If we are designing a

| v

5 ’ sea exercise, we must give the '‘rules of the game' to the

two sides and, in general, these will circumscribe their

gw« -~

range of free action rather sharply. The rules, as given to

3

the participants, will consist of three parts: (1) the types of

-y

fn

: information permitted to them either from their own equip-

ment or observations or from outside sources; (2) the range

-28-
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of actions that are permitted to them at various points of the
situation as a function of the information available tc them at
those points; (3) the object of each antagonist in the exer-
cise, preferably in terms of some index of merit which could
be computed at the end of a contest. (It may happen that the
index of merit could only be evaluated by an umpire who will
have more information than any of the individual participants.)
To be more specific about these three ingredients in

a sea exercise, we may consider a simple patrol-transitor
exercise run on a rectangular area of the ocean, assumed to
be oriented so that the sides run North-South and East-West.
For the patrol submarine, under (1) we may specify the
exact location of the patrol rectangle, the length of time of
tile exercise, the fact that one submarine of a given type will
be attempting a single transit through the area from East to
West at given depth sometime during the exercise, and that
the patrol will start the exercise at a given point in the area.
Furthermore, we may specify the types of detection equip- B
ment that may be used by the patrol submarine and thus the
kinds of information about its own locaiion and speed and

about the transitor's location and speed. All of these factors

" constitute a part of the patrol's knowledge of the extensive

form of the exercise; indeed, that part which is exclusive of

the alternatives open to him and the transitor o1 based on

-29-
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that information. As for similar information to be provided
to the transit subrnarine in the exerciss, we may tell him
the location of the rectangle, the length cf time of the exer-
cise, the fact that one submarine of given type will be patrol-
ling somewhere in the area at a given depth. Furthermore,
we may specify the types of detection equipment available to
the transitor and thus the kinds of information about its own
location and speed and about the patrol's location and speed.
Again these constitute the transitor's knowledge of the exten-
sive form of the exercise, exclusive of the alternatives open
t> him or based on that information.

As fo.r .{2), the range of actions open to the two sub-
marines, we may specify them in great detail, such as only
allowing the transitor straight-line crossings of the rectangle
at constant speed, or we may allow considerable choice, such
as zig-zag paths at varying speeds depending on information
rcaching the transitor through its detection equipment. Simi-
lar cornments apply to the patrolling submarines.

The all-important result of the combination of (1) and

(2) is the concept of a strategy for a submarine in an exercise.

This concept reflects the planned interaction of information

with the freedom of action allowed to the submarine. Without

the specification of,or explicit assumptions concerning, (1)

the information about the extensive form of the conflict and

-30-
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(2) the restriction of the range of action open to the partici-

pants, there can be no exercise, no simulation, or no game-

od  od i G

theory mode’. -

These ingredients are by no means the whole story,

]

for they only speak to what the submarines know and can do.

They say notbing about why they are doing it, what their ob-
jectives are or, in game-theoretic terms, what the payoff is.
If we return to the question of an operational exercise, we

are concerned with a measure of the performance of the par-

ticipating submarines. A typical specification for the patrol

s

g ood e
.

submarine would be to say that he wins if he detects the

transit without being detected himself, that the transitor wineg

if he crosses the rectangular area without being detected and

that the exercise is a draw if both submarines correctly ue-
tect each others' presence. If we are dealing with a larger

number of transits than one, we may use the ratio of first,

detections by the patrol to the number of transits as a figure

of merit to measure the performance of the patrol side of the

exercise. Both the simplicity of these suggestions and the

dependence on the siructure of the underlying actions and
information possibly available to the sides in the exercise
makes --  ict crystal clear: the optimal behavior of the par- ‘

tici »nts may vary significantly if we change the objective

function. Fundamentally it is this phenomenon that we wish™

- o ad e b bl
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to illustrate in this chapter.

To recapitulate, there can be no exercise, simulation,

or game without the specification of three factors:

(1) the information available to the participants as to
the rules of the game;

(2) the technological possibilities (that is, the speeds,
maneuverability, and detection capabilities) avail-
able to the participants;

(3) the objectives of the participants, preferably in
the form of numerical measures that could be
computed by an observer of the complete action.

Incorrect specification of any one of these can lead to

seriously incorrect calculation o1 optimal behavior as we

shall now show by means of examples.

Misinformation about the Extensive Form

The difficulty described by the title of this subsection
may be encountered in a number of forms and may differ in
importance according to the situation. That it is of practical
relevance is easily seen: surely it is unrealistic to assume
that the transiting submarine has an accurate map of the bar-
rier with its complete geometry and the numbe’ and type of

patrol submarines present in it in a given period of time, and
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equally unreasonable to assume that the patrolling submarines
will know the number and type of the submarines attempting
to transit through the barrier. This second possibility is
illustrated by the following example, patterned on a game
which we have discussed previously :*

First Extensive Form: Let the payoff matrix

be T T T

1 2 3
P 1 0.25 O
1
0.25 1 0.25
B 0 0.25 1
E 0.25 0.5 0.25

The patroller's strategies are:

P,y = patrol in Northern boundary cell
P.2 = patrol in central cell

P3 = patrol in Southern cell

P4 = continuous motion patrol

The transitor's strategies are:

T, = transit through Northern cell

T, transit through central cell

Pp. 44-51 of ref [6].
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T3 = transit through Southern cell .

The underlying assumption is that one transit will be attempt-
ed and the payoff is the probability that all transits will be
detected.

This example is easily solved. The optimal strategies are

P*

3/8 P, + 1/4 P, + 3/8 P,

T%

3/8 T, + 1/4 T, + 3/8 T,

and the minimax value is 7/16

Now let us alter the game by having the transitor at-
tempt to pass at least one of two submaxrines through the
barrier. If we denote the resulting pure strategies for the
transitor by (T, Tj) for 1 € i € j < 3, then the payoff
matrix becomes:

(Ty» T (T Ty) (T T3) (T, Ty (T Ty (T3, Ty

P 1 0.25 0 0.0625 0 0
P, 0.0625 0.25 0.0625% | 0.25 0. 0625
P, o 0 0 0.0625  0.25 1
P, 0.0625 0.125  0.0625  0.25 0.125  0.0625

Here, as before, the payoff is interpreted as the probability
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that all transits are detected.
This matrix has a saddlepoint solution (indicated by

the asterisk) consisting of

ol
I

P,

&
i

(T;» Ty)

with minimax value le; . This has the obvicus interpretation
that the patrol should sit on the center station while the tran-
sitor's submarines should run the sides of the barrier. If
the patrol submarine plays the optimal strategy for the game
with but one transit submarine, then the probability that he
detects all of the transits is reduced to '6'15 !

We have not solved the problem of constructing rea-
sonable patrol strategies when the number of submarines
attempting transit is unknown. The problem is clearly but one
aspect of a central theme of this report, namely, that the
well-defined area games may mislead if unrelated to a larger

context.,

Misspecification of the Technological Possibilities

In our definition of the context of the analysis of a
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transit-patrol conflict, we included under the category of
technological possibilities open to the participants such fac-
tors as speed, detection capability, and patrol or transit pat-
tern. Naturally, in any theoretical modeling of the situation
we will use the best possible estimates of speed and will at-
tempt completeness (within the context) in listing the geomet-
ric patterns allowed to the patrolling and transiting subma-

rines. Even if we assume that these parameters are known

accurately, the remaining variability in the detection capabili-
ties are such to render the results suspect. If we deal with sea
exercises, the variability of sea state, equipment perform-
ance, and the small samples obtained render most results
statistically insignificant. If we consider simulation or gam-
ing experiments, the lack of reliable hypotheses to program
for detection renders the results unreliable when interpreted
as guides to practice. If we are attempting game-theoretical
analyses, the assumptions about detection capability can alter
the conclusions radically (even when all other parameters are
held constant.)

This nhenomenon can be illustrated by a simple ex-
ample of thz same type used in the previous subsection.

Consider the general game matrix:
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Pl 1 p 0
P, P 1 p
P, 0 p 1
P, q 2q q

where the strategies have the same interpretation as in the
previous subsection. If we consider the case of detection

probabilities p = q = 1/4 as before, the optimal strategies

are

P

3/8P1 + 1/4p2 + 3/8P3

T

3/8T1 + 1/4'1'2 + 3/8T3

with minimax probability of detection equal to -1-73 If we vary

the parameters of detection through the interval -‘i— L£p=

q < % » the optimal strategy for the patroller varies in the

following manner:

P = 3-1-_'7%—;’1 + ;ﬁ%P—PZ + 1,'4p P, .

1
However, the endpoint p = q = =5 this formula yields
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P = 1P1 + %—P3 » Whereas the sirategies P‘2 and P4

dominate this weakly. If this problem were presented at the

endpoint p = q = -é- the payoff matrix is

Ty, T, T;

P, 1 3 0
P, z 1 3
P, o 5 1
Py z 1 3

Common sense dictates the choice of P2 or P4 (the center

station or thecontinuous patrol). Nevertheless with p = q
= -i- - € , these strategies are hardly used at all:

1 1

z*€ Z +e

_ 2¢
P 'I+Zepl + I+45P2 + I+4¢P3 *

Thus a slight change in the detection specification can cause

a radical change in the strategy proposed as optimal.

Misspecification of the Objective Function

This is perhaps the most important part of formulating a

theoretical model of any process and yet many previous efforts
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in ASV. seem, in retrospect, to have been extremely oversim-
plified. Consider some of the possible objectives of a barrier:

(1) Make a statistical census of the transiting submarines
passing through. This in turn could have two possible varia-
tions:

(la) The purpose of the survey could be an absolute
census of the transiting submarines, in order to keep
a rough count of the opposing force in various areas.
(1b) The purpose of the survey could be a check on
large changes in activity. Thus, if the average has
been 1 transit per week a change to 2 per week might
not be significant, while 10 in one week would consti-~
tute an important change in the situation.

(2) Make a complete census of the number and type of
submarines crossing the barrier. (The barrier might or might
not be interested in whether the patrol submarines are inturn
detected by the transitors.)

(3) Prevent all transits. (The patr 'lling submarine will
necessarily follow a detection by other, more active, phases of
identification, pursuit, and attack.)

Even this simple enumeration of possible objectives for
the patrolling submarine should make clear the inadequacy of
the "probability ~f first detection' as an objective function.

However, the difficulty is even more serious than this. Namely,

-39-
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it is not clear that the essence of the real situation can be
reflected by any zero-sum model. For example, if a mis-
sion is assigned to one side, the oiner side may iake ""pre-
vention of that mission' as its criterion; so far, the game is
zero-sum. But if one side risks loss of a submarine, the
other side is likely to be prima facie indifferent to whether
the sub is lost; this is a non-zero-sum aspect. Under these
circumstances, any analytical approach must acknowledge that
the situation is one of partial competii >n, and must somehow
deal with the inherent conceptual difficulties.

The unavoidable conclusion of this discussion is that,
although the available methods may analyze local situations
and produce optimal solutions, these are likely to be mis-
leading if not erroneous without more realistic formulations

of the global contexts of which they are a part.
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III. 2 First-Detection Games

An important step in the further dzvelopment of sub-
marine-versus-submarine detection games is the determina-
tion of improved objective fu. ctions. In a previous MATHE -
MATICA study [6], consideration was given to a detection
problem in which a patroller attempts to maximize his pro-
bability of detecting a transitor, while the transitor attempts
to minimize that probability. This objective function was
also used by Wagner and Associates in [5]; optimal strategies
were found for that detection problem. Unfortunately, those
strategies, although they maximized the patroller's proba-
bility of detecting the transitor, did not assure that it was a
first detection; realistically, if the transitor detected the
patroller first, the transitor could probably avoid detection
by the patroller. The previous objective function would there-
fore only be applicable if (for some reason) the transitor had
fixed his route and speed in advance, and could not alter them
even if he detected the existence and location of a patroller.

In this section several games will be examined which
incorporate an improved objective function, namely, the pro-
bability that the patroller detects the transitor before he is
himself detected. These games make the essential assump-
tion that the range at which detection firs\ occurs is a ran=-

dom variable; otherwise we could not represent the random
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events ""transitor detects patroller first'" and "patroller de-
tects transitor first."

In order to facilitate ti.. development we will first set
down a sequence of definitions which will also apply to the follow-
ing section, III. 3.

1. Events

Attempted Transit (AT) An occasion for possible

detection of an enemy submarine attempting to transit the bar-
rier, which is patrolled.

Detection The reception of signals (on sonar or other
equipment) which have in fact originated from an enemy submarine,
although they may not have been identified as such with certainty.

2., Range Variables

Closest point of approach (CPA) We shall use D for

the random variable which corresponds to the distance between
the subma:z.nes at the CPA, when the AT occurs at a random
point o time. D is also dependent on the two speeds, the patrol
path and the transit path. We will explicitly treat only the speeds
here.

Maxi mum range for detection Two random variables

are defined here, S and T. They are symmetrical with respect
to patroller and transitor submarines.

Sz r rnum range at which the patroller is capabhle
of detecting the t .sitor under the conditions which prevail on

a specific AT.
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T = maximum range at which the transitor is capable
of detecting the patroller under the conditions which prevail on
a specific AT.

R = the maximum of S and T.

These ave random variables because the definition al-
lows them to vary between AT's. They also depend on the
speeds of the two submarines in a manner which we shall make
explicit below.

3. The Objectives

To maximize the probability of detection. For the

patroller, a detection is feasible, but not certain, if D < S.
He may wish to maximize P(D £ S). For the transitor, a
detection is feasible if D € T . He may wish to maximize
P(D < T).

To minimize the probability of counterdetection.

Against the patroller, a counterdetection is feasible under the
same conditions which allow detection for the transitor and vice
versa. Thus the patroller may wish to minimize P(D £ T)
and transitor may wish to minimize P(D < S). Notice that
these are logically the negations of the first pair of objectives.

To maximize the probability of secure detection,

For the patroller, if D € S and T £ S, secure detection is

feasible but not certain. The patroller may wish to maximize

the probability of a secure detection, P(D < S, T £ S§) .
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Similarly the transitor may wish to maximize the pr ,bability
N

of a secure detection of the patroller, P(D £ T, S - T).

Notice these two objectives are not complementary since

PD>Sor T>8 =1-PDS<Tand S <T).

To minimize the probability of re counterd.-
tection. We merely remark that the trans 1y wish to
minimize the probability F(D < S , T : hich is the

. complementary objective to the patroller's .. .he previous

paragraph. It seems unlikely that the patroller would concern
himself with mini'mizing PD < T, S £ T) explicitly, al-
though that woald partly be a result of his previous objective.
4. The Games

We consider in this section and the following, a
class of detection games with one of the above objectives, or
some objective derived from them by compounding. The stra-
tegy spaces are simple: the norinalized speeds, u and v
which vary over the intervals [u , um] , [vo, vm] . Itis
assumed throughout that hoth submarines follow straightline
courses at right angles to each other in the present simple
moadel.

It is important to note that the game stops when
either an uhdefected transit is completed, or a detection
(counterdetection) occurs. For the subsequent events in the

latter case a new game model is started, which will have ‘
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different features. Strictly speaking, the game ray stop even
earlier in the transit sequence: after the transitor has passed
the CPA undetected. However, this distinction makes no dif-
ference to the analysis, so we may ignore it.

As previously developed*, the probability of the
distance between the patroller and the transitor ever falling

below r during an attempted transit is:
P(D < 1) = min (2, 1),
where
u2
M=+l + -
v

and where u and v are normalized speeds for the patroller

and the transitor respectively while w is the half-width of

the barrier. Let

dFD(r)

FD(r) = P(D < r) and fD(r) = —
) dFS(r)
FS(r) = P(S < r) and fs(r) = —
dF,(x)
FT(r) = P(T £ r) and fT(r) = —

*
Seé page 31 of Reference [6].
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We define p(u,v) as the probability of a secure detec-
tion by the patroller wnén the respective speeds are u and
v. It is this objective which we shall examine in more detail
now. As mentioned above, the patroller attempts to maximize

and the transitor to minimize:
p(u,v) = P(D £ 5, T <58) .

It we assume that D and S are independent we can write

Jo F(r)Fop(r) (r)dr

W/M o
f r

(2) p(u, v)

w/ M

If w/M is large, then an approximation for equ. (2) will be:
(3) plu,v) = M | rF_in)f_(r)dr
’ W T s £
which is of the form:
= M .
(4) plu,v) = (W) E(S| T<S)P(T<S) .

If, furthermore, T ana S have zero variances 'we find

T < S ifandifonly cv £ u, where c i3 the ratio of the
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3 } transitor and the patroller noise slopes. In this case:
5 I E(SlT < S) =Ke®¥™, and: |
i f *
| / 1+ u’/v? 1/2\ - :
K (( uwv) i KeSVY if v <u
] 6 By =y
' 0 if cv > u

\

N reos

v AT S AR x

which is equivalent to the results obtained previously in [5].

s npgee

Exponential Example

As an example, assume that S and T are indepen-

‘w»ané.
gozierin

dently distributed according to the negative exponential pro-

bability law, i.e., that for r 2 0:

.
Iv;#’!}i ‘ru w».'
—teeig

ES) = 2,
: E(T) = a,”
j § -a)r
P(S<r) = 1-e¢e , and
. -a,r
} P(T<r) = 1-e .
g Then:
l 0 ~a,r -ayr
(6) plu,v) = =~ J r(l -e )ale dr
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where b = 2 .
|

A particular version of this example is obtained by also
assuming that the S and T distributions have means equal to the

thresholds for detection and counterdetection:

E(S) & -1 = Ke'™, and B(T) = &= = Ke¥/°"V,
- Ta a
1 2
The payoff probability reads:
- elctiNv-u/c)

(7) plu,v) = VY C2+b)b> where b
1+b)

If p(u,v) were shown to be convex in either u or v, optimal
(minim.ax) strategies would be easily obtained, The function in

(7) has been numerically evaluated for c=0,1, 0.2, 0.5, 0,75,

1,0, 1.5, 2, 3, 4, 10andu, v=0,1(0.1) 1,5, Table III, 2,1 shows
the values for the case ¢ = 1,0, In everycase, u = 0,1, v=0,1

is found to be a saddlepoint of the matrix, If ug and v, were

" different from 0,1, the saddlepoint effect would still be preserved

since the function p(u,v) is monotonic decreasing in u and increasing

in v throughout the range considered.
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II1.3 A Difference Game

The objective function used for submarine-versus-
submarine detection games in the previous MATHEMATICA
report [ 6] and also in Wagner [5] was the probability of detec-
tion of the transitor by the patroller, as a function of their
speeds. Parameters representing the range law and oceano-
graphic conditions were held constant. Using the notation of
[5):if u and v are normalized speeds, then the model, which
we shall call the "Patroller's Speed Game" GP, is de “-ribed

as follows:

. =
max min -3¢
P cv-u l 2,2
< =
uof_ u <u_ vo_<_ v SV l'F (u,v) = e I+u /v,

-

where c is a positive constant. It is obvious that there is a
symmetrical position for the transitor to take in this game:
this results in a model, which we shall call the '"Transitor's

Speed Game', GT which is described as follows:

min max 2
u € u su_ v £ v <Lv [FT(u, v) = eu/c-\(\l l-i-uz/v2 .
o~ m ©o— m ,

H
- -

Note that the min 21d max variablee are reversed. In both
games, c = a/b is a positive constant and a and b are the

slopes of the noise functions for the transitor and the patroller
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in terms of their speeds:

NP(u) b(u-uo) + ko if u <u < u

NT(V) a(v—vo) + Zo if VoSV <v

m

At speeds below u, the transitor's noise out put Np(u‘; is
( roughly) constant and siuni‘arly for NT(v) helow A The
maximum achievable speeds for the patroller and the transi-
tor are assumed to be u and Vo respectively.

The analysis of a patrcl speed strategy based on
GP is faulty if it yields solutions wiich in fact result in a
situation where the transitor is more likely to secure first
detection. An example of this error occurs in the game de-
scribed in Figure 6 of ref. [5], which assumes that & =b ;
the analysis leads to '""optimal'! normalized speeds for the
patroller of 0. 7500 and for the transitor of C.6054. Tue value
for the patroller's game GP is 1. 38; but the transitor's
game GT has a value of 1.74. This means that the {ransi-
tor can assure h.mself of a larger ""secure sweep width" and
accordingly also of first detection. Given the broad situation,

there is no reason for the patroller to adopt the optimal stra-

tegy of GP.
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Our formulation of a Secure Detection Speed Game in
the first place will involve objectives for the patroller and the
transitor which are not commplementary; hence, a nonconstant-
sum game. In the subsequent analysis we will reformulate
the game in such a way that it becomes a constaut-sum game.
Then various, simplifying assumptions will be introduced which
lead to mathematically tractable payoff functions.

Consider first the game:

(SDO) patroller to maximize P(T < D < S) :
transitor to maximize P(S < D < T) .
This game assigns symmetrical objectives to the patroller and
the transitor; both are to choose strategies which maximize
the probability of secure detection of the enemy. The solution
of this game is conceptually difficult because of its noncon-
stant-sum nature,
A constant-sum relative of (SDO) is derived next.
Let f-i and ’ i (i =1,2) be weights reflecting the relative
importance of detection and evasion to the patroller (i 1) and

the transitor (i = 2). Then it is reasonable to represent the

payofis to the patroller and the transitor in the following way:
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patroller to maximize P P(T <D <S) +A[l - P(S <D < T]

transitor to maximize )\ZP(S <D<T) +p.2[i - P(T <D <8]

which, in case Xl = )\2 and My T2 is eqﬁivalent to the

zero-sum game:

(SD;) min max [uP(T -D<S) - AP(S<D < T)]

Zp Zp

where ,ET and EP are respectively the patroller's and the
transitor's strategy spaces. -

It is interesting and helpful to note the effect of assuming
a priori, that one of the two probabilities in the objective func-
tion of (SDl) must be zero., This assumption would be na.u-
ral if, for instance,  the inherent differences between the
patroller's and the transitor's equipment made it virtually
impossible to achieve either S > T or T >S at the same
time as fulfilling other requirements of the mission. Suppose
then that P(T <D £S) =0 a priori, This implies, since

P(D £S)

P(D<S, D<T) + P(T<D<S) and

P(DLT) P(DLS, D<T) + P(S<D5_T),
that

PIDST) - P(D<S) = PS<D<T),

and therefore that the game (SDI) is equivzient to:
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-y WIS R W (i % Basch A A =

(SD,) min max [P(D £ 3; - PO < T)I .

Zr Sp

The same conclusion is reach  1if we start witr vhe 3 prieri
assumption that P(S<D & = ¢,
The game (SDI) v:ill be refer: ¢o nerein e e

"Difference Game', ;. emy  as the sumptions or whicn

(SDZ) is based are unnaces 2] -5 ve, and foe
mathematical formui .. of SURY ~nalvticaily *ou .om-
plex, we shall analyzz a aliphi.y Aiffarent seecinl S, of

(SD3) min max [uP(D <5 AND £ 1) .

ET Ep
Substitution of parametric forms of the probabilities in (SD3)
in terms of the strategy variables u and v (the normalized

speeds) results in the payoff function:
P T
Gl{u,v) =pF (u,v) +A(l - F (u,v)) ;¢>0,A>0 .,

The patroller is the u-player and maximizer; the transitor is
the v-player and minimizer. The analysis can be conducted
without specifying the values of the utility '"weights', pand\ .
Without loss of generality, since > 0 and both M
and \ are held constant, we can divide through by it and

represent the game as:
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G u,v) = Fp(u. v) - sl-‘T(t., v) = (ecv-u - seu/‘:'v)\jlﬂxz/v2 )

S oat
O P b b b
ivrw'

where s = } > 0 but may be indefinitely large. In this

~ o
X

game, the patroller is maximizing and the transitor is mini-

£

mizing a weighted combination of the probability of the pat:ioller

Y - TEFITTIRIT LR ¢
ol 'y . e e s 4
L sl on

detecting the transitor and the prubability of the patroller

avoiding counter-detection by the transitor.

‘.w::v,,x:l

Both Fp(u, v) and 'FT(u, v) are convex in the mini-

mizing playér's variable: v for the former, u for the latter,

e A RS " Apery
Al
[rm

The proof is-easily found by examination of the first or second

Eracal
ER¥oc

deiivatives of the functions. Unfortunately, the convexity of

G® is not so easily explorcd. In a related secure-detection

w2

%*
game, examination of the numerical evaluation of the payoff

function (Table 1II. 2. 1 in this report) shows that optimal pure

LIRS

strategies exist: they are the slow speeds u, and v for

the patroller and the transitor respectively., Under a mild

restriction on three parameters of the game (uo, c and s),we

AN

=

will prove that the same strategies are minimax for (SD 3).

)
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Lemma Iil. 3.1 If v

% . .
v is any fixed numbez in[v_,v ],

s *
then max Glu,v)
u°5u_<_u m

*
Gs(uo,v ) when 8 2 1,

The numerical calculations were performed for detec-
tion distributions which are exponential with range, and statis-
tically indej endent.
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Proof: Gi’(u; v ) - 0%1 + sbe ; T525% i ;

2 . ¥ |

4 btl .  btl P

; s 2 1’-%}1 + qbe > 1+ s8b 2 10 2 I2v% } .

.o

3 L

3 * * < '

2 8 > lgGs(uo,v ) 2 Gs(u.v ) for all u = ug

=

8 {

" u, -In{cs) Lo

TR el

« {

3 min ‘

- s, % s, * . *

3 = for any fixed such .

- v05v_<_vrn G(u,v) G (u ,vo) or any fi u .

% '

= that u, fu < u ‘

3 B

3 o

4 Proof: g..{

,’; N i

| The minimum over all ve [vo, vm] of the function G%(u o' V) =

1

A occurs either when v = v, or when v =v__ orata root of the ;} ,

‘7 equation G;(uo, v) = 0. Rearranging terms and cancelling non- .

zero common factors, the latter equation can be reprasented B

3 as

: 3,2 l+c 8 '

: 1 + v+ viju, = — . :

p ° c[l+se(c+1)(uo/c 'ﬂ] ;

I

3 Examination of the two functions of v on the left-hand side and

A the right-hand side of the last equation shows that it either has 3

v": exactly one real root or none in the interval (vo, vm), and that -

’ the condition of the Lemma guarantees there will be none. }

5 Furthermore, under the condition, G;(uo, v) > 0 for all )

t,,“ o

: -
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at the lower erd point of the vange: ¥ . = v .
point g€ min o

i ond i =

- -~

g
. . 8 . - Ry
v in the permitted range,so0 that G (uo, v) takes its minimum é

g
e 310505 tae conditions — > - g

are sufficient for (uo,vo) to be a saddle point of Gs(u, v) .
For all (u, v) such that u, fu < u o vy < v = Vin

G(u, vo) < (G(uo, vo) < G(uo, v). When ¢ > 1, thefirstcon-
dition is unnecessary, as it is implied by the secend.

Froof: This is & direct consequence of Lemmas III. 3.1 and
I1I..3. 2. We have now proved:;

Theorem The pure strategies u = u, and v = v, are op-

timal for the game G®, when s is sufficiently large (and in

any case not less than 1).

O

As an interesting special case, suppose that the patrol-
ler and the transitor, being matched in equipment, have the

same noise functions so that ¢ = 1. Then the theorem's con~

W e s e s e

clusion provid:s a recommendation that if s = 1 both sub-

marines should travel at their minimal speeds¥ (uo, vo) . Now

5 -

suppose that the transitor has equipment that is twice as quiet ot

as the patroller's: ¢ = 0.5. Then the thecorem is only opera-

tive when s 2> Z2; but the pure strategy solution (uo, vo) may

(in terms of the noise functions this :.s the speed such
that any s lower speed is likely to produce essentially the same
noise output).
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be true for & W% 4 w3 well. The tranoitor's advantage o
Ariatmnrs I e iewt ac Lap 4 grearer chance to detect the
patroller before being detected. As u result, we can only
reccmmend the strategy (u o’ vo) if the patroller values avoid-
ing counter-detection twice as highly as a detection of a transi-
tor, or believes it twice as likely that the transitor will play
the Transitor's Speed Game GT as that he )will play the
Patrolier's Speed Game GP.

The pure strategy solution (uo, vo) of the Difference
Games G is not in agreement with rnost of the solutions
found fuvr the examples in [5] for the Patroller's Speed Game.
We show in the table belcw a comparison of the solutions in the
case of eleven examples presented in [5]. The last column
of the table indicates the probability that the solutions offered
in [5] violate the non-probabilistic condition (cv > u) for a
secure detecticn by the patroller.

These examples make it clear that, whaile the simpli-
fied speed model for secure detection of the present section
cannot guarantee that detection will be secure in cases where
the patroller must usz & higher speed than the transitor (ex-
amples 1,2,6,7,8,9), it can provide a better guide to strategy
in other cases (4 and 6). For the remaining examples, the
comparison shows interesting differences (except 10) which

are not yet fully explained.
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Example in {5 1 MATHENMATICA Solution

Solution in[5 ] Vielaticn

1. =2 (.50, .05, (.8, .4)
2, =l (.75, .25) (. 7500, .6054)
3 =2 (.00, .02) (. 2000, .2229)
4 c=1 (.17 .25) . 1500 wp . 3972

.6981 wp . 6028
5, c=I (.00, .02) ( , 0000 wp . 1350

{. 2000 wp . 8650’ - 2852
6. c=1 (.10, .05) (.90, .30)
7. e=l (.70, .30) (.70, .55)
8. c=l (.05, .02) (.65, .30)
9 c=2 (.50, .45) (.7179, .4500)
10 c=1 (.50, .55) (. 50, .55)
11, c=2 (.40, .40) (.70, .40)
* wp = with probability

-59.

50%
100%
¢

4591)% 100%

0

100%

100%

100%
0

el WAL s b FAS T de L A et RTINS R AN - COPATEL O
.

Fevs

femnia




N YT

o nve A

-

e At e o
'

.
[

e i

S W e meBe ) s B whsmio < SRR
. N ~
S s .

[ P R A

1. 4 Large Structured Matrix Games

Introduction

We consider classes of large matrix games in study-
ing either game-theoretic aspects cf barriers, i.e., an array
of specified zones in which patrolling submarines attempt to
detect transitors, or aspects of the patrol strategies used by
a patroller within a zone. In these matrices, entries corres-
poand to (are proportional to) the probability of tk: patroller
detecting the transitor, columns representing a choice of
transit lane by the transitor, and rows the choice of a "pure
patrol strategy' by the patroller. The motivation for consi-
dering matrix games should te clear; computational methods
for solving them and theorems for analyzing them abound.
However, in order to obtain any results of interest for the
problems at hand large games need to be considered. Analy-
sis indicates that if large matrix games are to be solved, either
they must possess a strikingly symmetric structure which
permits explicit anzlytic solution,or realistic-looking matri-
ces must be genzarated from data obtained in fleet e:'ercises
and solved by techniques from linear programming. Both of

these approaches are discussed below.
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We consider square mairix games G = (gij) where

4

= |

ij = f (lx-_] |) » that is. the entry gij is a function of the
distance of the entry (i,j) fromthe main diagonal. It seems

Soind

particularly appropriate to consider functions f which are

monotonic non-increasing if we interpret pure row strategy

plementation of successive row strategies i and i + 1 can

a' 5 ; ‘~. i v

!
!
' ;
i as that of hovering at station i (i = 1, ..., n). Im- ;
i

be made in A straight~line patrol between stations i and

e - 2
T NE i Sy weny s commmgarans
‘..."!.'.»‘

i + 1 withina zone. A mixed strategy may then be inter-

preted as the proportion of time spent hovering in the vicinity

ey

!
of i in a back-and-forth patrol. |

=i

In previous work MATHEMATICA considered an }
m{2k - 1)-station problem G with g; = f([i-i}) = 1 for 5

|
[i-j| £ k - 1 and g; = £(i-jil) = 0 for {i-j| > x - 1 1

where k > 1. This corresponds to the assumption that the

. Ntk >
3 WA AT Bt el W L _ DSt NI
i. e ' I‘ .... - <.

transitor is detected if he traverses at any one of the k - 1

adjacent stations on either side of the patroller's station.

i -

Call such games, which are defined by specification of m

and k, H(m,k). For example, the game H(2,2) is defined !

by the 6 x 6 matrix
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It is convenient to think of m as the number of iden-
tical blocks or square submatrices of dimension 2k - 1
which lie along the main diagonal of H(m, k). Using these
concepts it is easy to show that the value of the game H{m,k)
is 1/m; an optimal strategy for the patroller or row player
is to choose row i with probability 1/m if i = k (mod
k + 1) and with probability zero if i Z k (mod k + 1} ;
and an optimal strategy for the transitor or column player is
to choose some column from each block and play this column
with probability 1/m . Thus, for example, the value of
H(2,2) is 1/2 ; the patroller's optimal strategy is (0,%, 0, O,é-, 0);
and the transitor's optimal strategy is (-é-, 0,0,0, 0,%) .

The unsatisfactory nature of games H(m, k) is that
they make a "cookie cutter'' assumption for the range law:
any transitor within k - 1 stations of the patroller is surely

detected, any transitor further away is never detected.
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Graphically,
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Figure 3.3

Consider, now, an mk-station problem G with
g; = H|i-) = 1‘_'11-‘3-’— for |i-j] £ k-1 and 8 =
fli-jl) = 0 for [i-j| > k-1 where k > 1. This
corresponds to the assumption that the transitor is detected
with probability 1 - 4/k if he traverszs in a lane {-distant
from the patroller's station. Thus the cookie-cutter range
law is discarded and, instead, the range law is that proba-
bility of detection decreases as distance increases.

Specifically,

-63-

\Y

WP S T R v e R

KXW, WL

e . R RO T [ 2




Ftéﬁm»mmre\:’ﬂw”n Ry R e ———ee e
-

Probability of detection

k distance apart.

Figure 3.4

We call such games, which are again defined by spe-
cification of m and k, G(m,k). Again, it is convenient
to think of m as the number of identical blocks or square

submatrices cf dimension k which are of the form

k k‘l . . . 1
k"l k k-l . . z
1
k * . L]
1 2 . . . k
L

and lie along the main diagonal of G(m,k) . For example,

G(2,3) is the 6 x 6 matrix
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We have found that the value and optimal straiegies
7

for any game G{m,k) can be specified. .1

; — mk+i
The value of the game G{m,k) is (@) - An

optimal strategy for the patroller or row player is to choose

row ik+tl (i = 0, ..., m-1} with probability {m-i)/m(m+1)

LYY

row ik (i = 1, ..., m) with prcbability i/m(m+1) ; and
all other rows with probability zero. Symmetrically, the
transitor or column player is to choose columns i with the
same probability with which the row player chooses rows i. -
Thus, for example, the value of the game G(2,3) is 7/18 *
and optimal strategies for both players are 1/6[2,90,1,1,0,2].
To preve this statement it suffices to show that the
expected gains or winnings of the row player against any pure
strategy of the column player is precisely the value of the

game. Then, since the game matrix is symmetric, the iden-

tical strategy for the column player assures him of losing
the valus as well. So, consider any column, say column

/k+j . Its non-zero entries lie within the rows (ktj-k through
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fk+ j+ k. Within these, the value cf the entry in row 4k

is k-j;inrow /k+1 is k-j+1; inrow (f+l)k is j;
and in row (/+1) k+ 1 is j - 1 .Thus, since the mixed
strategy above plays only these rows with non-zero probabili-

ties, the expected winnings against column fk+j is

"m‘T“.rlﬁ‘r)‘ ~ ';lzgf'(k-i) to(mof) (k-j+l) + (+1)j + (m—!-l)(j—l)}

mk+1

= .cml m+ 1 s

thus proving‘thc 2ssertions.

Notice that as, k becomes large, the value of the
game approaches (m + l)..1 Furtker, the parameter k enters
only for purposes of determining the cycle of non Zero chei-
ces of pure strategies. Thus, as an average figure, we ob-
tain the approximate resuli that a patroller able to detect a
transitor with probability 1 - ’a‘. , if x < d where x is the
distance between them, d the maximum distance at which
detection is possible, has probability {m + 1) -lof detecting a
transitor, where D is the width of the patrol zone. In
G(m, k) we interpret d = k and D = mk so that .521—
is (m+ 1)—1, agreeing with the result above as k becomes

large (which is essentially a change of scale). Thus it would

seem that the "measure of effectiveness" Ff'&' should
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have a bearing on the design of barvriers, and, more parti-
cularly, on the definition of the width D of a patrol zone,

in relation to the secure sweep width, which is propoxrtional
to d.

Assume that d is known and that D may be chosen
in such a way as to make D/d = m integer. The implica-
tions of the assumed range law, with its maximum range d
for a detection to occur with non-zero probability, are then
as follows: When m is 1 and the range of detection is the
whole width of the barrier zone, the patroller's mixed stra-
tegy assigns equal weight to each end of the zone and zero
and zero weight to the '"center'". When m = 2 and the
range of deiection is half the zone width, the mixed strategy
assigns essentially equal weight to the '"center' of the zone
and each end of the zone. At the other extreme, when m is
very large (range of detection is a very small fraction of zone
width) the mixed strategy for patrol ssigns equal non-zero
weight to pairs of adjacent interior stations spaced out d
units apart, and double weight to each end station. For inter-
mediate values of rn the results are qualitatively the same,
except that the optimality is more sensitive to the correct posi-
tioning of the individual stations. The main point to realize
about the nature of these mixed strategies is that they deci-

sively do not recommend a uniform patrol back and forth
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across the zone. Instead, the designation of a particular set
of m+l rows out of the mk rows in the game matrix for use
in the patrol strategy is equivalent to a recommendation of a
number of favored positions for optimal patrol in the harrier.
Of course the recommendation is contingent upon the particu-
lar form of the range la\;r assumed. Other range laws will
produce different mixed strategies; in general it is reasonable

to expect that they will also show a pattern which favors cer-

tain distinguished points of the zonal width.
Large Matrix Games
A difficulty with many of the analytic models discussed

previously is that the strategy spaces of both the patroller

and the transitor are considerably too restrictive to adequate-

. ly represent actual strategy alternatives. A methodological

approach which would allow at least some analytic probing
of tradeoffs between such factors as speed, use of active
sonar, patrol patterns, etc., is described below. Allow the
transitors pure strategies which depend upon the choica of
transit lane and choice of speed; allow the patrollers pure
strategies which depend upon varying speeds, type of patrol
(e.g., bow-tie, back and forth); but in all cases assume that

the set of choices within each category is finite. For every
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{ choice, which can be represented by a t-tuple of integers for

the transitor and a p-tuple of integers for the patroller, find,

Erd

according to given functions or from data produced by fleet

exercises, probabilities of detection, or of first detection, or

==

of no detection, etc., by the patroller and the transitor. On

the basis of these,assign subjective values to the patroller for

=

mutually exclusive outcomes. TLis results in a matrix having |

v B D S LT ae ey T a~1ore ™
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as many rows as the product of the number of speeds, patrols,

etc., available to the patroller, and as many columns as the

=

product of the number of transit lanes, speeds, etc., avail- !

able to the transitor. This matrix game could then be solved

a0 g L SR Ty Hond S

by means of linear programming to determine optimal mixed

ed

strategy patrols for the patroller and transits for the transi-

tor. The difficulties with this approach lie in two areas:

availability of data concerning probabilities of detection as a . u

function of speeds, patrol patterns, etc., and the size of the

anery
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et 5 A AN S D i b o Tr © ] o ST T
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resulting matrix. Nevertheless, extremely useful insights

id

could be obtained,
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The size of the resulting problem may appear to be
too large. Current computer limitations would allow at most
some 1000 pure strategies for one player, though a practi-
cally unlimited number for the other. The hope, of course,
is that some form of decomposition approach might lend itself
to permit efficient computation of large problems. Unfor-
turately it seems that the structure of most matrix games
does not allow such an approach. The basic reason for this
can be summarized by saying that the value of the game is a
complicated rrational function of the values of the matrix
entries. The simplest applicable type of decomposition
is for matrices which are the tensor product of other matri-
ces. This type of approach was investigated in ref [7] through
rather involved and lengthy arguments. We present those
ideas in a direct and simple manner here.

Let A be a matrix game, x a mixed strategy on
rows, y a mixed strategyv on columns. Then, by definition,
x* and y* are optimal and )\ is the value of the game A

if and only if
x*A _?,.Xe , and Ay* < )\e .

where e is a vector of 1l's (one's) of appropriate dimen-

sion. We have the following result:
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Let x and y be optimal for A with value
A> 0, and X, y be optimal for A with
value }\2 0. Assume Ay > 0 and

Ay 2 0 (itis sufficient to have A, & > 0
for this assumption to hold). Then x®x
and y@Yy are optimal for the game A QA ,
the tensor product of A and A, with value
AR,

The proof of this is triviai,for

(x®x) (ARA) = xA®xA > AA e and

A®R) (yRY) = AyQAY < AXe.

the last ingqality holding by the explicit assumption made in
=
—the statement above.

As an example consider

Then x = {3/5, 2/5), y = ({3/5, 2/5), A = 1/5;and

% = (1/16, 4/16, 11/16), ¥ = (6/16, 2/16, 8/16) ,
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A= 18/16 ; and the assumption Ay 2 0, Ay > 0 is

satisfied. Therefore, the optimal solution to

-1 0 3
2 -1 1
1 2 1
A®A =
1 0 1
-2 1 -l
-1 -2 -1
is
x®%X = '8% (3,12, 33, 2, 8, 22),
Yy@®Y = '516 (18,6,24,12,4, 16),
with value
N 18
A= 8

This result is applicable to situations where the effects
of two parameters are multiplicative. For example, if the
effect of patrol pattern on detection-probability was indepen-
dent of the effect oi speed, the payoff-matrix Gps obtained

when both parameters were taken as strategic variables would
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be proportional to the tensor product Gp &® G_ of the pay-
off matrix Gp of the "pattern game' with the payoff matrix
G, of the '"'sperd game'.

True independence of such a pair of parameters, of
course, would be a rare circumstance -- but if the factors
were nearly independent, the above tensor-product theorem
would provide a useful first approximation to a solution.

If the strategic choices for each player involved more
than two parameters, we could employ the obvious generali-
zation of the above theorem to a tensor product of n matri-
ces.

Theorem: For each a = 1, ..., n, suppose A% is the
matrix of a game which has optimal strategies x% and ya ,
and value A% 2 0. If also Aaya 2 0 for each a, then

the game whose matrix is the n-fold tensor product A = A1

@AZ ®...0 A" hasvalue A = )\1. A ...A" and opti~
mal strategies x = x! ® x° .. @x" and y = yl ®
2

vV ®...0rv.
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III.5 Continuous Analogs of Toeplitz Matrix Games

P
-

et W WD s a7

e

p——

In Part IIl. 4 "Large Structured Matrix Games,'" a

class of large matrix games JG(m, k) was introduced in

PR—

PO

which the transitor has as pure strategies the choice of one

of a finite number of transit lanes (choice of a column in

g

G(m, k)} and the patroller has as pure strategies the choice

Lt ]
o r—

of one of a finite number of stations at which he can hover.
Then, the probability that the patroller detects the transitor
is (k ~d)/k if d < k and 0 if d > k, where d is the
distance between the patroller and the transitor.

It is natural to consider the continuous anaiog of this
class of matrix games. This game is defined as follows: . i

Let -

@ y) 1-‘—’533'—1- it |x-y|<a i

> )

i lxoyl> a

]
o

where 0 € x,y € D, be the payoff of player II, the y-

player, to player I, the x-player. The interpretation for

| S R e

this game is: the patroller has as pure strategies the choice

of a point x on the line [0,D], the transitor has as pure

strategies the choice of a point y onthe line [0,D] ; the

-74-
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probability of the patroller detecting the transitor is given
by ﬁ(x, y) . Thus d is the maximum range in which detec-
tion is possible; D is the width of the patrol zone. For

fixed x, say x = x, }ﬁ(?i. y) describes the range law:

B (%, y)

Figure 3.5

It is most surprising to find that both players have
optimal mixed strategies which each use only a finite num-
ber of pure strategies. A mixed strategy is a probability
distribution f on the choine point x for player I, and a prob-
ability distribution g on the choice of point y for player
IL.

The value of the game defined above, for D/d not

integer~-valued, is

2n - D/d
nln+ IS
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where n = [D/d] + 1, with [.] denoting "integer part of."
Note that n A D/d so that the value of the game is about
f)t?g- , a8 was indicated in an approximate manner in Part
III.4 . .‘n optimal strategy for player I is to choose a distri-

*
bution f (x) defined as follows:
* * *
£(x) = £ (x) + fo(x)
where
Fix) = 0 =0if x#kid; x # D-kd
L R, H ?

k integer ,

* _ n-k _ X -
fL(kd) = m = fR(D kd) R

where, again, n = [D/d] + 1. An optimal strategy for

* *
player II is to choose a distribution g (y) where g {y) =
* * . * L 3% *
g (V) + ggly), with g (y) = £.(y), gly) = fp(y) .
For example, if d = 5, D = 16 we have n =
[16/5] + 1 = 4 ; the value of the game is 24/100 ; and

each player uses 8 pure strategies

f;:(O) =y = £;(16) ; f’;(s, - f.;(ll)
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* _ & _ % . %* 1
£10) = 55 = £(60) ; £(15) = 5

i

*
fR(l) .

¥ . * . e .
g 1is the same as £ . Graphically this means that the

patrolier should circle 2t one cf 8 stations as indicated in

Figure 3.6 below.

el =

4

| 3 |
1 0 - !
| 2 |
I 5 ‘
/ {
D441 3 |2 2|3 114 ?
szm 70 |20 70|70 70 20

0 1 5 6 10 11 15 D=16 o
n

Figure 3.6

Let E( &; f,g) denote the expected winnings of
player I given that 1 uses mixed strategy f and II uses
mixed strategy g . To prove the contention above it suffices .

to show ) |

E(gite") s B e < =iy,
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that is, f is optimal against g , and g is optimal against
*

£ . -i'
. * b
We first compute E(¢ 6, 8).
1
n (j+1)d i
E(fi6g") = o S m-0{ 3 | @-x+aa
» Ay - Lt - 3 - X
AEED i 4 5 i
h il
jd
1 7 i
t 3 (x +d - jd) df §§
jd-d
n D-kd ﬂ
+"(_"I)'nn1+ z (n-k)% f (d - D+ kd + x) df )
k=0 D-kd-d il
D-kd+d :
+ 3 f (d - kd + D - x) df 3
D-kd

1}
4

since yf(x,y) = 0 for |x-y| > d, where we hive '"broken

Wioadets §

up" the interval [0,D] into [0,D-nd+d,d], [D-nd+d,d],

[d, D-nd+2d] , etc.; or, in general into [hd-d, D-nd+hd], [D-nd+hd, hd]. ;
-
Consider, first, the contribution to E( ¢; £, g*) duz to the .
i
interval [hd-d,D-nd+hd] . From the first sum, with j = i

h-1 and j = h we get

St |

o

% f (d-x+hd-d)df and a-(’-;l-‘;‘m f (x+d-hd)df

Famoe

14

while from the second sum with k = n-h and k = n-h+l
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we get

(n~n+h)
n(n +

f.’-(d-D+(n-h)d-x)d£

and

(n-n+h-1)
n(n + I)d

f(d-(n-h+l)d+D-x)df.

Combining these results we obtain
{2n - D/d)
| CaePmt e

Precisely the same result obtains when integration is per-

formed over [D - nd + hd, hd] . Thus we find
(2n_- D/d) _ 2n-D/d
E(¢ f,g) n{n + O[df- T+ Iy .

This says that against the strategy g* player I can choose
any mixed strategy and obtain the value (2n - D/d)/n(n + 1) .
Thus, in particular, f = £ maximizes E(@; £, g*) .
Similarly, g = g* minimizes E( %; f*, g) . Therefore,
f*, g* are optimal strategies and the value of the game is

(2n - D/d)/n(n + 1) .

For the D/d integer valued it is easy to verify that
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the value of the game is (n + 1)°1where n = D/d, and
both players play points kd (k = 0,...,n) with prebability
@)t

It z'seems clear, as is the case for the optimal straie-
gies fox the games G(m, k), that f* and g* are unique.

So we obtain similar results, about the same "measure of
effectiveness" -i-;—z;a-: » and, again, a recomp-xenda.tion that
the patrollerz should use a finite number of favored stations
or positions for specified proportions of time. Of course,
the result depends upon the particular range law }zf(x, y)
whicih is chosen. Nonetheless, reasonable range laws would
seein to lead to the same type of qualitative result; certain
distinguished stations should be used.

The game f(x, y) which has been analyzed above is
the continuous analog of the matrix games G(m,k) . For
purnoses of comparison it is interesting to consider the con-
tinuous analog of the matrix games H(m, k) (see Part IlI. 4).

It is natural to formulate this game as follows. Let

Vixy) = 1 if |x-y|5d i

0 if |x-y|>d ,

where 0 <x,y <D, be the "payoff’ of player II, the y-player,

to player I, the x-player. Here, again, D is the width of
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the patrol zone, and d is the maximum range in which sure
detection is possible with probability W = 1. Thus, we
have the conkie-cutter range law: for fixed x, say x = x,

V(x,y) describes the range law

\V(?‘: y)

l

- ———

Figure 3.7

The value of the game WV, for D/2d not integer

valued,is

L
m

where m = [D/2d]+ 1. Note that m ®¢ D/2d so that the
"measure of effectiveness'" is about 1/D . An optimal stra-

tegy for player I is to choose a distribution f*(x) for which
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12k + 1) q)

';rll-', k= 0' o0 0y m - 2 ,(k=o, m"z),

* % *

Fixy = al- where x = min {@m - 1) 4D},
X* .
f(x) = 0 otherwise;

and an optimal strategy for player II is to choose a distribu-

*
tion g (y)
* 1
g(k(2d +e)) = =, k=0,..., =-1,(k=0...,m-1)
* .
g (y) = 0 otherwise .

Here 0 < ¢ < (D/2d - m + 1)2d/(m-1).  The basic
point of the transitor's strategy is that m points y should
be used,but that each pair of such points should be distant

more than 2d .

For example, if d = 5, D = 16, then m = 2 ;

’

1
the value of the game is 5 and each player uses 2 pure stra-

tegies; ¢ may be between 0 and 6 (we choose 0. 5):

* * 1 * * 1

£(5) = £(15) = 5 , g (0) = g(10.5) =5 .
The proof of this statement is straightforward.
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d (2k+1)d+k e
x 1 p el
E(V;:f,g) = ™ df + ™ f daf .
0 =1
k (2k-1)dke

Thus. an f which maximizes is any distribution f which

has all its weight concentrated in the intervals specified in
the above definite integrals. f = f* is such a distribution.
So, E(Vif,g") < E(V;if,g"). The inequality E(Y;f »g)
< E(V; £, g) is immediate.

If, on the other hand, D/2d is integer valued it is
easy to see that the value of the game is 1/m, with m =
D/2d , player I plays points (2k +1)d, k = 0, ..., m~-1,
with probability = , player Il plays points k(2d +t),
K=20,..., m-1, with probability "1-1;' where 0 < ¢ <
2d/m -1 .

This singles out an interesting obrervation. Namely,
if one believes that the range law is of cookie-cutter type,
then the width of patrol zone D should be chosen so that
D/2d is integer valued. For if it is not so chosen then the
patrol width might just as well be increased: this can lead to
no decrease in the probability of detection. This seemingly
peculiar result is a consequence of the discontinuous nature
of V(x,y) . Another way of pointing to this peculiarity is to
note that if D/2d = m is integer-valued then the value of the
game is -rt-a- ,while if the width is increasedto D + &, with '
6 > 0 but arbitrarily small, then the value of the game

jumps down to 1/{m + 1) .
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Finally, notice that the measure of effectiveness for
V with defining parametsrs d,D is about 2d/D while that
for ¢ with defining parameters d,D is about DTdd' . In
terms of the extended definition of 8&¥ given in Part II this
means that the cookie-cutter range law yields an SSW of 2d
while that of the ''linearly dec.e¢aswn, 7ange law yields an

dD
SSW of DT
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II. 6 Repeated Games

Recent research in the mathematical theory of games
by J. Harsanyi [3]*, and R. Aumann and M. Maschler [1],
[2] has resulted in a theory which provides strategic analysis
for a sequence of repeated conflict sitwations in which the
players -- the patroller and the transitor, for instance --
have incomplete information about the payoffs. This section
represents an attempt to apply some of their results to ASW,
and to interpret them in the context of a barrier situation.

Repeated Zero-sum Games of Incomplete Information
are formal models of a sequence of closely related strategic
situations. Two players are to make choices of strategy at
each stage of an indefinitely long sequence of matrix games.
One or both of the players may lack certain information
which would specify the true payoffs at each stage. The al-
ternative matrix games which determine the actual sequence
being played are known to both: call them Gl’ GZ’ ceey Ga ’
where Gi isan m x n matrix game for each i. In addi-

tion, a prior probability distribution over the alternatives,

(q1 BCPIIERR qa) representing the state of information

%k
of the uninformed player is known to both players.

* See Bibliography on page 109 of this report.

Assuming for the purposes of discussion that only
one player has incomplete information.

-85-




v

pat 3

3
%

PR
EN '
Bt b v St e 8

iy
e
| P s 4
- At
SN
Nd Tad a3 24

S SR TN o AR SN 35 o vy n s o - [ —

e S wm AT

. S 57 b Rl N R

Naturally the sum of the qi's is 1; in the case where one of
the qi's is exactly equal to 1 the inforn ~tion of both players
is complete. For all other cases there is said to be incom-
plete information.

In the sequence of repeated games, each player at-
tempts to maximize his gain (minimize his loss) in the sense
of the long-run average payoff per stage. The players are
generally not able to learn exactly what the payoffs are at
each stage, but if one player has complete information he,
of course, can deduce them. The uninformed player must
try to discover the payoffs by observing the strategy choices
of the opponent, and he may in some cases approach a state
of complete information. There are also examples where
no information is revealed to him by an intelligent opponent's
choices. In the latter cases the players are simply playing
the game (one might call it the expected or averaged game)

whose matrix is given by
- - a
G=2Z., 946G -

and the optimal strategies for both players are determined
by the usual minimax solution to the matrix game defined by
G.

The analysis of the repeated games with incomplete

information proceeds as if the first move were a random
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choice (by nature) of one of the niatrix games Gl’ GZ’ v
Ga . The informed player is, in effect, told the outcome of
the ""choice of chance" while the uninformed player is not.
One of the questions which the theory has sought to answer
is: to what extent and by “wkrich type of strategy should the
informed player make use of his extra information? In a sin-
gle stage of the sequence, the information, if it is advanta-
geous, can clearly be exploited. However, it is not clear
that the informed player can continue to gain advantage from
his information in the long run. One of the surprising results
of the work of Aumann and Maschler is that, in some situa-
tions, the informed player must act as if he were uninformed
if he wishes to maximize his long-run average gains. We
turn now to the consideration of some rather simple exam-
ples in which these considerations may play a r8le for the
patroller and the transitor.

The notion of games of incomplete information may
cast new light on situations which can arise in an ASW barrier
context, where the patroller {Player I) has certain infor-
mation which the transitor does not have -~ such as the exis-~
tence of abnormal acoustical situations, or the likely sonar
range under various conditions. The possibility exists that
the transitor (Player II) could infer information, which would
be useful to him, by observing the strategy of the patrc'ler

-- i.e., by vbserving how the patr- “er used his additional
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We have therefore formulated several games of this
type.

Example 1. The patroller knows detection-range, the
transitor does not.

To be specific, we may assume that the patroller
(Player I) knows the sonar detection-range, t‘flat the transi-
tor (Player II) knows only a probability-distribution over the
sonar detection-ranges, and that the transitor Jiscovers I's
patrol strategy with some time-lag. For example, long-
term predictions of detection-range will be known to both,
actual ranges may change only slightly from day to day, and
the previous days' patrolling orders m'ay be assumed deci-
phered* and available to the would-be transitor.

Furthermore, we assume that, when the sonar range
is known, the detection game will of the form called G(m, k)
in Chapter III. 4 of this report. G(m,k) Aistinguishes among
mk possible positions far the patroller, and among mk cor-
responding lanes for the transitor. The optimal strategy for
Player I in the game G(m,k) is given in Chapte." I11. 4 of this

report; the optimal strategy for Player II is identical; the

value of the game is %—r .

*
It is usual tc assume that security and cryptological
measures can only delay, and not prevent, the enerny's inter-
pretation of a message. For that reasun we assume that the

transitor will eventually discover information which the patrol-

ler continues to use.
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Now consider two such games, defined as G(ml, kl)
and G(mz, kz), such that mlkl = mzkz . The matrices
of these games are of the same si1ze -- viz., (mlkl) X
(mlkl) -- and therefore a game of incomplete information
can be defined with a prior probabkility q; of playing the
game G(ml. kl) and a prior probability Q, of playing the
game G(mz, kz) . An example of the appcarance of the
matrices with m, = k?_ = 3, m, = kl = 2, could look
like this:

—vaa

21
121
Probability Q) 121
121 7
- - 1 121 v =
321
2321 N
Probability (1 -ql) =q,:f 12321 :
1 12321
G, = G{2,3) = 3 12321 2 i
1232 vV = 9% ;
1‘3 'g
i
1 .
|
- {
!
o
|
£ i
1 !
4
-
B
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The average matrix, G, is then given by

G =G +q,-(G,-G;) .

To simplify the appearance of subsequent formulae

we will take x = q, » so that q; = 1 - x, andthe

P L )

P i rsy aaalln [

(<57 0% ERarre

matrix G, which we shall denote by G(x) to recall its

dependence on x, becornes

6 3+x 2x
3+x 6 3+x
Glx) = 2 2z 3+x 6
~ 2x 3+x
\ 2x

AN

[ 2P

Tke value of G(0) is then v(G(3,2)) , which is known

tobe 55 = 0.2917 ; the value of G(1) is then v(G(2,3))

which is knewn to be 'IZQ' = 0.3889.

0 < x £ 1 the value

v(Glx))

189 - 99x - 45x° + llx

i
H
2x i
d

3+x 2x !
6 3+x 2x / §
3+x 6 3+x,/ .
2x 3+x 6// d
i
5

H
Calculation gives for

PYLPINN

PR

3

72 ( 9 - 8x + x°)

which is tabulated below as a function of x,

in Figure 3. 8.

%
' too tedious to be reproduced
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0.35

—Vex v{(i(x))

v(G(x))

Cav v(ﬁ(x))-.....}

eD

.
A o iy o e . 5 it =
T "

1.0

>

A, C are intersection points of Cav v(G(x)) and Vex v(G(x))
B =T
D =T

1’ one -shot game with I informed

2,' one-shot game with II informed

Figure 3.8

Value of Games of Example 1
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X v (G(x

0.0 7/24 = 0.2917
0.1 178661/591120 = 0.3022
0.2 2617/8370 = 0.3127
0.3 5716/17840 = 0.3229
0.4 17863/53640 = 0.3330
0.5 1037/3024 = 0.3429
0.6 ‘ 402/1115 = 0.3526
0.7 101423/280080 = 0.3621
0.8 10829/29160 = 0.3714
0.9 2647/6960 = 0.3803
1.0 7/18 = 0.3889

When we examine the convexity of this function of x,
we find that it is a .‘_;99_‘:_”_!9. function; from this fact, and from
the general theorems referred to above, we conclude that
Flayer I (the patroller) should not make use of his additional
information to improve his strategy when the transitor could
observe the strategy -- because the transitor could then use
those observations to deduce which stage game had actually
been chosen by chance (i. e.. » what the patroller had discov~

ered about the sonar detection-range).

~92-

i IS e B oy

}

Hocmaly SRy

IMW}

¥
4

LAt
L bainnd

&
*

Ay
PR O

==

: 4

w! et §

| 3
~.-

froa  gemen

Qg’ﬁ! oy gy goraind

ey geosy




€ T

o

s

A

T VIR

)
§
0
i

P T e - -{

This result is, to put it mildly, astonishing. We
shall describe the optimal strategies in the games G(0),

G(%-) » G({l) , and attempt to clarify the situation.

Optimal strategy in G(0) G(3,2) is: T12'(3’ 1,2,2,1,3);

G(2,3) is: ¢ (2,0,1,1,0,2) ;

Optimal stratagy in G(l)
Optimal stiategy in Glz) is: g (71,15,40,40,15,71) .

(In each case, the strategy cited is optimal for both players).
Now if the game is, with equal probability, G(2,3) or
G(3,2), but neither player knows which, they must play
against the expected outcome G(%) and the value of the game
will be 0.3429 . If Player I{the maximizer) knows which it
is, he may profit by adjusting his strategy appropriately. *
T.owever, if he does so adjust his strategy, and if Player II
(the minimizer) can observe his play and deduce which game
is really beirg played, they will {ind themselves in the long
run playing either G(3,2) or G(2,3) -- with values 0.2917
and 0. 3889 respectively, and with probability %— of each.

The expected value of that game to Player I (the patroller)

* We specify below the optimal atrategies for that
cne-shot game.
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is then % (0. 2917 + 0.3889) = 0.3403.

It therefore profits the patroller to ignore the infor-
mation he gets on the detection-range, under these circum-
stances. If the patroller is not concerned with his strategy
being revealed -- (see Fig. 3.9) -~ to the transitor,the
fact that the game might be repeated is of no importance.
Exact determination of the optimal strategy, and the value,
for this one-shot game which we call Fl will tell us how
much the patroller could benefit from knowing the true detec-
tion-range when the transitor dces not know it.

Symmetry tells us that optimal strategies will involve
location in position 1 as often as in 6,2 as often as 5, and
3 as often as 4; we may therefore draw up the matrix of
strategies for the '""one-shot" game, wherein neither revela-
tion of intelligence nor repetition of the same conflict are
gignificant factors. A strategy for Player I consists of a
pair (rl, rz) where r, = 1,2, or 3; r, = 1 denotes that
the patroller patrols in positions 1 and 6, r. = 2 denotes
positions 2 and 5, and r, = 3 denotes positions 3 and
4; the first number, Ty tells how player I patrols if the
game is really G, , and the second number, r,, tells
how he patrols if the game is really G, . The strategies
for Player II are 1,2, or 3, corresponding respectively to
transits in lanes 1 and 6, lanes 2 and 5, or lanes 3 and 4 .

The payoff matrix for the gaime I’ 1 is then as shown
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Figure 3:9: The Game I"l

Player I is told the result of the first chance move, and
therefore knows whether G, or G, is being played;

Player II is not given that irformation.
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(we actually show 24 ri to avoid fractions):

Pure Strategy for II
e ~ —
1 2 3

24F1

(1, 1) 12 7 2

(1, 2) 10 9 6
(1,3) 9 9 10

(2,1) 9 10 5
Pure
Strategy{(2, 2)

for 1
(2, 3) 12 13

5

(3,1) 6 7 11
4
2

-3

12 9

(3,2)

{3, 3)

It turns out that the optimal strategies for this one-

shot game I; are:

(A) ( ) 5 ]
5(1,2) + 4{1,3) ,

for Player I:(or -(1)-(1,1) + %(1»3) . >

lor any linear combination of those; |

for Player II: -g- (1) + %(3) .
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The value of this game is then ég— = 0.3611,

Although the numerical values obtained in this one
particular case are not in themselves of great importance,
they serve to illustrate several important points:

(1) if the actual situation is either Gl or (}2 , with
equal probability, but neither player knows which, the value
is simply v(G(é-)) because the expected payoff mairix is
simply %Gl + é'GZ = G(-‘IZ) . Value = 0.3429 ;

(2) if the actual situation is either G, or G, ,
with equal probability, and the patroller knows which, but
the transitor does not, then the patroller can patrol the end
lanes (%! and %6) when the game is G, and some mixed
behavior-strategy satisfying (A) above when the game is

C’Z , then the value is increased due to his additional know-

- -

ledge; value = 0.3611 ; et

(3) if the transitor is unable to observe the detection-
vange (i.e., the random choice of G, or G,) directly but is
able to observe strategies of the patroller over a long period,
he could infer from the strategies as described by (A) above
whether the game was really G1 or G, ; then, in the long
run, he would be playing either G; or G, (whichever hap-
pened to be chosen by chance) -- and they would be equally
likely, so that the value would be v(G 1) half the time and
V(GZ) the other half. The expected value wouldthen be

3{¥G)) + v(G,)) ; value = 0.3403.
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From the above numerical result we can see that, in
this case, the benefit which Player I could receive due to an
advantage in intelligence is substantial -- but that benefit
would be essentially nullified if the game were played repeat-
edly and the transitor could discover the patroller's past
strategies. In fact, under those circumstances the patroller
should refrain from using the information which he pc;ssesses.

Example 2. The second example, which is similar in
principle, results ir. answers which illustrate the opposite
possibility. The example is identical with the preceding ex-
ample, but we in;xagine that Player II (the minimizer, who is
the transitor) can get the additional information about the
detection-range (i.e., about whether Gl or G, was chosen
in the first random move.) To Player II, the average game
5(%) with expected payment of 0. 3424, is less desirable than
the opportunity of playing G, half the time and G, -the other
half (a situation which has expected payment of 0.3403).
Therefore Player I would benefit by using the information,
even though he would reveal it inusing it. If, as the opposite
extreme case, Player II could use the additional information
without revealing anything, the asymmetrical one-shot game
FZ would be played: the matrix of the game PZ is simply
the transpose of matrix 1"1 shown above; the optimal stra-

tegy for the well-informed transitor is then
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2L+ 41,2) + -3-(1,3)

and the optimal strategy for the uninformed patroller is

il

T+ 3@+ 303 . :

12 KRl
'mw'

. 47 _
The value is then Tid ° 0.3263.

-
i«.-—m'

The results of this example are also shown in Figure 3.8, p. 91.

The above examples used a special form of the detec-

Sl e

tion range law -- viz.,

P
=k - ,i-ji) for i-j £ k ,

This "triangular'' detection range law results in a discrete -

optimal strategy for each player, as described in Chapter /
III, Section 4 of this report. It also guarantees that the op-
timal deferse will be equal-gamma -~ i.e., that an optimal

patroller's strategy would cause the probability of detection

" . C - -
'~ - - l . .i._.l ..;..«.

to be independent of which transit lane was chosen by the

transitor.

.

We have already considered the unilateral incomplete
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information game, in which the patroller knows detection-

range but the transitor dces not, and the transitor will dis-
cover the patroller's sirategy in the long run. Because the
transitor is always facing an equal level of defense in each

lane for either of the stage games, it is not surprising that

(i) he also faces an equal level of defense in each lane for the

games of incomplete information obtained from combination

of those stage games, and (ii) the value of those combination

games is close to the value which would be expected if the
stage game (in the above examples, the detection-range)
were revealed immediately to both players as soon as the
random choice was made.

We will now proceed with examples where the stage
games are not equal-gamma games, where intuition is less
useful in predicting good strategies for the unilateral game
of incomplete information and where the better-informea
player might b able to reap a substantial profit from his
intelligence advantage.

In all these examples we continue to suppose that

Player II must select a lane through which he attempts to

transit undetected, and that Player I must select a position -

i in which to patrol. The probability of detection if I chooses

i and II chooses j is gij and the array (gij) makes up
the matrix G . The several alternative stage-game matri-

ces are called Gl’ GZ’ ooy Ga .

-100-

— - - i o S e <

J A -
s e s ¢ e s < i et e s -

{Rawy

et B o B

rocEsrmv) Farepan—y Serryy [ Sasam it |

Sevaiieq " (A ) [ ] Sevuon)

[ tetnat J

| R ked 4

Pty Py




a

Example 5. 3f there is a '""blind" luae with smaller
detection-probabilities than elsewhere, which is a priori
equally likely to be any one of the lanes; and if the expected
detection-probabilities in each lane are such that the "ex-
pected game" G has an ''equal-gamma' solution, then it
seems intuitively obvious that the transitor could profit by
any hint (however small) as to which lane was actually the
blind one -- consequently we would expect the payoff of such
a G(q), as a function c¢ q to be a concave function. We
can illustratc this with a small example, and then prove it
for the simple special case in which a transitor can only be
detected by a patroller in the same lane -- so that all the

matrices Gl s GZ > ses o Ga ¢re diagonal.

Take
4 1 0\
. \
o0 1 4
\
2 1 0
1
GZ"Z 1 4 1
0 1 4

and G(x) = (1-%xG, +xG, .
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Then,explicitly:

G(x)

"
Wl —
[,
[A]
-+
o~
"
f—
\

strategy for Player I in 73(x) is optimal

1
(8 + dx - 207 (2 + 4%, 4 - 3x, 24 3x - 2x7) 5

optimal strategy for II is the same; and the value is

12 + 9x - 8x2
32 4+ 16x - 8x°

L

This is tabulated below and <« s.¢* 1 in Figure 3.10 on p.. 103..

Note that

v({G(0)) = v(G,) = % = 0.3750 ,

v(G (1)) = v(G,) = é% = 0.3250
v(@lg) = 52 = 0.3816
(Incidentally, v(ﬁ’(é-)) is not only greater than the average

between V(Gl) and V(GZ) » but is in this case actually

greater than either of them.)
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1.0

0.5

C.4

<

0.35

((x))a

Figure 3.10

Values of Games of Example 3
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x_ v(G(x))
0.0 .3750
0.1 . 3825
0.2 . 3865
0.3 . 3875
0.4 . 3858
0.5 . 3816
0.6 . 3750
0.7 . 3661
0.8 . 3548
0.9 . 3412
1.0 . 3250

Value of the Games of Examplé3

Now the value of a diagonal-matrix game of positive
elements 811’ **0 8pp is simply

@ = (g

By appealing to continuity of the elementary functions,
it suffices to prove our assertion for cases where only one
entry (say gll) changes.

1 n -1,-1

Because the second derivative of (gn' t Z, g;4 )
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with respect to is negative, the desired result follows.
€11 g

Example 4. In this example, we take a pair of stage

matrices which represent different detection-rarges, but
which do not have the ''triangular! property of the matrices

in Examples 1 and 2. Specifically,

w

g Gord  find

-—

- m—

*
It is easy to verify that

e .
§
.Ja.
™V
TN
-
td
]
—
+
~
~-
]
—
S

dx ;
|
. d (1) . (-1) ) '
g dx (x° + y) .x
h R |
i - i’ -2\ .y, whichis
‘.\(1 + xy) }

always negative for positive x and y .

-105-




R T Tt R O Y T Y L SN P TOART A " A R ¥ 0as 3k ool TRV ba ¢ ead D, 3% sk o 4 TR

ANEES

3 1
1 3 1
1 3 1

and G(x) = (1 - x) G, + xG, .

Explicitly.
3 x
x 3 =x
a(x) = é X 3 X
x 3 x
*x 3 x
x 3

Since we are again dealing with a symmetric matrix, we can
describe the strategics for each player by a triple of numbers:
the first is the probability of playing (%_- rowl + %row 6) ;

the second is the probability of playing (-é-row 2 + %row 5);

and the third is the probability of playing (%- row 3 + %row 4).

The optimal gtrategy for Player I in the game G(x)

i8
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1

[ L

‘!‘27 - 6x - 2x

z)‘(9'x2: 9'3x'x2: 9"3)() H

and the value is

2 3
v(G0) =("‘7 t 9% - oy x|
6(27 - 6x - 2x°) :
Note that
w@(0) = vIG)) = g = 0.1667 ,
29
v(G(1)) = v(G,) = 113 = 0.2544 ,
V(G(%-)) = 1%%- = 0.2119

Values of v(G(x)) for Example 4 are tabulated below
and graphed in Fig. 3..11. Note that the function v(G(x))
is again concave, so that again it would be prudent for the
patroller to ignore information he might obtain as to which

of these would be the true detection-function.
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x_ v(G{x)
0.0 . 1667
0.1 . 1759
0.2 . 1850
0.3 . 1941
0.4 . 2030
0.5 . 2119
6.6 . 2206
6.7 . 2293
0.8 .2378
0.9 . 2462
1.0 . 2544

Values for the Games of Example 4

A

-109~

- - . < - —————— o e - ——— =




LA

g
5

s S

(LT
Py

TRy

st

e s gl R o MRS 1

2l armd Bociai e

S Nadpes? ..§

R ——

References

1. Aumann, R. J. and Maschler, M., '""Game~Theoretic Aspects

of Gradual Disarmament'’, in Development of Utility Theory for

Arms Control and Disarmament, Final Report by MATHEMATICA

to the U. S. Arms Control and Disarmament Agency under Contract

No. ACDA/ST-80, June 1966.

2. Aumann, R. J. and Maschle: M., "Repeated Games with Incomplete

Information: A Survey of Recent Results'’, Models of Gradual Re-

duction of Arms, Final Report by MATHEMATICA to the U. S. Arms

Control and Disarmament Agency under Contract No, ACDA/5'T-116,

September 1967,

3. Harsanyi, J. C., "Games with Incomplete Information Played

by Bayesian Players', Management Science, Vol. 14, No. 7, March 1968.

Part 1. The Basic Model, Vol. 14, No. 3, November
1967, p. 159.

Part II. Bayesian Equilibrium Points, Vol. 14. No, 5,
January 1968, p. 320.

Part I1I. The Basic Probability Distribution of the Game,

Vol. 14, No. 7, March 1968.

-110-

[ =7 27T [T

o E3eul)

Y

brierd

a3

P |

€.

e )

F Oaca | '! 7S FE=y

P |

[

T |

3

fusny gesd

——— o




4. Karlin, S., Mathematical Methods and Theory in Games,

Programming, and Economics, Vol. II, Addison-Wesley

Publishing Company, Inc., August 1959.

5. Langford, E. S., "Game-Theoretic Analysis of Choice of
Speeds by SSK and Transitor', Memorandum from Danijel H. Wagner,

Associates to COMSUBDEVGRU TWO, November 17, 1966.

6. MATHEMATICA: " Study of Optimal Patrol and Transit
Strategies in a Rectangular Barrier Zone Using Mathematical Games'',

Final Report to ONR under Contract Nonr-4937(00), November 1965,

7. Mond, Rertram, "On the Direct Sum and Tensor Product of

Matrix Gamres', Naval Research Logistics Quarterly, Vol. 11 (1964),

p. 205,

8. Wagner, D. H. and Loane, E. P., Submarine Versus Submarine

Secure Sweep Width Manual, December 17, 1964. CONFIDENTIAL

. -11i-




Unclassified

Secunty Claessificatinn

DOCUMENT CONTROL DATA-R&D

.Sev nity classetication of title bady ol abstract and indexing annotation must be ertered when the overall report is classilied)
t ORIGINATIY ACTiviTy (Corporate author) 28. REFORT SECURITY CLASSIFICATION
MATHEMATICA Unclassified
One Plamer Square 2b. cRouP
Princeton, New Jdrsey

3 REPORT TITLE

THE APPLICATION OF GAME THEORY TO ASW
DETECTION PROBLEMS

M e e 3 AR H SR TR e SN R K

4 DESCRIPTIVE NOTES (Type ol report and';-ncluclve dates)
FINAL REPORT - 30 September 1967
% AU THORIS) (Firal name, middle initial, last name) g
Agin, Norman I Sand, Francis M. Mayberry, John P. \
Balinski, Michel L. Kuhn, Harold W. i
6 REPORT DATE 7a8. TOTAL NO. OF PAGES 75. NO OF REFS ?
30 September 1967 116 8 -
80. CONTRACYT OR GRANT NO 948, ORIGINATOR'S REPOR I NUMBER(S)
N00014-66-C0215 F-6182
5. PROJECT NO
NR 273-009
c. .{F 1 18-98'02 9b. OTHER REPORT NO(sm-y other numbers that may be assigned
this report)
d.

10. OISTRIBUTION STATEMENT .

This document is subject to special export controls and each transmittal to foreign
governments or foreign nationals may be made unly with prior approval of the
Office of Naval Research (Code 462)

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

....... Office of Naval Research

.

e MR P

13. AUSTRACT

The use of the mathematical theory of games for strategic analysis of ASW
detection problem. is surveyed, emphasizing the specification of strategic and
environmental variables, the payoffs and the limitations on patrol and transit sub-
marine mover 1ents, detection capabilities and evasive tactics. Games within a
patrol zone are compared with games involving the whole barrier. ''Secure-detec-
tion! objectives are compared with "detection'' objectives.

Continuous games involving only the choice of speeds for straight-line patrols
and transits are analyzed, using secure-detection probability as a payoff function.
In the analysis of patrol strategies, a non-uniform range law for detection by the
patroller is assumed, and large matrix games are solved to discover the optimal
patrol positions. A continuous version of these matrix games is shown to lead to
similar results. From these analyses, a new definition of Secure Sweep Width is
derived, which applies to strategic (minimax) transits and patrols.

Repeated games with incomplete information are applied to an ASW patrol-
transit confrontation.

The report concli that game-theoretic models for ASW should be applied to
barrier situations as a we rather than to individual patrol zones. Further
analysis of the zonal prc .m will become feasible when we have precisely formu-
lated the determir.ants of secure detection- - such as range iaw, effects ~f thermal
layer, convergence zones. varying depth and speed.

LR ks Fties LRI EL s i s A bt & AN SER bl s

e

FORM AGE 1)
D 1 NOV "1473 (P anlassif;_'gd

S/N 0101.807.6801 Security Classification

e v < e - - B e e T A




¢
{3

e e A WIS PR »ww‘ﬂ: oo :”n

Unclassified

Security Classification

KEY WORODS

LINK A LINK B

LINK C

ROLE

wY ROLE wT

ROLE

Detection of Transits
! Secure Detection

Minimax Strategies

Objectives of Patrol Submarines
Barrier

Evasion

Range Law (Non-Uniform)

Sonar

Game Theory !

Toeplitz Matrix

Continuous Games

Optimal Speeds

Mixed Strategy

DD WV.1473 teack)

(PAGE 2)

s ML 0 A SN A B o e e

Unclassified

Security Classification

-

-

—

-~




