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I. INTRODUCTION

This document constitutes MATHEMATICA's Final

Report on project work undertaken for the Office of Naval

Research under contract N00014-66-C-0215. The central

'aim of the research undertaken in this project was to inves-

tigate the application of mathematical game theory to ASW

detection problems.

The major findings, conclusions, and recommenda-

tions which have resulted from this project are described in

I Chapter II, "Game-Theoretic Models for ASW", in non-

technical language. Chapter III, "Game-Theoretic Analyses

of ASW Problems", consists of a series of technical papers

examining various facets of ASW problems and models.

The work on this project was performed by the follow-

Sing members of MATHEMATICA's staff: Norman I. Agin,

Michel L. Balinski, Harold W. Kuhn, John P. Mayberry,

and Francis M. Sand.
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I. Construction of Game-Theoretic Models

I ! The basic aim in the research undertaken thus far

has been to introduce strategic choices into the problem of

submarine-submarine detection and to introduce them in a

way that can be analyzed by the mathematics of game theory.

This research has consisted of a sequence of models which

have incorporated successively more strategic features and

more parameters designed to better represent the real

situation.

1/ To understand the basic structure of these models, it

is useful to recall the underlying theory in which they are set,

namely, zero-sum two-person game theory. This theory

of conflict deals with situations in which two opposing parties

make strategic choices that control their actions throughout

a particular contest. The rules of the game define precise!,y

the strategies available to each of the opposing parties, and

determine the outcome ior each player, when a specific stra-

tegy is chosen by each party. This outcome is measured by

a numerical payoff to each player as a result of the contest

and which is a function of the strategies chosen by the two

parties to the conflict. If there are but two parties to the

conflict and if what one wins the other loses, then the game

is called zero-sum two-person and assumes a particularly

-3-
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simple formal structure. Namely, the game may be described

by the sets X and Y of strategies available respectively to

the first player and to the second player, and a real-valued

function fix, y) defined for every rhoice of x t X and 17
40

y E Y . (Conventionally, f is taken to be the payoff paid to

the first player by the second player.) d

In various applications the strategy sets X and Y

take on different forms. For instance, they may be chosen to

be finite discrete sets -- in which -ase, the payoff function T

is a matrix with real entries. In otber cases, they may be
T;

taken to be all probability mixtures of a finite set of distinct

elements -- this is the familiar case of "nmzixed strategies"

for finite zero-sum two-person games. In other instances,

the sets X and Y may take a structure dictated by the '4
essential features of the context under study. For exa.mple,

if the second player is a transiting submarine crossing a

rectangular barrier, Y may consist of all possible speeds .

at which he may travel, if we believe that this is the ody

relevant parameter in the problem.

The structure of the models studied in our research

may now be explained within this framework. First, and very

important in its consequences, all of our analyses have been

carried out with the payoff function giving the probability of

first detection. (Here and throughout the reports the first

-4-
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player is a submarine patrolling the barrier and the second

-1 player is a submarine transiting the barrier.) Whatever the

strategy spaces X and Y used for the patroller and the

transitor, respectively, the first step in fully defining the

game has been to compute the probability of first detection

11 if the patroller chooses x E X and the transitor chooses

"1 C Y .

A second important feature of the analysis is the

choice of a solution concept for the games after they are de-

fined. Two distinct approaches have been adopted. The

1 first is a technique which has been used in situations which

are either too complicated to permit a solution with strategic

choices on both sides or have a "reasonable" fixed strategy

for one of the players. (An example of the latter is provided

by a "house" strategy for card games such as Blackjack.)

Ii Precisely, if we fix the strategy of the second player to be

y C Y , the problem of the first player becomes simply:

IFind x = 3 so as to maximize f(x,7) . If we were certain

that the second player would use y then the first player

surely can do no better than play x

The second solution concept which has been used ex-

tensively in our analyses has b-ccn that of a largest assured

II ap2yoff or, somewhat more technically, of a maximin strategy.

The motivation of this is clear. For each (patrol) strategy

1-5-
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x there is a counter (transit) strategy y that minimizes the

probability of first detection. The value of this probability -

is given by min f(x, y); it is the worst that the first player
y

can gain if he plays x . He then chooses x so as to maxi-

mize this probability, giving him a probability of first detec-

tion equal to

max min f(x, y)
x y

This probability is a "sure thing" for him; he may do better

if the second player does not counter him optimally but on the

average he will do at least as well. It is also true that this

is the highest probability of first detection that he can assure

himself.

'A
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, ,Si. 2 Analysis of Models: A Summary of Results

We are now in a position to describe how the sequence

of models that have been analyzed has been built up. The

first models were studied with the fixst solution concept.

Namely, various classss of patro-l strategies X were played

against an essentially fixed transit strategy 7 . This tech-

nique is appropriate t0 the optimization of certain key para-

meters in the set X . It is well suited to such questions as:

What is the optimal angle for a bow-tie patrol against transits

in one direction? This technique of simple optimization against

a fixed opponent's strategy (which may be a probability mix of

a class of strategies) is close in spirit to the kinds of ques-

* tions posed in gaming and simulation approaches to the sub-

marine- submarine problem.

What kinds of strategy spaces X and Y have been

studied? For the patrol submarine, the emphasis has been

largely either on the pattern of patrol (varying the param aers

of the pattern) or on the speed of the patrol (keeping the pat-

tern essentially fixed). For the transiting submarine the

emphasis has been largely placed either on the location of a

straight line transit through the barrier or on the speed of

the transit. Each choice of a strategy space leads to techni-

cal problems pecu'l.ar to that choice and hence to assumptions

designed to make the analysis more tractable. (For example,

-7-



if we are comparing patrol patterns, assumptions can be

made to make the detection depend only on the closest ap-

proach distance of the two submarines.) With these assump-

tions, the following results were obtained (using maximin

probability of detection as the principal solution cc. cept).

(1) A basic proposition which has been widely ignored

in ASW analyses is that there can be no sea exercise, no

simulation, and no game theoretic analysis without the definite

specification of three factors:

(a) the information available to the parti-

cipants as to the context of the action;

(b) the technological possibilities (such

as speeds, maneuverability, and detection

capabilities) available to the participants;

(c) the objectives of the participants in

terms of quantified measures or payoffs.

In Chapter III of this report, "Game-Theoretic Analyses of ASW

ProblemsVthe effects of incorrect specification of these fac-

tors are discussed and illustrated by examples. It is shown

that, individually, each of these factors, if incorrectly for-

mulated, can lead to solutions which are seriously misleading.

Specifically:

(2 ) The analysis of speed games having an objective

of secure detection was compared with the simpler one of

.. 8



II detection, and various approaches were suggested for the

solution of these more complex games. Most of the approaches

led to the same mathem-,atical model: the "Difference Game",

B which is partially solved in Chapter III, Section 3 of this re-

port. Optimal strategies require both the patroller and the

transitor to use slow speeds.

a(3) Extending the previous MATHEMATICA work on

matrix games, a new series of analyses has been undertaken

Iin which different range laws are compared. This leads to a

more general definition of Secure Sweep Width covering the

>1 minimax strategies in a competitive situation. The previous

definition was applicable only for "games against nature",

i. e., situations in which the transitor chose at random.

f(4) Continuous payoff functions representing range

laws analogous to those studied in the matrix games were

Iintroduced, and it was shown that optimal mixed strategies

ii retained essentially the same character as in the correspond-

* ing matrix games. In particular, the optimal strategies re-

quired only a finite number of points of entry (for the transi-

tor) and points of defense (for the patroller).

ii (5) A repeated game with incomplete information on

the transitor's side was analyzed. This was an attempt to

model the learning aspects of the detection-evasion situation.

j It led to the result that the game should be played (i. e., the

1 -9-I _
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patrol and transit strategies chosen) as if all payoffs were

the average of what the transitor could reasonably expect,

given his incomplete information. This type of analysis has

the potential oi providing an important link between informa-

tion and strategy in repetitive situations.

low
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I
II. 3 The Problem of Secure Detection vs Detection

The patroller's mission is in the first place to detect

the transitors. Other events may then follow: localization

$and classification in peac'time (possibly also trailing); finally,

approach and kill in wartime. But there is a considerable

*3 difference between detection and secure detection in either

peace or war. Secure detection means that the patroller is

not detected'by the transitor in the process of detecting the

transitor. The advantages of secure detection are manifold;

in wartime it may spell survival, while in peacetime the

.information on enemy submarine movements is gained with-

out revealing our submarine movements to the enemy.

A game-theoretic model which uses the concept of

secure detection in its definition of objective is likely to dif-

fer substantially from a model based either on detection or on

3evesion. Not only is the measure of effectiveness different,

hut zhe optimal strategies also turn out to be quite different.

I In particular, optimal patrol patterns have been found in sim-

ple games of secure detection which are quite different com-

pared to the previous one-way street of detection only.

Unfortunately the mathematical difficulties C analyzing se-

cure detection probabilities are rather more severe than in

the case of detection probabilities. We have considered a

"1 -1
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compromise model which approximates the probability of se-

cure detection by a weighted combination of the two probabili-

ties: (i) that the patroller detects the transitor, and (ii)

that the patroller evades detection by the transitor. In a sim-

ple analysis of patrolling strategies using only the speed

variable it has been found that for purposes of maximizing

detection probabilities the patrolling submarine should oe

moving at maximal speed for a fraction of the patrol cycle,

while for purposes of evasion he should never exceed that

speed at which self-noise is known to take a sharp upward

turn as a function of speed. What recommendation will the

game-theoretic analyst make if the mission emphasizes both

detection of transitors and evasion? The answer will in fact

depend on the relative importance of the opposing parts of

the objective.

By examining a hypothetical case in which it is

assumed that there is zero probability of a counterdetection

following detection, we show in Chapter I, Secti on 1, that

the compromise objective function is the difference between

the probabilities of detection and counterdetection. This

model is called "The Difference Game" and a generalization

of it allows a utility weight to be applied to evasion of counter-

detection. In Chapter III, Section 3, the solution is found for

all cases where evasion is rated at least as important as

-12-



detection. The solution requires both the patroller and the

trLnsi .or to move at their quiet speeds for optimization with

respect to the same weighted difference function. It should

be pointed out that the assumptions for the transitor are the

same as for the patroller but with signs reversed. The tran-

sitor, in other words, is emphasizing detection of the patrol-

ler at least-as much as evasion of detection. The earlier

analyses of speed games with simple detection probability

objective furnctions (see refs [5] and [6]) showed that optimal

-l transit speed according to the model could be faster than

quiet speed, but ignored the possibility that the resulting

I} secure sweep width for the transitor might be less than for

the patroller. In some cases (depending on ratio of noise

function slopes) this actually did occur, invalidating the solu-

II tion on logical grounds. The present analyses, although they

do not solve the cases where the patroller rates detection

more important than evasion, correct the error for an import-

ant class of game-theoretic models including the "equal im-

portance" case which is ipresented by an unweighted differ-

ence of detection probabilities.

II

* References are to the Bibliography on p. 109.
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II. 4 The Analysis of Position of the Pat oller within a Zone B'
(Matrix Games)

B
By keeping speed, other strategic variables and exo-

genous parameters constant, it is v-,libe +o anal-,ee the rela-

tionship between detection range laws arO the ca.i.e of patrol

positions (and transit lanes). The zoo rx a'e, '.; di-idd into an

indefinitely large number of lanes; by oc, , y,-r, e oX -nore

of these lanes the patroller is said to . ,. v0. ,,ioru "ithi

the barrier zone.

11110

1 Ii

n transit lanes

Figure II.. 1

No question of patrol path configuration in two dimensions is

involved. Each patrol path is evaluated only in terms of the

fraction of patrol cycle time spent in each position. In ref. [6],

MATHEMATICA's previous analysis of the position strategies,

two types of strategy were distinguished.

(i) The on-station strategy. The patroller occupies a

-14-
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lane and remains close to its center.

(ii) Continuous-motion back-and-forth strategy. The

patroller moves at constant speed back and forth from end to

end thus dividing up a patrol cycle uniformly among he lanes.
~In all cases the trans.%or was assumed to come straight

through the zone at constant speed. Mixed strategies could

be interpreted in terms of a unique random choice of a pure

strategy, or as a time mixture assigning appropriate fractions

Ito different lanes. -The range laws considered were of the

cookie-cutter type exccpt for the 3-lane analysis of Appendix

IV which included'a range law of the form (0, p, 1, p, 0) where

3the probability is 1 only for the lane actually occupied. The

continuous-motion patrol assumed that the probability of detec-

I tion was Zq (not necessarily the same as p) at the center and

Iq at the edges.

In this report the position-strategy analysis it extended

in two ways. I

(i) A more realistic range law is assumed and the

Imatrix games are solvedi in Chapter III, Section 4. The range

law incorporates a linear decrease in the probability of detec-

tion symmetrically outward from the center, dropping grad-

ually off to zero at a finite range.

(ii) The division of the zone into a finite number of

lanes and positions ig replaced by the more realistic assump-

I I-15-'I



tion of a continuum of lanes and positions in Chapter IL, Sec-

tion 5. The range law described above is replac i by its con-

tinuous analog, i. e., a triangular-shaped function. Again the

extreme range is finite, but there is a continuous variation in

probability of detection unlike the discontinuous cookie-cutter

range law.

While the results for these new game-theoretic models

are not easily described in a few words, three salient features

may be noted:

First, there are a finite number of favored lanes and

positions, and in the case of the matrix games this number is

generally less than the total number of lanes. Even when the

t'.ansitor is permitted to enter the zone at any point across the

entire width, optimal minimax strategy calls for the use of

only a small number of lanes. Similarly and symmetrically,

the patroller's strategy requires him to ignore the majority

of positions in favor of the few. This result is naturally re-

lated to the assumed form of range law, but ref [4] shows that

it is qualitatively similar to the results found in the analysis

of continuous convex games with bell-shaped kernels. For

these games also there are only a finite number of pure stra-

tegies which are used to define the optimal mixed strategies.

Second, a salient feature of the results described in

IUL. 4 and III. 5 is the general behavior of the value of the game,

-16-
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as the parameters change. Consider a zone of width D and

the triangular detection law extending from x - d to x + d

when position x is occupied by the patroller. Then d

is a good approximatio. to the value of the game in most

* *dD
cases ;thus a secure sweep width (SSW) of D is as-

:1
sured by the use of the minimax strategies by both submarines.

SItFor example, if d is very much smaller than D , a SSW of

approximately d is achieved: this is only half of the corres-

JI ponding figure for a cookie-cutter range law. Now consider

a smaller zone (or, equivalently, larger range of probable

detection) and let D = Zd . Then the SSW is just (2/3)d .

.U Finally, we have also extended the concept of secure

sweep width to a strategic confrontation. The "secure sweep

width" concept, introduced in ref [8], is intended to be a

numerical measure of the patroller's ability to detect the
transitor without being previously counterdetected. It is

defined as the width of frontage over which target crossings

are equally likely at all points, times the fraction of targets

1on which the patroller makes secure detection. In other

words, it is the product of the zone width D with the proba-

*Exceptwhend is nearly as large as D.

* The concept is extended in the natural way for non3uniform transits; see next paragraph.

I-17-
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bility of the patroller detecting the transitor, given that the

transitor is assumed to use all transit lanes with equal pro- 9
bability. This last assumption makes of this definition a non-

strategic measure since the transitor is not endowed with the

possibility of making strategic choices to counter the patrol-

ler's strategy. If we change and extend the definition of

SSW by allowing the transitor to adopt strategic choices and TI I
assign both participants minimax strategy choices then the

models studied give SSW's under varying range laws. Thus,

if a patroller is assumed to make secure detection of any tran-

sitor within d distance an SSW of approximately 2d is found.

On the other hand, if a patroller is assumed to detect a tran-
'4

sitor with probability 1 - x/d , if x < d is the distance be-

tween the subs, and not detect otherwise, then the SSW is ". "

approximately dD/(d + D)

It appears that the SSW concept, which is intended to

give a rough measure of ability to detect, can in fact be a

truly strategic measure. To be precise this suggests the

definition: secure sweep width is the width of frontage over J;

which the transitor may attempt crossings times the proba-

bility of the patroller detecting the transitor when both par-

ties use minimax strategies. This definition will remain ust -

ful even when the transitor is known to employ a different

strategy so long as the patroller is using the rrminima.i strategy.

-18- 5)
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Analogous definitions of SSW can be const~ucted for other

~strategy concepts, and in the simplest case of a uniform

patrol the new definition proposed is equivalent to the previousI

ii definition.

I 19
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I. 5 Conclusions

Considerable efort has been devoted to the study of

problems concerning submarine-submarine detection by

mathematical analy-'s, gaming and computer simulation.

MATHEMATICA has, from May ,1965 to the presentbeen re-

viewing for ONR* the question: "How can the theory of games

be fruitfully applied to the study of ASW detection and evasion

strategies?" We initially considered patrols by an individual

submarine in a known rectangular zone; subsequently, while

the results for a single zone have been extended and improved,

attention has also been devoted to the construction of barrier

models in a more general setting. For reasons which are

detailed below, MATHEMATICA' s investigators have concluded

that the mathematical theory of games cannot, at present, pro-

vide a suitable methodology fqr completely analyzing the stra-

tegic alternatives which are available to patrolling submarines

-- even in the restricted case of a single submarine patrolling

a fixed zone. (By analogy with economics, we might express

this viewpoint differently by the statement that the micro- stra-

tegies are inadequately represented in any mathematical models

which can be formulated at present.) We anticipate that game-

theoretic methods, in combination with other analytical ap-

Under contracts Nonr 4937(00) and N00014-66-C-0215.
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proaches, will provide useful and practical insights for the

macro-strategies of large barrier situations, rather than

complete formal solutions.

IThese conclusions should not be regarded as mainly

negative, because only the most elementary oi practical prob-

lems in other fields possess complete mathematical solutions.

iThere are two primary difficulties at present:

First, the information which MATHEMATICA has ob-

i tained on the determinants of patrol and transit strategies --

such as the range laws of sonar detection, the effects of sea

state and speed& of both patrolling and transiting submarines

i on sonar detection and counterdetection, the effects of depth

of the submarine, convergence zones, thermal layer and so

F!. forth -- seems to be at present a large, cc.a.plex, and poorly

structured body of data, and is therefore not easily provided

as an input to the conventional game-theoret-,c models of stra-

tegic conflict. (Such models might be used either to generate

hypotheses, or to test and verify hypotheses; the data require-

ments would be somewhat different.)

Second, the variables, which are known to determine

the probability of a detection or counterdetection, are numerous

and interdependent- in complex ways. We have firm information

about so few of these potential interactions that a useful

mathematical theory is almost inaccessible at present. Such a

-21-tal,!



theory apparently would require the analysis of strategies as

functions of several control variables; the resulting mathe-

matical problems are difficult even to formulate, and still
more difficult to use as a basis for practical results of im-

portance for application to the real ASW situation.

Both in on-going research and in the sea exercises

that are undertaker to test the various recommended modes

of patrolling and barrier design, a large body of information

is being built up about ASW and its interface with oceanography.

MATHEMATICA's analysts, on the basis of their familiarity

with that body of information, have found that the current

level of sophistication in understanding and structuring that

data does not appear to permit a successful mathematical

analysis of the patrol and transit strategies at the zonal level.

Several ga-me-theoretic results have been obtained by MA THE-

MATICA which can serve as a beginning for a mathematical

theory of barrier detection in the large: for example, mini-

max speeds for certain detection-and-evasion conflict models

have been derived (with other parameters held constant). These

show that, the greater the emphasis on evasion (by the patroller)

the more plausible is the recommendation of slow speed.

Another example is the investigation of the relationship be-

tween probability of detection and range law. The investigation

has led to an extension of the concept of Secure Sweep Width to

-22-
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the strategic situation. As a third example, we have studied

a repeated game, the individual steps of which are opportu-

nities for detection and counter-detection. It is assumed

Athat the patroller knows more about his own range of detection

'under the prevailing environmental conditions than does the

transitor, and the patroller may choose whether to make use

of this information. The transitor may be able to infer (from

observinZ the patroller's strategic moves in the steps, which

are called "stage games") something about the unknown range

law of the patroller. This analysis shows, in one particular

case of interest:

(a) that the patroller cannot profit by using his infor-

mation in a strategic mode, and

A (b) that the transitor, to optimize, must play the

average game expected under his prior beliefs about the

patroller's detection capability.

Such results are obtained from zonal analysis, but be-

cause of the previously described complexities they are really

of limited value for the improvement of ASW patrols, within

the zone. We feel that the generalization of the task to the

overall discussion of barrier strategy would permit the use

of the results in an interesting and potentially valuable theory.

For instance, if the relative positioning of a number of sub-

I marines of differing detection capabilitiec were analyzed, the

1 -23-
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methodology of MATHEMATICA's described work on Matrix

Games could be brought to bear.

Game theory requires precise detailed infromation on

the three factors mentioned above, (and discussed in greater

detail in the next Chapter) for its successful application to

ASW. Whenever some of this information is lacking, the

partial analysis will yield only qualitative results. Whereas

such results may provide meaningful insights into the princi-

ples of a rather large systems problem such as barrier de-

sign, they do not at present appear to be very practical at

the level of components such as a patrol zone. For a suc-

cessful strategic analysis of the zonal problem the require-

ments are at least the following:

(a) The functional relation between detection range

and its determinants -- patrol speed, oceanographic condi-

tions, target speed, depth,etc. -- should be known and para-

metrized.

(b) The forms and limits of strategic behavior allowed

to the patrolling and transiting submarines must be clearly

spelled out. Excessive complexity and variety here creates

difficulties for the analyst. -

(c) The objectives must be formally stated, inasmuch

as the solutions will depend critically on them. Several alter-

native objectives may be used, requiring separate analyses and

-24-



leading of course to distinct solutions. In view of the variety

Iof missions to which a barrier submarine is assigned in

peacetime and war, there is clearly a necessity for several

I of these alternative analyses.

I

I
I

I
I

I
I
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I
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H. 6 Recommendations

As a result of the conclusions presented above,

MATHEMATICA recommends:

(i) that the attempt to model the single patrol zone M

ASW problem s a game be discontinued for the present;I

(ii) that further research be conducted on the use of

mathematical models of ASW barriers as a whole at a higher

level of aggregation than the zonal unit;

(iii) that the work which MATHEMATICA and other

investigators have begun, on the effects of range law detec-

tion on optimal strategies, be continued; and

(iv) that the above work should make use of recent

advances in the theory of Repeated Games of Incomplete

Information.

V , _z6- [
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I. 1 Games with Different Objective Functions

Introduction

The purpose of this section is to discuss several

basic questions which underlie any analysis of the conflict

situation involving one or more submarines patrolling a bar-

rier and one or more submarines attempting a transit across

the barrier. These questions arise whether the analysis ,

proceeds via sea exercises, simulation, gaming, or game

theoretical models. They have been largely ignored in pre-

vious ASW ar-lyses and our purpose is to show, by simple lo

examples, how this neglect has influenced the results ob-

tained and restricted their practical usefulness.

A first step in any analysis of the patrol-transitor

conflict is the definition of the actions open to the parties

involved and their objectives in the conflict. This is true jj
whatever the nature of the analysis. If we are designing a

sea exercise, we must give the "rules of the game" to the

two sides and, in general, these will circumscribe their

range of free action rather sharply. The rules, as given to 41
the participants, will consist of three parts: (1) the types of

information permitted to them either from their own equip-

ment or observations or from outside sources; (2) the range
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of actions that are permitted to them at various points of the

1 situation as a function of the information available to them at

those points; (3) the object of each antagonist in the exer-

cise, preferably in terms of some index of merit which could

, be computed at the end of a contest. (It may happen that the

index of merit could only be evaluated by an umpire who will

I have more information than any of the individual participants.)

To be more specific about these three ingredients in

sea exercise, we may consider a simple patrol-transitor

exercise run on a rectangular area of the ocean, assumed to

be oriented so that the sides run North-South and East-West.

For the patrol submarine, under (1) we may specify the

exact location of the patrol rectangle, the length of time of

the exercise, the fact that one submarine of a given type will

be attempting a single transit through the area from East to

West at given depth sometime during the exercise, and that

the patrol will start the exercise at a given point in the area.

Furthermore, we may specify the types of detection equip-

ment that may be used by the patrol submarine and thus the

kinds of information about its own location and speed and

about the transitor's location and speed. All of these factors

Iconstitute a part of the patrol's knowledge of the extensive .
form of the exercise; indeed, that part which is exclusive of

Ithe alternatives open to him and the transitor ol based on

-29-
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that information. As for similar information to be provided

to the transit submarine in the exercise, we may tell him

the location of the rectangle, the length of time of the exer-

cise, the fact that one submarine of given type will be patrol-

ling somewhere in the area at a given depth. Furthermore,

ve may specify the types of detection equipment available to

the transitor and thus the kinds of information about its own

location and speed and about the patrol's location and speed.

Again these constitute the transitor& knowledge of the exten-

Ave form of the exercise, exclusive of the alternatives open

to him or based on that information.

As for.. (2), the range of actions open to the two sub-

marines, we may specify them in great detail, such as only

allowing the transitor straight-line crossings of the rectangle

at constant speed, or we may allow considerable choice, such

as zig-zag paths at varying speeds depending on information

reaching the transitor through its detection equipment. Simi-

lar comments apply to the patrolling submarines.

The all-important result of the combination of (1) and

(2) is the concept of a strateg, for a submarine in an exercise.

This concept reflects the planned interaction of information

with the freedom of action allowed to the submarine. Without

the specification of or explicit assumptions concerning, (1)

the information about the extensive form of the conflict and

1-30-
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(2) the restriction of the range of action open to the partici--

pants, there can be no exercise, no simulation, or no game-
theory mode'.--

These ingredients are by no mean:3 the whole story,

for they only speak to what the submarines know and can do.

They say nothing about why they are doing it, what their ob-

jectives are or, in game-theoretic terms, what the payoff is.

If we return to the question of an operational exercise, we

are concerned with a measure of the performance of the par-

ticipating submarines. A typical specification f3r the patrol

I submarine would be to say that he wins if he detects the

transit without being detected himself, that the transitor wine

if he croeses the rectangular area without being detected and

that the exercise is a draw if both submarines correctly ue-

tect each others' presence. If we are dealing with a larger

number of transits than one, we may use the ratio of first,

detections by the patrol to the number of transits as a figure

Iof merit to measure the performance of the patrol Gide of the

exercise. Both the simplicity of these suggestions and the

dependence on the structure of the underlying actions and

information possibly available to the sides in the exercise

mak- " ct crystal clear: the optimal behavior of the par-

I tici, .nts may vary significantly if we change the objective

function. Fundamentally it is this phenomenon that we wish'

3 -31-

I
- ~.t*,.-*-~~ - --- _______________________ . __ '



1r

to illustrate in this chapter.

To recapitulate, there can be no exercise, simulation,

or game without the specification of three factors: "

(1) the information available to the participants as to

the rules oi the game;

(Z) the technological possibilities (that is, the speeds,

maneuverability, and detection capabilities) avail- 1,
able to the participants; -.

(3) the objectives of the participants, preferably in

the form of numerical measures that could be

computed by an observer of the complete action.

Incorrect specification of any one of these can lead to

seriously incorrect calculation of optimal behavior as we

shall now show by means of examples. F

Misinformation about the Extensive FornL.

The difficulty described by the title of this subsection 11
may be encountered in a number of forms and may differ in

importance according to the situation. That it is of practical

relevanbe is easily seen: surely it is unrealistic to assume

that the transiting submarine has an accurate map of the bar-

rier with its complete geometry and the numbe? and type of H
patrol submarines present in it in a given period of time, and
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equally unreasonable to assume that the patrolling submarines

will know the number and type of the submar ines attempting

to transit through the barrier. This second possibility is

illustrated by the following example, patterned on a game

which we have discussed previously:

First Extensive Form: Let the payoff matrix

I b
Sbe T 1  T 2  T 3

P 1 0.25 01

Iz  0.25 1 0.25

P3 0 0.25 1

I P4  0.25 0.5 0.25

I
The patroller's strategies are:

Il = patrol in Northern boundary cell

P 2  = patrol in central cell

1 P3 = patrol in Southern cell

1 P4 = continuous motion patrol

The transitor's strategies are:

I T 1  = transit through Northern cell

T 2  = transit through central cell

* Pp. 44-51 of ref [6],
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T3 = transit through Southern cell

The underlying assumption is that one transit will be attempt-

ed and the payoff is the probability that all transits will be

detected.

This example is easily solved. The optimal strategies are

P* 3/8 _ 1 + 1/4 P + 3/8 P 31 2
T* 3/8 T1 + 1 1 4 T + 3/8 T3

and the minimax value is 7/16

Now let us alter the game by having the transitor at-

tempt to pass at least one of two submarines through the

barrier. If we denote the resulting pure strategies for the *l1
transitor by (T i pT -for 1 < i < j < 3, then the payoff

matrix becomes:

(T i , T 1) (T I , T 2 ) (T 1 , T3) (T 2, T2 ) (Ti, T3) (T3 , T3)

P 1 0.25 0 0.0625 0 0 I"

P 2  0.0625 0.25 0. 0625* 1 0.25 0. 0625

P 3  0 0 0 0.0625 0.25 1

P4  0.0625 0. 125 0.0625 0.25 0. 125 0.0625 i
Here, as before, the payoff is interpreted as the probability
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that all transits are detected.

Tr This matrix has a saddlepoint solution (indicated by

the asterisk) consisting of

tP
YEP = P 2

T = (T 1 , T 3 )

I with mininax value -. This has the obvious interpretation

that the patrol should sit on the center station while the tran-

SI sitor's submarines should run the sides of the barrier. If

the patrol submarine plays the optimal strategy for the game

with but one transit submarine, then the probability that he

1
detects all of the transits is reduced to z4

We have not solved the problem of constructing rea-

sonable patrol strategies when the number of submarines

attempting transit is unknown. The problem is clearly but one

aspect of a central theme of this report, namely, that the

well-defined area games may mislead if unrelated to a larger

context.

I
Mis specification of the Technological Possibilities

In our definition of the context of the analysis of a
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transit-patrol conflict, we included under the category of

technological possibilities open to the participants such fac-
IA

tors as speed, detection capability, and patrol or transit pat-

tern. Naturally, in any theoretical modeling of the situation .I
we will use the best possible estimates of speed and will at-

tempt completeness (within the context) in listing the geomet-

ric patterns allowed to the patrolling and transiting subma- T1

rines. Even if we assume that these parameters are known.

accurately, the remaining variability in the detection capabili- TIU
' i

ties are such to render the results suspect. If we deal with sea

exercises, the variability of sea state, equipment perform-

ance, and the small samples obtained render most results

statistically insignificant. If we consider simulation or gain-

ing experiments, the lack of reliable hypotheses to program

for detection renders the results unreliable when interpreted

as guides to practice. If we are attempting game-theoretical

analyses, the assumptions about detection capability can alter '

the conclusions radically (even when all other parameters are

held constant.)

This 2henornenon can be illustrated by a simple ex-

ample of tb. same type used in the previous subsection.

Consider the general game matrix:

lH

t!'
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P 1 p 0I1
p p 1

3
V

P q Zq q
4

Iwhere the strategies have the same interpretation as in the

previous subsection. If we consider the case of detection

probabilities p = q = 1/4 as before, the optimal strategies

are

~ p* = 3/8P 1 + 1/4P2 + 3/8P
1 2 3

T* - 3/8T1 + 1/4T2 + 3/8T 3

7
with minimax probability of detection equal to T - If we vary

1
the parameters of detection through the interval -I p =

11
q < , the optimal strategy for the patroller varies in the

following manner:

P = 1 + I 2p +  I 3 L

However, the endpoint p = q = this formula yields

-37-

"



r i

5-1

P = l + iP 3  whereas the strategies P2 and P 4

dominate this weakly. If this problem were presented at the1
endpoint p = q - . the payoff matrix is

T1  TZ T3

1 0

P, 0

P11 1

P2  . . 1

4o7 1 1

Common sense dictates the choice of P2 or P 4 (the center

station or the continuous patrol). Nevertheless with p = q

I
= --E , these strategies are hardly used at all:

1 1
P z -4' PI + +z-i P2 + T +4,P "

T-4- I T+ 4r. +1+4.P 3 .

Thus a slight change in the detection specification can cause

a radical change in the strategy proposed as optimal.

Mis specification of the Objective Function

This is perhaps the most important part of formulating a

theoretical model of any process and yet many previous efforts
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in AS , seem, in retrospect, to have been extremely oversim-

plified. Consider some of the possible objectives of a barrier:

(1) Make a statistical census of the transiting submarines

passing through. This in turn could have two possible varia-

tions:

ii (la) The purpose of the survey could be an absolute

census of the transiting submarines, in order to keep

a rough count of the opposing force in various areas.

(lb) The purpose of the survey could be a check on

large changes in activity. Thus, if the average has

been I transit per week a change to 2 per week might

not be significant, while 10 in one week would consti-

tute an important change in the situation.

1(2) Make a complete census of the number and type of

submarines crossing the barrier. (The barrier might or might

not be interested in whether the patrol submarines are inturn

detected by the transitor s.)

(3) Prevent all transits. (The patr -Iling submarine will

-]necessarily follow a detection by other, more active, phaoes of

identification, pursuit, and attack.)

I Even this simple enumeration of possible objectives for

the patrolling submarine should make clear the inadequacy of

]1 the "probability of first detection" as an objective function.

However, the difficulty is even more serious than this. Namely,

1-39-
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it is not clear that the essence of the real situation can be

reflected by a.ny zero-sum model. For example, if a mis-

sion is assigned to one side, the other side may ake "pre-

vention of that mission" as its criterion; so far, the game is

zero-sum. But if one side risks loss of a submarine, the

other side is likely to be prima facie indifferent to whether

the sub is lost; this is a non-zero-sum aspect. Under these

circumstances, any analytical approach must acknowledge that

the situation is one of partial competii )n, and must somehow

deal with the inherent conceptual difficulties.

The unavoidable conclusion of this discussion is that,

although the available methods may analyze local situations

and produce optimal solutions, these are likely to be mis-

leading if not erroneous without more realistic formulations

of the global contexts of which they are a part.
71
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III. 2 First-Detection Games

An important step in the further d~velopment of sub-

marine -versus -submarine detection games is the determina-

tion of improved objective fu. ctions. In a previous MATHE-

MATICA study [6 ], consideration was given to a detection

problem in which a patroller attempts to maximize his pro-

bability of detecting a transitor, while the transitor attempts

to minimize'that probability. This objective function was

also used by Wagner and Associates in [5 ]; optimal strategies

Iwere found for that detection problem. Unfortunately, those

strategies, although they maximized the patroller's proba-

bility of detecting the transitor, did not assure that it was a

first detection; realistically, if the transitor detected the

patroller first, the transitor could probably avoid detection

I by the patroller. The previous objective function would there-

fore only be applicable if (for some reason) the transitor had

fixed his rolute and speed in advance, and could not alter them

i even if he detected the existence and location of a patroller.

In this section several games will be examined which I
incorporate an improved objective function, namely, the pro-

bability that the patroller detects the transitor before he is

Ihimself detected. These games make the essential assump-

tion that the range at which detection firs-. occurs is a ran-

dom variable; otherwise we could not represent the random

I -41-
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events "transitor detects patroller first" and "patroller de-

tects transitor first." ""
.0

In order to facilitate t:.- development we will first set

down a sequence of definitions which will also apply to the follow- ,i

ing section, III. 3.

1. Events

Attempted Transit (AT) An occasion for possible

detection of an enemy submarine attempting to transit the bar-

rier, which is patrolled.

Detection The .reception of signals (on sonar or other

equipment) which have in fact originated from an enemy submarine, .

although they may not have beer, identified as such with certainty. -

2. Range Variables

Closest point of approach (CPA) We shall use D for

the random variable which corresponds to the distance between

the subrna:.nes at the CPA, when the AT occurs at a random a
point o: ticne. D is also dependent on the two speeds, the patrol .

path and the transit path. We will explicitly treat only the speeds

here.

Maximum range for detection Two random variables

are defined here, S and T. They are symmetrical with respect

to patroller and tr-nsitor submarines.

S- r mum range at which the patroller is capahle

of detecting the t isitor under the conditions which prevail on

a specific AT.
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I T maximum range at which the transitor is capable

..3 of detecting the patroller under the conditions which prevail on

a specific AT.

R _= the maximum of S and T.

These are random variables because the definition al-

lows them to vary between AT's. They also depend on the

speeds of the two submarines in a manner which we shall make

explicit below.

3. The Objectives

To maximize the probability of detection. For the

i! patroller, a detection is feasible, but not certain, if D < S.

He may wish to maximize P(D < S). For the transitor, a

A detection is feasible if D < T . He may wish to maximize

P(D < T).

To minimize the probability of counterdetection.

Against the patroller, a counterdetection is feasible under the

same conditions which allow detection for the transitor and vice

versa. Thus the patroller may wish to minimize P(D - T)

and transitor may wish to minimize P(D < S). Notice that

these are logically the negations of the first pair of objectives.

To maximize the probability of secure detection.

For the patroller, if D < S and T < S, secure detection is

feasible but not certain. The patroller may wish to maximize

I the probability of a secure detection, P(D < S, T _ S)

-43- I1
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Similarly the transitor may wish to maximize the pr ,bability

of a secure detection of the patroller, P(D S T, S _ T) .

Notice the,-e two objectives are not complementary since

P(D > S or T > S) -P(D < T and S < T)

To minimize the probability of re counterda-

tection. We merely remark that the trans -y -.-ish to

minimize the probability F(D _< S , T hich is the

complementary objective to the patroller's ... he previous

paragraph. It seems unlikely that the patroller would concern

himself with minimizing P(D < T , S < T) explicitly, al-

though that wjald partly be a result of his previous objective.

4. The Games

We consider in this section and the following, a

class of detection games with one of the above objectives, or

some objective derived from them by compounding. The. stra-

tegy spaces are simple: the nornalized speeds, u and v

which vary over the intervals [u 0 , urn], [v o , V] . It is

assumed throughout that both submarines follow straightline

! I courses at right angles to each other in the present simple

model.

It is important to rote that the game stops when

either an undetected transit is completed, or a detection

(counterdetection) occurs. For the subsequent events in the

latter case a new game model is started, which will have
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different features. Strictly speaking, the game may stop even

earlier in the transit sequence: after the transitor has passed

the CPA undetected. However, this distinction makes no dif-

ference to the analysis, so we may ignore it.

As previously developed , the probability of the

T distance between the patroller and the transitor ever falling

below r during an attempted transit is:

Mr1)
P(D < r) = min ,

where

M= +u
v

and where u and v are normalized speeds for the patroller

and the transitor respectively while w is the half-width of

the barrier. Letz
dFD( r)

FD(r) = P(D < r) and fD(r) = --a- -

dFS(r)
FS (r) = P(S < r) and f.(r) = -a-

I dFT(r)
FT(r) = P(T < r) and fT(r) = --r-

I
See page 31 of Reference [6]. 4
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We defi'.ie p(u, v) as the probability of a secure detec-

tion by the patroller wnen th- respective speeds are u and

v. It is this objective which we shall examine in more detail

now. As mentioned above, the patroller attempts to maximize

and the transitor to minimize:

p(u,v) = P(D < S, T < S)

It we assume that D and S are independent we can write

(2) p(u, v) = J F )Tr~ rd
FD(r) FT(r) fs(r)d

/
= jo (Mr/w) F T(r)f s(r)dr +1 FT(r)f s(r)dr

w/M

If w/M is large, then an approximation for equ. (2) will, be:

MV

(3) p(u,v) = . rFT(r)fs(r)dr

which is of the form:

(4) p(u, v)-- () E(SI T_<S)P(T<S)

If, furthermore, T and S have zero variances ,,e find

T < S if and if only cv < u, where c i3 the ratio of the
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Itransitor and the patroller noise slopes. In this case:

E(SIT < S) = Kec , and:

+ ue2V-
((1vL= ) I wcv-u if cv < u

I 0 if cv > u

which is equivalent to the results obtained previously in [5].

Exponential Example

I As an example, assume that S and T are indepen-

dently distributed according to the negative exponential pro-

J. bability law, i.e., that for r > 0:

I E(S) = a 1

E(T) = a "  I  r-alr

P(S<r) 1 - e , and

P(T<r) = - e

I Then:
-azr -alr

(6) p(u,v) - M.,j r(l - e )a e dr

I re dr-, re drj

1 -47-
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(1 ia Za +axM - M 2 1aw a • iaI
a 1+a (a +a 2 )

M 1 (2+b)b
w a 1  (1+b) 2

a 2  .
where b = .51

A particular version of this example is obtained by also

assuming that the S and T distributions have means equal to the

thresholds for detection and counterdetection:

1 Kecv-u 1 KeU/C-V
E(S) - e ,andE(T)

a a 2

The payoff probability readE:

(7) p(u,v) -(2+blb where b e(c+ l)(v-U c)

If p(u, v) were shown to be convex in either u or v, optimal

(minimax) strategies would be easily obtained. The function in

(7) has been numerically evaluated for c=O. 1, 0.2, 0.5, 0.75, a

1.0, 1.5, 2, 3, 4, 10 and u, v= 0. (0. 1) 1.5. Table 11. 2.1 shows

the values for the case c = 1.0. Inevery case, u = 0.1, v = 0.1

is found to be a saddlepoint of the matrix. If u and v were

different from 0. 1, the saddlepoint effect would still be preserved

since the function p(u, v) is monotonic decreasing in u and increasing

in v throughout the range considered.
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11. 3 A Difference Gaine

The objective function used for submarine-versus-

submarine detection games in the previous MATHEMATICA

report [6] and also in Wagner [5] was the probability of detec-

tion of the transitor by the patroller, as a function of their

speeds. Parameters representing the range law and oceano-

graphic conditions were held constant. Using the notation of

[5 ]-if u and v are normalized speeds, then the model, which

we shall call the "Patroller's Speed Game" G P , is de "ribed

as follows:

max rmin I p  cvu v

uo< U <u v < v <v F(u,v) = ecv u4 iv

iS

where c is a positive constant. It is obvious that there is a

symmetrical position for the transitor to take in this game:

this results in a model, which we shall call the "Transitor's

Speed Game", GT which is described as follows:

S in max -Tu/c v 24

u < U <u v < v <V (u,v) = e

Note that the min eid max variables are reversed. In both

games, c = a/b is a positive constant. and a and b are the

slopes of the noise functions for the transitor and the patroller
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1in terms of their speeds:

Np(u) b(u-u0+k if u <u<u

NT(v) = a(v-vo) + 0 if v <v<v

11 At speeds below u° , the transitor's noise output Np(u) is

(roughly) constant and si,.ri'arly for NT(v) below v ° . The

maximum achievable speeds for the patroller and the transi-

tor are assumed to be urm and vm respectively.

i-i The analysis of a patrol speed strategy based on

G is faulty if it yields solutions which in fact result in a

situation where the transitor is more likely to secure first

detection. An example of this error occurs in the game de-

scribed in Figure 6 of ref. [5 ], which assumes that E = b ;

*the analysis leads to "optimal" normalized speeds for the

patroller of 0. 7500 and for the transitor of 0. 6054. Tie value

.1 for the patroller's game G is 1. 38; but the transitor's

Tgame G has a value of 1.74. This means that the 'ransi-

tor can assure hmself of a larger "secure sweep width" and

accordingly also of first detection. Given the broad situation,

there is no reason for the patroller to adopt the optimal stra-

tegy of Gp .
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Our formulation of a Secure Detection Speed Game in

the first place will involve objectives for the patroller and the
040

transitor which are not complementary; hence, a nonconstant-

sum game. In the subsequent analysis we will reformulate

the game in such a way that it becomes a consta-at-sum game.

Then variouF, simplifying assumptions will be introduced which

lead to mathematically tractable payoff functions.

Consider first the game:

(SD o) patroller to maximize P(T < D < S)

transi4or to maximize P(S < D < T)

This game assigns symmetrical objectives to the patroller and

the transitor; both are to choose strategies which maximize

the probability of secure detection of the enemy. The solution

of this game is conceptually difficult because of its noncon-

stant-sum nature.

A constant-sum relative of (SD ) is derived next.
P0

Let i and i (i = 1, 2) be weights reflecting the relative

importance of detection and evasion to the patroller (i 1) and

the transitor (i = 2). Then it is reasonable to represent the

payoffs to the patroller and the transitor in the following way:
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II

patroller to maximize I1P(T <D<S) + 1[1- P(S <D<T]

transitor to maximize XP(S < D < T) +Lzji - P(T < D <S]

which, in case XI = and = , is equivalent to the

zero-sum game:

(SDI) min max cP(T - D < S) - P(S < D < T)]
ET P

where T and 1p are respectively the patroller's and the

transitor's strategy spaces.

, ]It is interesting and helpful to note the effect of assuming

a priori, that one of the two probabilities in the objective func-

tion of (SDI) must be zero. This assumption would be nau-

ral if, for instance, the inherent differences between the

patroller's and the traniitorls equipment made it virtually

3impossible to achieve either S > T or T > S at the same

time as fulfillin7 other requirements of the mission. 1uppose

Ithen that P(T < D & S) = 0 a priori, This implies, since

* P(D<S) = P(D_<S, D<T) + P(T<D<S) and [
P(D<T) = P(D<S, D< T) + P(S<D_<T),

that

P(D_<T) - P(D_<S) = P(S <D_<T),

and therefore that the game (SDI) is equivalent to:

S-53-I
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(SD,)  min max [P(D S 1 - P,1 T)1 [
T P

The same conclusion is reac' if we start wv' h A 0--icri

assumption that P(S <D '

The game (SDI) 0'ill be referi co heii e
j

"Difference Game". .n- as the eumptions or. .46,io

(SD 2 ) is based are unr,,ce- A ." le. an, tAie

mathematical formul o! x,. -nalyticaily too .-,.m-

plex, we shall analyze a if.it )i" ". of

(SD 1 ):

(SD 3 ) min max [ .P(D <6 b (D < T)

ZT LP

Substitution of parametric forms of the probabilities in (SD 3 )

in terms of the strategy variables u and v (the normalized

speeds) results in the payoff function:

G(u,v) = A 'P(u,v) +,(l - FT(u,v)) ;$> 0 , A> 0 ,

The patroller is the u-player and maximizer; the transitor is

the v-player and minimizer. The analysis can be conducted

without specifying the values of the utility "weights", p andX.

Without loss of generality, since A> 0 .nd both K

andh.are held constant, we can divide through by . and

represent the game as:

-54-
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G(uv s F',T~v -sT(L'.,V) (e cvu -seu/ l)4iI7

where s > 0 but may be indefinitely large. In this

game, the patroller is maximizing and the transitor is mini-

mizing a weighted combination of the probability of the pati oller

detecting the transitor and the probability of the patrollei

avoiding counter-detection by the transitor.

Both F P(u, v) and FT(u, v) are convex in the mini-

mizing player's variable: v P)r the former, u for the latter.

The proof is-easily found by examination of the first or second

dei vatives of the functions. Unfortunately, the convexity of

Gs is not so easily explorcd. In a related secure-detection

game, examination of the numerical evaluation of the payoff

function (Table III. 2. 1 in this report) shows that optimal pure

strategies exist: they are the slow speeds u0 and v0 for

the patroller and the transitor respec tively. Under a mild

restriction on three parameters of the game (uo , c and s),we

will pL,ove that the same strategies are minimax for (SD3).

Lemma I1. 3. 1 If v = v is any fixed number in Ivo , VmIS

then max GS(uv) = G (U, V )when s > .
Uo<U<U M

The numerical calculations were performed for detec-

tion distributions whicb are exponential with range, and statis-
tically indej endent.
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Proof: G(uv) 0! l + sbev b+l

* !'I
V b+I b+1

s l:;l + qbev > 1 + sb > >

s > IZ!*.GS(uo SV* )_  GS(u, v ) for all u> .

Lemma 111. 3. 2 then -nls

rain G~. o
vo0 <V<V m  G (u , v) G U o for any fixed u such .

that u° < < u m

-S-

'I

Proof:

The minimum over all v e [v o I n ] of the function Gs(u o v)occurs either when v = vo or when v = v or at aloot of the

equation GGlUo VV) = 0. Rearranging terms and cancelling non-

00

zero common factors, the latter equation can be represented

as

I+V+V3 /U2 + cI
C+stl=+'(UoiC-v

Examination of the two functions of v on the left-hand side and

the right-hand side of the last equation shows that it either has

exactly one real root or none nin tervalnd cVml), and that

the condition of the Lemma guarantees there will be none.
a

Furthermore, under the condition, G2(Uo v) > 0 for all
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v in the permitted range, so that G (u o , v) takes its minimum

at the lower eri point of the range: v min v .

T " .i.e conditions > -n(cs9 ind s > 1
c +c F-

are sufficient for (u o , V0 ) to be a saddle point of GS(u, v)

For all(u,v) suchthat u _ 5 ur - -

G(u, v 0) (G(u 0 IV 0 ) < G(u 0 1v). When c > 1, the first con -j

dition is unnecessary, as it is implied by the second.

Proof: This is a direct consequence of Lemmas IMl. 3.1 and

M1.3.2. We have now proved:
Theorem The pure strategies u = u and v = v are op-

timal for the game G , when s is sufficiently large (and in

any case not less than 1).

As an interesting special case, suppose that the patrol-

ler and the transitor, being matched in equipment, have the

same noise functions so that c = 1. Then the theorem's con-

clusion provid.,s a recommendation that if s = 1 both sub-

marines should travel at their minimal speeds* (u, Vo) . Now

suppose that the transitor has equipment that is twice as quiet

as the patroller's: c = 0. 5. Then the theorem is only opera-

tive when s > 2; but the pure strategy solution (u , v ) may

(in terms of the noise functions this :.s the speed such

that any s lower speed is likely to produce essentially the same3noise output).

-57-

NJ



7- - - -

be true for F b_3 welh . ' th -f 'oi'arl a advantazz, .;

.., . .° ... ~ i ., lab 4 greater chance to detect the

patroller before being detected. As ax result, we can only

rec,;mmenJ the strategy (u, v ) if the patroller values avoid- B
ing counter-detection twice as highly as a aet ction of a transi-

tor, or believes it twice as likely that the transitor will play

T
the Transitor's Speed Game G as that he will play the

Patroller's Speed Game G.

The pure strategy solution (u oP V ) of the Difference
0 0

Ga-nes G 5 is not in agreement with most of the solutions

found fcr the examples in [5] for the Patroller's Speed Game. If

We show in the table below a comparison of the solutions in the

case of eleven examples presented in [5 ]. The last column

of the table indicates the probability that the solutions offered i;

in [5 ] violate the non-probabilistic condition (cv > u) for a

secure detection by the patroller.

These examples make it clear that, while the simpli-

fied speed model for secure detection of the present section [3
cannot guarantee that detection will be secure in cases where 13
the patroller must uet a higher speed than the transitor (ex-

amples 1,2 , 6, 7, 8,9 ), it can provide a better guide to strategy

in other cases (4 and 6). For the remaining examples, the

comparison shows interesting differences (except 10) which

are not yet fully explained.
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Example in [5 1 MATFEMATICA Solution Solution in [5 1 Violation

1. c=2 (.50, .'!- (. 8, .4) 50%

2. c=l (.75, . 25) (.7500, .6054) 100%

3. c=2 (.00, . 02) (.2000, . 2229) 0

4. c=l (.Ir .25) . 1500 wp .3972 4591)* 100%
69.81 wp . 6028'1

5. c=l (.00, .02) ( 00 oowp .1350 2852 0
Q.2000 wp .8650'0

6. c=l (.1o, . 05) (.90, . 30) 100%

7. c=l (.70, .30) (.70, . 55) 100%

8. c=l (.05, .02) (.65, .30) 100%

9. c=2 (. 50, . 45) (.7179, .4500) 0

10. c=l (.50, .55) (.50, .55) 0

11. c=2 (.40, .40) (.70, .40) 0

I

wp with probability
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I. 4 Large Structured Matrix Games

Introduction

We consider classes of large matrix games in study-

ing either game-theoretic aspects cf barriers, i.e., an array 13
of specified zones in which patrolling submarines attempt to

detect transitors, or aspects of the patrol strategies used by

a patroller within a zone. In these matrices, entries corres- i
pond to (are proportional to) the probability of tf.3 patroller

detecting the transitor, columns representing a choice of [
transit lane by the transitor, and rows the choice of a "pure

patrol strategy" by the patroller. The motivation for consi-

dering matrix games should be clear; computational methods

for solving them and theorems for analyzing them abound.

However, in order to obtain any results of interest for the

problems at hand Large games need to be considered. Analy-

six indicates that if large matrix games are to be solved, either '
they must possess a strikingly symmetric structure which p
permits explicit analytic solution,or realistic-looking matri-

ces must be generated from data obtained in fleet e:-ercises

and solved by techniques from linear programming. Both of

these approaches are discussed below. P
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Toeplitz Matrix Games

IWe consider square matrix games G = (g..) where

gij = f (Ji-j 1) , that is, the entry gij is a function of the

distance of the entry (.,j) fromthe main diagonal. It seems

particularly appropriate to consider functions f which are

monotonic non-increasing if we interpret pure row strategy

i as that of hovering at station i (i = l, . . . , n) . Im-

plementation ox successive row strategies i and i + I can

be made in :a straight-line patrol between stations i and

i + I within a zone. A mixed strategy may then be inter-

preted as the proportion of time spent hovering in the vicinity

of i in a back-and-forth patrol.

In previous work MATHEMATICA considered an

m(Zk - )-station problem G with gij = f (Ii'J) = I for

I li-Jl < k - I and gij = f 4i-jJ) = 0 for li-jJ > k - I

where k > 1 . This corresponds to the assumption that the

Itransitor is detected if he traverses at any one of the k - 1

I adjacent stations on either side of the patroller's station.

CaU such games, which are defined by specification of m

Iand k , H(m, k) . For example, the game H(2, 2) is defined

by the 6 x 6 matrix

3 -61-I
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1 1 i V

1 1 1 i 1

1l11 1
1 I1 1 =H(2, 2)

L ii 1r

It is convenient to think of m as the number of iden- -

tical blocks or square submatrices of dimension Zk - I

which lie along the main diagonal of H(m, k). Using these

concepts it is easy to show that the value of the game Him, k) il

is 1/m; an optimal strategy for the patroller or row player

is to choose row i with probability 1/m f i - k (mod

k +1) andwithprobabilityzeroif i Ak (modk + 1); f}
and an optimal strategy for the transitor or column player is

to choose some column from each block and play this column

with probability I/m . Thus, for example, the value of

H(2,2) is 1/Z ; the patroller's optimal strategy is (, , .1O);

1 1
and the transitor's optimal strategy is (, 0, 0, 0, 0, .

The unsatisfactory nature of games H(m, k) is that

they make a "cookie cutter" assumption for the range law: 4
any transitor within k - I stations of the patroller is surely

detected, any transitor further away is never detected. H

6

-6-[
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4Graphically,

* 1 
_ _ _ _ II I l

'II I

IiI

Figure 3.3

Consider, now, an ink-station probleni G with

!
% -(1 Jl) k-- Ifor ji-jl- k- , - I ad1gij ij

corresponds to the assumption that the transitor is detected

with probability I - I/k if he travers -s in a lane x -distant

from the patroller's station. Thus the cookie-cutter range

law is discarded and, instead, the range law is that proba-

bility of detection decreases as distance increases.

Specifically,

I-63-
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Probability of detection

k distance apart.

SFigure 3. 4

We call such games, which are again defined by spe- L
cification of m and k, G(m, k) . Again, it is convenient

to think of ra as the number of identical blocks or square

submatrices ci dimension k which are of the form

k k-i . . . I

k-I k k-i . . 2 H
1

1 2 • . Ic

L
and lie along the main diagonal of G(m, k) . For example,

G(Z,3) is the 6 x 6 matrix

:1 -64-8
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3 2 1

2 3 2 1 

122 = G(2, 3)

1 iz 32 2
1 2 3

1 2 3

We have found that the value aud optimal strategies

for any game G(n, k) can be specified. .1

The value of the game G(m, k)-is . An

optimal strategy for the patroller or row player is to choose

row ik+l (i = 0, ... , m-1) with probability (m-i)/m(m+);

row ik (i = 1, ... , n) with prcbability i/n(m+l) ;and

I all other rows with probability zero. Symmetrically, the

itransitor or cnlumn player is to choose columns i with the

same probability with which the row player chooses rows i.

SThus, for example, the value of the game G(2, 3) is 7/18

and optimal strategies for both players are 1/6[2, 09 1, 1, 0, 2].

.3 To prove this statenent it suffices to show that t.he

expected gains or winnings of the row player against any pure

strategy of the column player is precisely the value of the

I game. Then, since the game matrix is symmetec, the iden-

tical strategy for the column player assures him of losing

3 the value as well. So, consider any column, say column

Ikj. Its non-zero entries lie within the rows Zk+j-k through
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j'k + j + k .Within these, the value of the entry in row k1

is k - j ;in row /k+ i is k-j + I ; in row (t+l)k is j ;

and in row Q+l) k + I is j - I Thus, since the mixed

strategy above plays only these rows with non-zero probabili-

ties, the expected winnings against column fk + j is

.((k-j) + (m-1) (k-j+l) + V+1)j + (m-j- )(j-i

tm(in+ 1

thus proving the a ssertions.

• Notice that as. k becomes large, the value of the

game aRproaches (m + 1) Further, the parameter k enters

only for purposes of determining the cycle of non zero choi-

. ces of pure strategies. Thus, as an average figure, we ob-I( "I
tain the approximate result that a patroller able to detect a•

transitor with probability' 1- , if x < d where x is the f.
distance between them, d the maximum distance at which

detection is possible, has probability (m + 1) "Iof detecting a

transitor, where D is the width of the patrol zone. In

G(m, k) we interpret d = k and D = mk so that d [
is (m + l) , agreeing with the result above as k becomes

large (which is essentially a change of scale). Thus it wold

seem that the "measure of effectiveness" d should
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have a bearing on the design of barriers, and, more parti-

cularly, on the definition of the width D of a patrol zone,

in relation to the secure sweep width, which is proportional

to d.

Assume that d is known and that D may be chosen

in such a way as to make D/d = m integer. The implica-

tions of the assumed range law, with its maximum range d

for a detection to occur with non-zero probability, are then

as follows: When m is 1 and the range of detection is the

whole width of the barrier zone, the patroller's rrixed stra-

tegy assigns equal weight to each end of the zone and zero

and zero weight to the "center". When m = 2 anI the

range of detection is half the zone width, the mixed strategy

assigns essentially equal weight to the "center" of the zone

and each end of the zone. At the other extreme, when m is

very large (range of detection is a very small fraction of zone

width) the mixed strategy for patrol -,.ssigns equal non-zero

Iweight to pairs of adjacent interior stations spaced out d

units apart, and double weight to each end station. For inter-

mediate values of m the results are qualitatively the same,

except that the optimality is more sensitive to the correct posi-

tioning of the individual stations. The main point to realize

about the nature of these mixed strategies is that they deci-

sively do not recommend a uniform patrol back and forth

1 -67-I
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across the zone. Instead, the designation of a particular set

of m+l rows out of the mk rows in the game matrix for use

in the patrol strategy is equivalent to a recommendation of a

number of favored positions for optimal patrol in the barrier.

Of course the recommendation is contingent upon the particu-

lar form of the range law assumed. Other range laws will

produco different mixed strategies; in general it is reasonable

to expect that they will also show a pattern which favors cer-

tain distinguished points of the zonal width.

Large Matrix Games ]

A difficulty with many of the analytic models discussed

Vpreviously is that the strategy spaces of both the patroller

and the transitor are considerably too restrictive to adequate-

ly represent actual strategy alternatives. A methodological i]

approach which would allow at least some analytic probing

of tradeoffs between such factors as speed, use of active

sonar, patrol patterns, etc., is described below. Allow the

transitors pure strategies which depend upon the choice of

transit lane and choice of speed; allow the patrollers pure

strategies which depend upon varying speeds, type of patrol

ii (e. g., bow-tie, back and forth); but in all cases assume that

the set of choices within each category is finite. For every
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choice, which can be represented by a t-tuple of integers for

the transitor and a p-tuple of integers for the patroller, find,

according to given functions or from data produced by fleetIexercises, probabilities of detection, or of first detection, or

of no detection, etc., by the patroller and the transitor. On

the basis of these,assign subjective values to the patroller for

mutually exclusive outcomes. This results in a matrix having

as many rows as the product of the number of speeds, patrols,

,I, etc., available to the patroller, and as many columns as the

product of the number of transit lanes, speeds, etc., avail-

Iable to the transitor. This matrix game could then be solved

by means of linear programming to determine optimal mixed

-strategy patrols for the patroller and transits for the transi-

tor. The difficulties with this approach lie in two areas:

availability of data concerning probabilities of detection as a

jfunction of speeds, patrol patterns, etc., and the size of the

resulting matrix. Nevertheless, extremely useful insights

could be obtained.

-!
!
I
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The size of the resulting problem may appear to be

too large. Current computer limitations would allow at most

some 1000 pure strategies for one player, though. a practi-

cally unlimited number for the other. The hope, of course,

is that some form of decomposition approach might lend itself

to permit efficient computation of large problems. Unfor-

tunately it seems that the structure of most matrix games

does not allow such an approach. The basic reason for this

can be summarized by saying that the value of the game is a

complicated :rational function of the values of the matrix

entries. Ths simplest applicable type of decomposition:L!
is for matrices which are the tensor product of other matri-

ces. This type of approach was investigated in ref [7] through
rather involved and lengthy arguments. We present those

ideas in a direct and simple manner here.

Let A be a matrix game, x a mixed strategy on

rows, y a mixed strateg-r on columns. Then, by definition,

x and y are optimal and X is the value of the ga m e A

if and only if

x*A > Xe and Ay < e.

where e is a vector of l's (one' of appropriate dimen-

sion. We have the following result:
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Let x and y be optimal for A with value

> , and x, y be optimal for T with

value X_> 0. Assume Ay _> 0 and

y 1 0 (it.is sufficient to have A, , > 0

for this assumption to hold). Then x®

and y 7 are optimal for the game A ®& ,

the tensor product of A and K, with value

IA.
The proof of this is trivial,for

(x tg)(A®K 0 xA®XA X Ke and

3!(A OT) (y ) A y OTT < A 7 e

the last igIqfality holding by the explicit assumption made in

-- ti- -statement above.

As an example consider

I1 -\_ /-l 0 3iiA =.A= -1 2 i z -1 1

II

I Then x = (3/5, 2/5), y = (3/5, 2/5), 1k= l/5 ;and

= (1/16, 4/16, I/16), y (6/16, Z/16, 8/16),

-
1 -71-
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= 18/16 and the assumption Ay > 0, A >0 is

satisfied. Therefore, the optimal solution to

-1 0 3 1 0 -3

2 -1 1 -2 1 -1

2 1 -1 -2 -1A0AX= -- --
1 0 1 - J-

_Z 1-1 4 -2 22

-1-2-1 2 4 2

is

x = (3, 12,33, 2, 8, 22),

-7 (18,6,24,12,4,16),

with value

18

This result is applicable to situations where the effects

of two parameters are multiplicative. For example, if the

effect of patrol pattern on detection-probability was indepen-

dent of the effect oi speed, the payoff-matrix G obtainedps

when both parameters were taken as strategic variables would

-72-



be proportional to the tensor product Gp G s of the pay-

off matrix G of the "pattern game" with the payoff matrixIE p

G s of the 'spepd game".

True independence of such a pair of parameters, of

course, would be a rare circumstance -- but if the factors

were near, independent, the above tensor-product theorem

would provide a useful first approximation to a solution.

If the strategic choices for each player involved more

Ithan two parameters, we could employ the obvious generali-

zation of the above theorem to a tensor prnduct of n matri-

ces.

Theorem: For each a - 1, ... , n, suppose Aa is the

41 matrix of a game which has optimal strategies xa and ya

and value > 0. If also Aaya > 0 for each a, then

the game whose matrix is the n-fold tensor product A A1

®IA
2 @... 0 An has value 1  .*k n andopti-

@6 mal strategies x xI  x 2 .. x and y y Qy2  ***yn
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I1. 5 Continuous Analogs of Toeplitz Matrix Games

1;

In Part HII. 4 "Large Structured Matrix Games," a

class of large matrix games %1(m, k) was introduced in

which the transitor has as pure strategies the choice of one

of a finite number of transit lanes (choice of a column in
44

G(m, k)) and the patroller has as pure strategies the choice

of one of a finite number of stations at which he can hover.

Then, the probability that the patroller detects the transitor

is (k - d)/k if d _< k and 0 if d > k , where d is the

distance between the patroller and the transitor.

It is natural to consider the continuous analog of this

class of matrix games. This game is defined as follows:

Let

0 (x, y) 1if tx -yl< d[

-o if Ix -yld

where 0 < x,y _ D, be the payoff of playerl, they-

player, to player I, the x-player. The interpretation for p
this game is: the patroller has as pure strategies the choice

of a point x on the line [0, D], the transitor has as pure

strategies the choice of a point y on the line [0, D] ; the
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probability of the patroller detecting the transitor is given

I b (x,y). Thus d is the maximum range in which detec-

tion is possible; D is the width of the patrol zone. For

I fixed x say x = x, P(xy) describes the range law:

I

3F y

Figure 3.5

It is most surprising to find that both players have

optimal mixed strategies which each use only a finite num-

ber of pure strategies. A mixed strategy is .a probability

distribution f on the choi-.e point x for player I, and a prob-

ability distribution g on the choice of point y for player

The value of the game defined above, for D/d not

I integer -valued, is

2n - D/d
5n (n + )

1 -75-
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where n = [D/d] + 1 , with [.1 denoting "integer part of."

Note that n A D/d so that the value of the game is about p
d

,~ as was indicated in an approximate manner in Part

HI. 4 . ' n optimal strategy for player I is to choose a distri- fl
bution f (x) defined as follows: 11

f (x)= 4(x) + f(x)

-' where I

4 = 4x) =0 if x~ kd i xp D-kd ,

k integer! i
(kd) n - k

YL n = +nI) = (D - kd) ,

where, again, n = [D/d] + 1. An optimal strategy for

player H is to choose a distribution g*(y) where g*() =

g*(y) + g l(y) , with gL (y) = *(y) = (y) •

For example, if d = 5, D = 16 we have n =

[16/5] + 1 = 4 ; the value of the game is Z4/100 ; and

each player uses 8 pure strategies

f(O) = T = (16) f L(5)
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~ii £(10 fL*j5) ~ £1

Lo0) = = f,,(6) L0 -

g is the same as . Graphically this means that the

I patroller should circle at one of 8 stations as indicated in

Figure 3.6 below.

I II

3

IM
2

4 1 3 2 2 3 1 4

0 1 5 6 10 11 15 D=16

Figure 3.6

I
Let E( 9(; f, g) denote the expected winnings of

Iplayer I given that I uses mixed strategy f and J- uses

mixed strategy g . To prove the contention above it suffices

to showI
E( f,g) g 5 E( gf*,* 24 f*,),I
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that is, f* is optimal against g* and g *is optimal against [
f*

We first compute E(; f,g

(j+l)d

E(;f, g*) n 1) ' (n j) (d x xjd) df

id

d~~d(x + d -d) df} k

fl D-k-k- n1

since (x,Y) =0 for Ix-y > d , where we hwie "broken

up" the interval [0, D] into [0, D-nd+d, d] , [D-nd+d, d],

[d, D-nd+2d] , etc. ; or, in general into [hd-d, D-nd+hd], [D-nd+hd, hd],

Consider., first, the contribution to E( p; f, g )din to the

interval [hd-d, D-nd+hd] . From the first sum, with j

h-l and j = h we get

n-h+l f(d-+hd-d)df and n -,h f(x+d-hd)df

while from the second sum with k n-h and k =n-h+l i
-78-



we get

(nn +h) f(d D+(n h)d x) df

and

(n - n + f (d -(n-h+l1)d + D x) df

Combining these results we obtain

Zn - D/d) dff n(n + 1

Precisely the same result obtains when integration is per-

formed over [D - nd + hd, hd] Thus we find

*~~~ i~f d Z- D/d
~~"~ = nn + n~n+l)

This says that against the strategy g *player I can choose

.1 any mixed strategy and obtain the vtlue (2n - D/d)/n(n + 1)

Thus, in particular, f = f* maximizes E( $; f, gA

Similarly, g = g * minimizes E( ,$ f*, g) . Therefore,

f ,g are optimal strategies and the value of the game is

(2n -D/d)/n(n + 1)

For the D/d integer valued it is easy to verify that
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the value of the game is (n+ 1) ° where*: = D/d, and

both players play points kd (k 0,...,n) with pribability

(n+l)

It seems clear, as is the case for the optimal strate-

gies fo= the games G(m,k), that f£ and g are unique.

So we obtain similar results, about the same "measure of

effectiveness" D+d and, again, a recommendation that

the patrollerc should use a finite number of favored stations

or positions for specified proportions of time. Of course,

the result depends upon the particular range law 7(x, y)

whic is chosen. Nonetheless, reasonable range laws would II
seem to lead to the same type of qualitative result; certain

distinguished stations should be used.

The game #(x, y) which has been analyzed above is

the continuous analog of the matrix games G(m, k) . For

piw.)oses of comparison it is interesting to consider the con-

tinuous analog of the matrix games H(m, k) (see Part III. 4).

It is natural to formulate this game as follows. Let II

jr(X, Y) =I if x - y1 < d

=0 if jx- y> d ,

where 0<x,y<D,, be the "payoff" of playor II, the y-player,

to player I, the x-player. Here, again, D is the width of

-80-
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the patrol zone, and d is the maximum range in which sure

detection is possible with probability T = 1 . Thus, we

have the cookie-cutter range law: for fixed x , say x

Y/(x,y) describes the range law

11:Y)

I I

0 D

Figure 3.7

The value of the game N , for D/2d not integer

valued,is

1
m

where m [D/Zd] + I . Note that m IV D/Zd so that the

"measure of effectiveness" is about i/D . An optimal stra-

tegy for player I is to choose a distribution f*(x) for which

1 -81-
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f((2k + 1) d) k - " ,.. m -2 ,(k O, m-2),

= where x =min (Zm 1) d,D
m L

f*(x) = 0 otherwise;

and an optimal strategy for player II is to choose a distribu-

tion g (y)

g (k(Zd + k = 0,..., - l.(k=O...,m-l)

g (y) = 0 otherwise.

~- 1
Here 0 < e _ (D/Zd - m + 1)2d/ (m-1). The basic

point of the transitor's strategy is that m points y should

be used,but that each pair of such points should be distant

more than 2d.

For example, if d = 5, D = 16, then m = ; [
1

the value of the game is - and each player uses 2 pure stra-

tegies; e may be between 0 and 6 (we choose 0. 5):

*(5)= f*(15) = , g*(O) =g*(10.5 =

The proof of this statement is straightforward.
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V

d (Zk+l)d+k E

E(T;f,g ) 1 df + 1 df.E';m 0 m k=l fd
(2k-l)d+kF.

Thus, an f which maximizes is any distribution f which

has all its weight concentrated in the intervals specified in

the above definite integrals. f = £ is such a distribution.

So, E('4'; f, g ) S E(J'; f*, g*) The inequality E('/; f*, g*)

. E('!; f , g) is immediate.

If, on the other hand, D/Zd is integer valued it is

jI easy to aee that the value of the game is 1/m , with m =

D/Zd, player Iplays points (Zk+ l)d , k = 0,..., m -I,

with probability L , player II plays points k(Zd + ),m

0, ... , m- I, with probability 1 , where 0 < t _

Zd/m - I

This singles out an interesting oboervation. Namely,

if one believes that the range law is of cookie-cutter type,

:1 then the width of patrol zone D should be chosen so that

D/Zd is integer valued. For if it is not so chosen then the

patrol width might just as well be increased: this can lead to

no decrease in the probability of detection. This seemingly

peculiar result is a consequence of the discontinuous nature

oi \V(x, y) . Another way of pointing to this peculiarity is to

note that if D/Zd = m is integer-valued then the value of the

game is - .,while if the width is increased to D + 6 , with

6 > 0 but arbitrarily small, then the value of the game

jumps down to 1/(m + 1)
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Finally, notice that the measure of effectiveness for

- with defining parameters d, D is about Zd/D while that

d
for 0 with defining parameters d, D is about b . In

terms of the extenided defini,.on oi 55T give in Part II this

means that the cookie-cuttei law yir e.ds an SSW of Zd

I while that of the "linearly dec.-eaikk" --'-nge law yields an

SSWof dD ii

: ii

g..

__ ,.) A

2II

gI;

S1
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I1. 6 Repeated Games

Recent research in the mathematical theory of games

by J. Harsanyi [3], and R. Aumann and M. Maschler [1],

[Z] has resulted in a theory which provides strategic analysis

for a sequence of repeated conflict situations in which the

players -- the patroller and the transitor, for instance --

have incomplete information about the payoffs. This section

represents an attempt to apply some of their results to ASW,

and to interpret them in the context of a barrier situation.

Repeated Zero-sum Games of Incomplete Information

are formal models of a sequence of closely related strategic

situations. Two players are to make choices of strategy at

each stage of an indefinitely long sequence of matrix games.

One or both of the players may lack certain information

which would specify the true payoffs at each stage. The al-

ternative matrix games which determine the actual sequence

being played are known to both: call them G 1 , G2 1 ... , Gal

where G. is an m x n matrix game for each i . In addi-

tion, a prior probability distribution over the alternatives,

(q, qZ ... "' q) representing the state of information

of the uninformed player is known to both players.

* See Bibliography on page 109 of this report.

Assuming for the purposes of discussion that only
one player has incomplete information.
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Naturally the sum of the qIs is 1; in the case where one of B
the qi's is exactly equal to 1 the inforn -tion of both players

is complete. For all other cases there is said to be incom-

plete information.

In the sequence of repeated games, each player at-

tempts to maximize his gain (minimize his loss) in the sense

of the long-run average payoff per stage. The players are

generally not able to learn exactly what the payoffs are at

each stage, but if one player has complete information he,

of course, can deduce them. The uninformed player must

try to discover the payoffs by observing the strategy choices

( of the opponent, and he may in some cases approach a state

of complete information. There are also examples where

no information is revealed to him by an intelligent opponent's

choices. -In the latter cases the players are simply playing

the game (one might call it the expected or averaged game)

whose matrix is given by

-a
G = il qi Gi

and the optimal strategies for both players are determined

by the usual minimax solution to the matrix game defined by

The analysis of the repeated games with incomplete

information proceeds as if the first move were a random

4



choice (by nature) of one of the matrix games G1 , G2.

G a . The informed player is, in effect, told the outcome of

the "choice of chance" while the uninformed player is not.

One of the questions which the theory has sought to answer

is: to what extent and by "..ich type of strategy should the

informed player make use of his extra information? In a sin-

gle stage of the sequence, the information, if it is advanta-

geous, can clearly be exploited. However, it is not clear

that the informed player can continue to gain advantage from

his information in the long run. One of the surprising results

of the work of Aumann and Mascher is that, in some situa-

tions, the informed player must act as if he were uninformed

if he wishes to maximize his long-run average gains. We

turn now to the consideration of some rather simple exam-

ples in which these considerations may play a r~le for the

patroller and the transitor.

The notion of games of incomplete information may

cast new light on situations which can arise in an ASW barrier

context, where the patroller (Player 1) has certain infor-

mation which the transitor does not have -- such as the exis-

tence of abnormal acoustical situations, or the likely sonar

range under various conditions. The possibility exists that

the transitor (Player II) could infer information, which would

be useful to him, by observing the strateg, of the patroler

-- i. e., by )bserving how the patr-' .er used his additional
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informatioi.

We have therefore formulated several games of this

type.

Example 1. The patroller knows detection-range, the

transitor does not.

To be specific, we may assume that the patroller

(Player I) knows the sonar detection-range, that the transi-

tor (Player II) knows only a probability-distribution over the

sonar detection-ranges, and that the transitor dAiscovers I's

patrol strategy with some time-lag. For example, long-

term predictions of detection-range will be known to both,

actual ranges may change only slightly from day to day, and

the previous days' patrolling orders may be assumed deci-

"phered and available to the would-be transitor.

Furthermore, we assume that, when the sonar range

is known, the detection game will of the form called G(m, k)

in Chapter I1. 4 of this report. G(m, k) distinguishes among
mk possible positions fcr the patroller, and among mk cor-

responding lanes for the transitor. The optimal strategy for j
Player I in the game G(m, k) is given in Chapte: II. 4 of this

report; the optimal strategy for Player II is identical; the

mk+l
value of the game is (--1)m

It is usual to assume that secur-.ty and cryptological
measures can only delay, and not prevmt, the enemy's .nter-
pretation of a message. For that reason we assume that the
transitor will eventually discover information which the patrol-
ler continues to use.
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Now consider two such games, defined as G(m l ,k l )

and G(m 2 , k2 ), such that ink 1 = Mrk 2  The matrices

of these games are of the same size -- viz., (mIkl) x

(m 1 k1 ) -- and therefore a game of incomplete information

can be defined with a prior probability q, of playing the

game G(ml kl) and a prior probability q2 of playing the

game G(m 2 , k2 ) . An example of the appearance of the

matrices with m = k 2 = 3, m 2 =k 2, couldlook

like this:

21

Probability q, : 1 2 1
12 

7
G I = G(3 2) =T

3 212

Probability (1 ql ) =q2 12 32 1T

G 2  G(2, 3) 1 2- 13 2 17

1 23 21V 8
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The average matrix, , is then given by

!- = G I+q 2 .(G 2 -G I ) •

To simplify the appearance of subsequent formulae

we wilitake x = q2 , so that q= 1 - x, and the

matrix G, which we shall denote by G(x) to recall its

dependence on x, becomes

6 3 + x 2x

x 6 3+x 2X

UN G2x X 3 + x 6 3 + x 2x

2 x 3 + x 6 3 '+ X 2x

2x 3+x 6 3+x

2X + x 6
\i

The value of G(O) is then v(G(3, 2)) , which is known

7
to be - = 0.2917 ;the value of G(l) is then v(G(2, 3))

7
which is known to be T = 0. 3889 . Calculation gives for

0 _ C 1 the value

v(f(x)) = 189- 99x - 45x2 + 1ix 3

72 (9 - 8x + x)

which is tabulated below as a function of x, and is shown

in Figure 3.8.

too tedious to be revroduced
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0.4

C

A eB

0.35

Cay (Ux)--t

*D-

0"0 0.5 1.0

x -

A, C are intersection points of Cav v(Z(x)) and Vex v(r(x))

B = r I one-shot game with I informed

D = r , one-shot game with II informed

Figure 3. 8

Value of Games of Example 1
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~ jx "___

0.0 7/24 = 0.2917

0.1 178661/591120 = 0.3022

0.2 2617/8370 = 0.3127

0.3 5716/17840 = 0.3229

0.4 17863/53640 = 0.3330

0.5 1037/3024 = 0.3429

0.6 402/1115 = 0.3526

0.7 101423/280080 = 0.3621

0.8 10829/29160 = 0.3714

0.9 2647/6960 = 0.3803

1.0 7/18 = 0.3889

When wt examine the convexity of this function of x,

we find that it is a concave function; from this fact, and from

the general theorems referred to above, we conclude that F
Player I (the patroller) should not make use of his additional

information to improve his strategy when the transitor could

observe the strategy -- because the transitor could then use

those observations to deduce which stage game had actually

been chosen by chance (i. e., what the patroller had discov-

ered about the sonar detection-range).

92
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This res-alt is, to put it mildly, astonishing. We

shall describe the optimal strategies in the games G(O),

G(t) , G() , and attempt to clarify the situation.

1Optimal strategy in G(O) = G(3,2) is: T13,1, 2, 2,1, 3)

Optimal strategy in G(1) = G(2, 3) is: (2, 0,1,1,0,2)

)1 1 (7 , ,4 ,0 5, ) .
Optimal strategy in G(i) is: , 15,40,40, 15,71)

(In each case, the strategy cited is optimal for both players).

Now if the game is, with equal probability, G(2, 3) or

G(3, 2), but neither player knows which, they must play

against the expected outcome G(I) and the value of the game

will be 0. 3429 . If Player I(the maximizer) knows which it

is, he may profit by adjusting his strategy appropriately. *

I '..owever, if he does so adjust his strategy, and if Player II

(the minimizer) can observe his play and deduce which game

is really beirg played, they will find themselves in the long

run playing either G(3, 2) or G(2, 3) -- with values 0. 2917
1

and 0. 3889 respectively, and with probability of each.

The expected value of that game to Player I (the patroller)

We specify below the optimal strategies for that

one-shot game.
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is thenz (0. 2917 + 0.3889) = 0.3403.

It therefore profits the patroller to ignor e the infor-

mation he gets on the detection-range, under these circum-

stances. If tie patroller is not concerned with his strategy

being revealed-- (see Fig. 3.9) -- to the transitor, the

fact that the game might be repeated is of no importance.

Exact determination of the optimal strategy, and the value,

for this one-shot game which we call ' will tell us how

much the patroller could benefit from knowing the true detec-

tion-range when the transitor does not know it.

Symmetry tells us that optimal strategies will involve

location in position l as often as in 6, 2 as often as 5, and

3 as often as 4; we may therefore draw up the matrix of

strategies for the "one-shot" game, wherein neither revela-

tion of intelligenkce nor repetition of the same conflict are

significant factors. A strategy for Player I consists of a

pair (rl, r 2 ) where rI = 1,2, or 3; r i = 1 denotes that

the patroller p 'trols in positions 1 and 6, r i = 2 denotes

positions 2 and 5, and r. = 3 denotes positions 3 and

4; the first number, r1 , tells how player I patrols if the

game is really G1 , and the second number, r. , tells

how he patrols if the game is really Gz . The strategies

for Player II are 1, 2, or 3, corresponding respectively to

transits in lanes l and 6, lanes 2 and 5, or lanes 3 and 4.

The payoff matrix for the gaine rl is then as shown

-94-

...... i- -



Chance .Move

MIT. TI.

-95

I / -- -

I/  G1 =: \ ( G2 :

\ G(3, 2) \ ,3)

'I

\ /-

- "- - -.I a -. .- -. -. - -

Fiue3,,9: The Game F1

Player I is told the result of the first chance move, and

therefore knows whether G1 or G, is being played;

Player II is not given that irfforrnation.
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(we actually show 24 1 to avoid fractions):

Pure Strategy for II24 -^ -

1 2 3

(1,1) 12 7 2

01,2) 1 9 6

(1,3) 9 9 10

(2,1) 9 10 5
Pure

Strateg (2,2) 7 12 9
for I

(2,3) 5 12 13

(3,1) 6 7 11

(3,2) 4 9 15

3,3) 2 9 19

It turns out that the optimal strategies for this one-

shot game are:

(A) 1 2

1 5
for Player I: or (1, 1) + -(1, 3) .

or any linear combination of those;

for Player II: (1) + .(3)
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1 13

The value of this game is then 3= 0. 3611.

Although the numerical values obtained in this one

particular case are not in themselves of great importance,

Ithey serve to illustrate several important points:

(1) if the actual situation is either G 1 or G. , with

equal probability, but neither player knows which, the value

I
is simply v(G(.)) because the expected payoff matrix is

1 1 1 _ _

simply 7G 1 + 7 G2 = G(i ) . Value = 0.3429 ;

1 (2) if the actual situation is either G1 or G.

with equal probability, and the patroller knows which, but

the transitor does not, then the patroller can patrol the end

lanes (*I and S6) when the game is G1 and some mixed

behavior-strategy satisfying (A) above when the game is

G, then the value is increased due to his additional know-

ledge;value = 0.3611

(3) if the transitor is unable to observe the detection-

range (i. e., the random choice of G1 or G2 ) directly but is

able to observe strategies of the patroller over a long period,

he could infer from the strategies as described by (A) above

whether the game was really G1 or G, ; then, in the long

run, he would be playing either G1 or G 2 (whichever hap-

pened to be chosen by chance) -- and they would be equally

likely, so that the value would be v(G,) half the time and

v(G2) the other half. The expected value wouldthen be

1 (v(G,) + v(G2 )) ; value 0.3403.
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From the above numerical result we can see that, in

this case, the benefit which Player I could receive due to an

advantage in intelligence is substantial -- but that benefit

would be essentially nullified if the game were played repeat-

edly and the transitor could discover the patroller's past

strategies. In fact, under those circumstances the patroller

should refrain from using the information which he possesses.

Example 2. The second example, which is similar in

principle, re3ults it. answers which illustrate the opposite

possibility. The example is identical with the preceding ex-

ample, .but we imagine that Player II (the minimizer, who is

the transitor) can get the additional information about the

detection-range (i.e., about whether G or G2 was chosen

in the first random move.) To Player II, the average game

with expected payment of 0. 3-129, is less desirable than

the opportunity of playing G1 half the time and G .the other

half (a situation which has expected payment of 0. 3403).

Therefore Player I would benefit by using the information,

even though he would reveal it inusing it. If, as the opposite

extreme case, Player II could use the additional information

without revealing anything, the asymmetrical one-shot game

would be played: the matrix of the game 1 is simply

the transpose of matrix P shown above; the optimal stra-

tegy for the well-informed transitor is then

-98-

, .



IA
5

1, 1.~) + 1,l2) + =9(1,3)

I
and the optimal strategy for the uninformed patroller is

S(1) + 1.(2) + [(3)
T I

The value is then 4 = 0. 3263.

The results of this example are also shown in Figure 3.8, p. 91.

The above examples used a special form of the detec-

tion range law -- viz.,

IP
0. -(- -l-il) for i-j e k

3 0 if i-j > k

I This "triangular" detection range law results in a discrete

optimal strategy for each player, as described in Chapter

M1., Section 4 of this report. It also guarantees that the op-

I timal defense will be equal-gamma -- i. e., that an optimal

patroller's strategy would cauae the probability of detection

Ii to be independent of which transit lane was chosen by the

4
transitor.

We have already considered the unilateral incomplete

-99- i
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information game, in which the patroller knoxs detection-

range but the transitor does not, and the transitor will dis-

cover the patroller's strategy in the long run. Because the

transitor is always facing an equal level of defense in each

lane for either of the stage games, it is not surprising that

(i) he also faces an equal level of defense in each lane for the

games of incomplete information obtained from combination

of those stage games, and (ii) the value of those combination

games is close to the value which would be expected if the

stage game (in the above examples, the detection-range)

were revealed immediately to both players as soon as the

random choice was made.

We will now proceed with examples where the stage

games are not equal-gamma games, where intuition is less

useful in predicting good strategies for the unilateral game

of incomplete information and where the better -informea

player might bk able to reap a substantial profit from his

intelligence advantage.

In all these examples we continue to suppose that

Player II must select a lane through which he attempts to

transit undetected, and that Player I must select a position

i in which to patrol. The probability of detection if I chooses

i and II chooses j is g.j and the array (gij) makes up

the matrix G • The several alternative stage-game matri-

ces are called G 1 , G2  . Ga
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Example 3. If there is a "bind" 1,,ie with smaller

detection-probabilities than elsewhere, which is a priori

equally likely to be any one of the lanes; and if the expected

detection-probabilities in each lane are such that the "ex-

pected game" , has an "equal-gamma" solution, then it

seems intuitively obvious that the transitor could profit by

any hint (however small) as to which lane was actually the

blind one -- consequently we would expect the payoff of such

a 6(q) , as a function c ' q to be a concave function. We

can illustrate this with a small example, and then prove it

for the simple special case in which a transitor can only be

detected by a patroller in thE. same lane -- so that all the

matrices G, , .... G a  re diagonal.

Take

4 1 0

(1 1

X0 1 4
\I

2 10

G 1 1 4 1

0 I 4

and 7(x) (1 -x) G1  + x G 2
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!r

Thenexplicitly:

I 1() 4-2x 1 0

k(x 2+Zx

1 -

(8 + 4x - 2x (2 + 4x, 4 - 3x, 2 + 3x - 2x 2 )

optimal strategy for II is the same; and the value is

( 12 + 9x - 8x2

32 + 16x - 8x

This iB tabulated below and q sz'o :i in Figure 3. 10 on p.. 103..

Note that

3v(G(o)) = v(G 1 ) = = 0. 3750

~13

v(U (1)) = v(G.) = 13 0.3250

1 29
v(( ) = = 0.3816

(Incidentally, v((Z)) is not only greater than the average

between v(Gl) and v(G2 ) , but is in this case actually

greater than either of them.)
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0.4

I 0.35

L!

0.31

0.0 0.5 1.0

x

Figure 3. 10

Values of Games of Example 3
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V

x v('(x))

0.0 .3750

0.1 .3825

0.2 .3865

0.3 .3875

0.4 .3858 -.

0.5 .3816

o.6 .3750

0.7 .3661

0.8 .3548 ,

0.9 .3412

1.0 .3250

Value of the Games of Example3

Now the value of a diagonal-matrix game of positive

elements 11' "" gnn is simply
~t:

v = : (l M-l I

By appealing to continuity of the elementary functions, i
it suffices to prove our assertion for cases where only one

entry (say g 21 ) changes.

Because the second derivative of (gll + z g i -

2i
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IJ

with respect to g,, is negative, the desired result follows.

IExample 4. In this example, we take a pair of stage

matrices which represent different detection-ranges, but

Iwhich do not have the "triangular" property of the matrices

in Examples 1 and 2. Specifically,

3II
3

G 3
3

3

3

It is easy to verify that

=Z ( (x + y/~l
dx

i ' + y) x
= ~x 1(x" + xy) .

-, y which is
!1+ xy) J

3 always negative for positive x and y
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3 1

1 3 1

1 3 1

1 3

and U(x) = (1-x) G1 + xG z

Explicitly,

3 x

x 3 x

x 3 x
x 3x

X 3

Since we are again dealing with a symmetric matrix, we can

describe the strategies for each player by a triple of numbers:
the first is the probability of playing row 1 + row 6)

1 1the second is the probability of playing (Zrow Z + .- row 5);
11-

and the third is the probability of playing ( row 3 + -. row 4).

The optimal strategy for Player I in the game U(x)

-1 6
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T 1_.(9- x , 9-3x-x, 9-3x.

'27 - 6x - 2 x

and the value is1 2

(~x))=27 + 9x - 6x2 -x| v { } 6(27 - 6x 2x}

Note that

I v(U(0)) v(G,) = 0. 1667

v(U(1)} = v(Gz  =29 0. 2544I
1 239

v(%)1 = T3 = 0. 2119

5 Values of v(ff(x)) for Example 4 are tabulated below

and graphed in Fig. 3.. 11. Note that the function v('(x))

3 is again concave, so that again it would be prudent for the "

patroller to ignore information he might obtain as to which

of these would be the true detection-function.
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0.3

0..,

0.1

ti

0.0 0.5 1.0

x ,

v(rj(x))

....- straight line

Figure .11

Values of Games of Example 4
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[x
0.0 .1667[
0.1 . 1759

0.2 . 1850

0.3 .1941

0.4 .2030

0.5 .2119

0.6 .2206

0.7 .2293

0.8 .2378

0.9 .2462

1.0 .2544

Values for the Games of Example 4
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