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ABSTRACT

Adaptive multichannel prediction-error filtering is compared
with conventional optimum Wiener filtering for 10 types of array data. An
actual signal, an artificial signal with varying strength and velocity, and the
design of filters for a composite of noise data are considered for three sets
of data in the comparison of adaptive maximum-likelihcod signa! extraction
with Wiener filtering. Comparison of the two methocs is based or. total mean-

square-error and the distribution of the error power over frequency.

Online adaptive processing solves problems with slowly time-
varying noise fields such as UBO road noise. 7'he adaptive :nethod also is
simpler and more economical than the Wiene- method as an offline filter-

design procedure for array data known to be -approximately time stationary.

Both methods produce essentially equivalent filters with re-
spect to total mean-square-error; however, relatively large differences in

the actual filter-response characteristics are possible.
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SYMBOLS AND ACRONYMS

CPO Cumberland Plateau Seismological
Observatory "J
ks Rate of convergence parameter of =
adaptive algorithm
LASA Large-Aperature Seismic Array D
MCF Multichannel filter
MLF Maximum-likelihood filter D
NSA Noise sample A
NSB Noise sample B D ;
rms root-mean-square
SDL Seismic Data Laboratory B
SNR Signal-to-noise ratio D |
TI Texas Instruments Incorporated :
UBO Uinta Basin Sesimological Observatory D
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SECTION I
INTRODUCTION AND SUMMARY

Basic reasons for using the adaptive technique are its suit-
ability for hardware implementation as an online operation consisting of

simultaneous filter design and application, its numerical simplicity and im-

proved efficiency in filter design, and the fact that it represents a techno-
logical breakthrough in processing data with unknown time-varying noise
characteristics. Algebraic details of the adaptive algorithm can be found ‘g)

in numerous other reports. 1,2,3

This report discusses the application of the adaptive technique
to a wide variety of seismic array data, comparing the adaptive technique to

the classical methods of designing and applying fixed filters.

A very close approximation to the Wiener mean-square-error

was obtained on all data samples examined, using the adaptive technique for

sufficiently small filter coefficient rates of change.

The adaptive method applied to timc-varying data produced
smaller mean-square-error than the Wiener method for intermediate filter
change rates. Thus, it can be inferred that an online adaptive multichannel
filter (MCF) will always perform almost as well as an up-to-date Wiener

filter and possibly better if the-data characteristics are. varying with time,

Although the adaptive method produces total mean-square-
error in close agreement with the Wiener method, large differences in the
filter-response characteristics are possible. Powe.r spectra for the Wiener
and adaptive error traces in the design of maximum-likelihood filters (Sec-

tion III-C) agree in total power, but favor the Wiener method at low frequencies.
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Unexpected mean-square-error vs rate-of-coefficient-change
curves for adaptively processing original data led to the discovery of an
interaction between the high rate of adapting the coefficients and the relatively
large content of low-frequency energy in the data. Evaluation of this phe-

nomenon has not progressed sufficiently to state its exact significance.

Results of adaptively processing seismic data indicate that
the adaptive procedure now can be used for MCF design with the assurance
of producing filters equivalent to the Wiener method in total miean-square-

error.
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SECTION LI
PREDICTION-ERROR FILTERING

Prediction-error filtering was performed on a set of 10 dif-
ferent data samples. Included in the set are short-period surface-array
data (individual and ring-stacked seismometers), short-period vertical-
array data, and 3-component long-period surface-array data. Adaptive and
Wiener filtering results from the unwhitened versions of four of these data
samples (UBO road noise, UBO normal noise, array data, and LASA Bl
center and first ring) were given in a TI special report. 1 These results
are presented briefly here for comparison with results from the whitened
versions of the same data samples. The remaining six data samples have
been processed adaptively in their unwhitened form. In some cases,
whitened data were adaptively filtered and the unwhitened and whitened data
were Wiener-filtered. Table II-1 is a summary of prediction-error processing

for each data sample.

Data for each problem, unless otherwise specified, are
normalized in the filtering program by being scaled in each trace by 1/
(rms value of that trace) so that the sample variance of all data traces is 1.
Thus, results of processing the different data samples may be compared

directly.

Processing results for each data sample are presented as
plots of the actual filter outputs, plots of mean-square-error of prediction
Vs ks (the rate of convergence parameter of the adaptive algorithm), and

power spectra of the data and prediction-error traces.

False-alarm probability (the frequency of error-trace excur-
sion beyond §, 25, 3§, etc., where §is the sample variance of the error trace)
was computed for Wiener and adaptive error traces for seven of the 10 data
samples. Rapidly adapting, slowly adapting, and Wiener error traces showed

no consistent difference in false-alarm probabilities.

B & 0O O o D oo =99 o
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UBO ROAD NOISE

Special Report No. 1l gives results of adaptive and Wiener

processing of the unwhitened data.1 The data have since been whitened and

processed in a manner similar to that used for the unwhitened data.

Unwhitened data shown in Figure II-1 were prefiltered with

an antialiasing, slightly prewhitening filter and resampled to a 72-msec

sample period. A 9-point deconvolution prewhitening filter designed from

the autocorrelation of channel 10 was applied to all channels.

CHANNEL 1
CHANNEL 2

CHANNEL 3

A AAMAN AN 1A o R N A v Pl AR N o A - S

CHANNEL 4 |

CHANNEL 5 | | .
CHANNEL 6 ll

CHANNEL 7

CHANNEL 8

CHANNEL 9

CHANNEL 10

— 14.4 SEC — 1 I 1 | .
0 200 &0 600 800 1000 1200

TIME {NUMBER OF DATA POINTS)

Figure II-1. Prefiltered and Resampled UBO Road Noise
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The wnitened data shown in Figure 1I-2 were processed with
27-point Wiener and adaptive filters designed to predict channel 10 at the
center of the filter from channels 1 through 9. The Wiener filter, designed
from correlation-function estimates computed from the whitened data, gave

a mean-square prediction error of 0.414 when applied to the normalized de-
sign data. The normalized mean-square prediction error of the Wiener filter

designed from and applied to the unwhitened data was 0. 147,

Adaptive filtering of the whitened data consisted of nine passes
through the data. Values of ks for the nine passes were 0.0015 (learning),
0.0015, 0.0010, 0.0005, 0.00025, 0.000125, 0.00005, 0.0020, and 0. 0025.
The filter coefficients were set equal to 0 at the beginning of the first pass;
for successive passes, the coefficients initially were equal to their values at
the end of the previous pass. Mean-square-error of prediction vs ks is plotted
in Figure II-3 for the unwhitened and whitened data; the Wiener mean-square-

errors are shown also.

Adaptive and Wiener predictions and prediction-error traces
for the unwhitened and whitened data are shown in Figures 1I-4 and II-5, re-
spectively. Power spectra of channel 10, Wiener prediction errors, and
large and small ks adaptive prediction errors are given in Figure II-6 for the
unwhitened data and in Figure II-7 for the whitened data. Note the linear in-
crease in mean-square-error with increasing ks for whitened data and the
minimum mean-square-error at ks = 0.001 for unwhitened data. Regardless
of the degree of whitening, the adaptive procedure gives results equivalent

in mea‘.l%l:square-error to the Wiener method for small ks.
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Figure II-2, Prefiltered, Resampled, and Whitened UBO Road Noise
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Figure II-3. Mean-Square-Error Vs ks for UBO Road Noise
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Figure 1I-4. Wiener and Adaptive Filter Outputs for UBO Road Noise
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Figure II-5. Wiener and Adaptive Filter Outputs
for Whitened UBO Road Noise
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Figure II-6. Power Spectra of Channel 10, Wiener Errors,
and Adaptive Errors for UBO Road Noise
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B. UBO NORMAL NOISE

A sample of UBO data, called normal noise because it appears
to travel across the array as unattenuated plane waves, is shown in Figure II-8.
Discussed in Special Report No. 1, this sample in its unwhitened form was
prefiltered, resampled, normalized, Wiener-filtered, and adaptively filtered.l
A 9-point deconvolution filter designed from the autocorrelation of channel 10
and applied to each trace resulted in the whitened data of Figure II-9. After

whitening, the data were renormalized to a variance of 1 for each trace.

Designed were 27-point prediction filters using the whitened
data to predict channel 10 at the center of the filter from channels 1 through 9.
The Wiener filter gave a mean-square prediction error of 0.408 when applied
to the whitened design data. The Wiener filter previously designed from the ;
normal-noise unwhitened data resulted in a normalized mean-square-error

of 0.281 when applied to the unwhitened design data. [

Ten adaptive filtering passes were made through the whitened
data, with ks. equal to 0.0015 (learning), O. 0615. 0.0010, 0.0005, 0.00025,
0.000125, 0.00005, 0.0020, 0.0025, and 0.0030. Each filter coefficient was
C at the start of the first pass and equal to its value at the end of the previous
pass for the beginning of the remaining passes. Figure II-10 shows mean-
square-error of prediction vs ks for unwhitened and whitened data and also

shows the corresponding Wiener errors.

Prediction and prediction-error traces for Wiener and adaptive
filtering of unwhitened data are shown in Figure II-11. Figure 1I-12 gives the
corresponding results for the whitened data. Figures II-13 and II-14 are
power spectra of channel 10, Wiener prediction errors, 2nd adaptive pre-

diction errors for the unwhitened and whitened data, respectively.
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It is interesting to compare the mean-square-error curves of
Figures II-3 and II-10. The curves for whitened normal data and road-noise
data are almost equal except that the road-noise data have a slightly larger
slope. Shapes of the corresponding curves for unwhitened data are fifferent
in a surprising way. Since there are no known time -varying components in
the normal data, the mean-square-error curve would be expected to have
roughly the same shape as the whitened data curve. The degree to which
this situation failed to occur led to a separate study of the phenomenon of
false tracking due to the interaction of oversampling and high rate of adaption.
Special Report No. 13 discusses the theoretical and empirical investigation

of this phenomenon with data of known statistical properties.3

C. UBO NOISE NORTHEAST

A third sample of UBO noise, called UBO noise northeast be-
cause f-k analysis of these data indicates a strong component of noise ar-
riving from the northeast, was processed in both unwhitened and whitened
forms. The original data, shown in Figure II-15, were prefiltered and re-
sampled using the same procedures used for road and normal noise. A 9-
point deconvolution filter designed from the autocorrelation of channel 10 and

applied to each data channel gave the whitened data shown in Figure II-16.

Designed were 27-point Wiener filters from correlation esti-
mates of the unwhitened and whitened data with the output point at the center
of the filter to predict channel 10 from channels 1 through 9. The mean-
square prediction error of the filter designed from unwhitened data when ap-
plied to the normalized unwhitened design data was 0.27, while the whitened

data filter gave a mean-square-error of 0.52 when applied to the normalized

whitened data.

T
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Adaptive 27-point filters were designed identically for un-
whitened and whitened data. One run was ‘made for each data type, giving

nine passes through the data. As in previous cases, each filter coefficient

was get to 0 at the beginning of the first pass and then, at the beginning of

each subsequent pass, was set to its value at the end of each preceding pass.

Values of k for both the unwhitened and whitened cases were 0,0015 (learning),

0.001s, 0. OOlO 0.0005, 0.00025, 0.000125, 0. 00005, 0.0020, and 0. 0025,

Mean-square-error as a function of k' and Wiener mean-square-error for

unwhitened and whitened data are shown in Figure II-17,

Adaptive and Wiener error traces for unwhitened data are
shown in Figure II-18 and for whitened data in Figure iI-19. Figures 1I-20
and II-21 are power spectra of channel 10 and the Wiener and adaptive error

traces.

Again, the whitened data give a linear mean-square-error vs
k. with greater slope thzn the Previous two sets of UBO data. Wiener mean-
square-error is approached with decreasing k’ for both data sets. Larger-
amplitude wave bursts caused the divergence of the adaptive procedure for

the unwhitened data in previous tests (Figure 1I-15).
D. 1.ASA SUBARRAY Bl

The sample of LASA data shown in Figure II-22 was filtered
by two different procedures. In the first procedure, where the six seismom-
eters of the inner ring plus the center seismometer were used, 25-point fil-

ters were applied to all seven channels to predict one point ahead on the cen-

ter seismometer (channel 1). Wiener and adaptive results of this processing
of unwhitened data were included in a TI special report. 1 he seven channels
used in this procedure have since been whitened with a 9-point deconvolution

filter designed from the autocorrelation of channel 1 and the whitened data

(Figure I'-23) filtered adaptively. The whitened data were not Wiener-filtered.
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Figure II-22, Prefiltered and Resampled LASA Subarray Bl
Center Seismometer and First Ring
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Adaptive processing of the whitened data consisted of eight
passes, with filter coefficients initially set at 0. Initial filter coefficients
for subsequent pass=s equaled their values at the end.of the previous pass.
Values of ks were 0.001 (learning), 0.001, 0.0005, 0.00025, 0.000125,
0.0000625, 0,002, and 0.0025. Plots of mean-square-error vs ks for
adaptively processed unwhitened and whitened data are given in Figure 1I-24 .
along with the normalized Wiener mean-square-error of 0.031 for the un-

whitened data.

Prediction and prediction-error traces for the 7-channel data
are given in Figures II-25 and II-26, and spectra of these traces are plotted

in Figures II-27 and 1I-28.

The second processing procedure for these data used a 25-
point filter on all 25 channels to predict the center seismnometer (channel 1)
one point ahead. Adaptive filtering was performed on the unwhitened data

only. In this case, no data whitening or Wiener filtering was attempted.

The adaptive run consisted of nine passes through the data,
with the filter coefficients set to 0 at the beginning of the first pass and set
equal to their values at the end of the previous pass to begin subsequent
passes. Values of ks for these passes were 0,00025 (learning), 0.00025,
0.00015, 0.00005, 0.0060025, 0.000005, 0.000375, 0.0005, and 0.00075.

Mean-square-error of prediction as a function of ks for this
case is shown in Figure II-29, with the prediction and prediction-error traces

in Figure II-30 and the corresponding power spectra in Figure II-31.
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E. ARRAY DATA

Special Report No. 1 discusses the processing of 13 channels
of array data (Figure 1I-32) using 37-point Wiener and adaptive filters de-
signed to predict channel 1 from channels 2 through 13, the output point being
at the center. These data were resampled to a 72-msec sample period and
prewhitened. Power spectra of the unwhitened and partially whitened data
showed the whitening effect of the prewhitening filter to be very small ex-
cept at frequencics below 1 Hz, At frequencies above 1 Hz, the prewhitening
filter left the data virtually unchanged. The partially whitened data, there-
fore, were whitened again with a 9-point deconvolution filter designed from

the autocorrelation of channel 1 (Figure 11-33).

With filter coefficients initially set at 0, one adaptive filtering
run conaisting of six passes was made on the whitened data, the ks values
being 0.0005 (learning), 0.0005, 0.00025, 0.000125, 0.00005, and 0.00075.
The .whitened data were not Yiener-filtered because 37 points and 13 channels
exceeded the dimensions of the existing filter~design program on the IBM 7044,
Figure 11-34 plots mean-square-error as a function of ks for the whitened data
and presents previous adaptive and Wiener results for the partially whitened

data.

The prediction and prediction-error traces for partially whitened

and whitened data are given in Figures II-35 and 1I-36, respectively. Their

power spectra are given in Figures II-37 and II-38.
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F. VERTICAL ARRAY A

This sample consists of short-period vertical-component data
from six deep-well seismometers and one surface seismometer at the top of
the well (Figure 1I-39). The two prediction problems considered here are to
use the six deep-well channels to predict the surface and to predict the top
deep-well channel from the other five deep-well channels. Sample period of
these data is 72 msec, and the data have been slightly prewhitened. Both

adaptive and Wiener filtering were performed using 37-point filters with out-

put points at the center. No whitening, except for the very slight prewhitening

already mentioned, was attempted on these data.

To predict the surface seismometer, eight adaptive passes
were made, with ks values of 0.0015 (learning), 0.0015, 0.0010, 0.0005,
0. 00025, 0.000125, 0.0000625, and 0.0020. Filter coefficients again were
0 for the first pass and the values at the end of the previous pass for sub-
saquent passes. Figure 1I-40 plots ks vs mean-square-error for this prob-
lem and also shows a Wiener mean-square-error of 0. 089, Wiener and
adaptive filter outputs and their power spectra are shown in Figures II-41 and

11-42, respectively.

The second problem, i.e., predicting the top deep-well chan-
nel from the other deep wells, was run in the same manner as the first prob-
lem except nine rather than eight adaptive passes were used. The first eight
values of ks were the same as those in the first problein, and the ninth value

was 0.0025. Results are presented in Figures II-43 through 1I-45.
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Figure II-40. Mean-Square-Error Vs k for Vertical Array A
Predicting Surface Seismometer

G. VERTICAL ARRAY B

These data were recorded at the same array as the previous
sample. These data (Figure 11-46) were processed in the same manner as
sample A 2nd, with one exception, all statements about sample A and its
processing apply to sample B. The exception is that the adaptive run for the
second predict;on problem consisted of eight passes rather than nine, with

the 0.0025 kB value omitted.

Results of processing data sample B are presented in Fig-
ures II-47 through II-52,
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Figure II-42. Power Spectra for Vertical Array A
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Predicting Top Deep-Well Seismometer

H. LASA SUBARRAY Bl, RING-STACKED

The 25 short-period, vertical seismometers of LASA sub-
array Bl were stacked by rings to give the eight data chanrz1s shown in Fig-
ure II-53. Channel 1 is the output of the center seismometer; channel 2is
the summation of the six instruments in the first ring; and channels 3 through
8 are summations of the three instruments in each ring, starting with the
second ring and moving toward the larger rings. These data were resampled
to a 100-msec sample period and normalized as usual by the filtering program ‘

to unit variance.
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Figure I1I-47. Mean-Square-Error Vs ks for Vertical Array B
Predicting Surface Seismometer

Wiener prediction-error filtering was accomplishe: previously
on these data using a 35-point filter, with output at the center pnirst, to pre-
dict the center seismometer from the seven ring-stacked channels. The
Wiener processing was duplicated adaptively with eight passes through the
data. Filter coefficients were set initially at 0 for the first pass and at the
last values of the previous passes to begin the remaining passes. Values of
ks were 0.0015 (learning), 0.0015, 0.0010, 0.0005, 0.00025, 0.000125,
0.0000625, and 0.0020. Figure II-54 plots mean-square-error of prediction
as a function of ks' and Figure II-55 shows the adaptive predictions and pre-

diction-error traces.
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LASA Subarray Bl, Ring-Stacked ]
The ratio of prediction-error power to center seismometer ]
power as a function of frequency is given in Figure II-56 for the Wiener, -
large k’. and small ks error traces. [
A 9-point deconvolution filter designed from channel 1 was ap- -
plied to all channels to whiten the data (Figure II-57). Seven adaptive passes L
were made on the whitened data, with ks values of 0.0005 (learning), 0.0005, -
0.00025, 0,.,000125, 0.00005, 0.000025, and 0.00075. Filter coefficients for L
each pass were initialized as they were for the unwhiiened data. No Wiener -
filtering was attempted on the whitened data. Mean-square-error vs ks for 2
the whitened data is included in Figure II-55. Adaptive filter prediction and
error traces for the whitened data are given in Figure II-58.
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I. LASA ILONG-PERIOD 3339

A 10-channel set of ILASA data consisting of the long-period
north and east horizontal channels from subarrays A0, Bl, B2, B3, and B4
was used to predict the long-period vertical channel of subarray AO. The
sampling period of these data (Figure II-59) was 1 sec and the foldover fre-
quency, therefore, 0.5 Hz. Prediction was accomplished adaptively and
with Wiener filters designed from correlation-function estimates computed
from this noise sample. Filter length in both cases was 11 points, with the
output point at the center of the filter. The normalized mean-square-error
of prediction of the Wiener filter applied to the design data was 0.42. Adap-
tive mean-square-error as a function of ks is given in Figure II-60. Seven
adaptive passes were made, withks values of 0.0025 (learning), 0.0025,
0.00125, 0.000625, 0.0003125, 0.00015625, and 0.000078125. Initial tilter

coefficients at the beginning of each pass were set to their values at the end

of the previous pass except ‘or the first pass, where initial coefficients were 0.

Outputs of the Wiener and adaptive filteres are shown in Fig-
ure II-61. Also included in this figure are the outpu:s of two adaptive runs

where k8 was varied with time. In the first case, the value of ks used on the

ntP filter update, k_(n), was equal to 0.25 divided by the sum of squares of all

data points used to make the nth

prediction. In the second case, ks(n) was
computed by dividing 0. 25 by an estimated sum of squares. The nth estimate
was (1 - a) times the (n - 1)th estimate plus a times the sum of squares of the
nev’ data points. Under this system, the data at nAt are weighted in the esti-
mate by a, the data at (n - 1)At by a2, at (n - 2)At by o3, etc. Varying a,
therefore, varies the sensitivity of ks(n) to sudden changes in input power.

In both cases, the mean-square-~error of prediction for time-varying ks was

0. 28, which equaled the best value obtaincd with a fixed ks'
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Figure 1I-60. Mean-Square-Error Vs k_ for LASA Long-Period 3339

Power spectra of the A0 vertical channel and the prediction-
error traces for large-ks and small-ks adaptive passes are shown in Fig-

ure 1I-62. The adaptive algorithm became temporarily unstable for ks

0.0025, resulting in the large high-frequency content seen in this case.

J. LASA LONG-PERIOD 1196

The second sample of long-period LASA data consisted of the
same instrument outputs as the previous sample except that the B2-north
instrument was omitted. Adaptive and Wiener 15-point filters were designed
to predict the verticil trace of subarray A0 from the nine horizontal channels.

Figure 1I-63 shows these data which were recorded with a 1-sec sample period.
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filter was 0. 18 when applied to the design data. Figure I1I-64 shows mean-

The normalized mean-square-error of the Wiener prediction

square-error vs kS for the adaptive filtering. Six adaptive passes were
made, with ks values of 0.0025 (learning), 0.0025, 0.00125, 0.060625,
0.0003125, and 0.00015625. Filter coefficients equaled 0 at the beginning

of pass 1 and were set to their values at the end of the previous pass to begin
all other passes.

Outputs of adaptive and Wiener filters are shown in Figure II-65.
Power spectra of the A0 vertical channel and error traces for four values of

kS are given in Figure II-66.
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Figure II-64. Mean-Square-Error Vs k_ for LASA Long-Period 1196
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SECTION III
MAXIMUM-LIKELIHOOD FILT ERING

A maximum-likelihood filter (MLF) is one which minimizes
output power under the constraint that the sum of the filter coefficients across
channels is 0 for all but the 0-lag point, whose sum is 1. Under these con-
straints, the iilter will pass infinite velocity signal-undistorted. Ia Special
Report No. 1, two adaptive MLF algorithms were derived. s The first, re-
ferred to as the reduced-gradient algorithm, involves predicting one cf the
data channels from the difference traces resulting from subtracting each
channel from the channel to be predicted. In the other method, the full-
gradient algorithm, the mean across channels is predicted from difference
traces obtained by subtracting each data channel from the mean across chan-

nels. In both cases, the prediction error has been shown to be theoretically

equivalent to the conventional maximum-likelihood output.

In this report, results of the adaptive maximum-likelihood

processing of three data samples are given. The first sample is the Aleutian

Islands event recorded at LASA that was processed for Special Report No. 1.1

In that report. a quanitative comparison between adaptive results obtained by
TI and conventional maximum-likelihood results obtained by SDL was nol
possible because the passband of the bandpass filters applied to the data prior
to MLF was not the same. Applying the SDL recursive bandpass filter prior
to MLF d1-ing this study provides a direct comparison between the conven-

tional and adaptive methods pos sible.
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The second data sample consisted of 19 channels of CPO noise
data to which a theoretical signal was added at 12 km/3sec and at infinite veloc--
ity. Signal-‘>-noise ratios of 1 and 10 were tried for each velocity. Reduced-
gradient MLF, full-gradient MLF, summation, and Wiener infinite-velocity

signal extraction were performed on these data.

The final adaptive MLF problem was to adapt five samples of
16-channel array data over all five samples in an attempt to duplicate the re-
sults obtained with a Wiener infinite-velocity signal-extraction filter designed

from stacked correlations of these five data samples.
A. LASA SUBARRAY Cl, ALEUTIAN ISLANDS EVENT

Special Report No. 1 indicates that adaptive MLF results
generally were similar to the SDL results obtained by conventionally pro-
cessing these same data. However, the use of different ocandpacs filters
prior to MLF made quantitative comparison of the two methods impossible.
Therefore, it was thought advisable to repeat the adaptive processing on
bandpass-filtered data with the same recursive filter used by SDL. The data
consisted of 19 of the 25 channels of LASA subarray Cl, the sir seismom-
eters of the inner ring being omitted. ‘The data segment, 2500 points long
and sampled at 100-msec intervals, included the signal arrival from an

Aleutian Islands event.

A 4-pole recursive bandpass filter (0.5 to 3.0 Hz) supplied by
SDL was applied to all channels which were .then shifted to line up the signal
across channels. The bandpass-filtered and shifted data are shown in Fig-
ure IlI-1. The signal-to-noise ratio on channel 1, defined to be one-half the
maximuin peak-to-trough amplitude in the signal divided by the rms value of
the noise in the fitting interval 0 to 1500, was calculated as 6. 75 for the band-

pass-filtered data.
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The one-sided, 21-point adaptive filters were designed from
four passes through the filtering interval. To begin the first pass, coefficients:

were set to 0 except for those on one end of the filter which equaled 1/19. The

values of ks for the four passes were 0.00025, 0.00005, 0.000025, and 0.000025,

Filter coefficients on passes 2 through 4 were initially equal to their values
at the end of the previous pass. Channel 1 and the outputs of the four passes
are shown in Figure III-2. The mean-square-errors over the fitting interval
were 0,125, 0.081, 0.075, and 0.065, Passes 1, 2, and 3 included only the
fitting interval from 0 to 1500 points. On pass 4, the filters were allowed to
adapt for 1500 points and then were frozen and applied to the remainder of
the sample. Signal-to-noise ratio on the output trace for pass 4 was com-
puted to be 21.1, compared with 23.3 reported by SDL for the conventional
maximum-likelihood processing. This is an SNR difference of 1 db. Had
more passes becen made through the fitting interval, it is believed that the

23.3 figure for SNR could have been more closely approximated.
B. CPO NOISE SAMPLE

A noise sample recorded at the CPO array on 16 October 1964
was maximum-likelihood-filtered using both the full- and reduced-gradient
adaptive algorithms. MCF 3, a 25-point Wiener infinite-velocity signal-
extraction filter, also was applied to the data. These three methods plus a
straight summation are compared for five different cases. In the first case,
the noise sample was processed as it was to compare noise rejection of the
various methods. For cases 2 through 5, a theoretical signal was added to
the noise at infinite velocity and at 12 km/sec, with signal-to-noise ratios
of 1 ard 10 for each velocity. Signal-to-noise is defined as 1/2 of the maxi-
mum peak-to-trough displacement in the signal divided by the rms value of

the noise.
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The theoretical signal used here was generated by taking the
inverse Fourier transform of the average amplitude spectra of 60 teleseismic
events recorded at CPO. 4 The Fourier transform from the frequency domain
to the time domain is a periodic function in time. The period of the function
of time was 11.4 sec, 158 sample points with a At of 72 msec. Thus, the
large -amplitude waveform at the beginning of the 250-point transform appears
again at 158 points, or 11.4 sec later, giving two nearly identical large-
amplitude waveforms in the 250-point signal model. The 12 points immedi-
ately preceding the maxiinum signal amplitude at point 158 were added in
front of the signal to smooth its beginning. This double-wavelet signal model
was chosen because it gives an indication of the degree of filter distortion re-
sulting from a transient signal. If no filter distortion results from the first
high-amplitude signal waveform, then the second one should come through
the filtering process looking like the first. Any difference between the first
and second waveforms in the filter output, therefore, is evidence of filter

distortion by the first waveform, the degree of difference indicating the de-

gree of distortiun.
1. Case 1 — Noise Rejection

Figure I1I-3 shows one of the noise channels and the outputs
of a summation, MCF 3, full-gradient MLF, and reduced-gradient MLF.
For the first pass through the data in the full-gradient MLF case, the 25
filter coefficients for each channel were set equal to 0 except for the center
ones which were set to 1/19. Thus, the maximum-likelihood constraint
equations were satisfied initially. On the remaining four passes, coefficients
were initialized at their values at the end of the previous pass. Values of ks

for the five passes were 0.00005, 0,00005, 0. 000005, 0.000005, and 0.000005.
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ere made in the reduced-

Three passes through the data W

gradient MLF case, with k values of 0.00005275, 0.000005275, and

0.000005275. k_was scaled by 19/18 to give the same time constants in

l the 18-channel problem as those in the 19- channel problem. The 25 filter

coefficients for each of the 18 difference traces (channel 10 being the ref-

erence trace) were set to 0 to begin the first pass and to their values at the

end of the previous pass to begin passes 2 and 3.

Power spectra of channel 1, mean across channels, channel 1

minus mean, and the full-gradient MLF output from pass 5 are shown in Fig-

} ure 111-4, Figure III-5 is the spectra of channel 1, channel 10 minus chan- ‘ |

rel 1, and the reduced-gradient MLF output from pass 3.

Noise rejection by the full-gradient method over the last 1000

points of the fifth pass was -10. 7 db, which was equal to the noise rejection

B of MCF 3 over the same interval. Only the last 1000 points were used to

compute noise rejection thereby reducing any start-up effects which might

be present at the beginning of each adaptive pass.

The reduced-gradient MLF did not match the noise-rejection |

level of MCF 3 in its three passes. However, since five passes were re-

cluded that the reduced gradient algorithm would not have done so well after

five passes with similar values of ks.
2. Case 2 — Infinite - Velocity Signal (SNR = 1. 0)

The theoretical signal was added to the 2500-point noise sam=

- to 2250-point interval on all traces. The signal was

ﬁ quired to match MCF 3 with the full-gradient algorithm, it cannot be con-
B ple of case 1 in the 2001

‘ scaled so that one-half of its maximum peak-to- -trough displacement was equal 4

to th . rms value of the noise on channel 1. The resulting data then werc pro-

Wiener filtering (MCF 3), and full-gradient maximum-

cessed by summing,

likelihood filtering. Processing was jdentical to that icr case 1 except that M
with k being 0.00005, 0.00005, and :

only three adaptive passes were made, < |
3

0.000005. The signal, channel 19 of the data, and the processing outputs are

shown in Figure III-6.
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3. Case 3 — Infinite-Velocity Signal (SNR = 10. 0)

The signal of case 2 was scaled up by 10 and added as before
to the noise data of case 1. The processing of case 2 was duplicated here.
A representative data channel and the processing results are given in Fig-

ure III-7.
4. Case 4 — 12 km/sec Signal (SNR = 1.0}

Data anc processing for this case duplicates case 2 except that
the signal was not added in at the same place on all chairels but was time-
shifted cn each channel to represent a signal traveling across the array at

12 km/sec. Results for this case are shown in Figure III-8.
5. Case 5 — 12 km/sec Signal (SNR = 10. 0)

The signal of case 4 was scaled by 10 and added once again to
the noise data, with a velocity of 12 kin/sec. The processing results for this
case, shown in Figure III-9, were obtained by procednres identical to the pre-

vious case.
C. DESIGN PROBLEM FOR FIVE SAMPLES
1. Summary

A composite of five ncise samples from a short-period surface
array was chosen to compare adaptive maximum-likelihood filters to Wicaner
filters. The Wiener filters were designed from the stacked correlations,
infinite-velocity signal model, SNR = 4 with gain variability, and applied to

the first 1000 points of each of the five noise samples.
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The maximum-likelihood filters were adaptively designed by

obtaining a starting set of filters from the first noise sample using a large

value of k . The first half of each noise sample then was processed in the

order 1 to 5 using a smaller value of k finally, the last half of each noise il
i
i

sample was processed in the order 5 to 1 with an extremely small value of

k . These adaptively designed filters then were fixed and applied to the first

1000 points of each noise sample. For comparison, a straight stack’ and i

la.rge-ks adaptive outputs also were computed.

Spectra of the error traces :ndicate that the Wiener filter is I-
better (2 db) at 0.5 Hz with a crossover at approximaztely 1 Hz and that the

adaptively designed maximum-likelihood filter performs better (up to 15 db)

over the 2- to 5-Hz band. The fixed-adaptive and large ks performed alike 4‘
!
except for frequencies above 2 Hz, where an improvement up to 10 db implies |

a consistent time-varying high-frequency component.

2, Method

The twofold purpose of this experiment is to illustrate the ap- |
plication of the adaptive method to the problem of filter design on a composite
of noise aad to compare the behavior of online adaptive filters to fixed Wiener

and adaptively designed maximum- likelihood filters.

Five 216-sec noise samples of 72-mil data from 16 short-
period seismometers were ueed to determine the noise correlations from
which a 29-point infinite-velocity Wiener filter was computed. This work
was performed previously under a separate contract and the results borrowed

to make the comparison between conventional and adaptive filters.

Prior to any adaptive processing, the entire set of data was
normalized by a scale factor determined from channel 1 of sample 1. Design
of the composite maximum-likelihood filters was accomplished by the pro-
cedure illustrated in Figure III-10. Starting with an infinite -velocity beam-

steer set of filters, an "initialize' run on sample 1 through 500 points was
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made with a large value of ks (0.00025), indicated by the first line of Fig-
ure 11I-10. Values in parentheses are mean-equare-error over the indicated

length of data, with the type of filters at the left of the page.

The filters at the end of the initial run then were used as
starting filters in the design problem. Each data sample was split as indi-
cated by the dashed line of Figure III-10 and processed in the order indicated
by the arrowed line. The ks values of 18 x 1077 and 6 x 107 were used

throughout the first-half and second-half processing, respectively.

Actual outputs for four types of filters applied to the first
1000 points of the five noise samples are shown in Figures III-11 through
I1I-15. Power spectra of these error traces are given in Figures 1II-16

through I1II-20.
3. Discussion

The maximum-likelihood fixed or adaptive filter is approxi-
mately equivalent to the Wiener filter for frequencies between 0. 75 and 1.5 Hz.
Wiener filters perform better at low frequency and the maximum-likelihood
filters better at high frequency. Additional improvement is shown in the high-

frequency region for the adaptive la.rge-ks maximum-likelihood filter.

First, attempts were made to explain the low-frequency phe-
nomenon on the basis of different frequency response to high-velocity data
for the designed Wiener and maximum-likelihood filters. The response of
the Wiener filter was down only 1 db at 0.1 Hz and 0.5 db at 1.0 Hz, whereas
the maximum-likelihood filter response was not influenced by roundoff error.
Thus, the differences in frequency response are not sufficient to explain the
results. No theoretical reasons why the optimum filters have different error
powers as a function of frequency could be determined; however, at present,

the following explanation of the results is favored.
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The optimum Wiener filter and maximum-likelihood filters
produce highly comparable error-power curves. Maximum-likelihood filters
produced by the method cited in this report are almost equal to the optimum
Wiener filter in totai mean-square-error, but this error has a radically dif-
ferent frequency distribution. This difference in frequency occurs because
the filters are updated at each point in time by xij - ij and subtracting the
mean over channels acts as a low-cut frequency filter. Thus, the filters are

influenced more by the high-frequency data than by the low-frequency data.

It would appear from proceésing results on the design data that
the adaptive procedure will produce good filters based on broadband mean-
square-error more cheaply than the Wiener procedure. Response plots in
-k space, however, indicate that although the adaptively designed maximum-
likelihood filter performed well on the design data in terms of total mean-
square-error, it is not likely to perform well on-line on low-frequency energy
¢>ming from a large subset of K-space. Response of the fixed adaptive maxi-
mum-likelihood and Wiener filters at 0. 25 Hz are compéred in Figures III-21
and III-22. Although this may be a problem in considering the adaptive method
as a procedure for designing fixed Zilters, it is definitely not a problem in

considering the adaptive method as an online procedure.
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