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ABSTRACT 

Adaptive multichannel prediction-error filtering is compared 

with conventional optimum Wiener filtering for 10 types of array data.    An 

actual signal, an arti^cial signal with varying strength and velocity, and the 

design of filters for a composite of noise data are considered for three sets 

of data in the comparison of adaptive maximum-likelihood signa: extraction 

with Wiener filtering.    Comparison of the two methods is based or. total mean- 

square-error and the distribution of the error power over frequency. 

Online adaptive processing solves problems with slowly time- 

varying noise fields such as UBO road noise.    The adaptive inethod also is 

simpler and more economical than the Wienev method as an offlina filter- 

design procedure for array data known to be approximately time stationary. 

Both methods produce essentially equivalent filters with re- 

spect to total mean-square-error; however, relatively large differences in 

the actual filter-response characteristics are possible. 
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SECTION I 

INTRODUCTION AND SUMMARY 

Basic reasons for using the adaptive technique are its suit- 

ability for hardware implementation as an online operation consisting of 

simultaneous filter design and application,  its numerical simplicity and im- 

proved efficiency in filter design, and the fact that it represents a techno- 

logical breakthrough in processing data with unknown time-varying noise 

characteristics.    Algebraic details of the adaptive algorithm can be found 
12  3 in numerous other reports.    '   ' 

This report discusses the application of the adaptive technique 

to a wide variety of seismic array data, comparing the adaptive technique to 

the classical methods of designing and applying fixed filters. 

A very close approximation to the Wiener mean-square-error 

was obtained on all data samples examined, using the adaptive technique for 

sufficiently small filter coefficient rates of change. 

The adaptive method applied to timt-varying data produced 

smaller mean-square-error than the Wiener method for intermediate filter 

change rates.     Thus, it can be inferred that an online adaptive multichannel 

filter (MCF) will always perform almost as well as an up-to-date Wiener 

filter and pos-sibly better if the data characteristics are varying with time.     

Although the adaptive method produces total mean-square- 

error in close agreement with the Wiener method,  large differences in the 

filter-response characteristics are possible.    Power spectra for the Wiener 

and adaptive error traces in the design of maximum-likelihood filters (Sec- 

tion III-C) agree in total power,  but favor the Wiener method at low frequencies. 
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Unexpected mean-square-error vs rate-of-coefficient-change 

curves for adaptively processing original data led to the discovery of an 

interaction between the high rate of adapting the coefficients and the relatively 

large content of low-frequency energy in the data.    Evaluation of this phe- 

nomenon has not progressed sufficiently to state its exact significance. 

Results of adaptively processing seismic data indicate that 

the adaptive procedure now can be used for MCF design with the assurance 

of producing filters equivalent to the Wiener method in total mean-square- 

error. 

1-2 science ««rvices division 

0 
I 
;1 
D 
0 

i 
i 
i 
i 
i 
i 
i 
t 
i 
i 
i 
i 
i 



1 
1 
1 
D 
■1 

0 
D 

i 

0 
:i 

B 
0 

.1 

I] 

0 

Q 
0 

Q 

0 

SECTION II 

PREDICTION-ERROR FILTERING 

Prediction-error filtering was performed on a set of 10 dif- 

ferent data samples.    Included in the set are short-period surface-array 

data (individual and ring-stacked seismometers),  short-period vertical- 

array data, and 3-component long-period surface-array data.    Adaptive and 

Wiener filtering results from the unwhitened versions of four of these data 

samples (UBO road noise, UBO normal noise, array data, and LASA Bl 

center and first ring) were given in a TI special report. These results 

are presented briefly here for comparison with results from the whitened 

versions of the same data samples.    The remaining six data samples have 

been processed adaptively in their unwhitened form.    In some cases, 

whitened data were adaptively filtered and the unwhitened and whitened data 

were Wiener-filtered.    Table II-1 is a summary of prediction-error processing 

for each data sample. 

Data for each problem, unless otherwise specified, are 

normalized in the filtering program by being scaled in each trace by 1/ 

(rms value of that trace) so that the sample variance of all data traces is 1. 

Thus, results of processing the different data samples may be compared 

directly. 

Processing results for each data sample are presented as 

plots of the actual filter outputs, plots of mean-square-error of prediction 

vs k    (the rate of convergence parameter of the adaptive algorithm), and 
s 

power spectra of the data and prediction-error traces. 

False-alarm probability (the frequency of error-trace excur- 

sion beyond o,  2o, 3o, etc., where ois the sample variance of the error trace) 

was computed for Wiener and adaptive error traces for seven of the 10 data 

samples.    Rapidly adapting,  slowly adapting, and Wiener error traces showed 

no consistent difference in false-alarm probabilities. 
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A.    UBO ROAD NOISE 

Special Report No.   1 gives results of adaptive and Wiener 

processing of the unwhitened data.      The data have since been whitened and 

processed in a manner similar to that used for the unwhitened data. 

Unwhitened data shown in Figure II-1 were prefiltered with 

an antialiasing,  slightly prewhitening filter and resampled to a 72-msec 

sample period.    A 9-point deconvolution prewhitening filter designed from 

the autocorrelation of channel 10 was applied to all channels. 

CHANNEL 1 

CHANNEL 2 

CHANNEL J 

CHANNEL 4 

CHANNEL 5 

Att i^JyiAnyfii i drnjUkL 

CHANNEL 6 

CHANNEL 7 

CHANNEL 8 

CHANNEL 9 

CHANNti lü 

^MW#H>>»M^Vi|Mt^ »»I *»f M»»» 
14.4 SEC 

X 
200 

X  l_ 
400 600 800 

TIME «NUMBER Of DATA POINTS» 

1000 120L 

Figure II-1.    Prefiltered and Resampled UBO Road Noise 
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The wnitened data shown in Figure II-2 were processed with 

27-point Wiener and adaptive filters designed to predict channel 10 at the 

center of the filter from channels 1 through 9.    The Wiener filter, designed 

from cor relation-function estimates computed from the whitened data, gave 

a mean-square prediction error of 0.414 when applied to the normalized de- 

sign data.    The normalized mean-square prediction error of the Wiener filter 

designed from and applied to the unwhitened data was 0. 147. 

Adaptive filtering of the whitened data consisted of nine passes 

through the data.    Values of k   for the nine passes were 0.0015 (learning), 
s 

0.0015, 0.0010, 0.0005, 0.00025, 0.000125, 0.00005, 0.0020, and 0. 0025. 

The filter coefficients were set equal to 0 at the beginning of the first pass; 

for successive passes, the coefficients initially were equal to their values at 

the end of the previous pass.    Mean-square-error of prediction vs k    is plotted 
5 

in Figure II-3 for the unwhitened and whitened data; the Wiener mean-square- 

errors are shown also. 

Adaptive and Wiener predictions and prediction-error traces 

for the unwhitened and whitened data are shown in Figures II-4 and II-5,  re- 

spectively.    Power spectra of channel 10,  Wiener prediction errors,  and 

large and small k   adaptive prediction errors are given in Figure II-6 for the 
s 

unwhitened data and in Figure II-7 for the whitened data.    Note the linear in- 

crease in mean-square-error with increasing k    for whitened data and the s 
minimum mean-square-error at k   = 0. 001 for unwhitened data.    Regardless 

of the degree of whitening,  the adaptive procedure gives results equivalent 

in meati-square-error to the Wiener method for small k  . 
s 
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Figure II-2.  Prefiltered,  Resampled,  and Whitened UBO Road Noise 
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B.    UBO NORMAL NOISE 

A sample of UBO data, called normal noise because it appears 

to travel across the array as unattenuated plane waves,  is shown in Figure II-8. 

Discussed in Special Report No.   1, this sample in its unwhitened form was 

prefiltered,  resampled, normalized,  Wiener-filtered, and adaptively filtered. 

A 9-point deconvolution filter designed from the autocorrelation of channel 10 

and applied to each trace resulted in the whitened data of Figure II-9.    After 

whitening, the data were renormalized to a variance of 1 for each trace. 

Designed were 27-point prediction filters using the whitened 

data to predict channel 10 at the center of the filter from channels 1 through 9. 

The Wiener filter gave a mean-square prediction error of 0.408 when applied 

to the whitened design data.    The Wiener filter previously designed from the 

normal-noise unwhitened data resulted in a normalized mean-square-error 

of 0. 281 when applied to the unwhitened design data. 

Ten adaptive filtering passes were made through the whitened 

data, with k   equal to 0. 0015 (learning), 0.0015, 0.0010, 0.0005,  0.00025, 
s 

0.000125, 0.00005, 0.0020, 0.0025, and 0. 0030.    Each filter coefficient was 

0 at the start of the first pass and equal to its value at the end of the previous 

pass for the beginning of the remaining passes.    Figure 11-10 shows mean- 

square-error of prediction vs k   for unwhitened and whitened data and also 

shows the corresponding Wiener errors. 

Prediction and prediction-error traces for Wiener and adaptive 

filtering of unwhitened data are shown in Figure 11-11.    Figure 11-12 gives the 

corresponding results for the whitened data.    Figures 11-13 and 11-14 are 

power spectra of channel 10, Wiener prediction errors, rnd adaptive pre- 

diction errors for the unwhitened and whitened data,  respectively. 
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It is interesting to compare the mean-square-error curves of 

Figures II-3 and 11-10.    The curves for whitened normal data and road-noise 

data are almost equal except that the road-noise data have a slightly larger 

slope.   Shapes of the corresponding curves for unwhitened data are different 

in a surprising way.    Since there are no known time-varying components in 

the normal data, the mean-square-error curve would be expected to have 

roughly the same shape as the whitened data curve.    The degree to which 

this situation failed to occur led to a separate study of the phenomenon of 

false tracking due to the interaction of oversampling and high rate of ?idaption. 

Special Report No.   13 discusses the theoretical and empirical investigation 

of this phenomenon with data of known statistical properties.3 

C.    UBO NOISE NORTHEAST 

A third sample of UBO noise, called UBO noise northeast be- 

cause f-k analysis of these data indicates a strong component of noise ar- 

riving from the northeast, was processed in both unwhitened and whitened 

forms.    The original data,  shown in Figure 11-15, were prefiltered and re- 

sampled using the same procedures used for road and normal noise.    A 9- 

point deconvolution filter designed from the autocorrelation of channel 10 and 

applied to each data channel gave the whitened data shown in Figure 11-16. 

Designed were 27-point Wiener filters from correlation esti- 

mates of the unwhitened and whitened data with the output point at the center 

of the filter to predict channel 10 from channels 1 through 9.    The mean- 

square prediction error of the filter designed from unwhitened data when ap- 

plied to the normalized unwhitened design data was 0.27, while the whitened 

data filter gave a mean-square-error of 0. 52 when applied to the normalized 

whitened data. 
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Adaptive 27-point filters were designed identically for un- 

whitened and whitened data.    One run was made for each data type, giving [) 

nine passes through the data.   As in previous cases, each filter coefficient 

wa. set to 0 at the beginning of the first pass and then, at the beginning of [J 

each subsequent pass, was set to its value at the end of each preceding pass. 

Values of k8 for both the unwhitened and whitened cases were 0. 0015 (learning), 

0.0015. 0.0010. 0.0005, 0.00025, 0.000125. 0.00005, 0.0020, and 0. 0025. 

Me.xn-square-error as a function of kg and Wiener mean-square-error for 

unwhitened and whitened data are shown in Figure 11-17. 

Adaptive and Wiener error traces for unwhitened data are 

shown in Figure 11-18 and for whitened data in Figure 11-19.    Figures 11-20 

and 11-21 are power spectra of channel 10 and the Wiener and adaptive ^rror 
traces. 
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Again, the whitened data give a linear mean-square-error vs 

kg with greater slope then the previous two sets of UBO data.    Wiener mean- f] 

square-error is approached with decreasing k8 for both data sets.    Larger- 

amplitude wave bursts caused the divergence of the adaptive procedure for 

the unwhitened data in previous tests (Figure 11-15). 

D.    LASA SUBARRAY Bl [f 

The sample of LASA data shown in Figure 11-22 was filtered 

by two different procedures.    In the first procedure, where the six seismom- 

eter, of the Inner ring plus the center seismometer were used. 25-point fil- 

ters were applied to all seven channels to predict one point ahead on the cen- 

ter seismometer (channel 1).   Wiener and adaptive results of thJs processing 

of unwhitened data were included in a TI special report. 1   The seven channels 

used in this procedure have since been whitened with a 9-point deconvolution 

filter designed from the autocorrelation of channel 1 and the whitened data 

(Figure LT-23) filtered adaptively.    The whitened data were not Wiener-filtered. 
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Adaptive processing of the whitened data consisted of eight 

passes, with filter coefficients initially set at 0.    Initial filter coefficients 

for subsequent passes equaled their values at the end of the previous pass. 

Values of k   were 0.001 (learning), 0.001,  0.0005, 0.00025, 0.000125, 
8 

0.0000625, 0.002, and 0. 0025.    Plots of mean-square-err or vs k   for 

adaptively processed unwhitened and whitened data are given in Figure 11-24 

along with the normalized Wiener mean-square-error of 0.031 for the un- 

whitened data. 

Prediction and prediction-error traces for the 7-channel data 

are given in Figures 11-25 and 11-26, and spectra of these traces are plotted 

in Figures 11-27 and 11-28. 

The second processing procedure for these data used a 25- 

point filter on all 25 channels to predict the center seismometer (channel 1) 

one point ahead.    Adaptive filtering was performed on the unwhitened data 

only.    In this case, no data whitening or Wiener filtering was attempted. 

The adaptive run consisted of nine passes through the data, 

with the filter coefficients set to 0 at the beginning of the first pass and set 

equal to their values at the end of the previous pass to begin subsequent 

passes.    Values of k   for these passes were 0.00025 (learning), 0.00025, 
5 

0.00015, 0.00005, 0.000025, 0.000005, 0.000375, 0.0005, and 0.00075. 

Mean-square-error of prediction as a function of k   for this 

case is shown in Figure 11-29, with the prediction and prediction-error traces 

in Figure 11-30 and the corresponding power spectra in Figure 11-31. 
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11-37 •ci«nc* ••rvlo«s division 



> 5 

! 

i s 
5 

i   i 
i 
G 

c 
c 

PQ 

h 

«J 
XI 
3 

05 

.a 
to 

u 
2 
u 
o 

W 

o 

1 

n-38 soi«no» ••rvio«« division 

0 

0 
D 
Q 
i! 

] 
.1 
0 
0 
0 
3 
0 
D 
0 
ß 

0 
0 



I 
0 
] 

D 
D 
Ö 

ß 
D 
D 
D 
a 
0 
D 
0 
0 
I 

I 
I 

105 

10" 

 CHANNEL 1 
  y 0.0005 
 k,-0.00025 
 kj-0.000025 

103 

i 
Q. 

W*r 
\ 

lO1^ 

3 4 5 
FREQUENCY (Hz) 

Figure 11-31.    Power Spectra of Adaptive Error Traces 
for LASA Subarray Bl, 25 Channels 

• •••.    ^ A -^ * ^L-^^l - •• y^*^ ̂  

- 
•.. ^ m; :::••••.. VA= 

1 

V • B 

" V • 
. V • 
" 

VI     * ^ V * 
" \ 

• • • • 

 L i 1 
\ 

1 1 

11-39 science s«rvlc«s division 



E.    ARRAY DATA 

Special Report No.   1 discusses the processing of 13 channels 

of array data (Figure 11-32) using 37-point Wiener and adaptive filters de- 

signed to predict channel 1 from channels Z through 13, the output point being 

at the center.    These data were re sampled to a 72-msec sample period and 

prewhitened.    Power spectra of the unwhitened and partially whitened data 

showed the whitening effect of the prewhitening filter to be very small ex- 

cept at frequencies below 1 Hz.    At frequencies above 1 Hz, the prewhitening 

filter left the data virtually unchanged.   The partially whitened data, there- 

fore, were whitened again with a 9-point deconvolution filter designed from 

the autocorrelation of channel 1 (Figure 11-33). 

With filter coefficients initially set at 0, one adaptive filtering 

run consisting of six passes was made on the whitened data, the k   values 

being 0.0005 (learning), 0.0005, 0.00025,  0.000125, 0.00005, and 0.00075. 

The whitened data were not Wiener-filtered because 37 points and 13 channels 

exceeded the dimensions of the existing filter-design program on the IBM 7044. 

Figure 11-34 plots mean-square-error as a function of k   for the whitened data 

and presents previous adaptive and Wiener results for the partially whitened 

data. 

The prediction and prediction-error traces for partially whitened 

and whitened data are given in Figures 11-35 and 11-36, respectively.    Their 

power spectra are given in Figures 11-37 and 11-38. 
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Figure 11-38.    Power Spectra of Channel 1 and ks = 0.0005, 
0.00005 for Whitened Array Data 
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F.    VERTICAL ARRAY A 

This sample consists of short-period vertical-component data 

from six deep-well seismometers and one surface seismometer at the top of 

the well (Figure 11-39).    The two prediction problems considered here are to 

use the six deep-well channels to predict the surface and to predict the top 

deep-well channel from the other five deep-well channels.  Sample period of 

these data is 72 msec, and the data have been slightly prewhitened.    Both 

adaptive and Wiener filtering were performed using 3 7-point filters with out- 

put points at the center.    No whitening,  except for the very slight prewhitening 

already mentioned, was attempted on these data. 

To predict the surface seismometer,  eight adaptive passes 

wert made, with k   values of 0.0015 (learning), 0.0015, 0.0010, 0.0005, 
8 

0.00025, 0.000125, 0.0000625, and 0.0020.    Filter coefficients again were 

0 for the first pass and the values at the end of the previous pass for sub- 

sequent passes.    Figure 11-40 plots k   vs mean-square-error for this prob- 

lem and also shows a Wiener mean-square-error of 0. 089.    Wiener and 

adaptive filter outputs and their power spectra are shown in Figures 11-41 and 

11-42,  respectively. 

The second problem, i.e. , predicting the top deep-well chan- 

nel from the other deep wells, was run in the same manner as the first prob- 

lem except nine rather than eight adaptive passes were used.    The first eight 

values of k   were the same as those in the first problem, and the ninth value 
8 

was 0.0025.    Results are presented in Figures 11-43 through 11-45. 
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Figure 11-40.    Mean-Square-Error Vs k    for Vertical Array A 
Predicting Surface Seismometer 

G.    VERTICAL ARRAY B 

These data were recorded at the same array as the previous 

sample.    These data (Figure 11-46) were processed in the same manner as 

sample A   ?nd, with one exception, all statements about sample A and its 

processing apply to sample B.    The exception is that the adaptive run for the 

second prediction problem consisted of eight passes rather than nine, with 

the 0.0025 k    value omitted. 
s 

Results of processing data sample B are presented in Fig- 
ures 11-47 through 11-52. 
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Figure 11-42.    Power Spectra for Vertical Array A 
Predicting Surface Seismometer 
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Figure 11-43.    Mean-Square-Error Vs k8 for Vertical Array A 
Predicting Top Deep-Well Seismometer 

H.    LASA SUBARRAY Bl, RING-STACKED 

The 25 short-period, vertical seismometers of LASA sub- 

array Bl were stacked by rings to give the eight data channels shown in Fig- 

ure 11-53.    Channel 1 is the output of the center seismometer; channel 2 is 

the summation of the six instruments in the first ring; and channels 3 through 

8 are summations of the three instruments in each ring,  starting with the 

second ring and moving toward the larger rings.    These data were resampled 

to a lOO-msec sample period and normalized as usual by the filtering program 

to unit variance. 
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Figure 11-45.    Power Spectra for Vertical Array A 
Predicting Top Deep-Well Seismometer 
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Figure 11-47.    Mean-Square-Error Vs k    for Vertical Array B 
Predicting Surface Seismometer 

Wiener prediction-error filtering was accomplished previously 

on these data using a 35-point filter, with output at the center poirt, to pre- 

dict the center seismometer from the seven ring-stacked channels.    The 

Wiener processing was duplicated adaptively with eight passes through the 

data.    Filter coefficients were set initially at 0 for the first pass and at the 

last values of the previous passes to begin the remaining passes.    Values of 

kg were 0.0015 (learning), 0.0015, 0.0010, 0.0005, 0.00025, 0.000125, 

0.0000625, and 0.0020.    Figure 11-54 plots mean-square-error of prediction 

as a function of kg, and Figure 11-55 shows the adaptive predictions and pre- 

diction-error traces. 
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Figure 11-49.    Power Spectra for Vertical Array B 
Predicting Surface Seismometer 
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Figure 11-50.    Mean-Square-Error Vs ka for Vertical Array B 
Predicting Top Deep-Well Seismometer 
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Figure 11-52.    Power Spectra for Vertical Array B 
Predicting Top Deep-Well Seismometer 
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Figure 11-54.    Mean-Square-Error Vs k   for 
LASA Subarra/ Bl, Ring-Stacked 

The ratio of prediction-error power to center seismometer 

power as a function of frequency is given in Figure 11-56 for the Wiener, 

large k , and small k   error traces, s s 

A 9-point deconvolution filter designed from channel 1 was ap- 

plied to all channels to whiten the data (Figure 11-57).    Seven adaptive passes 

were made on the whitened data, with k    values of 0.0005 (learning), 0.0005, 
s 

0.00025, 0.000125, 0.00005, 0.000025, and 0.00075.    Filter coefficients for 

each pass were initialized as thjy were for the unwhitened data.    No Wiener 

filtering was attempted on the whitened data.    Mean-square-error vs k   for 
s 

the whitened data is included in Figure 11-55.    Adaptive filter prediction and 

error traces for the whitened data are given in Figure 11-58. 
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I.     LASA LONG-PERIOD 3339 

A lO-channel set of LASA data consisting of the long-period 

north and east horizontal channels from subarrays AO,  Bl, B2,  B3, and B4 

was used to predict the long-period vertical channel of subarray AO.    The 

sampling period of these data (Figure 11-59) was 1 sec and the foldover fre- 

quency, therefore, 0. 5 Hz.    Prediction was accomplished adaptively and 

with Wiener filters designed from correlation-function estimates computed 

from this noise sample.    Filter length in both cases was 11 points, with the 

output point at the center of the filter.    The normalized mean-square-error 

of prediction of the Wiener filter applied to the design data was 0.42.    Adap- 

tive mean-square-error as a function of k   is given in Figure 11-60.    Seven 
s 

adaptive passes were made, withk   values of 0.0025 (learning),  0.0025, 
s 

0.00125, 0.000625, 0.0003125, 0.00015625, and 0. 000078125. Initial lilter 

coefficients at the beginning of each pass were set to their values at the end 

of the previous pass except for the first pass, where initial coefficients were 0. 

Outputs of the Wiener and adaptive filters are shown in Fig- 

ure 11-61.   Also included in this figure are the outpuls of two adaptive runs 

where k   was varied with time.    In the first case, the value of k   used on the s s 
nth filter update, k (n), was equal to 0. 25 divided by the sum of squares of all 

s 

data points used to make the n     prediction.    In the second case, k (n) was 
s 

computed by dividing 0. 25 by an estimated sum of squares.    The n'*1 estimate 

was (1 - a) times the (n - I)"1 estimate plus a times the sum of squares of the 

nev data points.    Under this system, the data at nAt are weighted in the esti- 

mate by a, the data at (n - l)tX by a , at (n - 2)Ät by a , etc.    Varying a, 

therefore,  varies the sensitivity of k (n) to sudden changes in input power. 
9 

In both cases, the mean-square-error of prediction for time-varying k   was 
s 

0. 28, which equaled the best value obtained with a fixed k . 
s 
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Figure 11-60.    Mean-Square-Error Vs kg for LASA Long-Period 3339 

Power spectra of the A0 vertical channel and the prediction- 

error traces for large-k   and small-k   adaptive passes are shown in Fig- 
8 s 

ure 11-62.    The adaptive algorithm became temporarily unstable for k    = 

0.0025, resulting in the large high-frequency content seen in this case. 

J.     LASA LONG-PERIOD 1196 

The second sample of long-period LASA data consisted of the 

same instrument outputs as the previous sample except that the B2-north 

instrument was omitted.    Adaptive and Wiener 15-point filters were designed 

to predict the verticil trace of subarray A0 from the nine horizontal channels. 

Figure 11-63 shows these data which were recorded with a 1-sec sample period. 
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The normalized mean-square-error of the Wiener prediction 

filter was 0. 18 when applied to the design data.    Figure 11-64 shows mean- 

square-error vs k   for the adaptive filtering.    Six adaptive passes were 
s 

made, with k   values of 0. 0025 (learning), 0.0025, 0.00125, 0.000625, 

0.0003125, and 0.00015625.    Filter coefficients equaled 0 at the beginning 

of pass 1 and were set to their values at the end of the previous pass to begin 

all other passes. 

Outputs of adaptive and Wiener filters are shown in Figure 11-65. 

Power spectra of the A0 vertical channel and error traces for four values of 

k   are given in Figure 11-66. 
s 

0.30 

i 
w 

<! 0. 20  - 

0.10 
0.003 

Figure 11-64.    Mean-Square-Error Vs k8 for LASA Long-Period 1196 
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SECTION III 

MAXIMUM-LIKELIHOOD FILTERING 

A maximum-likelihood filter (MLF) is one which minimizes 

output power under the constraint that the sum of the filter coefficients across 

channels is 0 for all but the 0-lag point, whose sum is 1.    Under these con- 

straints, the niter will pass infinite velocity signal-undistorted.   U Special 

Report No.  1. two adaptive MLF algorithms were derived.      The first.,  re- 

ferred to as the reduced-gradient algorithm, involves predicting one cf the 

data channels from the difference traces resulting from subtracting each 

channel from the channel to be predicted.   In the other method, the full- 

gradient algorithm, the mean across channels is predicted from difference 

traces obtained by subtracting each data channel from the mean across chan- 

nels.   In both cases, the prediction error has been shown to be theoretically 

equivalent to the conventional maximum-likelihood output. 

In this report, results of the adaptive maximum-likelihood 

processing of three data samples are given.    The first sample is the Aleutian^ 

Islando event recorded at LASA that was processed for Special Report No.   I. 

In that report, a quanitative comparison between adaptive results obtained by 

TI and conventional maximum-likelihood results obtained by SDL was not 

possible because the passband of the bandpass filters applied to the data prior 

to MLF .as not the same.   Applying the SDL recursive bandpass filter prior 

to MLF d. -ing this study provides a direct comparison between the conven- 

tional and adaptive methods possible. 

in-i 
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The second data sample consisted of 19 channels of CPO noise n 

data to which a theoretical signal was added at 12 km/3ec and at infinite veloc- 

ity.    Signal-' D-noise ratios of 1 and 10 were tried for each velocity.    Reduced- n 

gradient ML.F, full-gradient MLF,  summation, and Wiener infinite-velocity U 

signal extraction were performed on these data. p. 

The final adaptive MLF problem was to adapt five samples of 

16-channel array data over all five samples in an attempt to duplicate the re- 

sults obtained with a Wiener infinite-velocity signal-extraction filter designed 

from stacked correlations of these five data samples. 

A.    LASA SLBARRAY Cl, ALEUTIAN   ISLANDS EVENT 
n 

Special Report No.   1 indicates that adaptive MLF results ^ 

generally were similar to the SDL results obtained by conventionally pro- 

cessing these same data.    However,  the use of different oandpaes filters 

prior to MLF made quantitative comparison of the two methods impossible. 

Therefore, it was thought advisable to repeat the adaptive processing on 

bandpass-filtered data with the same recursive filter used by SDL.    The data fl 

consisted of 19 of the 25 channels of LASA subarray Cl, the sir seismom- 

eters of the inner ring being omitted.    The data segment,  2500 points long 

and sampled at 100-msec intervals, included the signal arrival from an 

Aleutian Islands event. 

JJJ_2 «dene« ••rvlc»s division 
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A 4-pole recursive bandpass filter (0. 5 to 3.0 Kz) supplied by 

SDL was applied to all channels which were then shifted to line up the signal 

across channels.    The bandpass-filtered and shifted data are shown in Fig- 

ure UI-l.    The signal-to-noise ratio on channel 1, defined to be one-half the 

maximum peak-to-trough amplitude in the signal divided by the rms va'ue of 

Uie noise in the fitting interval 0 to 1500, was calculated as 6. 75 for the band- fl 

pass-filtered dala. 
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The one-sided, 21-point adaptive filters were designed from 

four passes through the filtering interval.    To begin the first pass, coefficients 

were set to 0 except for those on one end of the filter which equaled 1/19.   The 

values of k    for the four passes were 0.00025,  0.00005, 0.000025, and 0.000025. s 
Filter coefficients on passes 2 through 4 were initially equal to their values 

at the end of the previous pass.    Channel 1 and the outputs of the four passes 

are shown in Figure III-2.    The mean-square-errors over the fitting interval 

were 0.125, 0.081, 0.075, and 0.065.    Passes 1, 2, and 3 included only the 

fitting interval from 0 to 1500 points.    On pass 4, the filters were allowed to 

adapt fo:   1500 points and then were frozen and applied to the remainder of 

the sample.    Signal-to-noise ratio on the output trace for pass 4 was com- 

puted to be 21. 1, compared with 23.3 reported by SDL for the conventional 

maximum-likelihood processing.    This is an SNR difference of 1 db.    Had 

more passes been made through the fitting interval, it is believed that the 

23.3 figure for SNR could have been more closely approximated. 

B.    CPO NOISE SAMPLE 

A noise sample recorded at the CPO array on 16 October 1964 

was maximum-likelihood-filtered using both the full- and reduced-gradient 

adaptive algorithms.    MCF 3, a 25-point Wiener infinite-velocity signal- 

extraction filter, also was applied to the data.    These three methods plus a 

straight summation are compared for five different cases.    In the first case, 

the noise sample was processed as it was to compare noise rejection of the 

various methods.    For cases 2 through 5, a theoretical signal was added to 

the noise at infinite velocity and at 12 km/sec, with signal-to-noise ratios 

of 1 a)d 10 for each velocity.    Signal-to-noise is defined as 1/2 of the maxi- 

mum peak-to-trough displacement in the signal divided by the rms value of 

the noise. 
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The theoretical signal used here was generated by taking the 

inverse Fourier transform of the average amplitude spectra of 60 teleseismic 

events recorded at CPO.4   The Fourier transform from the frequency domain 

to the time domain is a periodic function in time.    The period of the function 

of time was 11.4 sec,  158 sample points with a At of 72 msec.    Thus, the 

large-amplitude waveform at the beginning of the 250-point transform appears 

again at 158 points, or 11.4 sec later, giving two nearly identical large- 

amplitude waveforms in the 250-point signal model.    The 12 points immedi- 

ately preceding the maximum signal amplitude at point 158 were added in 

front of the signal to smooth its beginning.    This double-wavelet signal model 

was chosen because it gives an indication of the degree of filter distortion re- 

sulting from a transient signal.    If no filter distortion results from the first 

high-amplitude signal waveform, then the second one should come through 

the filtering process looking like the first.   Any difference between the first 

and second waveforms in the filter output, therefore, is evidence of filter 

distortion by the first waveform, the degree of difference indicating the de- 

gree of distortion. 

1.    Case 1 — Noise Rejection 

Figure III-3 shows one of the noise channels and the outputs 

of a summation, MCF 3, full-gradient MLF, and reduced-gradient MLF. 

For the first pass through the data in the full-gradient MLF case, the 25 

filter coefficients for each channel were set equal to 0 except for the center 

ones which were set to 1/19.    Thus, the maximum-likelihood constraint 

equations were satisfied initially.    On the remaining four passes, coefficients 

were initialized at their values at the end of the previous pass.    Values of kB 

for the five passes were 0.00005, 0.00005, 0.000005, 0.000005, and 0.000005. 
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B 

Three passes through ,he data «ere mad. in the r.duced- 

gradien. ULT case, ,1th h. values of 0.00005275. 0.000005275. and 
*  Ahv 19/IS*O give the same time constants in 

0.000005275.    k   was scaled by 19/18   o gxv ?c «It.r 

.he .S-channe! prohUn, as those in the H-channei prohietn.   The       «U*. 

coemcients for each of the .8 difference traces (channei .0 he.ng the r    - 

erence trace, »ere set to 0 to begin the first pass and to their vaiues at the 

end of the previous pass to begin passes 2 and 3. 

Power spectra of channel I, mean across channels, channel 1 

minus mean, and the full-gradient MLF output from pass 5 are shown in Fig- 

TL*.    Hg«" m.5 is the spectra of channel 1. channel 10 minus chan- 

rel 1. and the reduced-gradient MLF output from pass 3. 

Noise rejection by the full-gradient method over the last 1000 

10  7 db   which was equal to the noise rejection 
points of the fifth pass was -10. 7 db. wmcn 

i     o„i„ th» last 1000 points were used to of MCF 3 over the same interval.    Only the last iu     p ,..,.. 

Ilpute noise rejection thereby reducing any start-up effects which might 

be present at the beginning of each adaptive pass. 

The reduced-gradient MLF did not match the noise-rejection 

.evel of MCF 3 in its three passes.   However, since five p ere re- 

ared to match MCF 3 with the full-gradient algorithm, it cannot be con- 

Led that the reduced gradient algorithm would not have done so well after 

five passes with similar values of k^ 

2.    Case 2 - Infinite-Velocity Signal (SNR = 1.0) 

The theoretical signal was added to the 2500.point noise sam- 

ple of case 1 in the 2001- to 2250-point interval on all traces.    The signal was 
pie of case neak.to-trough displacement was equal 
scaled so that one-half of its maximum peak to troug 
scaled so ma u . ,      The resulting data then were pro- 
to th    rms value of the noise on channel I.    The resulti g 

,.,. luirjr 31    and full-gradient maximum- 
cessed by summing. Wiener filtering (MCF 3). tu     g 

Inu    ■ Processing was identical to that for easel except that 
Ukelihood filtering.    *~"** being 0. 00005. 0. 00005. and 
only three adaptive passes were made, with *8 g 

L I    ^nnel 19 of the data, and the processing outputs are 
0. 000005.    The signal, channel IV oi me u 

shown in Figure III-6. . . . ■ ' "* 
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Figure III-4. Adaptive Processing of the CPO Noise Sample 
with Full-Gradient Power Output 
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Figure III-5.    Adaptive Processing of the CPO Noise Sample 
with Reduced-Gradient Power Output 

m-n science services division 





M 

3. Case 3 — Infinite-Velocity Signal (SNR = 10. 0) 

The signal of case 2 was scaled up by 10 and added as before 

to the noise data of case 1.    The processing of case 2 was duplicated here. 

A representative data channel and the processing results are given in Fig- 

ure m-7. 

4. Case 4 — 12 km/sec Signal (SNR = 1.0) 

Data am  processing for this case duplicates case 2 except that 

the signal was not added in at the same place on all chanreis but was time- 

shifted en each channel to represent a signal traveling across the array at 

12 km/sec.    Results for this case are shown in Figure III-8. 

5. Case 5 — 12 km/sec Signal (SNR = 10. 0) 

The signal of case 4 was scaled by 10 and added once again to 

the noise data, with a velocity of 12 km/sec.    The processing results for this 

case, shown in Figure III-9, were obtained by procedures identical to the pre- 

vious case. 

C.   DESIGN PROBLEM FOR FIVE SAMPLES 

1.   Summary 

A composite of five noise samples from a short-period surface 

array was chosen to compare adaptive maximum-likelihood filters to Wiener 

filters.    The Wiener filters were designed from the stacked correlations, 

infinite-velocity signal model, SNR = 4 with gain variability, and applied to 

the first 1000 points of each of the five noise samples. 
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The maximum-likelihood filters were adaptively designed by 

obtaining a starting set of filters from the first noise sample using a large 

value of k .    The first half of each noise sample then was processed in the 

order 1 Jo using a smaller value of k^ finally, the last half of each noise 

sample was processed in the order 5 to 1 with an extremely small value of 

k .    These adaptively designed filters then were fixed and applied to the first 

1000 points of each noise sample.    For comparison, a straight stack and 

large-k   adaptive outputs also were computed. 

Spectra of the error traces indicate that the Wiener filter is 

better (2 db) at 0. 5 Hz with a crossover at approximately 1 Hz and that the 

adaptively designed maximum-likelihood filter performs better (up to 15 db) 

over the 2- to 5-Hz band.    The fixed-adaptive and large k8 performed alike 

except for frequencies above 2 Hz, where an improvement up to 10 db implies 

a consistent time-varying high-frequency component. 

2.    Method 

The twofold purpose of this experiment is to illustrate the ap- 

plication of the adaptive method to the problem of filter design on a composite 

of noise aid to compare the behavior of online adaptive filters to fixed Wiener 

and adaptively designed maximum-likelihood filters. 

Five 216-8ec noise samples of 72-mil data from 16 short- 

period seismomete-s were uPed to determine the noise correlations from 

which a 29-point infinite-velocity Wiener filter was computed.    This work 

was performed previously under a separate contract and the results borrowed 
5 

to make the comparison between conventional and adaptive filters. 

Prior to any adaptive processing, the entire set of data was 

normalized by a scale factor determined from channel 1 of sample 1.    Design 

of the composite maximum-likelihood filters was accomplished by the pro- 

cedure illustrated in Figure III-10.    Starting with an infinite-velocity beam- 

steer set of filters, an "initialize" run on sample 1 through 500 points was 
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Figure III-10.    Five-Sample Maximum-Likelihood Design Problem 
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made with a large value of k    (0.00025), indicated by the first line of Fig- 0 8 
ure .UI-IO.    Values in parentheses are mean-square-error over the indicated 

length of data, with the type of fillers at the left of the page. 

The filters at the end of the initial run then were used as 

starting filters in the design problem.    Each data sample was split as indi- 

cated by the dashed line of Figure III-10 and processed in the order indicated 

bv the arrowed line.    The k   values of 18 x 10"7 and 6 x 10"7 were used 7 s 
throughout the first-half and second-half processing, respectively. 

Actual outputs for four types of filters applied to the first 

1000 points of the five noise samples are shown in Figures III-11 through 

III-15.    Power spectra of these error traces are given in Figures III-16 

through III-20. 

3.    Discussion 

The maximum-likelihood fixed or adaptive filter is approxi- 

mately equivalent to the Wiener filter for frequencies between 0. 75 and 1. 5 Hz. 

Wiener filters perform better at low frequency and the maximum-likelihood 

filters better at high frequency.    Additional improvement is shown in the high- 

frequency region for the adaptive large-k   maximum-likelihood filter. 
s 

First, attempts were made to explain the low-frequency phe- 

nomenon on the basis of different frequency response to high-velocity data 

for the designed Wiener and maximum-likelihood filters.    The response of 

the Wiener filter was down only 1 db at 0. 1 Hz and 0. 5 db at 1. 0 Hz, whereas 

the maximum-likelihood filter response was not influenced by roundoff error. 

Thus, the differences in frequency response are not sufficient to explain the 

results.    No theoretical reasons why the optimum filters have different error 

powers as a function of frequency could be determined; however, at present, 

the following explanation of the results is favored. 
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The optimum Wiener filter and maximum-likelihood filters 

produce highly comparable error-power curves.    Maximum-likelihood filters 

produced by the method cited in this report are almost equal to the optimum 

Wiener filter in total mean-square-error, but this error has a radically dif- 

ferent frequency distribution.    This difference in frequency occurs because 

the filters are updated at each point in time by x.. - x. and subtracting the 

mean over channels acts as a low-cut frequency filter.    Thus, the filters are 

influenced more by the high-frequency data than by the low-frequency data. 

It would appear from processing results on the design data that 

the adaptive procedure will produce good filters based on broadband mean- 

square-error more cheaply than the Wiener procedure.    Response plots in 

f-k space, however, indicate that although the adaptively designed maximum- 

likelihood filter performed well on the design data in terms of total mean- 

square-error, it is not likely to perform well on-line on low-frequency energy 

coming from a large subset of K-space.    Response of the fixed adaptive maxi- 

mum-likelihood and Wiener filters at 0. 25 Hz are compared in Figures 111-21 

and 111-22.   Although this may be a problem in considering the adaptive method 

as a procedure for designing fixed filters, it is definitely not a problem in 

considering the adaptive method as an online procedure. 
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Figure 111-16.    Error Power Spectra for Compared Filter- 
Design Techniques, Noise Sample 1 
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Figure III-17.    Error Power Spectra for Compared Filter- 
Design Techniques,  Noise Sample 2 
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Figure III-18.    Error Power Spectra for Compared Filter- 
Design Techniques, Noise Sample 3 
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slowly time-varying noise fields such as UBO road noise.    The adaptive method 
is also simpler and more economical than the Wiener method as an off-line filter 
design procedure for array data known to be approximately time stationary.    The 
two method« will produce essentially equivalent filters with respect to total 
mean-square-error; however,  relatively large differences in the actual filter 
response characteristics are possible. (   j 
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