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ABSTRACT

A new theoretical approach to the problem of radar-
target scintillation was developed. It was applied to slender,
axially symmetrical targets that are much longer than the RF
wave length. The radar scintillation is analyzed and described
in terms of statistical parameters. The following sets of quantities
were derived and computed:

(a) mean radar cross sections, their RMS fluctuations and
average lobing frequencies;

(b) mean target centroids, their RMS deviations and average
meandering rates.

These and other variables were expressed as functions

of the aspect angle, radio frequency and of configurational

details.
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1. INTRODUCTION TO THE PROBLEM OF RADAR-TARGET SCINTILLATION

The radar characteristic known as ''target scintillation"
was defined by Muchmore [17 as a physical phenomenon that consists
of two effects: (1) the fluctuation of the rectified amplitude of
the target echo as observed in the video circuits, and (2) the
wander of the apparent centroid of target position as generated
by the output of a tracking circuit.* The scintillation of the
stars alsc consists of two effects: fluctuation of magnitude and
variation of position. However, it was pointed out by Muchmore
t hat the causes of stellar and radar target scintillations are
distinct. Star light twinkle is caused by the disturbances of
the intervening medium (atmosphere) whereas radar aircraft
fluctuation is produced by the interference between many scattering
points of a usually complex target. It will be shown later that the
N} properties of 2 radar receiver also may affect the character of
radar scintillation.**

For the desigﬁ of an efficient radar and weapons systemn,

i it is important to obtain a thorough understanding of the analytical

*In the present report we are concerned with target-centroid wander
in the angular space of the radar field of view. However, similar
methods may also be applied to circuits producing radar range and
radial range rate (Doppler). We shall follow Muchmore's definition
of '"target scintillation'" although some authors deviate from this
nomenclature. For instance Barton (Ref. [27]) refers to "amplitude
noise" as scintillation which other authors call "fading noise."
The term ''glint" is generally applied to "angular noise," the
quantity '"radar jitter" is a collective term that also includes
the effects of receiver and servo noise.

. xx
] See Appendix, Secs. A.IV and A.V.3.
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and 3tatistical character of the target echo. The latter enters

-

into two phases cof radar operation. During the stage of target

r detection and acquisition, the mean radar cross section (abbreviated

—

"RCS" in the sequel), its fluciuwation and time rate of fading play

an important role. The success of this operation can be measured

e

and computed by means of tables and graphs of pertinent references

{ (cf. [2], [3], [4]). An important entry of these tables is the

7 "category of the target,'" which is specified by several parameters.
L ’ One important characteristic is the average duration of the fading
!i interval as compared to the pulse repetition and scanning periods

of the radar.

During the target tracking and missile semi-active
B e homing stages of a missile-target intercept, similar problems
relative to radar performance are involved. The RMS fluctuation
if of the mean target centroid and its rate of oscillatory meander
: are both significant and somewhat parallel in concept. The problem
ié of '"glint" caused by the erratic wandering of the centroid, especially
- for extended targets at close ranges, is akin to the multiple-
1; target problem which has not yet been solved in a satisfactory
manner.

The knowledge of hostile target scintillations can be
!i obtained (a) by actual flight observations, (b) by static radar-

ground tests carried out on models and (c) by analysis and

3; computation, provided the configuration of the enemy craft is

known from photos or other means of intelligence. The present

r"‘-Q
[ —

analysis belongs to the latter category. It offers the following

',‘r_j
N

{ l —
J
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advantages: (1) cost reduction by avoiding hardware and test
operations during prelimirnary design stages of the defensive
weapon system, (2) flexibility in the choice of systems
parameters, and (3) mathematical evaluation of possible schemes
for dealing with heavily fluctuating targets. These schemes
include the selection of polarization, radio frequency modu-
lation, narrow-band filters the center frequencies of which

can be adapted to measured instantaneous frequencies, adjustable
automatic gain controls, etc.
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- II. BACKGROUND OF PAST AND PRESENT RESEARCH
ON THE RADAR SCINTILLATION PROBLEM

Various distinct approaches to the problem of radar
target scintillation can be found in the literature. The experts
in the field of radar signatures (K. M. Siegel and collaborators,
see Ref. [5]), developed an extensive physical and mathematical
theory by means of which the RCS of a complex structure (consisting
of hundreds of stations) can be computed as a function of aspect
angle, frequency and polarization. Good agreement between analytical
results and measured radar echoes is claimed. Some of the under-
lying assumptions and mathematical principles will be discussed
in Appendix A.I. The statistical results of this research team
are limited to concepts of so-called "first-generation statistics,"”
such as o0 (mean cross section), S (standard deviation of o) etc.
No use is made of quantities appearing in "higher-dynasty statistics"

such as multiple joint distributions, correlation functions ard
spectra.

A different type of a statistical theory of aircraft
scintillation was developed by Delzie [6] and Muchmore [1].
Their results appear in terms of spectra and probability densities.
However, their theory applies to simple airframe structures that
can be considered as an assembly of a few individual scatterers
or of a few simple areas of uniformly distributed scatterers.
Related problems were analyzed in Refs. [7], [20], [211, and [22].
Some interesting, statistical work was carried out by Robert V.
Kennedy, Major USAF. He was primarily concerned with radar
cross sections of simple, satellite-type targecs. (See Ref. [8]).

A natural extension of the above-cited work would call
for a combination of the ideas incorporated separately in the
investigations of the aforementioned resesrch teams. It would
then yield, for instance, the RCS spectra of complicated target
configurations. The preparation of such quantities presents a

e
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cumbersome computationul chore but it can be accomplished.
However, the results would still be inadequate for the design of
radars against specific complex targets, for the following two
reasons:

(1) "Spectra," in a strict sense, are only applicable to
stationary processes. They furnish the mean square amplitude
densities in the frequency domain, averaged over an infinite
interval of time. The radar operators in the field, however, are
well aware of the fact that the signatures of slender targets
vary markedly in.magnitude and spectral content when turning from
broadside to frontal aspect. What is needed here, is the knowledge
of temporary signal behavior. The concept and the analysis of
"locally stationary processes' will be introduced and utilized
in the present report to cope with this phase of the problem.

(See Appendix, Sec. A.II).

(2) Often one deals with complex targets consisting of many
component scatterers that are somewhat randomly distributed over
the length of the body. Radar interference between these scatterers
zenerates many nulls which appear randomly distributed in time.*

In the extreme case of a Poisson distribution, these lobes generate
a flat spectrum according to Ref. [9]. This very fact lies at the
heart of the multiple-target problem. If one deals with narrow-
band targets in the background of wide-band noise, one can design
narrow-band filters that emphasize the target signals and wash out
the ncise. If one deals with wide-band target signals,** no
ordinary filter is heipful. If one washes out the noise one
filters the target signal as well. The physical implication of
this fact is well known to the radar operator in the field. 1If

he tracks two targets of equal strength appearing simultaneously
and a fraction of a beam width apart, the radar axis will wander
erratically from one target to the other and sometimes stray

*
even if the target turns at constant angular rate.
*k
In many references ''target signals' are separated into two parts:

(1) "true target signals' such as '"true angular positions" and
(2) "target noise" such as '"glint." For other quantities such as
the "RCS" o, this separation is not as simple. For some variables
of closed-loop missile guidance, *his separation becomes even

arbitrary and depending on the ch..ce of the analyst,
-5 -
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il
' bevend these points until the signal getes lost. If the receiver
{ﬂ applies » narrow band tracking filtexr or a slower antenna servo,
the radar axis still undergoes excursions of the same magnitude,
(" only at a slower rate. Apparently what is needed here, in order
to cope with this difficulty, 1s a better knowledge of the so-called
! . "instantaneous frequency’ and of other parameters developed by
‘ % S. 0. Rice under the heading of "Statistics of the Count of Zero-
? , crossings.” (Ref. [10]). J. W. Follin, Jr., of APL proposed to
: ) apply this segment of Rice’s random noise analysis to the problem
j 3 of radar-target scintillation. The present author performed the

i mathematical analysis connected with this problem and the Conductron
Corporation carried out the numerical computations, (cf. References
(11l, [12], (13], (18], f19]).

. The major results of this investigation will appear in
] Section VII. For our specific task a particular type of target
configuration was chosen and used in our numerical calculations.
Tactical geometry and the choice of target coordinates wilil be
explained in Section III. General definitions and symbols are
given in Section IV, specific definitions and refined statistical
! ﬂ. notation in Section V. The underlying assumptions which primarily
B pertain to cur special project, are compiled in Section VI. 1In
15' addition, we used a number of general mathematical priaciples which
were very helpful in rendering the computational chores tractable.
" In order aot to encumber the main stream ¢f information contained
in the major body of this report, mathematical principles and
pertinent theorems were relegated to special sections of the
appendix, as were refined details of the mathematical formulation
of the problem and of the derivation of our formulae.

R
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III. TACTICAL GEOMETRY AND TARGET COORDINATES

The tactical geometry and target coordinates are explained

in Figure 1. Two cases must be considered:

(1> Monostatic Case

This case refers to the operation of a tracking radar
and the action of an actively homing missile. The radar-line of
sight and the target-iongitudinal axis form a plane (P) which is
depicted in Figure 1. Of special interest are vehicles with
axial symmetry. For this special configuration the RCS problem
becomes two-dimensional since one spatial dimension (Z-coordinate)
can be suppressed.

The choice of the coordinate system is shown in
Figure 1. The origin coincides with the nose tip {station "0"),
the x-axis with the longitudinal axis of the target, and the
y-axis lies in plane P. The vehicles are divided into N sections
whose end points on the contour or some other convenient locations
are selected as the stations Si which represent the individual
comporient scatterers.

More details which are important in the aralysis are
sketched in Figure 2.

Besides the stations Si’ the positions of the
instantaneous centroid S and of the mean centroid § are
important. In References 1] and [6], the latter are designated
as the "apparent" and "effective" radar centers respectively.

It is convenient to refer the so-called error angles g4 to the
line of sight toward S. Then one has ¢ = 0, If the radar axis
is stabilized toward §, the error voltage, averaged over a long
period, also vanishes. The aspect angle @ is the angle between
the x-axis and the LOS from the tracker T to S. The direction
of the LOS is gi.en by the unit victor ﬁO’ the direction at right
angles to it by the unit vector Uv' Note that TS and TSi are
almsst parallel and the angle &y is very small under '"far-field
conditions." The remaining quantities are indicated in Figure 1,
and are self-explanatory.

- s st o =
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(2) Bistatic Case

This case refers to the action of a semi-active homing
intercevotor. The target configuration is the same. However, the
single aspect angle O must be replaced by two angles, O, and

t
Or. The transmitter angle O, is the angle between the illuminator

LOS and the x-axis; the receizer angle Or is the angle between
the seeker LOS and the x-axis, as indicated in Figure 1. In the
definition of the error angles €y the LOS from the seeker to

! the mean centroid S forms the basic reference line in the
bistatic case, since it is the seeker receiver that measures the

error voltage.

o
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IV. GENERAL DEFINITIONS AND SYMBOLS

In the analysis of radar cross sections as applied to
the theory of target detection, the following quantities play an
important role:

g is the radar cross section of a body, in m2.
The RCS is 47 times the re-radiated electro-
magnetic power, in watts per steradian, divided
by the irradiated power per unit area, in watts
per mz.

c is the instantaneous RCS of a body computed by
the method of '"'relative phase.'" Where there is

no coanfusion likely, we shall simply omit the
subscript 'p'".

oy is the RCS of the individual component scatterer.

is the mean RGS'(Ordinarily, this is a time
average. 0 = o(t),,. However, ¢ might also

be considered as a parameter process with the
aspect angle © or the frequency f representing
the independent parameter. The mean then is taken
with respect to the parameter.*)

al

AC = 0 - 0 is the instantaneous deviation of the RCS

from its mean,
——2'1/ 2
Ogq ™ (a0“) is the standard deviation of the RCS.

(Note: Reference [5] uses the symbol "S".)

*

In the bistatic case one has o = o {Ot, Or} and the average can
be defined as o0 ~ o {Ot(q), Or(q)}av where the averaging
operation is extended over the parameter q.

- 10 -
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OMAX is the maximum possible RCS (taken over all
possible RF-phases for fixed parameters).

In the analysis of radar target glint as applied to
the theory of target tracking, the following definitions and
symbols are important:

{The various stztions of the target are indicated by
vectors or matrix colunns.. Vectors are denoted by capitals,
their components by lower-case letters. Conventional matrix
symbolism is used; in particular, primes designate transposed
matrices.)

\ x
i
X, = [xi, yi] - [yi] = position of station 81

X =[x, y]' = position of instantaneous centroid 8
(slow AGC).

X - [x, ;]' = position of mean centroid S (slow AGC).
8X, = X, - X = deviation of station 8, from 3

X = X - X = deviation of instantaneous centroid
from mean.
(AX'AX') = covariance matrix of centroid position
-—2-1/2 -71/2
xq = @ 5oy o= @y

]
Ub = [cos @, -8in O] unit vector in the direction
of the radar LOS, (@ - line)

L
U, = [sin ©. cos O] unit vector normal to the @ - line.

r = range from radar to target, in units consistent
with units of x.

x
In this analysis the vectors and matrices are of dimension "2".

- 11 -
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As wentioned in Section III, it is convenient to refer the error
angles € to the position of the mean centroid. Hence

v i
€y = ———F—— = —F = error angle of station S1 (1a)
(see Figure 2)
L}
(aX -U,)
€ = —=3 = error angle of instantaneous centroid (1b)

and, by definition,

E=0 (1c)

1/2
g = (D). (19)

Simple summations extend over all scatterers S1 with

i=1, 2, ..., N. VWe shall use the following abbreviations:

D)

Double summations extend over all combinations of i, j=1, 2, ...
...y N except terms with the same index:

SRLIO TN SELRS

l<isdfJ<N i¥j l<i<j<N i

-12 -~
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V. SPECIAL DEFINITIONS AND SYMBOLS APPLICABLE
TO RICE'S RANDOM NOISE ‘THEORY

For the application of S.0. Rice's "Random Theory of
Noise'" (Reference [10]), a rew statistical definitions are
necessary.

Let z = z(q) be a parameter process. (In our case,
z will be the RCS process 0(q), while the independent parameter
q could be the time t, the aspect angle O, or the radio
frequency f.) z is the mean of z(q) averaged over gq, and
; <z> 1is the ensemble mean of 2z(q). For homogeneous, ergodic
- processes, one has:

Z = <z>. (2)

The RCS process is a locally homogeneous process
x
(locally stationary if q = t), and equation (2) is valid at
least for a short range of the parameter q. Let

3 —_
P‘? Az = z(q) -2 .

N Then Az is an unbiased random process.

The quantity N = N{az|aq, q, p,...} is defined as
the number of zero crossings with (ositive slope of a sample
process Az(q) in an interval 1 ranging from q to q + Aq.
N itself is a random variable that depends on Aq, q, and possibly
on some other parameters, such as p, ...; N = N{az|aq; q, p, ...}
. is the mean of N. AN = N - N is the deviation of zero counts
I of a particular sample process from its mean value,

PR

S | _ lim N{az|aq, q. p, ...}
~‘$_ Nq Nq ~Az, q, p! “'} Aq_’o Aq

%*
See Appendix A.II.

-13 -
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is the mean count of zero crossings per unit of q. N_ is a density

with dimension q'l. N;d - Néd {aq} = (AN2) is the standard
deviation of counts of zero crossings with positive slope, taken

over the interval 1.

A properly defined standard deviation of zero crossing
density (or rate of counts) would be:
1/2

@ ) _[11- (AN[Ag])z]
sd’ q Aq-0 Aq

-14 -
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VI. BASIC ASSUMPTIONS AND PRINCIPLES USED IN THE ANALYSIS

The following basic assumnptions were utilized in our
analysis:

Basic Assumptions

(1) The target is a slender, axially symmetrical
vehicle,

(2) it consists of many independent scatterers, that
are randomly distributed alongside tbz body,

(3) the linear dimensions of the target and of the
distances between individual scatterers are large compared to the
radio wavelength A,

(4) shadowing effects and multiple scattering can be
ignored,

(5) the range r from the radar to the target is
large compared to the target length, ]

(6) the target lies within the regime of linear error
patterns of the receiving antenna,

(7) the antenna axis is space stabilized in the
direction of the mean target centroid,

(8) the receiver uses slow AGC* and square-~law
detection,**

(9) receiver noise and other types of interference
are ignored.

Assumptions (1) through (4) are typical for the special kird of
targets which we investigated, assumptions (5) to (9) pertain to
the properties of antenna and receiver and to their geometrical
relationship to the target. All these premises are very useful

in simplifying the analytical, statistical and computational

part of this study, especially if combined with a few mathematical
and physic-l principles which will be listed below and more fully
discussed in the appendix. ‘

*x
See discussion at the end of Section A.1IV.
*cf. remarks in Section A.V.3.

- 15 -
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Assumption (1) enables us to yeduce the problem from
4 3-dimensional to a 2-dimensicnal job. Assumption (9) implies
that receiver noise and target scintillations are statistically
independent of one another and therefore can be treated separately
and then combined.

Mathematical and Physical Principles which Simplify the Analysis

(a) Far-Field Scattering,

(b) Born-Approximation,

(c) Method of Random, Relative Phase,

(d) Central Limit Theorem,

(e) Principle of Local Stationarity,

(f) Lord Kelvin's Principle of Stationary Phase.

Items (a), (b) and (c) were effectively used by the
Conductron Corporation (cf. Ref. [5]) and will be discussed in
Appendix A.I. The central limit theorem (item (u)) is a conse-
quence of assumption (2). It enables us to utilize Gaussian
statistics. This property and the principle of local stationarity
(item (e)) entitle us to make use of some results of Rice's random
noise analysis. Principle (e) was introduced by us for this
purpose. It is a consequence o7 assumptions (2) and (?) and will
be described in Appendix A.II. lord Kelvin's principle of stationary
phase (item (f)) is very useful in simplifying the complexity of the
numerical analysis. In our case, some of the final expressions
consist of fourfold summations, running over all the coordinates
of the individual scatterers. If we deal with 50-100 scatterers,
the number of terms required for one single quantity as a function

of a set of fixed parameters (say frequency, aspect angle and
polarization) may tax the capability of a modern electronic
computer. The principle of stationary phase enables us to reduce
quadruple sums to double sums. Details of this method will be
found in Appendix A "II,.

- 16 -
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VII. SUMMARY OF MATHEMATICAL RESULTS

The results will be divided into two main sections’ 7.1
and 7.2 entitled "Simple Statistics' and '"Refined Statistics"
respectively. The former contains formulae which were obtained
previously by other researchers (cf. Refs. [5] and [19]), the
second main section applies the methods of Rice's analysis to
the scintillation problem, The results are believed to be new,
to the best of our knowledge.

Each main section is divided into two subsections,

B e.g., 7.1.1 and 7.1.2. The former deals with quantities of the
detection phase, primarily averages of radar cross sectinns, the
second subsection derives parameters which are useful in the
tracking problem. We are concerned with che erratic meander

of the target centroid in the radar's field of view (say in

i ‘ azimuth and elevation).

? Logically a third and fourth subsection should follow
i ' the second one and produce the corresponding parameters in range
o and range rate (doppler). But these problems were not part of our
"" present assignment. They will be analyzed .n future projects.
; (cf. remarks of Section VIII).

7.1 Simple Statistics

7.1.1 Radar Cross Sections of Fading Targets

-E Mean Cross Section
H

OED) 0, (0) (3a)
i

In the bistatic case, the quantity © . is replaced

i vy two angles Ot and Gr, as in equation (3b) and all following
: "~ formulae.

G0, 0,) =2 0,(0,, 0) (3b)

i

- 17 -
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Cross Section Peak

ouax ~ (I /2 (4)

RMS Cross Section Spread About Mean

1/2

o_.= ( g,0.) (5)
sd i;; 173
7.1.2 Radar Target Glint
Mean Centroid, Using Slow AGC
(Effectivegiifget Center)
;xi"i

- (6)

o

Corresponding equations hold for the components of X.

); X419

X = — (6a)
c

_ ; 1%

y - = (6b)
g

By definition and equation.(lc),

_ {: [(xi-?) sin O + (yi-?) cos Or]ai

rao

Covariance Matrix of Apparent Centroid Motion

! = ._.,.].'_. - - '
(BX8X) = — [1§J 0404 (X, + X, 2%) (X, + X, 2%) ] (8)

40
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In particular,

Standard Deviation of Apparent Centroid ir x-Direction

1 |

X

Standard Deviation of Apparent Centroid in y-Direction

sd "’E[i,j"i

o (xi + x, - 2X)

J J

2]1/2

1 —2]"?
Ved ™ -2—3- [1;3 oioj()i + yJ - 2y ]

Standard Deviation of Measured Error Angle (Slow AGC)

2ro

1 -
€cd {3% oioj[(x1 + xJ - 2x) sin Or +

_ 2 1/2
+ (y1 + yJ - 2y) cos Or]

7.2 Refired Statistics (Density of Nulls)

7.2.1 Radar Cross Sections of Fading Targets

Mean Number of Lobes per Unit of Parameter

13913

G
N {a0;q,p} = ——BL-[ g,0,(F, )2
9 9sd 155

In application to specific parazeters and cases,
Table 1 serves for the computation of Gq, Table 2 for the

computation of the term

F

qij°

- 19 -
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Table 1

| ’ VALUES OF G_
J
i‘ I Parameter q Units Gy
'l Aspect angle © rad l‘—- 1
| pe g 2r - X
k
[ teg 360
i} Radio freguency f Hz %
| 6
10
[ Mz 1
! Time t sec k_ é
. 21

where

——— ——— g

27 27f W
k x " o c is the wave number,

c = speed of light,

\
1
)

é = rate of change of aspect angle in radians/sec.

The units of A and ¢ must be compatible with those of o
¢ and 0.

i’
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Table 2
VALUES CF
UES OF oFiy
Parameter q Monostatic Case Bistatic Case
e
or 2[ (x -xj)sin 0 +(y, -yj)cos o] [(xi-xj)(sin @, +sin O, ) +
t
+(yi-yj)(cos Ot+cos Or)]
f 2[ (x -xJ)cos 9 -~ (yi-yj)sin Q] [(xi-xj)(cos Ot+cos Or) -
-(yi-yj)(sin 9 +sin Or)]

Cne example follows:

Mean Number of Lobes per Degree at Fixed
“Frequency in the Bistatic Case

N . - K -
NO{AG,Ot,Or} 360 5 { gs oioj[(xi,xj)(sin Ot + sin Or) +

(10a)

) 1/2
+ (yi-yj)(cos Ot + cos Or)]‘

7.2.2 Radar-Target Glint

Mean Number of Centroid Excursions per Unit of
Parameter in the x-Direction

" G 21/z
Nq 0x;q,pl = ;g;g——'[ ;G 040, (x1+x 2—) (q i ] (11a)

- 21 -~
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In the y-Direction
- \ G 2 1/2
uqlaq;q.n - -:-l—[ § 0,0 (yiﬂr:j -2y) (q ij) ] (11b)
2°ysd 1#J

While the last two quantities are not directly observable,
the following quantity can be measured from the veceiver:

Mean Numxber of Error Fluctuations per Unit ot Parcmeter

G
iq[e;q,p} - TL{ Y oioj[(xi+xJ»2§') sin O_ +

20regq \iFj
. (12)
2 2 | 1/2
+ (y1+yj—2;) cos Or] (quj)
One example follows:
Mean Number of Error Fluctuations per MHz at
Fixed Angle in the Monostatic Case
ﬁ'[eO]- § i:j[(x -2Xx) sin O +
core isty
+ (y1+yj-2§') cos 9]2 . (12a)

, 9 11/2
. [(xi-xj) cos O - (yi-yj)sin o] }

- 22 -
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. VIII. APPLICATION OF ANALYSIS,
CONCLUSIONS AND RECOMMENDATIONS

Application of Analysis

The Conductron Corporation of Ann Arbor, Michigan,
has applied the mathematical results of Section VII to a series
of specified uissiles.* A set of numerical calculations was
1l performed for the output quantities listed below as functions
- of various RF-wavelengths, aspect angles and polarizations:

- 3 eq. (3a)
[: Gm €eq. 4)
' Ogd eq. (5)
[ x eq. (6a)
-
X ed eq. (8a)
- Fq{Ao;q,p} eq. (10)
n (1.) for q=0, p= 0
(2.) forq=f, p= 0
[ ﬁA{AX;q,P} eq. (1la)
(1.) forq =0, p= 0
- (2.) for g=f, p= 0

At the same time, the Applied Physics Laboratory under
the sponsorship of ARPA carried out a parallel RCS measurement
program at Holloman Air Force Base by static ground tests on models
of the same specified missiles. Again various RF-wavelengths,
aspect angles and polarizations were utilized. What conclusions

- can be reached from a comparison of the theoretical and experimental
5 results?

*Reference (18], (c) and (d).
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Conclusions
[] Before answering the last question, a few general
! remarks are in order. We deal with very complex and extremely
{} phase-sensitive structures in the microwave regime. At first
J

sight, some of the output quantities appear to fluctuate wildly

and randomly as functions of certain parameters or i. response

to slight changes of the configuration. It is difficult to assign

! a well-shaped spectrum to the output signals. A flat spectrum

; seems to be the closest choice for them at best. This characteristic
feature is confirmed by the analysis (see Appendix A.III). It is
even wore difficult to read, extrapolate or guess an "instantareous
lobing frequency""l from the inspection of the test records. It

was indeed this difficulty which ied to the present iavestigation.

-

3

'
.

]

]

pES—
L s

In the light of these remarks, the following conclusions can be
51 stated: ‘
1; (a) There exists a general qualitative agreement
between theé computed and measured quaantities.
() In particular theoretical and experimental
results show the same trends. For instance,
f{ the lobing frequency is lowest "head-on" i.e.,
in the direction where the aspect angle O is
7 zero, it rises with increasing aspect angle and
W reaches one or several maxima in oblique directions.
= The maxima are not fixed for the same missile if
B the radio frequency or polarization are varied.
~ As expected the lobing frequency Nb increases
ij with higher radar frequencies f, while the other
. parameters are held fixed.
]
-
5
iJ *The discusision of the class of deterministic ana random functions
which allow an "instantaneous frequency'" will be taken up in a
[} future report.

- 24 -
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(c) Provided a diligent mathematical and numerical
analysis is performed, it appears that the accuracy
of the important output quantities is sufficient
for a statistical radar-design and performance

study concerned with detection, track and
identification of scintillating targets.

Recommendations

The computed quantities referring to the meander of
the centroid, such as x (eq. 6a), xgq (eq. 8a), ﬁé{Ax;q,p}
i (eq. 1la) et al., have not been verified as yet by experimental
h measurements. This should be done, preferably in dynamic flight
i tests.

As mentioned above this analysis should be extended
to include the scintillation of the outputs of the range and
range rate (doppler) circuits.

{ The investigation should be generalized to incorporate

l targets containing non-random features, such as periodic sections,
’g uniformly distributed scatterer segments, etc. (cf. remarks at
"‘5 the end of Sec. A.III).

i . The effects of body vibrations and.of the slower
oscillations of the stability, control and guidance loops on
the radar scintillation shouid be examined (cf. discussion in
Sec. A,V.1),

Finally, the usefulness of special devices (RF frequency
modulators, adaptive narrow-band filters with variable center
‘1 frequencies, etc.) should be studied. The objective would be io
recognize the size, overall shape and attitude of unknown objects
. or to identify the signature of well known targets. Some of these
problems are being studied at the present time and will be
documented in the near future.

- 25 -
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APPENDICES

A.I. PRINCIPLES USED IN THE DERIVATION OF
THE ANALYTICAL RESULTS OF SECTION 7.1.1

The mathematical results of Section 7.1 entitled
"Simple Statistics,'" Subsection 7.1.1 "Radar Cross Sectiocns
of Fading Targets'" were derived by the research team of the
Conductron Corporai on. For details of this analysis, Refs.[5]
and [19] should be consulted. Here we shall discuss the basic
principles utilized in this work.

(a) Far-Field Scattering,
(b) Born Approximation,
(¢} Method of Relative, Random Phase.

Principle (a) is based on our assumptions (5) and (3)
of Section VI, Tt simplifies the problems of wave physics and
in many cases allows the use of plane wave fronts.,

Principle (b) is well known from scattering problems in
quantum mechanics. There it becomes applicable, if the interaction
coefficients are so small that double ana multiple scattering
involving squares and higher powers of the interaction constants
can be ignored. In our case multiple scattering can be omitted
since we deal with bodies of simple shapes {(assumptions (1) and
(4) of Section VI).

Principle (c) or the method of relative and random
phase will be described next. Following the analysis of Ref. (5],
page 25 a.f. and using the notation of Section V, onc obtains for
the instantaneous RCS of the target:
N

] 1/2 a (2
% Ij; (O’J.) exp(14>J)| (A.1.1)
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where in the monostatic case

o ety

¢3 - —Zk[(xJQE)cos *] —(yJ-§)sin 0] + & (A.1.2a)

o ———
t

in the bistatic case

J T > I e 5|

-

¢3 = -k[(xj—f)(cos @, +cos Or)-(yj-§)(siu 9 +sin Or)]+'@

(A.1.2b)

k 1is the wave number explained at the bottom of
Table 1.

is an abgolute, instanteaneous phase of the mean
centroid.

@l

EE The most diificult part of the analysis is the job of finding

the magnitude of the individual scattering cross sections o

; The derivation cf 9p and o proceeds in three steps. To

‘ describe the method, we follow Ref. [3] closely and verbatim in
wny instances:

io

First Step - Modeliing

¥e consider the body under investigation as an assembly
of many components each of which can be geometrically approximated
by & "simple skape" in such . way that the RCS of the simple shape
i approximates the RCS of the componei:t it models.

{ i Second Step - Computation of Component RCS

It is assumed that the RCS of the '"simple shape' can
. be computed. The rigorous method would require a solution of
? Maxwell's equations with krown but complicated boundary conditions.
If 2n exact solution is not known, one must find an approximate
solution by some special method.

- - 30 -
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Third Step - Combination of Individual Component RCS's

The final step involves the proper combination of the
"component crcss sections” to yield the estimate of the cress
section of the entire body. Here again it is often necessary to
find a simplifying mathematical scheme such as the method of
"relative random phase.” It must be emphasized that mathematical
approximations must be justified on physical grounds.

Rewriting eq. (A.I.1) one gets in the monostatic case:
N N

op = ;g; ;g%(°i°3)1/2°°8 2k[(xj-xi)cos 0 -(yj-yi)sin 9]

In the notation of Section IV:

- 1/2 - (v .-
o §°i+ 2 12<::j (oioj) cos .‘zl:[,'(:i::j x;)cos O (vJ. y,)sin 0] (A.1.3)

It is seen that the absolute, instantaneous phase ® of the
centroid disappears from the ejuation and therefore becomes
irrelevant. This fact justifies the term "relative phase."

A particular procedure of combining individual component cross
sections is called the "method of random phase.” It is based on
the assumption (see p. 26 of Ref. [5]) that the many different ¢3
are randomly distributed; then upon averaging over ¢ one obtains

! J
1 the exnression

— L 6

0 = o
; L%
wr

< which is identical with eq.

(3a) of Section VII.

The reasoning which led to eq. (A.1.4) appears some~
what vague. However, one has the feeling that the result is
physically correct. One might try to strengthen the mathematical

::E argument by

- 31 -
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(a) introducing statistical distributions for the x
(say Poisson distributions) and iniependent but
identical distributions for the oy (say Rayleigh
distributions),

(b) goingz to the limit
the target)

(c) replacing sums by integrals and averaging.

N

E§!-~ o, (L is the length of

o)

; . Then one winds up with expressions containing Dirac's
delta functions, giving rise to amlytical difficulties.

1 An alternate method of combining wildly fluctuating
signal components will be discussed in Section A.II.

- =
)
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A, II. PRINCIPLES AND METHODS USED IN THE
ANALYSIS OF SECTION 7.2

Referring back to the list of principles enumerated
" in Section VI, we shall make use of the following items:

{d) Central Limit Theorem,
| (e) Principle of Local Stationarity,
- (f) Lord Kelvin's Principle of Stationary Phase and
1 its Extension.

Item (d) is based on assumption (2) of Section VI. If
i we deal with many independent scatterers, whose individual RCS8's
follow independent but equal distributions, and if some other
1 conditions are met (such as the existence of first and second
moments), the RCS of the combined signal in the limit N - ®
- will approximate a Gaussian distribution.* This property is
important because it enables us to make use of scme results
obtained by S. O. Rice in the field of the statistics of the
count of zero crossings.

. [l
* —-

Item (e) is a new concept which was introduced here
especially for the purpose of coping with the type of signals
encountered in radar target echoes. These signals, in the long
run, or averaged over a long interval of time, display a broad,
flat spectrum. . Yet we know these signals bear an instantaneous
3 statistical character which changes slowly with the parameter
(aspect angle O, time t or frequency f).

—
LT

"] The concept of '""local stationmarity'" shall be explained
: on hand of the signal cp (cf. eq. A.1.1).

. N
E ""' = 1/2 ! 2
7p IJZl (cj) exp(i%)l« (A.I1.1)

*Reference [14], p. 215.
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For simplicity we choose the wonostatic cz2se and a one-
dimensional distribution of scatterers. Accordingly:

Then (A.IXI.1) can be rewritten as follows:

1/2 R
0, (©) 1;3 (04000 cos [2k(x;-x;) cos 0] (A.11.3)

Q@ 1is the independent parameter of the real signal
process. Now we introduce two additional independent virtual
variables <t and 6§:

. 1/2
0@ = T ay0 J

T is the parameter-shift variable in a statistical ensemble
with the range 0 < T < 27 and the probability density:

p(1) = 5+ (A.11.5)

6 1is the parameter in a locally stationary ensemble with the
range -A < 6 < +4 and the probability density

p(6) = 31

Irrespective of how small we choose A, we can always
find a large enough k or k - (xJ-xi), so that the argument oy

phase ’i; of every cos-term describes the full circle from Q0 to 27,

even several times. In the limit, if k(xj-xi) ~ o0, the process
cp(o) appears as a full random process covering infinite phase

shift as 6 goes through its range -4 < 6 < +A. In the following,
we shall always assume that we are close to this idealized situation.

For lack of other suitable terms, we shall call a process of this

type a "peculiar process,'" i.e., peculiar to certain types of
radar echoes.

- 34 -
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Indeed, the peculiar processes share with the flat,
white noise processes the broad spectrum. Howvever, they appear
to be more closely related to, but not identical with the noise

processes of Reference [16], eq. (12).

The peculiar processes are not stationary over the full
ranges of their parameters (@, v). However, for fixed O and T,
we may define a "local stationarity,” by taking a "microscopic
look" so to speak, at the small range -A < 6 < +4 of the local
ensemble. By making a transformation of the form

6 =~ /8

we obtain a process of the parameter © which is stationary in
the range

% < 8 < +7.

This procedure is similar to Newton's idea of forming derivatives.
To any point Pl of a curvilinear function choose an infinite-
simally near point P2 on the curve. Connect Pl with Pz by
a straight line. The infinitesimal segment Plpz can then be
blown up by extending it to a tangential line. It is well known
that derivatives do not exist for certain classes of real, even
continuous functions. 1In the same manner, stochastic processes
do not necessarily possess local stationarity, but the peculiar

processes enjoy this property.

The virtual variable Tt is used in connection with i
ordinary stationary, statistical quantities, such as the auto-
correlation function, spectrum, etc. The virtual variable 6
is used in connection with locally stationary properties, such
as "instantaneous frequency," 'average number of zero crossings,"
etc.

We can speak of several types of statistical averages
for a quantity 2z of such a process:

i
!
§
g
|
!
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The parameter (timc) average is indicated by z.
The ensemble average is denoted by < z >, It is well known
that for stationary, ergodic processes one has:

P4

Zaw<z> (A.11.7)

We have many real component scatterers. Therefore we
could also speak of an assexbly average Z. In our work assembly
averages are not required, but total sums over the assembly are,
which in the simplest cases become NZ. Por instance one gets:

2

SO = N'OJI/

= exp (145)|

The local ensemble average {2(91(1)} is defined by
+4

(z0,D} - ;28 2—}] 46 z(® + T + &) (A.11.8)
-A

It is important to note that for our type of processes
the assembly sums change with finite shifts of the;nggl‘pa{§meter
@ and of the ensemble parameter +t. A rigorous matheﬁdtical
analysis would have to work around Dirac's &6-~functions, since
the processes considered have a flat spectrum in the r«x” and
ensemble domain. Our present objective is limited to ircducing
expressions which require exorbitant caiculational work,to a
tractable computational form. Therefore we shall omit further
mithematical and theoretical exercises at this time.

Generalization of the Principle of Stationary Phase

The principle of stationary phase was originally
enunciated by Lord Kelvin as a mathematical artifice to approxi-
mate infinite integrals of wildly fiuctuating functions of the
type occurring in the hydrodynamic theory of impulsive disturbances
or wave groups of small spatial extension. These waves possess a
broad spectrum. This principle was later cast in a mathematical
rigorouas form (see Ref. [15]).
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We shall state this principle in 2 slightly more
general forms applicable to our locally statiomary processes.

First Version of Kelvin's Principle

Given a finite function f£{®} of bounded variation,
such as the cos-function. The argument is called phase. The
latter itself is a function of two sets of variables: {m} and
{x,y,...}

=9 (m;x,y,...)

m 1is continuous and x, y, ... assume discrete values only.

We form infinite integrals over the first variable
and finite, but large summations over the second set.

a0

E = f dm f{®(m;x,y.,...)} (A.11.9)
131 173

=00

If the phase @ fluctuates wildly as a function of m,
then one can obtain a good approximation of .E

(a) either by integrating over a short range of m:
m,-4<m<m + 4 and, or

(b) by summing over 2 smaller subset X} » X
o

seeey ¥ !YQ | IO
2o 1o “o

of the second set. 5o long as the stationarity of phase holds for
the two subsets (a) and (b), i.e,, so long as the following
equation is valid:

{m_; Xg 4y ,...} =0 for m, and all x (A.11.10)
o Jo

o

1

y Yy o
1o 'Jo

Then d
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E~f dm £{®(m; x,,y....)]} (A.I1.11)
-4 1§i°; EJO 1773

o
o

The second part (b) of the proposition constitutes the
generalization of Kelvin's principle.

Example: Let us apply principle (f) to our locally stationary
signal ap {eq. A.11.4). The dummy variable &4 is substituted
for m and X5 xJ for X4 yJ. The variables © and T are
not summed here. In our case 6 runs through a very short range

already, Therefore part (b) is expected to play a major role in
the simplification process.

Equation (A.II.10) becomes

0 = ag»[Zk(xib-xjo) cos (@ + T + 60)] or

(xio-xjo) sin (@ + T + 60) = 0 } (A.II1.12)

Since 0 and T &are arbitrary this equation can only be satisfied
if 1 = j, or starting with the original set {1,j] one forms
the subset {1°,J°]:

i,=1=12, ..., N
Jo = 1

The local ensemble average of cp becomes
N

[opl - ;oi (A.11.13)

Since the parameter ©O disappeared from the right bhand side of

eq. (A.I1.13), this expression is als» the parameter-average o:

g = g ay (A.I11.14)
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This is the result of Ref. [5] and the content of eq.
(A.I1.4). In later examples we shall form local ensemble averages
that »v. not identical with the parameter averages. The use o?f
the extension of Kelvin's principle somewhat strengthens the
intuitive argument given on pg. 26 of Ref. [5]. The validity of
Kelvin's principle was proved for a large class of oscillating
ianctions by G. N, Watson."l The extension of this principle should
be treated in a more rigorous form too. But this job exceeds the
scope of our present assignment.

Second Version of Kelvin's Principle

We shall now describe a second version of Kelvin's
principle of stationary phase that will be utilized in the following
section. In the previous case the rhase function contained 2 sets
of variables: a continuous variable and a set of discrete variables.
Accordingly the total summation consisted of an integration and a
finite summation over discrete variables. In the sequel the phase
function contains two sets of discrete variables and the total
summation consists of two finite summations over discrete variabies,
In particular each summation could be a double sum over discrete
variables, as follows:

N N , ,
E = {0, ,x,; x_,x )]} (A.11.15)
1,;-1 n,;-l 1'% *o'%n

Again, if the phase ¢ fluctuates wildly as a function
of the variables, one may get a fair approximation of E, if one
sums only over a subset [xio’xjo; xno,xmo} of the set {xi,xJ;xn,xm}
for which the phase is stationary or constant:

é(xio,xjo; xno’xmo) = constant for any choice of (A.11.18)
the x-variables within the subset.

It turns ocut that in the special applications of the
following section, the constant vanishes due to the fact that the.
component scatterers x; are assumed to be distributed in a random
fashion, i.e., "umerically placed at incommensurate distances,.

*Reference [17]
-39 -
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A.III. APPLICATIOR OF RICE'S THEORY TO THE
COMPUTATION OF RADAR-CROSS SECTICN NULLS

*
The radar cross section op of a target which satisfies
the conditions of Section VI, can be computed by the method of

relative phase and is given by eq. (A.I1.3). With slightly modified
notation it becomes:

= o 3

& 3

- 1/2
op = fi:oi + 1ﬁ'j (0103) cos 2k [(xj-xi)cos e - (yj-yi)sin ] (A.1.3)

m
t) op - cp(O) can be considered as a stochastic parameter process
P with the aspect angle © playing the role of the independent
{j parameter. According to eq. (A.I.4), the mean o of op is

' given by
B

o-ZcJi (A.1.4)
i

[?

R Therefore
(‘ AC = G_~ 0 = (0,0 )1/2 cos 2k [(x.,~x.) cos © - (y,~y,)sin O]
(. p 1§J 19;5 30 i

(A.II11.1)

pom——y
| S

is an unbissed parameter process. Moreover, it approximates an
unbiased Gaussian process for the following reasons: If we hold
i fixed, the r.h.s. of eq. (A.III.1) is a sum of N terms Tij
for j=1,2, ..., N. Each of these terms follows an independent
distribution (according to assumption 2 of Section VI). Further-
more all finite moments of each term exist, since we deal with a
finite number of scatterers and the total extension of the target
is bounded. Therefore the conditions of the central limit theorem
are met (see Ref. [14], pg. 215). Hence each term T, with

N

RN

approximates a Gaussian distribution as N grows toward infinity.

—

o
 momemed

,_,..\,
5 e =B

~ 1

[

|

—

F3
Again the monostatic case is analyzed here for simplicity.
- 40 -
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The parameter process Ao can be written as
N

i.e., as a sum of N Gauxsian processes. Therefore A0 itself --
according to a weil known theorem of statistics -- will be Gaussian
or -- more precisely -- i1l approxzimate a Gaussian process. as N
tends toward infinity. A0 1is not a stiaiionary process, that is,
its stetistical properties are not invariant toward a finite shift
of the parameter ©O. However, we le.:ned in Section A.II that it
could be considered as a locally stationary process. For any fixed ;
choice of O we can form a local ensemble with the parametzr & §
and range -A < 6 < +4 for which Ac behaves like a stationary

process.

The process Ac(Q) defined by eq. (A.I1I.1) and described
in the previous discuciion shall be called an '"unbiased peculiar
process." To bring cut the essential features of the analysig and
save space at the same tir 2, we shall assume that +:.} thr wompdiexi
scatterers are distributed over a linear segment. “‘he equations of
Section VII (Summary of Mathematical Results), bhowever, cover the
general twc-dimensional case.

The Auto-Correlztion Function ur an Unbiased
Peculiar Process

The second version of Lord Kelvin's principle of stationary
phase (see Section A.II) shall now be applied to the computation of

the auto-correlation function p(7,0) of the process A0(9),
c.f. eq. (A.III.1). Using the average over a local ensemble,

one gets:
+4
1 .
pM(T,O) = 37 d6 Ac(6+6) A0(@ + T + O6) (A.III1.2)
-4

Substituting eq. (A.III.1) in (A.JII.2) and reducing
the problem to one dimension, one has:

-4]1 -~




+4
1 1/2 1/2
p(t,é)«rfdoll (6,0,) (6.0.)
49 = A 225 é;a 173 1

I x cos[2k cos (0+6)(xj-ai)}cosf2k cog (@ + 6 + 7)(x -x )]

?% or . +4A

AXe 1 1/2 1/2
p(-r,O)»-—-]dﬁZ (0.6.)Y2 (5 6.)
AG 24 A igj RE i’j nn

ey
6 Boomes @

x {cos{2k cos (9+§)(x3~xi) + 2k cos (@ 4+ 6 + T)(x;-x )]

(RN

+ cosf{2k cos (948} (x

3-xi) -2k cos (@ + & + t)(xm-xn)]}

Fac)

(A.111.3)
.: ?' The radar cross sections o of the component scatterers satisfy

P & certain digtribution. It is well known that the strong scintil-
lation of radar echoes is caused primarily by the interference of
phases between the component scatterers rather than by the fluctusation
of the 9y of the individual scatterers.* Be it as it may, let us
assume temporarily that the oi are constant and equal and their
variations are absorbed by slight changes of the large kx
quantities.

J—

s

b

i

.
.‘._..\....;2

Since j > 1 and m > n, the coefficients of the cos

gé terms in the square bracket of the second line of eq. (A.III.3)
; are positive and therefore the whole expresszion in the second
EE line will vanish since the heavily fluctuating terms cancel one

another. A similar situation prevails for the expression of the

. *This property is discussed in Ref, [1], pg. 202. The fact that

0 the individual ¢ do not depend on © 1is explained by the large

L width of the scat%ering lobe patterns of the individual scatterers,

ir contrast to the narrow lobes produced by an array of length L,

0E The constancy of the individual o as a function of the radio
frequency is pointed out in Ref. [52], pg. 573.

P

=

=
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third line so0 long as 1 > 0, since we assumed a completely random
and incommensurate distribution of the x,. However, if 1 = O,
the situation is different. Then there exists a subset

{xio’ Xj05 *po xqu of the set {xi, Xg5 Xy x-] for which the
phase (term in square bracket) is constant, even zero for all
combinations. The subset is:

xiox Xi

X - X,

Jo 3 i, j=1,2, ..., N

Xno = *io

X o= xjo (A.111.4)
The auto-correlation function becomes:

’;Jdidj for 7 =0
pAc('r,O) - (A.I11.5)

0 for T # 0

As N tends toward infinity, pAU(T,G) approximates
a Dirac delta-function for all values of ©. Therefore the
spectrum becomes wide-banded and flat. Thisproperty can also be
proved by other methods* and certainly was expected. However, it
is highly surprising that one can define an instantaneous frequency
or rate of lobing for the "peculiar process.,'" This concept is based
on the noise theory of S. 0. Rice (Ref. [10]).

The Average Rate of Nulls

For a Gaussian, stationary unbiased process 2z(t) with
correlation function p_(7), Rice derived the quantity ﬁi{z], i.e.,
the average number of zero crossings with positive slope (number
of lobes) por unit time:

*Compare discussion in Appendix A.V.2,
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z ™0

This concept can be carried over directly to Gaussian,

locally stationary, parameter processes. For the unbiased peculiar
processes one obtains:

(A.1II,6a)

27 | p

oo 1/2
ﬂpAz(T’O) }
Az

Fy(az; 9) - -l{

™0

Note: In the non-stationary, though "locally stationary" processes
all quantities depend on the instantaneous value nf the parameter
%. The surprising property of the peculiar processes mentioned
gbove can now be explained by the fact that while p(t<0) and

p(1~0) tend toward infinity, their ratio remains finite and gives
the desired value.

We start with eq. (A.III.3) and simplify tle expression
on the r.h.s. somewhat by omitting the second line which osciflates
heavily and averages to zero and skipping the integral over the
range of the local ensemble variable &6 which for the specific
conditions of our example cancels out.

' 1/2 1/2
p, (1,0) = 2 (0,0,) (0 0.)
4o 1§5 ;§; 17 1 iR

X cos[2k cos © (xJ-xi) - 2k cos (0+1)(xm-xn)] (A.111.3a)

Differentiating eq. (A.III.3a) twice with respect to T, gives:

1/2 1/2

5Ao('r.°) -2 Y Y (o

(0.0)
1<3 n<m nm

ioJ)
X {cos 2k[cos O(Xj-xi)-cos(0+r)(xm-xn)]-[2ksin(0+1)(xm-xn)]2

+ sin 2k[cos O(Xj-xi)-cos(9+1)(xm-xn)]-[2kcos(0+1)(xm-xn)]}

(A.111.7)
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Now, we keep n and m fixed and vary i and J,
With our specizl conditions (very large k, random distributiorn
of the X
of the terms in the mecond line which fluctuate wildly, average
to zero except for a cubset (A) [io, 3o B, mol of {i,j; n,m}:

relative constancy of °i) the summation over i, J

x x
no  “n

X = X
RO - () n,m=1, 2, ..., N
xio-x

X = X

Jjo

For the subset the phases of the cos termsz in the second

line disappear, as 1 goes to zero. The same reasoning holds for

the third line. Therefore the third line vanishes since sin on - = 0
if 'Qn n" 0. Combining these results and interchanging i, 3
with n, m one finally gets:
2 2172
. ; (V’ES:\/OJ) [2k sin O(xj-xj)]
- Nylao;0) = o1 ¢ 32 (A.111.9)

p)
(/o,/5)
1§J 17

This result can be easily extended to two dimensions by
assuming a two-dimensionnl distribution of the scatterers, raudom
and independent in x amna y.
aspect angle © as the independent parameter, one may substitute
the radio frequency f or tﬁe time cther guitable
variable q. (t)
to substitute

Furthermore instead of using the

t or any
In the aunto-correlation function one has

Finally

Pro

T= Tey T= 7 or T =T for 1T = Tor

t

- q
in the derivation of Nq(Ac;q) one has to apply the second derivative

of P(Tq) with respect to Tq* The results are summarized in
eq. (10) combined with Tables 1 and 2 of Section 7.2. Note: FWhile
numerator and denominator of the r.h.s. of eq. A.III1.9 tend toward

o infinity as N grows over all bounds, their ratio remains finite

and yields a finite and reasonable value, as was shown by a
numerical analysis carried out by the Conductron Corporation.

(A.111.8)

s
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Effect of Non-Random Distribution of the Scatterers

If the scatterers are not randomly distributed, ther.
the reasoning that led from eq. A.III.3 to eq. A.III.5, break: down.
Supposing the scatterers display some periodic features as followe.

L

c

Ci+8p = %1

1220

L
X+ (+Dp ~ Fiatp T Fiwp T X1 T 1

[+

where p 1s a fixed integer counting the number of scatterers
within a period and £ 1is a running integer 0 < ¢ < M counting
the number of periodic sections.* Then one can enlarge the subset
‘ (A.111.4) by adding:

St

[

] Xno = *io + 4p ’

smm—ganry

(B) L =1, 2,

Xwo ™ 0 + 4p

Pt

[

Furthermore there will exist certain discrete values of

: ?E T, Say Tys Tgs +eey Tyy ... for which additional subsets
o 8,, 85, ..., 8,, ... with stationary phase are associated, for
E | {} instance for T, One can construct a subset 3,, as follows:
{? X0 = %4
o X, = X
- Jo 3 8) 1,3=1,2, ..., N (A.111.10)
| ~ Xmo = %j0 + Lp
- §
{ * i
o Each index k appearing in the subscripts, should satisfy the
lJ condition: O < k < N, If this condition is not met, replace k
by an integer k' which satisfies this inequality and the following
7 relation:
i] k' = k (mod W)
W]
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o that

ccs 9 - (xjo'xio) -~ co8 (9+1‘)(x'o-xn°) - 0, (A.I1X.11)

In additicn one can also form subsets of type (B).
The correlation function becomes a sum of Dirac deita

function::
M

p(1) = Zbo (‘r-':‘)a‘ (A.111.12)

and the radar echo pattern assumes the welil known finger-like
or fan-like appearance.

T —y
b
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A.1IV, EFFECT OF AGC ON THE CHARACTER OF
CENTR0ID OSCILLATIONS

1. Instantaneous Centroid for Slow AGC

Let k = %} be the wave number and let ¢1 - k(Pi-Po)

for 4 =1, 2, ..., N be the relative phase shift between scatterers
i and 0. PB’ Pl, 500 g Pi, ey PN denote the two-way paths from
th» radar to the individuval scatterers So, 81, cees 84, wee, SN

and back to the radar. In the monostatic case, the paths run from
the tracking radar to the scatterer and back to the same radar. In
the bistatic case, the paths extend, e.g., from the illuminator to
the scatterer and back to the seeker of a semi-actively homing
missile. S8 is a reference station, say the nose tip of the

(]
target or the average centroid position. *

In order to determine the position of the centroid, one
has to define two vectors V and Vx and one square matrix M.

The matrix M is defined by its general element:

M, ., ~cos ® %); 1,3 =1, 2,

13 1% eee, N (A.1IV.1)

where ¢1 is the phase angle defined by eq. (A.I1.2a).

The vectors V and Vx are defined by the following

columns:
it /7
/3y /g%y
V- _ vl - (A.1V.2)
/5y : /0%,
L f"?_ L °N"N_
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| cy Ops oves Oys +oes Oy are the radar cross sections
of the individual component scatterers as defined in Section IV.
The quantities x and x, are used in the present section =s
generic terms that might represent either the x- positions, the
y- positions or the error angles € of individual scatterers
and centroids, as defined in Section 1V.

Making use of the assumpticns listed in the beginning
of Section VI, one may write the position of the instantaneous
centroid Xg for slow AGC as follows:

toed el b Sed

‘1 VMV
g xs = -<v,—uv-> (A.IV.3)
‘i The position of the average centroid E; for slow AGC is given
by:
2, Average Centroid for Slow AGC
_ (V' ¥ V)
Xs " V" H V) (A.1IV.4)
!
P ' The operator (F(¢1,¢b,...,°N)) is defined, as
follows:
27 27
(F) = Iﬁﬁ f...fd&ldoz...dthF(«bl,oz,...,oN) (A.1V.5)
T
) (0

The denominator of eqs. (A.IV.3) and (A.IV.4) is equal to the mean
radar cross section ¢ which is given by eq. (3a) of Section 7.1:

=) oy A (32)
i .

Combining eqs. (A.IV.1) to (A.IV.5) and substituting eq. (3a) gives:

x, = —— (A.1V.8)
S o

e —— . — ——
. f
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This formula is identical with eq. (8) of Section 7.1.2.
All the results of Scction 7.2.2 entitled "Radar-Target Glint" were
derived from it by applying conventional, elementary statistice |

; j] coubined with Rice's theory of zero-crossings, as expounded in ‘
B Appendix A.III.

It should be emphasized here that the mathematical
expressions for the effects of AGC, as given by eqs. (A.IV.3)
and (A.IV.4), are simplified formulations of the actual AGC
responge. A more rigorous formulation must account (1) for the
LM fact that the AGC filter has a dynamic response given by an
;}f operator or a transfer function, (2) for the real gain control
which is not the inverse of the AGC filter output but is

rs
E represented by a more complicated function.
!7 3. instantareous Centroid for Fast AGC
o A simplified expression for the position of the
{; instantaneous centroid Xp under the action of fast AGC is
N g iven by:
[? . V' M Vx
- xr - m—v—— (A. Iv'7)
[} Substituting eqs. (A.IV.1) and (A.1V.2) in (A.IV.7) gives:
! N /3;703 cos (0& J)
Xp = (A.1V.8)
[] /Gy/Ty cos (& ¢3)
) 4. Average Centroid for Fast AGC

; ;{ The position of the average or effective centroid
‘ under the action of fast AGC becomes:

{ < > ' (A.1V.9)
= N - 50 .-‘,
U
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Combining eqs. (A.IV.5) and (A.IV.8) one obtains:

_ ) f21 f21r g ; Xy ./'E;fq cos((’i-%)
x “os L

s do ko N (A.IV,.9a)
27
5 T ‘i f: [5,/55 cos (8,-0))

This multiple integral is difficult to evaluate and only
partial results are known to this author.

James Hanson and collaborators of APL investigated
problems of this kind. 1In one study theyapplied the following
restrictions:

(a) The analysis is linearized. Most angles are

very small,

(b) All the a; are variable but correlated. They

change as linear functions of time and stay in
commensurate ratios.

Then one gets the following result:

xISXstN.

The present author attacked this problem in a different
way. Instead of using vectors and matrices, he cast the expression
(A.IV.9) in the form of complex variables. Then the following
result could be easily proved:

If there exists a dominant component scatterer Sn
with overpowering radar cross section Ono i.e., for

O, >0y +0g+ ... + 0, 1+ 0 + ...+ Og (A.1V.10)

n+l

one gets

Xp = X . (A.1IV.11)
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This fact is well known for KN = 2, If a radar applying

"fast"” or "instantaneous" AGC tracks two unequal targets within the

linear regime of its beam width, then the stronger target becomes

Y‘ dominant and pulls the radar axis to its own position. For three
or more unequal targets this fact does not hold true, unfortuuately.

f« Inequality (A.IV.10) indicates how strong one single target has to

{

(|

be in order to pull the radar axis into its own position. |

If one deals with a target that consists of a dominant !
scatterer and a series of minor echo sources, it often seems
desirable to hit the dominznt scatterer. If this is the preferred

{] tactic, then the use of fast AGC appears advantageous.
Muchmore (Ref. [1]) investigated the effects of AGC !

{2 on radar target scintillation. {he author acsumed the following %
conditions:
gi (a) Simplified target model (one-dimensional, uniform
o echo density),
{: (b) Small error angles,
; - (c) No target maneuvers,
M (d) No amplitude noise, no receiver noise, no
IJ Jjamming noise. : ;
EI Under these conditions Muchmore arrived at the conciusion |

| that alow AGC is superior. He showed that very fast AGC may increase
the scintillation noise density by a factor of approximately three.

B

o r—

=
b

Of course, if these conditions are relaxed, a different
situation will arise. In the example given by the present author
above, condition (a) is rescinded. The craft that possesses one-
dimensional, uniform echo density, is replaced by a target that ]
contains a dominant scatterer and minor echo sources. In this §
case, fast AGC is advantageous.

\,,,._.] .

- r—ny
[

References [7], [23] and [24] investigated the effects 1
. of AGC under general conditions where restrictions (a), (b), (c),
[f and (d) are partially or completely relaxed. All three favor

[ .
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fast AGC. Their conclusion is thkat under practical tracking
contitions a fast-acting AGC will give better tracking performance.

However, if one can afford a sophisticated, flexible
system, it might be worth-while to adapt the AGC to the instan-~
taneous situation. For instance, during the terminal flight of
a missile which is homing on a long target, glint might well be
the cdominant noise source. If so, it would pay off to switch the
automatic gain control to a setting with a longer AGC time constant.

- 53 -
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A.V. ADDITIONAL NOTES CONCERNING OUR ANALYSIS

1. Effects of Vibrations

In the derivation of the electrical phase angles 43 of
the individual scatterers (see eq. A.I.2a and A.1.2b) we followed
the analyses of References [5] and [19]. 1In the monostatic case
onr gets:

¢J = -2k{(xj-§) cos © - (yj-ﬂ sin 0] + ® (A.1.2a)

Some authors (see References [1], (21], and [22], modify the
expressions for the individual phase angles slightly, as follows:

43 = u2k[(xj-§) cos O - (yj—§) sin 0] + ay (A.V.1)
where the aJ are statiztically independent random variatles
that follow a uniform distribution:
1
p(aJ) = 5= for 0< ay < 27 (A.V.2)

In the target model by J. J. Freeman (see Ref. [21])
the random phases aj are supposed to account for structural
vibrations and possibly other random phenomena., The same authcr
macde a very diligent study of the :ffects of these random angles
on tracking performance. One of his results is that their effect
on a number of mean statistical output quantities (such as the
effective tai tet center, correlation functions and spectra) is
negligible. This result is gratifying to our studies, inasmuch
as we did not include the important effects of structural ~ibrations
in the preceding analysis. However, it can be easily shown that if .
we had introduced expression (A,V.l) coataining the random phases
aJ in our analysis, instead of equations (A.I.2a) and (A.I.2b),
we would nave wound up with the same results. For instance, in
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the example of Section A.II, taking the derivative of the phase
function and equating it to zero (leading to eq. (A.II.12)) would
ic_“jo)' In the
example of Section A.III, selecting the subset (A.III.4) of terms
and adding would have canceled the terms of random phases

[(aj-ai) - (am-an)] in eq. (A.II1.3),

have eliminated the constani random phases (a

This fact strengthens our argument for the application
of Kelvin's principle and its extensions in our analysis, since
we used an approach to the problem which is quite distinct from
the method of Reference [211. Yet we arrived at the same result
in the case of the effects of vibrations.

2. Remarks Concerning Svectra

‘As explained in Section II, spectra are not included in
our finil results because they are characteristic properties of
stationary processes. We used the concepts of Rice's noise theory,
such as the average count of ZzZero crossings and other instantaneous
statistical quantities which are applicable to locally stationary
processes. Since we only needed the ratio of spectra in the inter-~
mediate results, we could simpiify our analysis by making full use
of assumptions (2) and (3) of Section VI, We idealized the radar
echo signals by assuming:

T Ed m (A.v.3)

where L is the length of the target, N is the number of
scatterers and A is the RF wavelength. As a consequence of
the limiting relation (A.V.3), the spectra of the radar echo
signals vecame wide-banded and flat,similar to the spectra of
"white Gaussian noise processes."

In contrast to our work, References [1], [21] and [22]
computed spectra as part of their final results. Muchmore
(Ref. [1]) a2pplied the conditions enumerated in Appendix A.IV, pg. 52,
and computed for the normalized spectrum of the IF target signal
the following expression:
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1
= for f -f « f < f +°f
'IF(f) - wa o m ~ "0 m

0 otherwise
The normalized video spectrum becomes:

1

£
N )
m

(1 - = for 0 < f <21
Wv(f) = 2L, - B

0 otherwise
The scintillation bandwidth fm is given by:

L
fm =X Q cps .

L 1is the length of a slender,strip-like target which is
positioned at right angles to the line-cf-sight and turns with
a constant rate of (1 radians per sec, fo is the carrier
frequency.

Freeman (Ref. [21]) computed the spectrum of the
angular~error signal under similar conditions except that in
his case the probability is 1/2 that the target turns with a
rositive rate (+Q) and 1/2 that it rotates with a negative
rate (-0). The spectrum in normalized form* becomes:

3]

o [1+ (- 531 for 0_<_f_<_2fm|

We(f) = m m
0 otherwise

Again, the scintillation bandwidth before the filtering action
of the servo, is given by (A.V.6). There is no discrepancy
between these results and the findings of our Section A.III.

*
This result is identical with eq. (21) of Muchmore (Ref. [1]).
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If E§§ tends toward infinity (relationship A,V.J,, a fortiori %
tends toward infinity. Hence the bandwidths fm of the afore-
mentioned spectra due to eq. (A.V.6) grow over all bounds, in
agreement with eq. (A,III.5), computed for N -~ .,

it is interesting to note that the average time rate
of counts ﬁi is simply related to f_ by:

K, ~c¢c - f (A.V.8)

where ¢ is a function of the target configuration, of the
pertinent variables (@, f, t) and of the quantity that is counted.
If the target resembles the model of references [1], [21] and [22]
(one-dimensional, uniform distribution of scatterers), then the
constant ¢ can be readily computed. This job is being carried
out at the present time and will be documented in a separate
report.

3. The Use of a Sguare-Law Detector

The present analysis (see assumption (8) of Section VI)
and most pertiunent References ([1], [67, [21], [22]) use square-
law dectectors in their investigations of radar iarget scintillation.
Since many modern radar receivers apply linear envelope detectors,
it is well to dedicate a few thoughtis to the implications of this
procedure.

The situation can best be summed up by a statement of
M.I. Skolnik (Reference [26], pg. 431) and we quote verbatim:
"In general, the difference between the two (detectors) is small
and the detector law in any analysis is usually chosen for
mathematical convenience." This fact is borne out by the mathe-
matical derivation and graphical description of the continuous
parts of the spectra of the two detector outputs, in Reference [25].
Comparison of Figures 3.13 and 3.14 of this reference indicates
that there is indeed little difference in the shapes of the two
spectra,
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Similar to our discussion regarding the selection of the
AGC (Sec. A.7V), the choice of the tvpe of detector is dictated by
the tactic.l situation and the noise environment. If one can afford
a sophisticated, adaptive system, a more detailed analysis is
warranted. The following remarks are added with this objective
in mind.

Delano (Ref. [6]) made a study for the case where
angular scintillation is dominant. He obtained the following
result: Let 1T be the rms centroid fluctuation about the mean
radar center for a system using a linear envelope detector and 7'
the equivalent quantity for a square-law detector. Then

M \/I .88, (A.V.S)

This improvement of 12% for a square-law detector applies to the
final stages of missile flight where target glint might become
dominant.

What is the situation at the early stages of flight,
say during detection and acquisition? J. I. Marcum (Ref. [3],
Pg. 211) made a study of the optimum detector law. For the
early stages of flight where receiver noise is dominant and the
S/N-ratio is small, he found that a square-law detector closely
approximates the ideal device. 1In contrast, for the cases where
the S/N-ratio is large (say during later stages of tracking) a
linear envelope detector gives ideal performance, This result
agrees with the findings of R. A. Smith (Reference [28]). Let
pIF and pv be the signal-over-noise ratios for the IF-stage
and video-stage respectively, using a linear detector, and let
piF and pé be the equivalent terms for a square-law detector.
Then for large signal-over-noise ratios, i.e., pIF = piF - @®
he finds:

p Pé

—V_2 and V- -;: . (A.V.10)
Pig Pip

- 58 -




THE JOMNE HOPKING UNIVERSITY
APPLIED PHYSICS LABORATORY
Saven Jrauweg MARTLAND

The improvement by a2 factor of 4 in favor of the linear
detector is not as significant as it appears, because for noise-
less signals, the type of detector becomes irrelevant.

4 However, in a practical problem, the specific ncise
environment should be carefully scrutinized and the system
designed accordingly.

PRERTE

4. Remarks Concerning the Counting of Lobes

The mean count of lobes or the average rate of niulls

was defined in Section A.II for a Gaussian, locally stationary,
unbiased process by the average number of zero crossings with
positive slope per unit of the independent parameter and given by
Rize's formula (A,III.6). If the process is biased such as the
uni=polar video signal of the target echo, the formula can still
be used but must be applied to the unbiased process which is
formed by subtracting the mean value from the biased process.
(See Figure 3).

Howvever in some cases (see Figure 4), eq.(A.III.6) will
no>t give the count of lobes or nulls properly. If one is interested
in the number of lobes or nulls in a strict sense, then one should

has to be replaced by another formula of Rice (cf. eq. (3.6-6) of

|
E oount the maxima or minima of the process z(q). Eq. (A.III.6)
|
E Ref. [10]). One gets for the average number of maxima per unit

of parameter q (say 1 sec or 1 rad or 1 Hertz) the term ﬁé(z;Q):

| _ . pz(4)(¢;q) 1/2 4
M, (2;0) = 5o —— (A.V.11)

21 .o ]
L-pz(T,q) T-O

For specific targets (A.V.11) will lead to expressions similar in
appearance as eqs. (10) to (12) of Section VII. However the
mathematical and numerical computations will be slightly more
complicated.
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Figure 3.

Mean Valuve of z

— o m— e e —

N|
]
|
|
|

fod ey o — -

0 Parameter

Mean Number of Zero-Crossings per Unit of Parameter q of
Unbiased Process 4z = z - Z, Here N _(Az;q) = 10 (zeroes
with positive slope). 1

Figure 4.

Mean Value of z

N|

L G (e
(=}

0 Parameter

Mean Number of Maxima (Lobes) per Unit of q of Unbiased
Process Az = z - Z. Here N _ (Az;q) = 6 (zeros with positive
slope) Mq(Az;q) = 11 (Maxima%or Minima).

- 60 -




THE JONNE HUPKING UINYERSITY
APPLIED PHYSICS LABORATORY
Save: Brtug. MaNTLAND

If the theory is applied tc slender (one-dimensional)
targets consisting of many, independent scatterers following a
random, uniform dictribution, eqg. (A.V.1ll) yields a quartity ﬂa
which is roughly 50% greater than the quantity ﬁé computed bv
eq. (10) of section VII

On the other hand, the latter result was based on a flat
video-spectrum or a Dirac delta-function correlaticn (see eq. (A.III.5)
of Appendix A-III). References [1], [21], and [22] showed that the
video spectrum can be taken to be triangular (cf. eq. (A.V.5)). 1In
many cases it is tapering off even more sharply. If our results
are adjusted for this effect, one has to reduce Eﬁ by roughly
33%.

Combining these two adjustments for slender targets with
many independent, uniformly distributed scatterers one obtains the
following result: Eq. (10) of section VII yields an ﬁﬁ which in
practice yields the count of maxima (lobes). This fact is born
out by experimental measurements. Details of analytical, numerical
and experimental results will be documented in future reports.

- 61 -




UNCLASSIFIED

Secunty Classification

DOCUMENT CONTYROL DATA-RA&D

“Security clvasifaication of fitle, Sod; of abstract and indexing annotation must ve etitered vhen the uverall r=port is clossilied)

-!-.O_Ii"c.w,t TinG ACTYiviTY (Corporate author) Vs REFPORT SLCURITY CLASSIFICATION
The Johns Hopkins Univ, Applied Physice Lab, Uaclassified
8621 Georgia Avenue 26, GROUP
Silver Spring, Md.

3 REFPORT TITLE

Statistical Analysis of Radar Target Scintillation

4 OCESCRIPTIVE NOTES (Type of report and inclusive datesj

Technical Memorandum

S AUTHORS) (First name, wriddle initial, last name)

E. Shotland
¢ REPORY DATE 7a. TOTAL NO. OF PAGES 5. NO. OF REFS
December 1967 61 28
8. CONTRACYTY O GRANT NC. Se. ORIGINATOR'S fEPORTY NUMBERI(S)
NOw 62-0604-c
b. PROJLCT NG. TG-955
<. Task Assignment Z1i2 8b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)
d.

'0- PISTRIBUTION STATEMENTThis document is subject to special export controls and each

transmirttal to foreign governments or foreign nationals may be made only with
prior approval of Advanced Research Projects Agency.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

3. ABSTR\C'-’

For slender, axially symmetrical targets that are much longer than the
RF wavelength, radar scintillation is analyzed and described in terms of
statistical parameters. The following sets of quantities were derived and
computed:

(a) mean rzdar cross sections, their RMS fluctuations and average lobing
frequencies,

(b) mean target centroids, their RMS deviations and average meandering
rates
These and other variables were expressed as functions of the aspect angle,
radio frequency and of configurational details.

A

UNCLASSIFIE

Security Classification

DD "2V.1473




e

UNCLASSIFIED

Security Classification

14. =3
KEY WORDS

Radar target ecintillation

Slender symmetrical targets

Mean, maximum and RMS radar cross sections

Average lobing frequencies

Instantanecus and mean target centroids

Average meandering rates of centroids

Peculiar processes

Locally siationary process

Extension of Kelvin's principle of stationary phase
i
i
I

UNCILASSIFIED I

Security Classification

] AN Dl . oD, R SR P R




