<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD827184</td>
</tr>
</tbody>
</table>

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution: Further dissemination only as directed by Army Materiel Command, Washington, DC 20315, NOV 1967, or higher DoD authority.

AUTHORITY

USAASTA ltr 12 Nov 1973
ENGINEERING FLIGHT TEST OF THE UH-1C HELICOPTER
EQUIPPED WITH THE XM-30 WEAPON SYSTEM

ARMY PRELIMINARY EVALUATION

FINAL REPORT

KENNETH R. FERRELL
PROJECT ENGINEER

DANIEL C. DUGAN
MAJOR, U. S. ARMY, TC
PROJECT OFFICER

and

RONALD S. HOLASEK
MAJOR, U. S. ARMY, CE
PROJECT PILOT

NOVEMBER 1967

U. S. ARMY AVIATION TEST ACTIVITY
EDWARDS AIR FORCE BASE, CALIFORNIA 93523
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
DDC Availability Notice

U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through the Commanding General, Hq, U. S. Army Materiel Command (USAMC), ATTN: AMCPM-AI, Washington, D. C. 20315.

Reproduction Limitations

Reproduction of this document in whole or in part is prohibited except with permission obtained through the Commanding General, Hq, USAMC, ATTN: AMCPM-AI, Washington, D. C. 20315. DDC is authorized to reproduce the document for United States Government purposes.

Disposition Instructions

Destroy this report when it is no longer needed. Do not return it to the originator.

Trade Names

The use of trade names in this report does not constitute an official endorsement or approval of the use of the commercial hardware and software.

Distribution

This document may be further distributed by any holder only with specific prior approval obtained through the Commanding General, Hq, USAMC, ATTN: AMCPM-AI, Washington, D. C. 20315.
STATEMENT #6 UNCLASSIFIED

This document is not to be further distributed by any means without specific prior approval of C.G. Army Materials Command.

KENNETH R. FERRELL
PROJECT ENGINEER

DANIEL C. DUGAN
MAJOR, U.S. ARMY, TC
PROJECT OFFICER

and

RONALD S. HOLASEK
MAJOR, U.S. ARMY, CE
PROJECT PILOT

NOVEMBER 1967

U.S. ARMY AVIATION TEST ACTIVITY
EDWARDS AIR FORCE BASE, CALIFORNIA 93523
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>FOREWORD</td>
<td>vi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>TEST OBJECTIVES</td>
<td>1</td>
</tr>
<tr>
<td>DESCRIPTION OF AIRCRAFT AND WEAPON SYSTEM</td>
<td>2</td>
</tr>
<tr>
<td>SCOPE OF TESTS</td>
<td>3</td>
</tr>
<tr>
<td>METHODS OF TEST</td>
<td>3</td>
</tr>
<tr>
<td>CHRONOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>GENERAL</td>
<td>5</td>
</tr>
<tr>
<td>AIRSPEED CALIBRATION</td>
<td>5</td>
</tr>
<tr>
<td>WEIGHT AND BALANCE</td>
<td>5</td>
</tr>
<tr>
<td>PERFORMANCE</td>
<td>6</td>
</tr>
<tr>
<td>Level Flight Performance</td>
<td>6</td>
</tr>
<tr>
<td>STABILITY AND CONTROL</td>
<td>8</td>
</tr>
<tr>
<td>Static Trim Stability</td>
<td>8</td>
</tr>
<tr>
<td>Static Longitudinal Collective Fixed Stability</td>
<td>8</td>
</tr>
<tr>
<td>Static Lateral - Directional Stability</td>
<td>9</td>
</tr>
<tr>
<td>Dynamic Stability</td>
<td>9</td>
</tr>
<tr>
<td>Controllability</td>
<td>10</td>
</tr>
<tr>
<td>FIRING</td>
<td>10</td>
</tr>
<tr>
<td>VIBRATION, BLAST, AND NOISE</td>
<td>13</td>
</tr>
<tr>
<td>WEAPON SYSTEM MALFUNCTIONS AND LIMITATIONS</td>
<td>14</td>
</tr>
<tr>
<td>STRESS</td>
<td>16</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>18</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>20</td>
</tr>
<tr>
<td>APPENDIXES</td>
<td></td>
</tr>
<tr>
<td>I. TEST DATA</td>
<td>21</td>
</tr>
<tr>
<td>II. REFERENCES</td>
<td>75</td>
</tr>
<tr>
<td>III. DESCRIPTION OF WEAPON SYSTEM.</td>
<td>76</td>
</tr>
<tr>
<td>IV. TEST INSTRUMENTATION</td>
<td>79</td>
</tr>
<tr>
<td>V. PILOT OPINION RATING INDEX</td>
<td>84</td>
</tr>
<tr>
<td>VI. DISTRIBUTION LIST</td>
<td>85</td>
</tr>
</tbody>
</table>
ABSTRACT

The Army Preliminary Evaluation of the UH-1C/XH-50 weapon system was conducted by the U. S. Army Aviation Test Activity at Edwards Air Force Base and Fort Irwin, California from 11 July 1967 through 26 July 1967. The degradation in level flight performance attributed to the weapon installation was defined and no objectionable flying qualities were encountered during firing or non-firing tests. The armed mission capability of the helicopter was degraded by high levels of stress, vibration, blast, and noise during firing and restrictive limitations were imposed by gun malfunctions and system gross weight. The reliability of the weapon system was poor and should be improved prior to further Army testing.
FOREWORD

The U. S. Army Aviation Materiel Command assigned responsibility for preparing the test plan, conducting the test, and submitting the final report to the U. S. Army Aviation Test Activity. Bell Helicopter Company provided helicopter and instrumentation maintenance and limited data reduction assistance. Weapon system maintenance was performed by the Aeronutronic Division of Philco-Ford and the Missile and Armament Department of General Electric.
INTRODUCTION

BACKGROUND

1. Contractor firing and non-firing flight tests of the UH-1C/XM-30 were conducted at the Bell facility at Ft. Worth, Texas and at Ft Hood, Texas, during the period 12 September 1966 through 11 November 1966. After modifications indicated by test results were incorporated, non-firing tests resumed in May 1967 culminating in the move to Edwards AFB, California on 9 June 1967 for the contractor firing phase (reference b) and the Army Preliminary Evaluation (APE). Testing on reliability, accuracy, and ballistics has been in progress at the General Electric facility at Burlington, Vermont, since February 1967. The Engineering/Service Test (ET/ST), scheduled to commence in July 1967, was postponed until June 1968 pending further weapon system and ammunition development.

2. Authority for the U. S. Army Aviation Test Activity (USAAVNTA) participation in the test program was provided by the test directive issued by the U. S. Army Aviation Materiel Command (USAAVCOM) on 6 June 1967 (reference a). It provided for monitorship of the contractor's firing test program and for the conduct of the APE.

TEST OBJECTIVES

3. The objective of the APE was to furnish the procuring activity (USAAVCOM) with preliminary results derived from the USAAVNTA participation in the Airworthiness Qualification Program of the UH-1C/XM-30 prior to the conduct of the ET/ST. Specific objectives were:

 a. To provide quantitative flight test data to serve as a basis for an estimate of the degree to which the helicopter is suitable for its intended mission.

 b. To assist in determining if the contractor's proposed flight envelope should be used by Army pilots for future service, logistical, or operational tests.

 c. To define any total weapon system deficiencies to allow early correction.

 d. To provide a basis for evaluation of changes incorporated to correct helicopter deficiencies.

 e. To provide preliminary helicopter performance data for service testing.
4. A production UH-1C helicopter, serial number 64-14102, was utilized to conduct the firing and non-firing tests. The following nonstandard modifications were incorporated in the test helicopter for the XM-30 installation:

 a. Redesigned aft doors and windows to replace the standard sliding doors of UH-1 series helicopters.
 b. Reinforced plexiglass in the pilot's and copilot's doors.
 c. Reinforced leading edge of synchronized elevator.
 d. Blast deflector strip installation along the outside, aft frame of the pilot's and copilot's doors.

Additional information on the helicopter may be found in the Operator's Manual (reference d) and Bell Report No. 204-100-147 (reference f).
5. The 30 mm automatic (XM-140) guns were mounted in electrically operated turrets on each side of the helicopter (photo 1). A design capability for 8 degrees elevation, 45 degrees depression, and 60 degrees outboard azimuth was intended; however, limitations on these turret displacements are discussed in paragraphs 39 and 43. The 30 mm gun was designed to fire 425 shots per minute (spm) and ammunition box storage of 600 rounds per gun is provided. Additional details are found in appendix III.

SCOPE OF TESTS

6. The UH-1C/XM-30 was evaluated in order to acquire limited performance data and to assess the flying qualities of the helicopter in both the firing and non-firing modes. The flight envelope and operating limitations remained similar to the armed UH-1C helicopter with the exception of the aft center of gravity (C.G.) limit which was moved one inch forward (references c and d). The tests conducted and limits of the test are found in the test plan (reference p).

7. Testing was conducted at Edwards AFB and Ft Irwin, California, from 11 July 1967 through 26 July 1967. Thirty seven test flights were conducted with a total of 20.1 data flight hours accumulated (31.7 flying hours in the program). A total of 850 rounds of 30 mm inert ammunition was expended during the 6 days on the firing range.

8. The performance and flying qualities of the UH-1C/XM-30, where applicable, were compared to the unarmed UH-1C (reference e) and to the data acquired during previous contractor testing (reference f). Pilot Opinion Rating (POR) was used to augment qualitative comments where appropriate. An index to these ratings is listed in appendix V.

METHODS OF TEST

9. Standard USAVNTA test methods were utilized to acquire data for analysis and evaluation in order to determine the effect of the XM-30 installation on performance and flying qualities of the UH-1C helicopter. With the exception of engine output shaft torque, performance instrumentation was limited to calibrated instruments installed in the cockpit. A detailed list and description of the test instrumentation is found in appendix IV and the contractor's flight test specification (reference h).
CHRONOLOGY

10. The chronology of the test was as follows:
 b. Test Directive Revision 23 June 1967
 c. Contractor's Test Completed 10 July 1967
 d. First Flight, Army Preliminary Evaluation 11 July 1967
 e. Last Flight, Army Preliminary Evaluation 26 July 1967
RESULTS AND DISCUSSION

GENERAL

11. Within the limited scope of the APE, the installation of the XM-30 weapon system on the UH-1C helicopter significantly increased level flight power required and decreased level flight airspeed capability. Although control position requirements changed and helicopter sensitivity and response were altered, the flying qualities of the UH-1C/XM-30 were not objectionable to the pilot in either the firing or non-firing modes.

AIRSPEED CALIBRATION

12. A production airspeed system calibration was conducted to validate contractor data from previous tests. The calibration was performed in level flight and a ground speed course was utilized. The test conditions and results are presented in figure 1, appendix I.

13. The position error was found to be the same as that determined from previous data and varied from 0 knots (kt) at 50 knots indicated airspeed (KIAS) to a maximum of +4 kt at 120 KIAS. The error was the same for the operational range of rotor speeds and was not influenced by ground proximity or open cockpit windows. The calibration did not include determination of any variation with gun position or aircraft gross weight. The correlation with the contractor's level flight calibration was considered sufficient justification to accept the previous results determined in climb and autorotation. The level flight position error was also in close agreement with the unarmed UH-1C errors listed in the Operator's Manual (reference 4).

WEIGHT AND BALANCE

14. Upon completion of contractor testing, a USAAVNTA weight and balance was performed to verify gross weight (G.W.) and C.G. calculation prior to the APE. The results indicated that the helicopter was 96 lb heavier and the C.G. was 0.8 in. farther forward than previously calculated for the basic test weight without fuel, ballast, ammunition or crew. The USAAVNTA results were used for all loadings during the APE.

15. Based on contractor weight and balance figures of 19 April 1966, the UH-1C/XM-30 mission G.W. was 9736 lb including full fuel, 1200 rounds of ammunition, a crew of 2, and 166 lb of supplemental combat equipment. Without considering power limitations, 236 lb of fuel or ammunition must be off-loaded to lower the G.W. to the maximum allowable weight of 9500 lb. For operations in Southeast Asia, 1/2
the full ammunition load (at 1.08 lb per round) and 1/2 to 3/4 the full fuel load would be more realistic as indicated in table 1 (calculations based on UH-1C Phase II date, reference e).

Table 1. Hover Limitations.

<table>
<thead>
<tr>
<th>Pressure Altitude</th>
<th>Temperature</th>
<th>Skid Height</th>
<th>Maximum G.W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. L.</td>
<td>95</td>
<td>2</td>
<td>8850</td>
</tr>
<tr>
<td>2550</td>
<td>95</td>
<td>2</td>
<td>8400</td>
</tr>
</tbody>
</table>

The resulting loss of range and endurance coupled with a 50 percent reduction in firing time per gun (reduced to 45 sec at 400 shots per minute) would seriously degrade the armed mission capability of the helicopter.

PERFORMANCE

Level Flight Performance

16. The aircraft configuration and the existing ambient conditions severely limited the scope of the tests. Testing was conducted at gross weights of 8000 and 8800 pounds, density altitudes (Hg) of 5000 and 10,000 feet, and rotor speeds of 324 and 314 rpm. Since a calibrated engine was not installed, the drag contribution of the XM-30 system was determined by conducting power required tests at similar conditions for both the clean (unarmed) and armed configurations. Gun positions were also varied to determine changes in drag characteristics. The test results are presented in figures 2 through 13, appendix I.

17. The range summary data presented in figures 4 and 5 were calculated from the test power required data and the engine model specification fuel flow data in figure 16. The XM-30 installation decreased the specific range 15 percent at best cruise speed, a gross weight of 8500 pounds, and 5000 ft altitude (standard day). The airspeed for the best range was decreased 15 knots true airspeed (KTAS).

18. Maximum airspeed was limited by power available for all conditions tested and the speed capability at normal rated power is presented in figure 6. The 5000 ft, standard day results were 93 KTAS and 101 KTAS for 9500 and 8500 pounds respectively. This represented an average reduction of 17 kt compared to the clean configuration.
19. Power required test results are presented in figures 7 through 13. The armed configuration data generally agreed with results from previous contractor tests although the curve characteristics were somewhat different. There was a tendency to indicate higher power required at airspeeds above 90 kt and the opposite trend was apparent at lower airspeeds. The clean configuration data from previous contractor tests and previous and current ILSA/AVTA tests indicated a variation of 25 shaft horsepower (shp). There was no particular pattern evident in the variations.

20. The XM-30 installation resulted in a significant increase in power required and decrease in airspeed. The increased drag became more pronounced at higher airspeeds and thrust coefficients (C_T). Two comparisons between the performance of the clean and armed configurations for similar gross weights, 5000 ft H, and 324 rotor rpm are presented in Table 2.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>G.W. (lb)</th>
<th>$C_T \times 10^4$</th>
<th>C.G. Station</th>
<th>Power Required at 100 KTAS (shp)</th>
<th>Maximum Airspeed Capability * (KTAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unarmed</td>
<td>8870</td>
<td>51.11</td>
<td>130.5</td>
<td>677</td>
<td>127</td>
</tr>
<tr>
<td>Armed</td>
<td>8760</td>
<td>50.50</td>
<td>130.6</td>
<td>828</td>
<td>106</td>
</tr>
<tr>
<td>Unarmed</td>
<td>8050</td>
<td>47.42</td>
<td>130.5</td>
<td>657</td>
<td>127</td>
</tr>
<tr>
<td>Armed</td>
<td>7980</td>
<td>46.00</td>
<td>130.1</td>
<td>795</td>
<td>110</td>
</tr>
</tbody>
</table>

* Based on take off power available, 5000 ft, standard day.

The XM-30 installation did not significantly reduce the maximum endurance of the helicopter (less than 5 percent).

21. The basic level flight performance was conducted with the guns in the stowed position and at a mid C.G. location. The effects of gun position and C.G. variation are illustrated in figure 13. The power required increased as the guns were depressed and decreased with gun elevation. The forward C.G. condition was more sensitive to gun depression while the effects were similar for both depression and elevation at an aft C.G. A maximum airspeed loss of 16 kt occurred at the forward C.G. condition when the guns were lowered from...
7.5 degrees up to 42.5 degrees down. Deflecting the guns from zero to 60 degrees left azimuth at 0 degrees elevation resulted in an 8 kt airspeed loss. The airspeed changes with gun position should become larger at increased trim airspeeds.

STABILITY AND CONTROL

Static Trim Stability

22. The level flight static trim data were recorded during the power required tests. All controls were in the positions required to trim the helicopter in stabilized level flight and the results are presented in figures 17 through 21. The control requirements while hovering in winds were simulated by sideward and rearward flight utilizing a calibrated ground vehicle for pace. The surface wind averaged 4 kt and there were no significant external disturbances to the aircraft. This data is shown in figures 22 and 23. Control position changes with turret movements are presented in figure 24.

23. The XM-30 installation reduced the forward stick requirements by 5 percent (0.65 in) at a rotor speed of 324 rpm and a G.W. of 8000 pounds. The magnitude of the stick position change was slightly less with increased G.W. The trend exhibited was for a decreasing control position differential with higher airspeeds.

24. For the armed configuration, the longitudinal stick position moved aft 5 percent at an airspeed of 80 knots calibrated airspeed (KCAS) as altitude was increased from 5000 to 10,000 ft. A similar stick position change was introduced by reducing rotor speed from 324 to 314 rpm. Control required characteristics were not appreciably different from those recorded with an unarmed NH-1C helicopter (reference e) and more than 10 percent control margin was available at translational speeds of 35 kt sideward and rearward ((POR) 3.0).

Static Longitudinal Collective Fixed Stability

25. The static longitudinal stability tests were conducted at different trim airspeeds, rotor speeds of 324 and 314 rpm, turrets in the stowed position, and a density altitude near 5000 feet. Center of gravity locations were from stations 128.8 to 134.0. Limited tests were conducted to evaluate stability changes as a result of rotor speed variations. Test results are presented in figures 25 through 31, appendix I.

26. With the XM-30 installed, static longitudinal stability about the trim point was positive (forward stick required to increase airspeed) for all conditions tested. There were no significant discontinuities in the longitudinal stick motion and there were no ab-
normal lateral or directional control requirements. The stability became less positive as the center of gravity location was moved aft. A slight increase in forward longitudinal stick required was noted with reduction in rotor rpm from 324 to 314; however, the degree of static longitudinal stability remained essentially the same.

Static lateral-directional stability characteristics with the armament system installed were similar to those previously reported for an unarmed UH-1C (reference e).

Static Lateral - Directional Stability

27. The static lateral-directional stability test was limited to one test condition. The test data was obtained using ship service instrumentation and visual references. The results are presented in figure 32, appendix I.

28. Static directional stability was positive (left pedal required for right sideslip) for airspeeds of 55 and 90 KCAS and became more positive at the higher speed. The static directional stability of the UH-1C was relatively unchanged by the XM-30 installation and compared favorably to similar test conditions of reference e.

29. The effective dihedral, as indicated by lateral stick position with sideslip angle, was positive for sideslip angles $\pm 10^\circ$ from trim for both airspeeds. At larger sideslip angles there was a gradient reversal and the trend was for the effective dihedral to become neutral or slightly negative. This characteristic was more pronounced at the higher airspeed. The bank angle was in the proper direction and the increase was essentially linear with airspeed. The effective dihedral characteristics of the basic UH-1C helicopter were not adversely influenced by the XM-30 installation and there was no significant difference when compared to similar test conditions of reference e.

Dynamic Stability

30. The short period airframe response of the UH-1C/XM-30 to control pulse inputs was evaluated in the pitch, roll, and yaw axes. Time histories of response are presented in figures 33 through 35, appendix I, for a level flight trim speed of 91 KCAS, average G.W. of 8410 lb, aft C.G. location, and a density altitude of 5530 ft.

31. Pulse inputs were induced manually by the pilot without the use of control fixtures; however, the results indicate similar damping characteristics to those of the unarmed UH-1C with one exception. A longitudinal or directional pulse resulted in a lightly damped, long period, pitching oscillation. This oscillation was easily damped by small longitudinal control inputs and was not objectionable.
Controllability

32. The longitudinal control sensitivity (deg/sec²) and response (deg/sec) were essentially the same as that of an unarmed UH-1C helicopter. As indicated by the dynamic stability results, the reduced damping resulted in a higher pitch rate and a greater attitude change per unit control displacement. These results are presented in figures 36 and 37.

33. The increased rolling moment of inertia reduced the lateral control power and resulted in a small reduction in control sensitivity. The maximum roll rates and the attitude reached at one second were also less than for an unarmed aircraft. Test results are presented in figures 38 and 39.

34. The most significant change in controllability was in the reduction in yaw acceleration and rate. The reduction with small pedal inputs was as much as 50 percent and 35 percent for sensitivity and response respectively and increased with the magnitude of pedal displacement. These characteristics are illustrated in figures 40 and 41.

Firing

35. The limited firing tests were conducted to determine the effects of firing the 30 mm guns on the stability and control characteristics of the UH-1C helicopter. No safety-of-flight limitations were encountered from the handling qualities aspect; however, unacceptable conditions are discussed under vibration, blast, and noise and gun malfunctions (paragraphs 39 and 45 respectively). The maneuvers performed and test conditions flown are presented in table 3.
Table 3. N-50 Firing Conditions. (Note 1)

<table>
<thead>
<tr>
<th>Flight Condition</th>
<th>Airspeed KCAS</th>
<th>Turret (Note 2) Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hover in ground effect (IGE)</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Hover IGE</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Hover IGE</td>
<td>0</td>
<td>7 (Note 3)</td>
</tr>
<tr>
<td>Right Sideward Flight</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>Rearward Flight</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>Level Flight at Power Limit Airspeed (V_L)</td>
<td>94</td>
<td>7</td>
</tr>
<tr>
<td>Pedal Spray at .9 V_L</td>
<td>86</td>
<td>7</td>
</tr>
<tr>
<td>Dive at "Never Exceed" Airspeed (V_{NE})</td>
<td>131</td>
<td>7</td>
</tr>
<tr>
<td>Symmetrical pull up at V_{NE}</td>
<td>128</td>
<td>2-7-5 (Note 4)</td>
</tr>
<tr>
<td>Right rolling pull up at V_{NE}</td>
<td>126</td>
<td>7-6 (Note 4)</td>
</tr>
<tr>
<td>Left rolling pull up at V_{NE}</td>
<td>124</td>
<td>7-4 (Note 4)</td>
</tr>
<tr>
<td>Throttle chop at V_{NE}</td>
<td>126</td>
<td>5</td>
</tr>
</tbody>
</table>

NOTES TO TABLE 3. PRESENTED ON PAGE 12
Note 1: All firing runs were flown at 324 rotor rpm, average C.G. location at 128 in, gross weight ranging from 7800 lb to 8400 lb., and density altitudes \((H_a) \) from 4400 ft to 7500 ft.

Note 2: Turret positions are indicated by the following diagram:

<table>
<thead>
<tr>
<th>Up, Left</th>
<th>Up</th>
<th>3</th>
<th>Up, Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>Down, Right</td>
</tr>
<tr>
<td>Down, Left</td>
<td>7 (Stow)</td>
<td>5</td>
<td>Down</td>
</tr>
</tbody>
</table>

Both guns fire only in positions 2, 7, and 5.

Note 3: Right gun firing only; left gun turned off.

Note 4: Guns moving transiently.

36. During the firing, the most significant attitude changes occurred at a hover. A slight nose down pitch resulted from firing both guns elevated and asymmetric firing resulted in yaw in the direction of the firing gun (POR 3.0). These attitude changes were easily corrected by small control inputs. Recoil forces were sufficient to move the helicopter rearward while firing at a hover and noticeably slowed the helicopter by an estimated 5 kt in level and diving flight.

37. Time histories of 7 firing sequences are presented in figures 42 through 48. Figures 42 - 44 illustrate the nose down pitching reaction of the hovering helicopter and the control inputs made to avoid projectile ground impact close to the nose of the helicopter. A right yaw rate of an estimated 15 deg/sec was generated by firing the right gun only while hovering. In right sideward flight (figure 45), yaw rate as a result of firing the right gun reached only 9 deg/sec. Rearward and diving flight produced no adverse helicopter response. Intermittent weapon operation is seen during a throttle chop illustrated in figure 48 and is discussed in paragraph 42. Inadvertent, oscillatory cyclic stick inputs in response to vibration, especially in the roll axis, can be seen on the control position traces. Adequate control margins remained during firing to correct attitude changes.

38. No evidence of strikes on the helicopter by links or casings was noted during the APE or previous contractor firing at Edwards AFB, California.

12
VIBRATION, BLAST, AND NOISE

39. Vibration levels encountered during firing were high as a result of recoil and blast from single or dual weapon operation (POR 5.0). When firing using the sight at the copilot's station, vibration imparted to the sight from the helicopter airframe and the gunner's grip rendered the XM-30 armament system ineffective for engagement of point targets. Isolation of the sight from airframe vibrations will still leave the gunner "in the loop" and degrade the point target capability of the system. Other discrepancies noted during firing were as follows:

 a. Pilot's and copilot's doors blown open when firing in or in proximity to the stowed gun position. The installed blast deflector along the aft edge of the door frames proved ineffective. Without additional restraint, the probability of hits and/or loss of doors is high (POR 8.0). The bungee cord restraint fabricated for contractor and USAAVNTA testing is illustrated in photo 2.

Photo 2 - Door Restraint Secured with Bungee Cord
b. Noise levels of a magnitude sufficient to cause permanent impairment to hearing without the attenuation afforded by the protective helmet, earplugs, and closed windows and doors or a combination thereof. Peak noise levels as high as 165 decibels were recorded by the contractor during previous testing (reference f).

c. Inadvertent turret limit switch contact and resulting gun stoppage caused by vibration when operating within 3.0 to 7.5 degrees of indicated elevation and depression limits respectively.

d. Excessive vibration of the instrument panel resulting in double vision and inability by the pilot or copilot to read instruments (POR 6.0). These levels were previously reported as high as 4.6 to 5.4 g (references f and i).

e. Small cyclic stick oscillations induced by the pilot in response to vibration.

Vibration data acquired during the contractor firing tests conducted at Edwards AFB, California will be published in the report covering that phase of testing.

40. The noise levels and blast pressures encountered during firing (with the protective helmet worn) were not as severe as those experienced by armor, artillery, or other combat units firing large bore weapons; however, the effects of continued exposure to the rapid, sustained fire of the 30 mm gun are unknown.

WEAPON SYSTEM MALFUNCTIONS AND LIMITATIONS

41. It is recognized that the XM-30 armament system is in the development phase and that the XM-140 automatic gun used during the APE was not the most current configuration. Notwithstanding, the demonstrated performance and reliability of the weapon system during the contractor and USAAVKTA testing was poor and unacceptable for its intended mission.

42. Of the 27 APE flights flown on the firing range, 16 flights (59 percent) were aborted because of weapon system malfunctions. It was difficult to achieve a firing burst of sufficient length to record the helicopter response to recoil forces. At times, only 25 linked rounds were loaded in an attempt to alleviate the problem. This problem was compounded by increased incidence of jamming attributed to "g" loads imposed by helicopter maneuvers. Positive "g" could be compensated for by sear adjustment and resulting increased recoil forces; however, negative "g", as encountered during throttle chops.
or autorotation entries, caused gun stoppage and jamming. Most of the malfunctions occurring during the test program required partial gun disassembly to clear the weapon. Extensive damage was frequently sustained by live ammunition and a typical result is illustrated in photo 3. As reported in the letter of contractor compliance (reference b), the hazards of using HE ammunition are obvious.

Photo 3 - Damaged Live 30mm Round

43. Traverse or elevation of the turrets to the limits of travel prevented the guns from firing. As mentioned in paragraph 39, vibration during firing with the turrets positioned in proximity to limits, resulted in limit switch contact and gun stoppage. Provision should be made to allow the guns to fire at the design limits. Instrumentation indicated that the limits reached were 7.5 degrees elevation, 42.5 degrees depression, and 55 degrees outboard azimuth which were less than design travel. Another deficiency of the fire control system noted during the test was the failure of the copilot's cyclic trigger to fire the guns. The pilot's cyclic trigger and the copilot's sight grip trigger functioned properly.

44. In addition to the limitations on the sighting system imposed by high vibration levels (paragraph 39), interference with line of sight by the helicopter structure renders the sighting system ineffective for point or small area targets located at large angles of depression and right azimuth.
45. As previously reported by the contractor (references f and i), the gun barrels extend below the helicopter skids when the turrets are fully depressed (photo 4). In event of an electrical system power failure in this position, a safety hazard exists which could result in serious damage to the weapon installation and the helicopter. An autorotational landing would compound the hazard. The capability of elevating the turrets after power failure should be provided.

Photo 4
XM-30 Turrets
At Maximum Depression

STRESS

46. Component load levels were monitored by the contractor during contractor and the USAAVNTA testing at Edwards AFB. Based on data acquired during previous firing tests, the following components/parameters were considered critical:

a. Upper Turret braces
b. Longitudinal Turret Braces (Short)
c. Forward Hard Points
d. Elevator Beam Bending
e. Collective Boost Tube
f. Main Rotor Mast Resultant Bending

g. Tail Rotor Blade Beam Bending

h. Tail Boom Longeron Crown Stress

47. A sampling of data acquired during the APE is plotted with con-tractor data from testing at Ft Hood, Texas (reference f) for five of the components listed above. USAVNTA data points were recorded during firing at Ft Irwin, California; however, they were not all re-corded during a qualified test point firing. The loads presented in figures 49 through 53 were chosen to plot with contractor data and do not, in all cases, represent the highest loads encountered. The results indicated loads consistently higher than earlier contractor data although more in line with recent contractor results (to be published). The highest loads recorded during the APE along with the allowable limits for unrestricted component life are presented in table 4.

As a result of the maximum loads attained and the numerous excursions above the contractor recommended allowable loads, component life must be calculated and component replacement scheduled based on a com-pre-hensive stress analysis.

Table 4. Stress Results.

<table>
<thead>
<tr>
<th>Component/Parameter</th>
<th>Allowable Load</th>
<th>Maximum Load Recorded</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tail Boom Longeron Crown Stress</td>
<td>20,000 psi (peak)</td>
<td>15,830 psi</td>
<td>-20.8%</td>
</tr>
<tr>
<td>Tail Rotor Blade Chord Bending at Sta 11.0</td>
<td>+1250 in. lb. (normal)</td>
<td>+4720 in. lb.</td>
<td>+278.0%</td>
</tr>
<tr>
<td>Tail Rotor Blade Beam Bending at Sta 11.0</td>
<td>+1800 in. lb. (limit)</td>
<td>+2850 in. lb.</td>
<td>+58.4%</td>
</tr>
<tr>
<td>Left Turret Brace (Short) Axial Force</td>
<td>+1300 lb. (limit)</td>
<td>-2115 lb.</td>
<td>+62.7%</td>
</tr>
<tr>
<td>Right Turret Brace (Short) Axial Force</td>
<td>+1300 lb. (limit)</td>
<td>-3066 lb.</td>
<td>+136.0%</td>
</tr>
</tbody>
</table>
Upon completion of the APE, a visual component inspection as specified in the safety of flight release (reference c) was performed and no discrepancies were noted. During the course of a subsequent periodic inspection, 1/2 in. cracks were found on an angle and on a flange on bulkheads located at stations 43 and 52 respectively (under the copilot's floor). The cause of these cracks was undetermined.

Conclusions

The following conclusions were reached upon completion of the limited non-firing and firing tests of the UH-1C/XM-30 weapon system:

a. Anticipated degradation of UH-1C level flight performance due to XM-30 installation drag was defined during limited non-firing tests (paragraphs 16 through 21).

b. No objectionable flight characteristics were encountered as a result of the XM-30 installation on the UH-1C helicopter in the firing or non-firing modes (paragraphs 22 through 37).

c. When firing both guns from a hover, a slight nose down pitch occurred which was easily corrected by small longitudinal control inputs. Asymmetric firing produced yaw in the direction of the firing gun (paragraphs 36 and 37).

d. Stress levels on critical components were consistently high and frequently exceeded contractor recommended allowable limits (paragraphs 46 and 47).

e. Pilot's and copilot's doors were blown open when firing the guns near zero elevation and traverse (paragraph 39).

f. Gun malfunctions frequently subjected live ammunition to damage, the nature of which indicated the inadvisability of using FF ammunition (paragraph 42).
g. At full limits of depression, the guns extend below the level of the helicopter skids and would remain there in event of an electrical system power failure (paragraph 45).

h. The reliability of the XM-140 automatic gun system was poor and unacceptable for its intended mission (paragraph 42).

i. Noise levels during firing are of a magnitude sufficient to cause permanent impairment to hearing without proper attenuation (paragraphs 39 and 40).

j. The G.W. of the UH-1C/XM-30 weapon system and resulting performance limitations degrade the armed mission capability of the helicopter (paragraph 15).

k. High vibration levels during firing render the point target capability of the weapon system ineffective (paragraph 39).

l. The guns did not fire at turret limits of elevation and/or traverse (paragraph 43).

m. Excessive vibration of the instrument panel during firing resulted in inability to read instruments. The accelerations recorded during previous testing are in excess of those intended and guaranteed for instrument integrity (paragraph 39).
Recommendations

50. The following recommendations are made for acceptable helicopter operation and armed mission capability:

a. Critical component life calculation and replacement schedules must be determined after stress analysis (paragraphs 46 and 47).

b. A restraint system or improved door design must be incorporated in the UH-1C to prevent pilot and copilot doors opening during firing (paragraph 39).

c. Continued investigation and resolution of the gun malfunctions causing severe damage to live ammunition is necessary prior to the use of HE rounds (paragraph 42).

d. A means of elevating the guns in event of power failure should be provided (paragraph 45).

e. The reliability of the XM-140 automatic gun system should be improved prior to further U. S. Army testing (paragraph 42).

f. Mandatory use of the protective helmet and earplugs by crew members should be reflected in the Operator's Manual (paragraphs 39 and 40).

51. The following recommendations are made for improved helicopter operation and armed mission capability:

a. Gross weight reductions must be achieved if the UH-1C/XM-30 is to be effectively utilized (paragraph 15).

b. A reduction in vibration levels or modification of the sight installation is necessary to retain the point target capability of the system (paragraph 39).

c. Provision should be made to allow the guns to fire at turret limits of elevation and traverse (paragraph 43).

52. If the XM-30 installation is adopted for the UH-1C helicopter, level flight performance data from this report and appropriate contractor results should be incorporated in the Operator's Manual (paragraphs 16 through 21).
APPENDIX I

TEST DATA
FIGURE NO. 1
AIRSPEED CALIBRATION
UH-1C/XH-30 S/N 6U-114102
PRODUCTION SYSTEM

ROTOR SPEED = 324 RPM
DENSITY ALT = 3360 FT.
AVG. GROSS WEIGHT = 8190 LB.
C.G. LOCATION = STA 134.0 (aft)
GROUND SPEED COURSE
XM-30 IN STOWED POSITION

NOTES:
1. Curves taken from Bell Report No. 20h-100-117.
2. Calibrated Airspeed = Instrument Corrected
 Airspeed + Position Error. \(V_{CAL} = V_{IC} + \Delta V_{P.E.} \)

INSTRUMENT CORRECTED AIRSPEED - KNOTS

LEVEL FLIGHT
CLIMB
AUTOROTATION

SYN VARIATION
☐ In-Ground-Effect
◇ 31h Rotor RPM
△ Windows Open
Figure No. 2
NON-DIMENSIONAL LEVEL FLIGHT PERFORMANCE
UH-1C/XM-30 S/N 6U-11102

NOTES:
1. Broken lines taken from USAAVNTA Report No. 6U-28. (Ref. e)
2. Shaded symbols and dashed lines denote 31h Rotor RPM.
3. Open symbols, solid lines, and dash-dot lines denote 32h Rotor RPM.
4. Data points derived from Figure Nos. 7 thru 11.

$C_p = \frac{\text{SHP} \times 550 \times 10^5}{\text{A}(\omega R)^2}$

$C_T = \frac{G \cdot W \cdot T}{\text{A}(\omega R)^2} \times 10^4$
FIGURE NO. 3
NON-DIMENSIONAL LEVEL FLIGHT PERFORMANCE
UH-1C/XM-30 S/N 64-14102

NOTES:
1. Broken lines taken from USAAVNTA Report No. 64-28. (Ref. e)
2. Shaded symbols and dashed lines denote 31h Rotor RPM.
3. Open symbols, solid lines, and dash-dot lines denote 32h Rotor RPM.
4. Data points derived from Figure Nos. 7 thru 11.

SYM CONFIGURATION
○ XM-30 Stowed
□ Clean
FIGURE NO. 4
RANGE SUMMARY
UH-1C/XM-30 S/N 64-14102

STANDARD DAY
5000 FT.
324 ROTOR RPM

NOTES:
1. Broken line taken from USAAVNTA Report No. 64-28 (Ref. e)
2. Points derived from Figure No. 5.

<table>
<thead>
<tr>
<th>SYM</th>
<th>SPEED</th>
<th>CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>324</td>
<td>90</td>
<td>XM-30 Stowed</td>
</tr>
<tr>
<td>314</td>
<td>90</td>
<td>XM-30 Stowed</td>
</tr>
<tr>
<td>324</td>
<td>100</td>
<td>Clean</td>
</tr>
</tbody>
</table>

Recommended Cruise
TAS - KNOTS

GROSS WEIGHT - LB.

Specific Range at Recommended Cruising M. A.T. - LB./LB. FUEL
FIGURE NO. 5
LEVEL FLIGHT PERFORMANCE
UH-1C/XM-30 S/N 64-14102
XM-30 IN STOWED POSITION

NOTES:
1. Dashed line denotes clean configuration.
2. Curves derived from Figure Nos. 7 thru 11 and 16.

ROTOR SPEED = 314 RPM

ROTOR SPEED = 324 RPM

TRUE AIRSPEED - KNOTS

SPECIFIC RANGE
NAUTICAL MILE/LB. FUEL

0 20 40 60 80 100 120 140

C_T = 53.82 x 10^4

C_T = 46.12 x 10^4

C_T = 51.11 x 10^4

C_T = 46.00 x 10^4

C_T = 59.75 x 10^4

C_T = 50.50 x 10^4

0 .05 .10 .15 .20 .25 .30
FIGURE NO. 6
MAXIMUM AIRSPEED
UH-1C/XM-30 S/N 64-14102
XM-30 IN STOWED POSITION
STANDARD DAY
324 ROTOR RPM
MID C.G. LOCATION
NORMAL RATED POWER

NOTE: Curves derived from Figure Nos. 2, 3, and 4.
Broken lines indicate engine mechanical limits.
FIGURE NO. 7
LEVEL FLIGHT PERFORMANCE
UH-1C/XM-30 S/N 61-11402
XM-30 IN STOWED POSITION

ROTOR SPEED = 324 RPM
DENSITY ALTITUDE = 5000 FT.
GROSS WEIGHT = 7980 LB.
C.G. LOCATION = STA 130.1 (mid)
C_T AVG. = 46.00 x 10^4

Curve taken from Bell Report No. 204-100-147.
(C_T = 46.0 x 10^4)
FIGURE NO. 8
LEVEL FLIGHT PERFORMANCE
UH-1C/XM-30 S/N 64-14102
XM-30 IN STOWED POSITION

ROTOR SPEED = 324 RPM
DENSITY ALT = 5000 FT.
GROSS WEIGHT = 8760 LB.
C.G. LOCATION = STA 130.6 (mid)
C_T AVG. = 50 x 10^4

Curve taken from Bell Report No. 204-100-147.
(C_T = 49.7 x 10^4)
FIGURE NO. 9
LEVEL FLIGHT PERFORMANCE
UH-1C/XM-30 S/N 61-41102
XM-30 IN STOWED POSITION

ROTOR SPEED = 324 RPM
DENSITY ALT = 10000 FT.
GROSS WEIGHT = 8980 LB.
C.G. LOCATION = STA 130.1 (mid)
C T AVG. = 59.71 x 10^4

![Graph showing True Airspeed vs. Test Engine Output Shaft Horsepower]
FIGURE NO. 10
LEVEL FLIGHT PERFORMANCE
UH-1C/XM-30 S/N 64-14102
XM-30 IN STOWED POSITION

ROTOR SPEED = 3116 RPM
DENSITY ALT = 5000 FT.
GROSS WEIGHT = 8770 LB.
C.G. LOCATION = STA 130.8 (mid)
C T AVG. = 53.62 \times 10^{-4}

True Airspeed - Knots

Curve taken from Bell Report No. 204-100-117.
\(C_T = 52.8 \times 10^{-4} \)
FIGURE NO. 11
LEVEL FLIGHT PERFORMANCE
UH-1C/XM-30 S/N 64-14102

CLEAN CONFIGURATION

ROTOR SPEED = 324 RPM
DENSITY ALT = 5000 FT.
GROSS WEIGHT = 8050 LB.
C.G. LOCATION = STA 130.5 (mid)
C,T AVG. = 46.42 x 10^4

Curve taken from Bell Report No. 20h-100-147.
(C_T = 46.40 x 10^4)

Curve derived from USAAVNTA Report No. 6h-28 (Ref. e)
FIGURE NO. 12
LEVEL FLIGHT PERFORMANCE
UH-1G/XM-30 S/N 64-14102
CLEAN CONFIGURATION

ROTOR SPEED = 324 RPM
DENSITY ALT = 5000 FT.
GROSS WEIGHT = 8870 LB.
C.G. LOCATION = STA 130.5 (mid)
C_T AVG. = 51.11 x 10^{-4}

Curve derived from
USAAVNTA Report No.
64-28 (Ref. e)

Curve taken from
Bell Report No.
204-100-147.
(C_T = 49.70 x 10^{-4})

TRUE AIRSPEED - KNOTS
FIGURE NO. 13
LEVEL FLIGHT PERFORMANCE
UH-1C/XM-30 S/N 64-14102

ROTOR SPEED = 324 RPM
DENSITY ALT = 5500 FT.
GROSS WEIGHT = 8200 LBS.
C7 AVG. = 48.60 x 10^5

NOTE:
Open symbols denote aft C.G.
Closed symbols denote forward C.G.

POSITION OF GUNS - DEG

SYM POS

O Stowed
□ 7.5 Up
△ 12.5 Down
O 60.0 Left

TEST ENGINE OUTPUT SHAFT HP

TRUE AIRSPEED - KNOTS
FIGURE No. 14
SHAFT HORSEPOWER AVAILABLE
UH-1C/XH-30 S/N 64-11102
NORMAL RATED POWER

NOTES: Curves taken from USAVWTA Report No. 64-28 (Ref. e)
1. Shaft Horsepower Available based on incoming
2. Compressor Inlet Temperature Rise = +2°C
3. Compressor Inlet Pressure Ratio \(\frac{P_T}{P_A} \) = 1.00
4. Generator Electrical Load = Zero
5. Percent Air Bleed \(\frac{W_{II}}{W_A} \) = 0.5%
6. Rotor Speed = 324 RPM
NOTES: Curves taken from USAAVSTA Report No. 61-28 (Ref. e)
2. Compressor Inlet Temperature Rise = +2°C
3. Compressor Inlet Pressure Ratio \(\frac{P_t}{P_a} \) = 1.00
4. Generator Electrical Load = Zero
5. Percent Air Bleed \(\frac{W_b}{W_A} \) = 0.5
6. Rotor Speed = 324 RPM
FIGURE NO. 18
CONTROL POSITION TRIM CURVES
UH-1C/XM-30 S/N 64-14102

XM-30 IN STOWED POSITION

SYN DENSITY ALTITUDE FT.
0 10970

GROSS WEIGHT LB.
0 8590

ROTOR SPEED RPM
0 324

C.G. LOCATION STA
0 130.1 (mid) Level Flight

FULL CONTROL TRAVEL
LATERAL = 12.6 IN.
DIRECTIONAL = 6.6 IN.
COLLECTIVE = 10.6 IN.

CALIBRATED AIRSPEED - KNOTS

38
FIGURE NO. 17
CONTROL POSITION TRIM CURVES
UH-1C/XH-30 5/11 64-14102

XH-30 IN STOWED POSITION

<table>
<thead>
<tr>
<th>SYM</th>
<th>DENSITY ALTITUDE FT</th>
<th>GROSS WEIGHT LB</th>
<th>MOTOR SPEED RPM</th>
<th>C.G. LOCATION STA</th>
<th>FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5720</td>
<td>7640</td>
<td>320</td>
<td>130.1 (mid)</td>
<td>Level Flight</td>
</tr>
<tr>
<td>5</td>
<td>5000</td>
<td>8050</td>
<td>320</td>
<td>130.5 (mid)</td>
<td>Level Flight (Clean)</td>
</tr>
</tbody>
</table>

FULL CONTROL TRAVEL
LONGITUDINAL = 13.0 IN.
LATERAL = 12.6 IN.
DIRECTIONAL = 6.6 IN.
COLLECTIVE = 10.5 IN.

CALIBRATED AIRSPEED - KNOTS

39
FIGURE NO. 19
CONTROL POSITION TRIM CURVES
UH-1C/XM-30 S/N 61-14102
XM-30 IN STOWED POSITION

<table>
<thead>
<tr>
<th>DENSITY ALTITUDE FT.</th>
<th>GROSS WEIGHT LB.</th>
<th>ROTOR SPEED RPH</th>
<th>C.G. LOCATION STA</th>
<th>FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5800</td>
<td>8580</td>
<td>324</td>
<td>130.6 (mid)</td>
<td>Level Flight</td>
</tr>
<tr>
<td>5000</td>
<td>8870</td>
<td>324</td>
<td>130.5 (mid)</td>
<td>Level Flight (Clean)</td>
</tr>
</tbody>
</table>

FULL CONTROL TRAVEL
LONGITUDINAL = 13.0 IN.
LATERAL = 12.6 IN.
DIRECTIONAL = 6.6 IN.
COLLECTIVE = 10.6 IN.
FIGURE NO. 20
CONTROL POSITION TRIM CURVES
UH-1C/XM-30 S/N 6U-11102
XM-30 IN STOWED POSITION

<table>
<thead>
<tr>
<th>SYM</th>
<th>DENSITY (G)</th>
<th>GROSS WEIGHT (LB.)</th>
<th>ROTOR SPEED (RPM)</th>
<th>C.G. LOCATION (STA)</th>
<th>FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5120</td>
<td>8730</td>
<td>314</td>
<td>130.8 (mid)</td>
<td>Level Flight</td>
</tr>
</tbody>
</table>

Full Control Travel
- Longitudinal = 13.0 IN.
- Lateral = 12.6 IN.
- Directional = 6.6 IN.
- Collective = 10.6 IN.

Calibrated Airspeed - Knots
FIGURE NO. 21
CONTROL POSITION TRIM CURVES
UH-1C/XM-30 S/N 64-14102
XM-30 IN STOWED POSITION

SIM
XM-30 IN STOWED POSITION

ALTITUDE
FT.

GROSS WEIGHT
LB.

ROTOR SPEED
RPM

G.G. LOCATION
STA

FLIGHT CONDITION

DENSITY

3360

8190

324

134.0 (aft)

Level Flight

42
FIGURE NO. 22

CONTROL POSITIONS IN REARWARD FLIGHT

UH-1G/XM-30 S/N 64-14102

XM-30 IN STOWED POSITION

<table>
<thead>
<tr>
<th>SYM</th>
<th>DENSITY</th>
<th>ALTITUDE</th>
<th>FT.</th>
<th>GROSS WEIGHT</th>
<th>LB.</th>
<th>ROTOR SPEED</th>
<th>RPM</th>
<th>C.G. LOCATION</th>
<th>STA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2940</td>
<td></td>
<td></td>
<td>8190</td>
<td></td>
<td>324</td>
<td></td>
<td>131.0 (aft)</td>
<td></td>
</tr>
</tbody>
</table>

FULL CONTROL TRAVEL

- LONGITUDINAL = 13.0 IN.
- LATERAL = 12.6 IN.
- DIRECTIONAL = 6.6 IN.
- COLLECTIVE = 10.6 IN.
FIGURE NO. 23
CONTROL POSITIONS IN SIDeward FLIGHT
UH-1C/XM-30 S/N 64-11102
XM-30 IN STOWED POSITION

<table>
<thead>
<tr>
<th>SYM</th>
<th>DENSITY</th>
<th>ALTITUDE</th>
<th>GROSS WEIGHT</th>
<th>ROTOR SPEED</th>
<th>C.G. LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FT.</td>
<td>LB.</td>
<td>RPM</td>
<td>STA</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2940</td>
<td>8190</td>
<td>324</td>
<td>134.0 (aft)</td>
<td></td>
</tr>
</tbody>
</table>

FULL CONTROL TRAVEL
LONGITUDINAL = 13.0 IN.
LATERAL = 12.6 IN.
DIRECTIONAL = 6.6 IN.
COLLECTIVE = 10.6 IN.
<table>
<thead>
<tr>
<th>SYM</th>
<th>TRIM AIRSPEED</th>
<th>DENSITY ALTITUDE</th>
<th>GROSS WEIGHT</th>
<th>ROTOR SPEED</th>
<th>C.G. LOCATION</th>
<th>FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>85.2</td>
<td>4760</td>
<td>8050</td>
<td>324</td>
<td>134.0 (aft)</td>
<td>Level Flight</td>
</tr>
<tr>
<td>4</td>
<td>88.3</td>
<td>5760</td>
<td>8330</td>
<td>324</td>
<td>128.8 (fwd)</td>
<td>Level Flight</td>
</tr>
<tr>
<td>4</td>
<td>88.3</td>
<td>5760</td>
<td>8330</td>
<td>324</td>
<td>128.8 (fwd)</td>
<td>Level Flight</td>
</tr>
</tbody>
</table>

FIGURE NO. 24
CONTROL POSITION TRIM CURVES
UH-1C/XM-30 S/N 64-114102

FULL CONTROL TRAVEL
LONGITUDINAL = 13.9 IN.
LATERAL = 12.6 IN.
DIRECTIONAL = 6.6 IN.
COLLECTIVE = 10.6 IN.
SOLID SYMBOLS DENOTE TRIM POINTS

GUN POSITION - DEGREES

45
FIGURE NO. 25
STATIC LONGITUDINAL COLLECTIVE FIXED STABILITY
UH-1C/XM-30 S/N 64-14102
XM-30 IN STOWED POSITION

<table>
<thead>
<tr>
<th>TRIM</th>
<th>DENSITY</th>
<th>GROSS</th>
<th>ROTOR</th>
<th>C.G.</th>
<th>FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYM</td>
<td>AIRSPEED</td>
<td>ALTITUDE</td>
<td>WEIGHT</td>
<td>SPEED</td>
<td>LOCATION</td>
</tr>
<tr>
<td>O</td>
<td>56.0 KTS.</td>
<td>4940</td>
<td>8490</td>
<td>324</td>
<td>128.8 (fwd)</td>
</tr>
<tr>
<td>□</td>
<td>86.3 KTS.</td>
<td>5590</td>
<td>8420</td>
<td>324</td>
<td>128.8 (fwd)</td>
</tr>
</tbody>
</table>

FULL CONTROL TRAVEL
LONGITUDINAL = 13.0 IN.
LATERAL = 12.6 IN.
DIRECTIONAL = 6.6 IN.
COLLECTIVE = 10.6 IN.
SOLID SYMBOLS DENOTE TRIM POINTS.
FIGURE NO. 26
STATIC LONGITUDINAL COLLECTIVE FIXED STABILITY
UH-1C/XM-30 S/N 61-1102
XM-30 IN STOWED POSITION

<table>
<thead>
<tr>
<th>SYN.</th>
<th>AIRSPEED</th>
<th>DENSITY</th>
<th>GROSS</th>
<th>ROTOR</th>
<th>C.G.</th>
<th>FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KTS.</td>
<td>ALTITUDE</td>
<td>WEIGHT</td>
<td>SPEED</td>
<td>STA</td>
<td>CONDITION</td>
</tr>
<tr>
<td>0</td>
<td>91.2</td>
<td>5600</td>
<td>8480</td>
<td>32k</td>
<td>130.8 (mid)</td>
<td>Level Flight</td>
</tr>
</tbody>
</table>

Full control travel:
- Longitudinal = 13.0 IN.
- Lateral = 12.6 IN.
- Directional = 6.6 IN.
- Collective = 10.6 IN.

Solid symbols denote trim points.
FIGURE NO. 27
STATIC LONGITUDINAL COLLECTIVE FIXED STABILITY
UH-1C/XH-30 S/N 64-11102
XH-30 IN STOWED POSITION

<table>
<thead>
<tr>
<th>SYM</th>
<th>TRIM</th>
<th>DENSITY</th>
<th>GROSS</th>
<th>ROTOR</th>
<th>C.G.</th>
<th>FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KTS.</td>
<td>ALTITUDE</td>
<td>WEIGHT</td>
<td>SPEED</td>
<td>LOCATION</td>
<td>CONDITION</td>
</tr>
<tr>
<td>0</td>
<td>85.3</td>
<td>5970</td>
<td>7660</td>
<td>321</td>
<td>130.1 (mid)</td>
<td>Level Flight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PITCH ATTITUDE</th>
<th>FULL CONTROL TRAVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>LONGITUDINAL = 13.0 IN.</td>
</tr>
<tr>
<td>0</td>
<td>LATERAL = 12.6 IN.</td>
</tr>
<tr>
<td>5</td>
<td>DIRECTIONAL = 6.6 IN.</td>
</tr>
<tr>
<td>5</td>
<td>COLLECTIVE = 10.6 IN.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PEDAL POSITION</th>
<th>FULL CONTROL TRAVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD FROM NEUTRAL</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LATERAL STICK</th>
<th>FULL CONTROL TRAVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITIONS</td>
<td>LONGITUDINAL = 13.0 IN.</td>
</tr>
<tr>
<td>FROM FULL</td>
<td>LATERAL = 12.6 IN.</td>
</tr>
<tr>
<td>LEFT</td>
<td>DIRECTIONAL = 6.6 IN.</td>
</tr>
<tr>
<td>60</td>
<td>COLLECTIVE = 10.6 IN.</td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LONGITUDINAL STICK</th>
<th>FULL CONTROL TRAVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITIONS FROM</td>
<td>LONGITUDINAL = 13.0 IN.</td>
</tr>
<tr>
<td>FULL FORWARD</td>
<td>LATERAL = 12.6 IN.</td>
</tr>
<tr>
<td>60</td>
<td>DIRECTIONAL = 6.6 IN.</td>
</tr>
<tr>
<td>50</td>
<td>COLLECTIVE = 10.6 IN.</td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

CALIBRATED AIRSPEED - KNOTS
FIGURE NO. 28
STATIC LONGITUDINAL COLLECTIVE FIXED STABILITY
UH-1C/XM-30 S/N 64-14102
XM-30 IN STOWED POSITION

<table>
<thead>
<tr>
<th>TRIM AIRSPEED</th>
<th>DENSITY</th>
<th>GROSS WEIGHT</th>
<th>ROTOR SPEED</th>
<th>C.G. LOCATION</th>
<th>FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYN 90.0 KTS.</td>
<td>5370 FT.</td>
<td>8460 LB.</td>
<td>324 RPM</td>
<td>134.0 (aft)</td>
<td>Level Flight</td>
</tr>
<tr>
<td>SYN 58.5 KTS.</td>
<td>5100 FT.</td>
<td>8213 LB.</td>
<td>324 RPM</td>
<td>134.0 (aft)</td>
<td>Level Flight</td>
</tr>
</tbody>
</table>

FULL CONTROL TRAVEL
LONGITUDINAL = 13.0 IN.
LATERAL = 12.6 IN.
DIRECTIONAL = 6.6 IN.
COLLECTIVE = 10.6 IN.
SOLID SYMBOLS DENOTE TRIM POINTS.
FIGURE NO. 29
STATIC LONGITUDINAL COLLECTIVE FIXED STABILITY
UH-1C/XM-30 S/N 614-14102

XM-30 IN STOWED POSITION

<table>
<thead>
<tr>
<th>TRIM</th>
<th>AIRSPEED</th>
<th>DENSITY</th>
<th>GROSS</th>
<th>ROTOR</th>
<th>C.G.</th>
<th>FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYM</td>
<td>KTS.</td>
<td>FT.</td>
<td>LB.</td>
<td>RPM</td>
<td>STA</td>
<td></td>
</tr>
<tr>
<td>○</td>
<td>90.3</td>
<td>5350</td>
<td>8490</td>
<td>314</td>
<td>134.1 (aft)</td>
<td>Level Flight</td>
</tr>
<tr>
<td>□</td>
<td>56.0</td>
<td>5290</td>
<td>8490</td>
<td>314</td>
<td>134.1 (aft)</td>
<td>Level Flight</td>
</tr>
</tbody>
</table>

FULL CONTROL TRAVEL
LONGITUDINAL = 13.0 IN.
LATERAL = 12.6 IN.
DIRECTIONAL = 6.6 IN.
COLLECTIVE = 10.6 IN.

SOLID SYMBOLS DENOTE TRIM POINTS.
FIGURE NO. 30
STATIC LONGITUDINAL COLLECTIVE FIXED STABILITY
UH-1H/XH-30 S/N 64-114102
XH-30 IN STOWED POSITION

<table>
<thead>
<tr>
<th>TRIM</th>
<th>AIRSPEED</th>
<th>DENSITY</th>
<th>GROSS</th>
<th>ROTOR</th>
<th>G.O.</th>
<th>FLIGHT</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYM</td>
<td>KTS.</td>
<td>FT.</td>
<td>LB.</td>
<td>RPM</td>
<td>STA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>54.2</td>
<td>2280</td>
<td>8920</td>
<td>324</td>
<td>130.1(mid)</td>
<td>Climb</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>54.2</td>
<td>2280</td>
<td>8900</td>
<td>324</td>
<td>130.1(mid)</td>
<td>Autorotation</td>
<td></td>
</tr>
</tbody>
</table>

FULL CONTROL TRAVEL
LONGITUDINAL = 13.0 IN.
LATERAL = 12.6 IN.
DIRECTIONAL = 6.6 IN.
COLLECTIVE = 10.6 IN.

SOLID SYMBOLS DENOTE TRIM POINTS.
Static Longitudinal Collective Fixed Stability

UH-30/XM-30 S/N 64-11102

XM-30 In Stowed Position

<table>
<thead>
<tr>
<th>Trim</th>
<th>Airspeed (KTS)</th>
<th>Altitude (FT)</th>
<th>Gross Weight (Lb)</th>
<th>Rotor Speed (RPM)</th>
<th>C.G. Location (STA)</th>
<th>Flight Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>67.2</td>
<td>4760</td>
<td>8050</td>
<td>324</td>
<td>13.1 (aft)</td>
<td>Max. Power Climb</td>
</tr>
</tbody>
</table>

Full Control Travel
- Longitudinal = 13.0 IN.
- Lateral = 12.6 IN.
- Directional = 6.6 IN.
- Collective = 10.6 IN.

Solid symbols denote trim points.

Figure No. 31

Calibrated Airspeed - Knots
FIGURE NO. 32
STATIC LATERAL DIRECTIONAL STABILITY
XM-10/XM-30 S/N 04-14102

XM-30 IN STOWED POSITION

<table>
<thead>
<tr>
<th>TRIM</th>
<th>AIRSPEED</th>
<th>DENSITY</th>
<th>CRUSS</th>
<th>ROTOR</th>
<th>C.G.</th>
<th>FLIGHT</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIAS</td>
<td>FT.</td>
<td>LB.</td>
<td>RPM</td>
<td>STA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>54.5</td>
<td>5320</td>
<td>6290</td>
<td>324</td>
<td>134.1 (aft)</td>
<td>Level Flight</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>39.5</td>
<td>5000</td>
<td>6290</td>
<td>324</td>
<td>134.1 (aft)</td>
<td>Level Flight</td>
<td></td>
</tr>
</tbody>
</table>

FULL CONTROL TRAVEL
LONGITUDINAL = 13.0 IN.
LATERAL = 12.6 IN.
DIRECTIONAL = 6.6 IN.
COLLECTIVE = 10.6 IN.
SOLID SYMBOLS DENOTE TRIM POINTS
FIGURE NO. 36

LONGITUDINAL CONTROL SENSITIVITY

UH-1C/UH-30 S/N 64-14102

XH-30 IN STOWED POSITION

LEVEL FLIGHT

<table>
<thead>
<tr>
<th>CALIBRATED AIRSPEED</th>
<th>DENSITY ALTITUDE</th>
<th>GROSS WEIGHT</th>
<th>ROTOR SPEED</th>
<th>C.O. LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYM</td>
<td>KTS.</td>
<td>FT.</td>
<td>LP.</td>
<td>STA</td>
</tr>
<tr>
<td>0</td>
<td>91.0</td>
<td>5470</td>
<td>8320</td>
<td>324</td>
</tr>
</tbody>
</table>

THE PC GEAR MAX. PITCH ACCELERATION

<table>
<thead>
<tr>
<th>MAXIMUM PITCH ACCELERATION - DEG/SEC/SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

FULL LONGITUDINAL CONTROL TRAVEL = 13.0 IN.

LONGITUDINAL CONTROL DISPLACEMENT FROM TRIM - %

54
FIGURE NO. 37
LONGITUDINAL CONTROL RESPONSE
UH-1C/XM-30 S/N 64-11102
XM-30 IN STOWED POSITION
LEVEL FLIGHT

<table>
<thead>
<tr>
<th>CALIBRATED AIRSPEED</th>
<th>DENSITY</th>
<th>GROSS WEIGHT</th>
<th>ROTOR SPEED</th>
<th>C.G. LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYM</td>
<td>KTS.</td>
<td>Ft.</td>
<td>Lb.</td>
<td>STA</td>
</tr>
<tr>
<td>0</td>
<td>91.0</td>
<td>5470</td>
<td>8320</td>
<td>324</td>
</tr>
</tbody>
</table>

LEVEL FLIGHT

SYM 0

CALIBRATED AIRSPEED 91.0 KTS.
DENSITY 5470 FT.
GROSS WEIGHT 8320 Lb.
ROTOR SPEED 324 RPM
C.G. LOCATION 134.0 (aft)

FULL LONGITUDINAL CONTROL TRAVEL = 13.0 IN.
FIGURE NO. 36
LATERAL CONTROL SENSITIVITY
UH-1C/XH-30 S/N 64-11102
XM-30 IN STOWED POSITION
LEVEL FLIGHT

<table>
<thead>
<tr>
<th>CALIBRATED AIRSPEED</th>
<th>DENSITY</th>
<th>GROSS WEIGHT</th>
<th>ROTOR SPEED</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYM</td>
<td>KTS.</td>
<td>FT.</td>
<td>LB.</td>
<td>STA</td>
</tr>
<tr>
<td>0</td>
<td>91.0</td>
<td>5530</td>
<td>8240</td>
<td>324</td>
</tr>
</tbody>
</table>

TIME TO OBTAIN MAX. ROLL ACCELERATION - SECONDS

MAXIMUM ROLL ACCELERATION - DEG/SEC/SEC

FULL LATERAL CONTROL TRAVEL = 12.6 IN.
FIGURE NO. 39
LATERAL CONTROL RESPONSE
UH-1C/XM-30 S/N 64-11102
XM-30 IN STOWED POSITION
LEVEL FLIGHT

<table>
<thead>
<tr>
<th>CALIBRATED AIRSPEED</th>
<th>DENSITY</th>
<th>GROSS WEIGHT</th>
<th>ROTOR SPEED</th>
<th>C.G. LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYN</td>
<td>KTS.</td>
<td>FT.</td>
<td>LB.</td>
<td>STA</td>
</tr>
<tr>
<td>o</td>
<td>91.0</td>
<td>5530</td>
<td>6240</td>
<td>32h</td>
</tr>
</tbody>
</table>

FULL LATERAL CONTROL TRAVEL = 12.6 IN.
Figure No. 40
Directional Control Sensitivity
UH-1C/XM-30 S/N 64-14102
XM-30 in Stowed Position
Level Flight

Calibrated density, altitude, gross weight, rotor speed, location

<table>
<thead>
<tr>
<th>Sym</th>
<th>Kts.</th>
<th>Ft.</th>
<th>Lb.</th>
<th>RPM</th>
<th>Sta</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>91.0</td>
<td>5530</td>
<td>820</td>
<td>324</td>
<td>134.0 (aft)</td>
</tr>
</tbody>
</table>

Full directional control travel = 6.6 in.
FIGURE NO. 41
DIRECTIONAL CONTROL RESPONSE
UH-1C/XM-30 S/N 61-11102
XM-30 IN STOWED POSITION
LEVEL FLIGHT

<table>
<thead>
<tr>
<th>CALIBRATED AIRSPEED</th>
<th>DENSITY ALTITUDE</th>
<th>GROSS WEIGHT</th>
<th>ROTOR SPEED</th>
<th>C.G. LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYN</td>
<td>KTS.</td>
<td>FT.</td>
<td>LB.</td>
<td>RPM</td>
</tr>
<tr>
<td>0</td>
<td>91.0</td>
<td>5530</td>
<td>8200</td>
<td>324</td>
</tr>
</tbody>
</table>

FULL DIRECTIONAL CONTROL TRAVEL = 6.6 IN.

DIRECTIONAL CONTROL DISPLACEMENT FROM TRIM - %

59
FIGURE NO. 49
RIGHT TURRET BRACE (SHORT) AXIAL FORCE DURING FIRING
UH-1C/XM-30 S/N 6U-11402
LEVEL FLIGHT

DENSITY ALTITUDE: 5000 FT.
GROSS WEIGHT: 8000 LB.
ROTOR SPEED: 324 RPM
C.G. LOC: STA 128.1 (fwd)

SYM CONFIGURATION
○ Guns elevated & firing
□ Guns stowed & firing
△ Guns depressed & firing
△ Guns transient & firing
○ Guns elevated & traversed right, right gun firing

NOTES:
1. Half-shaded symbols denote only right gun firing.
2. Shaded symbols denote points taken from contractor firing tests as specified in Bell Report No. 204-947-196.
3. Hovering at 5 feet skid height (IGE) and 6 knot left crosswind (open and half-shaded symbols only)
4. Allowable load limit of ±1300 lb. (oscillatory + mean load) recommended for infinite component life.
FIGURE NO. 50
LEFT TURRET BRACE (SHORT) AXIAL FORCE DURING FIRING
UH-1C/XM-30 S/N 64-11102

LEVEL FLIGHT

DENSITY ALTITUDE: 5000 FT.
GROSS WEIGHT: 8000 LB.
ROTOR SPEED: 324 RPM
C.G. LOC: STA 128.1 (fwd)

LEVEL FLIGHT

NOTES:
1. Half-shaded symbols denote only right gun firing.
2. Sted symbols denote points t... from contractor firing tests as specified in Bell Report No. 204-207-196.
3. Hovering at 5 feet skid height (ICE) and 6 knot left crosswind, (open and half-shaded symbols only)
4. Allowable load limit of ±1300 lb. (oscillatory + mean load) recom...mained for infinite component lif...
FIGURE NO. 51
TAIL ROTOR BLADE BEAM BENDING MOMENT DURING FIRING
UH-1G/XM-30 S/N 66-144102
LEVEL FLIGHT

1600 SYM
O Guns elevated & firing
□ Guns stowed & firing
▲ Guns depressed & firing
▲ Guns transient & firing
O Guns elevated & traversed
right, right gun firing

1200
800
400

OSCILLATORY

DENSITY ALTITUDE: 5000 FT.
GROSS WEIGHT: 5000 LB.
ROTOR SPEED: 321 RPM
C.G. LOC: STA 128.1 (fwd)

NOTES:
1. Half-shaded symbols denote only right gun firing.
2. Shaded symbols denote points taken from contractor firing tests as specified in Bell Report No. 204-947-196.
3. Hovering at 5 feet skid height (IGE) and 6 knot left crosswind (open and half shaded symbols only).
4. Allowable load limit of + 1800 in. lb. (oscillatory + mean load) recommended for infinite component life.

1600 ST-HI - NEAR-GUARD
1200 800
400

REARWARD CALIBRATED AIRSPEED - KNOTS 62 FORWARD

60 80 100 120
LEVEL FLIGHT

DENSITY ALTITUDE: 5000 FT.
GROSS WEIGHT: 8000 LB.
ROTOR SPEED: 324 RPM
C.G. LOC: STA 178.1 (fwd)

SYM CONFIGURATION
○ Guns elevated & firing
□ Guns stowed & firing
△ Guns depressed & firing
△ Guns transient & firing
◇ Guns elevated & traversed right, right gun firing

NOTES:
1. Half-shaded symbols denote only right gun firing.
2. Shaded symbols denote points taken from contractor firing tests as specified in Bell Report No. 204-947-196.
3. Hovering at 5 feet skid height (IGE) and 6 knot left crosswind, (open and half-shaded symbols only)
4. Normal load limit of ±12° in. lb. (oscillatory + mean load) recommended for infinite component life.
FIGURE NO. 53
TAIL BOOM LONGERON STRESS DURING FIRING
UH-1C/XM-30 S/N 6U-1U102

LEVEL FLIGHT
DENSITY ALTITUDE: 5000 FT.
GROSS WEIGHT: 8000 LB.
ROTOR SPEED: 32k RPM
C.G. LOC: STA 128.1 (fwd)

SYM CONFIGURATION
○ Guns elevated & firing
□ Guns stowed & firing
△ Guns depressed & firing
◊ Guns transient & firing
△ Guns elevated & traversed right, right gun firing

NOTES:
1. Half-shaded symbols denote only right gun firing.
2. Shaded symbols denote points taken from contractor firing tests as specified in Bell Report No. 20U-947-196.
3. Hovering at 5 feet skid height (IGE) and 6 knot left crosswind (open and half-shaded symbols only)

4. Allowable load limit of 20,000 PSI peak (oscillatory + mean load) recommended for infinite component life.
FIGURE NO. 33
FORWARD LONGITUDINAL PULSE
UH-1C/XM-30 S/N 64-14102
FLIGHT CONDITION: Level Flight
FULL LONGITUDINAL TRAVEL: 13.0 IN.
XM-30 IN STOWED POSITION

[Diagram showing graphs for roll, pitch, yaw, longitudinal stick position, and time]
TRIM AIRSPEED: 91.0 KCAS
DENSITY ALTITUDE: 5530 FT.
GROSS WEIGHT: 8420 LB.
ROTOR SPEED: 324 RPM
C.G. LOCATION: STA 134.0 (aft)

PITCH

YAW

TIME - SECONDS

65
FIGURE NO. 34
RIGHT LATERAL PULSE
UH-1G/XM-30 S/N 64-14102
FLIGHT CONDITION: Level Flight
FULL LATERAL TRAVEL: 12.6 IN.

XM-30 IN STOWED POSITION
TRIM AIRSPEED: 91.0 KCAS
DENSITY ALTITUDE: 5530 FT.
GROSS WEIGHT: 8410 LB.
HOTCR SPEED: 324 RPM
C.G. LOCATION: STA 134.0 (aft)
FIGURE NO. 35
RIGHT PEDAL PULSÉ
UH-1C/XM-30 S/N 64-14102
FLIGHT CONDITION: Level Flight
FULL PEDAL TRAVEL: 6.6 IN.
XM-30 IN STOWED POSITION
TRIM AIRSPEED: 91.0 KCAS
DENSITY ALTITUDE: 5530 FT.
GROSS WEIGHT: 8400 LB.
ROTOR SPEED: 324 RPM
C.G. LOCATION: STA 134.0 (aft)
FIGURE NO. 42
TIME HISTORY OF WEAPONS FIRING
UH-IC/M-30 S/N 6U-14102
FLIGHT CONDITION: Hover (IGE)
CONFIGURATION: Both guns elevated, both guns firing.

TRIM AIRSPEED: 0 KCAS
DENSITY ALTITUDE: 1970 FT.
GROSS WEIGHT: 8200 Lb.
ROTOR SPEED: 324 RPM
C.G. LOCATION: STA 128.1 (fwd)

COMMENCE FIRING
52 ROUNDS EXPENDED

COLLECTIVE STICK
POSITIVE FROM FULL DOWN

ROLL ANGLE
-DEGREES

PITCH ANGLE
-DEGREES

COMMENTS: COLLECTIVE
ROLL
PITCH

YAW RATE
-DEGREES/SEC

ROLL RATE
-DEGREES/SEC

PITCH RATE
-DEGREES/SEC

COMMENTS: YAW
ROLL
PITCH

LONGITUDINAL

LATERAL

DIRECTIONAL

LATERAL STICK
POSITION FROM FULL FORWARD

LONGITUDINAL STICK
POSITION FROM FULL FORWARD

TIME - SECONDS

0 1.0 2.0 3.0 4.0
TRIM AIRSPEED: 0 KCAS
DENSITY ALTITUDE: 4270 FT.
GROSS WEIGHT: 8200 LB.
ROTOR SPEED: 324 RPM
C.G. LOCATION: STA 128.1 (fwd)

COMMENCE FIRING
52 ROUNDS EXPENDED

COLLECTIVE
ROLL
PITCH
ROLL
YAW
PITCH
LONGITUDINAL
DIRECTIONAL
LATERAL

TIME - SECONDS
FIGURE NO. L3
TIME HISTORY OF WEAPONS FIRING
UH-1G/XM-30 S/N 6U-1U102
FLIGHT CONDITION: Hover (IGE)
CONFIGURATION: Both guns elevated and traversed right, right gun firing.

TRIM AIRSPEED: 0 KCAS
DENSITY ALTITUDE: 5080 FT
ROSS WEIGHT: 7810 LB.
TORRER SPEED: 321 RPM
C.G. LOCATION: STA 128.1

COMENCE FIRING
30 ROUNDS EXP
TRIM AIRSPEED: 0 KCAS
DENSITY ALTITUDE: 5080 FT.
GROSS WEIGHT: 7610 LB.
ROTOR SPEED: 324 RPM
C.G. LOCATION: STA 128.1 (fwd)

Both guns elevated and right, right gun firing.

COMMENCE FIRING
30 ROUNDS EXPENDED

TIME - SECONDS

COMMENCE FIRING
30 ROUNDS EXPENDED
FIGURE NO. M4
TIME HISTORY OF WEAPONS FIRING
UH-1C/XM-30 S/N 6H-11102
FLIGHT CONDITION: Hover (IGE)
CONFIGURATION: Both guns stowed, right gun firing.

TRIM AIRSPEED: 0 KCAS
DENSITY ALTITUDE: 5080 FT.
GROSS WEIGHT: 7950 LB.
ROTOR SPEED: 324 RPM
C.G. LOCATION: STA 128.1 (fwd)
FIGURE NO. L11
HISTORY OF WEAPONS FIRING
H-1C/XM-30 S/N 6U-14102
AT CONDITION: Hover (IGE)
IGURATION: Both guns stowed, right gun firing.

TRIM AIRSPEED: 0 KCAS
DENSITY ALTITUDE: 5080 FT.
GROSS WEIGHT: 7950 LB.
ROTOR SPEED: 324 RPM
C.G. LOCATION: STA 126.1 (fwd)

COMMENCE FIRING
18 ROUNDS EXPENDED

COLLECTIVE
ROLL
PITCH

PITCH ANGLE (DEGREES)

PITCH ROLL YAW

LONGITUDINAL / LATERAL / DIRECTIONAL

POSITION FROM FULL FORWARD

LONGITUDINAL STICK POSITION FROM FULL LEFT

TIME - SECONDS
FIGURE NO. 45
TIME HISTORY OF WEAPONS FIRING
UH-1C/XM-30 S/N 64-14102
FLIGHT CONDITION: Right Sideward Flight
CONFIGURATION: Both guns elevated and traversed right, right gun firing.

COMMENCE FIRING
RING Fwdward Flight elevated and at gun firing.

TRIM AIRSPEED: 30 KCAS (estimated)
DENSITY ALTITUDE: 4860 FT.
GROSS WEIGHT: 8200 LB.
ROTOR SPEED: 324 RPM
C.G. LOCATION: STA 128.1 (fwd)

42 ROUNDS EXPENDED

COLLECTIVE

ROLL

PITCH

YAW

LONGITUDINAL

DIRECTIONAL

LATERAL

TIME - SECONDS
FIGURE NO. 4.6
TIME HISTORY OF WEAPONS FIRING
UH-1C/XM-30 S/N 6U-1102
FLIGHT CONDITION: Rearward Flight
CONFIGURATION: Both guns elevated, both guns firing.

TRIM AIRSPEED: 40 KCAS (est.)
DENSITY ALTITUDE: 4850 FT.
GROSS WEIGHT: 7990 LB.
ROTOR SPEED: 324 RPM
C.G. LOCATION: STA 128.1 (fw)

COMMENCE FIRING
32 ROUNDS EXPENDED
JRE NO. 46
OF WEAPONS FIRING
30 S/N 6H-14102
ITION: Rearward Flight
N: Both guns elevated,
both guns firing.

TRIM AIRSPEED: 40 KCAS (estimated)
DENSITY ALTITUDE: 4850 FT.
GROSS WEIGHT: 7990 LB.
ROTOR SPEED: 324 RPM
C.G. LOCATION: STA 126.1 (fwd)

COMMENCE FIRING
32 ROUNDS EXPENDED

- COLLECTIVE
- ROLL
- PITCH

- ROLL
- PITCH
- YAW

- DIRECTIONAL
- LONGITUDINAL
- LATERAL

TIME - SECONDS
0 1.0 2.0 3.0 4.0 5.0
0 10 20 30 40 50 60 70
0 10 20 30 40 50 60 70
FIGURE NO. 47
TIME HISTORY OF WEAPONS FIRING
UH-1C/XM-30 S/N 6U-11102
FLIGHT CONDITION: Dive at V_{ne}
CONFIGURATION: Both guns stowed, both guns firing.

TRIM AIRSPEED: 131 KCAS
DENSITY ALTITUDE: 6350 ft
GROSS WEIGHT: 7970 LB
ROTOR SPEED: 321 RPM
C.G. LOCATION: STA 128.1

COMMENCE FIRING
TRIM AIRSPEED: 131 KCAS
DENSITY ALTITUDE: 6350 FT.
GROSS WEIGHT: 7970 LB.
ROTOR SPEED: 324 RPM
C.G. LOCATION: STA 128.1 (fwd)

COMMENCE FIRING 80 ROUNDS EXPENDED

COLLECTIVE

ROLL

PITCH

ROLL

YAW

PITCH

DIRECTIONAL

LATERAL

LONGITUDINAL

TIME - SECONDS
FIGURE NO. 18
TIME HISTORY OF WEAPONS FIRING
UH-1C/KM-30 S/N 64-11102
FLIGHT CONDITION: Throttle Chop at V_{ne}
CONFIGURATION: Both guns depressed,
both guns firing.

TRIM AIRSPEED: 126 KAS
DENSITY ALTITUDE: 460 ft
GROSS WEIGHT: 8130 lb
ROTOR SPEED: 324 RPM
C.G. LOCATION: STA 12
TOTAL ROUNDS EXPENDED
TRIM AIRSPEED: 126 KCAS
DENSITY ALTITUDE: 1840 FT.
GROSS WEIGHT: 8130 LB.
ROTOR SPEED: 324 RPM
C.G. LOCATION: STA 128.1 (fwd)
TOTAL ROUNDS EXPENDED: 30

FIGURE NO. 48
Dry of Weapons Firing
C-30 S/N 64-11102
Edition: Throttle Chop at Vne
ION: Both guns depressed,
both guns firing.

TIME - SECONDS
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

COLLECTIVE
ROLL
PITCH
YAW
ROLL
LATERAL
LONGITUDINAL
DIRECTIONAL
REFERENCES

i. Letter, AMSWE-RDW, USAWECOM, 28 November 1966, subject: "30 mm, XM50/XM140 Program."

j. Training Manual, "30 mm Helicopter Armament Subsystem, XM50," General Electric, Missile and Armament Department.
DESCRIPTION
OF WEAPON SYSTEM

XM-30

The
XM-30 Helicopter Weapon System consists of the UH-1C helicopter, the dual installation of the XM-140 30 mm automatic gun, sidemounted in electrically powered turrets, the ammunition feed system, sighting station, and electrical components to include a turret control panel (photo 5). Total weight of the system, less ammunition, is estimated as 962 lb. Table 5 contains applicable weights and dimensions of components. Additional details and photographs may be found in references f and j.

XM-140 Automatic Gun

The 30 millimeter automatic gun is an air-cooled, externally powered weapon with a design rate of fire of 425 ± 25 rpm. Recoil forces vary with sear adjustment; however, a design criterion of 1500 to 2000 lb per gun has been used for load prediction.

Turret Assembly

A turret assembly is mounted on four hard points on each side of the helicopter. Design travel is 60 degrees outboard and 5 degrees inboard azimuth with an elevation capability of +8 degrees and -45 degrees. Electrical and mechanical stops prevent the guns from firing at or beyond the limits of travel. Both guns will fire simultaneously only within ±5 degrees in azimuth. The turret assembly is equipped with forward and aft removable fairings designed to reduce aerodynamic drag.

Ammunition Feed System

The ammunition feed system provides storage for 1200 rounds of 30 mm ammunition located in two 600 round ammunition boxes mounted across the aft cabin of the UH-1C helicopter. Ammunition booster assemblies lift the ammunition from the boxes to the flexible chutes leading to the gun. A redesigned link ejection chute was added to the system to avoid link damage to helicopter components including the elevator and tail rotor.
Photo 5 - UH-1C/XM-30

Photo 6 - Turret Control Panel
Sighting and Firing Systems

The hand control sight provides for aiming and firing the guns by the copilot/gunner. It allows full traverse and elevation of the guns by the copilot and is secured overhead when not in use. With the sight stowed, the guns may be fired in the forward position (0 degrees azimuth) by the pilot or copilot using triggers on the cyclic sticks. Elevation may be manually controlled using the adjustment provided on the turret control panel.

Turret Control Panel

The turret control panel is mounted in the cockpit on the lower pedestal console and is accessible to the copilot or pilot. It contains the main power switch, right and left gun arming switches, rounds remaining counters for each gun, and the manually operated elevation control mentioned in the preceding paragraph (see photo 6).

Table 5. XM-30 Component Data (Note 1).

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight lb</th>
<th>Length in.</th>
<th>Height in.</th>
<th>Width in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>XM-140 Gun (2)</td>
<td>330</td>
<td>47.5 (Seared)</td>
<td>17.5</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56.5 (Off sear)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turret Assembly (2)</td>
<td>363</td>
<td>37.0</td>
<td>20.0</td>
<td>36.0</td>
</tr>
<tr>
<td>Fairings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td></td>
<td>32.8</td>
<td>20.5 (2)</td>
<td></td>
</tr>
<tr>
<td>Aft</td>
<td></td>
<td>30.5</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>Ammunition Box (2)</td>
<td>135</td>
<td>63.0</td>
<td>32.0</td>
<td>10.5</td>
</tr>
<tr>
<td>Ammunition Boosters (2)</td>
<td>36</td>
<td>36.5</td>
<td>9.0</td>
<td>10.2</td>
</tr>
<tr>
<td>Sight</td>
<td>14</td>
<td>20.3 (Stowed)</td>
<td>7.0</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.1 (Extended)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remaining XM-30 Kit Components</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note (1): Additional weight of 105 lb for airframe modifications, armament group supports, and electrical provisions.

Note (2): Maximum diameter.
APPENDIX IV

TEST INSTRUMENTATION

The test instrumentation for the APE was installed, calibrated, and maintained by contractor personnel. The installation consisted of visual instruments in the cockpit and oscillographs mounted in the cargo compartment (photo 7, 8 and 9). The cockpit instrumentation parameters are listed below:

- Standard Airspeed System (mph and kt)*
- Altitude*
- Rotor Speed (sensitive)
- Engine Torque*
- Gas Generator Speed*
- Exhaust Gas Temperature*
- Fuel Quantity*
- Normal Acceleration
- Longitudinal Stick Position
- Lateral Stick Position
- Pedal Position
- Collective Stick Position
- Gun Elevation
- Gun Azimuth (left and right)
- Oscillograph Counter Number

*Denotes standard, calibrated instrument

The following parameters/components were instrumented and recorded on seven Consolidated Electrodynamic Corporation, 18 channel oscillographs:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Turret Azimuth</td>
<td>Degrees</td>
</tr>
<tr>
<td>Right Turret Azimuth</td>
<td>Degrees</td>
</tr>
<tr>
<td>Right Turret Elevation</td>
<td>Degrees</td>
</tr>
<tr>
<td>Right Aft Upper Brace</td>
<td>Pounds</td>
</tr>
<tr>
<td>Right Forward Upper Brace</td>
<td>Pounds</td>
</tr>
<tr>
<td>Left Forward Upper Brace</td>
<td>Pounds</td>
</tr>
<tr>
<td>Left Aft Upper Brace</td>
<td>Pounds</td>
</tr>
<tr>
<td>Left Long Turret Brace</td>
<td>Pounds</td>
</tr>
<tr>
<td>Right Long Turret Brace</td>
<td>Pounds</td>
</tr>
<tr>
<td>Left Short Turret Brace</td>
<td>Pounds</td>
</tr>
<tr>
<td>Right Short Turret Brace</td>
<td>Pounds</td>
</tr>
<tr>
<td>28 Volt Source</td>
<td>Volts</td>
</tr>
<tr>
<td>400 Cycle Source</td>
<td>Volts</td>
</tr>
<tr>
<td>Parameter</td>
<td>Units</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Trigger Closure</td>
<td>---</td>
</tr>
<tr>
<td>Main Rotor and Tail Rotor Azimuth</td>
<td>Degrees</td>
</tr>
<tr>
<td>Left Forward Beam Outboard Vertical</td>
<td>In-lb</td>
</tr>
<tr>
<td>Left Forward Beam Inboard Vertical</td>
<td>In-lb</td>
</tr>
<tr>
<td>Left Aft Beam Outboard Vertical</td>
<td>In-lb</td>
</tr>
<tr>
<td>Left Aft Beam Inboard Vertical</td>
<td>In-lb</td>
</tr>
<tr>
<td>Right Forward Beam Outboard Vertical</td>
<td>In-lb</td>
</tr>
<tr>
<td>Right Forward Beam Inboard Vertical</td>
<td>In-lb</td>
</tr>
<tr>
<td>Right Aft Beam Outboard Vertical</td>
<td>In-lb</td>
</tr>
<tr>
<td>Right Aft Beam Inboard Vertical</td>
<td>In-lb</td>
</tr>
<tr>
<td>Forward and Aft Cyclic Boost Tube</td>
<td>Pounds</td>
</tr>
<tr>
<td>Lateral Cyclic Boost Tube</td>
<td>Pounds</td>
</tr>
<tr>
<td>Collective Boost Tube</td>
<td>Pounds</td>
</tr>
<tr>
<td>Directional Pedal Position</td>
<td>% Right</td>
</tr>
<tr>
<td>Collective Stick Position</td>
<td>% Up</td>
</tr>
<tr>
<td>Longitudinal Cyclic Stick Position</td>
<td>% Forward</td>
</tr>
<tr>
<td>Lateral Cyclic Stick Position</td>
<td>% Right</td>
</tr>
<tr>
<td>Pitch Rate Gyro</td>
<td>Deg/Sec</td>
</tr>
<tr>
<td>Roll Rate Gyro</td>
<td>Deg/Sec</td>
</tr>
<tr>
<td>Yaw Rate Gyro</td>
<td>Deg/Sec</td>
</tr>
<tr>
<td>Pitch Attitude Gyro</td>
<td>Degrees</td>
</tr>
<tr>
<td>Roll Attitude Gyro</td>
<td>Degrees</td>
</tr>
<tr>
<td>Lift Link</td>
<td>Pound</td>
</tr>
<tr>
<td>Engine Delta Torque</td>
<td>Lb/in</td>
</tr>
<tr>
<td>Stabilizer Bar Chord</td>
<td>In-lb</td>
</tr>
<tr>
<td>Stabilizer Bar Beam</td>
<td>In-lb</td>
</tr>
<tr>
<td>Main Rotor Blade Chord</td>
<td>In-lb</td>
</tr>
<tr>
<td>Main Rotor Yoke Extension Chord</td>
<td>In-lb</td>
</tr>
<tr>
<td>Main Rotor Yoke Chord</td>
<td>In-lb</td>
</tr>
<tr>
<td>Main Rotor Yoke Beam</td>
<td>In-lb</td>
</tr>
<tr>
<td>Main Rotor Yoke Extension Beam</td>
<td>In-lb</td>
</tr>
<tr>
<td>Main Rotor Blade Beam</td>
<td>In-lb</td>
</tr>
<tr>
<td>Mast Torque</td>
<td>In-lb</td>
</tr>
<tr>
<td>Mast Perpendicular</td>
<td>In-lb</td>
</tr>
<tr>
<td>Mast Parallel</td>
<td>In-lb</td>
</tr>
<tr>
<td>Drag Brace</td>
<td>Pounds</td>
</tr>
<tr>
<td>Pitch Link</td>
<td>Pound</td>
</tr>
<tr>
<td>Forward and Aft Vibration - Fuel Gage</td>
<td>g</td>
</tr>
<tr>
<td>Parameter</td>
<td>Units</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Forward and Aft Vibration - Airspeed Indicator</td>
<td>g</td>
</tr>
<tr>
<td>Vertical Vibration - Floor Sta 62</td>
<td>g</td>
</tr>
<tr>
<td>Engine Work Deck - Lateral Vibration</td>
<td>psi</td>
</tr>
<tr>
<td>Lateral Floor Vibration - Sta 62</td>
<td>g</td>
</tr>
<tr>
<td>Vertical Vibration - CG</td>
<td>g</td>
</tr>
<tr>
<td>Forward and Aft Engine Displacement</td>
<td>in</td>
</tr>
<tr>
<td>Lateral Engine Displacement</td>
<td>in</td>
</tr>
<tr>
<td>Vertical Engine Displacement</td>
<td>psi</td>
</tr>
<tr>
<td>Tail Boom Longeron Stress - Upper</td>
<td>psi</td>
</tr>
<tr>
<td>Tail Boom Longeron Stress - Crown</td>
<td>psi</td>
</tr>
<tr>
<td>Tail Boom Longeron Stress - Lower</td>
<td>psi</td>
</tr>
<tr>
<td>Forward and Aft Vibration - Altimeter</td>
<td>g</td>
</tr>
<tr>
<td>Forward and Aft Vibration - Radio Compartment</td>
<td>g</td>
</tr>
<tr>
<td>Forward and Aft Vibration Amplifier Rack J-2</td>
<td>g</td>
</tr>
<tr>
<td>Vertical Amplifier Rack J-2</td>
<td>g</td>
</tr>
<tr>
<td>Tail Rotor Yoke Chord</td>
<td>in-lb</td>
</tr>
<tr>
<td>Tail Rotor Yoke Beam</td>
<td>in-lb</td>
</tr>
<tr>
<td>Tail Rotor Pitch Link</td>
<td>pounds</td>
</tr>
<tr>
<td>Tail Rotor Blade Chord</td>
<td>in-lb</td>
</tr>
<tr>
<td>Tail Rotor Blade Beam</td>
<td>in-lb</td>
</tr>
<tr>
<td>Tail Rotor Shaft Torque</td>
<td>in-lb</td>
</tr>
<tr>
<td>Left Elevator Beam</td>
<td>in-lb</td>
</tr>
<tr>
<td>Left Elevator Chord</td>
<td>in-lb</td>
</tr>
<tr>
<td>Left Elevator Torque</td>
<td>in-lb</td>
</tr>
<tr>
<td>Right Elevator Beam</td>
<td>in-lb</td>
</tr>
<tr>
<td>Right Elevator Chord</td>
<td>in-lb</td>
</tr>
<tr>
<td>Right Elevator Torque</td>
<td>in-lb</td>
</tr>
<tr>
<td>Elevator Control Tube at Elevator</td>
<td>pounds</td>
</tr>
<tr>
<td>Elevator Control Tube at Swashplate</td>
<td>pounds</td>
</tr>
<tr>
<td>Right Gun 'Motor Current</td>
<td>Amperes</td>
</tr>
<tr>
<td>Left Gun 'Motor Current</td>
<td>Amperes</td>
</tr>
<tr>
<td>Right Gun 'Motor Voltage</td>
<td>Volts</td>
</tr>
<tr>
<td>Left Gun 'Motor Voltage</td>
<td>Volts</td>
</tr>
<tr>
<td>Right Clutch Solenoid Voltage</td>
<td>Volts</td>
</tr>
<tr>
<td>Left Clutch Solenoid Voltage</td>
<td>Volts</td>
</tr>
<tr>
<td>Right Sear Solenoid Voltage</td>
<td>Volts</td>
</tr>
<tr>
<td>Left Sear Solenoid Voltage</td>
<td>Volts</td>
</tr>
<tr>
<td>Left Feed Switch Event</td>
<td>--</td>
</tr>
<tr>
<td>Right Receiver Position</td>
<td>inches</td>
</tr>
<tr>
<td>Left Receiver Position</td>
<td>inches</td>
</tr>
<tr>
<td>Right Booster Rate</td>
<td>Rounds/Sec</td>
</tr>
<tr>
<td>Left Booster Rate</td>
<td>Rounds/Sec</td>
</tr>
<tr>
<td>Parameter</td>
<td>Units</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Right Turret Limit Switch</td>
<td>--</td>
</tr>
<tr>
<td>Left Turret Limit Switch</td>
<td>--</td>
</tr>
</tbody>
</table>

The oscillographs were controlled by one switch on each cyclic stick with synchronized counter numbers recorded on each unit. Trigger closure, main rotor, and tail rotor azimuth were also used as correlating parameters.

Photo 7 - Pilot's Instrument Panel
Photo 8 - Control and Turret Position Indicators

Photo 9
Oscillograph Bank
APPENDIX V

PILOT OPINION RATING INDEX

<table>
<thead>
<tr>
<th>ADJECTIVE</th>
<th>DESCRIPTION</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXCELLENT</td>
<td>Includes optimum.</td>
<td>1</td>
</tr>
<tr>
<td>VERY GOOD</td>
<td>No unpleasant characteristics; some nuisance type deficiencies where no impairment to normal operation occurs.</td>
<td>2</td>
</tr>
<tr>
<td>GOOD</td>
<td>Some unpleasant characteristics in regimes where no impairment to normal operation occurs.</td>
<td>3</td>
</tr>
<tr>
<td>FAIR</td>
<td>Some unpleasant characteristics that cause perceptible fatigue; precision tasks possible after additional training.</td>
<td>4</td>
</tr>
<tr>
<td>POOR</td>
<td>Controllable but fatiguing; precision tasks possible but difficult even after extensive training.</td>
<td>5</td>
</tr>
<tr>
<td>POOR TO BAD</td>
<td>Controllable for short periods only without excessive fatigue; precision tasks questionable even after extensive training.</td>
<td>6</td>
</tr>
<tr>
<td>BAD</td>
<td>Total pilot attention required just to operate aircraft; precision tasks impossible.</td>
<td>7</td>
</tr>
<tr>
<td>DANGEROUS</td>
<td>Almost uncontrollable; accident probable.</td>
<td>8</td>
</tr>
<tr>
<td>CATASTROPHIC</td>
<td>No control; accident certain; escape questionable.</td>
<td>9</td>
</tr>
</tbody>
</table>
The Army Preliminary Evaluation of the UH-1C/XM-30 weapon system was conducted by the U. S. Army Aviation Test Activity at Edwards Air Force Base and Fort Irwin, California from 11 July 1967 through 26 July 1967. The degradation in level flight performance attributed to the weapon installation was defined and no objectionable flying qualities were encountered during firing or non-firing tests. The armed mission capability of the helicopter was degraded by high levels of stress, vibration, blast, and noise during firing and restrictive limitations were imposed by gun malfunctions and system gross weight. The reliability of the weapon system was poor and should be improved prior to further Army testing. (U)
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>UH-1C Helicopter with XM-30 Weapon System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Flight Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Army Preliminary Evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level Flight Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armed Mission Capability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability of Weapon System</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNCLASSIFIED