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ABSTRACT

Some problems in the filtering end the detection of diffusion processes
that are solutions of stochastic differential equations are studied,

Transition densities for Markov process solutions of a large class
of stochastic differential equations are shown to exist and to satisfy
Kolmogorov's equations, These results extend previously known results
by ellowing the drift coefficient to be unbounded, With these results
for transition densities the nonlinear filtering problem is discussed
and the conditional probability of the state vector of the system conditioned
on all the past observations 1s shown to exist end a stochastic equation
is derived for the evolution in time of the conditional probability
density. A stochastic differential equetion is also obtained for the
conditional moments, These derivations use directly the continuous time
processes,

Necessary conditions that coincide with the previously known sufficient
conditions for the absolute continuity of measures corresponding to
solutions of stochastic differential equations are obtained., Applications
are made to the detection of one diffusion process in another. Previous
results on the relation between detection and filtering problems are

rigorously obtained and extended,
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I. INTRODUCTION AND PRELIMINARIES

In this thesis we shall study some filtering and some detection
problems described by stochastic processes, These problem descriptions
have wide applications in physical problems hecause many physical phe-
nomena can be modeled by stochastic processes,

For satellite orbit tracking and prediction problems, filtering has
been effectively used to obtain "good" estimates of the satellite orbits
from the nolsy data received from the satellites by the ground stations,
Missile and satellite guidance problems typically involve noisy meesure-
ments from the various sensors and filtering theory hes been useful in
improving guidance performance,

Many communication problems involve a signel corrupted by noise,
This signal corruption cen occur, for example, by the thermal noise in
transmitters and receivers or by the properties of the medium through
which the signal is transmitted, To obtain & "good" estimate of the
signal, the received date must be filtered, A particular type of communi-
cation problem is feedback communicetion, for example, the communication
from a ground station to a satellite and back to the ground station
embodies the feedback principle, Flltering can be shown to provide a
scheme to use this feedback comminication channel in an optimal manner,

Chemical processes can often be modeled by stochastic processes where
nolsy measurements of -the operations are obtained and filtering theory
can be used to obtain 'good" estimates of the operations, Some interest
has developed for applying filtering techniques to models of economic
systems which include random behavior, Identification problems where

some of the system parameters are random can be solved by applying
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filtering theory to obtain "good" estinates of these random parameters.,

In many stochastic optimal control problems the state vector of the
system is described by a stochastic process and the observations made on
the system are described by & stochastic process which is & function of
the state stochastic prccess and noise, The control problem is to control
the state of the system optimally (given a performance criterion) using
the observations, These stochastié optimal control problems form a
large class of physically important problems., The conditional probability
of the state given all the past observations, which is obtained for the
filtering prohiem, is the fundemental tool for determining the optimal
control to be used because the conditional probability represents our
probabilistic knowledge of the state of the system, The filtering
solution with the conditional probability represents a major step to
solving the st?chastic optimal control problem,

Determining whether received data contaln a signel and nolse or merely
noise has many applications particularly in radar problems where a signal
is sent and then the received data are checked to determine whether the
data contain a reflected signel and noise or only noise, To make the
decision in an optimal manner between the two hypotheses that the data
contain signal and noise or that the data contain noise we apply some
results from statistical decision theory and calculate & likelihood
function, This likelihood function determined from the data is then
compared with a threshold to indicate the hypothesis to choose, For
applications it is useful to be able to calculate this likelihood function
recursively, i.e,, to obtain a differential equation for the evolution

in time of the likelihood function, This recursive form for the likeli-
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hood function can often be obtained by epplying some results from
S filtering theory,
Before analyzing the filtering and the detection problems in depth

. we shall discuss some of the history of these problems indicating the

5 results that have been obtained, describe the results that we shall obtein
and describe some of the mathematical techniques and results that will
be used in analyzing the filtering end the detection problems,
A, DESCRIPTION AND HISTORY OF THE PROBLEMS

1, Nonlinear Filtering

The filtering problem of estimating one stochastic process given
observations of a related stochastic process has received attention in
both engineering and mathematics, Kalman and Bucy [Ref, 1] modeling the
stochastic processes by linear differential equations with white noise

oy °© inputs obtained a simple recursive solution to the linear filtering
problem, The obvious extension of their work to a filtering problem with
. nonlinear differential equations (i.e., the nonlinear filtering problem)
has been discussed by a number of authors, Stratonovich [Ref, 2], Kashyap
[Ref, 3], Kushner [Refs, 4,5,6], Bucy [Ref, T], and Mortensen [Ref, 8].
The originel studies on this toplc were somewhat naive and i* was some
time before it was realized that incorrect (or at least ambiguous) results
had been obtained by not paying proper attention to some of the mathe-
matical techniques involved, In particular, care had to be exercised in
interpreting and menipulating certein integrals--the so-called ItS and

Stratonovich stochastic integrals [Ref. 9],

Lo The aim of the papers on this problem has been to derive a differ-
e ential equation for the conditional probability density (or conditional
v 3 SEL-6T7-035

PO SO OAO E N I R RSO US T KRORNTO AT N TR TR BT M BT e e




moments) of the stochastic process to be estimated given all the past
observations of a related stochastic process, The most general results

for conditional moments that have been rigorously derived have been obtained
by Kushner [Ref, 6]. He had to make several assumptions on the stochastic
processes involved. Often these assumptions are dirficult to verify for
physicel models, The physical meaning of meny of the assumptions is

unclear end often the assumptions were made only to obtain some mathe-
matical results,

One reason for these many assumptions is that the problem is first
solved in the discrete time and then there is & passage to the limit to
obtain the continuous time result, Mortensen wis the first to use a
purely continuous time approach though he made some fairly restrictive
assumptions,

2, Absolute Continuity of Measures

For the continuous time proof of the existence of the conditional
probability density function we use certain results on the absolute
continuity of probability meaesures that correspond to solutions of
stochastic differential equations (stochastic differential equations will
be defined subseguently). Prohorov [Ref. 10] obtained the first results
for absolute continuity with the stochastic processes described by
stochastic differential equations though some nioneering work cii this
problem was done by Cameron and Martin [Ref, 11]. Following Prohorov,
Skorokhod [Refs, 12,13] and Girsenov [Ref. 14] obtained more general
results on sufficient conditions for absolute continuity,

3. Detection Theory

Some detection theory problems of a stochastic signel in white

SEL-6T-035 L
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noise have been solved where the likelihood function (Radon-Nikodym de-
rivative) can be recursively calculated., This recursive result was
obtained by Schweppe [Ref, 15] for the case where the signal is generated
by white noise into & finite dimensional linear system, His solution
makes use of the linear filtering results of Kalman and Bucy [Ref, 1],
Van Trees [Ref, 16] has considered & related problem obtaining the same
"type" of result as Schweppe., Sosulin and Stratonovich [Ref., 17] consider
the signal as a general diffusion process and indicate that the nonlinear
filtering results can be used to solve recursively for the likelihood
function,
B. NEW RESULTS

We will briefly describe some of the results obtained in this disser-
tation,

l, Nonlinear Filtering Theory

We present a rigorous derivation of a stochastic equation for the
evolution of the conditional probability density, The proof works directly
with the continuous time stochastic processes and no "discretizations"
are used, We also prove existence and differentiability properties for
transition densities corresponding to diffusion solutions of stochastic
differential equations, These properties are used in the derivation of
the equation for the conditional probability density, The main results
are Theorems 2,1 and k4,1,

2, Absgolute Continuity of Measures

We derive necessary and sufficient conditlons for the absolute
continuity of measures corresponding to the solutions of a lerge class

of stochastic differential equations, This result is given in Theorem 3.1.

p) SEL-6T-035
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3. Detection Theory

We consider the detection problem of determining whether a
stochastic signal (diffusion process) is present in white Gaussian noise

(Brownian motion) i.e., we have the two hypotheses to test
¢

1

dy, H(t)xt dt + dB, for 6

~

= dBt for o6

1]
(@]

where Xy is the signal and d%t is the noise, We rigorously derive a
differential equation for the likelihood function and relete this to the
nonlinear filtering problem, We compare this result to the results of
Schweppe [Ref, 15] and Sosulin and Stratonovich [Ref, 17] and relate the
differences to the different definitions of stochastic integral,

We consider the detection problem of & stochastic signel in correlated
noise and discuss conditions for nonsingular detection, We show how the
nonsingular problem can be related to a nonlinear filtering problem to
obtain a differentiel equation for the likelihood function,

C. SOME MATHEMATICAL TECHNIQUES AND RESULTS

1, General Theory and Notation

A number of mathematical definitions and results will be used in
this dissertation that may be somewhat unfemiliar to most engineers, We
will briefly review these toplcs here,

Stochastic processes which are solutions of stochastic differential
equations will be considered here, For general references on stochastic
processes and particularly to stochastic differential equations the reader

1s referred to Doob [Ref, 18] and K. Itd [Ref., 19]. Some familiarity with

SEL-6T7-035 6




the basic definitions of probability theory and stochastic processes
will be assumed., Generally a stochastic process could be denoted by the
four-tuple (Q,E,P,{Xt]teT) where
i) (e,5,P) is a probability space, i.e.,, & measurable space
with a probability measure on it, For our case we will
usually consider @ to be the space of continuous functions
on T = [0,1], § then is the Borel o-algebra for Q and
the probebility meesure P 1is & measure on the space of
continuous functions, The points in Q will be denoted by
W
i1) (xt)teT is a family of random variables on (Q,§) with
values in the state space (E,2), For our case the state
space (E,&) will usually be (&,B") where B" is the
Borel o-algebre on &~ (Buclidean n-space). The time set
T will be & compact interval, usually [0,1],
We define B(Xu’ u < t) as the Borel o-algebra generated by the

process {Xu, u<t), A family of (sub) o-algebras §, is sald to be

increasing if for s <t Esc: gt' The process {Xt} 1s said to be adapted ;

to %t if Xt is 3t measurable, For example, X

l.es, 1f N= (A : P(A) = O} then §,ON for ¥V t, Without this
essumption when we obtuin almost sure (a,s.,) equality we are not certair

£ is adapted to
B(Xu, u<t), We will assume that all the (sub) o-algebras are augmented,
that all versions have the desired measurebility properties on the sub !

'I

o-&8lgebra,

By a Markcv process we mean fundamentally a stochastic process that

has the so-called Markov property (cf, Loeve [Ref. 20]) i,e,,

i SEL-67-035




B =
P(AfutureI present+past) P(Afuturel Bpresent) gpice

It will be useful to define more precisely the motion of a Markov
process (cf, Dynkin [Refs, 21,22]), Take & measurable space (E,&). The
function P(s,x;t,I') (0 < s<t, xe E,T € &) 1is said to be a trensition
measure if the following conditions are satisfied:

a. P(s,x;t,I') is a measure (as & function of the set T)

b. P(s,x;t,I') is an €& measurable function of x

ce P(s,x;t,I') <1

d. P(s,x;8,E\x) = O

e. P(s,x;u,T) =/ P(s,x;t,dy)-P(t,y;u,I‘) 0<s<t<u
E
We shall also need the notion of a transition density, Let pu be a

is called a transition density if the following conditions are satisfied:

a. p(s,x;t,y) > 0 (t > 8;%,y € E)

of (x,y)
T fP(B,x;t,Y)u(dY) <1 (t> s,x ¢ E)
E

5. p(s,x;t,y) =‘/EKs,x;u,z)p(u,z;t,y)p(dz) (s <u<t,x,y ¢ E)
E

Under certain conditions on the Markov process it is possible to show
that the transition density function exists and satisfies the following

two linear second-order parabolic equations,

SEL-6T-035 8
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op(s,y;t,x ) 1 3%
= P ;ai(s)y) 55.: + Ezcij(s,y) gyi—ggjj' (l'l)
i,

a(a (t x)p) az(c (t x)p)
op(s,y;t,x l
t = T z ax ax (1.2)
i
where
lim % f (y - x)P(s,%x;8 + t,dy) = a(s,x)
t40 |y_x| <3
lim %— f (y - x)Xy - x)TP(s,x;s + t,dy) = c(s,x)
t4 0
Iy-xl <3

3> 0

These equations are usually celled Kolmogorov's backward and forward
equation respectively, The reader is referred to Feller [Ref, 23] and
Bharcuha-Reid [Ref, 24] for a more complete discussion of these equations,

Consider a process [Xt). If [Xt} is a Markov process then for

t>t and A € B(Xt)

PAIX, u<t) = B(AIX ) a.s.
If we can replace 1 by a (random) stopping time T(w) such that
{w: T<s) €B(Xu, u < s)

and if T <t and

9 SEL-6T7-035




P(A|Xu, wu<T) = P(AIXT) 8.8,

then {Xt] is called & strong Markov process,

By a diffusion process we mean a strong Markov process with continuous
seample paths,

By Brownian motion (also called the Wiener process) we meen & process
{B(t,w),P} which has continuous sample paths whose increments are inde-
pendent and normally distributed, If [Bt] is defined for t e [0,1]
we assume B(O,w) = O and E(BE) =t. By n-dimensional Brownian motion
ve mean & system of n one-dimensional Brownien motions independent of
each other,

We now consider integrals with respect to the Brownian motion integrator,

i,e., integrals of the form

ff(t) aB(t,w)

Since Brownian motion has unbounded varletion we cannot interpret this
integral (for almost all ) as & Lebesgue-Stieltjes integral, Wiener
[Ref, 25] defined this integral using the integration theory developed
by Deniell, This integral cen be defined for all functions, f, that
are square integrable (cf., Doob [Ref, 18] for & good discussion),

K. It0 [Refs. 19,26] considered the problem where f was & random
function independent orf the future Brownian motion, He first defined the

integral for step functions as

Zf(ti,w)(BtHl - Bti>

SEL-6T-035 10




n
3 k> 0 such that for Vx e Q

A > kx'x = k|x|2 (1.6)
The proof of & theorem, lemma, etc., begins with the word "proof" and
terminates with the symbol 0 which can be read as "this completes the
proof,"

2, Theory of Stochastic Differential Equations

We will have occasion throughout this dissertation to consider

vector stochastic differential equations such as
ax(t,w) = a(t,x(t,w)) at + b(t:x(t:w)) dB(t:w) (L.7)

where x(t,m), a(t,x(t,0)) and B(t,w) will be n x 1 column vectors
and b will be an n x n matrix, The process {Bt] is n-dimensional
Brownian motion, The vector a 1s usually referred to as the drift or
transfer vector and the matrix b 1is called the diffusion matrix,

We shall briefly review some results from the theory of stochastic
differential equations that will be used in later chapters,

8, Existence and Uniqueness of Solutions of Stochastic
Differential Equations

The usual results for existence and uniqueness for solutions
of stochastic differential equations are due to K, It0 [Refs. 19,26] and

I. I, Gikhman [Ref. 27].

Theorem 1,1, Consider a vector stochastic differential equation
dx(t,w) = a(t,x(t,w)) dt + b(t,x(t,w)) aB(t,w) (L.7)

SEL-67-035 12



and showed that this definition could be extended to all functions f

satisfying

ff]f(t,a))lz dt dP < o

QarT

If the integrand is measurable with respect to the past Brownian motion
then by Itg's definition of stochastic integrals this integral with respect

to Brownian motion is a martingale of Brownian motion, i,e,, for 1 <t

t T
E[fof(s,m) stlB(Bu, u < 'r)] = 41‘(3,&) dB, &.s. (1.3)

This martingale property will be important in meany of our calculations,
Some other notational descriptions will be useful, By o(Ll,Lw) we
mean the weak topology induced on Ll by Lw. A description of weak
topology cen be found in Royden [Ref, 27] or Kelley [Ref, 28],
Given a matrix a(t,x) = {aij(t,x)] we say that a(t,x) satisfies

&8 global Lipschitz condition if each component a satisfles this

1)
property, i.e., Vx,y

l,Z,OOQ,n (l.)'l')

Iaid(t)x) - a'iJ(tJy)I s le = yl i)J

Similarly by a(t,x) being bounded we mean 3 K< w such that for Vi,x

]aid(t,x)|5K Lo = 1,24 k50 (1.5)

Given a vector or a matrix A we denote the transpose of A &as AT.

By & symmetric matrix A being strictly positive definite we mean

11 SEL-67-035




vhere t e [s,1], x(s,0) = &(w), P{|a] <=} = 1 and the terms of
S the vector a(t,x) and the matrix b(t,x) satisfy a global
Lipschitz condition in x and are measureble in t, Then the
solution [xt] exlsts, 1s unique, and is a diffusion process,

. Furthermore if o € Lz then

Proof,

The idea of the proof is to use Picard iteration, as

X (t,m)

1
Q

t t
t,w) a +fa(u,xn(u,a>)) du + fb(u,xn(u,w)) dB(u,w) (1.8)
« " s s

1Y xn+l (

to show that & solution exists and that it is unique, The integral with
respect to Brownian motion is the stochastic integral defined by K, ItO,
For detalls of the proof and the stochastic integral the reader is referred
to K, It® [Refs. 19,26]s 10
b, Stochastic Differential Rule

Another result from stochastic differential equation theory
will be important in the following presentation, that is, the stochastic
differential rule, It is known that twice continuously differentiable
functions of diffusion processer, violate some of the usual rules for
5 transformations in ordinary celculus, The stochastic differential rule

. 1s described in the following theorem which is due to K, Ito [Ref., 30].

13 SEL-67-035




Theorem 1,2, Let x(t,w) satisfy

ax(t,w) = a(t,w) dt + b(t,w) dB(t,w)

(1.9)

where we assume the vector a(t,m) and the matrix b(t,n) are inde-

pendent of the future Brownian motion end G 1is an open subset of

the n-space @ which contains all the points (x(t,0)) u<t<v

weQ., Let f£(t,x) be a continuous function defined for u <t<Lv

X = (xl,xz,...,xn)T € G and suppose that

fo(t,x) _ afg*gt,xz
2
fi«j(t,X) = %:?f;i%;?z i,J = l,2,...,n

(1.10)

(1.11)

(1.12)

are all continuous, Then the differential of n(t,w) = £(t,x(t,w))

is

dﬂ(t,w) = <fo(t,x(t,a))) +2fi(t,x(t,u)))>ai(t,w)
i

1
+3 z fi‘j(t,x(t,w))cij(t;w) at
1,d

+ D £t x(6,0))by 4 (8,0) 4B,(t,0)
i,J

where c(t,w) = {cij(t,w)] = bT(t,w)b(t,a.)).

SEL-6T7-035 14
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Proof,
We briefly sketch the proof to give the reader an idea of the tech-

niques, By the Taylor expansion of f(t,xl,...,xn) we have

m

k§<q (t;l,w) - n(tz_l,w»
é[fo(r)(tﬁ- trlz-l)"igfi(f)(xi(ti) - xi(ti_l»

TI( s,a)) = T](t,(b)

Do) ) )

(1.14)
where 7t = (ti_l,xl(ti_l),...,xn(tz_l)), ti =t + (k/m)(s - t). Since
. fij(t,xl,...,xn) are continuous and xi(t,w) 1=1,2,..,n are all

m
. continuous in t a,s,, eijk

n-o a,8, Therefore the last term in the above expression goes to zero

tends to O uniformly in m and k as
in probability, It can be shown that
(x;(8,0) = %, (t,0))(x,(s,0) - x,(t,0))

8
= f[(xi('l',(b) = xi(t,w))aJ(T,w) + (xJ(T)w) = xj(t,ﬂ)))ai('l',(l))
t

+ ciJ(T,aD] dt

- 8
ot + f[(xi('r,w) - % (4,0))by (7,0) + (x,(1,0) - xJ(t,w))bik('r,w)] dB, (t,)
o 15 SEL-67-035
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‘- Using this result the remaining terms in the Taylor expansion are:

(suppressing the summation signs) -

= 8
f(fo(a) + fi(a)ai('r) + %‘ fiJ(a)ciJ(r)) dr + ffi(a)bid(r) dBJ(") ’
l A ]
+%{fm(a) (y(5) = %, (e))ey(e) + (xy(5) = %y (e))ay(x)] s

ol { £H9(0)[(x,(0) - %, 0 (1))Ny (1) + (xy(r) = )0 (1)))y (4)] aB()

where km(x) denotes the maximum tﬁ vwhich does not exceed <t and

o= (xm(r),xl(lm(w)),...,xn(km(w))). Since xi(lm(r)) - xi(T) 8.8,
the last two integrals 1n the above expression go to zero in the limit

and we have the result, |

b

To illustrate the application of the stochestic differential rule c

we provide two examples (which will also be used subsequently),

Example 1,
Consider the function M% given by
t

M, = exp faT(u,x(u,a)))c-l(u,x(u,w)) ax(u,w)
8

t
2 [ e¥(w,x(w,0))e ™ u,x(u,0))a(u,x(v,0)) du (1.26)
8

b(u,x(u,w)) dB(u,w), ¢ = bTb, and bl exists,

vhere dx(u,w)

The function Mt can therefore be rewritten as ’

SEL-6T7-035 16 .

TR U L TN W T Tt T T

MR ¢ W W RET M A LT ST



M

Let

Then

e -1

- ew | e (u,x(u,0)0" (u,x(u,0)) aB(1,0)

- % [aT(u,x(u,a)) )c-l(u,X(u,w) Ja(u, x(u,0)) du

dz

8

t

8

-1
T T
a (t,xt)b (t,xt) dB,

1 T -1
-3 e (t,xt)c (t,xt)a.(t,xt) dt

(1.17)

(1,18)

(1.19)

We shall now apply the stochastic differentisl rule (Theorem 1,2) to the

z
function e

Substituting these terms in Eq, (1.13) we have the following

equation for

My

M,

t -
T 7 \
Y +f M aT(u,x )b (u,x ) B

+

t. We first compute the derivatives of ex

1

u
5

ol

t

T -1
fMua. (u,xu)c (u,xu)a.(u,xu) du
8

1

ol

17

f MuaT(u,xu)bT- (u,%, )b (u,x Ja(u,x ) @ (L.20)

SEL-67-035




Recalling that c = bTb we have

t

=l
T 7
M 1 +fMua (u,x, 6" "(u,x,) aB, (1.21)
8

't =

or written as only & functional of x , s<u<t we have
t

T -1 .
Moo= 1+ /-Mﬁa (u,xh)c (u,xu) dx, (1.22)
s

Example 2,
Find the differential for q;l where

T 1 T
q EX €xp j.S (U,xh,yﬁ) dBu -3 j.g (u:xu;yﬁ)g(u)xu;yu) du

L+ B [v8lu,x,y,) a8, (1.23)
8
where g, = Ex(wt) and we agsume

a, = 1+ [Elvelu,x,v)) a8, (1.24)

The expression for the differential of q;l can be written down formally

as

d(q;]') = 12 dg, +3% 2 3 (dqt) (1.25)
9 %

since the differential rule can be characterized as
4 X4
af, = ff dx, + 3 f (dx ) (1.26)

and since the term (dqt)2 erises only from the stochastic integral via

SEL-6T7-035 18




our differential rule we have

-

a(q;l) = - 3 Blva(tx,y,)) dBy + 5 By, a(t,x, ¥, ) Byt x,, ;) at
36 ot
. (L.27)

c. Sufficient Conditions for the Absolute Continuity
of Diffusion Processes

We now consider the following stochastic differential

equations,

1]

ax(t,w) a(t,x(t,w)) dt + b(t,x(t,w)) dB(t,w) (1.7)

dy(t,w) £(t,y(t,w)) dt + g(t,y(t,0)) dB(t,w) (1.28)

- Almost all sample functions of these two stochastic processes (xt} and

{yt) are continuous functions, Therefore we can describe the stochastic
. processes [xt] and [yt] by measures, say My and by on the
n-dimensional space of continuous functions Cn[s,l]. We shall give
sufficient conditions for Hy to be absnlutely continuous with respect
to (written by << gx).

In terms of stochastic differential equations the first results were

obtained by Prohorov [Ref, 10] though some important pioneering work in
Wiener measure (the measure induced by Brownian motion) was done by
Cameron and Martin [Ref., 11]. Subsequent to Prohorov, Skorokhod [Ref. 13]
and Girsanov [Ref, 1l4] considered the problem and ohtained more general

results, We state the result due to Girsanov in the .ollowing theorem,

i -
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Theorem 1,3, Suppose that

lx(t)a)) = a(t:x(t)w)) at + b(t)x(t;w)) dB(t:w) (107)
dY(t)w) = (a(t;y(t)w)) + b(t:y(t:w))h(t)Y(t,w))) dt + b(t)y(t}w)) dB(t:w)
(1.29)
where

i) te (s,1]

i) h(t,y(t,w)) = (hl(t:}'(t)w))th(t’y(t!w)))“')hn(t)y(t:w)) )T

1ii) a(e+,¢), b(e,*) and h(.,¢) are measurable in both variables
1l

1v) flb(t,x(t,w))lz dt <w a.e,
s

1
[]h(t,x(t,a)))lz dt <w a,e,

1
f|a(t,x(t,w))|2 dt <w a,e,
5
v) I(t,x(t,0))] < b (|x(t,0)])
where ho is & nondecreasing function of a real variable, Then
My <<y

where p &nd p, are the measures induced on Cn[s,l] by (x,)
and {yt} respectively,

The Radon-Nikodym derivative, qu/dux, will be given by
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5. Ay 1 1
Ex_ = exp th(u,xu) dB - %flh(u,xu)lz du (1.30) .
8 8

If b"l exists, this can be rewritten entirely in terms of {xt],

iy
Ay

1
T -1
- cpl(xu, s<u<l) = exp fh (u,xu)b (u,xu) dx,
]

1l 1
T -1 1 2
- fh (u,xu)b (u,xu)a(u,xu) du - §f|h(u,xu)| du
8 8

(1.31)

LA ]
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IT. TRANSITION PROBABILITY DENSITIES FOR DIFFUSION PROCESSES

Markov processes which are solutions of stochastic differential
equations generated by Brownian motion are often used to describe the
nonlinear filtering problem and the stochastic optimal control problem,

A fundamental tool for these problems is the conditional density, viz,,

the probability density for the process to be estimated conditioned on all
the past observations, The expression for the conditional probability
density is a function of the transition density for the Markov process
which is to be estimated, Therefore to derive an expression for the
conditional probabllity density rigorously it is first necessary to prove
that this associated transition density exists, To derive & stochastic
equation for the conditional probability density it is necessary to prove
that the transition density is differentiable enough to satisfy Kolmogorov's
forward equation (the Fokker-Planck equation),

In this chapter we shall consider stochastic differential equations
which have diffusion process solutions, and (1) prove that the transition
density with respect to Lebesgue measure exists for the diffusion process,
(ii) prove that this transition density is suitably differentiable and
that the various derivatives can be bounded so that the density function
can be characterized as the fundamental solution of Kolmocgorov's equations,
A, EXISTENCE AND DIFFERENTTABILITY OF TRANSITION DENSITIES

We now consider the problem of showing that the solution of the

following vector stochastic differentiel equation

dx(t,w) = a(t)x(t)w)) dt + b(t,x(t,w0)) aB(t,n) (2.1)

SEL-67-035 2a



with suiteble assumptions on the coefficients has a transition density
B and thet this density satisfies Kolmogorov's forward and backward equetions,
In previous work on this problem, both a end b were assumed to be
bounded and Holder (or Lipschitz) continuous. Under these assumptions,
. Mortensen [Ref, 8] established existence of the density, while Dynkin
[Ref, 21] proved that the density existed and that it satisfied Kolmogorov's
equations,
We make the following assumptions on the coefficients
1) The diffusion matrix b(t,x) is Holder continuous in
t, globally Lipschitz continuous in x and globally bounded,
Moreover, the symmetric matrix ¢ (c = bTEQ is strictly

positive definite, The terms

dey ,(t,%) bzcij(t,x)

. axi 2 axiaxJ

1, = 1,2,e00,n

are globally Lipschitz continuous in x, continuous in ¢
. and globally bounded,
i1) The transfer (drift) vector a(t,x) is continuous in t and

globally Lipschitz continuous in x. The terms

Bai(t,x)

— 5 SR
i

are globally Lipschitz continuous in x and continuous in
t.

We state our result in the following theorem,
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Theorem 2,1, Let x(t,w) satisfy
ax(t,w) = e(t,x(t,w)) at + b(t,x(t,w)) aB(t,w) (2.1)

where we make the assumptions on the coefficlents described above,
Then there exists & version of the transition density for (xt}, Py

which satisfies Kolmogorov's equations,

Before presenting the proof we shall briefly outline the steps, We
first show that Kolmogorov's backward equetion is naturally assoclated
with the stochastic differential equation describing (x,) (Lemma 2.1),

If this backward equation has a unique fundamental solution then we can
show that this fundamental solution is the transition probability density
for (x,) (Lemma 2,2), Furthermore, if we can show that the formal
adjoint of the backward equation has & unique fundamental solution and
that for large values of the space coordinestes the fundamental solution
decreases sufficlently rapidly, then we cen prove that the transition
density satisfies Kolmogorov's forward equation,

Since the coefficient a(t,xt) in the stochastic differential equation
can be unbounded the usual results for existence and uniqueness of funda-
mental solutions for linear second-order parabolic equations cannot be
used, We proceed by first showing existence of the transition density
relating it to & simpler process (Lemma 2,3) and then finally proving that
the transition density is suitably differentiable (Lemma 2,4),

1, Kolmogorov's Equations

Since we want to show that a transition density for a diffusion

process exists and satisfies Kolmogorov's eguations we have to use some
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techniques and results from the theory of partial differential equations,
In particular it will be useful to define a fundamental solution of

a partial differential equation,

Definition, A function p(s,y;t,x) defined for x,y € Qn end s < t,
s,t € T=[0,1] is a fundamental solution of (f = O if it has
the following two properties
8, (Considered as & function of (x,t) for each fixed

(s,y) egfléb[o,l] the derivatives of p which appear in

exist, are continuous, and satisfy

o = 0 in g " ®(0,1) (2.2)

b If h 1s a continuous real valued function on Qn with compact

support then

lim s,yst,x - o .
(x,t)»(xo,s+)£np( AL LR ) (2.3)

We will now associate Kolmogorov's equations with the vector stochastic

differential equation
dx(t,w) = a(t,x(t,w)) at + b(t,x(t,w)) aB(t,w) (2.1)

Lemma 2,1, Let g be a bounded real valued twice continuocusly differ-

entiable function defined on Rn. Let {xt]

satisfy
dx(t,0) = a(t,x(t,0)) at + b(t,x(t,w)) dB(t,w) (2.1)
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where we assume the vector a(t,x) and the matrix b(t,x) satisfy

a global Lipschitz condition in x and are continuous in t, and

the matrix c (c = bTb) is strictly positive definite and x(s) = y.

Let

£(s,y;t) = E(S’y)s(X(t,w)) (2.1)

Then f(s,y;t) as a function of (s,y) setisfies the following

linear second-order parabolic equation

— 2
-% = ai(s,y)gi—+}2-'201.j(s,y)§% (2.5)
1 i 4, i™v3
Proof,

This result follows from the stochastic differentisl rule (Dynkin

[Ref. 21]) and Dynkin's formule, §

We now show that if the partial differentiel equation described in
the ebove lemma has a unique fundamental solution, then by the properties
of a fundamental solution we can characterize it as the transition density

of [xt].
Lemme 2,2, If the linear parabolic equation in Lemma 2.1

2

Sf of 1 o°f

- E = z ai(s,y) 'a_y._' + _Z-zcij(s’y) ay. Sy (2.5)
: i 1,9 19

has & unique fundamentsl solution, p, then p 1s the transition

density for the diffusion process {xt] which satisfies
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S Sy —

dx(t,a)) = a(t;x(t)w)) dt + b(t,x(t,a))) dB(t:w)

d and therefore the transition density, p, satisfies Kolmogorov's

backward equation,

Proof,

Using the definition of fundemental solution we can show that

f(s,y;t) can be expressed as
#(s,y5t) = [ e(x)p(s,y3t,x) ax (2.6)

We recall a standaird result from measure theory that bounded twice con-
tinuously differentiable functions cen approximete in measure any essentially
bounded function, i,e,, bounded twice continuously differentiable functions
are dense in the weak topology cr(Ll)If) induced on the space Ll by

) the space L~ (cf. Royden [Ref, 27] or Halmos [Ref. 31])s Therefore

the probability for eny Borel set can be obtained from the fundamental
solution as a limit of twice continuously differentiable functions, The

other properties of a transition density &lso follow from the properties

of a fundamental solution, |

We have therefore shown that the transition density satisfies Kolmogorov's

backward equation,

We will now sketch the arguments to obtain the forward equation, The

formal adjoint of the backward equation is

et SEL-67-035
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3t 5%, T (2.7)

d(a,(t,x)f) az(c (t,x)f)
of i 1
of _ _E:—+§§J: 15 ;

i)

|
Assuming that & fundamental solution, p, exists and is unique for the
backward equation, to chow that p satisfies the adjoint equation
(Kolmogorov's forward equation), besldes assuming the appropriate difrer-
entiability of a, ¢ and p, we must assume that the following terms,
obtained by integrating by parts to derive the forward equation, are

ZEero,

P(S;Y5t:x)ai(t:x) = 0 i=12,ee0yn (2.8)
"‘P(‘s’yﬁ&)\cid(t\’x? = 0 1, = 1,2,e44,n (2.9)

a(P(S,y;t,X)Cij(t,X)) 0
axi | = 0 1,3 = 1,2,40e,n (2.10)

-00

We have shown that 1f Kolmogorov's backward equation hes a unique
fundamental solution then this fundamental solution is the transition
density for the process [x%]. If we assume the appropriate differenti-
ability assumptions for the coefficients & and ¢ to make Kolmogorov's
forward equation meaningful and we assume this forward equation has a
unique fundamental solution with the above equations (Egs, 2.8, 2.9,
2.10) being satisfied then we will have shown that the transition density

satisfies Kolmogorov's forward equation,
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2. Usual Results for Existence and Uniqueness of Fundamental

Solutions of Linear Parebolic Egquations

To prove existence end unigueness of the fundemental solutions of

Kolmogorov's equations we make use of some of the usual results for

fundamental solutions of linear second-order parabolic equations, We

review these results now,

Consider the general linear homogeneous second-order parabolic equation

in the strip H= (0,1] @&"

n

n
_ %y du du
Lo Y :%laij(s,ﬂ Wigy—d +§lbi(8,y) yi c(s,y)u + s = O

(2.11)

The following theorem is due to Il'in, Kalashnikov and Oleinik [Ref. 32]
(cf. also Refs., 33,34).

Theorem 2,2, Suppose that all the coefficients of the above equation are

bounded and continucus in H in the set of variables s,y eand that

they setisfy a Holder condition in y:

‘aij(s)y') - aij(s’y)l S MI y' = YI)\

|bi(s)y') = bi(s:Y)| SM‘ y - Yll ? 1, = 1,2,40eyn
A>0

’ V4 l
le(s,y’) - e(s, ¥ <My’ - ¥l

N e e

In eddition suppose that the coefficients aij satisfy in H a

Hslder condition in s:

d . A
Iai,j(s )y) - aij(s,y)' SMlS - 8
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and

n n
2
> oy (sykga, > uYa?  u>o
1,3=1 1=1

for all (s,y) ¢ H and real numbers al,az,...,an. Then the parasbolic
equation has & fundamentel solution p(s,y;t,x) and this solution

is unique. For p(s,y;t,x) we have the following estimates
p(s,y;t,x) >0, s<t, s,te [0,1],

p(s,y;t,%} < K(t - s)'n/2 exp [-aly - o /(s - S)],

-

@ﬁ%i:,}l < K(t - S)'(m'l)/2 exo -0y - x%/(¢ - )|,
N 1 - )
2 . - - [ J

Tr(eagitin) | < (s - o)VE e [y - (s - 0),
193 L .

where K &and « are positive constants,

If the derivatives

2
aaij ) 8 abi

oy, ’ By@yd > oy

i,J = l,2,...,n

are bounded and continuous in H and satisfy a Holder condition in

y, then p(s,y;t,x) as a function of t and x satisfies the

equation
2
3°[a, ,(t,x)p] olb, (t,x)p]
* 13\© e .9 _
gt’xp =z axiaxJ 'z Ox - o(t,x)p 5% = U
1, o (2.12)
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3. Existence of the Transition Density

To show the existence of the transition density for (x ] we
apply a technigue used by Mortensen [Ref, 8], We first introduce a

"simpler" process {yt) satisfying
dy(t,w) = b(t,y(t,w)) aB(t,w) (2.13)

Using the results for existence and uniqueness of the fundemental
solutions for linear second-order parabolic equations with bounded Holder
continuous coefficients (Theorem 2,2) we can easily show that the tran-
sition denslty corresponding to {yi}, Pys exists, 1is unique and satisfies

Kolmogorov's forward and backward equations

apY(S,y,t x) 1 9 pY
ST 3% < EZ%JW’ 3@73 (E)
1,3

aPY( S)Y3t;x) 1 i (t x)PY)
ot = ES Bi Bx (2.15)

To show that the transition density for [xt], Pys exists and is
suitaebly differentiable is more difficult because & can be unbounded,
We first obtaln the existence of px by using the results for absolute
continuity of the measures of solutions of stochastic differential

equations (Theorem 1.3).

Lemma 2,3, Let [yf] and {xt] satisfy
ay(t,w) = b(t,y(t,w)) dB(t,w) (2.13)
31 SEL-6T-035




ax(t,w) = a(t,x(t,0)) at + b(t,x(t,0)) dB(t,w) (2aa)

where t € [s,1] x(s) = y(s) = y.
Then Ky << by and the transition density exists for the process

[xt} and & version of it for all t € [s,1] is given by .
py(s,y5t,%x) = Elo|x, = xIpy(s,¥;t,x) (2.16)

where Iy and Ky are the measures induced on Cn[s,l] by (xt]

and {yi) respectively and

t
T -1
o vy sSust) = e |[ e (wy)e (uy,) dy,
S5
1 4 1 2 ‘
-3 flb' (u,y,)a(u,y )| © du (2.17) .
S

2
¢ = b"b. The function Pt is the Radon-Nikodym derivative duX/de

for the processes {xu} and [yu} s <u<t.

Prouf,

The fact that by << Hy follows from Girsanov's theorem (Theorem 1,3)

Fix t. Let A € B(xt). Then
mn) = [0y dny = [o an (2.18)
A A

We can replace 9 by Py in the above equation because

(¢t, B(Bu’ s <u<t)) is a mertingale, This will be discussed further :
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in the next chapter (Lemma 3,5).

“X(A) = jf@t duy = ./‘E[wt|xt] Ay
A A
= j.E[¢tlxt = xlpy(s,¥;t,x) dx (2.19)
A
By the Radon-Nikodym theorem we have
Py(s,yit,x) = Elox, = xlpy(s,y5t,x) ece. dx (2.20)

We can also immediately obtain this result for a countable set S dense

in T = (s,1]. To show that this representation is valid for all t e (s,1]
we proceed as follows, Let t ¢ S, t ¢ (s,1] and consider sets

Aa = {xt <a}e B(xt), a € Qn. These probabilities cean be obtained from

S by the continuity of the sample paths and these sets generate B(xt).

So we can obtain, via a limit, the conclusion for V A € B(xt). (]

4, Differentiability of the Transition Density

Lemma 2,4, The transition density for the process (x.}, py, satisfies

Kolmogorov's equations,

Proof,
We will consider primarily Kolmogorov's forward equation since the

additional results for the backward equation follow by the same technigues,

We recall a few preliminaries first, Let
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Gy = (o sup | x(t,w)| <M} (2.21)
s<t<1

‘Since (x } has continuous sample peths we have

P(§QM> - 1= o P(2,,) (2.22)

Also

Heuristically our approach is quite simple, Consider sets
r,=(x: |x <n)@(0,1]. We will give & Green's function for Iy
which 1s not difficult to construct since the coefficients of the partial
differentiael equation are bounded on this set, For large M, P(QM)=¥ 1
so that a description of the transition density when the coefficients
are bounded is (in some sense) & good approximation for the unbounded
case, We will show that the sequence of Green's functions is monotone
increasing, Since we showed that the density function for the diffusion

process {xt) exists, we are able to bound this increasing sequence,

For T the Green's function pn(s,y;t,x) for

. (t,x)e ) e, (t,x))
) - %) lz ST G
i

exlsts and has the properties described earlier for fundamental solutions

of parebolic equations with bounded coefficients (Theorem 2.2),
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It follows easily from probebilistic considerations that

./ pn(s,y;t,x) dx<1l |yl <n 0<s<t<l (2.2k)
|x| <n

and similarly

[ p(s,y;t,x) dy <1 |x <n 0<s<t<1 (2.25)
Iyl <n

Let z € an be fixed and let ¥ be a smooth nonnegetive function
with compact support such that 2z 1s in the interior of the support of
VYo Choose m 80 large that the support of ¢ 1is contained in |x| < m,

Define fj (J=m, m+1) as

es9) = | plswstux) ax (2.26)
|« <3

Then f, satisfies the differential equation in Pn and for s =t f, =V

J J
end f ,>0=1 on | x} = m, Hence by the maximum principle for
pertial differential equations [Ref, 33] fm+l >f in T . If ve then
replace ¥ by & sequence of nonnegative functions which approximate the

Dirac measure concentrated at 2z we obtain

since |z] < m 1is arbitrary, We extend the definition of p, to a"

wumMg%=OifH|M|ﬂ>m Thus
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for ¥,y e &, t,s € [0,1], t > s, i
The sequence (pn) has a finite limit a.e. (=p) but we must show

that this limit is a soluticn of the parabolic equation, i.e,,
g = O (2.27)

We could in fact bound the sequence by the estimates obtained for parabolic

equations with bounded coefficients since the constent o 1in Theorem 2,2
can be shown not to depend on the boundedness of b &and ¢ and the
constant K can be simply related to the coefficlents b and c.

Therefore for t > s x,y € gzn

lim pn(s,y;t,x) = p(s,y;t,x) =a.e. (2.28)
n

is well defined (actually everywhere)., It follows by the above that p

is bounded and by Fatou's lemma
fp(s,y;t,x) dx <1 (2.29)
jp(s,y;t,X) dy <1 (2.30)

Consider a bounded domain D C g{n® [0,1] and let t > s, Choose
another bounded domein E such thet DCECEC g{n ® (s,1]. Choose :
m so large that E C T‘m. By the Schauder-Barrar-Friedmasn interior

estimates [Ref. 33] '
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(o) op, 82pn op,
b P ’ P
n éxi axibe ot

are uniformly bounded and equicontinuous in D, Hence by the Ascoli
theorem [Ref, 27] there exists & subsequence of (pn) which together

with its derivetives converges uniformly to 5 in D, Therefore
fp = O (2.31)

But

Thus

gl
i
ke
o
s
ol

(2.32)
eand since D was an arbitrary bounded domain
p = 0 x,yeq, s<t, ste [0,1]

For completeness we should show that p 1s indeed a fundamental
solution but this is straightforward and will therefore be omitted,

We should also verify that the assumptions on p +to derive the
forward Kolmogorov equation ere valid., These assumptions are easily

verified since
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and c¢ 1is bounded,

The fact that p 1s & transition density, i,.e,,

jp =1 (2.33)

as well as the uniqueness of the fundamental solution follow from our

proof for existence of the density. |
B. SOME REMARKS

Remark 1,

Theorem 2,1 is quite analogous to a result obtained by Eidelman
[Ref. 34]. For other results for linear parabolic equations with unbounded
coefficients the reader is referred to Krzy?aenski and Szybisk [Ref, 351,
8. Ito [Ref. 36], and Aronson and Besala [Ref. 37,

The method of proof given here seems to simplify somewhat the usual
construction of fundamental solutions by exploiting the probabilistic

interpretation of the parabolic eguation,

Remark 2,

We have obtained the existence and uniqueness of a trensition density
for a diffusion process which is the solution of a stochastic differential
equation and have shown that it is suitably differentiaeble when some of
the coefficients can be unbounded. Existence and unigueness of the tran-
sition density is not true for arbitrary smooth but unbounded coefficients.

We construct an example from one-dimensional diffusion theory to show
that for some smooth but unbounded coefficients we will not obtein a

usual density function, i,e.,
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[p <1 (2.34)

and the density function will not be unique,

Consider Brownien motion on the interval [-n/2,n/2], It is intuitively
clear (and not difficult to prove) that almost all sample paths of the
Brownian motion will hit the boundaries (x = -n/2,%/2). With suitable
boundary conditions we cen have a set of sample functions of positive
probability ebsorbed at the boundaries,

Now we define a diffusion process on the extended real line by epplying

the smooth one-to-one transformation
y = tanx (2.35)

to the Brownian motion on the intervel [-m/2,n/2]. Therefore we have

that a set of sample functions of positive probaebility of the new diffusion
process is sbsorbed at the boundaries (x = +4w,-w), To clearly characterize
this new diffusion process we compute its differential generator recalling
that the differential generator for Brownian motion is

éﬁg

sz

o]

We obtain the differential generetor for Vi = tan Bt by applying the

chain rule for differentiation to

f(y) = £(tan x) (2.36)

We obtain
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of of 9

i (2.37)
2
3°f Bfax &, afa

We use the following elementary results

d tan x

seczx
dx

d seczx

2
i 2 sec x tan x

seczx tanzx +1

[}

to obtain the differential generator
2

2,
% (l + yz) :yz + y(l i yz) % (2.39)

for the diffusion process on the real line, The diffusion process that

we have constructed has the property that

fdP< 1 (2.40)

where P 1is the transition measure for the process, Furthermore, by
our construction it follows that the above differential generator (Eq. 2.39)

does not correspond to a unique diffusion process,
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Remark 3.

Random initial conditions for the stochastic differential equations
cause no difficulty for determining a transition density if we assume that
these random variables have & finite second moment (though finiteness
a,s8, suffices), that these random veriasbles are independent of the Brownian
gotion, that the corresponding probability measures for these random
variaebles have & density with respect to Lebesgue measure which is suitably
differentiable, and that we change the various o-fields and the proba-

bility measure P to include these random variables,
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III, THE ABSOLUTE CONTINUITY OF MEASURES OF DIFFUSION PROCESSES e

The main objective of this chapter 1s to obtaln necessary and suf-
ficent conditions for the absolute continuity of the measure of the
solution of one stochastic differential equation with respect to the
measure of the solution of another stochastic differentiel equation and
to obtain an explicit expression for the density function in the space
of continuous functions, The necessary and sufficient conditions derived
here are analogous %o the conditions obtained for Gausslien processes with
independent increments [Ref, 12], To obtain these conditions a cherac-
terizetion for the density function will be given which will indicate to
some extent 1ts structure,

The conditions for absolute continuity of the measures of solutions
of stochastic differentiel equations have application in commuinication
theory to the detection problem when the two hypotheses cen be modeled .
by stochaestic differential equations, The characterization of the density
function should be useful for acquiring & better understanding of the
nonlinear filtering problem and the assoclated stochastic optimal control
problem,

The main result of this chapter is the following theorem,

Theorem 3,1, Let [xt] and [yi} satisfy

dx(t,w) a(t,x(t,w)) at + b(t,x(t,0)) aB(t,w) (3.1) ’

dY(t)w) f(t)y(t)w)) dt + S(t)y(t)w)) dB(‘t,(D) (3.2)

where t ¢ [0,1], x(0) = y(0) and the coefficients a,b,f end g
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satisfy a global Lipschitz condition in the second variable and are
continuous in the first variable and the diffusion matrices b and

g have inverses for ell values of their two variables, For

e dalle (3.3)

it 1s necessary and sufficient that
T T
bb = g8 (3.4)

Corollary. For Hy << Hy the density function Mt can be written as

a functional of only X 0<u<t

t
M(x, 0<ugt) = exp| [(2(s,x(s,0)) - als,x(s,0))) e (s,x(5,0)) ax(s,0)
0

t
- [ (£(e,x(5,0)) - als,x(5,0))) ¢ (5,x(s,0))als,x(s,0)) s
0

N =

t
[ (£(s,x(5,0)) = als,x(s,0))) e (s, x(5,0))(£(s,x(5,0)) - a(s,x(s,0))) ds
0

(3.5)
vhere

c = bb (3.6)

We note that while this theorem is similar to the condition for
Gaussian processes we have had to be more restrictive in our assumptions
than in the Gaussian case since we have had to assume that the diffusion

matrices have inverses,
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A, ' SOME SUFFICIENT CONDITIONS FOR ABSOLUTE CONTINUITY

To obtain necessary and sufficient conditions for the absolute conti—’
nuity of measures of solutions of stochastic differential eguations we
must first obtain an extension of the known sufficient conditions for
the absolute continuity of the measures, The extension is not difficult
using some techniques and results of Skorokhod [Ref. 13]. We first present
some of Skorokhod's results,

l, Skorokhod's Results

Lemma 3.1, If b(t x) and g(t,x) are continuous in t and satisfy

a global Lipschitz condition in x, then the process {xgu)} and

{yﬁa)} defined for a = {O,tl,...,ta =1} eas

t
x(a)(t,a)) = x(o‘)(tk,w) + /b(tk’x(a)(tk’w)) aB(s,w) (3.7)
Yy
t
Y ew) - y(a)(tk,w) + fe(tk,y(a)(tk,w)) dB(s,w) (3.8)
Yy
for t e [tk’tk+l] and
{0,m) = x(0,0)
y(a)(O,w) = y(0,w)

will for every t € [O,l] = T converge in probability to the soluticns

of

SEL-6T7-035 Ly

@




- t

i x(t,0) = x(0,0) + ]nb(s,X(s,w)) dB(s,w) (3.9)
0
' t
y(t,w) = y(0,0) + fs(s,y(s,w)) dB(s,w) (3.10)
0

as maxk(tk*l - tk) - 0 (i.e., the partitions become dense in the

interval [0,1]).

Lemma 3.2, Let the finite-dimensional distributions of the processes
gn(t) and qn(t) converge weakly to the finite-dimensional distri-
butions of the processes ((t) and n(t), respectively, and let
Pgn), Pl’ Pgn), and P2 be the measures in function space corre-
sponding to the processes Qn(t), t(t), qn(t) end n(t). Moreover,

.- let the measure Pgn) be absolutely continuous with respect to the
measure Pgn) for all n, let
dP:(Ln) :
y —my (x(t))
ar,"

be the density of Pg_n) with respect to Pgn), and let

o 1
lim 1im P ]log—(—)-(x (t))] >n¢ = o (3.11)
Now n-ow szn n
o Then the measure Pz is absolutely continuous with respect to the

- . meeasure Pl'
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Lemme 3.3. Let the processes Qn(t), t(t), qn(t), n(t) satisfy the

conditions of Lemma 3,2, and moreover, let dPgn)/dPgn) exist, If 23
£ (t) = 6(t), n () ~n(t) am ,

dPgn)

(€, (t)) »p '

dPin; n

in probability, then
sz
= @ (£(t)) (3.12)

Theorem 3,2, Let gl(t) and Cz(t) be Gaussian processes with independent

increments such that

RECIFON oo - 3 (o fe30) o k

In order that pc (t) be absolutely continuous with respect to
2

" it is necessary and sufficient that A.(t) = A, (t).
£,(t) 1 2

2. New Result

With these results of Skorokhod we are now in a position to extend

the sufficient conditions for absolute continuity.,

Theorem 3,3, If the processes [xt} and (yt] are defined as the

solutions of the stochastic differential equations
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continuous with reipect to the measure P%i)x) corresponding to the
’
()
process nt,x(T)' We denote xp as
() (@)
x(t0) = x(t,w) + gt,x(tk,w) telt,t, ;]

and by Lemma 3,1

xgu) ~ x, in probebility t e [0,1]

t

Since

!
(=]

(2)
dP -
G (¢(x)) =
ap
the conditions of Lemmes 3,2 and 3,3 are setisfied and therefore
My << Ry
Similarly
px << “y ]

B. CHARACTERIZATION OF THE DENSITY FUNCTION

1, Assumgtions

Before considering necessary condltions for the absolute continuity

(3.19)

(3.20)

of the probability measures we will make some assumptions as to the type

of stochastic differentiel equations to be considered and assumptions on

the coefficients in
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dx(t,w) = b(tyx(t;w)) dB(t,w) (301)"') .

dy(t,w)

]

3(t;y(t)m)) dB(t,O)) (3-15)

where bT(t,x)b(t,x) = gT(t,x)g(t,x) for all t e [0,1], x e &,
b and g satisfy a global Lipschitz condition in x and are
contimious in t end c ' exists vhere c = bTb, b and g are

n x n matrices and {xt], [yt] and [Bt) are n-dimensional processes

then

My = Ky (3.16)

where “X and “Y correspond to the measures induced in function

space by [xt} and {yt] respectively, 4
Proof, E
Define the homogeneous processes with independent increments { and n
ne .
T
by (1) = [ B(t,x) aB(s,0) (3.17)
t
T
ny o(7) = [ 8(t,%) aB(s,0) (3.18)
J
t
for 1>t

it then follows from Skorokhod's theorem (Theorem 3,2) that PE%)X) s o
)

corresponding to the process Ct x(r) is for all t &and x absolutely
J
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ax(t,w)

dy(t‘)w)

where

x(t,w)

y(t,w)

B(t,w)

a(t,x(t,w))

b(t)x(t;w))

£(t,y(t,w))

g(t,y(t,w))

a(t,x(t,w)) dt + b(t,x(t,w)) aB(t,w)

£(t,y(t,0)) at + g(t,y(t,0)) dB(t,w)
(x,(t,0),000,% (t,0))T € [0,1]

(v,(,0),000, (t,0))7

(B,(£,0),++4,B_(t,0))"

(e, (t,x(t,0)))

(b ,(t,x(t,0)))

(£,(t,5(t,0)))

(e;4(t,¥(t,0)))

Assumption, We will assume that the coefficlents satisfy a global

(3.1)

(3.2)

Lipschitz condition in the space variable and are continmuous in the

time variable and that the diffusion matrices b aend g have

inverses for x € mn, t € T, We will assume the interval of solution

of these equations is T = [0,1] and that x(0) = y(0) although of

¢ course this last assumption on the initiesl conditions can be weakened

to the case where these random variables have measures that are

equivalent,
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By the real valued function M_ on C,[0,t] we will mean the
density function when Hy << My where My and My correspond to the
measures induced by the solutions of the respective stochastic differ-
ential equations above, By the Radon-N'kodym theorem we have for

A€ B(y, 0Susgt),

m(n) = [ M (3.21)
A

2, Uniform Integrability and Some Results From Martingale Theory

Definition, Let A Dbe a subset of Ll(Q,%,P). A 1is uniformly integreble

if

sup j. | X(w)| P(d&w) » 0 &8s n -» w R
YAy 2 -

The following results indicate the importance of uniform integrability,

Theorem 3.&. Let (fn) be a sequence of integrable random variables
that converge a.e, (or in probability) to & random varisble f, Then
f 1is integrable and the convergence of fn to f takes place in

the Ll norm if and only if the fn are uniformly integrable,

Theorem 3.5 (Compactness Criterion of Dunford-Pettis). Let A be a subset

of the space Ll. The following three properties are equivalent:
i, A 1s uniformly integrable,
ii, A 1s relatively compect in Ll in the weak topology UCLl,Lm). c

iii, Every sequence of elements of A conteins e subsequence that !
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converges in the sense of the topology o(Ll,IF)

We state some well known results from martingale theory,

Proposition 3,1 (Jensen's Inequality), Let ¢ be & convex mapping of q

into @ &and let X be an Iintegrable random variaeble such that the

composition ¢ O X 1s integrable, The following inequality then holds
c 0 E[X|8] < E[c o0 X|§] (3.22)

where § 1is a sub-o-field of ¥,

Theorem 3.6, Let (Xt) 4 be @ right-continuous (or only separable)
teq
supermartingele where m+ is the positive half line

a, Suppose that

sup E[xt] <w

The random variebles X, then converge a,s, to an integrable

. t

random varieble X; as t - oo,

b. Suppose thet the X, eare uniformly integreble, The ebove

t

condition is then realized, the process (Xt) . is &
teq U=}
supermartingale, and the convergence takes plece in the L

norm,
’ c. Suppose that the Xt are uniformly integrable and that the
v process (Xi) is a martingale, The process (xt) is

+
teg U{w)
o e then & martingale,

The above results can be found in Meyer [Ref, 38]., The following

51 SEL-6T-035

R R N DR T T TR TR T R R T T AR TR




[N
ba

results for necessary conditions were developed through discussiocns with .o
S. Watanabe,

i 3. FPFunctionals of Brownian Motion

Our first task is to give some general representetion for the
density function M%. To accomplish this we will have to obtain some

preliminary results on representetions of martingales of Brownian motion,

Definition, The sub-0-algebras QBt are defined as

B, = B(Bu, 0O<uc<t)

Theorem 3,7. Any LZ functional of n-dimensional Brownian motion can be

“ represented by an infinite sum of stochastic integrals plus a constant,

Corollary. Every square integrable martingale of Brownien motion can be

represented by an infinite sum of stochastic integrals plus a constant, z

Proof (Theorem).

K. It3 [Ref, 39] proves the theorem for 1 dimensional Brownian motion,
the n dimensional case follows from his results,

(Corollery), Recall T = [0,1] for this chapter so let t e [0,1]

and given
2
sup E(Yt> < o
teT !

and [Y&,E&] is a martingale, By the martingale convergence theorem
(Theorem 3,6) 3 one and only one (up to equivalence) Y, such that

for t e [0,1] .
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Y, = EY,|B,] e, (3.23)

By It0's representation we can write

[
I

1
ZId)i(s,a)) aB_ + c (3.24)
10

-

1
E z_/0¢i(s,a)) a8 B} + c
1

-t

+ zE /Oltbi(s,w) dBSIBt +c
1

t
ZEf¢i(s,w) stl Bt
: - (3.25)

i

vwhere the {Qi(s,w)] are n dimensional vectors which are Bs measurable
for each s, (The integrand product above will mean throughout this
chepter the usual inner product,) Since {Yt’ Bt] is & square integrable
martingale the first sum is B & measurable and the second sum is zero,

Thus

t
Y, = ZIoi(s,w) dB_ +c a.s. (3.26)
1 0

This was done for fixed t, Since the mertingale is continuous we can
apply the result to a countable dense T set and we therefore have for

all t

t
S Y, = Zfoqsi(s,w) dB, + ¢ a.s. | (3.27)
i

In our attempt to characterize the density function Mt it is necessary
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to relate the o-algebras B(xu, 0<u<t) and B(yu, 0<u<t) to

B(Bu’ 0<uc<t)

Lemma 3.4, For all t

Proof,

We will prove only the last equality i.e.,
B(x, 0<ugt) = B(Bu, 0<uc<t) (3.29)

since the other proof follows similarly,
Since the coefficients of the stochastic differential equation are

Lipschitz continuous we can apply the recursive formula (Picard iteration)
thet K, ItO uses to prove existence and uniqueness of the solution of
stochastic differential equations. If we let x'(t,0) be the n'"

solution in the recursive procedure we clearly have

B(X,Oslxst)CB(B OSust)

u u’

Since we are performing a countable operetion we can pass to the limit

and obtain
B_(xu, 0<u<t)C B(Bu, 0<u<t)

Conversely, since the diffusion matrix is nonsingular given any x(t,w)

we can determine B(t,w) and therefore
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B(x, 0Su<t)DB(B, 0<ugt) )

We remark that this result is not always true as Ito and Nisio [Ref, L40]

have indicated, They modify en example of Girsanov and show that
B(x, 0<u<t)ZB(B, 0Sugt)

Conversely, trivial examples when the diffusion matrix 1s singuler will

show that the other o-algebra inclusion is not always valid, i.e.,

B(xu, ogugt)sz(Bu, 0<u<t)

We use the result of the preceding lemma (Lemma 3.4) to make the
following assertions about the density function and subsequently to derive

an expression for the density funetion,
Lemma 3.5, The density function Mt 1s a martingale of Brownian motion,
Corollary, The density function Mt is & continuous function of t,

Proof (Lemma).

Let AeB(yu, OSuSt):B(Bu, 0<u<t) and let 7>t

jFMT duX = .[E[M%I Eat] d“X = J'Mt dHX (3.30)
A A A

Therefore E[MrlEt]=Mt BeSe  Hy and {Mt’et] is & martingale,
QCorollarzz. If Mt is square integrable it follows by the

representation for L2 martingales of Brownien motion, Otherwise since
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0 < Mt < o 8,8, My we can approximete by L2 martingales and obtain

the result by the martingale convergence theorem (Theorem 3.6). |

4, Decomposition of Supermartingales

Doob in his development of martingale theory gave a unlque
decomposition of supermartingeles for the discrete parameter case by a
simple proof explicitly exhibiting the decomposition, The decomposition
for continuous parameter right continuous supermartingales was finally
completely solved a few years ago by P, A, Meyer., The problem is
compliceted & great deal by the continuous parameter and the decomposition
is not valid for &ll continuous parameter supermartingales as it is for
the discrete perameter case, Thus a number of definitions have to be
glven,

The concept of stopping time will play an important role in a number
of the proofs given subsequently, A stopping time is defined as follows,
Definition, Let (Q,F) be a measure space and let ({St)t , been

increasing fam%ly of sub-g-flelds of F. A positive rgzdom variable

T defined on Q 1s said to be a stopping time of the family {ﬁt]

if
{w: Mw) <t) e 5, for every te at

A supermartingale is decomposed into the difference of a martingale
and an increasing process, An important variety of increassing process is

the following, since it will insure uniqueness of the decomposition,

Definition, An increesing process {At} is said to be natural if for
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every positive bounded, right-continuous mertingale [Yt} we have

£ £
E {)Ys a| = E LYS_ aA_ (3.31)

Remark,

If {At] is continuous then it is natural,

Definition, Let {Xt] be a right-continuous supermertingale relative
to the family {Bt] and let T be the collection of all finite
stopping times relative to this family (respectively, 35 the
collection of all stopping times bounded by & positive number a);
{X,) 1is said to belong to the class (D) (respectively belong to
the class (D) on the interval [0,al) if the collection of random
variables XT Te9J (respectively T ¢ Ea) is uniformly integrable,

{X,) is said to belong to the class (DL), or locally to the

class (D), if {X,) belongs to the class (D) on every interval

[0,a] (0 <a <w),

Definition, Let T be a stopping time relative to the family of o-fields

(%t) « We denote by 8T the collection of events A € ﬁw such

teq
that

AN (T <t) e gt for every t € Q+

We will also have occasion in the subsequent work to use the optional

sampling theorem in the continuous parameter cese,
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Theorem 3.8. Suppose that for the supermartingale {Xt] there exists

an integrable random varieble Y such that
X, > E[Y|5,] for each t e &t (3.32)

Let 8 end T be two stopping times such that S < T, The random
variables XS and XT are then integrable, end we have the super-

martingale inequality

Xg > ElX |5g]  e.s. (3.33)

The following theorem due to P. A. Meyer [Ref, 38] represents a
complete solution to the decomposition of right-contiruious, continuous
parameter supermertingales, Its proof will not be included here, but it

can be found in his book as can the preceding definitions,

Theorem 3,9. A right-continuous supermasrtingele {xt] has a decomposition
X, = Y, -A (3.34)

where {Yt] denotes a right-continuous martingale and fAt] an
increasing process if and only if [Xt] belongs to the class (DL).
There then exists a decomposition for which the process [At} is

natural, and this decumpnsition 1is unique,

5. An Expression for the Density Function

We have now the results necessary to characterize the density

function M%.
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Theorem 3,10, If the density function, M is strictly positive (a.s.

t’
p,x) then there exists a function ¢ with o(s,e) 5, measurable

such that

t t
M, = exp fcp(s,m) dB - % [lcp(s,w)|2 ds (3.35)
0 0

Proof,
By two previous lemmas we have that

i, Mt is a martingale of Brownian motion,

ii, Mt is a continuous function of +t.

Recall that t € [0,1], Define stopping times o (with respect to S‘.:t)

as

L]
1]

3
P,
ct
=
A
SAT

or Mt > n}

(3.36)

1 if the above set is empty,

It is elementary to verify that (Tn) is @ sequence of stopping times
of the family (Bt)' Clearly T  1is increasing with n and T 1t 1
8eSe  fyo

We prove the latter. If T <1 on A : p.x(A) > 0 then either

M, >n, ¥n end fMtdp.x=+oo or Mt<l/n, Vn end M =0 on A
A

both of which are contradictions, Note alsoc that 1lim Tn =T 1s &
stopping time since (Tn) is increasing. We truncate the density function

Mt by use of the stopping times Tn
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) - u (3.37) -

The pair (Mﬁn),ﬂaT
n)"

) is & maertingele by the optional sampling theorem, .
The function, Mg , 1s square integreble for each n, We now consider

(n) (n)
Since Mﬁn) is bounded away from zero and bounded above for each n

E(Ilog Mﬁn”) <o 50 that 1log Mgn) is & supermartingale by Jensen's
inequality, Since Xgn) is bounded ebove and below it is easlily verified
that it is in class (D), Therefore we apply the Doob-Meyer decomposition
and obtain

NOJEENORINC)

= t (3-39) 0

where (%in),lgqj ) is & mertingasle and Aﬁn) is an increesing process,
n

(n) -

By Meyer's construction of the decomposition, the increasing process At

will be continuous if Xin) is continuous, Thecefore (see remark on

page 57) Ain) is natural and the decomposition is unique (Theorem 3.9). 2
Since Ain) is continuous and Xﬁn) is bounded it follows that Yin) is

bounded, Therefore the martingale (an),ﬂir ) is continuous and square

integrable and can be represented by a sum ofnstochastic integrals (which,

because of the continuity, can be summed to one stochastic integral) plus

a constant term, Since Mo =1 and AO = 0 (by definition)it follows

from Eq, (3.39) that Yo is zero end therefore the constant term is zero,

Thus we can write Xﬁn) in the form

t t .
xin) B j-¢(n)(s,w) aB_ - /'dAgn) (3.40) &
0 0
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0]

Let dz(t,w) = o(t,w) dB, - dA,

rule (Theorem 1,2) of K. ItG to

61

0

—
F Let m > n, then
(n) (m)
= M1 (3.01)
M t Tt<T)
where I[t < Tn} 1s the indicator function for the set (t < Tn].
By the uniqueness of the decomposition
(n) (m)
A = oA I[tSTnl (3.42)
and thus
¢(n)(3,w) = ¢(m)(5,aﬁI[t <T ) (3.43)
- n
* By the assumptions on M and the definition of (Mﬁn))
thus we can define
(n)
At = lim At 8. 8. (30’4‘5)
n
o(t,*) = 1lim cp(n)(t,-) 8.5, (3.46)
n
t
M, = exp ]'cp(s,w) dB_ -f dA_ (3.47)

and apply the stochastic differential
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exp [zt] ;
The term dAt causes no difficulty because At is of bounded variation,
Thus
t 1 t : t .
M, = 1+ [Mo(s,0) B, +3 [ulos,0)l? as - [u ar (3.18)
0 0 0
By definition of the density function
E[M't -1} = 0 (30)"'9)
and [Mt - l,!’t} is a martingele with
t t t ’
1 2 z
E|[Mo(s,0) aB, + 5 [M]o(s,0)® as - [an ]| = o (3.50)
0 0 0]
Since the terms inside the expectation are a martingaele of Brownian
motion this implies
1 2
A = 3 lo(s,w)]” ds (3.51)
t t
1 2
M, = exp fcp(s,w) dB, --z-flcp(s,w)| ds| o (3.52)
0 0
C. NECESSARY AND SUFFICIENT CONDITIONS FOR ABSOLUTE CONTINUITY
We now have established the preliminaries necessary to obtain the R
main result of this chapier, that is, necessary and sufficient conditions o =
for the absolute continuity of measures which are generated by solutions o
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of stochastic differential equations,

Theorem 3.1, Let {xt} and [yf] satisfy

dx(t,w) a(t,x(t,a))) at + b(t:x(t)a))) dB(t;a)) (3.1)

dy(t,w) £(t,y(t,0)) dt + g(t,y(t,0)) dB(t,w) (3.2)

where t e [0,1], x(0) = y(0) and the coefficients a, b, f, g
satisfy a global Lipschitz condition in the second variasble and are
continuous in the first veriable and the diffusion matrices b and

g have inverses for all values of thelr two variables, For Hy = My

it is necessary and sufficient that

bbb = sTg (3.4)

Corollary, For by << My the density fhinction Mt can be written as

a functional of only X 0<u<t

t
M(x, 0<ugt) = em|[(2(s,x(s,0)) - als,x(s,0))) e (s,x(s,0)) ax(s,0)
0

t
- [ (s, x(s,0)) - a(s,x(5,0))) e H(s,x(5,0))als,x(s,0)) s
0

t
- 5 [ (#(s,x(5,0)) - a(s,x(5,0))) (s, x(5,0))(2(5,x(5,0)) - 8(s,x(5,0))) @s
0

(3.5)

viere
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c = bbb (3'6)

Proof of Theorem (Necessity).

By the preceding theorem we know that the density function Mt is

of the following form

t t
M, = e [o(s,0) 8B, - 5 [lo(s,0)® as (3.52)
0 0

We wlll now characterize the vector function ¢ by applying the stochastic

differentiel rule, For any h € cz, he Lz(dt x dP), h: g - q

t t
lim % E exp[fcps dB_ - %f |cps| . ds](h(xt) - h(xo)) l:li.mo % E[h(yt)- h(yo)]
0

AP O 5 t
T
- 5-2—5- h’’ + fh’ (3.53)
1
lim = EIM, (h(x,) - h(x ))] 3.5k
tv o [t i © 18 )
s tlimo % E[(Mt - l)(h(xt) - h(xo)) + (h(xt) - h(xo))] (3.55)
1i lE(h .. ) - h( b . ’
. ¢mo : (xt - xo)) = —~ h’’ +eh (3.56)
where
T\ s 3%n
bTbh =z aqsx—z byybys
fd) 3%
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We recall (somewhat heuristically here) the behavior of products of

ordinary and stochastic integrals es t | O

t t
fas ds faT a8 ~o(t)
0 0

t

t
éas ds{; B, 4B ~ oft)

£ t t
fas stf B, dB_~ fasas ds ~ O(t)
0 0

0]

The ebove results are proved by K. It0 in his derivation of the stochastic

differential rule,

Recall also

t
Mt -1 = f Ms(ps st (3057)
0
and
3 t
h(x,) - b(x,) = [hla_ds +—fh"b b ds +fhébs aB_ (3.58)
0

lim -l-Echp aB_ [h'a ds+-fh“bb ds+fhb as_)| = von’
£t40 t 8’8

Therefore

65

(3.59)
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lin %E[Mt(h(xt) i h(xo))] -

t4 0 g
bib .
= =5~ h’" + ah’ + boh’ (3.60) .
T :
= 5—25 h’’ + fh’ (3.53)

The last equality is from our initiel calculation (Eq. 3.53). Since this

was done for arbitrary h e Lz(dt x dP), h e ¢® we have

bbb = g 8

H
]

a + by

Our hypothesis that My << uY insures that 0 < Mt < oo 8e8, ux.

Proof (Sufficiency),

The proof is elementary so we will only sketch it, First define a
correspondence between measures and solutions of stochastic differential

equations (where we have suppressed the arguments of the coefficients)
Wy~ b dBt
Wy~ & at + b dBt
Wy~ & dB,

w,~ £ at + g aB,
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- From the usual results for absolute continuity (Theorem 1,3) we have

Hy = B
IJ.3 = “)_"
and from our extensions we have
B = M3
It easily follows from the transitivity of the absolute continuity relation
that
Mo = W), '
Proof of Corollary,
We note from our proof of necessity for the theorem that
]
. f = a+ by (3.61) ]
80O
-1
o = b (f - a) (3.62) !
and '
T, @B, = b'l(dxt - & dt) (3.63)
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Upon substituting in the expression for the density the above quantities

for ¢ end dB, we obtain the result, | TN

SEL-6T-035 68

B L L LT R R W e |



IV. THE CONDITIONAL PROBABILITY DENSITY

A, INTRODUCTION AND MAIN RESULT

Consider a vector Markov process {xt} satisfying
dx(t,0) = a(t,x(t,0)) dt + d(t,x(t,w)) dB(t,w) (L.1)

whose states X, cannot be observed directly but only through the noisy

observations
dy(t:w) = S(t;x(t)a))’y(t:w)) at + h(t,}’( t)w)) dg(t,w) ("“02)
where t € [s,1] x(s) =0a, y(s) =0

x(t,w)

(%,(£,0), %,(£,0), 000, (£,0))"

(60) = (3y(6,0),7,(t,0), .00,y (t,0))

a 1is a vector in mn, b 1san nx n matrix, g 1s a vector in mm
end h 1san mxm matrix and {Bt] and (Et] are independent
Brownian motions in mn and mm respectively,

Many control and communication problems associated with these stochastic
differential equations require knowledge of the conditional probability
density p(x,t|q,s,yu, s <u< t) which is the probability density that
x, = X given the observations B(yu, s<u<t) and that x(s) = a,

In this chapter we shall show that such a conditioneal probability
density function exists and shall give a formula for it (Eq, h.lS). This

formula 1is difficult to ~valuete as it stands and therefore we shall obtain
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from it a stochastic differential equation that will describe the evolution

in time of the conditionel prcbability density., This equation is a non- -
linear equation and except in certain very special cases [Ref, 41] no .
explicit solutions are known,

The main result of this chapter is the following theorem, -

Theorem 4,1, Let [xt} and {yt) satisfy

ax(t,w)

a(t,x(t,w)) at + b(t,x(t,w)) aB(t,w) (4.1)

ay(t,0) = 8(t,x(t,0),7(t,0)) at + h(t,y(t,0)) dB(t,0)  (4.2)

where x =@, y =0, te [s,1], {Bt] and {St] are independent
Brownian motions in mn and Qm respectively and
1) The diffusion matrix b(t,x) 1is HOolder continucus in t,
globally Lipschitz continuous in x and globally bounded, N
Moreover, the symmetric matrix cr(c = bTb) is strictly positive

definite, The terms

acij(t,x) azcid(t,x)

axi g BxiaxJ

i’J = l,z,...,n

are globally Lipschitz continuous in x, continuous in t,

and globally bounded.

11) The transfer (drift) vector a(t,x) is continuous in t end

globally Lipschitz continmuous in x, The terms
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aai(t,x)

—g'x-;—' i= l,z,...,n

are globally Lipschitz continuous in x and continuous in t,
i11) The transfer (drift) vector g(t,x,y) and the diffusion matrix
h(t,y) satisfy a global Lipschitz condition in x &and y and
.are continuous in t, Moreover, the symmetric matrix f (f = h;%)
1s strictly positive definite.
Then the conditional probability density p(x,tla,s,yh, s <u<t)

exists and satisfies the following stochastic differentiel equation

ap _ -]-_. i ( J(t x)pt ia(ai(t x)pt) at
t N2 Bx Bx
i,J=1 i=1
vhere
Pt = P(x)tlaysyyu) s<uf< t) ()-I-.,-#)
St = S(t:x,yt) (""05)
g, = f(t,,) (1.6)
f‘l’tg(t’x‘b’yt) dl“x
Iét = ()417)

f“’t Ay
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t
T -1
vy = V(x,y, 8Susgt) = exp fe (u,x,,¥,)f (w,y,) ay,
5

t
- % ng(u,xu,yu)f-l(u,yu)g(u,xu,yu) du (4.8)
8

Stratonovich [Ref, 2] was apparently the first to consider the non-
linear filtering problem, His equation for the evolution of the conditional
probability differs from our result because his stochastic integrals are
not interpreted in the K. ItO sense [cf, Ref, 9], Subsequent to Stratonovich,
Kushner [Refs. 4,5,6], Kashyep [Ref. 3], Bucy [Ref, 7], end Mortensen
[Ref., 8] have also discussed this problem, We rigorously derive the
stochastic equation for the conditional probebllity under weaker assumptions
than has been done [Refs, 6,8], The style of proof that we shall give
was first used by Mortensen but our results are extensions of Mortensen's B
work by allowing coefficients of the stochastic differential equations
to be unbounded and assuming & more general form for the stochastic
differential equations, Recently Shiryaev [Ref, 42] has sketched a proof .
of the equation for the evolution of the conditional probability density
for a more general problem than we have considered but he did not indicate
the assumptions that he mede so we cannot compare the results. We also
derive an equation for the conditional moments,

B, PROOF OF THE MAIN RESULT

Since the proof is long and quite detailed we shall first outline
the major steps in it, We first prove the existence of the conditional
probability measure and give an expression for it (Lemma 4,1), Recalling
our result from Chapter 2 that the transition density exists (Lemma 2,3) - .
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we prove that the conditional probabllity density exists and obtain en
expression for it which involves the transition density (Lemma 4,2).
From this expression for the conditionasl probability density we shall
obtain a stochastic equation for the evolution of this conditional proba-
bility density., To do this we shall need a Fubini-type result for a
stochastic integral and an ordinary integral (Lemma 4,3), Having this we
then establish & stochastic equation for the unnormalized conditional
probability density (Lemma 4,4), Finally we combine this result with the
differential for the normelization constant to obtain the main result.

We shall need to define various quantities and symbols. Our funda-
mentel o¢-algebra in this chapter is the sugmented o-algebra on the

space of continuous functions that take values in mn+m. We denote it

by
¥, = B(Bu,Bu, s<u<t) = B(Bu, s<u< t)@B(Bu, s<u<t)
(4.9)
where = means equality up to sets of measure zero, Our fundemental

measure P then will be a measure on this space of continuous functions
Cn+m[s,t]. We define the following measures, Let Hy be the measure

on the space Cn[s,l] induced by the solution of

dx, = a(t,x. ) dt + b(t,x ) dB, (k1)

t

Let p, be the measure induced on the space Cn[s,l] by the solution of

dx, = b(t,xt) aB (4.10)

t t
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Let oy be the measure on the space Cm[s,l] induced by the solution

of
ay(t,w) = h(t,y(t,w)) dB(t,w) (4o11)

Let My be the measure on the space Cmm[s’l] induced by the solution

of

ax, = a(t,xt) at + b(t,xt) dB, (4.1)

We also define the real-valued functions Py and vt using Girsanov's

theorem (Theorem 1,3)

t
T -1
(pt(xu, s<u<t) = exp fa (u,xu)c (u,xu) dx,
8

Nl

t
T -1
fa. (u,xu)c (u,xu)a(u,xu) du (4.12) "
) .
t
V. (x,y, s<u<t) = e T(u, x )f'l( ) d
tYwn? T = T = = OXP|JE WX Yy WY)Wy
s

t
- 5 [efum, v ),y etu,x,,y,) du (1.8)
8

where
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and

. Auyxy
Py = dlp, X pYS

By the martingele property of the density function (Lemma 3.5) we can

write for A € B(xu, s<ugt)

m(d) = B (L] « B (5]

‘pr[IAprfwllB(xu, s <u<t)l]

- E (Lol = fq>t dpy (4.13)
2 A
. and for I € B(xu,yu, s<u<gt)
ey(T) = prxy[II,] = E[Io,V,]

E[LElp ¥, |B(x,,¥,, s <u < t)]]

BlLov,] = [ou dey x oy) (4 14)
r

< 0 For notational simplicity we have not expliclitly indicated the initiel

conditions x(s) eand y(s). Our basic probability space @ will be
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induced from the indepe;dent Brownian motions [Bt] and (it] and be on
Cn+m[s’l]‘ Since all of our random functions depend only on
Bt’it’xt’yt(t € [s,1]) it will suffice for cur fundamental measure P

to consider Px X Pye

1. An Expression for the Conditional Probability Measure

We first discuss the conditional probability measure in function
space, The existence of this conditionel probability measure follows
from the usual arguments of conditional expectation, i.,e., via the Radon-
Nikodym theorem., We now derive an expression for the conditional proba-

bility,

| Lemma 4,1, The conditional probaebility measure in function space for

| all te T= [s,1] is given by

Ep (1 Acpt\l/t]

X

E Tog T (k.15)
Px

P(A,tla,s,yu, 8<u<t)

where A € B(x%).

Proof,
Fix t e [s,1]. Let g, erd be the empty set and the whole
space in Cn[s,t]. Define the o-algebra §  on Cn+m[s’l] as
gt = {¢t)9t] @B(yu} 8 5 u 5 t) (h.l6)
: Let
]
|
l
M6 = By, sSusgt) (k.17)
SEL-6T7-035 T6
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vhich is & o-algebra on C [s,1], We have for T e Sy

P(A, tla,8) ]’;A(xt) Ay = /-P(A,tla,s,gt) ity v
iy

r

]IA(xt)cpt‘Vt d(px X pY) = [P(Altlai B’gt)@twt d(px X DY)

T r
(4,18)
We have
E[P(Altlal s’g‘t)q)twtlgt] = E[IACPtthgt] 8.8, (ll-.l9)

The last equation follows since P(A,tla,s,gt) is a Sy measurable

integrals using Tonelli's theorem, Since both sides of Eq, (4,20) are
zero for the integral on ¢t’ we have only the integral on Qt and for

the R,H,S. of Eq. (4.20) it is

prY[IAq)tWtIIIYgt] dpx = E[IAq)twt|g't = Qt&)n‘ygt] ()4‘021)

We consider the variable of integration on Py 88 X, 8 <u<t, So
for a fixed value of this variable the product IAwt is a constant and

we have

- Epy[IA¢twt|HY9t] IAthpy[wtlant] 8.5,

Loy 8.8, (k.22)
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The last equality follows since wt is a density function and there- "
fore measurable with respect to ant' Since Py and Wt are continuous I

in [xu, s <u<t} and ;A can be approximated in measure by continuous :

functions we need only consider polynomials with rational coefficients
on [s,th So we only have a countable number of values for the process
{xt] and since the uniform integrability condition can be easily verified

for these functions we therefore have

f Epy[IAcptthHYQt] dpy = f IA(ptEprtlant] doy = f I, o Vv doy

(4.23)
Therefore
o | pr[IAotWt] ( .
P(A,t|a, 8,8, ) = 8.8, I,2k) 5
Ty pr[q’t‘”t] J

This was done for fixed t., Since the product ¢twt can be represented P
by & stochastic integral (cf, Eq. (1.22)) it is continuous in t and
of course the sample paths are continuous, Using the above result on
a dense T set we can take a limit and easily verify uniform integra-
bility.
Therefore we can obtain the result for all t ¢ T

pr (1 RAA ] ]

P(A)t|a,syyu) s S u S t) = W 848, (l{..zs) .
o)
X .
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= 2, An Expression for the Conditional Probability Density

In Chapter 2 we proved that the process {xt] hes a transition -

- density with respect to Lebesgue measure and that it could be represented

as the fundamental solution of Kolmogorov's equations., To prove that the

conditional density exists we necessarily use the existence of the tran-

sition density for the process {xt]. The following representation for

the conditional probebility density has been obtained by others, Bucy

[Ref. 7] obteined it without including & proof (assuming that the tran-

sition density existed) and Mortensen [Ref. 8] obtained it under more

restrictive assumptions,

Lemma 4,2, Let px be the transition density corresponding to the
process {xt]. The conditional probabllity density with respect to
Lebesgue measure exists and is given by the following equation

4 Eux[\[rt]xt = x]px(s,a;t,x)

‘ p(x,tla,8,y, s <ugt) = Ty (4.26)
. px t

. where t ¢ (s,1],

Proof,

Fix t e (s,1], Let A € B(xt).

[ cvtw]

(1 “’t = E [EHX[IA(xt)Wt|xt]]

”x Hx

. = E“x[IA(xt)pr[wtl x, 1]

- = fIA("JE%[‘”t"‘t] dpy (k.27)

79 SEL-6T7-035




-
T

. -
.

i o -

-

-
e

'

. .-
~

o
- o

Pt ek

The last integral reduces to an integral over Qn since the integrand
depends only on Xy o So we have the measure Pk(s,a;t,dx) induced from
dpy e

We therefore have

B, (v - ] Ty(x)E, [vylx, = xIey(s,t,ax) (4.28)

n
R

Since 3& is absolutely continuous with respect to Lebesgue measure we

have

REANEE fIA(x)E“X[WtI x, = xlp(s,05t,%) ax  (4.29)

n
R

Since this was done for arbitrary A € B(xt) by the Radon-Nikodym theorem
we have
Eux[wtlxt = xlpy(s,0;t,x)

px(x,tla’s,yu, s f u S t) = E [W ] 8,€, dx
k (k.30)

The above result was obtained for fixed t., It follows easily that the
result is true for a countable dense T set, say S, For arbitrary

t e T 3 sequence (tn) with t -t end t eS. Let A = [xt < a).
For sets of this form, Ags using the continuity of the sample paths
{xt] and the uniform integrability of the sequence (pn) (corresponding
to tn) we can establish the result, For an arbitrary set A € B(xt)

we can approximate by sets of the form Aa. Therefore we have the result

for all t e (s,1]).
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i 3. A Stochastic Equation for the Conditional Probaebility Density

We shall now proceed to derive a stochastic equation for the
’ evolution in time of the conditional probability density, To obtain this

equation we first apply the stochastic differential rule to \|rt in the

function pr[wtl X, = x] and obtain a Fubini-type result for an ordinary

and a stochastic integral,

Lemma 4,3, For the function

t
1
pr[\lft| x, = x] = E“‘x 1+ fw gr dyul X, = X (4,31)
5

in the conditional probability density, the following result is valid

- B,.S.
. [vugufu ay. |x =X = / Ep.x[‘l'{ugu u Ixt = x] 4y (k.32)
5
-1

. vhere g and f = correspond to g(u,x(u,w),y(u,w)) and

f-l(u,y(u,a))) respectively,

Proof,
Let
&y = lo: sup |x | <M, sup |yt| < M) (4,33)
- s<t<1 s<t<1l

Since [xt] and [yt] have continuous sample paths
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Mo x

P(Lt)dQM) = 1 = 1lim P(QM) (4e34)

The last equality follows since @, . D Q. Let A e B(xt). By the

boundedness of the integrand on {,, we can define the stochastic integral

M
as a limit of step function approximations and the interchange of order
of integrations 1s clearly valid for step functions since we are given

B(yu, s <u<t), Therefore we have

t y
= -1
[ et e = [ [ ovet ag ey, es (k)
AﬂQM 8 B AnQ,M

Recalling that the stochaestic integral is \Ift - 1 we can take the following

limit and have the desired equality

Il

t t
Ta-1 T.-1
tin f /\Vugufu dyu dp’x [[Wugufu dyu d“’x BeBs Py (4.36)
£ A s

M - 00
AmM

We therefore have

t t
. T -1 T -1
lim f f V8, Ay, dwye = lim f f VB, duy 4y, Buse by
M- ANQ 5 Mo s AN
M M (%.37)
Recall that
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and £ > k>0, and g 1s globally Lipschitz, By Fubini's theorem and

CLl the Dominated Convergence theorem it follows that

M f"’ g f duy = fwugufu du, awse py (La38)

where we use the continuity in t of the integrand and of the sample

paths,
Let
T.-1
fy = f LA dpy (4.39)
f = lim £ (4.40)
M
N Moo
. The sequence
- ffMdys , [f ay, M= 1,2,..

is a martingale (w,r.t, B(yh, 8 <u<t)) and using the martingale

convergence theorem (Theorem 3,6) we have

Mlimw f £, dy, = f £ dy_ (4,41)

Therefore
_[f‘yuuu dy dpx f_[wuuu dpy dyu 8e80 Hy (L.b2)

. This was done for fixed t, but using the continuity in t of the
stochastic integral we can obtain the result for all t e T, |
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We will now derive a stochastic equation for the numerator of the
conditional probability density and subsequently a stochastic differential
equation for the conditional probability density,

Define the function r as follows

r(x,tla,s,yu, s<u<t) = Eux“'t| X, = x]p(s,a;t,x) (4.43)

Lemma 4,4, For all t e (s,l] a version of r is given by the following

stochastic equation

r(x,t|a,8,y,, s Su<t) = ps,a;t,x)
t

+ ff;?x(u,x';t,x)gT(u,x',yu)f'l(u,yu)r(x’,ula,s,yv, s<v< u) ax’ ay,
8 n

R (b, 4k)

Proof (cf, Mortensen, Ref, 8).

From the previous lemma (Lemme L4,3)

t %
T -1 T.-1
E o { Ve ay x| = f pr[wusufu lxt] dy,, (kok5)

Using this result and the s*~-hastic differential rule for vt (cf.

Eq, (1.22)) we have

t
E [v,|x% =x] = l+]E

o

¥ grf'l| X, = x] dy

u.x[ u™a1u v (k.46)

B8

We will now give a characterization for the integrand of the above stochastic
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T.-1
integral, i.e., Eux[wugufu |xt = xﬂ

To-1 -1 P
EIJ.X[Wugufu |xt = X] = El.l.x[Eux[\Vugufu |xt = x,xu = X ]Ixt = X] 8,5, llx
(4ok7)
Since we are given B(yu, s<u<t)
Te-1 T.-1 ,
(L,48)

Since ¥, 1is independent of x. t>u ((Wu’xh’yu) is a Markov process)

we have for the R.H.S.

T.-1

= Eux[%ufu Eux[wulxu = x']lxt = xﬂ

P (u,x';t,x)p (s,a,'u,x')
_ X X T . -1 ’ .
B fn px(s,a;t,x) = (u,x ,yU)f (u’yv')E“'x[\Vul xu - x] i
R
l ’ T 4 -l ’ rd
m[lpx(u,x ;t,x)g (u,x ,yu)fu r(x ,ula,s,yv, s<v< u) dx
R

(4.49)

Multiply Eq. (4.49) by p(s,o;t,x) and use Eq, (4.46) which gives the
result, To establish the result for all t € (s,l] we note the continuity

in t of Py and of the stochastic integral, |

We shall now derive & differential expression for r, If we formally

take the differential of the integral equation for r (Eq, 4.44) we have
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T -1
dr(x’tla:s;yu: 8 <u<x< t) = dPx(B;a3t:x) + g (t;x)yt)f (t;yt) dyt

t
’ T -1
+f fdpx(u,x ;t,x)g (u,x',yu)f (u,yu)r(x',ula,s,yv, 8 <v Su) ax’ dy,

smn

For the differential of the double integral we would expect to obtain

iy -1
g (t,x,5,)f " (t,y,) dy,

t

4 T "l ’ 4
+ ffdpx(u,x ;t,x)g (u,x',yu)f (u,yu)r(x ,ula,s,yv, s<v< u) dx dyu
S n

Clearly the only difficulty we have is in interchanging the integral and
differential operations in the last term,

To Jjustify thls last result we first note that
Thus by Fubini's theorem we can conclude that

E'_Lx[\lft]<oo Yt a.s. My

Note also that f 1s strictly positive definite and that

2.2
sup E [x Y ] <o
s<t<l Pyl ®?®

Since the function r 1is, except for & normalizing constant, a conditional

probability, the stochastic integral

t
m _l 7
rg;f r(x',u|a,s,yv, s<v< u) ax’ ay,

J u
'3
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is well defined and can be defined as the limit of step function approxi-
mations, Since the terms of dp, are bounded (cf. the proof of Lemma 2.4)

we use the step function approximetions together with the Bounded Convergence

theorem to conclude

t
’ T ’ -1 ’ ’
df f}k(u,x ;t,x)g (u,x ,yu)f (u,yu)r(x ,ula,s,yv, s<v< u) dx dyu
8 n

T -1
= g (tﬁx}yt)f (t)y-t) dyt

t
+ ffd u,x';t,x)gT(u,x',yu)f-l(u,yu)r(x',ula,s,ys, s <v< u) dx’ dy,

(4.50)

In the differential expression for r we can vwrite the terms of dpX
) as functions of r and its derivatives by using the integral equation

for r (Eq, 4.44) and applying the techniques used to prove Eq, (4,50)

to interchange the partial derivatives, that is, we obtain

e, (t,%)r) 5, 3(a,(t,x)py(s,a5t,%))
"'"'3-'-"' - :S 3%,

i=1 i=1

g

v 5 (t x )P, 26750, x
f Px( )) T(u,x',yu)

n i=1
. 9!

. 0 '
f (U,yu)r(x',u|a,s,yv, s<v< u) dx” dy,
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i 3 (cij(t x)r) 1 iJ(t,x)px(s,a;t,x))
Bx Bx z ax,axj
11J=l -

+

ox iax ]

t

II%Z (cij(t x)px(“ S x)) g'1‘(u,x,’yu)
s g0

£ (u,yu)r(x',ula,s,yv, s<v< u) dx’ dy,

We therefore obtain

n az(ciJ(t x)r)

1l
2 z ox Bxd
1,3=1

dr(x,t|a,s,yu, s<u<t) =

D ey (t0n) g N
i=1

We now consider the denominetor term in the expression for the con-
ditional probability density. By our result for interchanging expectation
and stochastic integral (Lemms 4,3) and by tre continuity of the sample

paths we have

t t
T.-1 T.-1

B, ) = B, 2 + [yt lay, = 1+ “X[J!ugufu] ay, (k.52)

) 8 £

Let
q = E [v.] (4.53)
b

r, = r(x,tla,s,yu, s<u<gt) (4.54)
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pt = P(X;tla,s,yu, <] S u S t) = rtqt

(L.55)

We have calculated the differential for q;l in an example in Chapter 1

(Eq. 1.27)s It is the following

i -2 -3 -
Asg) = -5 tag v g E;.Lx[wtgt]ft By Ve8] at (k.56)
where
Tl.-1
The differential for b, is
-1 d - d
dp, = (dr )a,” + 7, (dqtl> + sgftlEux[wtst]qtzrt dt (k.58)
Define gt as
) E“X[wtgt] (4.59)
g =)
t Euxlwtl
Therefore
2 n
1 i TS R L GLULIL AW
Py =132 Bxiax ox, '
1,4=1 J i=1 .
T AT\.-1 A
+ (3 -8 )ft (dyt - gt)pt (4.60)
This completes the proof of the theorem, ]
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With this equation we therefore have in principle the solution of a
fairly general nonlinear filtering problem. This result is analogous to
the expressions obtained by Bucy [Ref. 7], Kushner [Ref, 5], Mortensen
[Ref. 8] and Shiryaev [kef, L2],

C. CORDITIONAL MOMENTS

For some problems in filtering theory the diffusion matrix, b, for
the state Markov process (Eq. 4,1) does not have an inverse ard the
conditional probability density may not exist because the transition
density, Py, may not exist, For such problems we can obtain a stochastic
equation for the conditional moments and more generally for smooth
functions of the process {xt].

We state our result in the following theorem,

Theorem 4,2, Let (x,) and ({y. ) satisfy

ax(t,w) a(t,x(t,w)) at + b(t,x(t,w)) aB(t,w) (4.61)

ay(t,o) = &(t,x(t,0),5(t,0)) at + h(t,y(t,0)) dB(t,w)  (k.62)

where x_ =0, y_ = 0, t e [s,1], [Bt] and {%t) are independent
Brownian motions in ﬁn and mm respectively and the drift vector
a(t,x) eand the diffusion metrix b(t,x) are continuous in t and
globally Lipschitz continuous in x, the drift vector g(t,x,y) is
continuous in t and globally Lipschitz contimuous in x and ¥y
and the diffusion matrix h(t,y) is continuous in t and glcbally
Lipschitz continuous in y and the symmetric matrix f‘(f = hTh> is

strictly positive definite,
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N
- Let rv Dbe a real-valued twice continuously differentiable function
g defined on @" such that
[f v (%)% 4P at <o (4.63)
i TQ
ff|xt‘r'(xt)| 2 3P at < w (b.64)
T Q
(4,65)

f[ler"(xt)l dP dt <
TQ

where the prime denotes differentiation, Then the conditionel

expectation of 7, E[r(xt)la,s,yu, s <u<t], denoted as ?t satisfies

d‘?‘t = S:r(xt) at

) T T — N T T — T -1 — T ——
+ (rlxde(t, %,y ) - v(x)el(t, %,y )) " (dy, - e(t,x,,y,) at) (4.67)

vhere for example,

> Eux[r(xt)ﬂrt]
2
(e 1 o7 (.
' Lg,x(*) = PXACES 3%2 t3 zcm(t»x) %%, (4.69)
i i, J
v, 1s given by Eq. (4.8),
SEL-67-035
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Proof,

By our results for the conditional probability (Lemms 4,1) we have

EuX[Y(Xf)Wt] &

E[Y(xt)|a,s,yh, s<u<t] = —_iZ;TE;T_—- (4.70)

As in our derivation of the conditional probability density we first
consider the differential of the numerator of the R.,H.,S. of the above

equation, We apply the stochastic differential rule to Y(xt)xlrt to

obtain

t t
7 -1
rlx v, - v(x v, = f\lrur(xu)gufu dy, + fﬁr(xu)\:ru du
S 8

t
+ ].wdr (xu)bu dB, (4,71) i
s
With our assumption that

, 2
fletT (x,)]° aP dt < w
TQ

and the fact that wu is a density we have for almost all yu, s<u<t

t
e [urGede, @B | = 0 (4.72)
S

We have only to prove the following
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t t
Euxfs.{'x(xu)wu du = {prﬁr(xu)wu au (b.73)
- 1
B, {wur(xu)g?;f; ay, = f B v(x ety 4y, (baTh)

to obtain our result,

The first equality (Eg. 4.73) follows directly from Fubini's theorem
with the integrebility assumptions made, The second result is more
difficult but the proof is quite similar to the proof of Lemms 4,3, We

state the rasult in the following lemma,

Lemme 4,5, The following interchange of order of integraticns is valid

8.8,
v T.-1 % T.-1

f/wu‘r(xu)gufu dy, duy = ff Wur(xu)gufu Ay dy,, (k.75)
Qs s 0

Proof,

Let
O = (o sup Ixt| <M, sup |yt| < M} (4,76)
s<t<1 s<t<1

Since the processes {xt} and {yt) have continuous sample paths we have

M M- o

P(UQM> = 1 = 1lim P(Q) (bo77)
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- The last equality follows since QM+1'3 QM‘ By the boundedness of the e
integrand on QM we can define the stochastic integrel as a limit of
step function approximations on this set, The interchange of order of .

integrations is clearly valid for step functions since we are given

B(yu, 8 <u<t). Therefore we have .

&
fft Y(xu)gu W, Ay = ffwuv(xu)ggf;l du, dy, (4,78)
Q,, S

s QM

Since r(xu) is assumed square integrable on the product measure du x dpx

and the other terms correspond to the density function we have

lim v v(x )g = dy d = v Y(x dy d b, 79
M > g j:[ u’/®uTu u Mx j—j. Hx ( )
Similarly we can show

lim /ﬁlr(xu)gufu dpy = ./.W Y(xu)gufu (4,80)

Mo »
M

We can ncw obtein the following equality

t
" T.-1
lim ].j~$ Y(xu = dy dpy = lim j:[wur(xﬁ)gufu dpy dy,

M-oow M—»uaosQ
(4.81)

since the limit on the L,H,S., is well defined,

By the uniform integrability of the sequence (fM)
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2 £y = [ vr(x et ap (4.82)
Iy

we have

t t
el - T.-1
in [ [urtn)ag) auy oy, = [ 1o gM b deyf, duy

M—»ooSQM SM—»oo

(4.83)

Therefore we have

t t
j' Wﬁr(xu)sgf;l duy dy, = ‘/:[wur(xu)ggf;l dy, du, ¥ (4.8k)
s O Qs

Recall Eq. (k.56) where we have already calculated the differential

for

Combining this differential with our differential result for the numerator

term Euxfr(xt)wt] we have

d?t = frx,) at

) /\ o~ T T T -1 — T
+ (r(x et 2,y - vl )e(t,x,y ) f (A, - e(t,x,y,) dt) (4.85)

where for example,
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E [br(x)v,] E
PN (Aad
vix) = _u}EL—ﬁ!?]_ (4.86) x

te

This completes the proof of the theorem, |
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) V. EVALUATION OF LIKELIHOOD FUNCTIONS

Some results for the detection of & stochastic signal in white
Gaussian noise have been obtained where the likelihood function (Radon-
Nikodym derivative) could be calculated recursively from & differential
equation, The terms of this differential equation were related to quantities
that arise in filtering problems. Schweppe [Ref. 15] considered the
detection problem where the signal was generated by white nocise into a
finite dimensional linear system and formally showed the relation of a

differential equation for the likelihood function to the linear filtering

results of Kalman and Bucy. Sosulin and Stratonovich [Ref. 17] considered
the detection problem where the signal was e diffusion process and formally
related a differential equation for the likelihood function to the non-

linear filtering problen,
In this chapter we shall rigorously derive a stochastic differential

equation for the likelihood function of a stochastic signal (diffusion
process) in white Gaussian noise and relate this to the results of Schweppe

- and Sosulin and Stratonovich, We shall also discuss detection problems of
a stochastic signal (diffusion process) in correlated noise (diffusion

process) obtaining, for some problems, necessary and sufficient conditions

for nonsingular detection, For the nonsingular case we derive a differ-
ential equation for the evolution of the likelihood function by relating
the detection problem to a detection problem with white noise.
A, A DIFFUSION PROCESS IN WHITE NOISE
i We consider the two hypotheses detection problem of a stochastic
signal (diffusion process) in white Gaussian noise described by the following

stochastic differential equations
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dy, = H(t)xt dt + dB, for 6 =1
) (5.1)
= dBt for 6 =0
where
ax, = a(t,x.) at + b(t,x,) dB, (5.2)
and t e [s,1], We furthermore assume
Ko The ‘nitial conditlions are x(s) = &, y(s) = 0 and x, 1is an

n vector, Yy is an m vector, H(t) is an m x n metrix continuous

in t and Bt and %t are independent n and m dimensional Brownian
motions respectively. The drift vector a(t,x) and the diffusion
matrix b(t,x) are continuous in t and globally Lipschitz continuous

in x., The prior probabilities are P(8 = 1) = I, and P(6 = 0) = My

1. A Differential Equation for the Likelihood Function

We define the following measures as we did for the nonlinear
filtering problem, The measure by is the measure induced on the space

Cn[s,l] by the solution of
dx(t)w) = a(t;x(t:w)) dt + b(th(tJa))) dB(t)a’) (5-2)

where t € [s,1] and x(s) = &, The measure py 1s the Wiener measure

induced on C_[s,1] by the solution of

dy(t,w) = dB(t,w) (5.3)
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where t € [s,1] and y(s) = O. The measure My y 1S the measure induced

on the space Cn+m[s’1] by the solutions of )
dx(t:w) = a’(t)x(t)w)) dat + b(t,x(t;w)) dB(t)w) (5.2)
: dy(t,0) = H(t)x(t,w) at + dB(t,e) (5.4)

where t ¢ [s,1], x(s) = o and y(s) = O,

We define the function wt as

t
T 1
wt(xu,yu, s<u<t) = exp fquu dy, - 3 ]quuHuxu dul (545)
s

where

Al =
1 Wi, % oy) (5.6)
Y
I ) We now derive an expression for the likelihood function for the
detection problem (Eq, 5.1).
Lemma 5,1, The likelihood function, At’ for the detection problem,
Eq. (5.1), where we assume X is given by
Ay = E [v] (5.7)
t Moy t 0
) where V. 1is given by Eg. (5.5).
- Proof,
" c The likelihood function, Ays is the Radon-Nikodym derivative of
) the measures, say Py and Py corresponding to the two hypotheses
99 SEL-67-035
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6 =1 and 6 = 0, 1i.e., -
dp
1l
A, = T (5.8)
Po
where the measures are functionals of the sample paths to time t. Let .

T'e B(yu, s <u<t), Then

o) (T) = [ [ ¥, aluy x 05
r
(5.9)
r
By definition of the Radon-Nikodym derivative we have

= ! 510
Ay Ep_x[\lft] (5.10) )
With an expression for the likelihood function we are able to derive -

a stochastic equation for a monotonic function of the likelihood function,

Theorem 5.1, Consider the two hypotheses detection problem .

I}
'—l

dyy H(t)xt dt + dB, for o

(5.1)

~

= dB_t for o

il
o

where we assume K, Let At be the likelihood function for this

detection problem,

Then the process {zt] defined as

Z = 1n At (l).ll)
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e

satisfies the following stochastic differential equation

AT T 1 AT.T
dz, = XH dy, - 3 xthHt&t at (5.12)
where
Euxwtxt]
'}\( =] (5013)
t E [V,]
“X t
is the conditional mean of x given {yu, s <u<t) (cf. Eq. 4.67).
Proof,
We apply the stochastic differential rule (Theorem 1.2) to
2, = InAg (5.11)
and obtain
2
@, (an) (5.14)
dzt =] Tt - E ;
t At

The terms dAt and (dAt)z have been calculated in an example of the

stochastic differential rule in Chapter 1 (Eq. 1.27) and are

A, = Eux:wtxiﬂz] dyt (5.15)
(dAt)z = E“X EwthHE]Eux[thtxt] c;t (5.16)

Therefore we have
dz, = ?cEH:f dy, - % S‘cfoHt?ct at (5.12)

101 SEL-67-035




where

B [¥,x,] (5.13)

2. Comparison With Previous Results

The stochastic differential equation for (zt} (Eq. 5.12) is

different in appearance from the equation

PN

AT 17T
dz, = xtHE dy, - 5 x HHx dt (5.17)

where

T
E [\erHHx]
T/T\ LTttt

x LHx = = v, (5.18)

Hx

obtained by Schweppe [Ref, 15] and Sosulin and Stratonovich [Ref., 17].
This anomaly between the two equations for the likelihood function occurs
because of the different definitions of stochastic integral and the
convergence properties of discrete time versions of a stochastic equation
[Refs, 9,43,44,45], In Eq. (5.17), the "correlator" term (stochastic
integral) has to be interpreted in the sense of Stratonovich [Ref, 9]
while in our equation (Eq. 5,12) the stochastic integral has the K, It0
interpretation,

To clarify the relation between these two results we will indicate
the correction term, If we perform an integration by parts on the stochastic

integral
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1
S P ftH, dyy, (5.19)
S

(this integration by parts is valid since this stochastic integral can be

defined as the limit of step function approximations, ﬁt has a differ-

ential given by Eq, (5.24), and we assume dH/dt exists and is continuous)

then the stochastic integral we obtain is

1
T A
'./ Vel %y (5.20)
8

We shall consider the case of scalar observations (m = 1), and compute
the correction term first for the Gaussian case,

- Consider the K, It0 stochastic integral
[olt,y,) ay, (5.21)
where
ay, = e(t,y,) at + aB, (5.22)
Then if we aad the term (cf. Ref, 9)

—a— (5.23)

. to the stochastic integral we have the integral described by Stratonovich,

(1)

Recalling the stochastic differential equation for x , & component

A

of xt
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T
d?‘ﬁi) - ﬁx*(ci) v+ (x*(ci)Htxt ) xii)ﬂt’h‘t) (dyt - Hy, dt) (5.24)

and that in the linear case [Ref. 1] the function )
(1) (1)
X Hexe - Xp THeX (5.25) £

depends only on t, the correction term which we must add to our differ-

ential equation is

]
N
»
c+:nl—3
(=]
=]
el
i
(=]
ae]
5>
N—
o
ct

(5.26)

which gives Schweppe's result,

To relate our result to the equation obtained by Sosulin and Stratonovich
we heuristically describe a "generalized" Stratonovich integral motivaced
by the fact that we want the rules of transformation of ordinary calculus "o

to apply to this integral, We use a result of K, Ito [Ref, 30] for the

product of stochastic integrals

A

+ [ n(s,0) [ £(t,0) aB(t,0) aB(s,0) + [ £(t,0h(tw) at  (5.27)

u u

whereas 1T these were ordinary integrals we would not have the last term, -

We therefore "split" this ordinary integral between the two stochastic

integrals as
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]C(t,w) fﬂ(syw) dB(S,w) dB(t)w) + !2-'[ g(t)w)'ﬂ(t)w) dt
u u u

v 8 v
+ [a(s,0) [ t(t,0) aB(t,0) aB(s,0) + 3 [ E(t,0Mn(t,0) at
u u u

Defining this as & Stratonovich integral we then have cur correction term
which reduces to the correction term (Eq. 5.23) for the diffusion process

case, Thls correction term again is

PN
- %‘ / (le'fgntxt

from Eq, (5.24). Therefore with this term our results correspond with

AT.T_ A
- %, Htxt) dat (5.28)

the equation of Sosulin and Stratonovich,

B. A DIFFUSION PROCESS IN CORRELATED NOISE

Having established & stochastic differential equation for the likelihood
function for the detection of & stochastic signal (diffusion process) in
white Geussian nolse the obvious extension of these results is to the
detection of & stochastic signal (diffusion process) in correlated noise
(diffusion process), We describe & problem of this type by the following

stochastic equations

1}
[

for 6

71 H(t)xt + Z

t
(5.29)

]
(@]

= 2 for o6

where t € [s,1] and
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dx

a(t,x,) at + b(t,x,) aB, (5.30)

dz g(t,2.) at + n(t) aB, (5.31)

ct
[

We furthermore assume 5

E. The initial conditions are x(s) = a, z(s) = 0 and x, 1isan

n vector, z  is an m vector, H(t) is an m x n matrix that is
continuous in t and Bt and Et are independent n and nm
dimensional Brownian motions respectively., The drift vectors a(t,x)
and g(t,x) are continuous in t and globally Lipschitz continuous

in x, The diffusion matrix b(t,x) is continuous in t and globally
Lipschitz contimuous in x, The diffusion matrix h(t) is continuous
in t and h-l exists, The prior probabilities are P(6 = 1) = Hl

and P(p = 0) = M. The derivative of H(t), H’(t), is continuous in t,

1, Necessary and Sufficient Conditions for Nonsingular Detection

We shall now obtain necessary and sufficient conditions for non-

singular detection for the problem described above (Eg. 5.29).

Theorenm 5,2, Consider the detection problem

Ve = H(t)xt + 2, for 6 =1
(5.29)
= Zy for 6 =0 s
where t e [s,1] and
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1
0,
>
1

a(t,xt) dt + b(t,xt) dB, (5.30)

le

dz

. = e(t,z,) at + n(t) dB, (5.31)

and we furthermore assume H, For thls detection problem to be non-

singular it is necessary and sufficient that

B(£)b(t,%,) = O (5.32)

Proof (Sufficiency),

It will be convenient to change the form of the above detection problem

by describing the hypotheses by stochastic differential equations a&s

;, dy, = H(t)a(t,xt) at + H(t)b(t,xt) dB, + g(t,yt - H(t)xt) at
+ H'(t)xt dt + h(t) dgt for 6 =1 (5.33)
= g(t,y,) dt + h(t) 4B, for 6 =0
Now let H(t)b(t,xt) = 0, Then the two hypotheses are
dy, = H(t)a(t,x.) dt + g(t,y, - H(t)x.) at + n(t) dﬁt for. 6 = 1
+ H‘(t)xt at
- g(t,y,) at + h(t) dB, for 6 = 0

Since the process {xt] is generated by [Bt] and h-l exlsts we can

easily modify Girsanov's Theorem (Theorem 1,3) to show that
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Mexy << Bx X Py (5.3%)

where the measure Py is the measure induced on Cm[s,l] by the solution

of ]

dy. = &(t,y,) dt + h(t) B, (5.35) 1

for t e [s,1] and y(s) = 0. The measure Wy, 1s the measure induced i

on Cn[s,l] by the solution of

dx, = a(t,xt) at + b(t,xt) dB, (5436)

for t e [s,l] and x(s) = . The measure Myoy 1S the measure induced

on Cn+m[s,l] by the solutions of
ax, = a(t,x.) at + b(t,x ) dB, (5.36) _' :
dy, = H(t)a(t,x,) dt + g(t,y, - H(t)x,) 4t + h(t) dB, (5.37)

+ H (t)xt at

for t e [s,1] and x(s) = a, y(s) = 0.

Define wt as the density function so that

d
Py (5.38)

IlIl d(pX X pY) 3

The form of this function wt can be determined from Girsanov's theorem

(Theorem 1,3). s

The likelihood function, A follows from Lemma 5,1 as

t,
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Ay = Euxwt] (5.39)

Proof (Necessity).

If b exists we can show that we have a singular detection problem
by using our result from Chapter 3 (Theorem 3.1) for the absolute continuity
of measures corresponding to solutions of stochastic differential equations,
Define the measure py 8s the measure induced on Cn[s,l] by the solution

of
dx(t,w) = b(t,x(t,w)) dB(t,w) (5.40)

for t e [s,1] and x(s) = @, the measure Pyxy 18 the measure induced

on C_ [s,1] by the solutions of
n+m

ax(t,w) = blt,x(t,w)) dB(t,w) (5.40)

dy(t,w) H(t)b(t,x(t,0)) dB(t,w) + h(t) dB(t,w) (5.41)

[}

for t € [s,1] and x(s) = o, y(s) = 0, and the measure Mygy 18 the

measure induced on Cn+m[s,l] by the solutions of

dxf

a(t,xt) dt + b(t,x ) dB, (5.42)

H(t)a(t,xt) ait & H(t)b(t,xt) dB, + g(t,y,c - H(t)xt) dt + h(t) dB,

dyt

+ H'(t)x, dt (5.43)

The measure Py is defined by Eq, (5.35).

By Theorem 3.1 it follows that
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Pyxy X Py X Py

and

>Z:
3%

therefore

"Xxyé‘“xx"y

TEl b)h Gees.noE exist we apply & result due to Wong and Zakai [Ref, 46]

stated in the following lemma,

Lemma 5.2, Let (xt]

satisfy
dx, = ¢(t,xt) at + I‘(t,xt) aB,

vhere t e [s,1], x(s) =a and g(t,x) and I(t,x)

in t and globally Lipschitz continuous in x; x

t
and Bt is n dimensional Brownien motion,
Then
k(n)-1 2 1
nlimoo z <xj(t§:z> - xj(tgn)>> = z f Ygr(
i=1 r=1 8

in the mean where T = {Yij).

(5.4k) :

are continuous

is an n vector :

t)xt) dt (5-""5)

For the proof of this lemma the reader is referred to Wong and

Zakai [Ref., 46],

Using Eq. (5,45) as our test statistic on the observations we are
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c able to determine if the signal is present or nct and therefore have

singular detection, |

2. Reduction to a White Noise Detection Problem

In the nonsingular correlated noise detection problem we have for

the two hypotheses

ay, = H(t)a(t,x,) at + g(t,y, - H(t)x,) at + h(t) dB, for o = 1
+ H'(t)xt at (5.46)
= g(t,yt) dt + h(t) dB, for 6 =0

As we mentioned in the proof of Theorem 5,2 an expression for the likelihood

function (Eq. 5.39) can be calculated using Girsanov's Theorem (Theorem 1,3),

L] N

We shall now show how to obtain a differential equation for the likelihood

function by considering the detection problem as a white noise type of

detection problem,
In the proof of Theorem 5.2 we defined the measures Pyr My» and

“XxY (cf. Egs. 5435, 5.36, 5.37). We now define the measure p_ induced

Y
on Cm[s,l] by the solution of
dy, = h(t) dB, (5.47)

. for t ¢ [s,1] and y(s) = O, By Girsanov's Theorem (Theorem 1,3) we

have
. Py << oo

g Y
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The likelihood function, At’ with respect to the measure p. 1is

Y

where $t is determined from v, (Eq. 5.38) and de/de. This result
Y
follows from the definition of the likelihood function (Eq. 5.8).

We defin=s zt 8s

Zt = 1ln At (50’"‘9)

and take the differential of Zy (using Eq. 5.,14) to obtain a differential
expression for Zt' We therefore have & white noise type of detection

problem, Since the details are straightforward they will be omitted here,

3. Some Generalizations .o
We now consider a more general correlated noise detection problem -
with the hypotheses 3
v, = H(t)x, +G(t)zy, for 6 =1 .
(5.50)

G(t)zt for 8

1]
(@]

where G is a k x m matrix continuous in t end H is a k x n metrix
continuous in t, The derivatives of H and G, H* eand G’, Are continuous
in t, We also assunme ﬁ. We shall make additional assumptions as we
proceed,
For this correlated noise detection problem we shall discuss conditions
for nonsingular detection, This discussion will be somewhat more informel
than the discussion in the above section because we primarily went to o4
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indicate the methods. We again convert our hypotheses to stochastic

differential equations

’ ay, = H(t)a(t,x.) dat + H(t)b(t,x ) aB, + G(t)e(t,z,) at
+ G(t)n(t) dEt for 6 = 1
. a(t)g(t,z,) dt + G(t)n(t) d'fat for 0 = 0 |
(SR5Y ‘

Primarily for simplicity of discussion we shall assume that the observations

are scalar, i,e,, k =1,
To determine singularity or nonsingularity of the detection problem
- we shall consider a few cases, If Hb # O then the detection problem is
singular by Lemma 5,2, If Hb= O and Gh # O then the detection problem
. is nonsingular by applying Girsanov's Theorem (Theorem 1,3)s If Hb=0

and Gh = 0 we have the hypotheses

dy, = H(t)a(t,xt) at + 6(t)g(t,z, ) dat for 6 =1
| = G(t)g(t,zt) dt for 8 = O
3
Let
dyt
) Yo = & (5.52)
Then
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ct
1l
it
|

‘ H(t)a(t,xt) + G(t)g(t,zt) for o

(5.53)
= G(t)g(t,zt) for 6

[}
O

We shall agein convert these hypotheses to stochastic differential equations
by applying the stochastic differential rule (Theorem 1,2). Here we assume
the appropriate differentiability of the functions H, a, G, and g to
apply the differential rule, The stochastic differential equations that

we obtain are symbolically

2
P BHa a& 1 Ba T %
dyt = < Tt H‘§§ a + 2 H‘S;E b E) dt + H T b dBt
2
(G d 19 Gy J =
+< < +G§g+§agz—ghh>dt+eg§hd3t for 6 =1
2 ~
- <5G,c +G%§g+%Ga—§hTh>dt+G§tht for 6 = 0
oz
(5.54)
We again consider some cases, If
&b #0 (5.55)
where
dea, (t,x)
oa B
- e a;y) (5.56)

then the detection problem is singular by Lemme 5.2, If
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HS b+ H'b=0 : (5.57)
X
and
68 n4ahdo (5.58)
Ry
where
8 agi(t)z)
5% = —-523—— = inj) (5.59)

and if the nonzero terms of Eq, (5.59) are not a function of =z, i.e.,

t’

these terms arise from linear terms of g then the detection problem is

nonsingular, If the nonzero terms of Eq. (5.59) are functions of Zy

then the detection problem will be singular by applying Lemme 5,2, If

it ‘b = 60
Hx b+ HD =0 (5.60)
and
G %% h+Gh=0 (5.61)
then we have the two hypotheses
2
’ d(Ha) oa 1.,.07a.T o .
dyt = < 3t + H S8+ 3 H N 5 b + H X, + H'a) dt
X
al{e G 8 + 1 G §E§ nhoe 0, s G%gldt for 6 =1
AR TR TR 2 A g =
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2
4 aG a l a T &4 ’ e
ay{ = <—é€5) + G 5% g+5 G S;% h™h + 6’2z, + G é) dt for 6 =0
(5.62)

Let

4

dy
e - _tl_

Yt T & (5.63)
and we proceed as we did with yé by taking the differential of yé'.
With sppropriate differentiability assumptions it seems reasonasble that
this procedure will termirate in a finite number of steps, though to prove
this finite termination seems difficult, We have mainly included this
discussion to indicate the methods to be used to determine if a detection

problem is well posed, i,e.,, nonsingular,
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