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ABSTEIGT 

Some problems in the filtering anä the detection of diffusion processes 

that are solutions of stochastic differential equations are studied. 

Transition densities for Markov process solutions of a large class 

of stochastic differential equations are shown to exist and to satisfy 

Kolmogorov*s equations. These results extend previously known results 

by allowing the drift coefficient to be unbounded. With these results 

for transition densities the nonlinear filtering problem is discussed 

and the conditional probability of the state vector of the system conditioned 

on all the past observations is shown to exist and a stochastic equation 

is derived for the evolution in time of the conditional probability 

density, A stochastic differential equation is also obtained for the 

conditional moments. These derivations use directly the continuous time 

processes. 

Necessary conditions that coincide with the previously known sufficient 

conditions for the absolute continuity of measures corresponding to 

solutions of stochastic differential equations are obtained. Applications 

are made to the detection of one diffusion process in another. Previous 

results on the relation between detection and filtering problems are 

rigorously obtained and extended. 
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a(t,x,) drift vector 

T 
A transpose of A 

b(t,x.) diffusion matrix 

B(t,oü) vector Brownian motion 

B(t,ü)) vector Brownian motion 

B(x , u < t) Borel a-algebra generated by {x , u < t) 

/Bt B(Bu, 0 < u < t) 

c symmetric matrix 

C [s,t] n dimensional space of continuous functions on [s,t] 

E(•) expectation 

E( • | •) conditional expectation 

E expectation with respect to the measure m- 

3 Borel a-algebra on ü 

S sub-a-algebra of S 

g(t,xt;yt) drift vector 

sub-a-algebra 

diffusion matrix 

I. indicator function for the set A 
A 

£ differential operator 

L space of absolutely integrable functions 

L space of essentially bounded functions 

M, Radon-Nlkodym derivative 
t 

PCs^yj^x) transition density for a Markov process 

PL. transition density for {x ) 
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Py transition density for {y ) 

p(• | •) conditional probability density 

P probability measure on n 

P(» | •) conditional probability measure 

q. normalizing term 

r(» | •) unnormalized conditional probability density 

91 Euclidean n-space 

91 positive real half line, [0,») 

x(t,co) vector stochastic process 

y(t,ü)) vector stochastic process 

a initial condition 

conditional expectation of X ^v 
A. likelihood function t 

Ijy measure in function space for {x.) 

^ measure in function space for (y ) 

II , II        prior probabilities 

py measure in function space for {x ) 

PY measure in function space for {y.) 

a(L fL00)                weak topology 

cp. Radon-Nikodym derivative 

*(t,cD) vector random function 

\|f, exponential functional 

@ product space 

© direct sum 

« absolute continuity relation 
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I. INTRODUCTION AMD PRELIMINARIES 

In this thesis we shall study some filtering and some detection 

problems described by stochastic processes. These problem descriptions 

have wide applications In physical problems because many physical phe- 

nomena can be modeled by stochastic processes. 

For satellite orbit tracking and prediction problems, filtering has 

been effectively used to obtain "good" estimates of the satellite orbits 

from the noisy data received from the satellites by the ground stations« 

Missile and satellite guidance problems typically Involve noisy measure- 

ments from the various sensors and filtering theory has been useful In 

improving guidance performance. 

Many communication problems involve a signal corrupted by noise. 

This signal corruption can occur, for example, by the thermal noise in 

transmitters and receivers or by the properties of the medium through 

which the signal is transmitted. To obtain a "good" estimate of the 

signal, the received data must be filtered, A particular type of communi- 

cation problem is feedback communication, for example, the communication 

from a ground station to a satellite and back to the ground station 

embodies the feedback principle. Filtering can be shown to provide a 

scheme to use this feedback communication channel in an optimal manner. 

Chemical processes can often be modeled by stochastic processes where 

noisy measurements of-the operations are obtained and filtering theory 

can be used to obtain "good" estimates of the operations. Some interest 

has developed for applying filtering techniques to models of economic 

systems which include random behavior. Identification problems where 

some of the system parameters are random can be solved by applying 
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filtering theory to obtain "good" estimates of these random parameters. 

In many stochastic optimal control problems the state vector of the 

system is described by a stochastic process and the observations made on 

the system are described by a stochastic process which is a function of 

the state stochastic process and noise. The control problem is to control 

the state of the system optimally (given a performance criterion) using 

the observations. These stochastic optimal control problems form a 

large class of physically important problems. The conditional probability 

of the state given all the past observations, which is obtained for the 

filtering problem, is the fundamental tool for determining the optimal 

control to be used because the conditional probability represents our 

probabilistic knowledge of the state of the system. The filtering 

solution with the conditional probability represents a major step to 

solving the stochastic optimal control problem. 

Determining whether received data contain a signal and noise or merely 

noise has many applications particularly in radar problems where a signal 

is sent and then the received data are checked to determine whether the 

data contain a reflected signal and noise or only noise. To make the 

decision in an optimal manner between the two hypotheses that the data 

contain signal and noise or that the data contain noise we apply some 

results from statistical decision theory and calculate a likelihood 

function. This likelihood function determined from the data is then 

compared with a threshold to indicate the hypothesis to choose. For 

applications it is useful to be able to calculate this likelihood function 

recursively, i,e,, to obtain a differential equation for the evolution 

in time of the likelihood function. This recursive form for the likeli- 

SEL-67-O35 2 
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hood function car often be obtained by applying some results from 

filtering theory. 

Before analyzing the filtering and the detection problems in depth 

we shall discuss some of the history of these problems indicating the 

results that have been obtained, describe the results that we shall obtain 

and describe some of the mathematical techniques and results that will 

be used in analyzing the filtering and the detection problems, 

A, DESCRIPTION AND HISTORY OF THE PROBLEMS 

1, Nonlinear Filtering 

The filtering problem of estimating one stochastic process given 

observations of a related stochastic process has received attention in 

both engineering and mathematics. Kaiman and Bucy [Ref, l] modeling the 

stochastic processes by linear differential equations with white noise 

inputs obtained a simple recursive solution to the linear filtering 

problem. The obvious extension of their work to a filtering problem with 

nonlinear differential equations (i,e,, the nonlinear filtering problem) 

has been discussed by a number of authors, Stratonovich [Ref, 2],  Kashyap 

[Ref, 3], Kushner [Refs, h,5,6],  Bucy [Ref, j],  and Mortensen [Ref, 8], 

The original studies on this topic were somewhat naive and 1*-  was some 

time before it was realized that incorrect (or at least ambiguous) results 

had been obtained by not paying proper attention to some of the mathe- 

matical techniques involved. In particular, care had to be exercised in 

interpreting and manipulating certain integrals—the so-called Ito and 

Stratonovich stochastic integrals [Ref, 9]. 

The aim of the papers on this problem has been to derive a differ- 

ential equation for the conditional probability density (or conditional 
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moments) of the stochastic process to be estimated given all the past 

observations of a related stochastic process. The most general results 

for conditional moments that have been rigorously derived have been obtained 

by Kushner [Ref. 6]. He had to make several assumptions on the stochastic 

processes involved. Often these assumptions are difficult to verify for 

physical models. The physical meaning of many of the assumptions is 

unclear end often the assumptions were made only to obtain some mathe- 

matical results. 

One reason for these many assumptions is that the problem is first 

solved in the discrete time and then there is a passage to the limit to 

obtain the continuous time result. Mortensen wut, the first to use a 

purely continuous time approach though he made some fairly restrictive 

assumptions. 

2. Absolute Continuity of Measures 

For the continuous time proof of the existence of the conditional 

probability density function we use certain results on the absolute 

continuity of probability measures that correspond to solutions of 

stochastic differential equations (stochastic differential equations will 

be defined subsequently). Prohorov [Ref. 10] obtained the first results 

for absolute continuity with the stochastic processes described by 

stochastic differential equations though some pioneering work en this 

problem was done by Cameron and Martin [Ref, 11], Following Prohorov, 

Skorokhod [Refs. 12,13] and Girsenov [Ref. Ik]  obtained more general 

results on sufficient conditions for absolute continuity, 

3, Detection Theory 

Some detection theory problems of a stochastic signal in white 
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noise have been solved where the likelihood function (Radon-Nikodym de- 

rivative) can be recursively calculated. This recursive result was 

obtained by Schweppe [Ref, 15] for the case where the signal is generated 

by white noise into a finite dimensional linear system. His solution 

makes use of the linear filtering results of Kaiman and Bucy [Ref, l]. 

Van Trees [Ref, 16] has considered a related problem obtaining the same 

"type" of result as Schweppe, Sosulin and Stratonovich [Ref, 17] consider 

the signal as a general diffusion process and indicate that the nonlinear 

filtering results can be used to solve recursively for the likelihood 

function, 

B, NEW RESULTS 

We will briefly describe some of the results obtained in this disser- 

tation, 

1, Nonlinear Filtering Theory 

We present a rigorous derivation of a stochastic equation for the 

evolution of the conditional probability density.    The proof works directly 

with the continuous time stochastic processes and no "discretizations" 

are used.    We also prove existence and differentiability properties for 

transition densities corresponding to diffusion solutions of stochastic 

differential equations.    These properties are used in the derivation of 

the equation for the conditional probability density.    The main results 

are Theorems 2,1 and ^,1, 

2, Absolute Continuity of Measures 

We derive necessary and sufficient conditions for the absolute 

continuity of measures corresponding to the solutions of a large class 

of stochastic differential equations.    This result is given in Theorem 3«1« 
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3. Detection Theory 

We consider the detection problem of determining whether a 

stochastic signal (diffusion process) is present in white Gaussian noise 

(Brownian motion) i.e., we have the two hypotheses to test 

dyt = H(t)xt dt + dB.   for 0 = 1 

dB.   for 0=0 

where x  is the signal and dB,  is the noise. We rigorously derive a 

differential equation for the likelihood function and relate this to the 

nonlinear filtering problem. We compare this result to the results of 

Schweppe [Ref. 15] and Sosulln and Stratonovich [Ref, 17] and relate the 

differences to the different definitions of stochastic integral. 

We consider the detection problem of a stochastic signal in correlated 

noise and discuss conditions for nonsingular detection. We show how the 

nonsingular problem can be related to a nonlinear filtering problem to 

obtain a differential equation for the likelihood function, 

C. SOME MATHEMATICAL TECMIQUES AND RESULTS 

1. General Theory and Notation 

A number of mathematical definitions and results will be used in 

this dissertation that may be somewhat unfamiliar to most engineers. We 

will briefly review these topics here. 

Stochastic processes which are solutions of stochastic differential 

equations will be considered here. For general references on stochastic 

processes and particularly to stochastic differential equations the reader 

is referred to Doob [Ref. 18] and K. ItÄ [Ref. 19]. Some familiarity with 

SEL-6T-035 6 



the basic definitions of probability theory and stochastic processes 

will be assumed. Generally a stochastic process could be denoted by the 

four-tuple (fl,!S,P,(Xt)  ) where 

i) (fi,S,P) is a probability space, i.e., a measurable space 

with a probability measure on it. For our case we will 

usually consider ü    to be the space of continuous functions 

on T = [0,1], S then is the Borel a-algebra for n and 

the probability measure P is a measure on the space of 

continuous functions. The points in Ü    will be denoted by 

ii) $+)+ m is a family of random variables on    (fi,S) with 

values in the state space (E,ä), For our case the state 

space (E,S) will usually be (9. ,B )   where B  is the 

Borel a-algebra on gin  (Euclidean n-space). The time set 

T will be a compact interval, usually [0,1], 

We define B(X , u < t) as the Borel a-algebra generated by the 

process {X , u < t), A family of (sub) a-algebras S.  is said to be 
U    — w 

increasing if for s < t S C S,• The process {X ) is said to be adapted 

to Ö  if X  is B. measurable. For example, X, is adapted to 

B(X , u < t). We will assume that all the (sub) a-algebras are augmented, 

i,e., if  Jl = {A : P(A) = 0} then 3tDn  for V t. Without this 

assumption when we obtain almost sure (a,s.) equality we are not certain 

that all versions have the desired measurability properties on the sub 

a-algebra. 

By a Markov process we mean fundamentally a stochastic process that 

has the so-called Markov property (cf, Loeve [Ref. 20]) i,e,, 
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P^Afuture'ßpresent+past)    ~    P(A future'ßpresent)    a•8• 

It will be useful to define more precisely the motion of a Markov 

process (cf, Bynkin [Refs, 21,22]), Take a measurable space (E,g). The 

function P(s,x;t,r) (o < s < t, x e E.r e S) is said to be a transition 

measure if the following conditions are satisfied: 

a, P(s,x;t,r) is a measure (as a function of the set r) 

b, P(s,x;t,r) is an g measurable function of x 

c, P(s,x;t,r) < 1 

d, P(s,x;s,E\x) = 0 

e, P(s,xju,r) =j P(s,xjt,dy)p(t,y;u,r) 0 < s < t < u 

E 
We shall also need the notion of a transition density. Let |i be a 

measure on the state space (E,S), The function p(s,x;t,y) (t > s;x,y e E) 

is called a transition density if the following conditions are satisfied: 

a,   p(s,xjt,y) > 0 (t > s;x,y e E) 

ß, For fixed t and s p(s,x;t,y) is an £ x S measurable function 

of (x,y) 

r. j p(s,xjt,y)n(dy) < I (t > s,x € E) 

E f 
B. p(s,xjt,y) = j p(s,xju,z)p(u,zjt,y)|i(dz) (s < u < t,x,y e E) 

E 

Under certain conditions on the Markov process it is possible to show 

that the transition density function exists and satisfies the following 

two linear second-order parabolic equations. 
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^ /      \     v-. ö(a.(t,x)p)  -, r-,ö (c. .(t,x)p) 
^(y^^) _   V ^ , 1Y    ^V (1.2) dt        -    Z     53r      + 2Z    ax ax v    ' 

where 

lim T  /     (y - x)P(s,x;s + t,dy) = a(s,x) 

* | y-x| < 6 

11m T     f (y - x)(y - x)TP(s,x;s + t,dy) = c(s,x) 

I y-x| < 6 

6 > 0 

These equations are usually celled Kolmogorov's backward and forward 

equation respectively. The reader is referred to Feller [Ref, 23] and 

Bharcuha-Reid [Ref, 2h]  for a more complete discussion of these equations. 

Consider a process (X. }, If {X. J is a Markov process then for 

t > T and A € S(Xt) 

P(A|XU, u <T) = P(A|XT)' a.s. 

If we can replace T by a (random) stopping time T((Jü) such that 

(co : T < s) e B{\,  U < S) 

and if T < T and 

SEL-67-035 



P(A|Xu, u<T) = PCAI^)  a.s. 

then {X.) is called a strong Markov process. 

By a diffusion process we mean a strong Markov process with continuous 

sample paths. 

By Brownian motion (also called the Wiener process) we mean a process 

{B(t,co),P) which has continuous sample paths whose increments are inde- 

pendent and normally distributed. If {B.) is defined for t 6 [0,1] 

we assume B(O,ü)) = 0 and E(B+)=t, Ity n-dimensional Brownian motion 

we mean a system of n one-dimensional Brownian motions Independent of 

each other. 

We now consider Integrals with respect to the Brownian motion Integrator, 

i,e,, integrals of the form 

Jfit)  dB(t,ü5) 

Since Brownian motion has unbounded variation we cannot interpret this 

integral (for almost all at)    as a Lebesgue-Stieltjes integral, Wiener 

[Ref, 25] defined this Integral using the integration theory developed 

by Daniell, This Integral can be defined for all functions, f, that 

are square integrable (cf, Doob [Ref, 18] for a good discussion), 

K, Ito [Refs, 19,26] considered the problem where f was a random 

function independent of the future Brownian motion. He first defined the 

Integral for step functions as 

|>(V«)(Bti+i - Bti) 

SEL-67-035 10 
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3 k > 0 such that for V x e a 

T      T        2 
x Ax > kx x = kl xl (l«6) 

The proof of a theorem, lemma, etc., begins with the word "proof" and 

terminates with the symbol I which can be read as "this completes the 

proof." 

2, Theory of Stochastic Differential Equations 

We will have occasion throughout this dissertation to consider 

vector stochastic differential equations such as 

dx(t,cD) = a(t,x(t,ü))) dt + b(t,x(t,cü)) dB(t,ü))      (1.7) 

where x(t,a)), a(t,x(t,ü5)) and B(t,cD) will be n x 1 column vectors 

and b will be an n x n matrix. The process {B.) is n-dimensional 

Brownian motion. The vector a is usually referred to as the drift or 

transfer vector and the matrix b is called the diffusion matrix. 

We shall briefly review some results from the theory of stochastic 

differential equations that will be used in later chapters. 

a. Existence and Uniqueness of Solutions of Stochastic 
Differential Equations 

The usual results for existence and uniqueness for solutions 

of stochastic differential equations are due to K, Ito [Refs. 19,26] and 

I. I. Gikhman [Ref. Zj], 

Theorem 1.1. Consider a vector stochastic differential equation 

dx(t,üj) = a(t,x(t,ü))) dt + b(t,x(t,(u)) dB(t,ü))     (1.7) 

SEL-67-O35 12 



and showed that this definition could be extended to all functions f 

satisfying 

f f\f{t,(ü)\2 dt dP < 

fl T 

If the integrand is measurable with respect to the past Brownian motion 

then by Ito's definition of stochastic integrals this integral with respect 

to Brownian motion is a martingale of Brownian motion, i.e., for T < t 

r t 1     T 

E yf(s,ü)) dBs|S(Bu, U<T)  = /f(s,cü) dBs  a.s.    (1.3) 

This martingale property will be important in many of our calculations, 

/  1  00« 
Some other notational descriptions will be useful. By a(L ;L ) we 

1     * 
mean the weak topology induced on L  by L . A description of weak 

topology can be found in Royden [Ref, 27] or Kelley [Ref. 28]. 

Given a matrix a(t,x) ■ (a. (t,x)) we say that a(t,x) satisfies 

a global Lipschitz condition if each component a.. satisfies this 

property, i.e., Vx,y 

la^t^x) - SL±iit,y)\  <K|x - y|        i,J = 1,2,...,n (1.4) 

Similarly by   a(t,x)    being bounded we mean   3 K < «    such that for   V't,x 

|aij(t,x)|  <K     i,J = l,2,...,n (1.5) 

T 
Given a vector or a matrix A we denote the transpose of A as A , 

By a symmetric matrix A being strictly positive definite we mean 

11 SEL-67-O35 



where t e [s,l], X(S,Cü) = ociai),  P{|a| < «) = 1 and the terms of 

the vector a(t,x) and the matrix b(t,x) satisfy a global 

Llpschitz condition in x and are measurable in t. Then the 

solution (x.) exists, is unique, and is a diffusion process, 

2 
Furthermore if   aeL     then 

< l 
EW sup        E(x+ J < oo 

s < t 

Proof, 

The idea of the proof is to use Picard iteration, as 

x (t,ü))   =   a 

t t 
x     (t,ü))    =   Cü + /a(u,xn(u,üi)) du + / b(u,xn(u,ü))) dB(u,ü))    (l,8) 

s s 

to show that a solution exists and that it is unique. The Integral with 

respect to Brownian motion is the stochastic integral defined by K, Ito, 

For details of the proof and the stochastic integral the reader is referred 

to K. ItÖ [Befs, 19,26], | 

b. Stochastic Differential Rule 

Another result from stochastic differential equation theory 

will be important in the following presentation, that is, the stochastic 

differential rule. It is known that twice continuously differentlable 

functions of diffusion processer- violate some of the usual rules for 

transformations in ordinary calculus. The stochastic differential rule 

is described in the following theorem which is due to K, Ito [Ref. 30], 
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Theorem 1,2, Let x(t,üi) satisfy 

dx(t,üi) = a(t,ü)) dt + b(t,<ü) dB(t,üi) (1.9) 

where we assume the vector a(t,cD) and the matrix h(t,flü) are inde- 

pendent of the future Brownian motion and G is an open subset of 

the n-space  a  which contains all the points (x(t,a))) u < t < v 

CD € fi,  Let f(t,x) be a continuous function defined for u < t < v 

m 
x = (x1,x„,,,,,x )    e G   and suppose that 

f0(t,x)    =   Mt^xi (X.iO) 

fl(t,x)   =   ^pl i = l,2,.,.,n (1.11) 

fiJ(t,x)    =    ^l^      i/J = 1,2,,..,n (1.12) 
•^       d 

are all continuous. Then the differential of Ti(t,cü) = f(t,x(t,ü))) 

is 

^(t,^) = |(f0(t>x(t,ü))) +^fi(t,x(t,co))jai(t,cD) 

+ i S fiJ(t,x(t,co))c:LJ(t,a5)j dt 

' i,J / 

+ ^ fi(t>x(t,a)))biJ(t,ü)) dB^t^ü))        (1.13) 

where c(t,a)) = (ci,(t,£ü)) = b (t,(jü)b(t,cD). 
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Proof. 

We briefly sketch the proof to give the reader an idea of the tech- 

niques. By the ITaylor expansion of f(t,x ,,,.,x j we have 

m 

Tl(s,C0) - Tl(t,üj) 

to.1 

m 

- 2K)(t»-c1)+|;f
1(r)(x1fc)- xY^.J) 

k=lL i=l    X ' 

if j 

+ 

(i.i4) 

where r = (tk-rxl(tk-l),•••,Xn(tk-l)), *" = t + (k/m)(s " *)• Slnce 

f "(ttx,,,»,,x  ) are continuous and x1(t,ü3) i = 1,2,,,,^ are all 

continuous in t a,s,, 6..,     tends to 0 uniformly in m and k as IjK 

n -» oo a.s. Therefore the last term in the above expression goes to zero 

in probability. It can be shown that 

(X1(3,Ü3) - Xi(t,üi))(xj(s,ü)) - X^t,^)) 

s 

=  /[(X^T,^) - Xi(t,ü5))aj(T,ü)) + (Xj^ü)) - xJ(t,oü))ai(T,ü)) 

s 

+ J [(XJ^CT^) - xi(t>ü)))blk(T,ü)) + (X^TJCD) - xJ(t,a)))b:Lk(T,ü))J dBk(T,ü3) 
1 ' '      '      '   J   (1.15) 
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Usinp this result the remaining terms in the Taylor expansion are: 

(suppressing the summation signs) 

s s 

y(f0(a) + fi(a)ai(T) + | f
iJ(a)c1J(T))dT + /^(a^^t) dBjCx) 

s 

+ ^/fiJ(a)[(xi(T) - xi(Xm(T)))aj(T) + (XJCT) - xJ(Xm(T)))a1(T)j dT 

s 

+ |/f
iJ(a)r(xi(T) - X1(Xm(T)))bJk(T) + (XjCt) - XJ(Xm(T)))bik(T)] dBk(T) 

where X (T) denotes the maximum t^ which does not exceed T and 

a = (\(T),x1(Xm(T)),...,xn(Xni(T))). Since xi(Xm(T)) - X^T) a.s. 

the last two integrals in the above expression go to zero in the limit 

and we have the result,  I 

To illustrate the application of the stochastic differential rule 

we provide two examples (which will also be used subsequently). 

Example 1, 

Consider the function   M.    given by 

M,     =    exp ja (u,x(u,ü3))c" (U,X(U,ü3)) dx(u,cD) 
, s 

t 

2 j a (u^x(u^))c" (u,x(u,ü)))a(u,x(u>(ü)) du (1.16) 

T        -1 
where dx(u,üi) = b(u,x(u,ü))) dB(u,ü)), c = b b, and b   exists. 

The function VL    can therefore be rewritten as 
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M. = exp y a (u,x(u,ü)))b  (u,x(u,co)) dB(u,ü)) 

-Ja (U,X(U,ü)))C' (u,x(u>tü))a(u,x(u,ü)))du (1.17) 

Let 

äzt = aT(t,xt)b
T (t,xt) dBt 

| aT(t,xt)c"
1(t,xt)a(t,xt) dt (1.18) 

Then 

Mt = e (1.19) 

We shall now apply the stochastic differential rule (Theorem 1,2) to the 
Zt x function e , We first compute the derivatives of e 

d x 
d^6 

dJL 

dx2 

Substituting these terms in Eq. (1.13) we have the following 

equation for M. 

* -1 
M. = 1 + f M aT(u,x )bT (u.x ) dB t      J    u    s  ' u'        x ' u'  u 

s 

t 
- -i /"M aT(u,x )c"1(u,x )a(u,x ) du 2 J    u x ' u'  N ' u7 x ' u7 

s 

+ i/MuaT(u'Xu)bT (^\)b"1(u,xu)a(u,xu) du   (1.20) 
s 
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Recalling that c = b b we have 

; -1 
Mt   =    l+/MuaT(u,xu)bT   (u,xu) äBu (1.21) 

or written as only a functional of x , s < u < t we have 

t 

M+ = 1 + fMa^u.x )c"1(u,x ) dx (1.22) 
t      ./ u x ' ir  x ' u'  u 

Example 2. 

Find the differential for q   where 

qt = ^ exp /gT(u,xu>yu) dBu - | /gT(u,xu>yu)g(u,Vyu) du 

=    1 + EK/v^Vy
U)dBu (1.23) 

where q, = ^(t^) and we assume 

t 

qt = l + /Ex(tug(u,xu,yu))dBu 
s 

(1.24) 

The expression for the differential of q   can be written down formally 

as 

*{%) = -4^t+HK)J (1.25) 

since the differential rule can be characterized as 

df 1 ^/i 
t = fiA*t*ift(*\) (1.26) 

and since the term (dq.)  arises only from the stochastic integral via 
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our differential rule we have 

(1.27) 

c. Sufficient Conditions for the Absolute Continuity 
of Diffusion Processes 

We now consider the following stochastic differential 

equations, 

dx(t,ü)) = a(t,x(t,ü5)) dt + b(t,x(t,ü3)) dB(t,cu)      (1.7) 

dy^ü)) = f(t,y(t,ü))) dt + g(t,y(t,ü))) dB(t,ü))      (1.28) 

Almost all sample functions of these two stochastic processes {x } and 

{y ) are continuous functions. Therefore we can describe the stochastic 

processes (x.) and (y } by measures, say ^   and (i^ on the 

n-dimensional space of continuous functions C [s,l]. We shall give 

sufficient conditions for \Xy   to be absolutely continuous with respect 

to i^ (written ^ « i^). 

In terms of stochastic differential equations the first results were 

obtained by Prohorov [Ref, 10] though some important pioneering work in 

Wiener measure (the measure induced by Brownian motion) was done by 

Cameron and Martin [Ref, 11]. Subsequent to Prohorov, Skorokhod [Ref, 13] 

and Girsanov [Ref, Ik]  considered the problem and obtained more general 

results. We state the result due to Girsanov in the following theorem. 
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Theorem 1,3« Suppose that 

lx(t,cü) = a(t,x(t,cü)) dt + b(t,x(t,üj)) dB(t,ü)) (l,7) 

dy(t,cD) = (a(t,y(t,a))) + b(t,y(t,ü)))h(t,y(t,<ü))) dt + b(t,y(t,üj)) aB(t,(ü) 

(1.29) 

where 

i)  t € [8,1] 

ii) h(t,y(t,co)) = (h1(t,y(t,(ü)),h2(t,y(t,<ü)),...,hn(t,y(t,(ü)))
T 

iii) &{»,»),  b(»,») and h(»,») are measurable in both variables 

1 

iv) Jlb(t,x(t,ü)))|2 dt < oo  a.e. 

s 

1 

J|h(t,x(t,co))|2 dt < oo  a.e. 

s 

1 

| a(t,x(t,üi))|  dt < oo  a.e. 

v) |h(t,x(t,cD))l <ho(|x(t,ü))l) 

where h  is a nondecreasing function of a real variable. Then 

^<<MX 

where y^    and \j^   are the measures induced on C [s,l] by (x.) 

and {y, ) respectively. 

The Radon-Nikodym derivative, dii^/du, will be given by 
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djj^   =    exp yhT(u,xu) dBu -■! J|h(u,xu)|
2 du (1.30) 

If    b"      exists, this can be rewritten entirely in terms of    {x. ), 

■3—    =    cp,(x ,   s < u < 1) dn^ Ylx u'      -     -    / =    exp 
/ 

h (u.x )b    (u.x ) dx N  ' ir      v  ' u'     u 

- f hT(u,xu)b"1(u,xu)a(U,xu) du - -1/ I h(u,xu)| 
2 du 

(1.31) 
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II.  TRANSITION PROBABILITY DENSITIES FOR DIFFUSION PROCESSES 

Markov processes which are solutions of stochastic differential 

equations generated by Brownian motion are often used to describe the 

nonlinear filtering problem and the stochastic optimal control problem, 

A fundamental tool for these problems is the conditional density, viz., 

the probability density for the process to be estimated conditioned on all 

the past observations. The expression for the conditional probability 

density is a function of the transition density for the Markov process 

which is to be estimated. Therefore to derive an expression for the 

conditional probability density rigorously it is first necessary to prove 

that this associated transition density exists. To derive a stochastic 

equation for the conditional probability density it is necessary to prove 

that the transition density is differentiable enough to satisfy Kolmogorov', 

forward equation (the Pokker-Planck equation). 

In this chapter we shall consider stochastic differential equations 

which have diffusion process solutions, and (i) prove that the transition 

density with respect to Lebesgue measure exists for the diffusion process, 

(ii) prove that this transition density is suitably differentiable and 

that the various derivatives can be bounded so that the density function 

can be characterized as the fundamental solution of Kolmogorov1s equations, 

A,  EXISTENCE AND DIFFERENTIABILITY OF TRANSITION DENSITIES 

We now consider the problem of showing that the solution of the 

following vector stochastic differential equation 

dx(t,0D) = a(t,x(t,oo)) dt + b(t,x(t,a))) dB(t,ü))       (2,l) 
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vith suitable assumptions on the coefficients has a transition density 

and that this density satisfies Kolraogorov's forward and backward equations. 

In previous work on this problem, both a and b were assumed to be 

bounded and bolder (or Lipschitz) continuous. Under these assumptions, 

Mortensen [Ref, 8] established existence of the density, while Dynkin 

[Ref, 21] proved that the density existed and that it satisfied Kolmogorov1 s 

equations. 

We make the following assumptions on the coefficients 

i) The diffusion matrix b(t,x) is Holder continuous in 

t, globally Lipschitz continuous in x and globally bounded. 

Moreover, the symmetric matrix c fc = b b) is strictly 

positive definite. The terms 

^.(^x)   a c  (t,x) 

'  äx.dx. 
i,j = l,2,,,,,n 

are globally Lipschitz continuous in x, continuous in t 

and globally bounded, 

ii) The transfer (drift) vector a(t,x) is continuous in t and 

globally Lipschitz continuous in x. The terras 

öai(t,x) 
i = 1,2,...,n 

are globally Lipschitz continuous in x and continuous in 

t. 

We state our result in the following theorem. 
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Theorem 2.1. Let x(t,co) satisfy 

dx(t,ü)) = a(t,x(t,6ü)) dt + b(t,x(t,ü))) dB(t,ü3)      (2.1) 

where we make the assumptions on the coefficients described above. 

Then there exists a version of the transition density for {x.), pv, 

which satisfies Kolmogorov's equations. 

Before presenting the proof we shall briefly outline the steps. We 

first show that Kolmogorov's backward equation is naturally associated 

with the stochastic differential equation describing {x.) (Lemma 2.1). 

If this backward equation has a unique fundamental solution then we can 

show that this fundamental solution is the transition probability density 

for {x. ) (Lemma 2,2). Furthermore, if we can show that the formal 

adjoint of the backward equation has a unique fundamental solution and 

that for large values of the space coordinates the fundamental solution 

decreases sufficiently rapidly, then we can prove that the transition 

density satisfies Kolmogorov's forward equation. 

Since the coefficient a(t,xt) in the stochastic differential equation 

can be unbounded the usual results for existence and uniqueness of funda- 

mental solutions for linear second-order parabolic equations cannot be 

used. We proceed by first showing existence of the transition density 

relating it to a simpler process (Lemma 2,3) and then finally proving that 

the transition deneity is suitably differentiable (Lemma 2,4), 

1. Kolmogorov's Equations 

Since we want to show that a transition density for a diffusion 

process exists and satisfies Kolmogorov's equations we have to use some 
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techniques and results from the theory of partial differential equations. 

In particular it will be useful to define a fundamental solution of 

a partial differential equation. 

Definition, A function p(s,yjt;x) defined for x,y £ gj  and s < t, 

s,t e T = [0,l] is a fundamental solution of  £f = 0 if it has 

the following two properties 

a. Considered as a function of (x,t) for each fixed 

(s>y) £ 91 $5 [0,1] the derivatives of p which appear in £ 

exist, are continuous, and satisfy 

£p = 0 in g{n(g)(0,l) (2,2) 

b. If h is a continuous real valued function on a  with compact 

support then 

lim     f P(s,yjt,x)h(y) dy = h(x )        (2.3) 
(x,t) - (xo,s+)^n 

We will now associate Kolmogorov's equations with the vector stochastic 

differential equation 

dx(t,cü) = a(t,x(t,co)) dt + b(t,x(t,üi)) dB(t,ü))      (2,1) 

Lemma 2,1, Let g be a bounded real valued twice continuously differ- 

entiable function defined on g{ , Let {x.) satisfy 

dx(t,ü)) = a(t,x(t,ü5)) dt + b(t,x(t,a))) dB(t,a))      (2,1) 
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where we assume the vector a(t,x) and the matrix h(t,x) satisfy 

a global Llpschitz condition in x and are continuous in t, and 

the matrix c (c = b ty is strictly positive definite and x(s) = y. 

Let 

f(s,y;t) = E(s y)g(x(t,cD)) (2.4) 

Then f(s,y;t) as a function of (s^y) satisfies the following 

linear second-order parabolic equation 

fa-IhMw^ll^Mwk       (2-5) 
i * ^ 1,J '  J 

Proof. 

This result follows from the stochastic differential rule (Dynkin 

[Ref. 21]) and Dynkin's formula. | 

We now show that if the partial differential equation described in 

the above lemma has a unique fundamental solution, then by the properties 

of a fundamental solution we can characterize it as the transition density 

of {xt). 

Lemma 2.2. If the linear parabolic equation in Lemma 2.1 

öf  V /  \ öf  IV  /  \ s2f , 
-Ts   a2A(s'y)^+2ZClJ(s'y)^.        (2-5) 

i i,J J 

has a unique fundamental solution, p, then p is the transition 

density for the diffusion process {x. ) which satisfies 
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dx(t,ü))    =    a(t,x(t,ü))) dt + b(t,x(t,üD)) dB(t,ü3) 

and therefore the transition density,    p,    satisfies Kolmogorov1s 

backward equation. 

Proof. 

Using the definition of fundamental solution we can show that 

f(s,y;t) can be expressed as 

f(8,yjt) = Jg(x)p(s,y;t,x) dx (2.6) 

We recall a standard result from measure theory that bounded twice con- 

tinuously differentiable functions can approximate in measure any essentially 

bounded function, i.e., bounded twice continuously differentiable functions 

/ 1  oo\ 1 
are dense in the weak topology a (L ,L / induced on the space L  by 

the space L00 (cf. Royden [Ref, 27] or Halmos [Ref, 31]). Therefore 

the probability for any Borel set can be obtained from the fundamental 

solution as a limit of twice continuously differentiable functions. The 

other properties of a transition density also follow from the properties 

of a fundamental solution. I 

We have therefore shown that the transition density satisfies Kolmogorov1s 

backward equation. 

We will now sketch the arguments to obtain the forward equation. The 

formal adjoint of the backward equation is 
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of va(ai(t,x)f)      lVö2(c    (t,x)f) 
Tt  =  '1—öl +2Z    5x>— (2-7) 

i i,J      1 J 

Assuming that a fundamental solution, p, exists and is unique for the 

backward equation, to show that p satisfies the adjoint equation 

(Kolmogorov*s forward equation), besides assuming the appropriate differ- 

entiability of a, c and p, we must assume that the following terms, 

obtained by Integrating by parts to derive the forward equation, are 

zero. 

p(s,y;t,x)ai(t,x) 

^?(^XLt>x)c, ,(t,x) 

^(p(s,y;t,x)clj(t,x)) 

5x7 

= 0    i = 1,2,...,n      (2.8) 

= 0   i,J = 1,2,...,n      (2.9) 

= 0   i,j = 1,2,...,n      (2.10) 

We have shown that if Kolmogorov's backward equation has a unique 

fundamental solution then this fundamental solution is the transition 

density for the process (x, ). If we assume the appropriate differenti- 

ability assumptions for the coefficients a and c to make Kolmogorov's 

forward equation meaningful and we assume this forward equation has a 

unique fundamental solution with the above equations (Eqs. 2.8, 2.9, 

2.10) being satisfied then we will have shown that the transition density 

satisfies Kolmogorov's forward equation. 
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2. Usual Results for Existence and Uniqueness of Fandamental 
Solutions of Linear Parabolic Equations 

To prove existence and uniqueness of the fundamental solutions of 

Kolmogorov's equations we make use of some of the usual results for 

fundamental solutions of linear second-order parabolic equations. We 

review these results now. 

Consider the general linear homogeneous second-order larabolic equation 

in the strip H = (0;l] ®<Rn 

n :v2     n       N 

i,j=i 1 J i=i (2ai) 

The following theorem is due to 11'in, Kalashnikov and Oleinik [Ref, 32] 

(cf, also Refs, 33,3^). 

Theorem 2.2, Suppose that all the coefficients of the above equation are 

bounded and continuous in H in the set of variables s,y and that 

they satisfy a Holder condition in y: 

Kj(s'y/)" aij(s>y)l 5Mly' - ylx 

I^Ky') - b^y)! <Mly' - y|X   > i, j = 1,2, .,.,n 
X > 0 

|c(s,y') - c(S,y)I<M|y' - y] X     j 

In addition suppose that the coefficients a . satisfy in H a 

Holder condition in s: 

la^CsSy) - a^Cs^)! < M| s' - s^ 
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and 

n n 

i,J=l 1=1 

for all (8,y) € H and real numbers a. ,a ,.,,;a , Then the parabolic 
•Lb     n 

equation has a fundamental solution p(s,yjt,x) and this solution 

is unique. For p(s,y;t,x) we have the following estimates 

p(s,yjt,x) > 0,    s < t,    s,t € [0,1], 

p(s,y;t,^ < K(t - s)_n/2 exp \-a\y - x| 2/(t - s)J, 

^(s.yjt.x) •(n+l)/2 < K(t - s)^"^^6 exp My - x|7(t - s) [.a| i 
*z*i8y[lf:x) h K(t - 8)"n/2 ^exp [^^ ^ - 4 

where K and a are positive constants. 

If the derivatives 

da   d a    dbi 

are bounded and continuous in H and satisfy a Holder condition in 

y, then p(s,y;t,x) as a function of t and x satisfies the 

equation 

.2, 

^J     ' 0    1     * (2.12) 
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3. Existence of the Transition Density 

To shov the existence of the transition density for (x. ) we 

apply a technique used by Mortensen [Ref, 8], We first introduce a 

"simpler" process {y ) satisfying 
Xt 

dy(t,ü)) = b(t,y(t,üj)) dB(t,(n) (2.13) 

Using the results for existence and uniqueness of the fundamental 

solutions for linear second-order parabolic equations with bounded Holder 

continuous coefficients (Theorem 2,2) we can easily show that the tran- 

sition density corresponding to {yt), Py* exists, is unique and satisfies 

Kolmogorov's forward and backward equations 

äpY(s,y;t,x)    , ^     . d IS 

1,J       -J 

äpy(8,yjt,x)   j^—ö (ciJ(t,x)py) 

§t        = 2Z     Sx^r; (2*15) 

To show that the transition density for {x.}, p«, exists and is 

suitably differentiable is more difficult because a can be unbounded. 

We first obtain the existence of p  by using the results for absolute 

continuity of the measures of solutions of stochastic differential 

equations (Theorem 1.3)» 

Lemma 2,3, Let {y ) and {x.} satisfy 

<3y(Mü) = b(t,y(t,cD)) dB(t,co) (2,13) 
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äx(t,(ü)   =    a(t,x(t,ü))) dt + b(t,x(t,a))) dB(t,£o)      (2.1) 

where t e [s,l] x(s) = y(s) = y. 

Then jx^ « jj^ and the transition density exists for the process 

{x ) and a version of it for all t e [s,l] is given by 

Px(s,y;t,x) = E[9tlxt = x]pY(s,y;t,x) (2.16) 

where    j.^    and    iiy.   are the measures induced on   C [s,l]    by    {x, } 

and    {y, )    respectively and 

My,^   s < u < t)    =    exp rtwu 
/ a,r(u,yu)c" (u,yu) dyu 

l/lb'Vy^aKyJ^du (2.17) 

T. 
c = b b. The function cp  is the Radon-Nikodym derivative d^/djj. 

for the processes {x } and {y ) s < u < t. 

Proof. 

The fact that Mv « (V foUo^s from Girsanov's theorem (Theorem 1,3). 

Fix t. Let A e B(xt), Then 

A A 

(2.18) 

We can replace cp, by cp  in the above equation because 

(cpt, B(Bu, s < u < t)) is a martingale. This will be discussed further 
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in the next chapter (Lemma 3,5). 

=    jE[cpt|xt = x]py(s,y;t,x) dx (2.19) 

By the Radon-Nikodym theorem we have 

Px(s,y;t,x)   =   E[cPt|xt = x]py(s,y;t,x)    a.e.    dx (2,20) 

We can also immediately obtain this result for a countable set S dense 

in T = (s,l]. To show that this representation is valid for all t e (s,l] 

we proceed as follows. Let t ^ S, t e (s,l] and consider sets 

A = {x, < a) e B(x. ), a € g{ , These probabilities can be obtained from 

S by the continuity of the sample paths and these sets generate B(x.), 

So we can obtain, via a limit, the conclusion for V A € ß(x.), I 

k.    Differentiability of the Transition Density 

Lemma 2,h,    The transition density for the process {x.), pv, satisfies 

Kolmogorov1s equations. 

Proof, 

We will consider primarily Kolmogorov's forward equation since the 

additional results for the backward equation follow by the same techniques. 

We recall a few preliminaries first. Let 
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n     =   {CD:   sup   |x(t,cD)| < M^ (2.21) 
M   |   s < t < 1 

'Since [x. ) has continuous sample paths we have 

p/ufi^ = 1 =  lim P(nM) (2.22) 
\M / M -► oo 

Also 

sup   Efx ) 
< t < 1 W 

Heuristlcally our approach is quite simple. Consider sets 

r = {x : |x| < n) (g)(0,l]. We will give a Green's function for rN 

which is not difficult to construct since the coefficients of the partial 

differential equation are hounded on this set. For large M, P(nM) * 1 

so that a description of the transition density when the coefficients 

are bounded is (in some sense) a good approximation for the unbounded 

case. We will show that the sequence of Green's functions is monotone 

increasing. Since we showed that the density function for the diffusion 

process (x.) exists, we are able to bound this increasing sequence. 

For P  the Green's function p (s,y:t,x) for n n '"'  '   ' 

i,J      J    1 

exists and has the properties described earlier for fundamental solutions 

of parabolic equations with bounded coefficients (Theorem 2,2), 

SEL-67-035 3^ 



It follows easily from probabilistic considerations that 

f pn(s,yjt,x) dx < 1      |y|<n      0<s<t<l {2,2k) 

x   < n 

and similarly 

f Pn(s,yjt,x) dy < 1 |x|<n      0<s<t<l (2.25) 

|y|   < n 

Let z e a  be fixed and let \|f be a smooth nonnegative function 

with compact support such that z is in the interior of the support of 

if.    Choose m so large that the support of t is contained in | x| < m. 

Define f (j = m, m + 1) as 

fjKy) =  j Pj(8,y;t,x)i|/(x) dx       (2.26) 

N < J 

Then f, satisfies the differential equation in r  and for s = t f. = t 

and f .. > 0 = f  on | x| = m. Hence by the maximum principle for 

partial differential equations [Ref. 33] f , > f  in r . If we then 
Ili't*X. ^~  EU II 

replace \|f by a sequence of nonnegative functions which approximate the 

Dirac measure concentrated at z we obtain 

p . > p  in T 
'm+l — m     m 

since    |z|   < m    is arbitrary.    We extend the definition of   p      to   a 

by defining   p    = 0    if    | x|     or    | y|  > m.    Thus 
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O^P^P^... <Pm<PriH.1<... 

for Vx,y e g; , t,s e [0,l], t > s. 

The sequence (p ) has a finite limit a.e. (=p) but we must show 

that this limit is a solution of the parabolic equation, i.e., 

£P = 0 (2.27) 

We could in fact bound the sequence by the estimates obtained for parabolic 

equations with bounded coefficients since the constant a    in Theorem 2.2 

can be shown not to depend on the boundedness of b and c and the 

constant K can be simply related to the coefficients b and c. 

Therefore for t > s x,y e g{ 

lim pn(s,y;t,x) = p(s,y;t,x)  a.e. (2,28) 
n 

is well defined (actually everywhere). It follows by the above that p 

is bounded and by Fatou's lemma 

Jp(s,yjt,x) dx < 1 (2.29) 

|p(s,y;t,x) dy < 1 (2.30) 

Consider a bounded domain D C fR ®[0,l] and let t > s. Choose 

another bounded domain E such that DcECECgi (g)(s,l]. Choose 

m so large that E C r . By the Schauder-Barrar-Friedman interior 

estimates [Ref. 33] 
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<*n> '(^'(^)\W) 

are uniformly bounded and equicontinuous in D. Hence by the Ascoll 

theorem [Ref. 27] there exists a subsequence of (p ) which together 

with its derivatives converges uniformly to p in D, Therefore 

£P = 0 (2.31) 

But 

p -» p 
^n 

Thus 

P = P on D (2.32) 

and since D was an arbitrary bounded domain 

£P = 0,  x,y e gj" s < t, s,t € [0,1] 

For completeness we should show that p is indeed a fundamental 

solution but this is straightforward and will therefore be omitted. 

We should also verify that the assumptions on p to derive the 

forward Kolmogorov equation are valid. These assumptions are easily 

verified since 

sup  E(x ) 
o < t < i \ V 
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and    c    is bounded. 

The fact that    p    is a transition density,  i.e., 

/p   =   1 (2.33) 

as well as the uniqueness of the fundamental solution follow from our 

proof for existence of the density, | 

B.  SOME REMARKS 

Remark 1. 

Theorem 2.1 is quite analogous to a result obtained by Eidelman 

[Ref, 34], For other results for linear parabolic equations with unbounded 

coefficients the reader is referred to Krzyzanski and Szybiak [Ref, 35], 

S. Ito [Ref, 36], and Aronson and Besala [Ref, 37]. 

The method of proof given here seems to simplify somewhat the usual 

construction of fundamental solutions by exploiting the probabilistic 

interpretation of the parabolic equation. 

Remark 2, 

We have obtained the existence and uniqueness of a transition density 

for a diffusion process which is the solution of a stochastic differential 

equation and have shown that it is suitably differentiable when some of 

the coefficients can be unbounded. Existence and uniqueness of the tran- 

sition density is not true for arbitrary smooth but unbounded coefficients. 

We construct an example from one-dimensional diffusion theory to show 

that for some smooth but unbounded coefficients we will not obtain a 

usual density function, i.e,, 
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/P < 1 (2.3^) 

and the density function will not be unique. 

Consider Brownian motion on the interval [-jt/2,n/2]. It is intuitively- 

clear (and not difficult to prove) that almost all sample paths of the 

Brownian motion will hit the boundaries (x = -jt/2,jt/2). With suitable 

boundary conditions we can have a set of sample functions of positive 

probability absorbed at the boundaries. 

Now we define a diffusion process on the extended real line by applying 

the smooth one-to-one transformation 

y = tan x (2.35) 

to the Brownian motion on the interval [-Jt/2,jr/2.], Therefore we have 

that a set of sample functions of positive probability of the new diffusion 

process is absorbed at the boundaries (x = +oo;-oo). To clearly characterize 

this new diffusion process we compute its differential generator recalling 

that the differential generator for Brownian motion is 

^x2 

We obtain the differential generator for y = tan B  by applying the 

chain rule for differentiation to 

f(y) = f(tan x) (2.36) 

We obtain 
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Of =    Of ä; 
(2.37) 

ä2f     ö2f ^ ^ ^ af ajr ,_ .M 

We use the following elementary results 

d tan x     2 
 3  = sec x 

dx 

2 
d sec x   _   2 , 
 ,    = 2 sec x tan x ax 

2       2 
sec x = tan x + 1 

to obtain the differential generator 

2 

| (l + /) i| + 4 + /)  |f (3.39) 

for the diffusion process on the real line. The diffusion process that 

we have constructed has the property that 

JdP<l (2.^0) 

where P is the transition measure for the process. Furthermore, by 

our construction it follows that the above differential generator (Eq, 2.39) 

does not correspond to a unique diffusion process. 
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Remark 3. 

Random Initial conditions for the stochastic differential equations 

cause no difficulty for determining a transition density if we assume that 

these random variables have a finite second moment (though finiteness 

a,s, suffices), that these random variables are independent of the Brownian 

motion, that the corresponding probability measures for these random 

variables have a density with respect to Lebesgue measure which is suitably 

differentiable, and that we change the various cr-fields and the proba- 

bility measure P to include these random variables. 
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HI, THE ABSOLUTE COMTIKUITY OF MEASURES OF DIFFUSION PROCESSES 

The main objective of this chapter is to obtain necessary and suf- 

ficent conditions for the absolute continuity of the measure of the 

solution of one stochastic differential equation with respect to the 

measure of the solution of another stochastic differential equation and 

to obtain an explicit expression for the density function in the space 

of continuous functions. The necessary and sufficient conditions derived 

here are analogous to the conditions obtained for Gaussian processes with 

independent increments [Ref. 12], To obtain these conditions a charac- 

terization for the density function will be given which will indicate to 

some extent its structure. 

The conditions for absolute continuity of the measures of solutions 

of stochastic differential equations have application in communication 

theory to the detection problem when the two hypotheses can be modeled 

by stochastic differential equations. The characterization of the density 

function should be useful for acquiring a better understanding of the 

nonlinear filtering problem and the associated stochastic optimal control 

problem. 

The main result of this chapter is the following theorem. 

Theorem 3,1, Let {x.} and {y ) satisfy 

dx(t,cu) = a(t,x(t,ü))) dt + b(t,x(t,üi)) dB(t,cü) (3.1) 

dy(t,(D) = f(t,y(t,ü))) dt + g(t,y(t,ü))) äB(t,ü)) (3.2) 

where t € [0,1], x(o) = y(o) and the coefficients a,b,f and g 
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satisfy a global Lipschitz condition in the second variable and are 

continuous in the first variable and the diffusion matrices b and 

g have inverses for all values of their two variables. For 

^ ^ (3.3) 

it is necessary and sufficient that 

b b = g g (3.^0 

Corollary. For ^ « |iY the density function M.  can be written as 

a functional of only x , 0 < u < t 

M(x , 0 < u < t) = exp 
/T -1 

(f(s,x(s,ü))) - a(s,x(s,a)))) c (s,x(s,tt))) dx(s,(D) 

/T -1 
(f(s,x(s,a))) - a(s,x(s,a)))) c (s,x(s,a>))a(s,x(s,cD)) ds 

0 

- j (f(s,x(s,CD)) - a(s,x(s,ü)))) c" (s,x(s,ai))(f(s,x(s,a))) - a(s,x(s,ü)))) ds 

0 
(3.5) 

where 

c = b b (3.6) 

We note that while this theorem is similar to the condition for 

Gaussian processes we have had to be more restrictive in our assumptions 

than in the Gaussian case since we have had to assume that the diffusion 

matrices have inverses. 
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A. ■ SOME SUFFICIENT CONDITIONS FOR ABSOLUTE CONTINUITY 

To obtain necessary and sufficient conditions for the absolute conti- 

nuity of measures of solutions of stochastic differential equations we 

raust first obtain an extension of the known sufficient conditions for 

the absolute continuity of the measures. The extension is not difficult 

using some techniques and results of Skorokhod [Ref. 13]. We first present 

some of Skorokhod's results. 

1. Skorokhod's Results 

Lemma 3«J-« If b(t x) and g(t,x) are continuous in t and satisfy 

a global Lipschitz condition in x, then the process <x) 'V and 

{yj.a } defined for a = {0,t ,,,.,t = 1) as 

x(a)(t,ü)) = x(a)(tk,ü)) + /b(vx
(0!)(tk,a))) dB(s,u)     (3.7) 

\ 

t 

y(0!)(t,a>) = y(a)(tk^) + IsLJa)i\.o>)\  äB(s,co)     (3.8) 

\ 

for    t e  [tk,tk+;L]    and 

x^a\o,oi)    =    X(0,<ü) 

y^a)(o,ü))   =   y(o,ü)) 

will füT ev«jry    t €  [0,1] = T    converge in probability to the solutions 

of 
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x(t,ü)) = X(0>ü)) + rb(s,x(s,ü))) dB(s,cü)        (3.9) 
0 

t 

y(t,ü5) = y(0,CD) + Jg(s,y(s,ü3)) dB(s,ü)) (3.10) 

0 

as max,(t.  - t, ) -» 0 (i.e., the partitions become dense in the 

interval [0,1]), 

Lemma 3,2. Let the finite-dimensional distributions of the processes 

£ (t) and T) (t) converge weakly to the finite-dimensional distri- 

butions of the processes £(t) and Ti(t), respectively, and let 

P^ ', P1, P^, ',    and P? be the measures in function space corre- 

sponding to the processes ^ (t), ^(t), T\  (t) and T](t), Moreover, 

let the measure P^ ' be absolutely continuous with respect to the 

measure Pg ' for all n, let 

dP2 
h (x(t)) 

be the density of   P^   '   with respect to   P«    ^    and let 

dp!11) 
lim       lim   p{ jlog-i^r (x (t))| >N 

N - oo    n - 00 dPX  y 
-   =    0 (3.11) 

Then the measure    P«    is absolutely continuous with respect to the 

measure    P,. 
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Lemma 3.3. Let the processes £ (t), ^(t), r\  (t), Ti(t) satisfy the n' 

jonditions of Lemma 3.2, and moreover, let dP^ /dP, ' exist. If 

5n(t) -> S(t), ^(t) -» Ti(t) and 

4n) 

in probability, then 

dP? 
P = w-(Ut)) (3.12) 

Theorem 3.2.    Let    ^-.(t)    and    £p(t)    be Gaussian processes with independent 

increments such that 

i(z,f  (t)) , 1 
Ee J =    expj- 2 (AJ(t)z,z)| (3.13) 

In order that II. f   ,.    be absolutely continuous with respect to 

JJ.. / x it is necessary and sufficient that A^t) = A2(t). 

2. New Result 

With these results of Skorokhod we are now in a position to extend 

the sufficient conditions for absolute continuity. 

Theorem 3.3. If the processes {x ) and {y ) are defined as the 

solutions of the stochastic differential equations 
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L^iiHnB in n 

(2) 
continuous with rejpect to the measure    P), '   *    corresponding to the 

(a) process    T\.     (T).    We denote    x*   '    as 

x(a)(t^)    =   x(tk,ü)) + tt x(Vco)(a)     t €  [tk,t      ] (3. .19) 

and by Lemma 3*1 

xj.0^ - xt    in probability    t e  [0,1] 

Since 

^rn(aT))Hi (3.2o) 
dPv ' 

the conditions of Lemmas 3,2 and 3,3 are satisfied and therefore 

Similarly 

Mx«^ I 

B.  CHARACTERIZATION OF THE DENSITY FUNCTION 

1, Assumptions 

Before considering necessary conditions for the absolute continuity 

of the probability measures we will make some assumptions as to the type 

of stochastic differential equations to be considered and assumptions on 

the coefficients in 
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äx(t,oü) = b(t,x(t,cü)) dB(t,ü)) (3.14) 

äy(t,<o) = g(t,y(t,aj)) dB(t,cü) (3.15) 

where b (t,x)b(t,x) = g (t,x)g(t,x) for all t e [0,1], x e R , 

b and g satisfy a global Llpschitz condition in x and are 

-1 T 
continuous in t and c   exists where c = b b, b and g are 

n x n matrices and (x.), {y. ) and (B.) are n-dimensional processes 

then 

MX = ^ (3.16) 

where ^   and n^ correspond to the measures induced in function 

space by (x.) and (y.) respectively. 

Proof. 

Define the homogeneous processes with independent increments (; and 

S 
^t,x(T) = J  b(t'x) äB(s^) (3.IT) 

t 

T 

Tlt^(T)  = / g(t,x) dB(8,<D) (3.18) 

for T > t 

it then follows from Skorokhod's theorem (Theorem 3.2) that ?)   '  v 

corresponding to the process £,  (T) is for all t and x absolutely 
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where 

dx(t,tü) = a(t,x(t,cu)) dt + b(t,x(t,cü)) dB(t,ü))      (3.1) 

dy(t,cü) = f(t,y(t,(ü)) dt + g(t,y(t,cD)) dB(t,a))      (3.2) 

c(t,ü)) = (x-Ct^cß),,,.^ (t^co))   t e [0,1] 

m 
y(t,cD) = (y^t^^.^yjtjü))) 

B(t,(ü) = (B1(t,a)),...,Bn(t,co))
T 

a(t,x(t,ü3)) = {ai(t,x(t,(D))) 

b(t,x(t,ü))) = {b1J(t,x(t,ü)))) 

f(t,y(t,ü))) = {f1(t,y(t,cü))} 

g(t,y(t,a))) = {g1J(t,y(t,ü)))) 

Assumption. We will assume that the coefficients satisfy a global 

Lipschitz condition in the space variable and are continuous in the 

time variable and that the diffusion matrices b and g have 

inverses for x e fR , t e T, We will assume the interval of solution 

of these equations is T = [0,1] and| that x(o) = y(o) although of 

course this last assumption on the initial conditions can be weakened 

to the case where these random variables have measures that are 

equivalent, 
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By the real valued function M,  on C„[0,t] we will mean the 

density function when iXy. « n^ where ^L. and ^ correspond to the 

measures induced by the solutions of the respective stochastic differ- 

ential equations above. By the Radon-Nitodym theorem we have for 

A e ß(yu, 0 < u < t). 

HyU) = jX di^ (3.21) 
A 

2. Uniform Integrability and Some Results From Martingale Theory 

Definition, Let A be a subset of L (n,S,P). A is uniformly integrable 

if 

sup      j |X(ü3)| P(dü)) -••0    as    n -► oe 
XeA{|x|>n) 

The following results indicate the importance of uniform integrability. 

Theorem 3,4, Let (f ) be a sequence of integrable random variables 

that converge a.e, (or in probability) to a random variable f. Then 

f is integrable and the convergence of f  to f takes place in 

the L  norm if and only if the f  are uniformly integrable. 

Theorem 3»3 (Compactness Criterion of Dunford-Pettis). Let A be a subset 

of the space L , The following three properties are equivalent: 

i. A is uniformly integrable. 

ii, A is relatively compact in L  in the weak topology a(L ,Lcoj, 

iii. Every sequence of elements of A contains a subsequence that 
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converges In the sense of the topology O(L ,Lj, 

We state some well known results from martingale theory. 

Proposition 3,1 (Jensen's Inequality). Let c be a convex mapping of gt 

into a and let X be an integrable random variable such that the 

composition c O X is Integrable, The following inequality then holds 

c O  E[X|§] <E[c O X|g] (3,22) 

where g is a sub-o-fleld of g. 

Theorem 3,6. Let (X.)    be a right-continuous (or only separable) 
* Ugf  . 

supermartlngale where £R  is the positive half line 

a. Suppose that 

sup Efx'| 

The random variables X. then converge a.s. to an integrable 

random variable X  as t -» ». 
00 

b. Suppose that the X. are uniformly integrable. The above 

condition is then realized, the process (X.)        is a 
tea u{°o)   i 

supermartlngale, and the convergence takes place in the L 

norm. 

c. Suppose that the X. are uniformly Integrable and that the 

« process (X.) is a martingale. The process (X,)        is 
tegi uH 

. „ then a martingale. 

The above results can be found in Meyer [Ref. 38]. The following 

» - 
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results for necessary conditions were developed through discussions with 

S. Watanabe, 

3, Functionals of Brownian Motion 

Our first task is to give some general representation for the 

density function M, . To accomplish this we will have to obtain some 

preliminary results on representations of martingales of Brownian motion. 

Definition. The sub-a-algebras (&.     are defined as 

t = B(Bu, 0 <u< t) 

Theorem 3.T. Any L? functional of n-dimensional Brownian motion can be 

represented by an infinite sum of stochastic integrals plus a constant. 

Corollary. Every square integrable martingale of Brownian motion can be 

represented by an infinite sum of stochastic integrals plus a constant. 

Proof (Theorem). 

K. Ito [Ref. 39] proves the theorem for 1 dimensional Brownian motion, 

the n dimensional case follows from his results. 

(Corollary). Recall T = [0,1] for this chapter so let t € [0,1] 

and given 

tTx 43 

and {y+,£L3 
is a martingale. By the martingale convergence theorem 

(Theorem 3*6) 3 one and only one (up to equivalence) Y, such that 

for L € [0,1] 
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Yt    =    E[Y1|at]        a.s. (3.23) 

By Ito's representation we can write 

1 
Yl     =      I/V8^dB8+C 

i 0 

Yt = E U\M**s\Bt 

= 1 
i o 

" t 

E /*1(8,cü)dBs|ßt 

0 

+ c 

+ JE 
i L 

/M^ 

(3.24) 

0 
03)dBs|et + c 

(3.25) 

where the {^..(s,^)) are n dimensional vectors which are ß  measurable 
1 s 

for each s. (The integrand product above will mean throughout this 

chapter the usual inner product,) Since {Y.,ß. } is a square integrable 

martingale the first sum is JJ . measurable and the second sum is zero. 

Thus 

Yt =  X /*i(s'a)) dB + c  a.s. 
i 0 

(3.26) 

This was done for fixed t. Since the martingale is continuous we can 

apply the result to a countable dense T set and we therefore have for 

all t 

t 

Yt = y/^Kcu) äBs + c  a.s.  |      (3.27) 
, 0 

In our attempt to characterize the density function M.  it is necessary 
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to relate the  a-algebras B(x , 0 < u < t) and S(y , 0 < u < t) to 

S(B . 0 < u < t). 

Lemma 3,k,    For all t 

B(y , 0 < u < t) = S(x , 0 < u < t) = B(B , 0 < u < t)  (3.28) 

Proof. 

We will prove only the last equality i.e., 

B(xu, 0<u<t) = B(Bu, 0<u<t) (3.29) 

since the other proof follows similarly. 

Since the coefficients of the stochastic differential equation are 

Lipschitz continuous we can apply the recursive formula (Picard iteration) 

that K. Ito uses to prove existence and uniqueness of the solution of 

stochastic differential equations. If we let x (t,a)) be the n 

solution in the recursive procedure we clearly have 

B(xn, 0 < u < t) C B/B , 0 < u < tj 

Since we are performing a countable operation we can pass to the limit 

and obtain 

ß(xu, 0 < u < t) C B(Bu, 0 < u < t) 

Conversely, since the diffusion matrix is nonsingular given any x(t,cü) 

we can determine B(t,(ü) and therefore 
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ß(x , 0 < u < t) D ß(B , 0 < u < t)    | 

We reirark that this result is not always true as Ito and Nisio [Ref, ^0] 

have indic:ateä. They modify an example of Girsanov and show that 

S( V 0 < u < t) ^ B( V 0 < u < *) 

Conversely, trivial examples when the diffusion matrix is singular will 

show that the other o-algebra inclusion is not always valid, i.e., 

ß(xu, 0 < u < t) ^ B(Bu, 0 < u < t) 

We use the result of the preceding lemma (Lemma 3«^) to make the 

following assertions about the density function and subsequently to derive 

an expression for the density function. 

Lemma 3.$. The density function M.  is a martingale of Brownian motion. 

Corollary. The density function M,  is a continuous function of t. 

Proof (Lemma). 

Let A 6 B(y , 0 < u < t) = B(B , 0 < u < t) and let T > t 

|MT di^ =  JE[MT| at] di^ = JMt d^       (3.30) 
A A A 

Therefore E[M 1^+1 = M  a.s, n^ and {M , ß ) is a martingale. 

(Corollary). If M,  is square integrable it follows by the 

2 
representation for L  martingales of Brownian motion. Otherwise since 
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2 
0 < M. < oo a, s, jOy we can approximate by L  martingales and obtain 

the result by the martingale convergence theorem (Theorem 3.6). I 

k.    Decomposition of Supermartingales 

Doob in his development of martingale theory gave a unique 

decomposition of supermartingales for the discrete parameter case by a 

simple proof explicitly exhibiting the decomposition. The decomposition 

for continuous parameter right continuous supermartingales was finally 

completely solved a few years ago by P. A, Meyer, The problem is 

complicated a great deal by the continuous parameter and the decomposition 

is not valid for all continuous parameter supermartingales as it is for 

the discrete parameter case. Thus a number of definitions have to be 

given. 

The concept of stopping time will play an important role in a number 

of the proofs given subsequently, A stopping time is defined as follows. 

Definition, Let (fi,S) be a measure space and let (ß.)    be an 
t  tea* 

increasing family of sub-a-fields of Ö, A positive random variable 

T defined on ü    is said to be a stopping time of the family {S. ) 

if 

{(a :  T(co) < t) e St for every t e g{+ 

A supermartingale is decomposed into the difference of a martingale 

and an increasing process. An important variety of increasing process is 

the following, since it will insure uniqueness of the decomposition. 

Definition, An increasing process {A.) is said to be natural if for 
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every positive bounded, right-continuous martingale (Y. ) we have 

E 
/ 
Y dA 
s  s 

= E 
/ 
Y  dA 
s-  s (3.31) 

Remark. 

If {A.) is continuous then it is natural. 

Definition. Let {X.) be a right-continuous supermartingale relative 

to the family {S.) and let fT be the collection of all finite 

stopping times relative to this family (respectively, J  the 
8 

collection of all stopping times bounded by a positive number a); 

{X.) is said to belong to the class (D) (respectively belong to 

the class (D) on the interval [0,a]) if the collection of random 

variables X_  T e J (respectively T e J ) is uniformly integrable, 

{X. ) is said to belong to the class (DL), or locally to the 

class (D), if {X.) belongs to the class (D) on every interval 

[0,a] (0 < a < oo). 

Definition. Let T be a stopping time relative to the family of a-fields 

(ö. )   • We denote by S-, the collection of events A € 3  such 
tea 

that 

AO {T < t) e Ö.     for every    t e g{+ 

We will also have occasion in the subsequent work to use the optional 

sampling theorem in the continuous parameter case. 
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Theorem 3.8» Suppose that for the superraartingale {X,) there exists 

an integrable random variable Y such that 

Xt > E[Y|Bt] for each t € gi+ (3.32) 

Let S and T be two stopping times such that S < T, The random 

variables Xa and X  are then integrable, and we have the super- 
S      T 

martingale inequality 

Xs>E[XTl3s]   a.s. (3.33) 

The following theorem due to P. A. Meyer [Ref. 38] represents a 

complete solution to the decomposition of right-contimous, continuous 

parameter supermartingales. Its proof will not be included here, but it 

can be found in his book as can the preceding definitions. 

Theorem 3.9. A right-continuous superraartingale {X.} has a decomposition 

Xt = Yt-At (3.3*0 

where (Y.) denotes a right-continuous martingale and (A.) an 

increasing process if and only if (X.) belongs to the class (DL), 

There then exists a decomposition for which the process {A. ) is 

natural, and this decomposition is unique. 

5, An Expression for the DeuBtty Function 

We have now the results necessary to characterize the density 

function M,, 
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Theorem 3.10. If the density function, M., is strictly positive (a.s. 

\iyr) then there exists a function cp with cp(s,«) jß     measurable 

such that 

M. = exp j"cp(s,ü)) dB8 - I J | 9(3,0))! 2 dt (3.35) 

Proof. 

By two previous lemmas we have that 

i. M. is a martingale of Brownian motion. 

ii, K.  is a continuous function of t. 

Recall that t e [0,1]. Define stopping times T  (with respect to F ) 

as 

T  = inf {t : Mt<^ or Mt>n| 

(3.36) 

= 1 if the above set is empty. 

It is elementary to verify that (T ) is a sequence of stopping times 

of the family (/5. ). Clearly T  is increasing with n and T t 1 
Xß xi n 

a.s. ti^. 

We prove the latter.    If    T   < 1    on   A  : ^(A) > 0    then either 

M.  > n,   V n    and     / M.   djiy = + <»    or   M.   < l/n,   V n    and    M.   = 0    on   A 
A 

both of which are contradictions. Note also that lim T = T is a 
n 

stopping time since (T ) is increasing. We truncate the density function 

M. by use of the stopping times T x> n 
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(MW 0, ) 

^    -    MtATn (3-3T' 

The pair (M^ , BJm   j is a martingale by the optional sampling theorem. 

The function, M^ , Is square Integrable for each n. We now consider 

X^n) . log M<n) (3.38) 

.<"' 1, Since IC ' Is bounded away from zero and bounded above for each n 

El I log M^ '| J < 00 so that log M* ' Is a &uperraartlngale by Jensen's 

Inequality, Since X^ ' is bounded above and below it is easily verified 

that it is in class (D), Therefore we apply the Doob-Meyer decomposition 

and obtain 

x(n) . Y(n) . A(n) (3i39) 

where (Y^ ,ß rn   ) is a martingale and A)   '    is an increasing process, 
n' (n) By Meyer's construction of the decomposition, the increasing process A^ ' 

will be continuous if X^   is continuous. Therefore (see remark on 

page 57) A| ' is natural and the decomposition is unique (Theorem 3»9). 

Since AJ; ' is continuous and YS   '    is bounded it follows that Y^ ' is 

bounded. Therefore the martingale m ,Sm    ) is continuous and square 

integrable and can be represented by a sum of stochastic Integrals (which, 

because of the continuity, can be summed to one stochastic integral) plus 

a constant terra. Since M» = 1 and A = 0 (by definition)it follows 

from Eq, (3,39) that Yn is zero and therefore the constant term is zero. 

Thus we can write x} ' in the form t 
t t 

x(*) =  [^(3,0)) dBs - /dA(
s
n) (3.^0) 

0       s 0 s 
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Let m > n, then 

„(n)    (m) 
^   = Mt 1{t < T ) — nJ 

(3A1) 

where I,. ^ m , is the indicator function for the set (t < T ). 
{t < T ) - n-" 

— n 
By the uniqueness of the decomposition 

At   " At ■L{t < T ) 1 - nJ 
(3.^2) 

and thus 

(n)/  \     (m)/   v_ 
(pv y(s,(ü) = cpv '(s,^)!^ < T j 

By the assumptions on M. and the definition of (M^ ') 

(3.^3) 

M M.    =      lim   M^  '    a.s.    \iy. 
n -► oo 

(3.^) 

thus we can define 

n 
a.s.    (3.^5) 

cp(t,0   =    limcp(n)(t,.) 
n 

a.s.    (3.^6) 

Hj.    =    exp jcp(8,a)) dBs 

_0 0 
(3.^7) 

Let   äz(t,ü)) = cp(t,cü) dB.   - dA     and apply the stochastic differential 

rule (Theorem 1.2) of K. Ito to 

61 SEL-67-035 

mtC** WLTH U> L"H WM WT. V* W3I VKmH^BHaBBB^B^BHnMBBBEIIJKJrKK r..K r Jr r JIT: W r. »E joucrrjrr.jm M-r.*:a.MTjmrtjvr JTITLM 



exp [zt] 

The term dA.  causes no difficulty because A. is of bounded variation. 

Thus 

t t t 
Mt = 1 + /Mscp(8,<o) dBs + | /MS|<P(8,(D)|

2
 ds - /MS dAs (3.U8) 

By  definition of the density function 

E[Mt - 1] = 0 (3.^9) 

and {M, - 1, '■' , ) is a martingale with 

E [Ms(p(s,ü)) dBs + I j"Ms|cp(s,ü))| 2 ds - J dA£ = 0   (3.50) 

Since the terras inside the expectation are a martingale of Brownian 

motion this implies 

dA  = ö M8,co)| ds s " 2 

M  = exp (p(s,to) <3Bs - 2 j I cp( s,ü3)|  ds 

LO 

(3.51) 

(3.52) 

C. NECESSARY AND SUFFICIENT CONDITIONS FOR ABSOLUTE CONTINUITy 

We now have established the preliminaries necessary to obtain the 

main result of this chapter, that is, necessary and sufficient conditions 

for the absolute continuity of measures which are generated by solutions 
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of stochastic differential equations. 

Theorem 3.1. Let {x ) and {y ) satisfy 

dx(t,ü)) = a(t,x(t,ü3)) dt + b(t,x(t,(ü)) dB(t,ü5)      (3.1) 

ay(t,CD) = f(t,y(t,cD)) dt + g(t,y(t,ü))) dB(t,ü))      (3.2) 

where t € [0,1], x(o) = y(0) and the coefficients a, b, f, g 

satisfy a global Lipschitz condition in the second variable and are 

continuous in the first variable and the diffusion matrices b and 

g have inverses for all values of their two variables. For n= n^. 

it is necessary and sufficient that 

m       m 
b b = g^g (3.If) 

Corollary. For iiy « \iy,   the density function M. can be written as 

a functional of only x , 0 < u < t 

M(x , 0 < u < t) = exp r(f(s,x(s,a))) - a(s,x(s,ü)))) c' (S,X(S,ü))) dx(s,(ü) 

- / (f(s,x(s,ü3))- a(s,x(s,cü))) c" (s,x(8,ü3))a(s,x(s,ü))) ds 

0 

t 

2 j (f(s,x(s,ü))) - a(s,x(s,cD))) c" (s,x(s,oD))(f(s,x(s,cü)) - a(s,x(s,cü))) d£ 

0 

(3.5) 

wnere 
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T 
c = b b (3.6) 

Proof of Theorem (Necessity). 

By the preceding theorem we know that the density function M.  is 

of the following form 

M, = exp cp(s,ü)) dBg - 2 j |9(S,CD)|  ds 

Lo 
(3.52) 

We will now characterize the vector function cp by applying the stochastic 

2     2/      x     n 
differential rule, For any h e C ,  heL(dtx dP), h : a - & 

lim f E 
t i 0 ^ 

exp 

T 

K^s-l/i^i ds 

0 

(h(xt) - h(x0)) = ^^[^'^ 

= -M h" + fh' (3.53) 

nm^ i E[ilt(h(xt) -h(x0))] (3.5^) 

lira   i EUut - l)(h(xt) - h(x0)) + (h(xt) - h(x0))j   (3.55) 

lira   ^ Ef(h(xt) - h(x0))l     =   ^ h" + ah' (3.56) 

where 

Z/ öx.3x ^   ik kj 
I,J   i 3,

k 
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We recall (somewhat heurlstically here) the behavior of products of 

ordinary and stochastic integrals as t j 0 

t     t 

28ä8 

0    "o 

Jas  äs j>T dBT ~o(t) 

fa   üB f ß   dB ~ o(t) 

0      0 

/08dB8/ßTäBT~/a8ß8ä8~^ 
0 

The above results are proved by K, Ito in his derivation of the stochastic 

differential rule. Recall also 

M. - 1 = f M cp t      J      sr dB 
s  s (3.57) 

and 

h(xt)-h(x0)   =    /h;a8ds+|/h^bsds+/h;b8dB8      (3.58) 
0 0 0 

lim   7 E 
t *  0 t 

f M cp   dB ( f h'a   ds +-^ /" h'^b   ds +   /Vb   dB 
J     S^S SW      SS ZjSSS J      B   B B, 

=    bcph' 

(3.59) 

Therefore 
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lim i Ek(h(xt) - h(x0)) 

T 
= ^ h" + ah' + bcph' (3.60) 

T 
= ^ h" + fh' (3.53) 

The last equality is from our initial calculation (Eq. 3«53). Since this 

2 2 was done for arbitrary    h e L (dt x dP),  h e C     we have 

b b    =    g g 

f   =    a + bcp 

Our hypothesis that n^ « JJ^. insures that 0 < M < oo a,s, ii^. 

Proof (Sufficiency). 

The proof is elementary so we will only sketch it. First define a 

correspondence between measures and solutions of stochastic differential 

equations (where we have suppressed the arguments of the coefficients) 

H^ b dB. 

|i ~ a dt + b dB 

ti3 ~ g dBt 

li^~ r dt + g äSt 
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Prom the usual results for absolute continuity (Theorem 1,3) we have 

^1- ^2 

^3= ^ 

and from our extensions we have 

^1E ^3 

It easily follows from the transitivity of the absolute continuity relation 

that 

^2= ^ I 

Proof of Corollary. 

We note from our proof of necessity for the theorem that 

f   =    a + bcp (3.61) 

so 

cp   =   b    (f - a) (3.62) 

and 

dBt    =   b   (dx.   - a dt) (3.63) 
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Upon substituting in the expression for the density the above quantities 

for cp and dB. we obtain the result, | 
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IV. THE COKDITIOML PROMBILITY DENSITY 

A, INTRODUCTION AND MAIN RESULT 

Consider a vector Markov process {x.) satisfying 

dx(t,ü)) = a(t,x(t,co)) dt + b(t,x(t,cu)) dB(t,cü)        {k,l) 

whose states x.  cannot be observed directly but only through the noisy 

observations 

dy(t,ü)) = g(t,x(t,co),y(t,cu)) dt + h(t,y(t,<u)) dB(t,(ü)   (4.2) 

where t e [s,l] x(s) = a, y(s) = 0 

« m 

x(t,üi) = (x1(t,a)),x2(t,ü)),...,xn(t,a))) 

y(t,<ü) = (y1(t,(ü),y2(t,cü),...,yra(t,üi)) 

n m 
a is a vector in gi , b is an n x n matrix, g is a vector in JR 

and h is an m x ra matrix and (B. ) and (B.) are independent 

Brownian motions in $     and gj  respectively. 

Many control and communication problems associated with these stochastic 

differential equations require knowledge of the conditional probability 

density p(x,t|a,s,y ,  s < u < t) which is the probability density that 

x. = x given the observations B(y , s < u < t) and that x(s) = a. 

In this chapter we shall show that such a conditional probability 

. • • density function exists and shall give a formula for it (Eq, 4.15). This 

formula is difficult to '-/aluate as it stands and therefore we shall obtain 

" • . 
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from it a stochastic differential equation that will describe the evolution 

in time of the conditional prcbability density. This equation is a non- 

linear equation and except in certain very special cases [Ref. ^l] no 

explicit solutions are knovn. 

The main result of this chapter is the following theorem. 

Theorem k,l.    Let (x.) and (y.) satisfy 

dx(t,a)) = a(t,x(t,ü))) dt + b(t,x(t,üi)) äB(t,(D)        (i^.i) 

<äy(t,co) = g(t,x(t,tü),y(t,ü>)) dt + h(t,y(t,a))) dB(t,co)   {k,2) 

where x = a, y = 0, t e [s,l], (B.) and (B.) are independent 
SS w w 

Brownian motions in £Rn and g{m respectively and 

i) The diffusion matrix b(t,x) is Holder continuous in t, 

globally Lipschitz continuous in x and globally bounded. 

Moreover, the symmetric matrix c (c = b bj is strictly positive 

definite. The terms 

ac (t,x) a^Ct^x) 
dx. "" '  öx"öx. 

ifi =  l,2,,,,,n 
i^^J 

are globally Lipschitz continuous in x, continuous in t, 

and globally bounded, 

ii) The transfer (drift) vector a(t,x) is continuous in t and 

globally Lipschitz continuous in x. The terms 
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-^r±—       i = 1'z>""n 

are globally Lipschitz continuous in x and continuous in t. 

iii) The transfer (drift) vector 6(t,x,y) and the diffusion matrix 

^(t^y) satisfy a global Lipschitz condition in x and y and 

are continuous in t. Moreover, the symmetric matrix f (f x h h) 

is strictly positive definite. 

Then the conditional probability density p(x,tla,s,y , s < u < t) 

exists and satisfies the following stochastic differential equation 

.2, 

apt = (2  2 —^r 2—^ ) dt 

+ (gt - ßt)^;1^ - «t dt) (4.3) 

where 

Pt = p(x,t|a,s,yu, s < u < t) {k,k) 

gt = g(t,x>yt) (4.5) 

ft = f(t,yt) (4.6) 

htg{t,*t,vt) d^ 
6t =   (4.7) 
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tt = ^ W s < u < *) = exP /gT(u,xu,yu)f-
1(u,yu) dyu 

| /gT(u,xu,yu)f
_1(u,yu)g(u,xu,yu) du (M) 

Stratonovich [Ref, 2] was apparently the first to consider the non- 

linear filtering problem. His equation for the evolution of the conditional 

probability differs from our result because his stochastic integrals are 

not interpreted in the K, Ito sense [cf, Ref. 9], Subsequent to Stratonovich, 

Kushner [Refs. ^,5,6], Kashyap [Ref. 3], Bucy [Ref. 7], and Mortensen 

[Ref, 8] have also discussed this problem. We rigorously derive the 

stochastic equation for the conditional probability under weaker assumptions 

than has been done [Refs. 6,8]. The style of proof that we shall give 

was first used by Mortensen but our results are extensions of Mortensen's 

work by allowing coefficients of the stochastic differential equations 

to be unbounded and assuming a more general form for the stochastic 

differential equations. Recently Shiryaev [Ref, k2]  has sketched a proof 

of the equation for the evolution of the conditional probability density 

for a more general problem than we have considered but he did not indicate 

the assumptions that he made so we cannot compare the results. We also 

derive an equation for the conditional moments, 

B, PROOF OP THE MAIN RESULT 

Since the proof is long and quite detailed we shall first outline 

the major steps in it. We first prove the existence of the conditional 

probability measure and give an expression for it (Lemma ^,l). Recalling 

our result from Chapter 2 that the transition density exists (Lemma 2,3) 
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we prove that the conditional probability density exists and obtain an 

expression for it which involves the transition density (Lemma 4,2). 

From this expression for the conditional probability density we shall 

obtain a stochastic equation for the evolution of this conditional proba- 

bility density. To do this we shall need a Fubini-type result for a 

stochastic integral and an ordinary integral (Lemma 4,3). Having this we 

then establish a stochastic equation for the unnormalized conditional 

probability density (Lemma 4,4), Finally we combine this result with the 

differential for the normalization constant to obtain the main result. 

We shall need to define various quantities and symbols. Our funda- 

mental a-algebra in this chapter is the augmented a-algebra on the 

space of continuous functions that take values in g{  .We denote it 

by 

8t = ß(Bu,Bu, s < u < t) ^ B(Bu, s <u < t)0ß(Bu, s <u < t) 

(M) 

where = means equality up to sets of measure zero. Our fundamental 

measure P then will be a measure on this space of continuous functions 

C  [s.t]. We define the following measures. Let LL. be the measure 
n+m A 

on the space C [s,l] induced by the solution of 

dx ;. = a(t,xt) dt + b(t,xt) dBt (4,1) 

Let pY be the measure induced on the space C [s,l] by the solution of 

dxt = b(t,xt) dBt (4,10) 
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Let    Oir   lDe the measure on the space   C [s.l]    induced by the solution 
X in 

of 

dy(t,cu)   =    h(t,y(t,co)) dB(t,ü)) (^.11) 

Let n^  be the measure on the space C  [s,l] induced by the solution 

of 

dx.  = a(t,xt) dt + b(t,xt) dB. 

dyt = 6(t,xt,yt) dt + h(t,yt) dBt 

We also define the real-valued functions   cp.    and   i|r.    using Girsanov's 

theorem (Theorem 1,3) 

cpt(xu,  s < u < t)   =   exp /a (u,x )c" (u.x ) dx J     N  ' u7      x ' u'     u 

i  r T -i 
2 j a (u'xu)

c    (u*xu)
a(u»xu) 

äu 

^t^ W  s 5 u < *)   =   exp /g^u^x^yjf-^^yj d^ 

(4.12) 

- | /gT(u,xu,yu)f-
1(u,yu)g(u,xu,yu) du (M) 

where 
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and 

aMxxy 
^1*1  =   d(px x pY) 

By the martingale property of the density function (Lemma 3«5) we can 

write for A e S(x , s < u < t) 

^(A) = E^CIJ = E^ll^] 

=   E^ [I.E^ [cpJBCv  8<u<t)]] 

3px
[Vt]    -   /^täPx ^•13) 

and for   r e B(x ,y ,  s < u < t) 

Wr)  '  V^   "  E[IrVi] 

=   E[lrB[(p1^1lB(xu,yu, s<u <t)]] 

=   BCl^p^]    =   Jcp^ d(px x pY) (k.lk) 

For notational simplicity ve have not explicitly indicated the initial 

conditions x(s) and y(s). Our basic probability space n will be 
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induced from the independent Brownian motions {B.) and {B. ) and be on 

C  [s,l]. Since all of our random functions depend only on 

B.,B.,x. ,yt(t € [s,l]) it will suffice for cur fundamental measure P 

to consider pY x p , 

1, An Expression for the Conditional Probability Measure 

We first discuss the conditional probability measure In function 

space. The existence of this conditional probability measure follows 

from the usual arguments of conditional expectation, i.e., via the Radon- 

Nlkodym theorem. We now derive an expression for the conditional proba- 

bility. 

Lemma k,l.    The conditional probability measure in function space for 

all t € T = [s,l] Is given by 

VWt] 

P(A,tla,8,yu,  8<u<t)   =     E    [(pt j (1^.15) 
px   t t 

where   A e B(x. ). 

Proof. 

Fix t e [s,l]. Let 0.  and n  be the empty set and the whole 

space in C [s,:]. Define the a-algebre  §.  on C  [s.l] as n D     t     n+m ' 

§t = {0t,fit)®s(yu, s <u < t)        ^,16) 

Let 

ItyS,.  =  ö(yu, 8 <U < t) (1^.17) 
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which is a a-algebra on C [s,l]. We have for Peg 

Pr(A,t|a,s)   =   JiA(xt) dn^y  =   /p(A,t|a,s,gt) dn^Y 
r r 

=   Jh^t^t d^px x Py^   = / p(A^tlQ!>s^t)cpt^t d(px x py) 
r r 

(4.18) 

We have 

E[P(A,t|a,s,gt)9ttt|9t]    =    E[IA(pttt|§t]      a.s. (4.19) 

P(A,t|a,SAgt)B[cpt1rtl§t]    =    E[lAcpt^tl§t]      a.s. (4.20) 

The last equation follows since   P(A,t|a>s,gt)    is a   g      measurable 

function.    We now consider the product measure   p« x pY   and take iterated 

integrals using Tonelli's theorem.    Since both sides of Eq. (4.20) are 

zero for the integral on   0.,    we have only the integral on   fi.    and for 

the R.H.S.  of Eq,  (4.20) it is 

/EpY
ElACPt,|ft|ny§t] dPx = ^WA = *t®h\]     (^21) 

We consider the variable of integration on pY as x , s < u < t. So 

for a fixed value of this variable the product I.cp.  is a constant and At 

we have 

VWtivj = v^p^ti^1 a-s- 

=   1^ a.s. (4.22) 
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The last equality follows since tt is a density function and there- 

fore measurable with respect to HyS.. Since cp. and \|r are continuous 

in {x , s < u < t) and I  can be approximated in measure by continuous 

functions we need only consider polynomials with rational coefficients 

on [s,t].   So we only have a countable number of values for the process 

{x ) and since the uniform integrability condition can be easily verified 

for these functions we therefore have 

/VwJVti dPx a/Wp^t'W ^ = /WtdPx 
(^.23) 

Therefore 

Px ATt t 

p(A,t|a,s,nYgt) = ri?n  a•s,       {k-zk) 
px 

This was done for fixed t. Since the product cMr.  can be represented 

by a stochastic integral (cf, Eq. (1.22)) it is continuous in t and 

of course the sample paths are continuous. Using the above result on 

a dense T set we can take a limit and easily verify uniform integra- 

bility. 

Therefore we can obtain the result for all t € T 

E [lAcp+tJ Px ATtTt 
P(A,t|a,s,y , s <u < t) =  E i ^ j   a.s.     (U.25) 

pv
iytV 
X I 
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2. An Expression for the Conditional Probability Density 

In Chapter 2 we proved that the process {x.) has a transition 

density with respect to Lebesgue measure and that it could be represented 
» 

as the fundamental solution of Kolmogorov's equations. To prove that the 

conditional, density exists we necessarily use the existence of the tran- 

sition density for the process (x.), The following representation for 

the conditional probability density has been obtained by others, Bucy 

[Ref, 7] obtained it without including a proof (assuming that the tran- 

sition density existed) and Mortensen [Ref, 8] obtained it under more 

restrictive assumptions. 

Lemma k,2.    Let py be the transition density corresponding to the 

process {x.}. The conditional probability density with respect to 

Lebesgue measure exists and is given by the following equation 

E Utlxt = x]px(s,a;t,x) 

p(x,t|a,s,y . s<u<t) = -3   ■  ■    (4.26) 

^ V 

where t e (s,l]. 

Proof, 

Fix t € (s,l]. Let A e B(xt). 
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The last Integral reduces to an integral over a  since the integrand 

depends only on x,. So we have the measure Py(8,a;t,dx) induced from 

dMx- 

We therefore have 

E    [lA*t]    =    JlA(x)E    Urt|xt = x]Px(s,a;t,dx) (4.28) 
Hx" At"    -^ A" ' ^ 

Since Py is absolutely continuous with respect to Lebesgue measure we 

have 

E [1^] = JlA(x)E Ut|xt = x]px(s,a;t,x) dx    (4.29) 
MX n    ^ 

Since this was done for arbitrary A e B(x.) by the Radon-Nikodym theorem 

we have 

Px(x,t|a,s,yu, s < u < t) = 

E [Mrtlxt = x]px(s,a;t,x) 

a.e. dx 

(Mo) 

The above result was obtained for fixed t. It follows easily that the 

result is true for a countable dense T set, say S. For arbitrary 

t e T 3 sequence (t ) with t -♦ t and t € S. Let A = {x. < a}. x n       n n at 
For sets of this form, A , using the continuity of the sample paths 

8 

{x. ) and the uniform integrability of the sequence (p ) (corresponding 

to t ) we can establish the result. For an arbitrary set A e ß(x.) 

we can approximate by sets of the form A . Therefore we have the result 
8 

for all t e (s,l],  | 
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3. A Stochastic Equation for the Conditional Probability Density 

We shall now proceed to derive a stochastic equation for the 

evolution in time of the conditional probability density. To obtain this 

equation we first apply the stochastic differential rule to \|f  in the 

function E [il'Jx. = x] and obtain a Pubini-type result for an ordinary Hx t t 

and a stochastic integral. 

Lemma U.3. For the function 

E    OJx.   = x]    =    E 1 +   filr gV1 dy |x,  = x J Yu0u u      ''u1   t (Ml) 

in the conditional probability density, the following result is valid 

a.s. 

E 
^X 

ft gV1 dy I 
J TuDu u    "u1 / 

T.,-1, 
\K<C\*t = *]K   (^ 

,-1 
where   g     and    f       correspond to   g(u,x(u,cD),y(u,<jü))    and "u u 

f" (u,y(u,ü)))    respectively. 

Proof, 

Let 

J^j   »    {to S sup        | xt|   < M, sup        | yt|   < M) 
s < t < 1 s  <  t  <  1 

(4.33) 

Since {x.) and (y.) have continuous sample paths 
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PW = 1 =  lim P(nM) ^k'^ \JM / M -» oo 

The last equality follows since f^-iD ^w» Let A € B(xt). By the 

boundedness of the integrand on nM we can define the stochastic integral 

as a limit of step function approximations and the interchange of order 

of integrations is clearly valid for step functions since we are given 

B(y, s<u<t). Therefore we have 

t t 

/  /Vufüldyuä^ = / / Vufüld^dyu  a-8-      ^-35) 
ATOM   s B AHf^ 

Recalling that the stochastic integral is    \L   - 1   we can take the following 
t 

limit and have the desired equality 

t t 

um    /   /Vufüldyud^  =   //Vufüldyud^    a-s-   PY       ^-36) 
M -* ^ AmM s As 

We therefore have 

lim      f       fVufüldyud,iX    =    M
lira   /   /     Vufüld^dyu      a-S-    PY 

M-»oo-/-/ M-»oo 

^M s s ^M (4.3T) 

Recall that 

sup   E  (x, I < oo 

sup   E   US^ 
< t < 1 ^XYL* ^ 
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and f > k > 0, and g is globally Lipschltz. By Fublnl's theorem and 

the Dominated Convergence theorem it follows that 

„ii"'  /vft;1^ - hA1?^ 8-s- MY   (^.38) 

where we use the continuity in   t   of the integrand and of the sample 

paths. 

Let 

fM   =     /    V^1^ ^'39) 
M 

f   =      lim    fM {kA0) 
M -» 00 

The sequence 

/fMdys'   /f äys      M=l,2,... 

is a martingale (w.r.t, B(yu,  s < u < t)) and using the martingale 

convergence theorem (Theorem 3*6) we have 

M
lim jtyi^s - /f dys (^ 

M -» oe 

Therefore 

t t 
.T*-l J..   ^ r f ,    T,-l 

//Vufü   äyuä^   =   //WÜ   ä^dyu   a-8-    ^ (kM) 

As s  A 

This was done for fixed t, but using the continuity in t of the 

stochastic integral we can obtain the result for all t e T,  I 
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We will now derive a stochastic equation for the numerator of the 

conditional probability density and subsequently a stochastic differential 

equation for the conditional probability density. 

Define the function r as follows 

r(x,t|a,s,y . s < u < t) = E [tjx = x]p(s,a;t,x)    (^3) u 
^ 

ft 

Lemma 4,4. For all t e (s,l] a version of r is given by the following 

stochastic equation 

r(x,t|a,s,yu, s < u < t) = px(s,a;t,x) 

t 

+ f Jfy\*>x'it>$*T(v>x'>yu)tml(Vi*yv)v(x'>n\a>*>yy* 8^v^u)dx' dyu 
ikM) 

Proof (cf, Mortensen, Ref. 8), 

From the previous lemma (Lemma 4,3) 

E 
^ 

/vift^uK =  [E v&l'K ay, u (hM) 

Using this result and the sr—hastic differential rule for   f     (cf, 

Eq,  (1,22)) we have 

V*A-x] = !+ /E JvK1'xt =x] ^u      w) 

We will now give a characterization for the integrand of the above stochastic 
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integral,  i.e.,    E    Nf g f' I x.  = xl 
' ' MyL   U   U    U    '      t J 

(It. 1*7) 

Since we are given   ß(y,   s<u<t) 

\M^1|Xt = x]    =    \[eTf;\klXu = X>t = x]lxt = x] 
(4.48) 

Since    \|/      is independent of    x     t > u    ((^ ,x ,y  )    is a Markov process) 

we have for the R.H.S. 

=    E 

p  (u^^t^xjp  (s^-u^j   T/       /       v     . r    , T 
= /n

X     p^s^lx) •V(u,x%yJrVyu)*J*uK = x'] dx' 

=    px(s,a;t,x) / Px(^^;t,x)gT(u,x%yu)r
1r(x-,u|a,s,yv,  s < v < u) dx' 

Multiply Eq. {h,k9)  by p(s,a;t,x) and use Eq. ik,k6)  which gives the 

result. To establish the result for all t € (s,l] we note the continuity 

in t of Py and of the stochastic Integral. | 

We shall now derive a differential expression for r. If we formally 

take the differential of the Integral equation for r (Eq, k.kk)  we have 
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dr(x,t|a,s,yu,  s < u < t)   =   äpx(s,a;t,x) + gT(t,x,yt)f"1(t,yt) dyt 

t 
J Jdpx(u,x';t,x)gT(u,x/

>yu)f"
1(u,yu)r(x'>u|a,s,yv, a<v <u] dx' dyu 

t 
+ 

8Kn 

For the äifferentlal of the double integral we would expect to obtain 

gT(t,x,yt)f"1(t>yt) dyt 

t 
+ //^(u^x^t^xjg (u^^yjf' (u,yu)r(x',u|a,s,yv,  s < v < uj dx' dyu 

s    n 

Clearly the only difficulty we have is in interchanging the integral and 

differential operations in the last term. 

To Justify this last result we first note that 

Thus by Pubini's theorem we can conclude that 

E [tt] < oo  Vt a,s. Hy 

Note also that f is strictly positive definite and that 

?p< i E^M sup 
s < 

Since the function r is, except for a normalizing constant, a conditional 

probability, the stochastic integral 

t 

// eJfülr(x''ula>8'V s 5 v < u) dx/ dyu 
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is well defined and can be defined as the limit of step function approxi- 

mations. Since the terras of dp  are bounded (cf, the proof of Leraraa 2,k) 

we use the step function approximations together with the Bounded Convergence 

theorem to conclude 

d J y"Ik(u,x';t,xjgT(u,x',yujf" (u^yu)
r(x%ul «^^^ s < v < u) dx/ ^ 

= gT(t,x,y. )f"1(t>y. ) dy. t' 't 

+ /id3(u'x''t>x)8T(u*x%yu)
f" (u»yu)

r(x/>ula^^ys^ s < v < u) dx' dyu 

(^.50) 
s n 

9. 

In the differential expression for r we can write the terras of dpv 

as functions of r and its derivatives by using the integral equation 

for r (Eq, k,kk)  and applying the techniques used to prove Eq, (4,50) 

to interchange the partial derivatives, that is, we obtain 

n ^(t^r)      n a(ai(t,x)px(s,a;t,x)) 

2* ~ ^xi      2J     '~~ 5x! ~-—~~ 
i=l     x        i=l ^ 

s _n i=l 

t'hvfyjrfcM(X,B,YV,  s < v < u) dx' dyu 
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11     ö2(c^(t,x)r) 
2     2-t dx. dx 

i,J=l 

lva (clj(t,x)px(3,a;t,x)) 
LV -     v     , 
2^, dx^dXj 

f' (u,yu)r(x%ula,s,yv> s < v < u) dx' äyu 

We therefore obtain 

/1     £,    öfi(c    (t, 
dr(x,t|a,s,yu,  s < u < t)   -  U     ^ 5x,Sx. 

" Z —s^r—J 
i-i / 

dt + gT(t,x,yt)f"
1(t,yt)r dyt (4.51) 

We now consider the denominator term in the expression for the con- 

ditional probability density. By our result for interchanging expectation 

and stochastic integral (Lemma i<-,3) and by the continuity of the sample 

paths we have 

v^ =    E 
H 

i + T.--1 / WÜ dy,      =    1 + /^[VuC] ^ (^52 ) 

Let 

rt   =   r(x,tla,s,yu,  s < u < t) 

(^.53) 
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Pt = P(x,tla,s,yu, s<u<t) = rtq' (^.55) 

We have calculated the differential for q   in an example in Chapter 1 

(Eq. 1.27). It is the following 

^t1)    =    " ^t2 ä% + qt\[Vt]ftlE
Mx

[Vt] dt (^56) 

where 

dqt = vM]ftläyt (^57) 

The differential for p  is 

dpt = K)<3;1 + rtK
1) + stft\[Vt3^2rtät    (^58) 

Define    g      as 

\[h*t] (^-59) 
ät -   r nn 

Therefore 

n      >2 
(1     ^    B (clj(t,x)pt)       ^   ö(ai(t,x)pt)

, 

i,J=l 1    J i=l 1 

dt 

+ (gT - gT)f;1(dyt - gt)pt (4.60) 

This completes the proof of the theorem,  | 
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With this equation we therefore have in principle the solution of a 

fairQy general nonlinear filtering problem. This result is analogous to 

the expressions obtained by Bucy [Ref, f],  Kushner [Ref. 5], Mortensen 

[Ref. 8] and Shiryaev [Ref. k2]. 

C. CONDITIOML MOMENTS 

For some problems in filtering theory the diffusion matrix, b, for 

the state Markov process (Eq. ^.l) does not have an inverse ard the 

conditional probability density may not exist because the transition 

density, Pj,,  may not exist. For such problems we can obtain a stochastic 

equation for the conditional moments and more generally for smooth 

functions of the process (x.}. 

We state our result in the following theorem. 

Theorem k,Z,    Let {x. ) and {y,) satisfy * . 

dx(t,ü)) = a(t,x(t,ü))) dt + b(t,x(t,a>)) dB(t,ü))        (^.61) 

dy(t,oü) = g(t,x(t,(D),y(t,ü))) dt + h(t,y(t,cD)) dB(t,cD)  (4.62) 

where x = a, y = 0, t e [s,l], (B.) and (B.) are Independent 
SS "C "C 

Brownian motions in g{  and a  respectively and the drift vector 

a(t,x) and the diffusion matrix b(t,x) are continuous in t and 

globally Lipschitz continuous in x,    the drift vector g(t,x,y) is 

continuous in t and globally Lipschitz continuous in x and y 

and the diffusion matrix h(t,y) is continuous in t and globally 

Lipschitz continuous in y and the symmetric matrix f (f = h h) is 

strictly positive definite. 
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Let if be a real-valued twice continuously differentiable function 

defined on g{  such that 

y"||r(xt)|
2 dPdt <co (4,63) 

Tß 

|J"|xtr'(xt)|
2 dPdt <co {k,6k) 

jyix2r"(xt)|  dPdt <» (U.65) 

where the prime denotes differentiation. Then the conditional 

expectation of y, E[y(x, )|a,s,y , s < u < t], denoted as y.  satisfies 

drt  =  flr(xt) dt 

+ (r(xt)g(t,xt,yt) - r(xt)g(t,xt,yt))
Tf'1(dyt - g(t,xt,yt) dt) (4.67) 

where for example, 

^\ E    [r(xt)1|rt] 
r(xt)    =        E    rO  (^.68) 

^    t 

^x(-)    =   l\M^ + -2lC^^ (^) 
i 1,J J 

t,     is given by Eq,  (4,8), 
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Proof. 

By our results for the conditional probability (Lemma kml)  we have 

E   [r(xtHt] 

E[r(xt)Ks,yu,   s<u<t]    =        |    [     ■ (^.70) 

As in our derivation of the conditional probability density we first 

consider the differential of the numerator of the R.H.S. of the above 

equation. We apply the stochastic differential rule to T(X. )\lr.  to 

obtain 

r(x, )^, - r(x )\i/ = / \i; r(x )g f" dy + /ör(x )\y du 
' x t' t   v s' S    J    VL      u/0u u  ''u  J u' u 

+ / \|f r'Cx )b dB 
J    u        u u  u (^.71) 

With our assumption that 

JJ|xtr'(xt)|2 dp dt < 
Tn 

and the fact that i'      is a density we have for almost all y , s < u < t 
u u   —  — 

E 
H 

f^f  r'(x )b dB 
j u   u' u  u 

= 0 (^.72) 

We have only to prove the following 
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E  f £f(x.  H du = /"E i!r(x )t du 
A s s   A 

(^.73) 

E  ft r(x )« f' dy  = /" 
|i^ 7 "  u/0u u  ''u   J E * v(x )gTf'1 dy 

Hy u v u/c>u u  Ju (^.74) 

to obtain our result. 

The first equality (Eq, 4,73) follows directly from Pubini1s theorem 

with the integrability assumptions made. The second result is more 

difficult but the proof is quite similar to the proof of Lemma 4,3, We 

state the result in the following lemma. 

Lemma 4.5, The following interchange of order of integrations is valid 

a.s. 

//VK^UC^u^ - //VK^UC^^U    ^T5) 
a  s s n 

Proof. 

Let 

fiM   =    [03 :        sup        |X |   <M,        sup        |y.|   < M) (4.76) M 
s < t < 1 s < t < 1 

Since the processes    {x, )    end     {y.)    have continuous sample paths we have 

tt 
llm   P(«M) 

M   -»  00 
(4.77) 
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The last equality follows since ßM,-i D Hw. By the boundedness of the 

integrand on ü  we can define the stochastic integral as a limit of 

step function approximations on this set. The interchange of order of 

integrations is clearly valid for step functions since we are given 

B(y , s < u < t). Therefore we have 

//V^u^V1 dyu d^ = // VK)^1 ^ dyu  (1..78) 
QM S S   % 

Since T(
X
 ) is assumed square integrable on the product measure du x dHy 

and the other terms correspond to the density function we have 

t t 
.im    I 

M lim   // VK^uC ^u d^    =    //VK)^1 ^v ähc        (^9) 
nM s n   S 

Similarly we can show 

lim    /VK^1^    =   / V^u^ü1 ä^ ^•80) 
"M 

We can new obtain the following equality 

lim    f {it r(x )gTf'1 dy   dfju    =      lim     f ft r(x )gTf'1 d^ dy ii    yi \  u/ou u      •'u    TC _ / J   u' x  u/e,u u      TC    •'u 

(4.81) 

M   -*   00   "l    "1 - A    ., M  -»   00 

M ^s "  s n. 

since the limit on the L.H.S.  is well defined. 

By the uniform integrability of the  sequence    (f ) 
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fM = / v^u)^;1 ^ ^82) 
M 

we have 

lim   / f^H^X1 d^ dyu    =   J   lira   f V^^)«^1 d^ % 
M - oo s    o s   M -» oo  o , 

M 'M (2^,83) 

Therefore we have 

t t 

s n n s 

Recall Eq. (^.56) where we have already calculated the differential 

for 

1 
E U. J 

Combining this differential with our differential result for the numerator 

term E [y(x )ij/, ] we have 
My   t t 

drt = £f(xt) dt 

+ (r(xt)g(t,xt,yt) - YTx^)g(t,xt,yt))
Tf^:L(dyt - g(t,xt,yt) dt) (^.85) 

where for example, 

95 SEL-67-O35 



mmammmmmamm 

E   [r(x H ] 
(4.86) 

This completes the proof of the theorem, | 
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V.  EVALUATION OF LIKELIHOOD FUNCTIONS 

Some results for the detection of a stochastic signal in white 

Gaussian noise have been obtained where the likelihood function (Radon- 

Nikodyra derivative) could be calculated recursively from a differential 

equation. The terms of this differential equation were related to quantities 

that arise in filtering problems. Schweppe [Ref. 15] considered the 

detection problem where the signal was generated by white noise into a 

finite dimensional linear system and formally showed the relation of a 

differential equation for the likelihood function to the linear filtering 

results of Kaiman and Bucy, Sosulin and Stratonovich [Ref. 17] considered 

the detection problem where the signal was a diffusion process and formally 

related a differential equation for the likelihood function to the non- 

linear filtering problem. 

In this chapter we shall rigorously derive a stochastic differential 

equation for the likelihood function of a stochastic signal (diffusion 

process) in white Gaussian noise and relate this to the results of Schweppe 

and Sosulin and Stratonovich. We shall also discuss detection problems of 

a stochastic signal (diffusion process) in correlated noise (diffusion 

process) obtaining, for some problems, necessary and sufficient conditions 

for nonsingular detection. For the nonsingular case we derive a differ- 

ential equation for the evolution of the likelihood function by relating 

the detection problem to a detection problem with white noise. 

A. A DIFFUSION PROCESS IN WHITE NOISE 

We consider the two hypotheses detection problem of a stochastic 

■ _ signal (diffusion process) In white Gaussian noise described by the following 

stochastic differential equations 
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where 

äyt = H(t)xt dt + dBt   for 0 = 1 

dB,   for 0=0 
(5.1) 

dx  = a(t,x ) dt + b(t,x ) dB 
"C X* "C    "C 

(5.2) 

and t e [s,l]. We furthermore assume 

£, The vnitial conditions are x(s) = a,  y(s) = 0 and x,  is an 

n vector, y  is an ra vector, H(t) is an ra x n matrix continuous 

in t and B, and B, are independent n and ra dimensional Brownian 

motions respectively. The drift vector a(t,x) and the diffusion 

matrix b(t,x) are continuous in t and globally Lipschitz continuous 

in x. The prior probabilities are P(0 = l) = IL and P(0 = 0) = II-.. 

1. A Differential Equation for the Likelihood Function 

We define the following measures as we did for the nonlinear 

filtering problem. The measure M-, is the measure induced on the space 

C [s,l] by the solution of 

dx(t,cD) = a(t,x(t,(jD)) dt + b(t,x(t,a))) dB(t,üü) (5.2) 

where t e [s,l] and x(s) = a. The measure p  is the Wiener measure 

induced on C [s.l] by the solution of m '    ^ 

dy(t,oü) = dB(t,üü) (5.3) 
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where t e [s,l] and y(s) = 0. The measure i^.   is the measure induced 
^Y 

on the space C .[s,l] by the solutions of n+m ' 

äx(t,cD) = a(t,x(t,cü)) dt + b(t,x(t,cu)) dB(t,oü)       (5.2) 

dy(t,cD) = H(t)x(t,cD) dt + dB(t,cD) (5.4) 

where t e [s,l], x(s) = a and y(s) = 0, 

We define the function t+ as 

^t^ W s < u < *) = exP /"xTHT dy   - i  / xTHTH x 7uu    "'u      2 J    uuuu du (5,5) 

where 

iMXxY 
1    "    ^(Mx x pY) 

(5.6) 

We now derive an expression for the likelihood function for the 

detection problem (Eq. 5.1). 

Lemma $.1.    The likelihood function^    A.>  for the detection problem, 

Eq,  (5.1), where we assume     W     is given by 

At = v*t] 

where i|r.  is given by Eq. (5.5). 

(5.7) 

Proof. 

The likelihood function, A ,  is the Radon-Nikodyra derivative of 

the measures, say p1 and p_,  corresponding to the two hypotheses 
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(5.9) 

0=1    and    0=0,     i.e., 

dp 

where the measures are f^nctionals of the sample paths to time    t.    Let 

P e B(y ,   s < u < t).    Then 

p^r)  = //tt^xp^ 

r 

= I\[h] äPo 

By definition of the Radon-Nikodym derivative we have 

At = E^t] I (%10) 

With an expression for the likelihood function we are able to derive 

a stochastic equation for a monotonic function of the likelihood function. 

Theorem ^.1. Consider the two hypotheses detection problem 

dy,  = H(t)x. dt + dB.   for 0=1 

(5.1) 

dB    for 0 = 0 

where we assume H.    Let A  be the likelihood function for this 

detection problem. 

Then the process {z ) defined as 

zt = lnAt (5-11) 
■ 

SEL-67-035 100 



satisfies the following stochastic differential equation 

sTTTT  . 1 ATTTTr äzt = KK^t-iwA^ ^.12) 

where 

E    |>.x.] 

x.    =     „A i.   , (5.13) 

is the conditional mean of    x.     given    {y ,   s < u < t)    (cf.- Eq.   ^.67). 

Proof. 

We apply the stochastic differential rule (Theorem 1,2) to 

zt    =    In At (5.11) 

and obtain 

dAt       ! (<3At)
2 (5.1^) 

dZt    =    —-2—2- 
t At 

The terras    ah.     and    (dA.)      have been calculated in an exaraple of the 

stochastic differential rule in Chapter 1 (Eq. 1.27) and ^e 

^t   =   \[hxK]**t (5.15) 

(dAt)
2   =   E^^X^JE^C^H^] dt (5.16) 

Therefore we have 

J ATTTT  , 1 ^TTTTTT A . . 
dzt    =    XtHt dyt  "  2 XtHtHtXt dt (5.12) 
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where 

\[*txt] (5.13) 

t -  E nn 

2, Comparison With Previous Results 

The stochastic differential equation for {z.) (Eq, 5.12) is 

different in appearance from the equation 

where 

dzt = x^ dyt - | x^Htxt dt (5.17) 

E r[n
xtHtHtxt] 

XtHtHtXt =  ^E UrJ  = (5.18) 

obtained by Schweppe [Ref. 15] and Sosulin and Stratonovich [Ref. Ij], 

This anomaly between the two equations for the likelihood function occurs 

because of the different definitions of stochastic Integral and the 

convergence properties of discrete time versions of a stochastic equation 

[Refs. 9,h3,kh,k3],    In Eq, (5.1?), the "correlator" term (stochastic 

integral) has to be interpreted in the sense of Stratonovich [Ref. 9] 

while in our equation (Eq. 5.12) the stochastic Integral has the K, Ito 

interpretation. 

To clarify the relation between these two results we will indicate 

the correction term. If we perform an Integration by parts on the stochastic 

integral 
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/ XtHt ^t (5.19) 

(this integration by parts is valid since this stochastic integral can be 

defined as the limit of step function approximations, x,  has a differ- 

ential given by Eq, (5.24), and we assume dH/dt exists and is continuous) 

then the stochastic integral we obtain is 

-/ 
T   ^ 

ytHt äxt (5.20) 

We shall consider the case of scalar observations (ra = l), and compute 

the correction terra first for the Gaussian case. 

Consider the K, Ito stochastic integral 

/^(t,yt) dyt (5.21) 

where 

dyt = g(t,yt) dt + dBt (5.22) 

Then if we aad the term (cf. Ref. 9) 

1  /•^(t,yt) 

/ ^7 dt (5.23) 

to the stochastic integral we have the integral described by Stratonovich, 

Recalling the stochastic differential equation for x (i) t 
a component 

A 
Of x. 
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s^    \ T 

and that in the linear case  [Ref.  l] the function 

xJl)Vt - 4t\\ (5.25) 

depends only on t, the correction cerrn which we must add to our differ- 

ential equation is 

" t / kXVt " 5tHtHA) dt (5.26) 

which gives Schweppe's result. 

To relate our result to the equation obtained by Sosulin and Stratonovich 

we heuristically describe a "generalized" Stretonovich integral tnoti^abed 

by the fact that we want the rules of transformation of ordinary calculus 

to apply to this integral. We use a result of K. Ito [Ref. 30] for the 

product of stochastic integrals 

v v v      t 

y^(t,a)) dB(t,cü) /T)(S,ü)) dB(s,cD) = J £(t,ü)) f TI(S,<D) dB(s,a3) dB(t,cü) 
u u u      u 

V S V 

+ fr\{a,(x>)J  ^(t^cjü) dB(t,ü)) dB(s,cD) + f t,{t,(ii)r\{t,(ü)  dt    (5.2?) 

u      u u 

whereas if these were ordinary integrals we would not have the last term. 

We therefore "split" this ordinary integral between the two stochastic 

integrals as 
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/'i V 

?(t,<D) j T](s,flü) äB(s,ü3) dB(t,£ü) + 2 / S("t^)n(t*«>) dt 

u      u u 

V       S v 

+ Jr\is,(a)f  5(t,6ü) dB(t,ü)) dB(s,ü)) + | f ?(t,ü))Ti(t,ü)) dt 

u u 

Defining this as a Stratonovich integral we then have our correction term 

which reduces to the correction term (Eq, 5.23) for the diffusion process 

case. This correction term again is 

- k /(xXvt - WA)ät (5-28> 

from Eq, (5.24). Therefore with this term our results correspond with 

the equation of Sosulin and Stratonovich, 

B. A DIFFUSION PROCESS IN CORRELATED NOISE 

Having established a stochastic differential equation for the likelihood 

function for the detection of a stochastic signal (diffusion process) in 

white Gaussian noise the obvious extension of these results is to the 

detection of a stochastic signal (diffusion process) in correlated noise 

(diffusion process). We describe a problem of this type by the following 

stochastic equations 

yt = H(t)xt + zt   for 0 = 1 

(5.29) 

z   for 0=0 

where t e [s^l] and 
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dxt = a(t,xt) dt + b(t,xt) dBt (5.30) 

dz  = g(t,z ) dt + h(t) dB. (5.31) 

We furthermore assume 

X.      The initial conditions are x(s) = a, z(s) = 0 and x, is an 

n vector,  z  is an m vector, H(t) is an m x n matrix that is 

continuous in t and B, and B,  are independent n and m 

dimensional Brownian motions respectively. The drift vectors a(t,x) 

and g(t,x) are continuous in t and globally Lipschitz continuous 

in x. The diffusion matrix b(t,x) is continuous in t and globally 

Lipschitz continuous in x. The diffusion matrix h(t) is continuous 

in t and h   exists. The prior probabilities are P(e = l) = IT, 

and P(e = O) = II . The derivative of H(t), H'Ct), is continuous in t. 

1, Necessary and Sufficient Conditions for Nonsingular Detection 

We shall now obtain necessary and sufficient conditions for non- 

singular detection for the problem described above (Eq. 5.29). 

Theorem 5.2, Consider the detection problem 

yt = H(t)x + z   for 0 = 1 

(5.29) 

z    for 0=0 

where t € [s,l] and 
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dxt = a(t,xt) dt + b(t,xt) dBt (5.30) 

dzt = g(t,zt) dt + h(t) dBt (5.31) 

and we furthermore assume K. For this detection problem to be non- 

singular it is necessary and sufficient that 

H(t)b(t,xt) H 0 (5.32) 

Proof (Sufficiency). 

It will be convenient to change the form of the above detection problem 

by describing the hypotheses by stochastic differential equations as 

dyt = H(t)a(t,xt) dt + H(t)b(t,xt) dBt + g(t,yt - H(t)xt) dt 

+ H/(t)xt dt + h(t) dBt for 9=1     (5,33) 

g(t,yt) dt + h(t) dB.  for 6=0 

Now let H(t)b(t,xt) = 0. Then the two hjpotheses are 

dyt = H(t)a(t,xt) dt + g(t,yt - H(t)xt) dt + h(t) dBt for. 0=1 

+ H'(t)xt dt 

g(t,yt) dt + h(t) dBt        for 0=0 

Since the process {x, ) is generated by (B. ) and h'  exists we can 
t t 

easily modify Girsanov's theorem (Theorem 1.3) to show that 
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^XY ^ ^ X pY (5.3M 

where the measure pv is the measure induced on C [s.l] by the solution 
i m 

of 

dy..   =   g(t,yt) dt + h(t) dBt (5.35) 

for    t e  [s,l]    and    y(s) = 0.    The measure    m,    is the measure induced 
^ 

on C [s,l] by the solution of 

dx ;. = a(t,xt) dt + b(t,x ) dB (5.36) 

for t e [s,l] and x(s) = a. The measure ^L. „ is the measure induced 
^XxY 

on C  [s.l] by the solutions of n+m 

dx :t    =    a(t,xt) dt + b(t,xt) dBt (5.36) 

dyt   =    H(t)a(t,xt) dt + g(t,yt - H(t)xt) dt + h(t) dBt (5.37) 

+ H/(t)x.   dt 

for   t €  [s,l]    and    x(s) = a, y(s) = 0, 

Define    \|f.    as the density function so that 

^xY 
'l d(Mx x pY) (5.38) 

The form of this function t. can be determined from Girsanov's theorem 

(Theorem 1,3). 

The likelihood function, A., follows from Lemma 5.1 as 
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At = E^UJ (5.39) 

Proof (Necessity), 

If b   exists we can show that we have a singular detection problem 

by using our result from Chapter 3 (Theorem 3.1) for the absolute continuity 

of measures corresponding to solutions of stochastic differential equations. 

Define the measure py as the measure induced on C [s,l] by the solution 

of 

dx(t,cü) = b(t,x(t,£ü)) dB(t,tti) (5.^0) 

for t e [s,l] and x(s) = a,    the measure p    is the measure induced 
AXx 

on C  [s,l] by the solutions of 
n+m 

ax(t,cü) = b(t,x(t,ü3)) dB(t,ü)) (5.40) 

dy(t,cü) = H(t)b(t,x(t,ü))) dB(t,cu) + h(t) dB(t,a))     (5.^1) 

for    t e  [s,l]    and    x(s) = a, y(s) = 0,    and the measure    1^.        is the 
•^XxY 

measure induced on    C      [s.l]    by the solutions of n+m 

dxt    =    a(t;xt) dt + b(t,xt) dBt (5.42) 

dyt    =    H(t)a(t,xt) dt + H(t)b(t,xt) dBt + g(t,yt - H(t)xt) dt + h(t) dBt 

+ H/(t)xt dt (5.U3) 

The measure    pY    is defined by Eq,   (5.35). 

By Theorem 3.1 it follows that 
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pXxY ^ Px X PY 

and 

^ 5pX 

therefore 

H^y ^ Mx x pY 

If b   does not exist we apply a result due to Wong and Zakai [Ref, h6] 

stated in the following lemma. 

Lemma 3.2. Let {x.) satisfy 

dxt = 0(t,xt) dt + r(t,xt) dBt (5.44) 

where t e [s,l],  x(s) = a and 0(t,x) and r(t,x) are continuous 

in t and globally Lipschitz continuous in x; x.  is an n vector 
t 

and B,  is n dimensional Brownian motion. 

Then 

n " ^ i=l  x ' r=l s 

in the mean where P = {y ), 

For the proof of this lemma the reader is referred to Wong and 

Zakai [Ref. ^6], 

Using Eq. (5.45) as our test statistic on the observations we are 
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able to determine if the signal is present or not and therefore have 

singular detection. | 

2, Reduction to a White Noise Detection Problem 

In the nonsingular correlated noise detection problem we have for 

the two hypotheses 

dyt = H(t)a(t,xt) dt + g(t,yt - H(t)xt) dt + h(t) dBt  for 0=1 

+ H/(t)x dt (5.^6) 

g(t,yt) dt + h(t) dBt for 0=0 

As we mentioned in the proof of Theorem 5.2 an expression for the likelihood 

function (Eq. 5.39) f;an be calculated using Girsanov's Theorem (Theorem 1.3). 

We shall now show how to obtain a differential equation for the likelihood 

function by considering the detection problem as a white noise type of 

detection problem. 

In the proof of Theorem 5.2 we defined the measures pY, ji^., and 

liy Y (cf. Eqs. 5.35, 5.36, 5.37). We now define the measure p^ induced 

on C [s,l] by the solution of m 

dyt = h(t) dBt (5.^7) 

for t e [s,l] and y(s) = 0, By Girsanov's Theorem (Theorem 1,3) we 

have 

Py « P~ 
Y 
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The likelihood function, A,, with respect to the measure p^ is 
t Y 

A,  = E [^rj 
t     ^ t 

(5.W) 

where t+ is determined from i|/  (Eq, 5.38) and dp /dp . This result 
t t ' I y 

follows from the definition of the likelihood function (Eq. 5.8). 

We define z  es 

zt = lnAt (5.^9) 

and take the differential of z,  (using Eq. 5.14) to obtain a differential 

expression for z . We therefore have a white noise type of detection 

problem. Since the details are straightforward they will be omitted here. 

3. Some Generalizations 

We now consider a more general correlated noise detection problem 

with the hypotheses 

yt = H(t)xt + G(t)zt   for 0=1 

(5.50) 

G(t)zt   for 0=0 

where G is a k x m matrix continuous in t and H is a k x n matrix 

continuous in t. The derivatives of H and G, H' and G', are continuous 

in t. We also assume K, We shall make additional assumptions as we 

proceed. 

For this correlated noise detection problem we shall discuss conditions 

for nonsingular detection. This discussion will be somewhat more informal 

than the discussion in the above section because we primarily want to 
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indicate the methods. We again convert our hypotheses to stochastic 

differential equations 

dyt = H(t)a(t,xt) dt + H(t)b(t,xt) dB. + G(t)g(t,zt) dt 

+ G(t)h(t) dB. for 0=1 

G(t)g(t,z,) dt + G(t)h(t) dB.  for 0=0 

(5.51) 

Primarily for simplicity of discussion we shall assume that the observations 

are scalar, i.e., k = 1. 

To determine singularity or nonsingularity of the detection problem 

we shall consider a few cases. If Hb ^ 0 then the detection problem is 

singular by Lemma 5.2. If Hb = 0 and Gh ^ 0 then the detection problem 

is nonsingular by applying Girsanov's Theorem (Theorem 1.3). If Hb = 0 

and Gh = 0 we have the hypotheses 

dyt = H(t)a(t,xt) dt + G(t)g(t,zt) dt   for 0=1 

G(t)g(t,zt) dt   for 0=0 

Let 

dyt 
K    =    dt" (5.52) 

Then 
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y^ = H(t)a(t,xt) + G(t)g(t,zt)   for 6=1 

(5.53) 
G(t)g(t,zt)   for 9=0 

We shall again convert these hypotheses to stochastic differential equations 

by applying the stochastic differential rule (Theorem 1,2). Here we assume 

the appropriate differentiability of the functions H, a, G, and g to 

apply the differential rule. The stochastic differential equations that 

we obtain are symbolically 

, ,   /ö(Ha) . „ da D  1 _ ö a , T. \ ,.  „ öa . ._ 
dyt '   ("St  +H^a + 2H^2bb)dt + HdJbdBt 

Jmi + G*&g + \^+ ^ ^g + iG ^i hThj dt + G -p h dB.     for   0=1 dz t 

,^°sf*+i^AHGifh«t for   0=0 

(5.5^) 

We again consider some cases. If 

Hi^0 
(5.55) 

where 

äa h&±it,x)' 
ox. = <V (5.56) 

then the detection problem is singular by Lemma 5.2. If 
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JJ  • 
H^l b + H'b = 0 ■ (5.57) 

and 

G$gh+G'h/0 (5.58) 
oz 

where 

p6l(M)l 

and if the nonzero terms of Eq. (5.59) are not a function of z , i.e., 

these terms arise from linear terms of g then the detection problem is 

nonsingular. If the nonzero terms of Eq, (5.59) are functions of z 

then the detection problem will be singular by applying Lemma 5,2, If 

H^ b + H'b - 0 (5.60) 
oX 

and 

G^2 h + G'h - 0 (5.61) 
Oz 

then we have the two hypotheses 

s2 
^   , / ä(Ha)      Tr öa 1 TT S a .T,       „,, „, \   ,, dy'    = A,    / + H — a + - H —- bb + H    x.+Hadt 
"'t \    At dx 2      v 2 t / 

W^^S^I^^^-"^^ "   f- 
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dy. 

Let 

t = (^^ff^i^^^'^t^' g    dt for    6 = 0 

(5.62) 

dt (5.63) 

and we proceed as we did with    y'    by taking the differential of    y'', 
0 It 

With appropriate differentiability assumptions it seeras reasonable that 

this procedure will terminate in a finite number of steps, though to prove 

this finite termination seems difficult. We have mainly included this 

discussion to indicate the methods to be used to determine if a detection 

problem is well posed, i.e., nonsingular. 
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Palo Alto, California 94304 
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Pittsburgh, Pennsylvania 15235 

International Business Machines Corp, 
Monterey & Cottle Roads 
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P.O. Box 235 
Buffalo, New York 14221 

V. 

' > 
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Some problems in the filtering and the detection of diffusion processes t hat are 
solut ions of s t ochastic differential equations are studied • 

Trans i t ion dens ities for Markov process solut ions of' a large c lass of s t ocha.st JC' 
differential equations are shown to exist and to satisfy Kolmogorov's equations . 
These resul t s extend previously known results by allowing the dri ft coef fi c ient 
t o be unbounded. With these results for transition densities t he nonlinear 
fi ltering problem i s discussed and the conditional probabil it,y or t hP state 
vec t or of t he s ystem conditioned on all the past observat ions i s shown to exi~' 
and a stochastic equation is derived f or the evolution in t ime or· t he condi-
tional pr obability density. A stochastic differential equat i on i s a lso obUdr.c·J 
fo r t he conditi onal moment s. These derivations use di rect l ,y t he con t inuous t i m<: 
processes . 

Necessary condit ions that coincide with the previously known suff'ic i en <.:Ulltl i -
t i ons for the abs olute continuity of measures correspondi ng to solutions of' 
s t ochastic differential equations are obtained. Applications are made t o t he 
detect ion of one diffusion process in another. Previous r esults on the relat i on 
be t wee n det ec t ion and filtering problems are rigorously obtained and extended. 
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