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ARMORED-PLYWOOD PANELS
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by

H. A. Lasitter

ABSTRACT

Rooms shieided against radio~frequency (RF) signals are essential to the Navy's
research and development and operational use of equipment sensitive to RF interfer-
ence. A series of shielding-effectiveness measurements of armor-cicd plywood sections
representative of those used in the construction of radio-frequency shielded rooms has
been conducted. Five sections and their bolted seams were subjected to wet cycles
of 70°F, 100% RH and to dry cycles of 200°F, 10% RH. The percent moisture content,
thickness variability, DC resistance, and surface currenis at 12.8 kHz were observed
during the wet=dry cycles. DC surface resistance of the seams increased monotonically
throughout the test period. Standard deviation of the surface current measurements
reached a peak at approximately 12 days. Another series of tests indicated that seams
caulked with silver-loaded compounds had distribution of surface currents similar to
those of solid armored sheets.

Each transmittal of this document outside the agencies of the U. S. Government
must have prior approval of the Naval Civil Engineering Laboratory.

The Laboratory invites comment on this report, particularly on the
results obtained by those who have applied the information.
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INTRODUCTION

Many manufacturers' types of demountable rooms shielded against electro-~
magnetic radiation are modular and utilize armored-plywood panels mated with
bolted metal seams. The greatest difference in available shielded room types is in
the design of the metal seams used to secure adjacent panels. The electromagnetic
shielding obtained using bolted seams depends largely on the quality of the elec-
trical bond in the seam joining the adjacent armored-plywood panels.

This report covers a study made to determine the effects of controlled exposure
to temperature and moisture on the continued quality of the electrical bond between
adjacent paneis and the bolted seams. The effects of bolt torque on the distribution
of surface currents and the use of various schemes to improve the bond between the
seam and panel are also reported.

DESCRIPTION OF TEST SAMPLES

Manufacturers of bolted armored-plywood shielded rooms were asked for cut
samples of wall and corner seams. Three manufacturers delivered samples suitable
for testing in a humid environment. Samples from these three manufacturers are
considered typical of bolted armored-plywood construction.

Five sample wall and corner sections (Figures 1 and 2) were exposed in a
controlled-humidity chamber for periods of from 1 to 30 days at 100% relative
humidity (RH). The three corner sections and two wall sections were cut fo size
(18 x 12 inches) to fit the available drying oven. Each sample was fitted with a
bolted seam that was typically used by the manufacturer to fasten sections of the
paneling together. Each section was made of 5-ply Douglas-fir plywcod (3/4 inch
thick) bonded on two sides with 24-mil zinc-coated steel sheet metal. All of the
seam samples made use of pairs of steel strips (1/8 to 3/16 inch thick). The seams
consisted of a cover and backing seam plate bolted together at 3~ to 4-inch intervals.
The cover and backing plates under spring tension firmly clamped both edges of the
panel to be joined. Copper tabs were soldered to the edges of the samples to provide
the low-resistance connections which were used in measurements of the DC resistance
and surface currenis.
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TESTING
Humidity Exposure

Since untreated wood shrinks or exponds noticeably when subjected to variable
humidity and temperature, it is important to determine the extent of these dimensional
variations in the wood of a bolted seam that holds armored-plywood panels together.
Cocst~type Douglas-fir plywood shrinks 7.8% narallel to the grain when dried from
green wood to zero percent moisture content. It also shrinks aporoximately 5%
transverse to the grain under the same circumstances.! The transverse shrinkage
during dry cycles is of greatest interest in this study since this results in a change
in the thickress of the plywood and tends to loosen the bolted seams.

In @ humid environment, wood will give up or take in moisture from the sur-
rounding atmosphere until the moisture in the wood is in equilibrium with that in the
atmosphere. This equilibrium moisture content (M), expressed as a percentage of the
oven-dry veight of the wood, can be derived by the equation M = 100(W,, - Wo)/Wo,
where W is the weight of the cut wood sample before d'rying, and W, is the oven~
dry weight. Curves for moisture absorption and loss by the sampies are shown in
Figure 3. Each sample exhibits approximately the same rate of moisture absorptiun
as evidenced by tha similar shapes of the curves. This is particularly true at the
beginning of the exposure period (between the 1st and 11th days), when there is ¢
linear, constant~slope increase in weight. At the end of 11 days, the rate of moisture
absorption dropped to about one-half the initial rate, and moisture absorption contin~
ved at a lower constant rate for the next 17 days. During the 100% RH exposure
period, none of the samples reached a saturated state. Saturation occurs at about
30% moisture content (when the wood becomes water logged), since only slight
swelling takes place after this point is reached.s° The maximum moisture content
observed (16.9%) was for one of the flat wall panels.

Since in an actual installation only the edges of the plywood underneath the
clamps would be exposed to a changing environment, the penetration of moisture
was limited to the exposed edges of the measured samples underneath the clamped
seams. The outside cut edges of the samples were coated with glyptol to inhibit
moisture penetration. The locations of the coated and unccated edges of the sample
are shown in Figure 4.

At the completion of the 100% RH, 73°F exposure tests, the samples were dried
for 18 hours at an accelerated rate. The resulting changes in moisture content are
shown in Figure 3. The samples were dried by placing them in an oven heated to
200°F; they were weighed to determine moisture centent at 1, 2, and 18 hours during
the drying cycle. Two of the flat wall sections shrank until they could easily be
pulled out of the seam. (The initial torque on each of the seam bolts was between
60 and 70 inch-pounds.) The shrinkage in the wood was 0.034 inch as determined
by a series of measurements of average thickness during dryout of the samgles (Figure 5).
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Figure 5. Shrinking and swelling of armored-plywood panels exposed to wet-dry cycles.

P R

b
o e

S

3% R
ﬁa‘gfﬁ




e
T T e

The differential equation describing the relationship between thickness Z and
percent moisture content M is s

T
o= K-z (1)

where K ¢nd J are constants ;o be determined from experimental observations. The
solution to this equation is siraighriorward,? and is similar to that describing a
capacitor charging up to an electrical potential. Evaluation of the constants is
based on three points obtained from ti.e experimentai data. The expression for the
solution to Equation 1 with constants evaluated is

Z = 0.85 - 0.0372¢"0-4852M

(2)
This theoretical curve is plotted in Figure 6 and shows a good fit to the measured
data. The 0.799-inch sample swelled rapidly during the initial portion of the wet
exposure period and then approached a maximum thickness of 0.85 inch asymptotically
(Figure 5). This change in thickness occurred during the first 12 days of exposure.
During the dryout period, the rate of shrinkage was quite rapid (the linear rate was

17 mils per day), but quickly reached a constant value afrer 2 aays. The weight and
dimensional changes experienced by the samples caused rather extensive deterioration
of the edges of the samples after the end of the wet and dry tests. This deterioration
was characterized by splitting of the plywood and a general pulling away of the

sheet metal from the wood. Figures 7 and 8 show these effects on the cdges of the
panels.

In addition to determining moisture-content changes and dimensional changes,
it was felt that another quantity, the mcisture gradient, would be useful in determining
how far from an exposed edge the moisture actually penetrates the armored plywood.
Therefore, the moisture peneiration in an armored-plywood panel (42x 144 inches)
which had been immersed in water for about 6 months was measured. At each of 17
positions on the panel the moisture content was determined at four depths in the wood:
1/2 inch, 5/8 inch, 3/4 inch, and 7/8 inch. Since the moisture content measured
showed no dependence on depth, moisture content was determined at an average
depth (0.6875 inch) along parallel lines 6 and 12 inches from one edge of a panel
(Figure 9). Measurements were made with a commercial mcisture meter designed
for measJring wood moisture by means of a veriable depth p:~ba. Holes were drilled
in the sheet metal covering to provide access to the plywood for probing. As plotted
in Figure 9, near the edge of the panel the moisture gradient is linear with a slope
of 0.35% per inch. The moisture content reaches a minimum value of Gpproximately
13.5% at the center of the panel. The slopes of the curves are almost equal at 6 and
12 inches from the edge of the panel, indicating that the rate of penetration is almost
uniform along the edge of the panel. Water immersion probably represents by far
the worst possible case for moisture absorption.
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Figure 8. Deterioration of panel edge curing 100% RH cycle.
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In considering the results of moisture absorption tests, there are several points
that should be kept in mind. The rate of moisture absorption will vary widely,
depending on relative humidity, temperature, air currents circulating around or
near the panel, and the pressure applied near the panel edges by the bolted seam
plates. Absorption will be greatest, of course, when the exposed edge is constantly
wet so that the wood fibers adjacent to the edge of the panel have a constant source
of moisture.

Electrical Resistance

During the same period that moisture absorption tests were being made on the
samples, a series of elecirical resistance and surface current tests were also made.

The setup used to determine DC resistance of the sample is shown in Figure 10.
A direct current is passed through the sample transverse to and through the bolted
seam section. The resulting voltage drop is measured across the sample. The ratio of
voltage to current then determines the resistance of the sample. Current is measured
using an ammeter with calibrated shunts (1% full-scale accuracy). Voltage is
measured using a null~type potentiometer volimeter with high impedance input.
Use of this type of measurement (i.e., making a four-terminal resistor of the sample)
and an accurate ammeter as well as a high impedance voltmeter gave the accuracy
needed for measurement of DC resistance ranging from 0.7 to 70 m{}. A continuous
record o! resistance with time obtained during the wet and dry cycles is plotted in
Figure 11,

current
source

® ® @ ® @

Figure 10, Diagram of equipment setup for
measurement of direct current nvlk
. . potentiometer
resisfance in armored-plywood voltmeter
panels,
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Figure 11. DC resistance of samples versus exposure and drying time.




The resistance of the samples increased with greater exposure to 100% RH
(Figure 11), even though the clamping force increased due to expansion of the ply-
weod. The resistance did not decrease as a result of the drying cycle. Examination
of the metallic surface underneath the seam clamps at the conclusion of the tests
indicated that d metallic oxide had formed which could be removed by mechanical
means (hand rubbing with steel wool or wire-wheel buffing). This would indicate
that the ultimate resistance of the seam will depend on the amount or continuity of
the clean metal-to-metal bonding surfaces in contact under the seam.

Radio-Frequency Skin Currents

The distribution of radio-frequency currents induced in a metallic sheet depends
on the electrical properties and physical configuration of the sheet. Current lines
formed along the surface can be mapped with a multiturn loop probe to sense the
magnetic field generated by these lines.6 The mapping of induced currents in the
skin of shielded rooms has formed the basis for devices and techniques used to search
the room for small cracks and imperfections along seams of the room.” Discontinuities
in the metal skin of the shielded room distort the disiribution of the induced current
and give rise to local variations in the magnetic field strength as sensed by the mag-~
netic probe. By mapping the magnetic field measured along a seam connecting any
two panels of a bolted armored-plywood shielded room, an indication of the location
of RF leaks can be made. The voltage V developed by a current probe of inductance
L sensing such a current distribution along the x axis is®

di
V = Lf = j2nfLi, (3)

where i, is the desired distribution of current, t is time, { is V-1, 7 is frequency, and
27fL is a proportionality factor. The magnitude of the voltage will be

V| = 2nfL i | )

An empirical relationship for the observed distribution of current along each
of the seams has been developed. Graphical analysis indicates that distribution of
current is exponentially related to distance along the seam. A fit of the experimental
data is obtained by consideration of the function

()

i =ie (5)
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where i is the initial current at position x_, x is the position at any point on the i
sheet, and k is an arbitrary constant to be determined. The value of k is found to be :
0.05856, based on <, = 0,229, i, /i, = 0.0199, and x = 0. The final form of Equation 5 ¢
is rewritten as ;

;
= = 0.0199¢ 1707 6)
(o]

PO

The theoretical values are compared with experimental data in Figure 12,

The characteristics of the sensing probe proved to be a determining factor in
selecting the test frequency. The frequency response cf the probe used is shown in
Figure 13. The resonant frequency is 12.6 kHz and the Q is calculated as 28,46.

The proportionality constant 24 fL directly relates the voltage developed across the
sensing probe described by Equation 4 to the distribution of current. The measured
value of L is 800 yh, and at a frequency of 12.6 khz, the constant 27 fL (inductive
reactance) is 62.3 ohms. This calculation has assumed that losses in the probe are
negligible. Although the response of the probe /s down more than 20 db ot 20 kHz,
other parameters (signal levels and meter sensitivity) permitted its use at a frequency
as high as 20 kHz.

Another important requirement for using the probe at frequencies other than at
resonance is to know the transfer impedance over a wide frequency range (Figure 1.4).
The impedance at resoniance (12.6 kHz) is on the order of 1 ohm, and falls to 5.6 mQ
ar 100 kHz and T mQ} at 430 Hz.

A diagram of the equipment used to determine the current disiribution along
surfaces of varicus sumples is shown in Figure 15. A current is passed through the
test sample from the signal source and amplified by coupling through a standard RF
current probe modified by the addition of low-resistance secondary turns. This
modification makes the probe a matching transformer. This driving probe was used
between the amplifier and sample to obtain a more satisfactory impedance match to
the low-impedance sample so that greater power could be delivered to the sample.
The turns ratio of the matching transformer was 10:1. The current into the primary
winding and the voltage across the primary of the driving probe were monitored
continuously by means of the two high impedance voltmeters shown in Figure 15.
These readings indicated the rms value of current and voltage. The real ;ower
delivered to the probe and test sample was calculated using a measurement of the
phase shift between the voltage and current. Since the phase shift is relatively
constant for given circuit conditions, only one measurement of this quantity was made
and the power P was computed using the equation P = [I[|V|cos8§, where 8 is the
phase shift. For most samples the power delivered to the probe was 9 watts. The
efficiency of the probe is on the order of 10% at the test frequency so that 0.9 watt
was available at the sample. Since the resistance of the samples varied from 1 to 100
mQ (see Figure 11), the current through these sumples varied between 30 and 3 amperes.
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Figure 15. Equipment setup for measurement of surface currents,
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The distribution of current described by Equation 5 is for a solid, seamless
sheet. Therefore, to form an experimental comparison with the calculations used
with Equation 5, initial measurements were made on a solid sheet of the same
dimensions as the remainder of the samples. The departure of the experimental
curve from the calculated curve as the edge of the sheet was approached (between
6 and 7 on the abscissa of Figure 12) was first attributed by the author to the fact
that since the dimension of the sample in the direction of current flow was very short
(12 inches), an abrormal distortion of the distribution of current was occurring along
the edges. However, it was found that the same general distribution curve ws
obtained from a solid sheet which was 18 inches wide but approximately 8 feet long
in the direction of current flow. The data obtained from examination of seams using
this technique has shown remarkable consistency between sets of measurements. The
principal value of tests on samples of this type is repeatability of the tests and the
opportunity of comparing one type sample to the next. It is felt that the techniques
developed by this approach will be very useful in determining relative values of
various means of bonding adjacent sheets of metal by metal seams.

Five samples were used in the test series. Skin current measurements (recorded
as voltages induced in the measurement loop probe) were made at 1-inch intervals
along an 18- inch panel on both sides of the seam. These 18 measurements comprised
a set of readings. During the wet (100% RH) portion of the cycle, 11 complete seis
of data were taken; during the drying portion of the cycle, three sets were taken.
The total number of readings taken was 5 x 18 x 2 x 2(11 + 3) = 5,040. In order to
analyze this amount of data in a reasonable time, a statistical approach toward a
solution was attempted. The most important comparison of measurements was to
determine the change in readings which occurred during the wet test cycles, since
a chonge in a reading represents a change in the distribution of currents across the
sample. This change in currents can only be caused by a variation in the electrical
resistance — which in turn is influenced by variations in seam contact. For each
measurement time and each sample, a set of readings was taken, and an arithmetic
average was calculated for the set. In this way, an average value was obtained for
each of the five samples 13 times during the wet cycle. The deviation from the mean
value is a measure of the dispersion of the readings and is indicative of a change in :
the distribution of currents over a period of time. The mean and standard deviation
for a group of data can be obtained!Q from

)
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where X

the mean value

—_— - X (8)

the value of the individual data points

the number of duta points

the frequency of data points (in this ccse, 1)

the standard deviation

This calculation is easify programmed on a computer and the solution can be
obtained quickly. The data obtained in this fashion is shown in Figures 16 through
20. Except for sample 2, the greatest deviation occurred 12 to 15 days after the
beginning of the tests. In general, all of the standard deviation curves had an
upward trend, indicating the distribution of skin currents became worse as exposure
time increased.

Effect of Bolt Torque on Distribution of Skin Currents

One of the samples used in the previous tests was refurbished by complete
dryout and seam cleanup. |t was then subjected to another set of tests to determine
the relationship between torque on each of the bolts and the resulting distribution
of currents in the skin. The seams were supplied with 1/4-20 x 3/8-inch bolts, each
having a phillips screwhead. The sample used had five bolts spaced approximately
3 inches apart. Because it was impossible to obtain a torque over 70 inch-pounds
with these phillips type bolt heads using a hand torque wrench, these bolts were
replaced with hexagonal head bolts to reduce slippage of the torque wrench under
high torque. With the hex head bolts it was possible to attain well over 100 inch-
pounds and each bolt could be tightened to accurate values of jorque. It was also
found that if the torque exceeded 90 inch-pounds, the seam ciamp warped and
thereby reduced its effective clamping pressure along the seam.
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The same equipment setup used for the moisture tests was used to determine skin
currents for this test (Figure 15). A composite set of curves (one for each of the torque
settings of 50, 70, and 100 inch-pounds) showing the current measurements appears in
Figure 21. Along with this set of curves is a curve for bolt settings of irregular, but
low torque values. The effect of uniform torque between 50 and 100 inch-pounds can
be readily seen from the graph. Once the torque exceeds 40 inch-pounds, the loca~
tion of each bolt ccn almost be pinpointed by observing the peaks and valleys of the
indicated current distribution as the probe is moved along the sheet. Data for these
curves were obtained by recording the value at 1-inch intervals while observing the
location of the maximum and minimum values as the probe traversed the seam edge.
In this way, no significant changes in current level went unobserved.

Still another group of readings was made on both panels connected by a bolted
seam (see Figure 22 for data on pane! A and panel B). The surface current readings
were averaged over the entire seam and correlated with the torque used for that set
of readings. The torque in this case was varied from 10 to 100 inch-pounds. At
about 50 to 60 inch-pounds, the average current begins fo level off to a nearly
constant value.

Other Investigations of Surface Currents

Several other determinations of surface currents were made that utilized existing
test facilities and the samples which were available.

The following were compared: (1) a solid sheet {no seam), (2) a seam where the
joining surfaces have been cleaned with steel wool, (3) a clean seam with a commer-
cially available conductive silver paint applied to mating surfaces, and (4) a clean
seam with a silver-loaded caulking compound applied. The resulting surface current
distribution for each of the above conditions is shown in Figure 23. It is interesting
to notice that the curve for the conductive caulking compound is almost identical
with the curve for a solid sheet, except near the edges of the sheet. This would
indicate that a good electrical bond can be obtained if clean seams are caulked with
a conductive compound before assembly. The cost of the caulking material compound
{on the order of $24 per pound) would be a limiting factor. Such compounds are
composed almost entirely of tiny spheres of silver, silver coated copper spheres, or
silver on tiny spheres of some other material — all in an epoxy binder.

The-fact that the improved metal-to-metal bond resulting from cleanup of a
joint by removing oxides and contamination causes the surface current distribution
to approach that of a solid sheet suggested an effective and economical method of
achieving seam cleanup in large rooms. It is very costly to clean each seam of a
shielded room by disassembling the supporting strips and clamps, even if these are
accessible. It was decided to mechanically vibrate a panel within its clamped joint
and determine the resultant effects within the seam on the distribution of RF current
and the quality of the electrical bond. For this purpose a sample section (two panels
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and seam plates) was corroded on an accelerated basis by using a dilute acid on all
mating surfaces. The section was then reassembled and the seam plate was vibrated
with a chisel bit in an air hammer. Then the sample was disassembled and examined
visually. The vibration caused a number of bright longitudinal scratches to appear
in the corroded surface of the panels, as shown in Figure 24.

The vibration technique was then extended and used on an actual shielded
room. A heavy duty electromechanicai shaker was bolted securely to one of the
wall seams of the room (Figure 25). Before and after shaking the wall, shielding
effectiveness (SE) tests were made along one wall and on a large elevator deor.
These SE tests were made at 400 MHz since this frequency represents one of ihe
more critical frequencies used in testing shielded rooms to meet MIL-STD-285. If
a room will pass the 400 MHz plane wave tests, it will more than likely meet spec-
ifications for shielding effectiveness at lower frequencies. Figures 26 and 27 show
measurement locations and values obtained before and after the application of the
mechanical shaker to the wall and elevator door. Included in each of these figures
is a table showing the improvement in the electrical bond of the seam after vibration.
The wall had only one point at which the electrical bond was degraded by vibration
(-6 db), while six other points along the wall indicated a marked improvement (a
high value of +13 db). Out of 13 points af the elevator door only three indicated
a decrease in shielding effectiveness.

CONCLUSIONS

Although the tests reported here are not exhaustive, sufficient data has been
accumulated to warrant a number of conclusions at this time.

1. The exchange and cycling of moisture between the surrounding atmosphere and
the plywood panels used in shielded room construction are sufficient to cause prema~
ture loosening of boits along the seam connecting any two panels. A wet period
followed by hot dry conditions could produce this effect in a relatively short period
of time. The rate of moisture exchange can only be retarded by the use of a moisture
barrier or inhibitor applied along each plywood edge exposed to the variable
environment.

2. DC resistance measurements of samples have indicated that the resistance of the
seam joinis generally increases with time and is related to percent moisture absorption
only indirectly; that is, through the extra pressure applied to the seam during swelling
of the seam. When the seam dries out, oxidation and contamination on the interface

¢ the joint cause high electrical resistance through the joint. One corrective action
is to disassemble the high-resistance seams, clean the parts, and reassemble. Another
corrective method is to mechanically vibrate the high-resistance seams as described
in this report.
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Figure 22, Bolted-seam torque versus average surface current readings.
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Figure 25, Seam shaker in operation.
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3. Surface current tests have indicated that a conductive caulking compound (silver
base) applied to clean mating surfaces modifies the distribution of current until it is
very similar to the ideal distribution observed with a solid sheet. Although the cost
of initial application of silver-base caulking compounds is quite high, the cost would
be insignificant in comparison to disassembling and cleaning and reassembling all
seams of a shielded room after it had been assembled. However, the long-term elec-
trical conduciivity of boited seams caulked with conductive compound is not known
at this time.

RECOMMENDATIONS

1. Bolted-seam construction of shielded rooms should not be utilized if the rooms
are to be subjected to extreme temperature~moisture cycles.

2. As a first measure for refurbishing existing bolted-seam shielded rooms which
have lost shielding effectiveness, the seams should be vibrated by attaching a shaker
to several positions on each wall, ceiling and floor, after which all bolts should be
tightened to approximately 80 inch-pounds of torque (based on 1/4-inch bolts with
3~ fo 6=inch intervals).

3. The long=term electricai conductivity of bolted seams caulked with canductive
materials should be experimentally determined.
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LIST OF SYMBOLS

f frequency, Hz Wc weight of wood sample at time of cutting, grams
fi frequency of data points Wo weight of wood sample (oven dry), grams

1 transformer current, amperes X distance aleng seam, meters/inches

io initial current, amperes X mean value, same units as X,

iz current in panel, amperes X, value of individual data points

J constant X distance along seam, where iZ = io’ meters/inches
] '\/T yA thickness, inches

K constant Zo initial value, inches

k constant 8 phase shift, degrees

L inductance of probe, henries

M moisture content, %

n number of data points

P power, watts

Q tuned circuit figure of merit

RH relative humidity, %
S standard deviation

time, seconds

—fe

voltage across probe, volts
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