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ABSTRACT 

A cylindrical acous t ic resonator which has been developed by Dr. 

William J. Toulis of the Signal Propagation Division of the United States 

Navy Electronic Laboratory for measurement of the velocity and absorption 

characteristics of an enclosed fluid medium is discussed. The cavity is 

constructed of compliant tubes, thus presenting a pressure release surface 

at the boundaries. Theory is developed indicating that the resonant fre­

quency of the cavity is directly proportional to the velocity of sound 

in the medium while the Q of the resonator can be used to determine 

attenuation. 

The writer wishes to express his appreciation for the guidance and 

encouragement of Professor Herman Medwin of the United States Naval Post­

graduate School. He further wishes to acknowledge the assistance given 

htm by Dr. Toulis and other members of the Signal Propagation Division 

of the United States Navy Electronics Laboratory in this investigation. 
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1. Introduction. 

The success of sonic echo-ranging methods depends, in part, upon the 

velocity and attenuation profiles in the transmitting medium between the 

detecting ship and the target. The development of an instrument which 

could directly measure these properties of the sea would be of great 

assistance. 

The velocity of sound in sea water under varying physical conditions 

has been investigated both experimentally and theoretically by many per• 

sons. For the experimental determinations, much of the early work was 

pointed toward accurate determination of depth by sonic sounding methods. 

Transmission time between a transmitting and receiving hydrophone was 

measured in an area where salinity and temperature were as uniform as 

possible. and in deep enough water so that bottom reflections were mini• 

mized. In this type of determination, measurement of the distance is 

the limiting factor. 

More recently, a number of velocity meters has been developed for 

this purpose. The most successful for laboratcry use has been the inter• 

ferometer, where a standing wave is set up in a cell by utilizing a 

crystal and reflector or two reflectors. This then provides a measure of 

the wave length and hence, the velocity. However, no completely satis­

factory operational-type system is presently available.l The most widely 

used device to determine sound velocity profiles is the bathythermograph, 

which measures temperatures rather than velocities. Its use depends on 

the fact that the velocity of sound is largely determined by the tempera• 

ture of the sea, and only to a lesser extent by salinity and pressure. 

Urick2 obtained good general agreement between velocity-depth plots 

obtained with an interferometer and those computed from bathythermograph 

and thenuocouple observations for sea states of .. zero to three and depths 

la. Sussman, Study and Evaluation of ONR-Sponsored Sound-Velocity 
Meters, USL Research Report No. 299, 1 March 1956 

2R. J. Urick, An Acoustic Interferometer For the Measurement of 
Sound Velocity In the Oce~, USNR & S Lab. Report No. S-18 
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as great as 150 f eet . However, t he bathythermogr aph i s insensitive to 

temperature microstructures,3 and as such , does not give an accurate 

indication of transmission characteristics . 4 

A great deal of continuing effort has been given to the theoretical 

determination of the velocity of sound from the physical constants of 

the medium as given by the theory of thermodynamics.S,6,7 Much of the 

work is, of necessity, empirical in nature and has been complicated by a 

lack of sufficiently accurate experimental data.8 However, recent im­

provements in laboratory measuring techniques should rapidly improve this 

situation.9 

Techniques for measuring attenuation of sound by sea water are even 

less satisfactory. The absorption at low frequencies is sufficiently 

small to make measurement difficult without considering a large expanse 

of sea. Here again, determination of distance is a limiting factor. 

Further isolation of the specific causes of attenuation is next to im­

possible without a device 'fhich can determine the absorption character­

istics of small samples. 

The velocity meter under discussion depends, for its operation, on 

the fact that the resonant frequency of a water column in a particular 

3urick, ibid. 

4L. Liebermann, The Effect of Temperature Inhomogeneities in the 
Ocean On the Propagation of Sound, J. Ac. Soc. Am., 23, pp 563 (1951) 

5s. Kuwahara, The Velocity of Sound in Sea Water and Calculation 
of the Velocity for Use in Sonic Sounding, Japanese J. Astron. & Geophys., 
Vol. 16, No. 1 (1938) 
\ 

6D. J. Matthews, Tables of the Velocity of Sound in Pure Water and 
Sea Water for Use in Echo-Sounding & Sound-Ranging, Hydrographic Dept. 
Admiralty, London, H.D. 282 (1927) 

7v. A. Del Grosso, The Velocity of Sound in Sea Water at Zero 
Depth, NRL Report 4002, 11 June 1952 

SR. T. Beyer, Formulas for Sound Velocity in Sea Water, J. Mar. 
Research, Vol. 13, pp 113 (1954) 

9v. A. Del Grosso, E. J. Smura and P. T. Fougere, Accuracy of 
Ultrasonic Interferometer Velocity Determinations, NRL Report 4439, 
6 December 1954 
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mode of vibration is directly proportional to the velocity of sound in 

the water column. The technique employed is not new in itself. A hard 

wall cavity resonator was developed by the University of Michigan in 1952.10 

However, this device was extremely sensitive to wall cleanliness due to 

the relatively high sonic pressures at the boundaries, characteristic of 

rigid walled devices. Thus, although the instrument provides an accurate 

measure of the velocity when used in the laboratory, it is very difficult 

to use under operational conditions. 

Use of a pressure release walled cylinder suggests itself; and, in 

fact, thin walled cylinders have been used for measurement of the atten­

uation of marine sed~ents.ll,l 2 Recent developments in the field of 

compliant structures by Dr. William J. Toulis of the Signal Propagation 

Division of the United States Navy Electronics Laboratory, San Diego, 

California, enabled him to adapt this technique to the present operational 

device, where, by measuring the resonant frequency and the 11Q11 of the 

cavity, the desired characteristics of a small sample of water can be 

determined to a high degree of accuracy. 

The purpose of this paper is to discuss the theoretical aspects of 

the pressure release walled cylindrical cavity constructed by Toulis, 

including a somewhat systematic study of the loss problem. 

lOR. K. Brown, The Development of an Underwater Sound Velocity Meter 
Using a Cylindrical Resonator, Proj. 2021, final report, 30 April 1953, 
Eng. Research lnst. Univ. of Michigan 

l1w. J. Toulis, Theory of a Resonance Method to Measure the Acoustic 
Properties of Sediments, NKL Report 676, 5 March 1956 

12c. Shumway, A Resonant Chamber Method for Sound Velocity and 
Attenuation Measurement in Sediments, Geophys. Vol XXI, No. 2, pp 305-
319, April 1956 
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2. General Wave Equation. 

Before proceeding to the actual analysis of the velocity meter, it 

is necessary to develop the equations governing the transmission of 

acoustic waves through a fluid medium. It is assumed that the medium is 

locally homogeneous, continuous except at the boundaries, and isotropic 

when at rest. It is further assumed that the condition of the medium can 

be fully described by establishing the functional dependence of pressure, 

vector 

ates. 

a) 

b) 

c) 

will be 

velocity, density and temperature on time and the space coordin-

A set of equations consisting of 

the continuity equation expresaing the conservation of mass 

a force equation based on conservation of momentum 

a heat exchange equation baaed on conservation of energy 

developed in their cemplete form to present a rigorous point of 

departure for making the neceaaary approxLmationa for the study of small­

signal effects. 

To derive the firat of the required relationahips, conaider an 

elemental volume V bounded by a closed surface s. The amount of fluid 

croaaing the surface in time 6~ is given by the surface integral: 

where 

outflow -= A "t ·;· f V .. db 
'-<s 

\7 • particle velocity 

f = point fluid density 

During this same period, the quantity of fluid originally contained in V 

will have d~inished by the amount: 

loss = -.6t 1 o"f d V Jv o"V 

where the negative sign is selected because density is a decreasing 

function of ttme. Since maas must be conaerved, net outflow must equal 

the loss of mass and the two expressions can be equated. The surface 

integral is then converted by use of the divergence theorem giving: 

Sv [\7·(fv) + H J = o 
Since the integrand is continuous and the volume arbitrary, this may be 

written as: 

+ V· ( -fV) = o 2.1 

which is one form of the well-known equation of continuity. 
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Considering the density is a function of both space and time, the 

total derivitive of f with respect to t can be written in vector 

notation as: 

D_f _ of + V·V'..o 
Dt ··- d t I 

utilizing the notation of Stokea 13 where f5;:: 
rivitive and is defined by 

D _ a( ) ---
Dt a t 

Subatituting from equation 2.1 into 2.2 gives 

Df + -f\7oV =- 0 
Dt 

2.2 

denotes the material de-

). 

2.3 

which is Euler's form of the continuity equation. 

To develop the second of the basic relationships, consider Cauchy's 

first law of motion: 14 .: 

where: 

2.4 

~ • extraneous force vector, a function of position and 

time 

VAs velocity component of 

\j~· streaa tensor. 

For an iaotropic medium where stress is a linear function of the rate of 

deformation, the stress tensor can be resolved into a sum of a scalar 

and a residual stress tensor as follows: 

where 

Jp = pressure 

lAA~• residual stress 

bA~ c Kronecker delta 

f~.-\-t = hydrostatic tension. 

2.5 

l3c. Truesdell, The Mechanical Foundations of Elasticity and Fluid 
Dynamics, J. Rat. ~~ch. & Anal., 1, pp 125, (1952) 

14F. V. Hunt, Notes on the Exact Equations Governing The Propaga­
tion of Sound in Fluida, J. Acous. Soc. of Am., 27, pp 1022, Nov. 1955. 
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To a first approxtmation, the residual stress can be expressed by 

the linear terms of a power expansion in the viscosity coefficients as: 

where: 

dA~ = rate of deformation tensor 

)U = dynamic shear viscosity coefficient 

A a dilatational viscosity coefficient 

and d ~ is defined by 

dAc} ::: -i (~~~ -t ~ ¥~) 

2.6 

2.7 

Combining the equations 2.5, 2.6, and 2.7 and substituting into 2.4 yields 

the vector force equation: 

-r(~)= fF-f(v·v)v-vf> +\~+~JJ)v(v·V) 
-)J'\/X(vxv)+ ('t7·V)'1~ + 2-(V)J·'V)\l 2.8 

+V,AJX.('JX\7). 
To develop the third of the fundamental equations, it is necessary 

to establiah a series of relationships based on the law of conservation 

of energy. The total energy, E:T , of a given system can be expressed as 

the sum of the kinetic energy, E. K , and the internal energy, E ::t , where 

E:x:=fv fs dv 
specific volume • V f '\) 

~ • internal energy density 

\1 - volume of the system. 

The material rate of change of the total energy is then 

the rates at which work ia done upon the system; that is: 

D(E~<. +E.:t) 
t)"t 

where 

~ = heat flux vector. 

2.9 

the sum of 

2.10 

Thia postulates that the rate of doing mechanical work can be divided 

into two portions: that arising from the extraneous force and that aris· 

ing from the forces of material continuity expressed in terma of an 

equivalent stresa vector acting on the surface ~. The third term ex­

preasea the rate at which~rmal energy enters or leaves the volume. 
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Applying the divergence theorem and utilizing equation 2.4 reduces 2.10 

to 

2.11 

Thia is the Fourier-Kirchhoff·C. Neumann energy equation. Using the 

relationships from equations 2.5 and 2.7, 2.11 can be written as 

Considering the internal energy density, £ , to be a function of 

'lJ give a 

De. = (~) (~) + (~)s (~;;) Dt <1S '\J Du 
From the first law of thermodynamics, 

(~)5 = -~ (~ ~)~ - T 
Thus, equation 2.13 can be written as 

-P~:::. ...oTD$_- ~'\/·V 
' Dv ' D-e 

Defining 4>n , a viscous diaaipation function as 

and eliminating f ~ 
Dt 

between equations 2.12 and 2.14 gives: 

-Pr-r'~ 1 Dt 

2.12 

S and 

2.13 

2.14 

2.15 

Next, the effects of radiation and conduction must be considered. 

Sinca the divergence of Sf gives the energy transferred away from the 

volume element, it must account for energy loss by either conduction or 

radiation. 

For conduction, the Fourier relation is uaed: 

where 
(~A)~OV\d = N(!7:) 
)1:- thermal conductivity. 

Taking the divergence of each side gives: 

! c; ".-'leone! = /( V 2-T- (v T) • ( V }() 2.16 

For the radiation effecta, Newton's law of cooling states: 

~~-0-r"'cl = -fCv~(T- T',) 2.11 

7 



where 

~ • radiation coefficient introduced by Stokes, Phil. Mag. 

(4) 1, pp 305-317 (1851) 

Cv - specific heat at constant volume =: T (~ ~J v 
( T'- To) • local temperature excess. ' 

Before proceeding, the term lr(~)appearing in equation 2.15 must 

be expre1sed in terms of \1 .~ , and 11. Following the methods of 

Hunt 15 , this is given by 

\T(~;) = fC.v('r-l)v~v + :g_J' 2.1s 

'Y' =:. G? I Cv 

Cp=: T(~s/~rr) .P 

~ - coefficient of termal expansion 

:: f ( () '\Jj~ T) .-p 

Combining equation 2.18 with 2.15, 2.16 and 2.17 gives the third of the 

required equations: 

-FCvDI + f Cv [rr-t] V· V- /<. \J
2

T 
. DLi L f3 2.19 

-\7 T·V /( + -f>C., f ( T'- To) - c\:> "' 0 

15 Hunt, op. cit., pp 1023. 
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3. Small Signal Acoustic Equations. 

The small signal acoustic equations are obtained by arbitrarily 
11 linearizing" the general equations of motion. For this purpose, the 

dependent variablsa will be replaced by the sum of their equilibrium or 

zero-order valuea and the firat-order variational components. Thus, 

-p~ -fo + f: 

rr'= ~ + e, 
"P = f>v +- f>, 
v = 0 + v, 

On the assumption that fo , To and 'fo are constants and that 'v' 
ia itself a first-order term (i.e. \!0 = 0 ) then: 

vlp = \7~, 
V·V - '\J--\1, 

Subatituting these relations into equations 2.1, 2.8 and 2.19 andre­

taining only the firat-order terms gives: 

a "f. -P r --o t + ' o \. 'V. v~) = o J. 1 

-Po(~~·)+ vy,- (_,uN)'v(v·v,) + ;f\1 x(v x_ v,) 0 

~Cv(~~~) i [fa cv ('- \)/s] (v-v,)- kV~e, 
- -foCv~ e, = 0 ~ 

3.2 

3.3 

where the extraneous force has been omitted since it pr~arily affects 

the equilibrium configuration and 

N ~/ = 2.. + / ;J ) the viscosity number. 

Conaidering ~ aa a function of f and T gives: 

v-p. ~ c;~)T' 'V-P, -t-(~~)fvre, 
Since: 

3.4 

and 
(~ 1?) 
of rr 

(~~lf -
equation 3.4 becomes 

2. 
~Al ~ 'rT-D 
v-r,::: o " '' 

9 



and 3.2 can be rewritten as 

-foG~~·) -r (~,_)[1 -t- !3 fo(~~.·J] \7~ - AIN'V(\7· v,) 
+ _N \7 x' ( ~ '1-. V1 l := 0 . 

3.5 

Tbeae equations (3.1, 3.3, 3.5) take into account the first-order effects 

of shear and dilatational viscosity and of heat conduction and their 

aolution is discuaaed in Section 5. They can be reduced to the classical 

emall-aignal wave equation by neglecting the effects of heat conduction 

and viscosity ( K = ~ • jJ • A. • 0) and assuming adiabatic behaviour of 

the medium giving 
"'2. ..h 
o T == c()2. v 2. h d t 2. _,,_, , 

3.6 

10 



4. Solution of the Simple Wave Equation . 

Before considering the more complex equations derived in the pre­

ceeding section, a solution will first be obtained for the small-signal 

wave equation. The results obtained will serve as a valuable guide when 

interpreting the solutions obtained in later sections. 

The simple wave equation is given by: 

"d2.-p 
d t'"'-

4.1 

2 
Where 'V is the Laplacian operator and C is the free space sound 

A Cit 
velocity. A1sauming a time dependence of the form E. where (}=.tJ:J-rA..f:X.; 

equation 4.1 takes the form of a scalar Helmholtz equation: 

4.2 

where 
CN + ACX 
----·----~ c. 

Using the method of separation of variables with the Laplacian operator 

in cylindrical coordinates gives: 

R " 1 R' 1 e tl · 2. '' + K Q.. = o 4.3 R + -::r ~ + ~~ ® ~ ~ 
where R \\denotes ~E ' z" denotes d,~ -2. ' etc. By the standard argument 

a'('£ u'i!. 

for the method of separation of variables, equation 4.3 may be rewritten 

•• 
0 '' I R \ \ ® II + K 2. 
-g-+~-n-+ --
,, ' I\ 'f' ~ @ 

This then produces two equation~: 

R'' -+ _I E + _J_ __§_' + K a 
"R 'f' ~ '1' '- ® 

'2.'
1 -r K?-2 C. - o 

2. 
= K-z. 

4.4a 

4.4b 

where equation 4.4b is the familiar differential equation of simple 

harmonic motion with the solution: 

-::z =- A. c A k~z. B' -A\(~ z 
L ~~ c... + '1<-z. E 

4.5 

In general, \<c. can be considered complex; that is 

K 'K I ~ = A ex. 2.. + -e. 

Thus, equation 4.5 may be rewritten as 

( ) 
- cx..2. "? 

Z = AK'l. c..os K; z + 13 K·t:. S\ 'f) K~ ~ e, 4.5a 

11 



Equation 4.4a may be separat ed 

®''-+ YY) '2...@ - 0 

u t il i zing the same techni ques giving: 

4.6a 

R 11 
_\ K 

R+"'R 4.6b 

where solutions to 4.6 may be written in the form: 

@ == Cm c.,os(rnB + LV) 4.7 

~ince ® must be single valued in e . ffi must be an integer. 

Equation 4.6b is recognized as a form of Bessel's equation providing 

a solution (with rn as an integer) of the form: 

R= Dvn)\<'<'Jm(K'('") + Ero1"'v- N'ff\(\\yY') 4.s 

where J'(n(~'r'r)is a Bessel function of the first kind and NYh (K'f -f) i s a 

Bessel function of the second kind16 , and K'<'~ \\2-K2 '2..• The boundary 

conditions which must be satisfied by equations 4.5a, 4.7 and 4.8 are: 

a. The pressure is finite throughout the interior of the cylinder. 

b. The walls are assumed to be pressure release surfaces requiring 

that -\J = 0 at the boundaries of the cylinder. 

Selecting a coordinate system with '2-::.. 0 at the bottom of the cylinder, 

and for a cylinder of radius a and length l_ , the following conditions 

apply: 

a. Coefficient of the cosine term in equation 4.5a must be zero 

since 1=' is zero at 2.::::. 0. 
I .Q'lr () 

b. Periodicity in 2. is given by \{2. = \._ where x. = l, 2, 3-- since !p 
is zero at 2 -:::: L . 

c. The coefficient of the second term of equation 4.8 must be zero 

since Bessel functions of the second kind cannot be present with 

~ finite at the origin.l7 

d. Since the selection of the coordinate system is purely arbitrary 

the e = 0 axis can be positioned so that the phase angle in 

equation 4. 7 is zero ('\' m 0) with no loss of generality. 

1 ~cLachlan, Bessel Functions for Engineers - 2nd ~d., Oxford at 
the Clarendon Press (1955) 

17McLachlan, op. cit. 
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, 

Thua, the solution of equation 4.2 takes the form: ~ 
J,.(Jv 

-f> = Frn,\<2\Kv c-cx7.z~IYJ( K~&:) cos (me) JY'll(\('(''fJE. 4·9 

The final condition to be satisfied is that the pressure must be zero 

at'(' • <A· Thus 

Jm. ( \<y (A) ::: 0 
Defining a quantity <:> VY\V\ such that 

4.10 

then 

4.11 

where n is an integer denoting the nth zero of a Bessel function of order 

rn . Further, it can be shownl8 that all roots of equation 4.11 are 

real; that is, 3'ttt'f\ must be real. Thus 

K'<'-= ~ mn 
0... 

is real. Since 

then 

Substituting 
'2... I 2. 

-~2. + K'2:. 

Equating the real and imaginary parts of equation 4.13 gives: 
2. ,"'2-. :t.. ,'2.. (Q \"') 

- ~2. + K"2z. -==- - tX, + \\ ~ ~·(\ J" 

~2. k~ :::. ()( \ \( \ 
I 

Combining equations 4.14a and 4.14b and solving for \\ gives: 

4.12 

4.13 

4.14a 

4.14b 

·{= ± ~ K~2 T c~~)'-- C(,l ( %.;_::VJf/\(,;'· ;- I)(.,"] 4.15 

If ~\• is assumed negligable, 

K' = ~ k~ 2. -t- (~c;:n)2. 4.16 

18 
A. Gary and G. B. Mathews, A Treatise on Bessel Functions, Mac-

millan & Co. Ltd. St. ~~rtin's Street, London, pp 79, 1931. 
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~· 

where the negative root is rejected since only positive frequency is being 

considered. As might be expected, equation 4.16 is the equation for the 

wave number in a lossless medium. Substituting for K' and ~~ in equa­

tion 4.16 gives: 

w~mn 
c 

Therefore, f~~~· the resonant frequency of the cavity is 

{-~~~. == ~~(~)'-+ (_~~·)~ 4.17 

It is desirable to excite a mode of vibration in which the medium 

has no tangential components of velocity. For a medium having even a 

slight viscosity, such motion at the walls can introduce a much greater 

damping of free vibrations than that due to absorption of energy by the 

medium itself. Thus, only axially symmetric modes will be considered 

(i.e. m s 0) for the remainder of the analysis. For the lowest axially 

symmetric mode, ':>YT\\1= ,3Q 1 = x(O. 7655) and R = 1. This corresponds to 

a pressure antinode at the midpoint of the axis of the resonator. 

If attenuation is present, its effect will be to lower the resonant 

frequency slightly as indicated by equation 4.15. 

14 



5. Sound Absorption and Dispersion By the Medi um . 

Investigation of the general mechanism of absor pt ion by the medi um 

will be based on a solution of the first-order equations obtained in 

section 3. They were 

~J- + -fo (\7·V) = 0 (3.1) 5.1 

-flo Gv(~) -r[-foC.v(-r-t)/p] (7· V) - /(\/2. e 
_- -fo Cv ~ (j:=. 0 . (3.3) 

-Po ( #) + ~Q + f3 -fc(.Y-§. )l \7 f -;V N'V(v.v) 
'l" 'V'f> ~ (3.5) 

-t-jJ'lX (\7>(V) == 0 

5.2 

5.3 

where the subscripts indicating first-order effects have been omitted. 

Differentiating equation 5.3 with respect to time and substituting 
tl from 5.1 for ~ \:1 gives ~ e 

~2. V -f: (; '2.. ( - ) C 0 D ..D 0 -fo ~v 2..- o o \1 'l·V + ~ P :_:> \1 C)1J 5.4 
'T' . -) ( ) v) -_;.JNV('V·~ +)J\IX V'X~ ::: 0 

Considering that, accordi~g~to Helmholtz's theoreml9 any vector can be 

uniquely separated into the sum of a gradient of a scalar and the curl of 

a divergenceless vector, let 

where 

\j==\7¢+\JXA 

dp - velocity potential 

~ - vector potential -V·A Ill o 

5.5 

Substituting equation 5.5 into 5.4 yields the following scalar and vector 

wave equations: 

-fo ~~.,_ - i'~o2.. v'-~ -+ 5.6a 

5.6b 

It is interesting to note that equation 5.6b which governs first-order 

vorticity is not a true vector wave equation but a vector analogue of the 

19Morse and Feshback, Methods of Theoretical Physics, Vol. 1, McGraw­
Hill Book Co., pp. 53, 1953. 
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typical homogeneous diffusion equation . Since no source terms are present 

in 5.6b, this implies that, if first-order vorticity exists, it must be 

generated at the boundaries. This lack of source terms is due to the 

technique utilized in generating the first-order equations. Based on the 

assumption that the equilibrium values of the state variables are con­

stant and that the viscosity coefficients are functions of these state 

var iables 1 then it is consistant to assume that \J )J0 =\lAo = 0 . There­

fore, the source terms involving the gradients of the viscosity coeffi­

cients appear as second-order rather thanfirst-order sources. This section 

deals specifically with absorption by the medium; thus, solution of 

equation 5.6b and its implications will be reserved for section 6. 

Neglecting the effects of radiation and assuming a time dependence 
A..Wi:-

of the form e • equations 5.2 and 5.6a become: 

'Y~[:f~o~ ;--A w;VN] + W "2.-fo ~-AW ;;~ J3 -fo 6 -=- 0 5. 7 

5.8 

Sol v ing 5. 7 fo r 9 and substituting into 5.8, and introducing the short-

hand notation: 
N.NW 

G • -fo Coa. • a frequency dependent term 

and 

H = )J Ncp , which is non-frequency sensitive 

where 

5.9 

Equa tion 5 . 9 is biquadratic in the complex propagation constant and it is 

convenient to rewrite it as 

= 0 5.10 

The standard quadratic formula can be used to determine the reciprocal 

squares of the propagation constants as ~ 

~~ } == -2.C.' o ~~+A &( 1-r '0' H) ± rl +A G (I-"(' It~~+ '\-A. ( 1'~l) G- H )JJjDt 5.11 
j_ w l ...J L [I + A G- \. \-0' t1) 
Kl.'l. 
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For the frequency range under consideration with water as the medium, G 

and Hare small numbers and equation 5.11 can be expanded by power aeries 

methods to yield: 

K1,: ~~ ?11- f[i +- H(~-1)]- ~ G-~ + H('O'-t)J1 5.12a 

k,_= ~ f(~~~)V>-[t + t('"t -1 )(I- &' \1) G-J J 5.12b 

Neglecting second-order terms gives: 

5.13a 

5.13b 

Referring again to equation 5.10, we see that the solution will take the 

form of two waves referred to as types I and II whose wave numbers are 

respectively K, and K~ . Examination of equations 5.13 indicates that 

the two solutions might also be classified as ''cempressional" and "thermal" 

since the type I waves represent the solution to the ordinary wave equa­

tion with a slight damping coefficient and the type II waves are generally 

the result of thermal conduction. 

From equation 5.13a the absorption and dispersion measures for the 

type I 

I + ~ (;V w ~ /-f'o C0?.. r-· 
c. Cc D + ~ (JJ W N/--fuCo) ~] 

The attenuation thus determined is the Kirchhoff approximation for low 

frequencies. 

The wave length of the type II wave ( ,\ · 2.1i (2. ~oY,~) is very much 

shorter than that of the type I wave. Further, the type II waves are 

very rapidly attenuated at the frequencies under consideration with a 

decrement of ~~ ~ , and the velocity of propagation through the medium 
'"2-..\T 

is given by:. 
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6. Wall Losses. 

To study the effects of wall losses on the system, consider the force 

equation derived in section 2 (2. 9). The viscosity coefficients /.J and \ 

are assumed constant, and effects of the extraneous force, F, are assumed 

negligible. Further, since only small amplitude vibrations are to be 

considered, all terms involving squares of the velocity components are 

neglected. Equation 2.8 then becomes 

-f>(~) =-'Vi'~(~+ f.')'J \~· v)+ .AJ"V
2
v 6.1 

Since it was shown in section 5 that the thermal waves are rapidly atten-

uated, the effect of heat conduction at the boundary will be neglected. 

Thus, before proceeding further in the analysis, a direct relationship be­

tween pressure and velocity must be established 20 • Flow of mass out of 

any volume element reduces the pressure in a compressible fluid. In an 

elastic fluid, if compression is small, the rate of change of pressure is 

proportional to the divergence of the velocity; that is 

d.P -alj == - ~ "¥. v 
B - bulk modulus of elasticity 

6.2 

Taking the time derivitive of 6.1 and introducing the expression given in 

equation 6.2 for~ gives: 
~v -

-f(~,_):.. v(BV'·v)+{ivt A)v17{~) + ,.vY'"~ 6.3 

Again defining V as 

and substituting equation 6.4 into 6.3 gives the two equations: 

-f d I\_ '= -)J'lX V' )<..A. o-c 
-f ozct> = c>v-"2..4> +(7-}.J + A) V'~ 'd ~ 
dt~ ' at 

;...cJt 
Asswning a time dependence of the form E.. where <T=- W+ A ex J 

6.5a and 6.5b take the form: 

6.4 

6.5a 

6.5b 

equations 

2~orse and Feshbach, Methods of Theoretical Physics, Vol. 1, McGraw­
Hill Book Co., pp. 162, 1953. 
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where 

\1 X 'V X A + h ?_A == 0 

( 7 2 +- Y\ L.) ~ - 0 

h 2. :::: A -f C) 

IV 2.. 

K L =- \5-: ~a-6;::; i- A) 

6.6a 

6.6b 

Since qp satisfies a scalar HeLmholz equation, the form of solution will 

be the same as equation 4.9, that is 
"cr"G 

¢ =. 5 m K ~ ~ J;,n ( \('<' '1) ~ ~ ( V'n e) t 6. 1 

where 
2. "'2.. 

K"l ==- k6 + \\y-
K""2:. =- -tr ..2.= \J2) 3· --

J YYl ( "'Y' <A) ::=. 0 
Equation 6.6a takes the general. form of a vector "wave" equation . Accord­

ing to Stratton 21 the three independent vector solutions to 6.6a are given 

by: 

L-='V~ 

\"1 - \! X 0:, ~ 
; -N :::: --1- \J X M 
h 

6.8 

6.9 

6.10 

where ~ is any constant vector of unit length and l\J 
tion satisfying the equation: 

is a scalar func-

6.11 

From 6.8, 6.9 and 6.10, 

v· M ==- v,N -= o 
'7., L: -= \! ')_ lV 

Since, by definition,V•A.=O. 6.9 and 6.10 must be the complete solution 

of 6.6a; that is, , 

+ N 
21J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Co., 

pp 393. 1941. 
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Equation 6.11 is again a scalar Helmholz equation and thus 4J is 

given by: 

liJ- c..os bZ. c. as VY\ e ~ ( rtY') 
-r-s,n S\Y\ 'iY'. ei 

Considering only the zero mode (m m 0) 

~ = ~~~ bz= ~ (g~) 6.12 

Substituting equation 6.12 into 6.9 and 6.10 and selecting ~ - ~gives: - . 

M = '7 X -a"?. 4J 
:::= O..e d c..os b :c -r (~ v·\ 

C;j s l Yl J ' 'B. .) 
6.13 

N=k(vxM) 
ws -:-? 6.14 :::- "* [0.-; gl?_~~ b~ ~ (§'<) T ~C §2 Jo(fiY') S\V\ be_) 

Taking the curl of 6.13 and 6.14 gives 

VXA-= Q~g-~~ b~ ~(~"~)] 6.15 

+ n C\q, [1{ ~~ b?: J, ( g~v-) J 
- I t'"Y 1. T ( ) Go ~1 

\ .... - J + 0. -t: l-.:8 ...J 0 ~ \(' ~ \ V\ u 6 

From the symmetry of the problem: 

VY' (Y' 1e):: Y'< (Y\ L- -~) 6.16a 

v~ ( '<') ~) ~ -\J=2. ( '~', L ·-?:.) 6.16b 

Thus, the rotational component of the vector velocity has the form 

\lx·A. = o."(S.b;~(b~ SlY\ b~ }; (~,~) J 
T C\~ [DYJ)g ( \r,g co 3 3, (~'r) J. 
+ CA-r.[C~)~ ( <2? Jr., ( §'fJ u)S be\ 

6.17 

where 

r_ \") -.:o.---
_ ... ,. - i £., J .... ;. 

From an examination of equations 6.7 and 6.17, it can be seen that since 

K* =- b • then g i Kv- • Thus }"6 ( ~ o.) -:j: C"). 
The irrotational component of velocity is determined by taking the 

gradient of 6.7. Thus 

~ ~ = O..v [E. '1(2 }<~ (- \\y- !:"':)\') \< i:·?!: J; ( '-< v- y-) J 
+ 0. "2:- [E\(~ s'-<•f' ( 'v\ ~ (_.() ~ \<:~. t To ( L.<v \(' )] 

6.18 
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A rat i onal accounting of the actual wa ll l osses i s wel l beyond the 

scope of this discusaion. Derivation of even a reasonable approximat ion 

for the pressure field existing at the boundary would be difficult and 

tedious. Even if these equations were known, the mechanism of acoustical 

energy transfer to, and the absorption by the compliant structure is not 

sufficiently understood to make application feaaible. Thus, it is nec­

essary to assume a simple model, considering that the solutions obtained 

will act as a guide in interpreting the actual behavior of the resonator. 

As a first approximation, the pressure release boundary condition 

is retained with the additional assumption that the cylinder is bounded 

by a BmOoth wall. It is further assumed that, for a viscous medium, there 

is no slipping between the medium and the wall. This implies the condi­

tion that the tangential components of velocity will be zero at the 

boundary. 

Examination of equation 6.18 indicates that the irrotational com­

ponents already satisfy this condition, i.e., 

V-r-"'0 "''t "Z-=-b,~-=L 

v~ = o 
Considering the ~otational components, since ~\~o.}to, Ob;~ must be zero 

10 that 

Further • Co,~ must equal zero for the longitudinal component, V 11. , to 

satisfy the boundary condition. Thus, for this simple model, there is no 

rotational velocity component, and no first-order vorticity exists. There­

fore, the solution obtained in section 4 is unaltered. 

A closer approximation to the actual conditions can be obtained by 

assuming that pressure approaches some small finite value rather than zero 

at the boundary (i.e. 1 ]""0 ( i(y-(). \ =F 0 , S\ Y\ \<c. I... ~ 0 ) . In this case, the 

coefficient Do,~ in equation 6.17 must again be equal to zero. However, 

from the two conditions: 

z_ Y6 = 0 u.t Y'-=0... 

~ \1 '(' = 0 CAt '2.-=0 -:z:: -:::. L 
two equations are obtained: 
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EE\<.'fSIYI\<~::zoJ;(I<;v·\] + c[o~ SIY\b~ S,(g'<~=O 6,19 

at 6 -.::: 0 and ~ = L ) and 

E[Kr.c..osl<,;z= J"c,(l<<-o-.)j + c.[g'"cosb2o J6(i;~o..)l= 0. 6.2o 

Since equation 6.19 must hold for all values of ~ 

Ke=b-:::. \\Q.. Equation 6.20 can then be rewritten as 
\..-. 

T0 ( ~'(· u,)= --€ ~: Jc, ( ~CA) 
c' Tu (& ~). 

it follows that 

6.21 

Equation 6.21 again indicates that for perfect pressure release walls (i.e., 

J6 ( K.,...o. ')-= 0 ) there is no first-order vorticity and no viscous loss of 

energy at the boundary. 
I 

As the boundary deviates from the ideal case, the coefficient C in 

equation 6.21 increases accordingly and vorticity is generated. Thus, 

friction ari~es between the layer of fluid adhering to the walls and the 

immediately adjoining liquid in motion causing a dissipation of energy at 

the walls. 

This effect can be evaluated by considering that 

K'f' o.... - '5 'fY\"' - S V't'\ Y\ 

I 
where ~~~ is a small complex quantity which is dependent on C: . Re-

ferring to equation 4.13, it can be seen that the addition of e~,~ will 

result in a decrease in the resonant frequency of the cavity as well as 

an increase in the total energy dissipation. 

A further implication of this analysis is that, since f; :f. 0 at '('.::. C\ • 

a transmitted as well as a reflected wave exists at the boundary and some 

energy will be lost to the surrounding medium due to radiation. 
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7. Measurement of Attenuat i on. 

Before proceeding to apply the result s obtained in the preceding sec­

tions to the actual design of a cavity 1 some method of measuring the 

energy absorption by the enclosed medium must be determined. The quality 

factor or Q of a resonant cavity may be defined as: 

Q = 2n (energy stored in cavity) 
energy lost per cycle 7.1 

The mechanical energy stored in an incremental volume can be considered 

~s the sum of the kinetic and potential energies; that is 1 

ET - EY\ + Ep 7.2 

where f~4clV E~ - '?-.. 

Ep - t->, Y 2.. f c}· dV -
Therefore, W1 the total energy stored in the cavity, is determined by tak­

ing the volume integral of equation 7.2; i.e •• 

7.3 

For the present, wall losses are neglected and all attenuation is assumed 
AQ'"t., 

to occur in the medium. Selecting a time dependence of the form ~ where 

(J is again equal to At)(.. -t 0-J and substituting into equation 7.3 indi-
-2..\)(:v 

cates that W decays at a rate determined .by e._ where C:X is the atten-

uation constant in nepers per second. Thus, the energy lost during one 

period is given by: 

energy lost per cycle = ?CXW -f' -
Substituting equations 7.3 and 7.4 into 7.1 gives 

2.1TtW _ w 
Q = ---> .-1 '2.. cJ... w C- \.A. 

or 

nepers/second 

7.4 

7.5 

To convert 0( from a time to a space dependence, equation 7.5 is multi­

plied by Yc: 
I w K' 

r;X_ = 2 CQ = ·2.. q nepers/uni t length 

where \\
1 

is defined by equation 4.15 as 

7.6 

I 

K = 
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Substituting i n equat i on 7.6 and solving for 0( gives : 

~"" iQ~ Ki '- -t (~)._ 
= fQ ~(-t-)2. t (~~ 1.. 7.7 

Thus, with the assumption that all energy dissipation occurs in the medium, 

the quality factor of the cavity can be utilized as a measure of the at• 

tenuation constant of the medium. 

In the case of an actual resonator, the effect of wall loss cannot 

be neglected, and the cavity is characterized by a total Q, Qr, given by 

_L= j_ + _..._I_ 
01' QVY\ Qw 

where QYV\ is due to dissipation by the medium and Q w is a correction 

due to wall loss. ~~ • then, is the value which must be utilized in 

equation 7.7 to measure absorption by the medium. 

Since the device under consideration will be operating at relatively 

low frequencies, determination of the correction factor, ~vv , is greatly 

simplified. 

It ie well kno~that, at frequencies below 10 k.c./sec, attenuation 

of sound waves in fresh water is considerably less than attenuation of 

sound in sea water. In fact, by comparison, attenuation by the fresh 

water can be neglected. Thus, if the cavity is immersed in distilled 

water and the total quality factor is determined, then 
I _L 

QTd Qvvd 
to a close approximation. The subscript d 
ment in distilled water. 

where 

Q may also be defined as 
.f 

Q = Af 

~ - resonant frequency 

~+=+l.-+1 

is used to indicate measure• 

~L\~I- frequencies of the upper and lower half power points. 

Therefore, 

...J_ -
o~, 

Considering that the resonant frequencies in fresh and salt water will be 

only slightly different, 
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_I 64'- A-fd 

Q'('(, = .f 
where 

6f- band width between half power points for actual cavity 

in sea water 

Afd- band width between half-power points in distilled water 

f - resonant frequency in sea water. 

Substituting this value into equation 7.7 gives 

ti... =- lT ( 6.+- ~-rd) (_g_) 2 t (s Mn\ '-
2 .. -f \...... 1T cA . J 7.8 

and equation 7.8 can be used to e~~erimentally determine attenuation by 

the medium. 
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8. Cavity Design. 

In the design and construction of a sound-velocity and attenuation 

meter based on the principles discussed in the foregoing analysis, two 

general problems must be considered: 

a. Design of a cylindrical cavity presenting essentially a pressure­

release boundary over the frequency range under consideration. 

b. Development of the "intelligence" system including a transducer 

to excite the water column to resonance, a receiving transducer 

to sample the generated pressure field and the associated 

electronic equipment for interpretation and display of the de­

sired information. 

As a first step in the design, the general usage of the data obtained 

from the instrument must be considered to determine the desired resonant 

frequency of the cavity. Equation 4.17 can then be utilized to calculate 

the approximate dimensions of the cylinder. Care must be taken to select 

a length to diameter ratio that will minimize danger of mode skipping. 

Next, the general range of sound velocities to be measured must be 

specified. This, in turn, determines how broad the Q of the cavity must 

be to present adequate sensitivity at the extremes of the operating range. 

With these parameters in hand, the formulas developed by Toulis22 

can be utilized to determine the nature and spacing of the compliant 

elements for construction of the cavity walls. This, then, outlines the 

steps to be carried out in the solution of the first portion of the 

design problem. 

In selecting and mounting the transducers for exciting the water 

colUUin into resonance and sampling the generated pressure field, s'everal 

factors must be considered. First of all, since the material generally 

used for enclosing the transducers is highly absorptive, it is desirable 

to mount them in a relatively low intensity sound field. Further, it 

is necessary to keep separation sufficient to mintmize direct coupling. 

The design of a system for interpreting and presenting the data ob­

tained is primarily dependent upon the actual operating requirements and 

will not be discussed. 

22w. J. Toulis, Acoustic Refraction and Scattering With Compliant 
Elements, to be published. 
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9. Conclusions. 

Examination of the foregoing analysis indicates that the solution 

to the simple wave equation obtained in Section 4 describes, to a very 

close approximation, the conditions existing in an actual resonator. 

From Section 5, it can be seen that the effects of heat conduction on 

the resonant frequency and attenuation constant are negligible. Section 

7 indicates that, with walls closely approximating an ideal pressure• 

release surface, the effects of first-order vorticity can also be neg­

lected. Thus, for design of a system employing the techniques under 

disc~sion, the simplified analysis presented in Section 4 should prove 

adequate. 

One particularly desirable feature of this system is that it mea­

aures velocity and attenuation simultaneously. This should be of great 

asaistance in determining the effect of air bubbles and other natural 

phenomena on sound velocity. 

Another desirable feature of this equipment is the frequency range 

employed. Since some doubt exists as to the validity of adapting sound 

velocity data measured at megacycle frequencies to much lower-frequency 

applications, an accurate device operating at these lower frequencies 

should ba a welcome addition. 
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APPENDIX I 

CAVITY CONSTRUCTION AND TEST 

A cylindrical acoustic resonator sound-velocity meter was constructed 

by Toulis and preltminary tests were conducted by Toulis and the author 

from 6 January 1957 to 15 March 1957. This appendix outlines the methods 

of construction and instrumentation utilized and describes the test 

results. 

The pressure-release walls of the cavity under test were constructed 

by deforming commercially available aluminum tubing (Alcoa 3003-H-14, 1/2 

hard, 1" O.D., 0.036" wall thickness) into nearly flat or elliptic cross• 

section and welding the ends to prevent flooding. These tubes were then 

secured to a cylindrical frame with 2-1/2 inches spacing between tubes 

forming a closed cylinder. 

The water column was excited into resonance by a cylindrical barium 

titanate transducer mounted just below the compliant tube top of the 

cavity near the cylinder wall, and a s~ilar transducer utilized to detect 

the pressure field was mounted directly opposite. 

For making velocity measurements, the output of the receiving trans­

ducer was amplified and applied to the exciting transducer. A self­

excited oscillating loop was thus formed. The loop voltage was applied, 

through a frequency multiplier (XlO), to a Potter 150 KC. Frequency 

Counter. 

For attenuation measurements, the amplitude of oscillation is an 

indirect measure of Q. Direct determination was made by driving the cavity 

with a General Radio Beat Frequency Oscillator (Type 1304-A) and measur• 

ing the bandwidth between the half-power points. 

During the tests, the output of the receiving transducer was applied 

to the amplifier through a calibrated potentiometer. The amplifier out­

put was menitored and the gain (potentiometer) setting required to main­

tain constant output was recorded as an indication of the attenuation. A 

block diagram of the system is shown in Figure 1. 

To evaluate the ability of the instrument to measure actual sound 

velocity at sea, a number ~ of tests were conducted in the coastal waters 

of San Diego, California. For comparison~urposes and, particularly, to 

isolate the effects of aalinity, an additional set of runs was made at 
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the NEL testing facility at Sweetwater Lake. At each coastal station, 

the cavity was lowered by means of a bathythermograph winch, and the 

following data was recorded as the chamber was stopped at intervals on 

the ascent: 

a. Resonant frequency as indicated by the Potter counter. 

b. Temperature as determined by a thermistor bead attached to the 

side of the cavity. 

c. Gain setting. 

d. Depth as indicated by a wire metering device. 

The results of these tests23 indicate that the system tested pre­

sents promise for development as a survey instrument for making sound· 

velocity profiles. 

u 
J. E. Wille, Prel~inary Test of A Cylindrical Acoustic Resonator 

Sound•Velocity l~ter, NEL Tech. Memo., to be published. 

32 



~ 

~ 
(,.) 
\)) <::> 

~ 

.L:7 

0 

60 DB 
AMPL 

~ Q II 0 
TRANSO.UCERS ~ 

tJ d 0 

.&7 

<::I 

<:> 

~ 

~ 
. ~ ~ 
~ ~ 
CROSS SEC..TIONAL Y\E.W Of 
C.OMPL\ANT TUBE C..HAMSE.t=\ 

FREQ COUNTE'R 

0 ) I t'"1B F 0 

F\9.1- Block Dro.~r~m of Toul,s Sa~V\d Ve\oc,ty Met€'Y 



Thesis 
7l5885 

.... 

.. .!1 At--H b7 
2~ APR 67 
2~ APR 67 

Thesis 
~·v5B85 ~ ville 35723 

Analysis of a cylin­
drical acoustic resona­
tor sound-velocity 
meter. 

1 mo f ro.m receipt 
-<l.{Jq Mtvtct~c, lrJT£RLID · 

64<.. lh-~ 

1lille . 
An~]~.rsic:: nf' ;::~ c~rl 1 '1-

drical acoustic resona­
tor sound-velocity 
r::eter . 

LLf,_c,'-' 



thesW5885 

Analysis of a cylindrical acoustic reson 

ll!llll~iill~l~lllili!~l~ll~ll~i~l~i~lll 


