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ABSTRACT

A method is presented for unifying the analysis of various wave
properties of a plasma in a magnetic field. An expression is derived
for any microscopic perturbation quantity as an integral of an expecta-
tion value with respect to the equilibrium distribution. This yields
permittivity and conductivity tensors, and hence the dispersion relation,
or spatial and temporal decay or growth rates, for any specified velocity
distribution, In the plane wave case, the averaging is eliminated and
the calculation significantly simplified by transformation to "inverse
velocity space,” so that singular integrals do not appear and phenomena
such as Landau damping become evident., Quasistatic and exact dispersion
relations are derived for cold, Maxwellian, resonance, and drifting
distributions. Collisions are accounted for as a viscous drag force
along the orbits. Generalizations to other external force fields are

discussed.,
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and apatial decay or growth rates are obtainable directly., The quasi-
atatic approximation, although often convenient, is not necessary to
the analysis and both quasistatic and exact results are presented.

Singular integrala, requiring careful specification of the inte-
gretion coatsurs in the complex plene, are avoided, leaving straight-
foresrd quadretures thst are either atandard integrals or types readily
handlied by computers. Landau end cyclotron damping effects appear in
s neturel, vaforced mamser, without complex contour imtegration or
eslenistion of residuss at singalarities.

Ploss sase or Pourier sasipeie 's performed in & particularly
siapis memer by Lrenstersetion of the veloelity distribution to "imverse
ity spese.’ i whieh sigeificent algebreic simplitication 1a
whiased  Toe oltnsia of Grift o boom Wecene reedily deterrinable.
i alibtosit 16 eabi iy geimreliomd ¢ egetons enternelly forced other-

sten Uhar By We Sagwiis (ieks, lodde M) IEerPerele puremetric eftects.
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2. SOLUTION OF BOLTZMANN EQUATION

The Boltzmann equation governing the velocity distribution f of

a constituent of the plasma may be expressed as

af ! cat _ fat '
3% ¥ Nl v = | 3t g (2.1)
=y (-]

Although it ig u;tandard6 to separate the collisional rate of change as
a forcing term, the effect of collisions will here be incorporated in
the acceleration, a » experienced by the plasma constituent, as
detailed in Section 4.

The nonlinear equation will be simplified at the outset by linear-

izing about an equilibrium distribution rog!) . Thus, the distribution

function will be

t = fW+ (v t) , 2.2)

where to conforms to the externally imposed force field Producing the
acceleration 20 in the constituent particles, and the perturbation

fl is associated with the internally induced fields Producing particle
acceleration s . With some additional effort, the more general case
of a spatially varying equilibrium distribution fogz,_l) could be
treated as well,

Linearization prescribes

3L,
a . — = 0 (203)
-0 ax
-3 -




as & precondition for equilibrium, and

af af ot
——]L + x . vtl + _20 . ——1 = -al . —2 (2.4)
at 3y T

as the equation governing the perturbation of the distribution. How the

collision term is to enter these two equations is discussed in Section
4.

In these equations, .3o€£’.!’ t) is a prescribed external excita-
tion and the equilibrium distribution togz) is presumed known, The
first-order acceleration .21€£’.!’ t) 1is specified in terms of the
r,f, fields in the pPlasma, which in turn depend on the unknown perturba-
tion fl « A self-consistent solution of this equation is required in
order to determine the wave properties of the medium,

The solution to the linearized Boltzmann equation is obtained by

integrating along the unperturbed trajectory of a constituent particle

experiencing the acceleration a_. ., Provided that

I ~0
dr dv
—_ = v — = a_ , (2.5)
ac = aa
the equation states that
df of
1
~ = - =8 (2.6)

dt

e - e s e U il




or simply the total time derivative along the trajectory specified br
(2.5). The solution which vanishes at t = - ®» , before the perturba-

tion sets in, is
fl(f-’ v t) = -J‘ o ~1(£(-r), y_(’r), 'r) at 2.7)

The integrand is evaluated along the orbit given by (2.5). As this
orbit is to pass through r with velocit;r y at the time t , the
integral depends on r and v as well as t ., It is implicit in
(2.7) that the perturbation has a starting time, A steady-state analysis
can be reconciled with this by itacitly including a small loss component,7

or an adiabatic switching 1’9.c1:or,8 to guarantee convergence of the

improper integral,




3. PERTURBATION QUANTITIES

The various quantities of physical interest associated with the
plasma are expressible as expectation values of certain functions of
velocity. Quantities that vanish at equilibrium are obtainable by
averaging with just the perturbation fl(r_, v, t) , typically yielding

the perturbation quantity Ql(‘x_:, t) as the average of a function Nl’.) 3

g,(r, t) = [ £,(r, v, ) 9(v) dv . (3.1)

The excess charge p(r, t) 1is obtainable in this way with ¢(‘y_) =q
and the r.f, current density ‘._I_(r, t) with ¢(_y_) = qv ', ‘More generally,
¢(v) 'may represent a velocity-dependent operator acting on the coordin-

ates,.

In view of (2.7), any such quantity may be calculated as

t af

g, ) = -[[ = .8 6wty . (3.2)
. "o ¥y

This expression may be simplified by invoking the divergence theorem in

velocity space, along with the condition that fo - 0 , strongly, as

lx_' - o , leaving

t dv(t)
§,(x, t) J:mj 10(1'-) . [5-‘,-(7) 8 ¢(1)] dv a7 . (3.3)

2

&%



The tensor fsctor in the brackets srises from the fsct that, in (3.2),
NO/I: 1s evaluated st Y(7) while the velocity integrstion is with
respect to the varisble Y= () ,

Using angular brsckets to denote sverages with respect to the
usperturbed distridution fuaction, as

J totv) gy = n, (82 = [t v) gtv)ar , (3.0

the final result is expressidble as

t dy
hio v -n [ v 55 A e der . (3.8)

This expression is the basis for the celculstion of si) perturbation
quantities of interest., The further development of this formuls requires
the introduction of the unperturbed trajectory 5(7) e (7)) as s

function of .,y v,




4., UNPERTUREED OKBIT

The genersl result may now be specialized to the case of a constant,

uniform magnetic field 20 as the external force field. This introduces

8 preferred direction in space, that of Eo » to be specified by the
unit vector E . It is then convenient to define a trio of matrices

associated with E ,» &8 follows,
l=8 , L =-1-3b ., x-Bx. (4.1)

Here, I 4is the unit matrix; || and | are seen to be projection

-

operators and 5 performs the cross product operation, A mutually

orthogonal, idempotent set of matrices is formed by R , L o

vhere

ezd-m, L=ldew . (4.2)
These represent right- and left-handed circular polarization operators,
respectively. The spectral expansion of the operator 5 shows that

any matrix function of 5 reduces to
2X) = f(1) R+ £(-1) L+ 200) || . (4.3)

The utility of these definitions arises from the fact that in the

external magnetic field 20 » the constituent particle acceleration




20 produced is

By = (q/m)lr_x_}if):-w

c XY (4.4)

'
where wc = qBo/m is the signed cyclotron frequency. With
30 = q!/dt , this equation describes the precession of the velocity
vector about the magnetic field.

One consequence of the form of the acceleration imposed by the
external magnetic field is that the condition (2.3) on the unperturbed

velocity distribution becomes

Y ) af,  af
—.—0- .i.x = B .-Y.x —0 = ._Q = 0 , (4,5)
LA v 3

which precludes any velocity-space azimuthal (¢ ) dependence of the
equilibrium distribution,

Although the introduction of the orbit into (3.5) is now straight-
forward for the collisionless case, it is desirable at this point to
incorporate the effects of collisions, in some manner. This would at
least serve to resolve ambiguities associated with singularities appear-
ing in the absence of collisions., BSome of these arise from the fact
that the matrix E, is singular, To maintain tractability, collisions
are here to be included in the simplest fashion, in terms of an equiva-
lent "collision frequency' or inverse relaxation time, v . This is
commonly introduced in any of various convenient or reasonable approxi-

mni::l.onsg-11 to the collisional term in (2.1). It should be noted that

-9 -




& simple relaxation term in the Boltzmann equation is inadequat: when
the quasistatic approximation is to be used ad initio, due to its
failure to conserve particles locnny.9

The artifice to be employe” here to represent collisional effects
is to ascribe them to merely a modification of the unperturbed orbit,
The typical particle is considered to be subject to a viscous drag
force, in addition to the magnetic one, to the extent that its velocity
differs from the mean flow velocity at equilibrium, Besides the resu.-
tant tractability, this method has the virtues of yielcding results
consistent with the limiting case of cold plasma hydrodynamic theory,
as well as consistency between quasistatic and exact theory. Although
this approach neglects diffusion in velocity space, the proposed change
in the unperturhsd orbit appears also as an essential modification of
the collisionless case when more careful acecount is teken of collisions
11

via a Fokker-Planck model,.

Accordingly, the acceleration in (4.4), which prescribes the orbit,

is modified to

= -

% - "V

L1V UL %
where V 1is the effective collision frequency, assumed constant, and
Yo = Q!) is the mean, d.c. drift velocity of the equilibrium distribu-
tion, The acceleration is still linear in the velocity in this model

and the orbit is readily expressed, from (2.5), by

dr/dt = v(T) , dv/dT = - X+ VIV + Vv, (4.7)

- 10 -




subject to the coa 'l iune :(f) «r , _‘;(') =y ot Tt , Bince

% is o be time-indupendent and is necesearily sligned with the

magnetic field, the ordit equation actuslly simplifies to

S (-

T w-*" ~wX + VI - vy (4.8)

in terms of the peculisr, or raadox, velocity Vv - Y and the nonsingulsr

matrix o X+v = Y
Ome =

The solution for the trajectory is

¥m=-y, - o X" v -39 4.8)
M = reyrev e =X e v (4.10)

Equation (4.9) expresses the damped precession of the peculiar velocity
vector about _‘l}_ , until it attains y-Y at time t ; eq. (4.10)
describes the constricted helical path taken by the particle which
arsives at r with velocity v at time t , s indicated in Fig. 1.
By use of (4.3), these expressions may be rendered more explicit,

for .eference purposes, Let T=t+u , r(M)=r+s8 AL RS

—~—

Then
¥o= vy o+ U w-yvy) o, (4.11)
8 = yu+8M . Q-3 , (4.12)

=/ =

A
W
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, =his_w W _w
g(h)ije‘lﬁi&‘wgs Giliiklt’
E
. o™ ‘mweu)ﬁ = singe vt . E] 4,2
ond
sw) = (1-e¢MY _v_"
(vl Ju (V- )u
(] c -vu
- Redl=e Lol e
v+ I.wc v - L";'c v ~
Note that, since Y%= ﬂ Y5
e v, = EV) v, (4.15)

for any matrix function, Also, the result g(u)e!u = -5(-u) will be
useful later.

It may be noted that, by virtue of the time-invariance of the
system, the particle dynamics are entirely expressible in terms of the
elapsed time u= 7T - ¢ . Finally, for use in (3.5), note that
3v/av(m) = oI

Substitution of these results in (3.5) makes it applicable to the

magnetized plasma:

- i3




R 2 o
t!Q{G 9 = % 4 - L‘ E;tf:& s h*“‘;‘ % (..

i

s e (ategrend, s o . s e i pene &f . st of & |
imdleatod o (8. 00,000  Thie sepionsiod glesw Viw Tiowl -@tdus gusiadba-
e of e M rwenpic Guaniiiy carrospmintisg Yo ﬂ:) B e qaanil=
tesetis of charge q ot suss & of i sugeetisnd plasmm, Wh)eh Walsr=
@o acceleration :1(!;. s ) s he induied fares fields, The latter
ore the electromagnetic flelds sacited In the plosas, so 1hat

(8 v t) = (a/m) (Blr, ) e v xBr, V)], (417)

The sources of _l_1 " !1 are the charge and current densities, obtain-

able in turn fiom (4.16).

- 14 =




S. MACROSCOPIC OBSERVABLES

The basic physical quantities of interest are the excess charge

and current densities in the plasma, These may be calculated by taking

‘(:) =q and qv , respectively, in (4,16):

0 (W X+v)u.
p(_l;, t) = 2,9 L % . [o = . :_1(_1_*3_, v, t+u)] y)du ; (5.1)

0 (w_X+v)u
;!_(_x_', t) = Byd L éz . [o - . _51(£+_:, v, t+u) v| ydu . (5.2)

It may be noted at this point that the general result of eq. (4.18)
reduces to the following expressions in the cases of harmonic time

(Dt]

variation and of plsne waves. With :l(r, v, t) = Re [11(.’.'_'-‘.’.)91 or

1(u)t-k_-_r_)]

al(r, v, t) = Re [.1(1” , and corresponding expressions for

the macroscopic quantities of interest,

0 3 (woi+v+1w)u
§,(r) = ng J-'w ¥ . le - & (r+s, W) (V)| yau (5.3)

0 (W X+v+iw)u -i_l_:_-:_
$, =1, ‘Lé‘l . [e - e © 8, (W) g(v)} pdu . (5.4)

Wave properties of the medium are most readily obtained from
quantities derived from the charge and current, rather than from the
sources themselves, Dispersion relations are expressible in terms of

susceptibilities and spatial and temporal decay rates in terms of the

=,

g S Tm, RS



power balance. To obtain this, Maxwell's equations, or their equivalent,
must be combined with the above expressions,

The medium may be considered as either dielectric or conducting,
as convenient, The dielectric susceptibility _!_{_(_l_:_,w'jf is so defined

for plane waves that

p = '1€o-l£ . E(B.,w) . _1_3_1 (5.5)
and the nornalized conductivity C(k,w) is defined by
J = -le®Cko) . E . (5.6)

The dispersion relation for wave pPropagation is conveniently expressed
in terms of these tensors. Under the quasistatic approximationy, it

suffices to set

K - kKO K, 5.7)

L

since El is considered to be the gradient of a plane wave potential,
The exact plane wave dispersion relation, however, is obtained by com-
bining Maxwell's equations into a wave equation, with the current as

source, This yields

02 ck\2
eis[-; kk - g_(_l_c_.w)] =(—) -1, (5.8)
w ol

where the notation eigﬁ = ) means that ) 1is an eigenvalue of A

- 16 -




The equivalent permittivity and conductivity tensors are obtainable
from (5.,4) by translating (4.17) into plane wave notation, The magnetic
field may be consistently dropped under the quasistatic assumption,

leuving _51 = (q/m)_gl__1 , but the exact acceleration is

k k
_51(_!) = (q/m) [(1 - = i+ :1]- E, . (5.9)
® ®

Aol s Wit o S Fici G i L it 1 m_i"

3
i

Substituting in (5.4) and writing noqz/me0 as wpz , the square of

the plasma frequency, leads to

" @ XtvHio)u
k- K(ko) = m»pz J‘<§—v : [e o= (5.10)
-00 -~
and
of 0/ [ @xvtiodu -iks (1 k k
Lo By =t B[ (& e T e TT{@-= mI+=w).E vfiau .
w =00 ~ w w
(5.11)

Taking the divergences in velocity as indicated simplifies these to

W X+v+i)u =ik.s

0
K(k,®) = w 2 J' S(u).e & (e ) du (5.12)
and
2 4

W, 0 J (@ X+v+i®)u -iks [: Kk Kk ]
Ck,®0) = 1 — I+v = :) Ye e QAQ-=.wWIi+t=-w u |,

(5.13)

- 17 -




In bounded systems, the quantities of interest are often decay
rates, spatial or temporal, particularly when these can be negative,
indicating instability or amplifying capabilities, From the power

balance in terms of power and energy densities,

VP

%

= -JE , (5.14)

there is obtained, by appropriate integration in space and time, the

decay rates of energy in a cavity or power in a waveguide, as follows,

1 '

2, = g% £ J.E dV dt (5.15)
av

2 - J-E dA dt . 5.1

as = P T{J‘ ~.~ 3 ( * 6)
av A

In terms of the formalism developed here, these decay rates may be
calculated by taking ¢(_\_r_) to be qv-E_ , integrated in space and time,

The result of using this velocity-dependent operator in (4.16) is

0 (@ X+v)u
20 = n, q .L 5?_}’_ e & -5(_:1,_!,11)! du (5.17)

where the correlation tensor is

1
R(s,w,u) T ££ a,(r+s, w, teu) E(r,t) dV dt (5.18)
av

for a cavity, or

- 18 -




l
R(s, v, W) = 7
av

[ a,0es, v, tew E(r,t) A at (8.19)
T A

for a waveguide, Other mscros-opic observables, such as frequency shifts,

are similarly obtainable by appropriste choice of the microscopic opers-

tor ¢(v) .

- 19 -




6. INVERSE VELOCITY SPACE

As is evident from (5.12), the basic quantity to be averaged over

velocity space has the form

-ik.8 “ik'vu A (v -v)
® -~ a ° ~~o .--. -~ ~o . (6.1)
shere
L o= AW = xS . (6.2)

Difine generslly, therefore, the distribution function inm "inverse

telocity spsce” by

P - (oY (6.3)

This is Just the velocity-space, three-dimsnsional Fourier transform of
the normalized unperturded diatribution function to(l)/no . The
equivalent permittivity tensor in (8.12) 1a then expressidble directly
in terms of FQ) rovaluated 22 in (6.2). The averaging of more compli-
cated functions of velocity will aften be advantageously expressible in

terms of IQ) a8 +211, as in

(vl . -1&‘5 : (el . -ﬁ . (6.4)




In Part.cular, the various velocity moments are easily obtained by
evaluating the derivatives ot FQL) at the origin A =0 ; the
Laplacian of F(A) at the origin is -(vz) .

The algebraic form of the distribution function is generally
simpler in inverse velocity space, because of the normalization
F(0) =1 and the replacement of convolutions by Products, In particu-
lar, a drifting distribution appears simply as the stationary one
multiplied by the exponential factor e%&ﬁzo . Table I gives the
form of various distributions in both velocity spaces, Note that the
temperature T 1is taken in energy units,

In terms of the distribution function in inverse velocity space,
the equivalent pPermittivity tensor becomes

0 [‘Do’£+“+i(‘°'-li'-‘.'-o)]“ -ij v

K(k,0) = wpz J s e e "‘OFQ)du , (6.5)

=00

where A‘u) = -k:§(u) and wﬁE-vo is the Doppler-shifted frequency,

The equivalent conductivity tensor becomes, after some manipulation

of (5,13),
Ck,w) = C, (&,®) + G (k@) (6.6)
where
2
w 0 - [w x+v+1(w-£.1 Yu i v
% = t-F (F+3A‘FL'°C~ T e T w67
w - w s
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TABLE I

Distributions in Inverse

Velocity Space

1 General
£(v) rQ) = [ 2w oy f2(na’y
2. Cold:
I(v) = n, &(v) FQ) =1
3. Drifting:
— 0y
£2(y) = £,(v - v) FQ) = 0 FoQ)
4, Maxwellian: 17,2
_ mv - = =K
1(v) = no(m/21t'l')3/2 e 2T FQ)=e 2"
5, Resonance:
n v =AYV
“-Y-)="'g 2122 FQ) = ~|1
Pl (v + vl)
6. Radially symmetric:
sin|Aflv
3w = (| LS sl
ja] I
7. Cylindrically symmetric:
f(v) = £(v ) F)_<J(Av§>
o P @ 0" pp
8. Isotropic monoenergetic:
n &(jvl - v.) sinjpl v
£(v) = °L'|21 Fq\_)=—w—l
~ 4 v Al vy
9. Transverse monoenergetic:
t(v) « 2000 7 V00,) FQ = I, v))
2 nv P
10. Beam in plasma:
%™y ¥
f(‘!) = npfp(‘!) + nbbe-xo) F(L\_) = -To- Fp(-é-) + 'n—o e Fb(A)

11, General averages

(_Y(!):) = IIQ) (V) dsx/no =J' FQ) ¥y Q) dsﬁ_

where §y()) = @0 I LA oL ds.Y. ’

1w = [y o ad




is the contribution of the r,f, electric field, and

o i@-k.v )u -ip.v - Xu w Xu
kx [ e = g =0 % e c"-Q-Exl\-e""'\du (6.8)

-0

-

Eb =

€ zol-uezo

is due to the r.f, magnetic field.

If cavity or waveg&ide modes are expanded in piane waves, similar
reductions of eq. (5.17) may be achieved, There remains to substitute
any appropriate distribution function FQ&) into these expressions to
yield the dispersion relatioqs or decay rates by straightforward quadra-
ture, Singular integrals do not appear in this formulation,

More generally,'the perturbation of the distribution function in
inverse velocity space, F1QL) , is obtainable by setting

nO¢Q) = ei-f-\-'l in (6.4). Thus, the perturbed distribution is

F(r,A,t)

el

1(o.>t-k-£)
FQ) + F,(M)e ' (6.9)

with

21 (_gl_)e du , (6.10)

The perturbations in charge, current, temperature, etc, are obtainable

by evaluating this, and its derivatives, at A =0
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7. QUASISTATIC DISPERSION - B = 0

Under the quasistatic approximation, the significent quantity is

the equivalent permittivity tensor, given by

[ X+v+1 @-kov ) Ju -4 -
K(k,®) =<% jogm)e i e Ty aw . (.1
“00

The dispersion relation is then k2 = E_-K( ,w)-lc_ Y

The case of B0 = 0 18 recovered in the limit wc = 0 , whereupon
S(u) = [a - e-vu)/v]l » or S(u) = ul in the collisionless case, and

the permittivity reduces to a scalar: K(k,w) = X (k,w) I .

_o=vu  [vri@-k'v)Ju -ipev
x(}_,w):wz J‘o Lo == 5 = °Fq\_) du , (7.2)

P- e ¥

where A = (‘lc'/\a)(e-\’u - 1) . The dispersion relation is simply

¥ (k,®) = 1 . Note that Yo = -1 3F(0)/3h .
a) Cold plasma: F~) =1
2 0 3 =yu (v+iodu ¢ . ‘Dz
x(!,w) = W J' B e du = —B % (7.3)
p -o v wW(w=1v)

A small loss component has been invoked to make the integral convergent,
The dispex:=ion relation here represents merely a damped oscillation at

vhe plusma frequency, 2

AN

[ ]
E L]

b) Maxwellian distribution: FQ) = e
nere, A? = (k)20 - 1% or A2k for veo . The

collisionless c.se is the most tractable, reducing to

-"-

& P N



1 sz u2
0 = 22
X(k,w) = w? J' u eiu)u s 2 B du
P -00
2
@ m 0 a2
= L2 f 26 ¢2¥ &€ 40
2
kT -
2
K2y 4y (7.4)
1/2 0 2255
where ¥ = (iw/k)(m/2T) and ¥(y) =J‘ e d% . The integral
== 12,13
is the error function, with complex argument, YLandau damping, ™’ is
implicit in this result, It appears again more explicitly in the
following case,
V1[4
c) Resonance distribution: F(\) = e .
Here, ,Al = (k/\))(e-\)u - 1) or lAI =-ku for Vv =0 , The collision-
less case exhibits damping:
2
o v, ku W
X(k,w) = wd J' ueimu e 1 du e —Ff 5 (7.%)
P 2
-0 (@ - 1vlk)
Collisionless Landau damping at the rate vlk is evidest from the
dispersion relation. The physical interpretatiou of this case is
obscure, however, as this distribution has no wvell-defined notmnts,
M-xo
d) Beams: PQ\_) ) '0‘4-) g
A simple, distridbuted beam results ia only a Doppler shif
XBe) = x 0 - Koy 1.8



as is evident from (7.2). For a beam in a stationary plasma, however,

no = Lp + nb and wp2 in (7.2) 1is to be replaced by wz = wi + wi .
Then V., = y_b(nb/no) and, in (7.2),
w?) FQ) = u)i Fp @ + wi eiﬁ'lb qu\.) (7.7
For equal, opposed, interpenetrating beams, V., = 0 and
(7.8)

2 2
wp F(A) = 20 cos LAYy qu\-) X




8. QUASISTATIC DISPERSION - B # 0

In a magnetic field, _§_(u) is given by (4.14). The product

g(u)exu appearing in (7.1) reduces to -_§_(-u) , leaving

0 i@-k.v )u ik-.S(u)-v
ko) =a? Y1 [ @ -ne T oT7 ~0 p(-x-s@)adu (8.1)
wvhere Y =v + woi_{_ . In the collisionless limit, -S(-u) reduces to
i sin wcu l - cos a)cu !
200 - L gedl 6@
w w =
c c
and the dispersion relation, which involves
sin wcu 2
-kos(-u)'k = k + U k“ N (803)
-~ o~ -~ W 4
[
reduces to
w? wz
2 2 _P
At ;’5’ ) +m{t-5 m) - o, (8.4)
c c
vhere
1L 0
0 D
s - j sin 6 e F)) d6 (8.5)

<
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and
. ! (-‘;’— )
g = J‘ Be S F‘A) dé ’ (8.6)
=00

with A = -Ggfo ) v {sin 6L - (1 - cos0) X + GYf) .
a) Cold plasma: FQ@) =1 .

From (8.1),

- 0
K(k,w) = wz Y 1 I (e!u - 1) e.‘lw‘l du
o~ — p —_— o6
wz -1 wz 5 2
=2 -1 =L * y = | . (8.7)
w w W=1V+D W=1iV=- w=1v
c c
and the dispersion relation is
w, # (w ~ iv) W, 2
2 B 2 P
k 1l - 3 2+k| ]l - — =0 . (8.8)
o w[(@=-1v)“ - w, ] w(Ww=-1v)

- 1T ,2
2EA

b) Maxwellian distribution: F(@Q) = e

In the tractable collisionless case, with 6 = w u

k k
A= .80 8O = =2k 22 - cose) + (202 ? . 8.9
(_Dc — ~ e 4 [+ [+}
Let
lezT knzT
X.L= (_Dzm" x"_‘wczm;? X=XL+X"' . (8110)




Then
1l 2
"u )\,‘Lcose =3 M8
F(A) =e e e ; (8.11)
so that
1l 2
A 0 9 ) cosg ~ 2z M
g =e * I sinfd e et e do (8.12)
& 00
and

=2’ [ 6e e e e (8.13)

where (Q = a)/wc + By inspection of the integrands, it may be antici-

pated that the parallel component of l: will introduce collisionless

13,7 ’

damping, The special case of perpendicular propagation is free of

this and is of particular interest., The dispersion relation is then

W -\ 9 16 )\ cosb
1= -2’3 e [sinfe ot do (8.14)
(Dc -o0

Integrating by parts and using the Fourier series

00

Acos@ in@
e = Z In(k) e (8.1)5)

N= =00

-29 -




ylelds

© -
2 -\ e "I ()
1+“: . xocx>+m22 s - (8.16)
m n= Q =-n

This dispersion relation for perpendicular propagation displays cyclotron
harmonics, It is easily shown to agree with, but converge ‘aster than,

the version quoted by S1::|.x.]'4 It is equivalent to that given by

Bernstein, 18

v, 14]

c') Resonance distribution: F(A_) = e

The collisionless cage of perpendicular propagation is readily handled,

From (8.9) with kf =0 ,

FQ) = o~2¢ [s1n 6/2| , (8.17)
where 1 = vlk/wc . The dispersion relation is
a)2 6
0 - o4
1l = —g f sin 9 eme e 2u|sin 2 |do
w, :
2 © )
w -127QQ (n+1) 2x N6 -2u sin 5
= —: Z e J‘ e sin O e a6 |,
“c n=0 0
which reduces to
2 o 2 o n+1l
n = I
1= = ) . =5 — . (8.18)
I, = 3 qurel
¢ === (i+n)” -1 “"c":é‘-°° (ﬂ+n’4’-%} -1
- ‘30 -
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This also shows cyclotron harmonics but not, despite appearances,
singular behavior when Q = n + 1/2 , . B
el

d) Effects of drift and collisions: F(L\_) =e FOQ\_') .
A drifting distribution introduces no more than a Doppler shift into
(8.1), as is physically evident from a transformation to a moving
reference frame, 1If, however, there is di:lft of one plasma component
relative to another, as exemplified by (7.7), the mean drift velocity
differs from that of either component, There are then introduced into
the integrand in (8.1) factors such as exp 1£-£(u)-(_\_"0 - X-b) , besides
the Dcppler shift., A brief discussion of their effect is in: order.

By (4.15), the drift factors are of the form

Ke(v, - v) =
exp :I._l.c_-_g(u)-(_y_‘0 - ¥,) = exp 1[—-_:2_~_b (1-e Vu)] (8.19)
v

In the collisionless case, this is exp ik. (_Xo - ‘y_b)u » Which merely
reassigns to each drifting component its proper Doppler shift, In the
presence of collisions, the effect of this factor is clarified by the
interpretation of the original integral (4.16) as a superposition of the
perturbaticons of the past (u < 0) » 88 propagated to the present
(u=0) ., The factor (8.19) is an oscillatory function em(u) , of

instantaneous frequency é¢/du = k. - )_r_b) e VU ; see Fig, 2, In the

%
sufficiently distant past, this is of so rapid variation as to erase all
memory of earlier perturbations, as confirmed by the well-known Riemann-
Lebesgue theorem.16 This oblivion-producing aspect of collisions is seen

to be incorporated mathematizally in the model of collisions adopted herein,
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Figure 2 - The oblivion factor due to collisions
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9. EXACT DISPERSION - B = O

The exact dispersion relstion, obtsined from the full set of
Maxwell's equstions, is given in terms of the normslized conductivity
tensor g(!,m) by (5.8). In this connection, it is useful to note the

following propertivse of that equstion., First, the electric field E_‘

is to be sn eigeanvector corresponding to the presciibed eigenvslue.

Second,

eig (A + pl) maeigA + B (9.1)

{s an identity., Third, if the conductivity tensor should take the form

Caalep 9.2

the dispersion relstion (5.8) would become

SR NO K

or by (9.1),

2 2 kk
luege (2) + [B - (2) ]eu :;-' (v.4)
4] @ 4




But eig u/u’ = 1 for longitudinel modes, or zero for transverse modes,

The dispersion relation then dccomposes into

1l = gep

for longitudinal modes, and

for transverse modes. The matrix C(k,@) 1a given generally by

(8.8)

(9.8)

(6.6-8). 1t C reduces to a , s scslar, (9.3,6) atill apply, Sut

with A« 0

In the abesence of the externsl magnetic field, w, = 0 and

A= Q/v)(o'w - 1) or A= '5.“ *hon collisions are negligible.

S.(-!'m’ and Eb(‘!,m) reduce to

e (r g;,.) Riie 70

o a0 A0

E'Q,m) = !

€& fob
i
@

Then

(9.7)

. (9.8)




3) Coald pleam; f(é_\ wy s

Here, gaao ond

1 i

«» ) Con R )y £J
Chw) s 1 2 e PR - (9.9)
™ -y *‘“'v,

which i# & scala’, Mence, Tron (9.5,6), e dlspetsins relatinse ste

|
3
ol ey )
tor longitwiiesl rodes, o
2 3
1. 2 . [N (9.31)
FET I 173 ) .g)
for rasspverse modes. 17 2
“3sal
b) Nemwelliles dlstridution NQ) .0 !
Here,
b 4 T
& ~ R ¥ (9.12)

80 that, from (9.8), the r.f. megnetic flels 2alkes Ao cortribution %o

C(k,w), which henou reduces to

2 1
«F (.‘m). -
C(k,@) = 4 :: {:{:1 -E fﬁ] . - 3 du ., (9.13)
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o <G —

is s enlltsionlons caee, 1A)s §s

£QM) =1 § [_:[é . (ﬁﬁ) “;]'w . %(2;)*1 ® 9

This has Ve foew of (9.2); deaes, e RIoere o4 e intjoin ore

mry
“? n' ' é -4 J
e £ .‘f‘ "(:5)9? hoad F(,T.i) © 0.

- iy

tor longltadinel metes, sd

. ;C-%)Q’ . (3-!)§ 3.18)

LS

‘9'31

o
-

tor Lrensverse andes, for COMPATison vith 0o tunnite of e e lalatic

ppronination, these mny Se simplifie ., by eotiing Te Mtﬂiﬂ'ﬁ

@«'s | g s _ .
le $— - [T at?.pnet A 9.17)
BT 5y -
for longitudinal vaves, and
2
’ @ mn 1} 0 e
1. [SX) . = [ et vt g, (9.18)
@) -&H:¢
. 3.




o Touninden seime  Latiing. e e iy

3 L »

& 3 L B L
e .r;-{aif*'ﬁ‘?’dgi;* ;s" )

pesmd ta Yleses 4@ M8 sFiiien, sfted & patagiesian By peste & (B 47D

Fat bt Takiaed waiee,

&
L
»

L
”*
2is

B
»_m ]
' = (2) - +— - £t ™.8)
o L y

I8¢ Liens veres savee. he ssaet teaslt (6.30) tae leong'inticel mweles (s
tre same os (7.4) of 1he geamisialic appemitelias, whien allows o’
losglintinal vaves. Sime (1) - 12y e 5w . Ve lev lemperature
Lisiis of (9 2C.31) ore indeed he ¢slf slesme relotions (2.10,11) s
the eollisionless Limit, In feet, the asywpiotie expansion of = (¥y)

for iov temperstivre which, & le tm." does no. revedl Landev desping,

gives
2
[ 7 “’
i = -5 (1 .1 = (9.22)
@ | 2]
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1kl

1 Heeaheive dRetsitaalar  FEL) - o

Hays

2
M. ...,
55. s ﬂ‘” 5 (9,.24)

e St egels, &Q,@) « 0 , leavieg oaly e r. [, electiric fleld

eonirietiion, Meme,

2 , ,
w o 1 (veis)n =v

E(}.,ﬂi) P | -2 I l - vdﬂ% ] [ ] IIM“ ® (9.23)
« . A

-

In tie collisionless case A = -ku end 'llﬁ-l = -vlku , 80 that

2
w v vyk kx 16 (vlk/m)e

C(k,@) = 4 -g [lief-=)0]e o a0 |, (9.26)
w - w k

which is of the form (9.2). The dispersion relations are therefore
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N
- -

i

“?

l
2

w

0
1 k
‘[m[ + (v k/w)

for longitudinal waves, and

€

who

w

for transverse waves,

and

fie (v, k/w0))6
6] e dée

i+ (v,k/®) 6
°°[+V1/ ]d9+

which exhibit Landau damping.

d) Cold beam:

oF
Here, 3_6: i Yo
contribute to E

C(k,®)

e

2

w
P 5
w - 1v1k)

0.)2

1 = P
ww - ivlk)

iAev

FA) =e 0

F and both the r.f, electric and magnetic

)

Explicitly, these are, respectively,

2

, yielding in the collisionless case,

2
w
£

2
w

-39 -

kv

g

—

(9.27)

(9.28)

(9.29)

(9.30)

fields

.

(9.31)




10, EXACT DISPERSION - B # O

In the presence of a magnetic field, the exact expression for the

normalized conductivity tensor entering the dispersion relation is, as

previously given, C(k,w) =£e(_§_,w) + Sb(bw) , Where
w 2 0 -1_[.\_10 AF [_}’_ + i(w-_{:_-_yo)]u
c (kw =1-2 [ e (F+—A>-e du ,
w  Tee >
(10.1)
with 1:&@_X+v , and
w 2 0=\ v -w Xu o Xu i(w-k:'v )u
C ko = B kx[ e 08 e T BEuse®™)e =
e 2 T aL\. BA. -
w
(10.2)
In these,
A(w) = -k-S(u) = 5.1-1(9-1“ - 1) . (10.3)
The dispersion relation is
c2 ck
eig [ kk-C =<—) -1, (10.4)
W w

with the electric field as eigenvector,
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a) Cold plasma: F(A) =1,

0 «nc§+u+iw)u
C(k,w) e du

00

n
[N
€ |

5 B (a)-iv—iwa_x)_l
[{M]

2
@ R L 1
= — + + |
w w4+ w = iv W-w =iV w - iv
c c
(10.5)
The electric field vector must satisfy
2 w -1 2,2
£ kkE - -2 a)-iv-iwx) CE=[SX _1)E
2 ~~~ C~ ~ 2 s
w w w
or
2 2 2 2 2 2 2,2
c“(@-1v) k k-E -[wpau (c“k”- 0°) (@-1v) ] E = c“w kE iX'k - (c‘k
(10.6)

Waves of various linear and circular polarizations may be extracted from

this equation,

b) Maxwellian distribution: F(‘AJ =e .

N
gi1=3
=

Since 3F3) = -(T/mA\F and X' = -X , the cross product in 2y, G, @)

vanishes, leaving

- 4] -

APMPTING O T I A RN o W

w2 X _1X.E

Se——

e



2
w 0 (W X+v+iw)u
ck) = 1 -2 f F(I-%M)e o= du . (10.7)
vyla|

c) Resonance distribution: FQ&) =e .

"1
Again, C, (k,0) =0 and as F + 5—A= Q- —= M)F ,
2 v1 (W X+v+im)u

Clk,w) = 1 —pj' F(- = M)e © du , (10.8)
W =oo IAI

In the cases of these last two distributions, only special cases of
| propagation and polarization parallel and perpendicular to the magnetic

field can be considered tractable, It is useful to note the explicit

expression
! - -
@w u vu 2
sin2 — + sinh2 — sinh %F
2 -vyu 2 2 2
AT = e k + ky (10,9)
L A 2 < 2 2
- R v
_ 2 2 2 o

but the complexity of the quadratures precludes further development of
general dispersion relations here, Of considerable interest, however,
are the spatial and temporal decay rates of waveguide and cavity modes
and the possibilities of amplification and oscillation when these can

become negative.




3

11, TEMPORAL DECAY RATES

The rate of decay of energy in a cavity has been given in (5.17) as

<

!

20 = B8 ‘[: Sa' : [93“ . R(s, ¥, W) -___:I du , (11.1)

where R(s, w, u) is the correlation tensor

R(s, w, u) = J‘ _[‘ 8,(r+s, w t+uE(r,t) dvdt , (11.2)
v

the integrations being over the cavity volume V and a time interval

T . In this equation, the acceleration al(r , v, t) 1is the Lorentz

one, given in (4.17). 1In (11.1), 5 and w are

where Y=wX4+ v ,
-~ c~

To evaluate the decay rate of a cavity mode, sufficient accuracy

is obtainskli» by using the unperturbed field pattern in thege expressions.

The correlation tensor may be evaluated for any desired cavity mode and

-the substitution for ¥ and s in (11,3) then permits the integration

of (11.1) explicitly.
When the cavity mode is readily decomposed .nto plane waves, the
calculation of the decay rates is particularly sinmple, as then the

distributions in inverse velocity space are directly utilizable, The
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calculations wili here be illustrated for the simple case of the "cavity"

consisting of infinite space, wherein a suitable mode is the Plane wave

i(wt-k.r)

E = Re Ele . The acceleration is then
k k
—Re 3|1- = = : L0tk r)
5 Y t) =Re g [‘1 L+ l’-] 20 ane
w w
and the correlation tensor is readily found to be
*
EE
k k ~]1~1
R(s, w, u) = Eq_ Re [:(1 = = e ¥) 14 :!] C— ei(wu-l‘.'f.) )
2 @ @ 35
(11.5)
Hence, by comparison with (5,11),
* *
E, - Ckw)E E )+ aC(k,0).E
20 = Re | -iw - = Im =T .
By ol 5 h
(11.6)

The results previously obtained for S(k,w) may therefore be uged
directly to calculate decay rates in the plane wave case,
In the absence of the magnetic field, the decay rate for a cold

Plagma is, from (9.9)

d)z (Dz v
20 = Im —E _ 2" 3 11.7)
w=-1iv a)p + V

and is, of course, due to collisions,
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For a Maxwellian distribution, the decay rate obtained from (9.14)

is, for longitudinal waves,

1l 2
D ie
20 = Re —= f )e e de
[dV] =00
2 - % »26% i 1/2 e-l/(2y2)
= 27 (1-7262)cosee e = -2 - —_—,
@ 0 w 2 y
(11.8)

which is the collisionless Landau demping decrement, with 72 = Tkz/mm2
' For transverse waves, similarly,

- 1,22 1/2  _ 2
2o, 3R a3k e
20 = -2 f cosf e = L(- —— (11.9)
. w -0 w 2 4

For the collisionless case of a resonance distribution, the corres-
ponding decay rates are, from (9.29, 30),

ww 2 2w 2 a)z vlk
20 = Im i J 5 (11.10)
W - 1v1k) " + v, k)
for longitudinal waves, and
w 2 w 2 vlk
2 = Im P = T'p————z (11-11)
w -~ 1iv k w o+ \ k
for transverse waves .
]
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In the presence of the magnetic field, the decay rate for a cold

plasma i=s, from (10.,5),

2 ~x -1 -
- L] - L w L]
20 Im wp e (@ iv b T 01{-) e
o | &R E gL .8
=w % = + = + = (11,12)
P (w-lmc)z + V2 -0)2 + V2 w? & V2
where & =_§1/|_§1| . Note that 1X , R , 1 , || are all hermitiar

_—

matrices, whereas only the antihermitian part of C(k,w) contributes
to the decay rate.

For a Maxwellian distribution, from (10,7),

. 1 2
((JJ‘ :}_{+v+ iw)u = A

~ 0 ~
3* J‘ d--M)e e du - e (11,13)

8143
g13

This reduces, for example, in the collisionless case of a parallel~

propagating transverse wave, to

y VS AW
% o (& C 2\ w? .
20 = = e*. J‘ cos{ — -~ iX e '\ de - e
w

e e
=00 w
(] [+]
2 2
W w
. 2| G i m{w-w,)
ﬂ m 2 ~ ~ ~ *~
P e 2Tk e*-R-e+e 2Tk * . L .o f

(11.14)
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The right- and leit-handed circularly polarized waves are seen to suffer

differesnt Lendau damping decrements,

The recsonance distribution case analogous to this last one yields
similarly
}
WX + 1w + v.k)u
2 ax 00 Vo= 1
2a=Rewp_f: -fe dv - e
-0
. ¥ oR-3 SRR
= “ v.k + . (11,15)

p 1 (<L>-0-<.l>c)2 + vlzk2 ((.o-u)c)2 4 vlzk2

The effects of a beam component of a plasma in a magnetic field
are nf special interest, because of the possibility of negative decay

rates., An indication of how this can come about is prnovided by the

¢ following considerations, The inverse velocity space distribution
v
function for a warm beam has the form e 9 FO(L\_) , Where xo is the

beam velocity &nd FO(A~) gives its stationary distribution. In the

E expression for ge%,w) , eq. (10,1), F + (aF/a_/l)_Il is hence replaced by
eiﬁ'.‘f.o [:FO + (aFO/aA_)i\_ + 11’.0 Q Fo] . The exponential factor cancels

in the integrand, leaving a Doppler shift, The last term, arisiag

from the drift, can provide an imaginary component for -g—e (_lf_,uo) , whose
sign depends on that of the drift velocity !O witk respect to the

direction of propagation, For example, the coniribuiion to g_e(E,w) of

this last term in the case of a beam witch a Maxwellian distribution

drifting along the external magnetic field is, in the absencz oi collisious,
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2
Tl [w X+i(®-k.v )_ju
p c~ 0
C, (ko) =1 = J v h F) (W) e du ,  (11.16)

s0 that for a parallel -propagating longitudinal wave, for which A

.

reduces to -ku , the contribution tc¢ the decay rate is, from (11.86),

e o
-1 22 i(w-k-v_ju
20 =Imw 2% .ykb "Oue 2 e =0 du
e0 P ~ ~0~~ {m
17T 22
22 2 gl
2 Y 2m .
= 0" vk J-'w ue sin(-k-v ju du
@-%- v )ch
2 x \/2 - K __;___-.—‘.02
= o vk ~2 375 e (T/mx* {11,17)
P 2 [er/mne®]?

This can be negative, either if vok <0 , i,e, for upstream propagation,
or if -lf.-‘.'.o >w , i,e, if the Doppler shifted frequency is negative,
This negative Landau damping decrement would have to overcome the normal
Landau damping provided by the other terms in the expression in order to
leave net growth,

The Fourier analysis into plane waves is, of course, not necessary
for the; calculation of the decay rate for a cavity, The correlation

tensor R(ﬁ,x,u) is a property of the cavity field pattern which may be

calculeted separately before it is introduced into eq, (11,1).
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12, SPATIAL DECAY RATES

The rate of decay of power flow along a waveguide may be calculated

in a manner completely analogous to that of temporal decay rates. The

formula is the same,

Y . Yu
2a = nq J:m v [e-— - R(s, w, W) -,z] du ,

12.1)
but the correlation tensor is now
. 1l
| Re v W= 55 [ [ 80s x v EEY
i av A
| (12.2)

where the integrations are over the waveguide cross sectisu A and a
' time interval T . In (12.1), s and w are functions cf v and u |,

as in (11.3). The corrslation tensor is aproperty of the waveriide field
pattern and may be calculated independently, befor« the substitutions
for s and W make it a function of v and u ,

Again, the decomposition of the field pattern irto plane waves,
when convenient, expedites the calculations, and again the simple
illustration of an infinite-space 'waveguide" is instructive, For a
plane wave, the energy density and power flow are related by the group
velocity of the wave., Hence, the spatial decay rates for infinite plane

waves are obtainable from the temporal decay rates derived above by

dividing in each case by the undamped wave group velocity czkﬁn s

For a rectangular waveguide supporting the TElO mode
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E(r,t) = Re e sin(k-_g_)e Propagating along f , polarized

along e , with kg = 0 and I_l_(_l = n/a , the correlation tensor is

found to be
~ W=
5(_5, v, u) = (Q/mczeoﬁ) Re [-E cos _lf_-£+ i 2 sin E-s e ei( Ef-) i
(12.3)
where
£ = Sepw+peew , h=Bkw-kiw . (12.4)

Hence, th« spatial decay rate is obtainable as

-

o | L]
2q = (wi/czﬁ) Re :e__ . J‘ «}' L sa;) . eQ’Hm)u 25 [-E cos@-£)+i£sin(l('-s')3>du -
-0 ~
(12.5)

with B_“_’/al = e-!u and a_gja_\_r_ =1~1(1 - e—-!u) . If the trigonometric

terms were decomposed into exponentials, the previously derived plane

wave results, in terms of the distribution in inverse velocity space,

§ could be used directly, by appropriate composition,
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13, OTHER EXTERNAL FORCES

The results obtained apply to a plasma subjected to external forces
limited to a constant magnetic field, together with an equivalent fric-
tional drag force to represent collisions phenomenologically. The
approach can be readily generalized to allow more complicated force
fields. These might include gravity, d.c. electric fields, time varying
pump fields, and incident waves. The latter two would result in para-
metric effects and various wave-wave interactions.

To introduce any external force field requires only the solution
of the dynamics problem giving the unperturbed orbit, For example,
there may be added to the magnetizing field and viscous force a constant
electric bias field, or gravity, Then

= -@X + V)Y + (a/m) E) + vy, (13.1)

2

and the orbit is given by

(1) = A v - 1-1 (e-ll_u -1) [(q/m)Eo +V l’:):] (13.2)

and

x(T)

re¥ia-e) .y -[z‘zu - oY - z‘lu] [(q/nso*vxo] :

(13.3)

where u =T -t , These are to be substituted for Y ard e s,
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respectively, in the various equations.

For a time varying applied electric field Eo(t), the orbit is

= u =
y(m) =y, + e . (1-_!0) + (q/m)f e p:d EO(T -8)df . (13.4)
0

iw t

In particular, for a harmonic pump field _§0(t) = Ee ¢ , this reduces

to

Yu -1 iwou -}_Vu icuot
y(m = Toat ®= (1-10) + (1 + 1&0) e -e (q/m)l.-‘._e . (13.5)

i(‘”ot'.k.o'f.)
If the pump is an incident wave E@,t) =Eoe , the

orbit is given by the solution to

d“r dr q dr k 1a>'r-k-r(-r)]
_2. + ‘X —_— = - EO + =— X| — x E e + ¥ -!0 ,
dT dT m dr wo 0

(13.6)
with y(T) = dr/dT and subject to r(T) =r and v(T) =y at T=1t ,
Since the entire approach is perturbational, it would not be inconsistent

to use orbits obtained from this equation by successive approximations or

linearization,
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14, CONCLUSIONS

A formalism has been presented which unifies the analysis of the
various wave properties of a Plasma subjected to some external force
fields, particularly magnetization, The aim has been to derive relations
of a general nature, into which there may be introduced the appropriate
descriptions of both the unperturbed orbit in the applied field and the
equilibrium velocity distribution of the Plasma constituents, Straight-
forward quadratures then yield the wave dispersion relations, the permit-
tivity or conductivity tensors, the charge or current distributions, and
absorption or growth rates, both temporal and spatial, as well as the
perturbed velocity distribution,

In summary, the Boltzmann equation has been linearized by separating
the acceleration into externally applied and internally induced components,
with collisions considered phenomenologically as a viscous retarding
force. The solution to the linearized equation was taken beyond merely
that for the perturbing velocity distribution to obtain directly an
expression for the perturbation of any macroscopic quantity which can
be calculated as an expectation value with respect to the unperturbed
velocity distribution,

The effects of collisions have been accounted for in a convenient,
yet not unrealistic, manner. With Just an effective relaxation rate Vv
as parameter, they were considered as simply damping the otherwise helical
unperturbed orbits of the constituent particles. Collisions appeared as
an additional, effectively external, viscous drag force tending to relax

the velocities toward the mean flow velocity. This model is mathematically

= &9 &

T




B B b

tractable and avoids the paradoxes associated with indiscriminate conver-
sions of real frequencies to the complex form ® - iv ., It achieves
consistency “atween quasistatic and exact results and reduces properly

to the cold plasma fluid model. In the formulation interproted as super-
positions of perturbations along the particle trajectories, the collision
model introduces factors that tend to destroy the system's memory of
perturbations suffered in the distant past, as measured by V-I .

There is thus provided a simple mathematical model of physical collisional
effects.

The key quantities obtainable in this formalism as expectation
values are the permittivity and conductivity temsors, from which the
dispersion relation can be extracted by combination with either the
Poisson equation or Maxwell's equations, Spatial and temporal decay or
growth rates were expressed in terms of similar correlation tensors

* .
associated with the waveguide or cavity field pattern.

In the case of plane waves, it was found that most quantities of
interest are expressible through the expectation value of an exponential
function of velocity., This was the basis for a significant simplifica-
tion introduced by expressing the equilibrium velocity distribution in
inverse velocity space; i.e, as a Fourier transform in velocity. A
variety of expectation values are then obtainable by simple differentia-
tion or convolutions, In addition, singular complex integrations are
thereby avoided and phenomena such as Lhnd;ﬁ and cyclotron damping

appear naturally,

Explicit results have been presented under the quasistatic

- 54 -

et A AR




approximation and without it, in the absence and in the presence of the
applied magnetic field, Dispersion relations have been derived for
these cases for cold Plasmas, for Maxwellian Plasmas, for resonance
distributions, and for beams or drifting plasmas, in some cases with
collisions included explicitly,

Temporal and spatial decay rates, particularly Landau and cyclotron
damping, have been calculated for Plane waves by simple integration,
The quadratures necessary in less tractable cases have been indicated,
Finally, the requirements for generalizing the theory to incluge para-

metric interactions have been Presented,

=8t =
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