<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD NUMBER</td>
</tr>
<tr>
<td>AD809052</td>
</tr>
<tr>
<td>LIMITATION CHANGES</td>
</tr>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>Approved for public release; distribution is unlimited.</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; MAR 1967. Other requests shall be referred to Arnold Engineering Development Center, Arnold AFB, TN.</td>
</tr>
<tr>
<td>AUTHORITY</td>
</tr>
<tr>
<td>AEDC ltr 11 Jun 1968</td>
</tr>
<tr>
<td>THIS PAGE IS UNCLASSIFIED</td>
</tr>
</tbody>
</table>
EXPANSION-SIDE FLOW FIELD PRESSURE TESTS OF A 75-DEG DELTA WING AT MACH NUMBER 10

C. J. Spurlin
ARO, Inc.

March 1967

Distribution of this document is unlimited.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Aerospace Research Laboratories (ARL), Wright-Patterson AFB, Ohio.

This document may be further distributed by any holder only with specific prior approval of Aerospace Research Laboratories (ARL), Wright-Patterson AFB, Ohio.

VON KÁRMÁN GAS DYNAMICS FACILITY
ARNOLD ENGINEERING DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
ARNOLD AIR FORCE STATION, TENNESSEE

PROPERTY OF U. S. AIR FORCE
AEDC LIBRARY
AF 40(600)1200
NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.
EXPANSION-SIDE FLOW FIELD PRESSURE TESTS
OF A 75-DEG DELTA WING AT MACH NUMBER 10

C. J. Spurlin
ARO, Inc.

Distribution of this document is unlimited.

This document is subject to special export controls
and each transmittal to foreign governments or foreign
nationals may be made only with prior approval of
Aerospace Research Laboratories (ARR), Wright-Patterson
AFB, Ohio.

This document may be further distributed by any
holder only with specific prior approval of Aerospace
Research Laboratories (ARR), Wright-Patterson AFB,
Ohio.
FOREWORD

The work reported herein was done at the request of the Aerospace Research Laboratories (ARL), Office of Aerospace Research (OAR), Air Force Systems Command (AFSC), under Program Element 61445014, Project 7064.

The results of tests presented herein were obtained by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of the Arnold Engineering Development Center (AEDC), AFSC, Arnold Air Force Station, Tennessee, under Contract AF40(600)-1200. The tests were conducted on November 15 and December 6, 1966, under ARO Project No. VC0754, and the manuscript was submitted for publication on February 1, 1967.

Information in this report is embargoed under the Department of State International Traffic in Arms Regulations. This report may be released to foreign governments by departments or agencies of the U. S. Government subject to approval of the Aerospace Research Laboratories (ARR), Wright-Patterson AFB, Ohio, or higher authority within the Department of the Air Force. Private individuals or firms require a Department of State export license.

This technical report has been reviewed and is approved.

James N. McCready
Major, USAF
AF Representative, VKF
Directorate of Test

Leonard T. Glaser
Colonel, USAF
Director of Test
ABSTRACT

Leeward surface pressures, oil flow photographs, and flow field pressure surveys were obtained at a nominal Mach number of 10 for a 75-deg sharp leading-edge delta wing. Tests were conducted at free-stream unit Reynolds numbers of 0.73×10^6 and 1.46×10^6 ft$^{-1}$, angles of attack from 0 to 21 deg, and zero sideslip angle. Selected results are presented to illustrate the quality and types of data obtained. (AFR 310-2, Statement 2)
CONTENTS

ABSTRACT .. iii
NOMENCLATURE vi
I. INTRODUCTION 1
II. APPARATUS
 2.1 Model 1
 2.2 Wind Tunnel 1
 2.3 Instrumentation 2
III. PROCEDURE 2
IV. RESULTS AND DISCUSSION 3

TABLE

I. Test Summary 2

APPENDIX
Illustrations

Figure

1. Model Photograph 7
2. Model Details 8
3. Oil Flow Photograph (Leeward Surface), \(\alpha = 13 \) deg, \(\text{Re}_\infty = 0.73 \times 10^6 \text{ ft}^{-1} \) 9
4. Centerline Pressure Distributions 10
5. Spanwise Pressure Distributions (Station 4) .. 11
6. Typical Pressure Probe Flow Field Surveys,
 \(\alpha = 13 \) deg, \(\text{Re}_\infty = 0.73 \times 10^6 \text{ ft}^{-1} \) 12
NOMENCLATURE

\(\ell \)
Model length, 7.00 in.

\(M_\infty \)
Free-stream Mach number

\(p \)
Model surface pressure, psia

\(P_0 \)
Tunnel stilling chamber pressure, psia

\(P_{0}' \)
Pressure downstream of a normal shock, psia

\(P_p \)
Probe total pressure, psia

\(p_\infty \)
Free-stream static pressure, psia

\(q_\infty \)
Free-stream dynamic pressure, psia

\(\text{Re}_\infty \)
Free-stream unit Reynolds number, \(\text{ft}^{-1} \)

\(s \)
Distance along pressure orifice ray measured from and normal to leading edge, in.

\(s_n \)
Length of pressure orifice ray measured from the leading edge to the model centerline, in.

\(T_0 \)
Tunnel stilling chamber temperature, °R

\(x \)
Model surface distance measured downstream from model nose, in.

\(y \)
Vertical coordinate measured upward from model surface in the model centerline plane (see Fig. 2), in.

\(\alpha \)
Model angle of attack, deg
SECTION I
INTRODUCTION

The objective of these tests was to obtain leeward surface pressure distributions, oil flow photographs, and flow field pressure surveys for a sharp leading-edge, 75-deg delta wing. These data were obtained for ARL to supplement an investigation of delta wing expansion-side flow fields.

Tests were conducted in the von Kármán Gas Dynamics Facility (VKF) 50-in. hypersonic tunnel (Gas Dynamic Wind Tunnel, Hypersonic (C)) at a nominal Mach number of 10, free-stream unit Reynolds numbers of \(0.73 \times 10^6\) and \(1.46 \times 10^6\) ft\(^{-1}\), angles of attack from 0 to 21 deg, and zero sideslip angle.

SECTION II
APPARATUS

2.1 MODEL

A photograph and details of the model furnished by ARL are shown in Figs. 1 and 2, respectively. The model was instrumented with twenty 0.062-in. diam pressure orifices and had four thermocouples embedded in the upper surface to monitor model temperature. The leading-edge thickness was approximately 0.001 in.

2.2 WIND TUNNEL

Tunnel C is a continuous, closed-circuit, variable density wind tunnel with an axisymmetric contoured nozzle and a 50-in.-diam test section. The tunnel operates at a nominal Mach number of 10 at stagnation conditions from 200 to 2000 psia at 1900°R. The model may be injected into the tunnel for a test run and then retracted for model cooling or model changes without interrupting the tunnel flow. A description of the tunnel may be found in the Test Facilities Handbook*.

2.3 INSTRUMENTATION

Model pressures were measured with 1-psid transducers and probe pressures with a 15-psid transducer. A vacuum reference was used for all transducers. From repeat calibrations, the estimated measurement precision of the 1-psid transducers was ±0.001 psia or ±0.5 percent, whichever was greater. The estimated precision of the 15-psid transducer was ±0.003 psia or ±1.0 percent, whichever was greater.

Schlieren photographs were obtained during all tests, and oil flow photographs were obtained at selected angles of attack. Figure 3 shows a typical oil flow photograph.

SECTION III
PROCEDURE

A summary of surface pressure, oil flow, and flow field pressure survey tests is presented in Table I. The tests were conducted at the following conditions:

\[
\begin{array}{cccccc}
\text{M}_\infty & \text{p}_0, \text{ psia} & \text{T}_0, \ ^\circ \text{R} & \text{Re}_w \times 10^{-6} \text{ ft}^{-1} & \text{p}_\infty, \text{ psia} & \text{p}_0', \text{ psia} \\
10.17 & 600 & 1900 & 0.73 & 0.013 & 1.64 \\
10.21 & 1200 & 1900 & 1.46 & 0.025 & 3.28 \\
\end{array}
\]

TABLE I
TEST SUMMARY

<table>
<thead>
<tr>
<th>Data</th>
<th>\text{Re}_w \times 10^{-6} \text{ ft}^{-1}</th>
<th>\alpha, \ deg</th>
<th>Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Pressure</td>
<td>0.73</td>
<td>0, 5, 7, 9, 11, 13, 15, 17, 19, 21</td>
<td></td>
</tr>
<tr>
<td>Oil Flow</td>
<td>1.46</td>
<td>0, 11, 13, 15, 17</td>
<td></td>
</tr>
<tr>
<td>Flow Field Pressure Survey</td>
<td>0.73</td>
<td>11, 13, 15, 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2, 3, 5</td>
</tr>
</tbody>
</table>
Oil flow photographs were obtained by covering the model's upper surface with a thin layer of silicone oil-titanium dioxide mixture and injecting the model into the wind tunnel test section. After the model surface flow patterns were established (about 30 sec), the model was removed from the test section and photographed.

Flow field pressure surveys were made with a total pressure probe aligned parallel to the model centerline and upper surface. The probe was positioned vertically relative to the tunnel centerline with a remotely controlled probe drive system.

SECTION IV
RESULTS AND DISCUSSION

Figures 4 and 5 show the centerline and spanwise model surface pressure distributions for several angles of attack. Within the precision of the data, there was no Reynolds number effect at $\alpha = 0$ and 13 deg.

Typical pressure probe flow field surveys at model stations 2, 3, and 5 for an angle of attack of 13 deg are shown in Fig. 6. The probe total pressures at the model surface and the model surface pressures (indicated by the solid symbols at $y = 0$) differed less than 0.005 psia. Failure of the probe to indicate p_0' in the free stream ($p_p/p_0' = 1$) was attributed to the probe angle of attack ($\alpha = 13$ deg in this case).
APPENDIX
ILLUSTRATIONS
Fig. 1 Model Photograph
Fig. 2 Model Details

- Pressure Orifice
- Thermocouple

All Dimensions in Inches
Fig. 3 Oil Flow Photograph (Leeward Surface), $\alpha = 13$ deg, $Re_{\infty} = 0.73 \times 10^6$ ft$^{-1}$
Fig. 4 Centerline Pressure Distributions
Fig. 5 Spanwise Pressure Distributions (Station 4)
Fig. 6 Typical Pressure Probe Flow Field Surveys, $\alpha = 13$ deg, $Re_m = 0.73 \times 10^6 H^{-1}$
EXPANSION-SIDE FLOW FIELD PRESSURE TESTS OF A 75-DEG DELTA WING AT MACH NUMBER 10

Leeward surface pressures, oil flow photographs, and flow field pressure surveys were obtained at a nominal Mach number of 10 for a 75-deg sharp leading-edge delta wing. Tests were conducted at free-stream unit Reynolds numbers of 0.73×10^6 and 1.46×10^6 ft$^{-1}$, angles of attack from 0 to 21 deg, and zero sideslip angle. Selected results are presented to illustrate the quality and types of data obtained. (AFR 310-2, Statement 2)
delta wings
expansion sides
sharp leading edges
flow fields
pressure tests
hypersonic flow