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ABSTRACT

This ... >y-aph presants an exposition of the subject of

repart is ctutoriai in nature, some previously unpublighed

results have Lee.. included.
™ Special emphasis has been given tc the following topics:
a) the practical nacessity for truncation, b) the effects of
truncation on the performance of the tast, c} the results of -
computer simulation, and d) rules of truncation and applicatiocn
to principles of design.

i4v

truncated sequential tests. Although the main lntent of this ;f
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EVALUATION

This report is part of a series of tutorial monogrephs on various
topics on system theory and information processing. The puvrpose o the
series is to bring to the attenticn cof elec.ronic equinment dcsimnors,
information rec~d+ine~ feom recent reseorch stuldlcz, in o srial ToT
suitable for applications., The work was sponsored by the Leberator:
Direstors Discrectionary fund, under Task DI 6L-2,

Sequential teste in electronic detection, have been consider«d lor
applicatior to optimal detection problems (See for example RADC TDR $0-70A
Applications of Decision Thecry to Electronic Equipment.” Todey, come of
those ideas have been appliedAto the design of practical, though sophis-
ticated, rador eauzipments. Though & sequential detector is superior io
performence than it's non-sequential counterpart, i+ ié more complicotad
to impliment., It is only through underétanding of principles, and th=
availability of performance calculutions that one can det:rmine if_the
¢ xlra sopnistication jﬁsiifies it in any particular application.

Though this repor* is primarily *utorial in nature, it does coniain
some previously unpubdlished results. 7The preparation of tuis report was
motivated by the foliowing conditions:

a) Exvository material on the subject from an engineeriapg point of
view 1s sparse, thougn u chapter is included in the books, "Detection
Theory" by Ivan Selin, and more recently""Signsl Deteétion Theory" by
Hancock and Wiatz.

b) There are contributions from the engineerinz detection problem
that are of use to statisticians,

It is hoped that the future will foon bring forth a rather rull
treatise in book form on this fascinating subject from an engineering
point oi};iigh&444;‘ /x
AW

WEBB
Projett Engineer
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INTRODUCT ION

The spplicat.icn of sequential tusts to radar problems
originated some ten years ago At SIGNATRON we have studied.
axteisively varicus tvunca*ad saquentia) teste, The current ,
mRnogragh is based vn tus results 2f a number of tbese studies,

Aithough the present wmo ”‘ﬁograph is intendad to be tutorial
ia nature, it a's~ conta‘ins some new previously unpublished
matorial,

The authors are particulsrily giateful to their Air Force
monitor, Mr. Haywood Webb of RADC for recognizing the need for
the colle::ion and formal presentation of this material. The
authors also wish to acknowledge that the material presentad

.in Secticn ¢ of “his monograph'is bhased on the joint work of
Julian J, Bussgang and Dr, Michael 3, Marcus of the RAKD
Corporation whict was publiskted by the RaND Corporattom1
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1. SEQUENTIAL TESTS AND RADAR DETECTION

The application of astatistical tests of hypotheses to the
radar detection prublem is by now a well-known approach, As &
result the practitioners cf this field have developed a habit
of intermingling “he statistical language Qith the engineering
one, The statistician, examining those of cur writings on the
subject that are concerned with engineering applications, fre-
quently will fail tu perceive the significant statistical con-
Lribution which may be contaiu~d in them, On the other ha ..
the design engineer who wighes to extract significant infor-
maticn for his system will tend to be equally puzzlad by the
statistical terms and may fail to recognize the practical sig-
nificance of the analytical results,

In order to cvercome these difficulties this section of
the monograph discusses the gemantic equivalences of the engi-
neeriag and statistical nomenclature used in what follows, This
effort at translation, as if it were, snould help to make the

~material of this monograph more accesaible to workers ir botn

fields, Moreover, it may alsc help to encourage the engineers
to avail themsslves of other material on sequential topics and
vice versa,

The problem of deciding whether a target is present cr
absarnt can be regarded as a statistical test of two alternate
hvpotheses, Thus the design of the target detection system is
the design of a statistical test., The observed var
the received pulses, The detector is the device which con-
structs the test s*atistic, The test statistic is the function
>f ckserved varizbles, which is used to make decisions and is
represented by thevvcltége at the output of the detector, The
“est procedure i. the lcgic of operations on the recejived signal
whick hive to ha perfroimed. The inequalities which have to be
etamined to reach a decision are tested by comparing the voltages
at the output of the det~ctor to suitable threshold voltages,

The action following the decision that the target (s present is

e}
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aﬁ “glarm®, Tro action following the dacision Lhut the target
is absent is a "dismissal", The probability a of accepting the

_alternate hypothesis, Hl ("target present"), when the null

" hypothesis. B, (“target sbsent"), is true is the probability of
- error of the first kind. 1This probability in the radar context
~ is the ﬁrobability of false alarm, Similarly, the probability

¢ of accepting the null hypothesis ch(ﬁtargat absent") when
the alternate hypothesia H, (“target present”) is true is the
probability of error of the second kind, In the radar context:
this probability is the probability of false dismissal, If B
is the probebiiity of fzlse dismissal then 1 - R is #he prob-
ability of detection, i.e., the probability of declaring targe:

‘prasent when it indeed is present, The number of obeervations

requirqd to complete the test is known as the sample number and
is, in effect. the numher of radar pulses which must be re-
ceived from the target to complete the detaction process,

Since radar pulsee are usually emitted at a uniform rate,

: fﬁé&aumber of prlses to complete the detection process is

divectly proportional to the time required to complete the test
and the notiors of time and number of observations to complete
the test zZre interchangeable., ESince a likelinhood ratio test

on independant samples involves a sum of logaritims of likeli-
nouvds of indivridual observations the physical realization of a
likelinood ratio detector involves an integrator. For a fixed

sample size test, .ike a Neyman-Pearson test, this integrator

wu8 a fixed time constant, For sequential tests the time con-

stunt i® variabie.
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- 2. SEQUENTIAL TBSTS OF STATISTICAL HYPOTHESES

A seaquential test is a statistical test of hypotheses where
the amount of data which is examined is not specified in advance;
the number of observations which are taken is 2 random variable,
Sueh a procedure has the virtue that on the average the number
of observations required iz smaller than the fixed number of
observations required in the fixed-sample procedure yielding
the same probabilities of error. That ie, with fixed-sample
size hypothesis testing procedures, the number of'observations
to be taken is determined in advance and is a function of the
probability of errors wanich will be tolerated, This fixed
number of okservations is then taken after which the value of
the test statistic is computed and compared against a single
threshold., One of the two hypotheses is accepted depending
whether the test statistic does or does not exceed the threshold.

A sequential test, on the other hand, is performed by
establishing two thresholds and successively taking observations
until the test statistic which is recomputed with each new
Observation, exceeds the upper threshold or falls below the
lower threshold., On the average, a sequential test which yields
the same error probabilities will require fewer observations
than the fixed sample procedure., Conversely, if the number of
observations of the fixed sample procedure were chosen equal
to the average number of observations of the sequential pro-
cedure, either one or both of the error probabilities of the
sequential test would be gmaller than the c:rresponding errors
in the fixed sample test, Thus, either from the point of view
of the number of ohservations, or from that of the srror prob-
abilities, the performance of the sequential procedure is
superior te that of the conver“ional fixed sample size test,

The sacrifice which is mads in exchange for this improved
performance is the unpredictable number of observationg re-
quired in the sgequential procedure: i.e,, although the average




numbex of obssrvations can be expected to be smaller than the
nunber of observations required in the fixed sample procedure,
individusl tests may require an extremely large number of
cbservations relative to the average, In fact, some test may
continue unresolved for such an sextended period of time that
the damand mey arise that the testing procedure terminate and a
- decision be made as to the hypothesis wnich should be accepted,
It is a recognition of this fact that leads us to a study of
truncated sequontial teste.




3. REVIEW OF RESULTS FOK UNTRUNCATED TESTS

- The theory of sequential probability ratic tests (SPRT) as
devolépad by Wald is presented in Ref, 2, In this section we
do not develop the tneory but present those Qaneral aspacts of
sequential anilyaia which will be necessary for a consideration
‘of truncated gequential tests (TST),

Let us assume that we are interested in testing the null
hypothesis Ho that the value of the parameter a in the prob-
ability density function of a random variable x, p(x;a), ie
zero against the alternative hypothesis H1 that the value of
the parameter is 21. Acrording to’the SPRT procedure, suc-
cesgive obgarvations on the random variable x are made :nd aftor
m observations (m=1,2,,,.) the logarithm of the likelihood rztic

p(x PR L
zm = in p!xi,xz...xmgo ) (3.1)

is computed and compared against two parallel thresholds (or
boundaries) 1nA and laB, 1In statistical terminoclogy Zm is the
relevant test statistic, If Z, 2 1lnA, the procedure is teimi-
nated by making decision d1 to accept hypothesis Hl; if Zm <
1nB, the procedure is terminated by making decision d, to accept
hypothesis HO; otherwise (when 1nB<Zm<1nA) another observation

LI is taken and the testing prccedure continues.

It can be shown that, neglecting excess over the boundariesp»
the probability a of Type I error, i,e., rejecting Ho when
3 = 0, and tne probability 8 of Type II arror, i.e,, accepting
Ho whan a=a, are given respectively by

...L'_'.§ : ' :=-A—§-‘:-.B- ‘
a = =0 and B = 075 (3.2)

- *"gxcess over the boundaries” is the amount by which the value of
at termination stage n exceeds the boundary, 1i.e., Zn-lna




Thus in order to construct a test with performance (a,B) we
choose the thresholds InA ind 1nB, where

A= (1-8)/a and B = p/(1-a) (3,3)

A pictorial representation of the testing procedure is
¢iven in Fig,3-1l. It will be noticed that the region of zm,
a>0, is separated into three partrs accept Ho, accept Bi, and
continue testing,

In vhat foilows, we assume that all observations are in-
dependent 8o that

m
pix, ,%,,...,x 3a) = [1 p(x, ;a) (3.4)
1%2 m gy 4t

and hance

zm.‘: zmzl m=1.....n (305)
=1

where

pix,a,)
z, = 1n Sr;t?gly (3.6)

¥e adopt the notation that n is a terminal stage of the standard
S8PRT and thus, neglecting the excess over the boundaries, zn
is the test statistic for a completed sample,

e

the signal-to-noise ratio, for the sake of simplicity and

. clarity in reference to errors of Type I and I we will use
~h‘tl;f“ﬁ radar snginecerin: terms: “false alarm* proebility
for the probability of Type I error and 'fllae‘dismxjsal“

8ince in raddar problems a is, in gencral, ansnn~iated with
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FIG, 3-1 PICTORIAL REPRESENTATION OF SEQUENTIAL DETECTION
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»ﬁtobnhilitv for the probability of Type II errcr,

An important quantity in a sequential test is the average
sampls number (ASH), which io Lhe numbes of chesivations needed
on the average to arrive at a decision., The ASN is a Junction
of the true value of the parameter a, and for independent samples
is given by

_ L{a)lnB + {3~L(a}iln&
= Erla (3,7)

where L(a) is called the opsrating characteristic function (OCF)
and is the probability of accepting hypothesis Ho given that 2
is the trus value of the parameter under test and wherse Ez(a)
is the expected value of z given a3

pix;a,)
Ez{a) = E{ln 5(5?55~Ea}

From the definition of a and g, it is evident that L{(0) = 1-a
and L(al) = 8. Therefore, a feelirg for the overall performance
of a sequential test can b2 obtazined simply by examining the
OCF and ASN of the teat,

It is a proparty of sequential testo that no other staiis-
tical test of hypothesis HQ #gn inst Hl can be constructed with
a smaller average sample number, and yleld as small an g and 8
as a sequential test, Conversely no othe: test can achieve a |
smaller ¢ and £ and alsc require on the average less observa-
tions than the sequential tagy ®: 8,10
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-1 tolerated, it becomes neccssary to modify the tect procedure
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4. PRACTICAL NECESSITY FOR TRUNCATION

} Although a prooi by stein? provides assurarnce that the
 \soquhnt1i1>t¢ctn will terminate with probability 1, i:lia cleer
that acme tests may last longer thar can be tolerated. The
teat lihgth is a random variable and long tests wiil occasionally
’occux even when the parameter 3 which is under test eguals zaro
‘or sxceeds the nominal value a, due to the non-zero variance

of the teat length. Furthornore when the SNR wnich actuslly
‘occurs has an intermodiate value 0 < a < a;, the resulting ASK
becomes itself very large thereby indicating that even, on the
average, the test may take much longer than if a is exactly O

or al."This last point can be undurstood by referring to
Fig.4-1 which illustzates typical ABM's, It follows that

there will be occasions when the testing must be prematurely
terxinated and a dacision reached on the basis of the al:i. ady
available data,

When situations arise when these very long tests can not

in offws to accelerate the termination of the tec:, Sometinss .
it is even ne.assary to modify the test sc that one can

quarantee that the test will tarminate prior to some specified

stage n = N, |

The necessity of truncaticn .= especially evideat in
practical angineexinq problems wnere the urgency to termirate
. the testing procedure may increase with every guccesding sample,
An example cf such a cituation is given by radar detsction
ﬁbofu’a “nan949 on one pattirular tarjet may 2llow other tei~
- gets to pass b{ and.tected or nay cauves a decreanss of availshie-
radJr response time.

This uraency can be stated in terns of a nonlinear in-
creaiinq cost aa:ﬂciated with succcsi‘vo tanpic. According
- to such a cost tuacticn succaodinq sanples boca-t ] coatly
. that *heix rclatzyn~vaiu9 dacreases rapidly thersby plscing a
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FIG, 4-1 A TYPICAL ASN
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demand on the experimenter to end the testing, BSaeveral methods

of accelerating or terminating the testing are presented in the
next cection,




5. RULES FOR -TRUNCATION

There are severai ways in which an accalerated or truncated

sequentiz]l test can bes constructed.

Orie way to achieve the desired change in the test procedure
ig to modify the parallel test boundaries shown in Fig, -1 to
curve and meet at stage N, Tne stage N is called the truncation

£

stage and the modified test a truncated test, Two mannsrg of

mod :fying the boundary deserve special attention, In the first
case, no change in the test procedure is introduced until the
truncation stage itself, 1In the other case the boundaries can be
brought clioeger together with every stage tc monotonically converge,
In the former case, tre truncation may be said to be abrupt and in
the latter caze gradual, It is, of course, also possible to let
the boundaries asymptotically converge at infinity, guaranteeing
trat the test will accelerate but not necessarily terminate hy a
particular stage, Figure 5-1 illustrates some of the differaent
ways cf modifying the boundaries, When the boundaries 47 in fact
meet at the truncation stage N, we specify at that stage only one
rather than two thresholds go that there is no "defer-decision®
region at that stage and the test must terminate,

It can be observed that from this point of view the parallel
boundarier »f the Wald test are a consequence of the uniform
cost of additional observationeg independent of the Stage number,
Cn the other hand, the converging bkoundaries can be interpreted
25 a consequenze of an ever increasing cost of additional obger-
vations so that the cost per observation is a non-linear monctoni-
<ally increasing function of the stage number, The abrupt
truncation heccmes required when the cost of an additional obser-
vat.ion becomes infinite,

When sequential tests are used in the context of a signal
detection problem, it is sometimes possible that the circumstances
of the problem permit the obcerver to control the energy of
successive pulses, bLuppose that the energy of successive pulses
is gradually increased., Since the energy of successive pulses
can be thought of as the cost of teking observations, the gituation

13
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in whica tre boundaries remain paraliel but the energy increases
ig eguivalent to the gituation in which the energy of successive
pulse remains the same but tne boundariwus convarge., The proce-

‘3ure, based on gradually increasing the energy of successive

pulzes, impliea feedback from the receiver to the transmitter

‘carrying information whether or not the test has or has not yet
terminated, ’

Modifications of tie test procedure need not 6 of course, be
restricted to tk» yradually converging boundaries, (or gradually
increasing energy). It is possible, depending on the particular
gituation “hat the formulation of the problem leads to a multi-
stage test (f statistical hypothes2® which does not entail
monotonically converying boundaries (or increasing energy) but
introduces more complicated bcundary shapes, Some examples lead-
ing to such boundary shapes agre discussed later in this section,
Other tcpics relating to the modified sequential teasts which are
discussed include the analysis of performance of the modified
tests and tests with variable energy,
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6. POLYNOMIAL APPROXIMATION TO MODIF IED BOUNDARIES

A sequential test with trapezcidal, sloping boundaxries has
bean analyzed by Andersons in the case of a random variable whnich
is a Wicner process, More generally, we can zonsider a class of
sequential test procedures that énta}lj&bﬁatonically converging
boundaries., A test procedure of this type can be called gradually
truncated. A difficulty arizes in the treatment of gradually

" truncated sequential tests in that the boundaries are tinemselves
a function of the sample size, which is a random variable, 1In
this section, we outline a method for cbtaining approximately the
Average Sample Number and tbe probability of accepting an alter-
nate nypotnesis, Our presentation is based on Bussgany and
Marcus.! '

Following Wald2 ronsider the sequential test cn = sequance

Xﬁ=(xl,x2,...,xm) of discrete random variables, We assume that
a3sociated with the hypotheses Hb and 31 are the two alternate
grobability density functions pc(xm) and pl(xm) wnich govern the
observations in tne sample, The modified sequential test is per-
formed as fcllows: with each new ohservation added to the sample,
the likeliinood rat:o pl(xm)/po(xm) is formed, The process ie
continued as long as

£ (m) Py (%) £, {m)
e < XY <e m=1,2,,,,,n=-1 (s.1)
o m

and ceases at some stage n as soon as one side of the inequalies
(6.1) is violated, The modification of the test consisti of the
fact that the boundaries are not constante but a function of m,

Por the sake of clarity, the cerminal stage is denoted by r as
distingquished from an ariitrary stage m; siice the tarmaination
stage depends on the run of the sampl:y, n 18 a ranfom vayiable,

Let the vinlation of “he lower inequal'ty be associated with tie
acceprance of Ho and the viplation of the upper iﬂequal;ty with

tha acceptance of Hl‘ Suppose the funct ion iain} is moroton:cally




non~decreasing and the function f (m) is monotonically non-
increasing, Truncation occurs for the smallest value of m, N,

at which fo(lefl(N) since at that stage the inequality (6.1)
must be violated, Motice that if the two Lypotheses were equally
likely and the costs of accepting incorrect decisions were equal,

then it would be reasonable to require that at truncation
to(N)cf (N)=0,

Let E[f(n)ldi,H 1 be the expectation of the functicn f of
the utrnin&l stage n givon that the test terminates in the deci~-
sion d to accept the hypothesis Hi and :hat the hypothesis HJ is
true; iao 1; j=0,1, Bussgang and Marcus™ (p.7) have shown that,
neglecting the excess over the boundaries, the following two
equalities hold for 1i=0,1 and j=1,0 respectively: E

Elexp fi(n)idi,HJ] P(di|Hi)/P(dilHJ) (6.2)

L]

E[exp-fi(n)‘di,ﬁi] p(diiaj)/P(dilni) (6.3)

and hence

Blaxp £,(n)|a,,4,] Blexp -€,(n)|d,, 8] = 1 for is]) - fi;,f.,ﬁ
- 6.4

s 3

Por the case of con.-ant boundaries fi(;)=conatant, 1.e,, S ‘jj
|

1

gl(n) = 1n A

fd(ﬁ) = In B

?

th&»:osnlt-(ﬁ.‘} becomes svident, Specifically, for i=1 snd =0, ' ]
{6.2) and (6.3) wmply : | o S i §
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Elexp £,(n) |4, H ] = (1-B)sa (6.5)

and

Elexp -£,(n) |a, ,H,] = &, (1-8) (6.6)

To illustrate how these equalities can be used to evaluate
approximately the performance of a seqguentizl test consider the
exponents specifying the boundar_as that are of the form

r
fo(n) =« 5 (1 ~ ﬁ_),o (6.7)
and
r
s(my =3 (1 -1 (6.8)

where 0<r0,rl§1 arnd 2 and b are positive, The graph of £,(n)

is shown in Fig, 6-1, The graph of fo(n) is =imilar, In what
follows assume independent observations and let the tiida sign
(~) distinguish the quantities characterizing the modified test
from the corresponding quantities in the Wald teat, ror the
specifiec et of exponentiai boundavries the inequality (6.1) ther
becomas

) r

r - p,(x
-5(1—%)°<21np—;-¢—;jy<5(1—§4-)1 (6.9)
3=1

m=1,2,...,N"1 < N

Yt a/¥ ard B8 are small (i,e,, N is large) the class . tests

18
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specified by (6.9) tends to the standard Wald testm with a=Z=)ln A
and 5 = b = -ln B, We consider the problem of finding the approx-
imate ASN and the probabilities of error of the modified test *
& and 8.

In order to simplify the resulting expressions assums that
& and E are sufficiently amall so that given H the decision is

di most of the tims; then

1!

z(ﬂ!nl) ~ 3‘5"‘1’“1’ {6.10)

The following approximate expressions are obtained,

B(AIH,) ~  S— (6.11)
1 E(zIH1) + L AN 4

and ) yJ;x
: r152 “
i~xo (14 =) (6.12) .
NB(:'HI) +r4 _

Simjilar sxpressions spply when tha »ull hypothesis is true where

Iy, b, 8 replaces r., &, i ana E(n‘do)vraplaces E(nldl).

0
By keeping only the first moments of n, the boundaries are
approximated by straight lines, We note that, in general, as
the boundaries converge, excess ovar the boundaries will take
place, The approximations in (6.,11) and (6.,12) ignore tests
which terminate at the truncation stage N and are therefore
meaningful only if circumstances of the problem are such that
mOBt teuts terminate prior to the truncation atage,
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7. ABRUPT TRUNCATION

In this section, we discuss an abruptly truncated seguer-
tigl probability ratio test, The boundaries of the test remain
parallel until the truncation stage N, At the truncation stage
only one terminal threshold is used and the terminal decision
must be made, In the interest of providing explicit results,
tnhe discussion in this Section will be specialized to apply to
the test for the mean of a normal process, This corresponds to
coherent detection of a known signal in white noise,

A truncated aesquential procedure is {llustrated in Figure
7-1, On the vertical axis is plotted the value of the test sta-
tistic 2 for (continuous) values of n on the horizontal axis,
For each value of n the value of zn is compared against the two
thresholds lnA and lnB, If Zn exceeds the threshold lnA before
n=N, the decision d1 is made to accept the hyrothesis Hl. If
the value of Z, falls below the threshold 1nB before n=nt, the
deciaion do ig made to accept the hypothesis HO. If zn remains
betwean the two thresholds up to n=N, then at this stage no
further samples are taken and the value of Zn is compared with
the terminal threshold x., Hypothresis Hl is accepted if Zn>x,
otherwise hypotrasis Ho is accepted,

The four labeled paths in Figure 7-1 show the four possible
ways in which a detection procedure can terminate in a truncated
test, Decision dl is made when ejither the test statistic Zn
exceeds 1lnA or remains within the two parallel boundaries and is
greater than the termina. threshold x at cthe truncation point N,
These two possibilities are shown by path (1) and (2). Decision
do is made whenever Zn crosses tne lower bLoundary lnB, or remuins
in the Geferred decision region until thg “est is truncated and
{he test statistic is then below x, These two possibilities are
shown by paths (3) and (4).

The mathematical simplicity of the expressions (2,2} and {37
which spacify the perfurmance of a saguential test i§ 108t to &

" large extent wheu truncated sequential tests (VST) are consi-

dered. The 3iff’'culiiesd centor about the fact that now we must

»
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consider separxtaly the outcome of tests whicl: terminate before i
truncation aud thoes that terminate at truncaticn, There is no

simple transition f.om the analysis of the untruncated procedure

to the truncated case, Let the prob.bilitiee of arvor of u TST e
be o, and &

e
A truncated *test ia a compromise between an entirely sequen-
tial test an! a fixed test, It is an attempt to reconcile the
good features of both of them: the seguential feature of examin-
ing observations as they accwnulate and the fixed test feature of
guatanteeihq ccompletion within a specified sample siz It is
clez; that modification of the test boundaries changes buoh the
s proba.ilities of error and the distribution of tha sample size,
'”a For example, if in Pig, 7-1 the threshold lnA and Inl are set to

e yield errors (a,B) in tne untruncated procedure, the intiuguction

g o of a gruncatimn point at n=N will 3Jecrease the ASKN but increase

f the values of a and/or 8, The net effect is a 1loss of performanca,
That :is {f we coculd adjust the thresholds of the truncated test

BO that a

=G and eTzs then {re truncated procedure would have a

. larger ASN than the untruncated test, Conversely if we could
ad just the tnresholds of the truncated test 8o that the ASN of

. the truncated test were agqual to the ASN of the untruncated test
for &ia%al, then witner or both a. and €. would be greater than
the correspoading values of the untruncated test with the .un-
adjusted boundaries, It should be recognized that in the trun-~

cated procedure the chaice of the location Of the termiral

thrashold ¥ influences tha valuas of Qe and ST‘ Thig in.luence

decreasas as tne truncation stage increases, Mas for vy

" large values of N (large in congarison to the ASN)}, the salves of
Sy
of N tme values ot 3T-?nd 5f are very sensitive %o the pcsition

and & are nol zensitive t2 the value of »¥; for smali valuass

o the marminal threshold x,

Sty b

o

In 3 S5PRT the probab lities of errcrs a and & are not a

function of the garameter'al, bt are dspendent oaly on the

. setting Of thw thiesnclds lnk and InB, The ASH, however, if de-

in fact, if inhe

i S Lppiting = ) A e

pendert Loth on the values »f a. and 2,
Gaugs distritution, the i

quan® ity of intarest is not ASN 2icme buv a?ASﬁ_ i.8,, tha
3 ;

- variable under test ir the mean ¢ 2

b e g 418
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- "average anergy" of the teat, Alt> ough the ASN varies not only

with a lut also with a the quaniity aZASN varies only with a,

’
In the fixsad vample te;t for the msan of the Gauss distribution,

we raczll? tne error probabilities sre a function of the “total - b
nergy* ainf where n, is the total {and fixed: number of samples; ;
the larger a, the smaller the value of the n., Consequently for L

tne case of a TST, a fixed value of N be~omes relatively large in
coparison with the AZN as a, incrsases, The larcer N is in com-
parison with the ASH, the .ore vhe TST resemb é¢s a SFRT test and
correrpondingly a, ar.d BT approach a and B, Thus for a TST the
valu~ cf a, influences the probabilitiss of error, Late. it is
shown that the perfornance paramsters of a TST are in fact uni-

AL+ cultic T Bt iiana oL o Ul c s o

L g e e i ra i

T, gy e e T

versal functions of vre trun~ation energy in the test for the

g e e ot on s

mean of white noise,

A3 stated previcus'y .o any TST there will be a net losc in

the porformance over the unurunce*esd SYRT. [n fact, if we attewmpt

the separation beltween

) maintain 2,72 and B =P & a ltl decracses

T 1 '
thresholds inA and Irs must be increased accordingly, until in the
s 2 a2 « ot -
i limit lnAze 1lnBz-e aIASh=alh ard the resiting T3T has become a
fixed sample test At this point the net savings in e£nergy of a )

TS'" over a fixed sample test is, of course, zeroc,

7.1 Fxplicit Resalts for the Test tor the Mean of Wh;te Ncise

. in general, the expressicns f-r Q. and ET as a function of
':1 the boundaries are difficult to obtain, However, when tha loga-
rithrn of the lik=lihood ratio can be repressented by a Wiener

procesg, or thr sum of a Wiener proce-~ and a daterministic func-
ticn (f tipe, axplicit ra2sults are available from the work of

T, W, Anéeraan.g The locarithm of the likeliho>d ratio, i.e., the
test s£tatis<.c Caa be approximately represented in this way when
the sequontial test (SPRT) is for the mean of a normal variatle

on suCCessive . nlepmndent samples, The derivation of thess rr -
sults 18 g.ven in Appendix A, lere we qgive spprixirations which

are val:id {or a3 variety of apolications,

The samples under tagl 1oliow “»e density function

ot

]
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1 2
f(x,,a) = ~— exp-{x%(-a) /2 (7.1)
W21 !

The null nypothesis is a=0C and the alternhate hypothesis is 2=a,.
We let t be the time variable so that if AT is the time haztween

obgarvaiions and m the number of observations, the elapsed time then
is t=miT. Let T ke the truncation tims so that T=NAT, For a '
test represented in Fig, 7-~1, we then have the following approxi-
mate results: ’

i 2. AT
-SR-S R N pue:. S . oy, x 3 Zlﬁﬂ)
T ¢ 2 A ' - 2
aj4T & J% a Jﬁ
i 1 1

3 A a /T 1 nA—-
; :‘}“ ‘ X # < - - _2_£:.nﬁ lr}_@‘) ‘}_
; alJT < aldﬁ

. a., /T . a,~r -
SRR S A 0 N SO S | (1nA-1nB).
"B =3 = B —~ 2 e
a T T = o /T W
l“‘/ l‘\jl al'\ a‘l'\/
(7.2}
andg
: 3T 2T ims
Bt o (Fe o) 4 pd (- Eo s Ao 4 220D
L & et 1
aiw‘f & AL ~ al?\/T
a, T
Ry, 1Y 2ina
- g {- - = . “)
) a}vT
a, v/t
A 3 YA P W B
PRy o T 2idnacing), (7.%)
3 fecd 2 3 :
le %« é l\,’ 1
25




Thesa last two esquations d=monsirate that the probebilities of
runcated test are univerzal functions of the
“truncation energy" alT It cen be determined directly from
egqs {7 2) ané {(7.3) that if we let lnA=e and 1nB=-o the tesult-
ing aquation§ for D and 8 are exactly thosa that express tha-

acror of this

probabilities of error for a fixed sample test with energy 81

i

and

thre7hold x, namelv,

0
h
1}
o
!
o
o~
&
S
o’
o~
~
*
d
A

a J?; .
o = ¥ (- e (7.5)
a2 l’c“ . ] -

From the expressions (7.4) and (7.%) it alsc follows that in order

to achieve performance a the (terminal) threshold x must _

“t

and @

f’

o N X ’.
o VU YRSV A BRI ¢

be set &t

P

Eéf?(af)33

(87}

and the Lest must have energy

(7.

(7.7)

The last-two relations are the khown results for fixed ganple

nypothesis tests,

7.7 A Truncated Sequential Teat with

2]

“ne "hreshcld at Eacr Stage

We see from (7.2} and 7.

function of al

T and depend

2} tnat Oy

24

on the three guantities lnd, 1InB,

and ST are a unijversal
and
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. Trere are therafore three guantities which can be adjusted
zoﬂsatiSfy the co.ditions that Qo and GT have epeacif:ed values,
In mractical probleams a third cendition to un‘quely specify

those tiree guant.t’es for a given set (ap, 8q) must ba judi-
ciously“chosen.3 For example, in the case of sequential
defection of a radar rebﬁrng the probability of an echo from space
‘18 80 smxil tnat if is very unlikely that the test will terminate
by the test statistic .nteregacting the “target presént" thresnhold
luh, Thersafore, mogt of the time the test lengths will be con-
trolled by the locstion of the lower threskold lnB; the closer
tn’s thresnold to zero, the more likely is the test statistic to
cross it earliy and %he shorter the test length,' Thus for any
value of aiT we can minimize the dismissal tezt length by rais-
ing the lower threshold as ciose to zero as possible while simul-
tanecusly lowering the value of x and raising lnA in order to
maintain thu2 desired values of aT and BT. Under tnhcse conditions,
the value lnA=e= is the value of the upper threshold which leads
tno the smallest value of -lnB., Since no alarm could occur prior
to the terminai stage, the probability of false alarm ¢, Jould
then be determined solely by the terminal threshold x. Under
these circumstances only one threshold exists at any stage, For
such z single boundary test (Fig. 7-2) the goneral expressions
(7.2) and (7.3) simplify considerably and for the target-absent
and target-present cases, we Obtaln:

a, T a. /T
limap = 1 - 8 (~F= 4 ) - 23 (X - 5 4 21nB,
A-‘m a«ﬁ alﬁ alﬁ/T
(7.8)
and
fr a.JT
. JT , .
;}..I: BT = & { X _ % } » BY (- X - 4 ; * -.',IHE) (7.9)
| a VT a /T a,yT
27
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Furthermore, under the same conditiocn and using eq,
Appendix ( B) the density of t can be

(B.1) in
shown to be

-5-;:‘-,{_+M)
2 JT

a

for t<T \7.10)

inB
p(t) = - :3:375 g (
1

If we relaxed the contiuls on the test and were content with
tolerating a larger value for the probability of fal3e alarm a
than given by (7.8), but maintain B
lowering x and correspondingly raising lnB while maintaining
1nAd=e, The ASN of course decreases, reflecting the increase in
Gy e As we continue to relax our requirement _.n Copsy
the terminal t:nreshold x would eventually coincide with 1nB, For
a continuous nrocess lowering x below 1InB is meaningless, Trus
even frr this minimum value of x, the resulting test may have a

T
we could achieve this by

and lower x,

valus of a, smaliler than the required a,.
then be achieved only by lower:ng

Exact equality could
the threshold 1lnA,
turn would have a tendency to further decrease the AN cf the teat,
but as we reintr-Jduce the upper threshold, the impcrtant problem
of a non-unigueness of threshold setting which yields the desired
probability of error arises,

This ii

7.3 Interaction Jetween Thresholds, ASN, and Probabilities of

Error

A TS of Fig, 7-1 can be specified when the three taresncld
A B and x are given, Usually the test requiremente are stated in

(x)

3

terms of the propabilities of false alarm and false d:s-

missal (ET}, A third condiricn

the three thresholds which wiil resul
controls is to reguire that

course, the ASN 138 a function of rno

and as such we can require minimization of

the firat tern of trhe nfinite 3w {A

B e TN N

the ASN of

for a 1n a specified range,

18 given in the Apperd:x A_1};

vaiue of the parameter 2,

ASN for a
he exac:t

For moat

LBi yieids sufl

e set 1n determining
rn a T8T with specif.ed

theT38T be a minimumn, Cf

particular
expressiin
arplications

oient accu-




An exampie of the effects cn a_ and BT as a result of vary~

ing the thresholds is given in Figu?e 7-3, In the first column
w8 number the case under consideration; in the next column we
consider raising (+) or lowering (-) tha thresiold aiven in the
neading; the effects of this charge on the threshold=a are given -
in the last section, where "+ or "-" signify ain Luuisac. J.-ew

Initially thresholds lnA, 1nB,
and ASN. Tne resul®s of each

decroase in the values of Gps B
and x yield performance of Qrps BT
case is compared with this initial situation, For. examp.e, in

Case 1, raising 1lnA will decrease tne prcbability of false alarm; to
offset this a decrease in the terminal +tnrerhold x will increase

%Up and decrease ET. The net effect ¢n tnese probabilities of

error could be zero, but the ASN would .2 been increased due
to the raising of the upper threzhold lna,

Not all possible cases are illustrated in Fig, 7-3, since in
scme cages it is not clear what would be the net effect on the
ASN for certain adjustments of the threshold, For example, if
inB and 1lnA were increased simultancously the reaulting probabi-
lity of false alarm would decrease whereas the probability of
false dismissal would increase, A lowering of the terminal thre-
shold couls possibly compensate for this change in the error
prubabilities, However there is no assurance that the ASN is
uniformly larger or smaller than i the case before the thresholds

; were adjusted, If a is close to zero, then the new ASN will be

smaller than in the previous case; if a is close to a the con-

11
verse is true, Thus whether the value of ASN increases or

decreases in such a case depends on the true value of the rara-

metar a,

7.4 Setting the Terminal Threshold

T: is =vident that there are it least two ways of approach-
ing the problem of truncated sequential tests, The first is to
determine the adiustment cn twe three thresholds in order to
arrive at the desired values of . and B according to some cri-
terion on the ASN, Tre second i8 to £iX the parallel thresholds

and determine the pogition of the terminal threshold in some

TN - e R




- Change In Effect On | Overall Effect
8 On
Case No, | 1nA 1nB x | °T T ASN
1l + - 4
+
- &3 -
a 2 - + -
+
+ - v
. 3 + - +
3 -
; - + -
ﬂi 4 ) . _
i + - + -
+ - +

B I

Poss ‘le Adjistnerts of Thresholds of a TST of

Fig, 7-1 ¢c Maintain Civen (aT,S with Result-

)

ing Change in tne ASN

{"+" indicates that the value has been increased

and "-" that it has been decr...sed)
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desirabie wav, The first problem has been considered above to
some "axtent, We now consider the second problem,

Wa162 recognized the necessity of a taerminal decisiorn in
a truncated test but was only able to give an intuitive anewer
tc the question of where the threshold should be set, He felt
that "a simple and reasonable rule for truncation,.." was %o
set the terminal threshold at zero and accept or reject tre null
hypothesis depending on whether or not the test statistic at
truncation is positive or negative, Thic rule zecms reasonable
mainly due to the fact that Wald, as nost statisticians, was con-
cerned with values of a and B which are about equal, as a result
of which zero is approximately halfway between lnA and lnB, 1In
many scientific or engineering applications, however, a and 8
may differ by several orders of magnitude, For example, in radar
sequential detection a is typically in the order of 1074 o 10710
1 ¢0 1073, Thus tne

crioice of zeroy for the terminal threshiold in such a case will

whereas 8 is typically in the order of 10

have a tendency to disproportionally favour c.e type of error over
the other, that is, if many tests are resolved at the trunr~ation
stage, such 3 choice may have a tendencyv to drastically change
the magnitude of the erv~re for which th. test was designed,

There is no nmique criterion from which the value of the
terminal trreshold can be determined when a parallel boundary
test is truncaced, Ideally we would want X to be chosen &uch
that the decision at truncation would be exzctly the one which
would be made nhad the testing continued, Tins ideal situation
is unachievable for it would imply that a TST could perform as

well as the optimum test,
One possible solution is to set

X = harn

ink)

NP

SO that the terminal threshcld s halfway between the paraliel
thresholds ‘nA and lnB, This rule esszentially direcig the ex-

erimenter Lty accepht the hyp. tresis that corregponds ¢ the
Y p b ¢

(%]
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bourdary to which ZT is clcsest, This approximation is of course
very useful in engineering applications where a simplified tech-
nigque s of greater importance than exact resulcs,
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B. DENSITY DISTRIBUTIONS OF TST

8,1 Total Distribution Functions

There are several density functions of the‘sample gcize which
: can be studied, several of which are relatedf Probably the most
S important distribution is the density of the sample size whicnh is
hot conditionsd on the particular terminal decision, This dis-
trivmtion gives the density pa(n) of the number of samples n
required to terminate with either decision when a is the true
value of the parametexr, The density pa(n) ig the total densiiy
function ccocnditional on a. It follows that the ASN of the test

[ARE

is given by

A R ,

ASN = Jr npa(n) dn {8.1)
o}

i

i

¥

a

Now if the test is truncated at n=N and the thresholds are left
unchanyged, the new density function pa(n;N) is unchanged up to
n=N, at whjich point it takes the form of a delta function of

B

strength j pa(n)cn. Thus we have
N

-]

pa(n) + bin-N) j pa(n) dn for n3N

B R B SR AR SO S S Ml $0om g

o p_(n;N} = (8.2)
i
O 0 n>N
i
%, ;3 and the new ASN takes the form
ﬁfv‘é R: , | -
f ASH = | np_(n} dn + N I p_.in, dn (8.3)
RN a _ N 2

- ‘
L Althcugh the sample size, n, is a discretn vafiaole the distri-
‘ S bution of n can be approx*mated by a continuous d*stribution when

the expzacted excess over the boundaries is sma;l ard the step size

z, is small relative to lnA ang tinBl.
1 A~ .
34
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By definition, an abruptly truncated test can last no
longer than N observations, and it can be shown that on the
average, it must take less observations than the untruncated
test with the same parallel boundariess, It follows from (8.1)
and {B.3) that the difference '

- -]

ASN - ASNN = I (n~N) p(n) an (8.4)
: ' N

and is zlways positive, showing that ASN>ASH_. Graphically, the
density function and the distributior function of the sample
number for an untruncated and a truncated test are shown in Figs
8~1 and 8-2, 'Sevgral approiimate expressione for pa(n) are
available; an exact expression for a Wiener process, as a func-
tion cf the thresholds'aﬁd the value of a is given in the
Appendix, The expressioﬁ,for the,ASNN can be obtained by means

of (8.3) and is alsc given in ¢he Aopendix aA_ 3.

8.2 <Conditional Distribution Functicns

Othar distrib&tions of interest are given by the condional
distributions of the sample size, These are distributions of
the sample size given that decision di is made, i=0, 1 when a
is the true vaiue of the parameter, and will be denoted by
pa(nfdi). Tt can be Srown: that in the untruncates case these
conditional densities are related to the total densitv by the
expression

Po(n) = L(a) p,(nld)) + [1-L(a)] p,(nla;) (8.5)

»

We firat develcp tne corresponding expression for a TST, and

npoint'out some interesting consequences., We will then find

various ral§tionships between conditiocnal and urconditional den-
sity functions, '
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Let ua(n!di;N) be the probability measure of the set of
those tests which lead to decision di at stage n=N when a is
the “rue valus of the parameter, The probability that the TST

terminates at the nth s*age with either decision given that

BB R . AR e 5

truncation is at n=N, is given by
P, (n;N) :\pa(nIdD;N) + ua(n‘dl;N). (8.6)

It is important to point out here that ua(n‘di;N) for 1=0,1
is not a function of N when n<N, That is, tests which have ter-
minated at n=m<N are not infiuenced by the value of Nj only those
tests terminating at n=N are affected by the truncation stage,

Of course, at n=N, the value of the test statistic is compared
against the terminal threshold x in order to arrive at a decision,
The location of this threshold will determine wnich tests at n=N

will declare deciaion di.

Now the OCF, which is the probability of accepting HO, can
be written as

: n=N
i L(e,N) = Y u (nfa_;N) (8.7
n=1
; from which it follows that
S
: i
Lo nsN
1 - L(a,N) = 3 u_(nlo5N) (8.8)
z n=1

p

These expressions can be wri'ton in the combined form

ST ot Re

£y
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‘ N
L,(a,N) = [{1.2%(a,M)] i 4 L(a,N) = g;%pa(nfdi,n), §=0,1
(8.9}

where we define ;1(a,N) as tre probabllity of accepting hypothe-
sis H, for a test truncited at n=F, Alac, the conditional '
probability furction pa(n?sjgn) can ba written an

ug}n!d&;N)'«
n=N | *
gg& b,{nld, ;N)

py(nla ;M) = ¥  (8,10)

Thie is the grobability that the 18T will terminate at stage n
giver that “he decision i3 d, and that a is the true value of
the parameter,

I. is also impoxtant teo point ouc hare that although ua(nldi;N)
is independent of ¥ fur LN, pa(n}dé;ﬂﬁ is dependent on the value
ou F tor n<¥  as well as for n=N; L(a,N) or course, is also de-
pendeni on M, ' ' ’

Using {8.7), (8,8), an*® (8,10) with i=0, and i=1 in {B8.6) we
get

H i e & ¢ . - ’ i N e [
pyingN) ~ L{a,d) pa(ﬁ,ﬁo,w) + ({(1-L{a,N)] Fp(nia sN) - (3.11)
ior toe ustal Cwo Cakak of intaRres=t we can wirite (3.11) an

o {nN) = {l-ay) pé(nidD;N) * Q. pe(n¥d1;N) (8,1231
for sigial ansent,
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’and; for signal prssent,

pltngﬂ)_c B 91(n§a°;u) + (I-BT) pl(n!dl;ﬂ)*;248;12b)‘

Thus we have arrzvea at the analcgue of~g8 5) for T§T and to. the .i
1nt0rasting gonclus on that although euach of tre twe fac-ors in
" @uch term on the right-hand side of (8.11) varies with the value -
"ot N, cach term (or the product of thase two factors) 12 indepen- '
 dent of N for n<N, ’ :

2

Once we have the probability functlon of the sample £ize. of
‘gn untruncated test conditiunal on the decision di being made, we
aay then wish to determine the corresponding conditional probabi-
;1ty functions of a TST, »

Let us assume, then, that we are given P, (n‘d ), the condi-
tional density of the sample size n for an untruncated sequential
p:ocedure when a i8 the true value of the parameter given that

iﬁ

d;, 1=0,1. is the decision made. We wish to decermine Pq ’n!d
for nSN, where N 18 the truncaticn stage,

Using the same notation 26 above we have that the measure of
those tests which terminate with decision 4, at stage n in the
untruncated procedure is

u_{nid

a(nidy) = Py(nld,) L,(a) (8.13)

L

where Lléa) ghu (n?d ) is the pictakility of making decision d
when ¢ ir twg valne of the parametar, In the truncated proca-

1

dure the darreﬁpun*"a ralatmonship 18 given by (8,9) where

ua(n!é%;N)=u&(n!d§, whan n<N; and for n=N:

r

' -1
u&m!c‘!i;s) = L,(a,N) - E ua(«‘di;N)

1

38

© A 0 SRR . AL 0. vttt el e e, i o

A M R PV, ~ VIR, PRSI AT s T ST : B e TE s - o S




hLTENTR SIS IR TR ¢ -, BT IBMAT SRR T L T S AR RN ST T

. ,.--\,l ) . SR
LSRN Ao
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H (u%di,n) = Ll.a N} —gni(:) Py p‘(kld } (a 14)

k=1 ;_\,

Now, using (8.9) and (8.10) we can write ToE . i

-‘Qr; ansti'ttiﬁ:i:hg \;‘Eorﬁ,xa{n}d 1;}3‘}\', i:ge;_v get °

VRN T -

R , i;%ECEY p,inla,), - n<N

p,(nla, ;¥) (8.18)

l - Sty - p.(kla n=N
LTES Gy Tt F

As examples of this last expression we can w:ihé;1£o£‘aign§i'ibﬁiﬁt;: A

"%; po(nla,), n<N

Po(nid;;N) = (8.17a)

o T-1 t ‘
l - = I P, 3 a,), n=N
l Or k=1

and, for signal present,

=8 o |

pyinla M) = (8.17b)

[ N-1
- - -
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~  We can make certain observations at this point: It is not
suffictent to know p, (nld ) in order to obtain P, (n\d $N) 3

_ - cestalaly the value af Li(') and L,(a,N) are notdnd Haw-vor, .

”~;AL (a,N) can be easzily tabulated as a function of N in contrast e

'\tg pa(nld jN), Thus we have reduced the problem of determining o

- values of p.(nlﬂ {N) as a function of n and N to the simpler : .
pxohldm of tabulating L (a N) as a function of N and using (8.17)
to obtain the desired dintrihution function of the sampla sige,
7In particular, if the desired quantities are to be obtained from
exper imental results then Li(a,N) can be easily obtained for

“each value of N in the course of dstermining p‘(nidi) and Li(a).
he guantity pa(n!di;N), on the other hand can not be obtained
directly because of the dependencu of pa(n!di;n) on N for each
n<N, as was noted earlier, Thus, it is not practical to tabulate

pa(nidi;n) for several values of N even though the expression
could be calculatsd at each stage of the sequential prrcedure,

. -Tha expression (8.17) developed above is recommended when selected
values of pa(nidi;N) are desired,

The ralationships between the various conditional and uncon-
ditional distributions for TST can e obtained by starting with
“wome known relationships and the ones derived in the precediny
gection, A summary ot these raelationships is offered in Table |,
Some of the expressions are squivalent although presented in
different form, These are listed in order to facilitate their use
depending on a user's individual need,

Certain comments can be made with regard tc the expressions
- given in Table 1.

(a) The intrcduction of a truncation stage N implies
the use of a terminal threshold x which determines
the decision to be made at this stage, Thus guan-
tities such as 1, and 8T are in factta function of
thig terminal threshold although its functional &o-
pendence has not been explicitly indicated,

(b) Tne Theorem of Bussgang-Marcus which establishes the
equality betwsen the density functions given ia (3)

of Table 1 does not hcld for the case of TST, '® Tnese
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{4d)

(e)

~

latter cxpress;ons ure given in (&) of Table 1},

The expression po(n!do;x) in {6} depends on N wnly
rhrough ¢ Similar statementa nold {o9r “he orhar

o o
density functionsg in (6} of Table 1.

Since. for example, a,p_{nid,,H) d-es not depend
- ~

h)
-

cn N for n<hN we can woite

| *NY = ; ) e
QT Po(nsdl,u. o 8 po(n|dl) n-N

For continuoug tegting in a prcoccese with indep=n-

dent increments we would rcplace the Lungations of
HElL

form g Ly tne integrals {L dt,

0

e
s



TABLE 1

SUMMARY OF RELATIONSHIPS ’
Po(n) = (1-a) p.(nla} + a p (nla,) :
1 -
py(n) = 8 p (nla)) + (1-8) p, (nla))
Po(nl®) = (1-ap) p(nld s + oy p (ule, M)
2 : .
pyinin) = B, p (nld ;) + (1-81)py (nldy ;W) :
Po(n‘do) = Plfnldo) " Theorem of Busmgangéﬁaxcua
3 V
po(nld)) = p, (nfa))
' (1-8) p,(n) - a p,\a) ’
Po(nia,) = S = p, (nla))
¢ ' (1-2) py(n) - B p_(n)
pl(n 61) = (‘1"“_ Q _T) = x’xc(nhl)
i [
5"; pc,(nldl) n < N
po(n’dl;u) S « N-1 |
1 - = Z p (xl4,) n = N
%P k=1 1
S
9
‘;,-' py(nla ) n <K
. *'P
Pi(ﬂ}du;§¥ :i -
1 -5 I kla )  na=N
F’; k-1 Pl( ’&a | n
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(coni.)

po(nla_i¥)

‘pi(nldlsﬁ) =

—

£ N-1
{ a-wa-s 5 p (0 - a(i=a)

Py (nlags) =

)
o]
-~
=)
(29
Poy
-
£
1]

nl(nldl:u)

=
A
=2

-
%‘t“a; po(nlaq)

"2 bl
Po(rla.)
Cp k=t ©

%{_&; pl(nldl)“ a
3 g N-l

T k= 1 F1

‘ 1 -a
1"11_

l%
2

p, (kla,) uow N

(1-2)(1-8) p.in) - a(1=w) p;(n)
(1-a.)(1-a-B)

n<iN

N-l

p, {k)
k= L__li n=N

(1~aT)(1—a-5)

8(1-8) po(n) - B pi(n)

n<N
‘F&(1~a-8)
N-1
p, (k)
B(lﬁﬁ) p (k) - af r 1
L - ST(l-a-B) n=N

( a(l-aj pl(n) - a8 ga(n)

aT(l-a»B)

n<N

, 5 B N§1
a{l-a) .z, p,(k) - a p.(x) _
- k=1 ) -
\1 - d;%i:a-a) =l - =N

(1 8)(1-x) p,(n) - (1-B)8 p (n)

T TT=a-) n<N
N“i i.b-
(1—B}(l-a) py (k) - (1~ Biakglpofk)
L - ——— e e




p(nlda)
]
[ poinldQ’NS - ne R
l—n.,r i
BRI
Lp ikid)
k=l © © , _
1«p°!ut¢°;n n =N

’ po.(nfd;) :

l CROICAT) n <R
i LRI
f p (xla, s

1

T-p (W&~ ~  n*N

L p, (k)  m=n
- k=1
Pyn) _) H1%n) Roimidgi £ ¢ Gy polnidys |
( P (NIN) u
By Py(nldsN) + (1-8,) py(nla;sh,  n
pl(“) =
Py (N|N) n

"




p,(nla )
plin|d°;N5
.Bg_:
N-)

\1%?ﬁ§ﬁ5

( pl(nldl)
p].\bi 'dlgNs

o
]

N-3
L p,(kla,)

kl-pl!N'dl;N)

| _ f,f pléN§d1,N)
L 1l - po(NIdl 1))
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9. COMPUTER SIMULATION EXPEP (MENTATION

The previoué analysis applies to sequential detection on
a continuous process where the proklem of excess over the
boundary does not arise, In practice observations are taken
at discrete instances of time, Such a sampling procedure will
generally cause the value of the test statistic to exceed t e
boundaries, thereby over-deciding on the hypothesis indicated,
Thus a fraction of the last observation would have been Buffi-
cient to arrive at the same decision, Such fractional steps or
observations are clearly impossible in a discrete sampling
process, As ~ result cf this the discrete test lasts longer
than if the sampling were done continuously, The co.pensating
effect is that the tes. statistic exceeding the boundary over-
decides, thereby indicating the decision with a smaller prob-
ability of errcor than would have been obtained had the test
statistics just tourhed the boundary, Consequently for a dis-
crete test the boundariea can be set closer to zero to obtain

thg same performance (a.<) as in the correspunding continucus
test, Both of theses factors must be simultaneously congidered
tc obtain a valid m2asure of the effect of discrete sampling on
the performance of tha test,

In order to study the performance Ot discrete tests, the

procedure of sequeritial testing was simulat~d on a digitsal

computer ar.d the pertinent test parameters and distributions

! were tabulated, Before we present and digcuss the results of
the compui=2r analysis, we present a descripticn of the aimula«v
tion prccedure,

i For purposes of computer experimentation a more generel
] procedure than that given by (3,5) can be studied. In particular
we consider a Saussian process with an uﬁknown mean, bur whare
Sthe sampiss, x,, are correlated, The process under study 18 the
first order Markotf proczss, or "RC ncise” | where the sorre-
lation between the 1th and jtb abservatiankxs :!3'31, The testu

statistic for this Case can be Lbtained from the likelinhood
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~ ratio (3.1). The result is

s a3 SRR AN, ek ol Al

7

2
. N -
2 1" E (a 28,x,) Tﬂh {‘1 01(x1+xh)3

It can be entily verified that once z. ras besn © rmed, ?k*
can be fornnd from the recurrance rexaticn

1

Zegy % %yt allng,, - ox - 2a,(1-p) WC1%0)  (9.2)

in which the observaed variable x, is formed from

1

x =a¢+ pk {9.3)

where n, , representing the random cumponent, is a Gaussian
random varieble having zero mean and unit variance aud where 3
represents the trus value of tne parameter, On the first step
x, =a + nl. Correspondingly we have

Z, = z,\l(ﬁrc.i - 51)

1

On the sacond and succeeding steps the additive noise is formed
froum the expression

f} 2 . :
Byay = Wy v 1 TR oT oBgR L= L2, (3.4)

whare we is s‘ranéam,a4my)f,*:fﬁ the same dlﬂ’tib&tliu as n,

and o is the *oef*i iant of correlstion, It can he Fa8ily
wr.fied that the sutocorrelaiiia of n and n}’wtgqa nois
i o

&

3 -t

siructsd acnording to (9.4) 18 o' ° =7, Fig, -1 flluatrated

the block diagram of tnﬁ'lmpiimlﬂtataJn of the éétéctér re-
presanted by Bg. {%8.!
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In running computer experimeuls for sequantial tests 1t is

best <« intentiunaily chovse reasonably large valuies of the
prubabilities of false aiarm and detecticn in order that the
-sample size (and theraeby computer runnirg tine) be within
reasonable limits, IL i3 important to ohserve that if a and R
‘are small the proportion of trials ending in the incorrect de-
cision will be correspondingly small and it will be difficult
to compile enough data to achieve stable and reliable results

- .about system performance, By virtue of the Bussgang-Marcus
theorem it is possible, howsver, to study experisentally the
conditioﬁal~density cf the sample size of the tests terminating
in the more "popular" nypothesis and dsduce from i:c the con-~

" ditional density of the sample size of teasts terminating in the
othner hypothesis. In Fig, 9-2 we show the result of 40,000
experiments, It i5 clear tbhat with signal absent and o = 0,91
most events terminate at the lower boundary and among 40,000
experiments only some 400 will terminate at the upper boundary
ich is insuffi;ient to provide a stable picture of po(njdl).

e,

it s

N " N -
oo et i s

j.g




s3872s81Q

t4xepuncg I1sddp 8yl 1€ UCTITUTWIASY :

3
suTe eidwes oyi 3C AaTsuad AITTTQEGCIg TRUCTITHUCD 2-6 JUNOLS

i
L8

o1 o1 g o b z :
_ N ] ﬁ ! T 7 0
Y
* {
9 N- v
9%.0
= o
(=01 = ¢ ,
LT = v 3
, -
g = e Lo

Ad»




T

Tra expressiosnd £or tha ABH and OCF for a TST, (A.8) ang
[2.%), are guite involved and difficult o interpret, In crder
Lo ogain ingsignt {nto the interrelationsnip of these axpressiing,
graphical results obhtained by computer evaluatiszn ot these ox-
sreasions sre pregented in Figs, 10-1 through 10-¢2 for
selacted values of the parameters, Figures 10-1 and 10-

ko)

show the ASN as a function of the ratio a/u1 for various valuesn

the truncation parzmeter aliﬁ The upp ermost curve, lakelad

= ® gived the ASH for an untruncatzd test and the valuag of
7 and P snuwn, walich determine tim fixed boundaries f£or all the
teats  are for the untruncated case, The resulting values cf

P

8, and for o = 0,21 ard 8 = 7,1 can be obtained from i#ig., 10-7

T
dince at a=0, COF = 1-a and a=a,, OC¥ = R Tre completc per-
formance of the tegt can thus be obtained by examining the two

Figures 129-1 and 10-3 U'.r example, if we truncate at

»*T = 5, then g = 0,96, Ry = 0,27 with ainsr: = 4.4 waen a/a,=0,

Saverai comments can be made from Figures 10-1 and 19-2:
m

The value of a?ASN, as 18 expacted, never excaeds the value a

but is very close to {t when a?T is small since many tests .=

then resolved only at truncaztion,

2
1
Te

Also, we would expect, when o<B (i.e,, lnA > |1nB|), that
as aiT increaseg, the value of u/a for wnich ajASN is a maximum
would decrease, Tuat i, for small aIT we would expect the
drift of the Wiener process to require a larger positive sliope
to yield tne mayimua ASN than whan aiT is relatively large, Thiz
erxpectation 18 borne out by the figures, from wnich it is clear
that as a7 increases, the value of a/a

1
wraximum decreas«s,

1 for which a:ASN is a

On closer exam*nation we would expect that, when a<8, the
maximum valua of 51ASN occur for that value of a/a for wnich
the Wiener process has 4drifted slightly above the point
1’lnA 4+ 1nB) at the truncation stage alT That the maximum
ahould occur for a value »f a/a1 for which the expected value
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FIG. 10-3 OCF OF A TRUNCATED TEST vs o/a,
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of the tanc Btetistic i& sowewhat larger than a puint midway
batween *he thresholds at the truncatinn point fullows from
the fact that for small values of t, E(Z(r)) is verv clcse to
the lower th 3shold as a result of which the tests would tend
to terminate early unless the Wiener process drifted away from
this at~orbing bcocundary, The requirement that the process
drift above the point l(LnA*lnB) at t=7 to yield & maximum
aIASN when a<8 can be stated equivalently in terms of the ratio

a/a.,. Thus, we want
L

1
E(Z(T)) > 2(1nA + 1nB)
which, from (A.4) leads to the inequality

inA ¢+ 1lnB,

P
T
2

;M
43/1'411 > 2(1 + {10.1)

The results in Figs, 10-1 and 10-2 show that the value of a/a
for which azASN 18 a maximum does indead Batisfy irequality
(10. 1)

In Piquxe‘lﬂfé 18 shown the prebab*liry density of the sample
size tot-a!a1=0 znd °/‘l=1‘. The decisicn throsholds were set by
a=0,91 and &=0,1, These curves, calculaled for the testing of
the ¢:1£t»o£.q}contxnuou-'wxane: process chould be corpare. with
"thi *otrelpondinq curvea-fcr>the'discxc:c detect ion ptCCéﬁuxo _
givan by Pigure 10-5, The similarity of the shape of the curves
on the last two figurnt 32 @vidwnt, The main diffezence lies -
;M”,‘vt.,,..ed ta terainate the discrete. dc«
f“tactioﬁ procﬁﬁux- is larger than in the continuous case, am is
to be srpected because in the ccas of cont inuous ptoccduru some
ena:qy is loet in the excess over *ha boundatries, As discutood
in Buctian 8 tnegc d-nsitiea nold for TST up to the truwacation

stage,

il LAl Lhe nex..
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drvers forowne QOF of o TET in Fog, -3 las wel: as for
aiT*”) were enown with the terminal threshold set a* “he mid-

point, When the terminal thresnold ifr at the upper pcundary

or at x=0, asg nuggested by Wald the resulting probabilitica of
error are shown in Fig, 10-6, &y X is increased from %x=0 Lo
x=1nA, 4q decreases and fp increases, but the value of x hag a
diminishing effect as the truncation gtage increases, This
influence cf the terminal threshold can be studies also in
Fig, 10-7, Furiner ineight into relationships between the dif.
ferent quanritiemx of the TST can e obtained from Figs., 197-8
and 10.3 in which ASN is plotted as a function of the truncatinn

3
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PROBABILITY OF ERROR

a:10°% B:=107° AN
1077}~ i
ASN (a/0, = 0) =9.27
0% ASH (a/0, =1)=27.6 ~
3
3 1
-46 0 138
nB TERMINAL THRESHOLD: x inA
FIG. 10-7 PROBABILITIES OF ERROR FOR A TST vs.

TERMINAL THRESHOLD, TRUNCATION STAGES:
afT =21, ofT =41, CONTINUOUS PROCESS
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APPENDIX A
EXFRESSIONS FOR TfHiE ASN, OCF, AND DISTRIBUTION FUNCTIONS

OF A TRUNCATED SEQUENTIAL TEST

Al Introduction

In this Appendix we give exact expressions for the operating
characteristic function, average sample number and distributicn
functions arising in sequentially testing for the mean of a
Gaussian dictribution. As in the main body of this report, we
are interested in testing the hypothesis HO that the mean of the
distribution is a = C against the alternative hypochesis ., that
a=a1>0_ the sampled X used in arriving at the decision ha;e a
Gaussian distribution with mean a and unit variance, Thrus the
density run~czion ot the samples 1s given by

(x..L—a)2

£(%,,8 = —=—— ¢ (A1)

The test statistic at the n=, stage i8 given by

D
Z,= T z (n.2)

where z, is obtained from the kth saméle X% by means of logarithm
of tne likelinhood ratic

f{xk, al) &? 2Xk
= e S -— X . : - — i n
zZ, in £ éjﬂﬁj "5 (1 al) {2.3)
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and where the expected value of z, is E(zy) = p o= - -—%(1 - =).
~ -

The test statiastic Zn is compared against two parallel
thresholds 1lnA = 1n liﬁ and lnB = 1ln Ig; such that decision do
to accept HO is made if Zn < 1nB, wheroas decision d1 to accept
Hl is made iI Zn > lnA, The testing procedure continues as long
as 1nB <« 2 < lnA. 1If at stage n=N no decision has been reached,

hypothesis H, ie accepted if ZN > x, and Ho is accepted if ZN<x.

1
It is very difficult to determine the exact values of

the operating characteristic function and average sample number

of a sequential test as specified above, This difficulty is due

mainly to the fact the test will not in general terminate with

Zn equal exactly tc 1lnA or to 1InB, 1In general Zn will exceed

these boundaries, and it is the effect cf this axcesrs which is

aucficult to analyze,

In order to avoid the difficulties of excess Hver the
koundary when the test statistic is discrete, we replace Zn by
a continuous test statistic Z(t) on which the ==2ma procedure
is followed as in the discicte case, We are, then, testing
for the dArift of a Wiener rrocess, This beihq the case, we have

2
a
V.fZ(t)}:ut:-—-%(l - 22y, (A 4)
%1
Efz(t) - B(z(£))1? = a2t , (A.5)

and termination time T in place of E 2, ~Hm, E[Z(t)-E(Z(t))]2=aim

and termination time N,
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A.2 The Operating Tharacteristic Function

In a continuous sequential test the probability of false
#larm will be exactly o and the probability of false dismissal
will be exactly 2, when the test is untruncated. In fact, the
OCF and ASN for such a test can be written down directly, 1In
the truncated case for a continuocus sequential test, the situation
is somewhat involved, The CCF is the probability that hypothasis
HQ is accepted. This is the probability that Z(t) téuches the
boundary 1nB before touching 1nA, plus the probability that Z(t)
lies between the boundaries for t<T and Z{(T)<x, The expression
for the general case of non-parallel boundaries is given by

5
Anderson, For our case we have

OCF = ,‘TP(Y) +Z

r=1

i:eh(rc~1nA) §§(—y .. 2{rc-1na),
a,JT

_eNIC @(-—y- 2z¢__, _,-hlrc+lnB) q'()(y_ 2§rc+1n82)

a, /T e
+ eNIC (jb (y- -2-59-)] (A.6)
a,JT
where
2= (1-8)/a, B = 8/(1-0), h = (1-2 3=,
1
alﬁ n
Yy = 5 , and c = 1nA - 1nB,

X __ 4
alJ"?

and where the function &(z) is given by
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4
oz) = [e 2 at (a.7)
- ANf2T

-

£ can be easily checked from Egn, (A,6) that for T = =

¢ =1~0CFl _,and p= OCF‘a'—-al.

Tne approximations for a, and B, given in Section 7 of
the main body of this report are obtained from the general
expression of the OCF given above,

A.3 The Average Sample Number

For the same truncated continuous sequential test as
described above, the ASN is given by

aZ ASN = (ASN), + (ASN)_ + (a% TP (A.3)

1

whare

%5:{[ -h{rc+1nAj d) a hﬁ (n;: }i’lnm}

(ASN), =
r=

a ﬁh
_ahrc@ (_____1_2_____ _ ch;na)] [2rc + 1nA]

21
— . (a.9)
- [e-h(”“c @( fi.;.'_i? - ( ...\.._.LE:}_M})

ai.ﬁ"

h(rc 1nB) hﬁ $2§r+12c~lm\)
Yif{2(r+1)e-1na
(b a, VT ] 31

and (AS‘W) is obtained4 when 1lnA and ~1lnB are iutarcbanged and
h is replaced by -h in (A.9). That is
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{(ASN(1nA, 1nB, h))O = (ASN(-1nB, ~-1lnA, -~ h))1

Also P = [1 - (P1 + PO)} where

h
p =1—(I)(a J_+ 1nh_, (A.10)
1 a, 457
Z{ —h(rc+1n8,(b(a hﬁ (2(:‘—1)c41nA))
al.ﬁ

_e-rhcdi( athF'“ (2rc~1nA1)
2 a,WT

_ghlre-1na)r, (alhﬁ+2vc-L.uA)1 3rhc[1_®(a]hﬁ+2rc+ln_l§)’|}
L* 2 2T 3 2 ag /v

and FO is chtained from 91 with the same substitutions as pre-
scribed for QASN)O.

It is not a difficult raatter to check from Egn, (A.8) that

when T = =

- N

% ) ASNiumo = - 1{1-a)1nB + alna]

and

1.2
2 24 "'SN'a=ai = glnB + (1-g) 1lnA

Thege ave the well-kniw?) expressions for the ASN for an untrun-~
cated test,

a7



A.4 The Density Function of the Sample Size

Again, tor the same test wnhich led to the expressions (A, 6)
for the OCP and (A,E) for the ASMN, we get that the proubabil.iy
dengity p(t) of the test iength t is given by

pl(t) = vl(t) + pc(t) (A,11)
where
- —-2-—2‘-'—9 (re+lna)
A . - a. .t
(t) = b f (—— & =222 7 [(27c 4 1nA)e |
Py 3,3/2 2
alt ~ rlﬁ r=c
_2i£ill§ {rc-1nB)
act R
- (2¢{z+1)-1nA) e 1 )i {h.12)

and po(t) is obtained from p,(t) by interchanging lnA with -1nB

and replacing h by -h, The function @g(x) :» given by
2
.
1 2
#x) = —— e
Nrsy
t
The functior p,{t) is such tnat P {t} = ? p.{. 13x is the proba-
- » i
-«

Fility rhat dsecision di is made befcre time t, The expressiocon
L Nal

Piit) is of course tha same as giver by EBqn, (A, 10}, and has the
property tha: Pa(e) + Pi(&} = 1, Also, for example, P (=) = 3

whan a2 and F_ (=) = & when a=a, .

.




APPENCIX B

APPROXIMATIONS TO THE DENSITY FUNCTION OF
THE SAMPLE SIZE OF SEQUENTIAL TESTS

In the case of a sequential test for the mean of a Gaussian
process, the exact expression for the density function p(t) of
*he sample size of an untruncated *test can be cbtained, This 1a
equivalent to the distributicn of the first passage time for a
random walk with two parallel abeorbing barriers, The exact

expressicrn is given by Ey, (a-11),

p{t) = »l(t) + po(t) (B,1)

where
2re
- === {rc + 4nA)
1 a, b/t in A - ait
p(t) = —5—ar=— g ( *’2 + —) 7 t(2rc + {nAje '
- (alt} ‘ alJFE Patalo!
el
»%&.&f(rc—tng)
ajt .
~{2c(r+1) - inAje » ]

and pﬁ(t) {8 cbtained from Pi{t}'by interchanging {nA with -ZnB and

replacing h by -N, In this expressici for the density function:

¢ = inh - in3,
. 23y
L LT
F Y .
a true signal-to-noise ratic
& presat signal-to-noise ratioc

[

Hx) = ‘exp - x7/ 21T
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For most purposes an approximate expregsion 1§ adequate,

tne such expression ~an be obtained
term of the infinite sum wvhich appears in
Thus we have that the probability density

test length t {or first passage time) car

by considerirg the fizst
the exact expressi.n,
function pit) of the

be approximated by

2c

azt I
(¢ 2 4o = (2e - ton)p = 1 5 PB T um
pit) = 2,,3/2 2 P
(alt) I

B ;2“? e
L f=tne - (2c s rmp)a 1y o PV Y eng
{altl" 31*\/ i d

If the test proceeds by d.screte sampling

the approximete o,3.f,

of the terminal stage n is obtained by replacing * with n,

A further simplif.ication is possible if we also assume that in

(2.2) B=0 and * > 2,
ther recomes
y ({ﬂzg 2
ple) = inh e IR
TRty
vhere g
oS - __2 % 5&1
and . 82
i 1
8

The approximate expression for tne p,d.f.
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The expression(@,3) checks after suitable substitutions, Wald's

formula (A.183, ».193].
- =
A further approximaticn is possible if (p4nA)/c® is large,
{.e., if many steps are needed tc reach the bound, The districution

of t given by(B, 3) approaches then the Gausaian distribution about

its mean

- X 2
- 13 3 (t=inasu;”
1 ~ 2ina o°/u '
S—5173 © S (8.4)
a2 )2

(2m.nA

It is c¢lear that the case#A>0, B=0 represents e¢ssentially the
random walk with only the upper boundary. The case of randam walk
with only the lower boundary is represented by B>0 and A infinite,
The expressiens appropriate to this case can be obtained simply
by replacing 4{nA by-inB wherever {nA ~ppears in {3.3) and (B.4).

Another useful approximation appliies to the case A=;/B [see
Bussgang and Middleton? (7.74), (7.75)]

We note alsc that if z is the logarithm of the probability
ratio of a test with independent samples but is not a normal
variable, then the p.4,f, of the sample size for B=0, 3>0Q can gtill

P

be approximated by(8.3)where u and 62 are now Ez and Var z,
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