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ABSTRACT

Pneumatic hammer instability of an Inherently compensated thrust gas bear-

ing was analyzed theoretically. Vohr's experimental correlation between the

pressure loss coefficient and Reynold's number was used ýý calcuidte flow through

tne restrictor inetxcd c' using the nozzic equ4Acnr The t!:: d.,ncent

Reyr.old's equation was solved by a perturbation analysis for smoll axial

oscillation. Based on the perturbation analysis, dynamic stiffness ard damp-

ing coefficient were calculated. Utilizing these and Pan's stability ctiteria

(Ref. 6) stability maps were constructed.



1. INTRODUCTION

Externally pressurized gas bearings have been used in many engineering devices.

It is well known that in order for the bearing tL, have relatively large load capa-

city and stiffnesp it ia desirable to have recessed pockets immediately after the

feeding holes. This causes the externally pressurized gas bearings to be suscep-

tible to pneumatic hammer instability. Analytical investigations on this subject

were made in References 1, 2 and 3.

In conventional analyses of externally pressurized bearings, nozzle equations

are used in calculating the flow across a restrictor. The dynamic pressure head

resulting from expansion through the restrictor is assumed to be completely lost

when entering the b~aring film. This, however, is not true as reported in Refer-

ences 4 and 5: a measurement of pressure at the restrictor exit indicates that

there is considerable pressure recovery. It was shown that the pressure loss

coefficient can be correlated with the Reynolds' uumber (Ref. 4); a linear rela-

tionship is chosen for simplicity.

A simple thrust plato with a feeding hope at the center and a recessed pocket

is to be analyzed based on the above pressure loss coefficient correlation for the

restrictor flow and the Reynolds' equation for the bearing film. Perturbation analysis

for small oscillation about the equilibrium position will be performed. Based on the

perturbation analysis, dynamic bearing stiffness and damping coefficient are

calculated. Using the stability analysis of Ref. 6, stability maps are constructed.
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2. ANALYSIS - SMALL PERTURBATION

The configuration of an inherently compensated, hydrustatic, circular, thrust

bearlng is schematically shown in Figure 1. Gas at supply pressure p is led

through the feeding hole with diameter df,-into the recessed pocket before enter-

ing the bearing film. For a circular bearing it is convenient to use the polar

coordinates. If we further assume circular symmetry, i.e. no misalignment, then

the radial coordinate, r, is tne only space variable required to describe the flow

and the pressure uibt;.,i im. Th iii t- faoilltnie P dvn~mic analysis let is

allow the bearing to have small axial vibrations about its equilibrium position and

express the bearing film thickness as

h - C + c cos T (2.1)

or in dimensioniless form

h 1 + E coS T (2.2)

where

h - h/C

C - equilibrium film thickness (2.3)

T - wt a dimensionless time

- frequency of vibration

We have "ssumed that the vibrations are purely sinusoidal. Note that L, the

normalized amplitude of vibration, is a small number.

The well-known time-dependent, isothermal Reynolds' equation is, in dimensionless

form,

r S3 J Tp (2.4)

where

r 1i
- squeeze number

Pa J
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The boundary conditions are

at rl- p 0

Sd R R(2.6)dR -at r -"-D,/p " PR

While Eq. (2.4) governs the pressure distribution in the bearing film, addi-

tional pressure-flow relationships across the .nlet restrictions at r - rF and at

r a rR are required for the solution of the problem. In the literature (Ref. 1,2,3)

the well-known nozzle formula is used to calculate the expansion of air from p

to PF and from PF to PR (assume that the pressure is uniform in the recessed pocket;

see Appendix A). If the pressures calculated according to the nozzle formula are

accepted, one automatically assumes that the velu,;iLy head resulting from expansion

through the nozzles is completely lost. This is not so because part of the velocity

head is recovered as indicated by references 4 and 5. In fact, if we express the

pressure drop at the entrance in terms of the velocity head,

(Lp K' (2.7)
ent 2

where

K' - loss coefficient 1
p - downstream gas density J (2.8)

V - downstream average velocity

in Ref. 4, K' is correlated experimentally %with the Reynolds' number (Re) which is

reproduced in Figure 2. But for all practical purposes, a linear relationship b'

tween K' and Re is satisfactory,

K' - K Re - K pVL (2.9)

where

K - constant - 0.66 x 10-3

L - typical length - film thicknessj (2.10)

Thus

p) K p2VL (2.11)Pent 2•
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Applying the above equation to the inlet of the recessed pocket we have
PF2 vF3 (h + h R)

- PF K 2(2.12)

Inside the recessed pocket we can write another Reynolds' equation applicable

there and solve for the pressure distribution. However, ppst experience indicates

that the gradient of the square of the pressure varies inversely as the cubic of

the local film thickness (see Eq. (A-5). In most applications, the depth of the re--

r'c:ed pocket hR Ii. 6ZLer than or at least equal to h. Therefore, it is a good

approximation to assume that the pressure in the pocket is uniform so long as

d F/dR is not too small.

Now, we again apply hquaLic;- (2.11) to the inlet to the bearing film (see Figure 1)

K R2 V R 3 h (2.13)PF - PR a 2P (,3

In solving the Reynolds' equation (2.4) with small periodic variations of the

gap about the equilibrium position, we write in complex form,

E-Il+ ZiT (2.14)

and expand the dimensionloss pressure,

p-"p 0+ E P1 e (2.15)

taking, of course, only the real part to be of physical signiiicancc. TQ tha fiibL

order in c we can compute easily,

p2 p 0 +EP0 p, e

p + C (p + p,) eit (2.16)
o • 0

fi3 1 + 3c e

Substitution of the above equations into (2.4) yields the steady--state and perturba-

tion equations,

r (2.17)
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r Pl)a i o + P1) (2.18)
r ar ; r

The boundary conditions areý

at r PC 1, 1, pI 0 (2.19)

dR

It is to be noted that PRO is an unknown quantity to be determind. Further-

more, one additional boundary conditionp 1 at rR is required t, solve the problem.

Now we can obtain the steady-state solution of (2.17) in terms of p RU °!bui,

-- 1 + -n r (2.1)
POL + n rR I I

The radial velocity in the film is, from the Stoke's equation,

u.- (z2  -- ) (2.22)
2P 'or 4

Here z is the axial coordinate (normal to the film) measured from the center ot the

film: the bearing surfaces are at z - + h/2 respectively. Knowing the radial

velocity distribution across the film, we can calculate the mass flow rate per unit

circumferential length at the film inlet,

r h/2 PR 1 1 h/2

G,. u dz - I ; (z 2 - -) dz
"-h/2 '*¶j* L* or j rR 'h/2 14

- -h 3 -•2 (2.23)
24 1RT ar I R

Define a mean velocity VR at the film inlet,

PR
G PR V h - •- VR h (2.24)
R R R P

Equating (2.23) and (2.24) resu'lts in

h2 v - - (2.25)
PR R 24 -" 2r IrR 2 4  W R or rR

Lii
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Recognizing that
• - iT

PR PRO + C pRI

and

-ý + 2E eiT 0

3r r R r rR rR

Equation (2.25) becomes

S 2 4 R + e 2 - + 2E (2.26)SE PRO PRO r

where

E 2 (2.27)

L r rJ

Nou that we have an expression for VR, let us apply the law of mass conservation

to the recessed pocket,

rI I. V rR h FVF rF (h + hR

L R N

+ f pF T, (r R2 - rF2 (h - h\1= 0 (2.28)

We nave assumed that the pressure and hence the density in the recessee pocket 13e

uniform even under dynamic condition. This requires that C <c 1, as shown in

Appendix A.

Arter some algebraic manipulation, Equation (2.28) is reduced to
ri a (Po P )

VF C R + e [2+ 2E o
F PFO (I +hR)E ar r

PF1 h Rr R4 r~ F 2~
P -- - "Pbo (i + Y) Phi El (2.29)

PFO +hR r i

We have used 2quation (2.26) and the obh l ,s relation

PF ' FO * E PF1 e (2.30)
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Knowirng VR and VF from Eq.'s (2.26) and (2.29) respectively, we are now in a

position to utilize Eq.'s (2.12) and (2.13). Substituting (2.26) into Eq. (2.13)

and collecting terms of the same power of e, we obtain

PFO - PRO " - K Q1 i_ E-3  (2.31)
PRO

PnF - P "R a (Pro -PRO) 7 - 6 + 6E (2.32)
PRO a rR

Similarly, from (2.12) and (2.29),

pa - PFO K Qj _ E-3 (2.33)

PFO

-F (pa-P 6 + +6E
P Fi 1+ hR a r r

3 1 0(2.34)
FO rR F LPFO + (1+ hR) Pkl.

where
C pa 4

Q1 " 2 x 2•3 )4 (RT)2RT (2.35)

r- R !3
r . (1 + 2 a~ geometry parameter (2.36)

Steady-State Solution

Combining (2.21) and (2.27) results in

E R kn r

PRO 2.-

Thus, we rewrite (2.31) and (2.33) in the form

PRO (PFO PRO) - - -RO 2 )- 0 (2.37)
Ai 3 J P

L1



-8-

PF (ps - PFO) i RO 2 - 13- 0 (2.3B)

whore

- modified feeding parameter

12 p T rF (C + hR)(- £n rR) 46_ ' /- 112
"s LK, (c - yj(2.39)

Cp3 ps(C + hR

Thus, it is revealed from the analysis that an inherently compensated hydrostatic

thrust gas bearing has two controlling parameters, namely, a geometry parameter, r,
and a modified feeding parameter, Ai , which is defined in (2.39). The modification1 6 ,-• T -11/3
is through the factor ' ,T 11/3 as a result of using Vohr's experimental

I pa(C + h)
correlation. From the input data or a given configuration, Ai and T can be

calculated. Then, Equations (2.37) and (2.38) are to be solved for pFO and pRO"

Since the equations are non-linear, the computations using Newton-Raphson method

(Ref. 9) are programmed on a computer. Having solved pFO and pR0' we know the

steady-stare pressure in the pocket (pFo), and the pressure distribution in the

film is given by Eq. (2o21).

From previous experience (see, for example, References 1 and 2), we know that,

in order for a bearing to be stable and to have relatively large load capacity and

stiffness, the recessed pocket should have a relatively small volume but large area
(rR 2). Thus, a shallow pocket (h,, > C) is desirable. Under these conditions, it is

found that r is of the order of 1000 or larger. From Equation (2.37), it is seen that

when I is large (say, 100 or larger), PO • PRO' i.e., the loss at the entrance to the

bearing is negligibly small. Therefore, as long as r is large, the solution will be

insensitive to r.

Perturbation Solution

The perturbation pressure is governed by Eq. (2.18) with the boundary condition

that pI - 0 at r - 1. Equations (2.32) and (2.34) are to be used to derive one

additional uoundary condition required to solve the problem.
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Since pi may be complex, it is convenient to assume that

PO P, - u + iv (2.40)

Substitute into Eq. (18) and separate the real and imaginary parts

1 dL du1 + v 0 (2.41)
r dr d] PO

Sd [ dv] 0 Po (2.42)

with boundary conditions

r-l

v - 0

u P2-- _ L ru- L. dr + r N r(2.43)

YR PRO/ r d R r R

+ F Ni - 7 PRO (PFO - PRO)

vI 2 PFd u Lr dv + L, -- + F Ni FI Nr
r-rR PRO i R R drN FR

The last two boundary conditions are derived from Eq.'s (2.32) and (2.34). The

details of derivation and the definitions of L r, Li, Fr, etc., are shown in

Appendix B.

In appendix C, Eq.'s (2.41) and (2.42) subject to boundary L.Cditions (2.43)

are solved numerically using matrix multiplication method (Ref. 8).
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3. LOAD CAPACITY AND DYNAMIC BEARING REACTIONS

The pressure distribution in the thrust bearing under consideration can be

summarized as follows:

i) The pressure in the feeding hole region is uniform and steady.

ii) The pressure inside the recessed pocket is uniform (approxi-

mately) but time-dependent.

iii) The pressure distribution in the film is

p (r, 1) P. () + eTu +i

u (r) (r) cos - v ) sin T(31)

PO(r)

The bearing force may be obtained by integrating the pressure relative to the

ambient, throughout the film. Thus,

R
W - ! (p - pa) 2 7r dr

0

R
a ,frF2 (P - P&a) + r(rR2 - rF 2 )(pF - Pa) + 27 j (p - p) r dr (3.2)

rR

Non-dimensionalizing the load by -rR2pa, we have

W _ (p - 1) + rR - 2)(p- + C PFI a
-r-p F a R F ~FO"~F

1 -- iT

+ 2f G -l1+ E;p e ) r-d- (3.3)
0

rR

Steady-State Load Capacity and Stiffness

In Eq. (3.3) the t'r--independent part alone contributes to the steady-state

load capacity,

W 2
r + (r PFo ) + 2 (p -) r dr (3.4)

iRp_ F ps Ro
a r!



This can be easily calculated with the aid of Eq. (2.21) and the solutions,

PFO and PRO' of Equations (2.37) and (2.38). From the load capacity, the static

stiffness can be obtained by

0 W Dck • Wo~ r _

TrR p a C I }T - (3.5)P " Pa

where the superscripts (+) and (-) refer to load capacities at C + AC and C - LC

respectively. AC should be sufficiently small, a suitable value for LC is 0.01C.

Recall that in calculating the steady-state pressures, we have twc parameters,

namely, the geometry parameter P and the modified feeding parameter Ai.

Ck
In Figure 3, the dimensionless static iffness is plotted againstr F r R -

Ai for a bearing with .002, R - 0.5 C 2 and r - !.736 x 106. It seems

that for ps a 2, 3 and 4, the respective stiffness has a maximum value when Ai is

approximately 0.9. If we change the geometry to make r - 1 x 103, numerical

computation shows that the dimensionless stiffness falls fairly closely with the re-

spective curves in Figure 3. This confirms the conclusion in the previous section

that as long as F is large, the results should be insensitive to T.

Dynamic Bearing Reactions

The dynamic bearing reaction due to axial vibration is, from the time-depend-

ent part of Eq. (3.3)

F - 2 )tT
,-T2-- E Re ( R2R rF2) P e +2l p e r r

E - e Re (a (uz + i V)j (3.6)

where
1

z - G (rR2 - rF2) (PF)r - 2 _ r dr

r R 0P

- Dynamic Stiffness (3.7)
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V - Dynamic Damping

1

W- (r- 2  rF2)(PF i2f Vrdr (3.8)

rR PO

Here u and v, the solutions of (2.41), (2.42) and (2.43), are solved

numerically by the matrix-multiplication method as shown in Appendix C. Thus,

the integrals in (3.7) and (3.8) can be calculated numerically. Using these

results, the dynamic stiffness and damping are plotted against frequency in

Figures 4 and 5 for different C. It is seen that when the frequency is low (W ' 1)

the dynamic stiffacs& approaches asymptotically to the value of the staLiL stiliufsa

and the dynamic damping approaches zero, as can be anticipated. When the frequency

increases, the dynamic damping first decreases and reaches a minimum, then it starts

to increase as shown in Figure 5. The frequency at which V - 0, is called the
z

critical frequency. These will be useful in the stability analysis in the next

section.
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4. STABILITY

In the previous section, we have calculated the dynamic bearing reactions

corresponding to small axial vibrations about the equilibrium (statically) position.

These information are directly useful in determining the bearing stability.

In Reference 6, a stability analysis for either a single or two degree-of-freedom

system was pcrformed. The results for a sirgle degree-of-freedom system are directly

applicable; they may be stated as follows:

Let v be the frequency of vibration at which

Vz1 V 0 (4.1)

This is the state of neutral stability. Then, the critical mass is given by
ParR2  -

M =a -,rR2 (4.2)
0 J v0

A slight variation from the state of neutral stability would cause the system

to be unstable if and only if

z 6M > C (4.3)av V

VI

where 6M is a small mass increment above M . From Figure 5, - v > 0. Therefore,
0

in order for the bearing to be stable, 6M must be less than zero, or, the bearing

mass must be kept below the critical mass.

Based on the above and a knowledge of U and V , the values of the critical mass
z

were calculated from Eq. (4.2); they were shown in Figures 6, 7 and 8. Since we are

dealing with bearings with subsonic flow throughout the passage and Vohr's data

(Ref. 4) are esst-rtially for low Mach number flows, we calculate the Mach number at

r - rF using Eq. (2.12) to compute the velocity. The solid lines in Figures 3, 6,

7 and 8 are for Mach number M < 0.9. Those segments of the curves of Figs. 3, 6, 7

and 8 shown in dashed lines correspond to M > 0.9 and should be regarded with caution.

One of the stability maps (experimental data) of Ref. 2 is reproduced in Fig. 9

where the critical depth of the recessed pocket is plotted against the supply pressure.



The present analysis predicts a critical depth of 0.0011 in at p. W 97.5 psia

which is slightly below the experimental point in Figure 9. This indicates that the

present method yields concervative stability result. This is believed to be in part

due ta the assumption of a uniform pressure in the recesL pocket.
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5. CONCLUSIONS

1. Vohr's entrance restriction data can be quite readily applied to analyze

the externally pressurized thrust bearing with an inherently compensated

restrictor. This analysis uncovers two controlling parameters, namely,

the modified feeding parameter Ai and the geometry parameter r; the latter

represents the relative degree of restriction between the exit of the feed-

ing hole and the exit of the recessed pocket.

2. Steady-state load capacity and stiffness were calculated. It was found

that the static stiffness has a maximum value when the modified feeding

parameter Ai is approximately 0.9.

3. Applying the stability theory of Ref. 6, stability maps were constructed

for a particular bearing geometry at different supply pressure. Experi-

mental results of Ref. 2 were compared with the present analysis; it was

found that the result of the present analysis is on the conservative side.
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6. RECOMMENDATIONS

1. Use the well-known nozzle formula to replace the loss coefficient

formulation, and then carry out the analysis. Compare the results.

2. Perforu limit cycle analysis acuording to the scheme suggested in

Appendix D.

3. Perform experiments to obtain more extensive data on loss coefficient

at higher supply pressure. This will take the compressibility effects

into account and thus, modify the results for bearings with high

entrance Macih number (but still subsonic).

_________

I
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"AkPENDIX A

The Uniformity of Pressure in the Recessed Pocket

In writing 'he isothermal Reynolds' equation for the recessed pocket, it

it more appropriai - to nQndimensionalize tl-h radial coordinate by rR nnd the gap

"'y C + hR. Thus, define

' r
rR

h + hK

S+ h-R

thea the Reynolds' equation is

~ 3 p a - (p h)(A2
ar ar ý 2r

where c - Squeeze number for the pocket

.12uw (. rR,) 2  (-3)
- a + (A.

If a is much smaller than unity (this will be verified a postiori, after we calculate

W), then

12 rh -0 (A-4) a

I or t  or~

or

'ý -3 a5 o _ . A-5)

The left hand 'Aide of Eq. (A-5) is essentially the mass flow rate through the bearing,

which is constant everywhere under quaai-4tatic condition (c 1). Therefore, we

deduce that

-(2A1

ar
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Since N, is greater than or at least equal to C, the gap of the pocket is at least

twice of the bearing film thickness. Bence we conclude that, if a < 1, then the

gradient of P2 is much flatter in the pocket than that in the bearing film, or,
the pressure in the recessed pocket can be assumed to be esseutially uniform

(spatially).

II
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APPENDIX B

The Derivations of Boundary Conditions

and the Pocket Perturbation Pressure

From Eq. (2.34), we can solve for pFI

1 + 3 hR d(jo P ) - R F.oPF13 R + 6+E 6 d 3 1 a PF rR
I + h R dr -r R R J.

PFI Y +r

where

~F1 -1 F 1 Bl

F-

PS PFO PFO
r-R 2 r rF 2

Fi -3 r E F -i + hR) (B.2)
rR

Or, we can write

PFI . (PFl)r + i (pFl~i (B.3)

if we denote

£ F + Ri F

Fi r Fr+F2

-k(r F + z F r
(PFl - Fi + rir r

1 + 3 hR (B.4)2.-in6E-l + +6
r drl R 1 +h

r R R

d rvR - r F 2
k. 6 E 2- EiŽFo -

drr, r

R I
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Substituting (B.1) into (2.32) and solving for pRI we obtain

2- PRI F +iF PFO +PRO)6IE(Popi)

PRO r dr rR
1 [11++3 R •R2-Ft

+ F ++ i F [ + -31 a E PFOFr 1 + •F r R

-7 (PP - PRO)

Multiply both sidem by PRO

(2 G Q - R l) -6 E _- - d u + d v
Ri/ FL- F ' "O di + v

r ~~([(+3r ý+)Fk 3  dP)ij
[(- )F+ 3 EFOR ( ' _ 2 ,R ~o-~o B5+ 3 -

The prPuct PRO RR can be written a+

FR0 +Ri - o P) - (u + iv) (B.6)

rRR

Now let urn define

L r l - PF0 + R0 6 E O

L F11 F 3 Fr 2PRO

1 + ER + 6 F PRO FO FFr 7 OGO R B5r + I

Nr I +• Fr + Fi

The~ ~~• _rAc PRO PR a b rttna

NP - 3oE PFOR Fr +i(

rR r R
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then Eq. (B.5) becomes

(2 - (+L d dL + L

PRO) rv ~ d i i I -. +r (
rR R r.R R rR

+IFr Nr + Fi N + i(Fr Ni- Fi N)]

- 7 PRO (PFO - PRO) (B.8)

Separating the real and imaginary parts, we obtain easily the following boundary

conditions

u[ 2 -- FO Lr du _ Li -411 + zI (B.9)

~R' dr - dri-rR Or R rR

w r -F N dRv + Li d-u + z 2  (B.10)v 2 PFO, dr d

r R RO r R rR

where

+Fi Ni - 7 (PFo - PRO)

Ni - Fi N (B.11)

Pocket Perturbation Pressure

The perturbation pressure at the pocket pFl can be calculated from Equations

(B.3) and (B.4). However, it is important to note that, when the frequency is very

low, Fi • 0, (in the limit of zero frequency, Fi W 0; this corresponds to a static

perturbation) and from Eq. (B.4) we have

Z F 2.
FG~r r r , (Br.12)
PF.r FFr r

For a given geometry and a supply pressure, by varying the equilibrium film

thickness one would obtain a steady-state pocket pressure equal to one half the supply

pressure at a particular value of C. It is obvious from Equation (B.2) that when

SI
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-- 1--
PF0 T " PS

F r 0 (B.13)r

Equations (B.12) and (B.13) Indicate that under the Liven supply pressure,

(pFl)r has a singular behavior. It can be shown, however, by a static perturbation

analysis, that whenever Fr - 0, .r M 0. Therefore, the singularity is probably a

removable one, i.e., the ratio r /Fr will approach a definite value. (One can argue

that physically (PFl)r should approach a definite value). But, the above computation

for (pFl)r cannot be programmed on a computer because it is unlikely that the

machine will give us the correct limiting value.

One way to avoid the above situation is to calculate pFI by using Equation (2.32),

dPu d- (B.14)

Y ~ F L F O ~ RP RO Idr r dr i }

Recall that pRI " - u + i I (B.15)

PRO r- j-

Thus, we obtain

)'Flr n ~ 2 - uF- + (PFO -RO(7 + 6E 4~-PRO PRO -rRr-R

(B.16)

PRO R - PROI i drý rJ
rR rR
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APPENDIX C

The Matrix Multiplication Method in Solving Ordingar

Differential Equations with 'Two-Point" Bcundary Conditions*

Equations (2.41) and (2.42) together with their boundary conditions (2.43)

may be written in the following general form:

[u"E + fl u' + f 2 u + f 3 v' + fl, v' + f 5 v - f 6  (C.1)

+ 91 V' + 52 V + 83 u" + 4 u' + 5 U - 36 (C.2)

at x - X1 , U - C1 u' + C2 V' + C3, V n0C4 U' + CS v'+ 06 (C.3)

at x nx2, uF- , v -G (C.4)

Here we desaote the independent variable by x. The primes represent derivatives

with respect to x. The symbols fl, f 2 ,. . • etc., are known functions of x; ci, c2,

etc., are known constants.

In central difference form, we can write

k
u(xk) - u

k+l k-1
u'(xk) -U u (C.5)

k+l uk Uk-iU~X)-u - 2 +u
-J

We have assumed that there are N 4ivisions between xj and x 2 , so that k - 0, 1, 2,

N, and L- X2 - xj
N

Now, Eq. (A.1) take the form

k+l ['+2 + 1jk++fk + k-l -

+ f4-k+l Lýf k ki kr k k] k-1 f k fýk] k
2 +fs + -- + f + f 6k (C.6)

*The method of computation described in this appendix is due to Castelli and

Pirvics (Ref. 8).
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A similar equation may be obtained from Eq. (C.2), which together with (C.6) can

be written in the following matrix form,

k k+l k kc k k-i kc
A y + B y + C y d (C.7)

where

V(

1l + ,k fk k-

( ,,' - U-

Li~k f R:

k 2L 2,A
| ,k k k1

2 kc -2f k

B k 7I 2 -= (C. 8)

2 k k -2 kc

l kc k k-k

1 - f If

k2A L 26

d k

Assaume that the y-vector at station "kc + 1: can be expressed by

yk+l - k+ mk (c.9)

where H is an unknown matrix and m, an unknown vector. From (C.9) we can write

formally



-25-

ykM k -1 i k 1

and (C. 10)

yk-1, . M-2 y k-2 +m k-2J

Substitute (C.9) and (C.10) into (C.7),

(Ak Mk + Bk) yk + Ck yk-1 i dk _ Ak mk

Thus,

yk [Ak M + Bk]-1 [_Ck y k-I + (dk _ Ak mk (C.11)

Comparing (C.11) with the first equation of (C.10), we find

Hk-1 . [Ak Mk + Bk]) - [-Ck] (C.12)

k-1 [A Mk + Bk]- (dk _ Ak mk) (C.13)

Using (C.4)

"[F:]
Y - (c.14)

and from the first equation of (C.10) we obtain

M-l - o (C.15)

N-i (C.[6)

Now we can use (C.12) and (C.13) as recurrance formulas to obtain

MN-2  -[Ni -i+Ni] [N-a]

_ [AN-i MNl Ni d1A 1 ~ i S(C.17)

o N- [AN,_ MN._ + BN-1-]11 [dN•1 _ _N-11 (c.N.1

MN-3 _[AN- M- 2 + ý-]l[ N.-2 ] 2  N

MN3M[AN-2 tý2+ BN-2]- Id N- 2m N211
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and so on.

Having ,-nmputad the M's and m's, we can calculate the solution by marching from

x W X1  ",,t first let us rewrite boundary condition (C.3).

u0  C1  (u1 -u 0 ) + C 2 (V -v) + C3

S0 nC 1 (uI -u 0 ) + CS (v1 -v) + C6

using forward difference formula. In matrix form the above two equations can be

written as

S yO . T y1 + z (C.19)

where

I+ c1 C2

Le1
T a 3(C.20)

Using the relationship

y . Mo yo + m (C.21)

Equatio. (C.19) becomes

S) yO - (T][Mo] yo + [T] m° + z (C.22)

Thus, we have finally

y - IS - I M* 1]r (T m* + z) (C.23)

K _ --L--- - - -~-
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Now we can march from this point to obtain the solution, using Eq. (C.9),

y - Mo yo + mo J C(C. 24)

2 . M1y
1 + M(

and so on.
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APPENDIX D

Scheme for Limit Cycle Analysis

Let us symbolically write the ReynolcL's equation in the form:

R (- p -P- (h) =0 (D.1)

Suppose that the bearing is unstable so that the amplitude of oscillation becomes

larger and larger. Sow, let us assume that a limit cycle motion will be reached

and during the limit cycle r.oution (finite amplitude), the gap variation and pres-

sure fluctuation remain to be sinusoidal. Thus,

h I + E cos vt (D.2)

p= PO + p1 (r) cos vt + ql(r) sin vt (D.3)

Here, the dimensionless ampLitude E is not necessarily small.

Apply cosine and sine transforms to (D.1).

v f R (p) cos vt dt = 0 (D 4)

Rs tP q•I ) p sin vt dt = 0 (D.5)

Note that a typical quantity in (D.1), h3, is equal to

3 _3
h (I + c cos vt)

2 2 -3 3
] R 3c cos vt + 3 E Cos Vt + E Cos vt (D.6)

I!
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Utilizing the identities

2
cos Vt = (1 + cos 2vt)

3
cos vt = • (3 cos vt + cos 3vt)

7T/v

Si/! cos mvt cos nvt dt = n n

t/V

S cos mvt sin nvt dt = 0

I sin mvt sin nvt dt = ib
- i/v

etc., one realizes that (D.4) and (D.5) are two non-linear ordinary differential

equations in p1 and q,, which are truncated to include only the simple harmonics.

Similarly we can -arry out the cosiue and sine transforms to the boundary con-

ditions and mass conservation in the recessed pocket and so on. This would yield

boundary conditions for the non-linear differential equations (D.4) and (D.5).

Iteration method may be used in solving the non-linear system.

Having solved p, ead ql we can compute the bearing forces.

R

W = 2 f (p - pa) r dr = W + U cos vt + V sin vt (D.7)
0

Then, the power output of the gas film, E, is

E W h (D.8)

ch
whrO sovosythtqez eoiy
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The average power output over a squeeze cycle can be readily obtained by

RAJv 7/v

E Edt W Lh W dt

-I/v -I/V

.1V
2- (- fCv) W sin \,t dt

- /v

- VC V(- v) (D.9)2

Let the bearing mass be M and write the equation of motion

2h

M h + U cor it + V sin vt - F sin vt (D.10)
dt

2

where F sin vt is the external force acting on the beari-'q other than the gas film

forces.

Sinc d2h - - 2 vt, by collecting the cosine terms in (D.10) we obtain
dt

CC-, • tD. ii0

Note that U is a function of v and C. Therefore, (D.I1) is a highly non-linear

equation. From equation (D.lI) the natural frequency, v , can be determined0

using numerical methods. In general, v is a furction of c and M. Thu3,
0

v = v (A,M) (D.P)C, O

Having determincd the natural freq,,ency, a stability criterion L-.,. •' established

by energy consideration. The bearing i6 stable if E is negative, and rlSi;ihie- if

E is positive. From Equation (D.9) we conclude that the bearing is stable if V

is positive, a•id unstable if V is neiative.

16
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Now, at v -v.0

V (,v) • V (v-o•(1m)) V (E-,M) (D.13)
Vo

A qualitative plot of V versus E for a given M is believed to be that shown in

the diagram. The bearing is utstable when E is small. Hence the amplitude will

V

• M '=Cons t.

Limit Cycle

Amplitude A

.,,°_ Un tabe • Stable

grow until it reaches a value, c , where V 0, and the bearing becomes margin-

ally stable. The bearing is then said to reach a limit cycle motion with limit

cycle aniplitude Eo.

LF
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NOMENCLATURE

C equilibrium film thickie~s

d F diameter of 0feeding hole

d R diametef of rece' ssed'pocket

E defined in (2.27)

FrF defined in .2) ,2)

Fz dynamic bearing rqa~t'ion - "

G mass •flow rat'e per unit length.

h film thickness
hR -dept:h of recessed" potket

h. .h/C;

•k static stiffnesi
0,

K'-, loss coefficient -K Re

L ,LiI def£ned •in (B.7)

Xr 9i definead in (B.4)

L typical .length

M mass; matrix defined in (C.9)

NrNi defined in (B.7)

p• pressure

PS supply pressure

Pa ambiant pressure

p dimen,•ionleas pressure

poPi def iacd in, (2.15), .

Q1 defined in (2.35)

r radial coord inate

r dimensionless radial coordinate, E/R

r F radius of feeding hole

r R radius of recessed pocket

R bearing radius

Re Reynolds' number - PVL
w , 2 VLRe Film entrance Reynolds' number 2 Pr---_

~~gas constant irFý

T temperature
t t ime
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U z dynamic stiffness

V dynamic damping
z

u, v defined in (2.40)

V velocity

W bearing load

W static loadS0

y.•

Z (ZI, Z21 defined in (3.11)

r geometry parameter defined in (2.36)

C amplitude of axial vibration

C dimensionless e

Ai modified feeding parameter defined in (2.39)

*viscosity

p density

a- squeeze number defined in (2.5)

T dimensionless time

w frequency

- .• - .. - o.

• .'. ..°



-34-

REFERENCES

1. Licht, L., Fuller, D.D., and Sternlicht, B., "Self-Excited Vibration of an Air-
Lubricated Thrust Bearing," Trans. ASME, vol. 80, p. 4 11l 1958.

2. Licht, L., and Elrod, H.G., Jr., "An Analytical and Experimental Study of the
Stability of Externally Pressurized, Gas-Lubricated Thrust Bearings," The
Franklin Institute, Report No. 1-A2049-12, 1961.

3. Lund, J., Wernick, R.J., and Malanoski, S.B., "Analysis of the Hydrostatic
Journal and Thrust Gas Bearing for the NASA AB-5 Gyro Gimbal Bearing," MTI
Technical Report 62TR26, 1962.

4. Vohr, J., "An Experimental Study of Flow Phenomeia in the Feeding Region c
an Externally Pressurized Gas Bearing," MTI Technical Report 65TR47, 19"

5. CarfaSno, S.P., and McCabe, J.T., "Summary of Investigations of Entranct £r:..t&ci
in Circular Thrust Bearings," Franklin Institute Research Laboratories Inter-`
Report 1-A2049, 1965.

6. Pan, C.H.T., "Spectral Analysis of Gas bearing Systems for Stability Studies,"
presented at the Ninth Midwestern Mechanics Conference, University of Wisconsin,
Madison, Wis., August, 1965.

7. Ralston, A., and Wilf, H.S., 'Mathematical Methods for Digital Computers,"
John Wiley & Sons, inc., New York, N.Y., 1960.

.8. .Castelli, V., and Pirvics, J., "Equilibrium Characteristics of Axial-Groove ,
Gas Lub-ticated Bearings,"' ASLE-ASME-ASLE Lubrication Conference, San Francisco,
California, October, 1965.

9. Hildebrand, F.B., "Introduction to Numerical Analysis," McGraw-Hill Co., New
York, N.Y., 1956.



I-S

hRdf

R

Fig. 1 Geometry of an Inherently Compensated,
Hydrostatic, Circular, Thrust Bearing



1.2 - -.-
CLEARANCE RATIO

h h/ri

s 1.0 & 2 MILS 2.0 x 102

A 3 MILS 3.0 x 10-2
a. o 4 MILS 4.0 x 10-2

-0.8 0 5 MILS 5.0 x 10-2

o 6 MILS 6.0 x 10-2

s 8 MILS 8.0 x 10-2
S0.6

J _
"0.4 2-I-

-1-

I ,

0 400 800 1200 1600 2000
S, ~pVL,

FILM ENTRANCE REYNOLDS NUMBER, Re : m/rr 2 T j-
(FROM VOHR, REF. 4)

Fig. 2 Loss Coefficient versus Film Entrance
Reynolds Number

k _- 2S5)_



0 --

1.0

C~Co

CQa

Ddz8J



30

c~Or-

es * am C 6

i 6 c

I /

/ :3

C))

C)) C- CD C
a___ oC -- C C C

a______ C>__ Co N> C

CC,,



o cJ
C)*

U.)

0~~~ C0 0

cg c

0 CA



IM

IM.
co'H __ ___cc

0~~j

Cj '. 0~ 0 -

I 0L

iqI) lI



400 ......

300 hR/C :2
rR/R :0.5 UNSTABLE)
r F/R 0.002 1 -

•. 200P =1.736 x106 !
-200 ~fbI"_o iii

3-- MIrF 0.9
F /STABLE

100 -- rirF>09B.

0 ___,LLIJ______

0.01 0.1
12 R2V'R'T rF(:+hR)(An iR) 16 1', RT )/3

A'i = 3P " Kps (C + hR)

Fig. 7 Critical Mass versus A'•

-2 5



1000 ____- -ifr ri v

800 =.L..1.= ____

:s6 UNoiABL
hR/C :2

600ý rR/R :0.5
rF/R :0.002

r' 1.736 x10 6

400 m rF < 0.9 --
'Mjr F>0.9 ,

200-- ~1-- _

0.01 0.1

Ai12 49-T rF(C + hR) (-In TRO (16/,LFO / 3T
C 3 p (Kps (C + tR)/

Tig. 8 Cri~i-_al Mlaaa veraut. A



300

S100: A__ __ __

L&J

CA,

L&J
C-)z- _ _ _- -_ -_ _ _ _-LJ 1O

C-,-

BEARING MASS: M =6.447x10 -IN

BEARING DIAM: 2R :5 IN.
RECESS DIAM: 2 rR = I IN.
NOZZLE DIAM: dN :0.055 IN.
CONSTANT LOAD: L =472 LB
ATM PRESSURE: P0 = 14.62 PSIA

ROOM TEMPERATURE, TO: 77F

75 80 85 90 95 ,00
PS - SUPPLY PRESSURE (PSIA)

Fig. 9 Experimental Data fr. LichL and Elrod



Unclassified
Security Classification

DOCUMENT CONTROL DATA- R&D
(Security claeelflcetlon of title, body of abstract and Indexing anotation must be entered whea7 the overall rtport ilas eetft0ed)

I. ORIGINATIN 0 ACTIVITY (Copontoe author) |e. REPORT SECURITY C LAIISIFICATION
Mechanical Technology Incorporated None
968 Albany-Shaker Road 2. GROUPN
Latham, N.Y. 12110 None

3. REPORT TITLE

Analysis of Pneumatic Hammer Instability of Inhezently Compensated
Hydrostatic Thrust Gas Bearings

4. DESCRIPTIVE NOTES (Type of report and Inclusive dates)

Interim (Jan. 1966 - Dec., 1966)
5. AU)'HOR($) (Lzst rane. first name, Initial)

Chicng, T., Pan, C.H.T.

6. REPORT DATE 70. TOTAL. NO. OF PAGES 1 b. NO. Or RIPS,

Jan., 1967 43 9
So. CONTRACT OR GRANT NO. 90. ORIGINATOR'11 REPORT NUMiER(S)

Nonr-3730 (00) MTI-66TR47
b. PROJCT NO.

NR062-317/4-7-66
9 b. gT,TH[.FR;jPORT NO(S) (Any other numbers diet mmy be cassiged

d.
10. AVA IL ABILITY/LIMITATION NOTICES

Qualified requestors may obtain copies of this report from DDC

il. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

13. AW8TRACT

Pneumatic hammer instability of an inherently compensated thrust gas bearing
was analyzed theoretically. Vohr's experimental correlation between pressure loss
coe~fficient and Reynolds' number was used to calculate flow through the restrictor
instead of using t~he nozzle equations. The time dependent Reynolds' equation was
solved by a perturbation analysis for small axial oscillation. Based on the.
perturbation analysis, dynamic stiffness and damping coefficient were calculated.
Utilizing these and Pan's stability criteria (Ref. 6) stability maps were construct-
ed.

S!9, 41473 Unclassified
"Security ClassificatlioTL~~) ~ j7 3 Uncassifie


