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ABSTRACT

Pneumatic hammer instability of an inherently compensated thruat gas bear-
ing was analyzed theoretically. Vohr's experimental correlation between the
pressure loss coefficient and Reyncld's number was used .. calculate flow through
tne restrictor instead of using the nozzle equatfens  Tho timz dogondent
Revrold's equation was solved by a perturbaticn analysis for small axilal
oscillation. Based on the perturbation analysis, dynamic stiffness ard damp-

ing coefficient were calculated. Utilizing these and Pan's stability criteria

(Ref. 6) stability maps were constructed.




T

1. INTRODUCTION

Externally pressurized gas bearings have been used in many engineering devices.
It is well known that in order for the bearing t. huve relatively large load capa-
city and stiffneses it is desirable to have recessed pockets immediately after the
feeding holes. This causes the externally pressurized gas bearings to be suscep-
tible to pneumatic hammer instability. Analytical investigatlons on this subject

were made in References 1, 2 and 3.

In conventional analyses of externally pressurized bearings, nozzle equations
are used in calculating the flow across a restrictor. The dynamic pressure head
resulting from exparsion through the restrictor is assumed to be completely lost
when entering the tcaring film. This, however, is not true as reported in Refer-
ences 4 and 5; a measurement of pressure at the restrictor exit indicates that
there is considerable pressure recovery. It was shown that the pressure loss
coefficient can be correlated with the Reynolds' uumber (Ref. &); a linear rela-

tionship 18 chosen for simplicity.

A gimple thrust plate with a feeding hope at the center and & recessed pocket
is to be analyzed based on the above pressure loss coefficient correlation for the
restrictor flow and the Reynolds' equation for the bearing film. Perturbation analysis
for small oecillation about the equilibrium position will be performed. ILased on the
perturbation analysis, dynamic bearing stiffness and damping ccefficient are

calculated. Using the stability analysis of Ref. 6, stability maps &re constructed.




2. ANALYSIS - SMALL PERTURBATION

The configuration of an inherently compensated, hydrostatlc, circular, thrust
bearing is schematically shown in Figure 1. Gas at supply pressure P is led
through tlie feeding hole with diamater df,.into the recessed pocket before enter-
ing the bearing film. For a circular bearing it 1s convenient to use the polar
coordinates. If we further assume circular symmetry, 1.e. no misalignment, then
the radial coordinate, r, 1s tne only space variable required to describe the flow
and the pressure ulstiiiuiion. I order to farilitate a devnamic analysis let nus
allow the bearing to have small axial vibrations about its equilibrium position and

express the bearing film thickness as
heC+ ¢ cos 1 (2.1)

or in dimensiciiless form

h~1+c¢€cosr (2.2)
where
-
h = h/C
€ = ¢/C
C = equilibrium film thickness (2.3)
T = ut = dimensioniess time
w = frequency of vibration J

We have ‘ssumed that the vibrations are purely sinusoidal. Note that e, the

normalized amplitude of vibration, is a small number.

The well~known time-dependent, isothermal Reynolds' equation is, in dimensionless

form,
lfn[; B52leol 60 (2.4)
- .- - T
T 3r or
where
r - v/R
P=p/p, |\, (2.5)
12pu {R <
c = -£~'(E) = gqueeze number

Pa




The boundary conditions are

at r =1 p=1 _
4 (2.6)

- pR/pa " Py

-]
(ad
=
'
!
o

While Eq. (2.4) governs the pressure distribution in the bearing film, addi-
tional pressure-flow relationships across the inlet restricticns at r = ;F and at
r= ;R are required for the solution of the problem. In the literature (Ref. 1,2,3)
the well-known nozzle formula is used to calculate the expansion of air from P,
to pp and from Pp to pp (assume that the pressure is uniform in the recessed pocket;
see Appendix A). If the pressures calculated according to the nozzle furmula are
accepted, one automatically assumes that the velwciiy iiead resulting from expansion
through the nozzles is completely lost. This is not so because part of the velocity
head is recovered as indicated by references 4 and 5. 1In fact, if we express the

pressure drop at the entrance in terms of the velocity head,

oo oVE .
(Ap)ent K' =5 (2.7)

where

K' = loss coefficient
p = downstream gas density (2.8)

V = downstream average velocity

In Ref. 4, K' is correlated experimentally with the Reynolds' number (Re) which is
reproduced in Figure 2. But for all practical purposes, a linear relationship *c

tween K' and Re 1s satisfactory,

K" = K Re = K ng (2.9)

where

,

K = constant = 0.66 x 1073 N
L = typlcal length = film thickness (2.19)
Thus
p2viL
(Ap) = K (2.11)




Applying the above equation to the inlet of the recessed pocket we have
2 3
p% V.2 (h+ hy)
P_ - PF = K 3 3 24 .R._ (2.12)

Inside the recessed pocket we can write another Reynolds' equation applicable
there and solve for the pressure distribution. However, past experience indlcates
that the gradient of the square of the pressure varies inversely as the cubic of
the local film thickness (see Eq. (4-5). 1In most applications, the depth of the re-
r-zsed pocket hR is glealur than or at least equal to h'. Therefore, it is a goocd
approximation to assume thet the pressure in the pocket is uniform so long as

dF/dR is not too small.

Now, we agaln apply kquailci (2.11) to the inlet to the bearing film (see Figure 1)
2 3
o) V.°h
R R
Pp " Pg = KT (2.13)

In solving the Reynolds' equation (2.4) with small periodic variations of the

gap about the equilibrium position, we write in complex form,

Fmle+i el (2.14)

and expand the dimensionless pressure,

- - - - 4
P'l>0+51>1"-T (2.15)

taking, of course, only the real part to be of physical eignificance. T the firsi

order in ¢ we can compute easily,
=
P2 a2+ 25, e
o o Fl
+ T G+ P e (2.16)
it

T

ph = p,

h3 w14+ 3¢e

o
Substitution of the above eguations into (2.4) yields the steady--state and perturba-

tion equations,

[

[ ap 2]
o r—2j=0 (2.17)
-1-_ ar_\

1=
@
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s -0 - - e =
;— {r — (pG plil- io (po + 1) (2.18)

at r = 1, Py = 1, p; = 0 (2.19)
o ™ Pro (2.20)

It is to be noted that ERO is an unknown quantity to be determinud. Further-
more, one additional boundary condition,ﬁ; at ER is required to solve the prchlem.
Now we can obtain the steady-state sclution of (2.17) in terms of SRU‘ Thus,

2_1 i

B} P _
P = [l + R0 Lar (2.1)

x0T
X
R

The radial velocity in the film is, from the Stoke's equation,

.1 3 .z _hf
usorae Gy

(2.22)
Here z is the axial coordinate (normal to the film) measured from the center of the
film: the bearing surfaces are at z = + h/2 respectively. Knowing the radial
velocity distribution across the film, we can calculate the mass flow rate per unit

circumferential length at the film inlet,

h/2 P “ | 'h/2 2
G, = f p,. udz = :g %— 2R i (z2 - D—) dz
N —h/2 on L LW or | r ~h/2 4
R
-h¥ 3p? ]
24uRT 31 r (2.23)
R
Define a mean velocity VR at the film inlet,
Pr \
= - -—— | )
GR Pr VR h AT \R h (2.24)

Equating (2.23) and (2.24) resclts in

. - 2
vo=_.B22 ) W Pa 5p?
PR 'R 24y or 2ol R - |-

(2.25)
!‘R R

BOT— T

v




Recognizing that

5 =p. +ecp el
Pp ® Pro € pRl
and
3_2 3502 it 8(50 pl)
B - + 2¢c e
3% T, o |F T 7
R R R

Equation (2.25) becomes

C%p P 3 _p )
V. . - a—l——{lue“{ -—&l+2}z-—-‘-’-r——
RO

R 24uR -

} (2.26)
Ep r

q-1
- (2.27)
r

Now that we have an expression for VR’ let us apply the law of mass conservation

te the recessed pocket,

r A
e - \
le Vprgho-p. Vorp (h+hR,J
L
3__[ 2 _ p 2v¢m . -
s LpF 7 (rR T y¢h hRﬂ 0 (2.28) F
We nave assumed that the pressure and hence the density in the recessed pocket “e 1
uniform cven under dynamic condition., This requires that g << 1, a8 shown in
Appendix A.

Arter some algebraic manipulation, Equation (2.28) is reduced to

Czp r 3(p p )
VF"'zTﬁi R L 1+ee“[2+2£ ~ !
F Pro (1 + hR> E \ Jr l R
PF1 By T e - ] }
- + __'T - % C R pbo + (1 + hR) pb1 EJ (2.29)
Ppo + T Mg TR 4

We have used Iquaticn (2.26) and the obr.. 's relation

= it
Ppo ¥ ¢ Ppp © (2.30)




Knowing VR and VF from Eq.'s (2.26) and (2.29) respectively, we are now in a

position to utilize Eq.'s (2.12) and (2.13). Substituting (2.26) ianto Eq. (2.13)

and collecting teirms of the game power of £, we obtain

= S ek D S
Ppg " Ppo " "R QU T E (2.31)
Pro
- - - - ERl (l_) Bl)
Pro 4 ITg

Sixilarly, from (2.12) and (2.29),

D ~Dp.__ ® - N S
Pg ~ Pro KQ ! —E (2.33)

Pro
1+ 3ER a(p 51) ‘
- - =]
- Py " (b, - Ppy) {e + —= + 6E — _

1+ hR ar er
; ;RZ - ;Fﬁ r_ _ . -
- KL 3y O‘—'—;—'———ILpFO-l- (1 + hp) p“JE (2.34)
Pro R
where
C7p 4
a
QU = 7% 23 ( RDZRS (2.35)
Iy
[ = :5} Q+ ER)-A = geometry parameter (2.36)
r
F
Steady-State Solution
Combining (2.21) and (2.27) results in
I inT
E e “_R - R
Ppo” " 1
Thus, we rewrite (2.31) and (2.33) in the form
- = = o1 = 2 _ y)3a 5
!\i Py )
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iy - = 1 m 2 4y3 a
Pro (pti pFO) -y (pRO b)) 0 (2.38)

whare

= modified feeding parameter

12 y ¥ RT ro (C + hR)(- Ln ;R) 16 y VAT ,:1
3 1
c Pa er (c+ hR)_J

g
1/3

(2.39)

Thus, it 18 revealed from the analysis that an inherently compensated hydrostatic
thrust gas bearing has two controlling parameters, namely, a geometry parameter, T,
and a modified feeding parameter, A,, which is defined in (2.39). The modificacion
is through the factor E?%fL%%;%}——j'l/3 as a result of using Vohr's axperimental
correlation. From the‘inpat data for a given configuration, Ai and [ can be
calculated. Then, Equations (2.37) and (2.38) are to be solved for EFO and BRO‘
Since the equations are non-linear, the computations using Newton-Raphson method
(Ref. 9) are programmed on a cumputer. Having solved EFO and ERO’ we know the
steady-state pressure in the pocket (PFO)’ and the pressure distribution in the
film is given by Eq. (2.21).

From previous experience (see, for example, References 1 and 2), we know that,
in order for a bearing tc be stable and to have relatively large load capacity and
stiffness, the recessed pocket should have a relatively small volume but large area
(TER2), Thus, a shallow pocket (hR § C) is desirable. Under these conditions, it is
found that T is of the order of 1000 or larger. From Equation (2.37), it is seen that
vhen T 18 large (say, 100 or larger), BFO N ERO’ i.e., the loss at the entrance to the
bearing 1s negligibly swmall. Thereiore, as long as I is large, the solution will be
insensitive to T.

Perturbation Solution

The perturbation pressure is governed by Eq. (2,18) with the houndary condition
that p; = 0 at r = 1, Equations (2.32) and (2.34) are to be used to derive one
additional voundary condition required to solves the problem.




Substitute into Eq. (18) and separate the real and imaglnary parts

1 e Rk
r dr dr Py
1 d [- dv- g -
I L B e
r dr drJ P
with boundary cenditions
u = 0
Tel
v - Q
rel
P
u 2-ﬁ\, L9“| -L.Q‘—’l +F_N
_ B / T - _ 1 d; _ Tr r
rR RO IR trR
+ By Ny =7 Ppy (Ppg - Pge)
l;FO dv du
v| 2 -——|=aL = +L, =] +F_N
o 5 T dE! - i 45!« r'i
r-rR RO rR IR

Since p; may be complex, it is convenient to assume that

;O 51 = u <+ iv

(2.40)

(2.41)

(2.42)

(2.43)

The last two boundary conditions are derived from Eq.'s (2.32) and (2.34). The

details of derivation and the definitions of L

r)

Appendix B.

are golved numerically using matrix wmultiplication method (Ref. 8).

In appendix C, Eq.'s (2.41) and (2.42) subject to boundary ccmditions (2.43)

Li’

F _, etc., are shown in

r
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. 3. LOAD CAPACITY AND DYNAMIC BEARING REACTIONS

The pressure distributicn in the thrust bearing under consideration can be
summarized as follows:

i) The pressure in the feeding hele region 1is uniform and steady.
11) The pressure inside the recessed pocket is uniform (approxi-
mately) but time-dependent.

111) The pressure distribution in the film is

P(E, 1) mp, (D)4 eltBTAY
P_
|

~

-5 (5 + Y (£) cos 1 - v (r) sin T

= (3.1)
po(r)

The bearing force may be obtained by integrating the pressure relative to the
ambient, throughout the film. Thus,

R
W= f (P - pa) 2 nr dr
o
R
- 2 - 2 . ¢ 2 - -
TepS (P ~ Pgd + m(xp® - %) (pp pa>+2"£ (-p)rdr (3.2
! R
Nen-dimensionalizing the load by ﬂRzpa, we nave
Vea—H— i (5 - 1)+ (5l - 1 ) (hy, - L+ E By &)
! TRp, F ‘“*R F FO Fl
|
|
; 1 - = AT, = .=
! + 2 f (p° ~-1l+4+c¢p e ) rdr (2.3)
i R

I
; Steady-State Load Capacity and Stiffness

In Eq. (3.3) the * 'm--~independent part alone contributes :o the steady-state
load capacity,

W 1
© . IT2 (T _ 2 _72v(3 . o Z a3
;iy;~ ro (ps 1) + (rR e ,(pFO 1)+ 2 (pO 1) r dr (3.4)
8 T
R
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This can be easily calculated with the aid of Eq. (2.21) and the solutioms,

SFO and ERO’ of Equations (2.37) and (2.38). From the load capacity, the static
stiffness can be obtained by
ck W w By )
° .._.¢ o o e._C (0 __o® 3,5)
nRzpa ac WRzpa 246¢C ﬂRzpa rRzpa -

where the superscripts (+) and (-) refer to load capacities at C + AC and C -~ 4C

respectively. 4C should be sufficiently small: a suitable value for 4C is 0.01C.

Recall that in calculating the steady-state pressures, we have twc parameters,

namely, the geometry parameter I' and the modified feeding parameter A

L
Cko

In Figure 3, the gimensionlegs static g;iffness ;ETE- is plotted against

Ai for a bearing with ﬁ{ = 002, 2. 0.5, T " 2and T = 3.736 x 10%. It seems

that for Bs = 2, 3 and 4, the respective stiffness has a maximum value when Ai is
approximately 0.9. If we change the geometry to make I' = 1 x 103, numerical
computatlon shows that the dimensionless stiffness falls fairly closely with the re-
spective curves in Figure 3. This confirms the conclusion in the previous section

that as long as T 1s large, the results should be insensitive to T.

Dynamic Bearing Reactions

The dynamic bearing reaction due to axial vibration is, from the time-depend-
ent part of Eq. (3.3)

F 1

2 e C =2 _ =2y = it - it - .=

;ﬁzsz € Re (rR Tp ) Ppy © + 2 { pL e r dr
'R

= -t Re{e(U +1V) (3.6)
z z . )
where
T2 _ %2y (3 by o -
Uz - - (rR - I ) (pFl)r -2 { g— r dr
rp ‘o

= Dynamic Stiffness (3.7)
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.. Vz = Dynamic Damping

. _ (52 _7Z 2y _
(rR T )(pFl)i 2 (3.8)

(2l Bt
vlr:
2]}
fu
ey

R ©
Here u and v, the golutions of (2.41), (2.42) and (2.43), are solved
numerically by the matrix-multiplication method as shown in Appendix C. Thus,
the integrals in (3.7) and (3.8) can be calculated numerically. Using these

results, the dynamic stiffness and damping are plotted against frequency in

Y
Figures 4 and 5 for different C. It is seen that when the frequency is low (w 2D
the dynamic stiffacss approaches asymptotically to the valua of the stailc stiliuess

and the dynamic damping approaches zero, as can be anticipated. When the frequency H
increases, the dynamic damping first decreases and reaches a minimum, then it starts

to increase as shown in Figure 5. The frequency at which Vz = O, i1s called the

ST R

critical frequency. These will be useful in the stability anmalysis in the next
section.
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4. STABILITY

In the prerious section, we have calculated the dynamic bearing reactions
corresponding to small axial vibrations about the equilibrium (statically) position.
These information are directly useful in determining the bearing stabilicy.

In Reference 6, a stahility analysis for either a single or two degree-of-freedom
system was pcrformed. The results for a single degree-of-freedom system are directly

applicable; they may be stated as follows:
Let Yo be the frequency of vibration at which

v w (4.1)

This is the state of neutral stability. Then, the critical mass is given by

panR2 s
Moo=z Ul (4.2)

e \Y

o]

A siight variation from the state of neutral stability would cause the system
to be unstable if and only if

av
—=£ &M > C (4.3)
ov
v
Q
avz
where 6M is a small mass increment above Mo. From Figure 5, FYOnt I 0. Therefore,

in order for the bearing to be stable, éM must be less than zero, or, the bearing

mass must be kept below the critical mass.

Based on the above and a knowledge of UZ and Vz, the values of the critical mass
were calculated from Eq. (4.2); they were shown in Figures 6, 7 and 8. Since we are
dealing with bearings with subsonic flow throughout the passage and Vohr's data
(Ref. 4) are esscrtially for low Mach number flows, we calculate the Mach number at
re ;F using Eq. (2.12) to compute the velocity. The solid lines in Figures 3, 6,

7 and 8 are for Mach number M < 0.9. Those segments of the curves of Figs. 3, 6, 7

and 8 shown in dashed lines correspond to M > 0.9 and should be regarded with caution.

One of the stability maps (experimental data) of Ref. 2 1is reprcduced in Fig. 9

where the critical depth of the recessed pocket is plctted against the supply pressure.
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The pressnt analysis predicts a critical depth of 0,001l in at P " 97.5 psia
which is slightly below the experimeutal point in Figure 9. This indicates that the
present method yields concervative stability result. This is believed to be in part

due to the assumption of a uniform pressure in the reces:c pocket.




5.

CONCLUSIONS

1. Vohr's entrance restriction data can be quite readily applied to analyze
the externally pressurized thrust bearing with an inherently compensated
restrictor. This analysis uncuvers two controlling parameters, namely,
the modified feeding parameter Ai and the geometry parameter ['; the latter

represents the relative degree of restriction between the exit of the feed-

ing hole and the exit of the recessed pocket.

2. Steady-state load capacity and stiffness were calculated. It was found
that the static stiffness has a maximum value whea the modified feeding
parameter Ai is approximately 0.9.

3. Applying the stability theory of Ref. 6, stability maps were constructed
for a particular bearing geometry at different supply pressure. Experi-
mental results cf Ref. 2 were compared with the present analysis; it was

found that the result of the present analysis is on the conservative side.
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6. RECOMMENDATIONS

1. Use the well-known nozzle formula to replace the loss coefficient

formulation, and then carry out the analysis. Compare the results.,

2. Perforn limit cycle analysis according to the gcheme suggested in
Appendix D,

3. Perform experiments to obtain more extensive data on loss coefficient
at higher supply pressure. This will take the compressibility effects
into account and thus, modify the results for bearings with high

entrance Macu number (but still subsonic).

[ O
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APPENDIX A

The Uniformity of Pressure in the Recessed Pocket

In writing ‘he isothermal Reynolds' eauation for the receseed pocket, it
ls more appropriai : to nondimensionalilzs thi radial coerdinate by 2N and the gap
2y C + hR' Thus, define

(a-1)

(4-2)

where g = Squeeze number for the pocket
r 2
- 22Hw R (A-3)

Pa \C By

If 3 is much smaller than unity (this will be verified a postiori, after we calculate

(ad
>
o
o
LT [ [ad =, HP
b3
Iq) © 1
ne
g ol o ??|H
—
"o '; +] +
(3 © ==
W — ]
o
LT )
Q2
e
— '2
[ § =)
rt
Qae [
[
alar =
=
=
~~ n
Tt
e
s
-MM“M

w), then
l 3 r"v "v3 3—22
o TR =0 (A-4)
¥ or or
or
nl
g B3 E%— = ~oust, A-=5)
ar

The left hand 4ide of Eg. (A-5) is essentially the mass flow rate through the bearing,
which 1s constant everywhere under quasi-static condition @ << 1). Therefore, we

deduce that

e 1

a2, A (A-6)
Y% O

or 1
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Since hR is greater than or at least equal to C, the gap of the pockaet is at least

twice of the bearing film thickness. Hence we conclude that, if 3 << 1, then the

gradient of 52 is much flatter in the pccket than that in the bearing film, or,

the pressure in the recessed pocket can be assumed to be essentially uniform
(spatially).

r——
|
|
|
|
|
|
|
|
i
I
i
|
1
|
|
|
|
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APPENDIX B

The Derivations of Boundary Conditions

and the Pocket Perturbation Pressure

From Eq. (2.34), we can solve for BFI

—Feeaple—| "3 1P — -
_ 1+ hR dr ITg R 5.1)
Pr1 F +1F e
r i

- - - ;2_;2
1+3 0 dG, B1) R_ " TF ]

{B.2)

Oxr, we can write
p = (p_ ) + p .
Pry (pFl i (pyl)i (8.3)

if we denote

P -
e’y FZ+F

) r 1 i

(bpydy = F 2 +F2

h (B.4)
v =6 E R
T
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Substituting (B.l) into (2.32) and solving for sRl we obtain

P
FO -
(2‘ Ppy ~ (F +1F, = Ppo * Ppo) & E r(" pl)r
Ppo R
=2 _=z2
1 1+3 hR rR tF
+ +56~310E p -_—
F_ +1F FO -
r 1 1+8 p
‘7("1?0"’110)
Multiply both aides by pRO
P F -1F
SFO) - r i z du av
2-77) (po Ppy) = O E|FT T FZ ~Ppp * Ppof (Tt 1
P r i dr dr -
RO rR
P 1+3h r,2-1.2
PR hR-n-e.p-r-:amzP R ]
FZ+F = FO 1
T i 1+ hR R
1436 T2 -T2
— R - IRTTTE -
-1 T+t + 6 F1 + 3 0gE Pro — Fr 7 Pro (pFO PRO) (B.5)
* By TR
The product SRO 5RI can be written as
;RO ;RI - (EO ;l)_ = (u+ 1V)_ (B.6)
TR r
Now let us define 9
r - - —
L (F; + 7,2 " Pro * pxo) é E Pro
Fy
Li"rrz-rri?s’:pno
= - B.7
(1+3hn Pro (B.7)
R = = Y FTiE 2
1+ hR r 1
-, = -
r.‘~-r P
- Iy F RO
Ny =30 Epyy FZ+F2
b4 i
K
t
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then Eq. (B.5) becomas

5 .
2 - w+t v =L au| -1 +ifL av| +1,
? r a7 r = 1ar
pRO ) dl"; ; dt,- ;
R R R r R

4-[Fr N+ F N+ 1(Fr N, - F, Nr)]
- 7 Pgo (pFO - pRO) (B.8)

Separating the real and imaginary parts, we obtain easily the following boundary
conditions

P
u (2 - _FO - Lr Q% - Li Q% + z (B.9)
I= Prn dr dr|=
e \ RO rR rR
1;FO dv du
v 2 -—= L = + L, + 25 (B.10)
T Pro driz driz
R R R
where
2y = F N + T Ny =7 ppg (Ppg ~ Ppo’
2= F_N - F N_ (B.11)

Pocket Perturbation Pressure

The perturbation pressure at the pocket BFI can be calculated from Equations

(B.3) and (B.4). However, it is important to note that, when the frequency 1is very

low, Fi n 0, (in the limit of zero frequency, F1 = 0; this corresponds to a static
perturbaticn) and from Eq. (B.4) we have
x_ F L
(Bpydp ¥ ;71 - F:' (B.12)

For a given geometry and a supply pressure, by varying the equilibrium film
thickness one would obtain a steady-state pocket pressure equal to one haif the supply

pressure at a particular value of C. It is obvious from Equation (B.2) that when
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(B.13)

Equations (B.12) and (B.13) indicate that under the given supply pressure,
(BH)r has a singular behavior. It can be shown, howevar, by a static perturbation
analysis, that whenaver Fr - 0, zr @ 0, Therefore, the singularity is probably a
removable one, i1.e., thea ratio lr/Fr will approach a definite value. (One can ergue
that physically (SFI): should approach a definite value). But, the above computation
for (pFl)r cannot be programmed on a computer because it 1s unlikely that the

machine will give us the correct limiting value.

One way to avoid the above situation is to celculate SFI by using Equation (2.32),

- - - - d
Ppp = Pp ¥ (pFo-' pRO) 7 - SEL + 6 E‘ —% + 1 Q% ) (B.14)
Pro driz drlz
R R
Recall that p = —— (u +iv ) (3.15)
Pro ;
R K
Thus, we obtain
(By), == |2 - iggl ul o+ Bop - Po) |7+ 68 42
Ppy’y T 2 - Pro ~ Pro e )
Pro Pro - =
R R
: _ (B.16)
- .1 _Pro - - dv
(Pr1)y (2 — | v| + (g pRO)( 6E " )
Pro Pro r_

'R 'R
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APPENDIX C

The Matrix Multiplication Method in Solving Ordinary
Differential Equations with "Two-Point' Beundary Conditions*

Equations (2.41) and (2.42) together with their boundary conditions (2.43)
may be written in the following general form:

fu" + £, u' + fo u+ f3 v+ £, v+ £5 v = fg {c.1)
D.E
v+ 81 V' + g2 v+tgzu'+g, u' +gsum=gg (c.2)
fat x = X), uwcyu' +cy v +cy, vacyu' + cg5y'+ cg (c.3)
B.C. _ - :
lat x = x;, u=F, vegG (C.4) ;

Here we denote the independent variable by x. The primes represent derivatives
with respect to x. The symbols £;, f,,. . . etc., are known functions of x; c;, co,
.« « . @tc., are known constants.

In central difference form, we can write

.
u(xk) - uk
u1c+1 _ uk-l
t -
u (xk) By Sa— (C.5)
u::(x ) uk+* - 2 u + \lk 1
k 8% ]

We have assumed that there are N Aivisions between x; and x,, so that k = 0, 1, 2, .,

N, and &4 = £L§%££L .

Now, Eq. (A.l) take the form

. k k
¥t li—z + Q—] +uf [ﬁ% + fzk} + a7t [}7 - -g-l—]

4 28 4 24
k k k k k
+ - -
+ vk+l [+§ + —“—;A ] + vk[—é—zi + fsk] + vk 1[—}-2 - _L§A ] - fsk (C.6)

*The method of computation described in this appendix is due to Castelli and

Pirvics (Ref. 8).
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A similar equation may be obtained from Eq. (C.2), which together with (C.6) can
be written in the following matrix form,

A¢ gFHL | gE yk + ck yk_l e a¥ (c.7)
where —1
e
() = u
y
ch )
r k k k
1 £ £ fu_
, YT BT
A -
et 1Lt
K + 22 22t % ]
p— k B
“A'? + fzk '—r.zi + fsk
¥ . (C.8)
k
-2 k
;_AF_ +83 Tt
- k k
1 - £ £ - ﬂh_
« 22 T2 ﬁ— 24
C -
iii £ 1 }Li
LA‘ T2 22 T %
Pfak
FLI-
k
LSS

Agsume that the y-vector at station 'k + 17 can be expressed by

SR Lk kK .9

-

where M is an unknown matrix and m, an unknown vector. From ((C.9) we can write

formally




Ja gl kel kel

and
-1 M*-Z yk-Z + mk-Z

Substitute (C.9) and (C.10) imto (C.7),

ki 4 B yR ekl ag

Thus,

- (A M* + B ] 1 ck k-1

Comparing (C.1l) with the first equation of (C.10), we find

T PR U R S
ol e paRu 4 B @ -

Using (C.4)

)

@]

Ak

k

+ @«

k

m )

- Ak m

k_ 4k Kk

m )]

and from the first equation of (C.10) we obtain

o o

Now we can use (C.12) and (C.13) as recurrance formulas to obtain

R e 1] 1[ N—l]

2 o [

N2 [AN-l N-1, gN- 1] !
N3 [A“ 2 p-2, 2] -
T I Ry

[
[--2]
[

d

- 2

N-2

N1 - 1]

J L

-
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(C.10)

(C.11) -

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(c.18)




and go on.

Having ~~mputed the M's and m'a, wa can calculate the solution by marching from
X w Xy ut firet let us rewrite boundary condition (C.3).

u’ - C (ul - uo) + C, (Vl - Vo) + C3
Vo - C (u! - W) o+ Cs (v! - vo) + Cg

using forward difference formula. In matrix form the above two equations can be
written as

Sy’ =Tyl +2 (c.19)
where
1
1+ ¢ CZW
S -
Ll + Cy CgJ
[C) Cz]
T - (C.20)
Lcy Cs
2,
F -
.22
Using the relationship
y! =M y° +a° (c.21)
Equatic. (C.19) becomes
(s} yo = [T][H°) y° + [T) n° + 2 (€.22)

Thus, we have finally

yo =[S~ g M7 (T a® + 2) (€.23)
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Now we can march from this point to obtain the solution, using Eq. (C.9),

y}_M0y0+mO
(c.24)
yZ-Hl y1+m1

and so on.
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APPENDIX D
Scheme for Limit Cycle Analysis
Let us symbolically write the Reynold's equation in the form:
n('}=-l-—a— 1?53'5\’13— o GR =0 (D.1)
P t ot P 3r ot P '

Suppose that the bearing is unstable so that the amplitude of oscillation becomes
larger and larger. .Jow, let us assume that a limit cycle motion will be reached
and during the limit cycle notion (finite amplitude), the gap variation and pres-

sure fluctuation remain tc be sinusoidal. Thus,

h=1+c¢ cos vt . (D.2)

o
i

= 50 *tp () cos vt + ql(;) sin vt (D.3)

Here, the dimensionless ampiitude ¢ is not necessarily small.

Apply cosine and sine transforms to (D.l).

LYAY
Rc {Pl, qy; \} = j R{p) cos vt dt =0 (D 4)
-n/v
Vd LAY
. 1 = 1 = D.F
Rs tpl, Qs »} f R{p}sxn vt dt =0 (D.5)
-n/y
. . } =3
Note that a typical quantity in (D.1), h™, is equal to
J3 - 3
h = (1 + ¢ cos vt)
- .2 2 23 3
= 1+ 3¢ cos vt + 3¢ cos vt + ¢ cos vt (D.6)
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Utilizing the identities
cos vt =% (1 + cous 2vt)

3
cos” vt = % (3 cos vt + cos 3vt)

cos mvt cos avt dt = 1 §
mn

-n/v

/v

"
o

cos mvt sin nvt dt
-n/v
n/\

sin myt sin nvt dt

[}
=
o

mn
-nt/v

etc., one realizes that (D.4) and (D.5) are two non-linear ordinsry differentijal

equations {in Py and q,, which are truncated to include only tiue simple harmonics.
1

Similarly we can carry out the cosiue and sine transforms to the boundary con-

ditions and mass conservation in the recessed pocket and so on. This would yield

boundary conditions for the non-linear differential equaticns (D.4) and (D.3).

Ireration method may be used in solving the non-linear system.

Having solved sad we can compute the bearing forces.
g P, 9 P

R
W = 2=x j(p-pa)rdr=wo+Ucosvt+Vsinvt (D.7)
o

Then, the power output of the gas film, E, is

E=uw22 (D.8)
Q

ch . .
where 5? is obviously the squeeze velocity.
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The average power output over a squeeze cycle can be readily obtained by
/v /v
?z‘j—f E dt = & W gy
Ln T at
=n/v -n/y
x/v
aL ..- i )
an - €Cv) W sin vt dt
-n/v
eC -
= - 33— Vie,v) (D.9)
Let the bearing mass be M and write the equation of motion
th
M ) + Ucos vt + V 8in vt = F gin vt (D.10)
dt

where F sin vt is the external force acting on the bearinq other than the gas film

forces.
d2h -2
Sincz — = - ¢Cv™ co5 vt, by collecting the cosine terms in (D.10) we obtain
dt
- i¢]
- LMt U - (b.i1)

Note that U is a function of v and ¢. ZTherefore, (D.11) is & highly non-linear
equation. From equation (D.1ll) the natural frequency, v, can be determined

using numerical methcds. In generel, v 1is a fupnction of ¢ and M. Thus,
o
, o= v (f 12
Yo vo(e,M) (D.17)

Having determincd the natural frequency, & stability criterion cz.u b2 established
by energy consideration. The bearing is stable if E is negative, and unstable if
—~

E is positive. From Fquation (D.9) we conclude that the bearing is stable if V

is positive, aand unstable if V is negative.
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Now, at v = v_ ,
o

VE,wy| o =v (E,VO(E,M)] =V (2,M) (D.13)

A qualitztive plot of V versus € for a given M is believed to be that shown in

the diagram. The bearing 1is ui stable when € is small. Hence the ampiitude will

v

p M = Const.
Limit Cycle
Amplitude -\
: ¢ -
-s.— Unstable Stable ___,

.~

grow until it reaches a value, Eo, where V = 0, and the bearing becomes margin-
ally stable. The bearing is then said to reach a limir cycle motion with limit

cycle anplitude EO
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NOMENCLATURE

c equilibrium film thickiess

dp diameter of feading hole

dR diamete. of ﬁecgsasd'pocket

E defined in (2.27) .
F,.F; defined in(3:2) L,

F, " dynamic beariqg_reqétion" R

G mass flow rale per unit length . -~ 7

h film ﬁhickness : ' . .

h? _ “depth of recesqed.pdckef y

k.- h/C I o

s v
1k°: -'atatic atiffgaaé , *

X', loss coefficient = K Re

L,Ly, defined in (B.7) .
% %, ° defined in (B.4) 4

L typical length

M mass; matrix defined in (C.9) SR ’
NN, defined in (B.7) ' -

Pe pressure

Py supply pressure

P, amblant pressure

p dimensionless pressure .
P,.pi  cefiaed in (2.15) o
Q1 defired in (2.35) .
T radial coordinate :
r dimensionless radial coordinate, r/R

rp radius of feeding hole

TR rediug of recessed pocket

bearing radius

Re Reynolds' number = 2%£ .

Re Film entrance Reynolds' number = ~%};-- 2 Egk
R gas constant F

temperature

t time




3

A

€

Q © b= L I I ]

« N N

N @ ' £ <€ € <

[

.0

<

dynamic stiffness
dynamic damping
defined in (2.40)
velocity

bearing load

static load
[21, 22] defined in (B.ll)
geometry parameter defined in (2.36)

amplitude of axial vibration

dimensionless ¢

modified feeding parameter defined in (2.39)

- viscosity

density
sqdeeze number defined in (2.5)
dimensionless time

frequency
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