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ABSTRACT

Models of the Titan III/Manned Orbiting Laboratory (MOL) launch
vehicle were tested in Tunnels 16T and 16S of the Propulsion Wind
Tunnel Facility at Mach numbers from 0.60 to 3. 10 to determine pres-
sure and acoustical characteristics for structural design confirmation
and to obtain force balance data for flight control and trajectory analysis.
A calibration cone was also tested to evaluate tunnel background noise
in the Titan III/MOL acoustical data. Force data were obtained by using
four internal balances to sense separate aerodynamic loads on the com-
posite model and on the MOL, MOL-Gemini, and solid rocket motors
(SRM) sections. Modification of the SRM noses to a less blunt configu-
ration resulted in a reduction of composite and SRM axial load and
tended to position the composite longitudinal neutral point at a more
forward location. Lateral neutral point for the composite model ex-
hibited a maximum travel of 2.6 core diameters for the 0.60 to 3. 10
Mach number range whereas the longitudinal neutral-point travel was
1.0 diameters. The acoustical results are not presented in this report.

iii
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NOMENCLATURE

measured axial force
q_S

Total axial-force coefficient,

. . Poo = Py S
Base axial-force coefficient, } <°° . ‘) S'
o
1

Forebody axial-force coefficient, CaA - CA b

Pitching-moment coefficient (see Fig. 10 for moment refer-
measured pitching moment
quD

ence locations),

Pitching-moment curve slope, rate of change of pitching-
moment coefficient with angle of attack (dCy/da) evaluated
at @ = 0 deg, per degree

measured normal force
q,5.

Normal-force coefficient,

measured yawing moment
qQSD

Yawing-moment coefficient,

Yawing-moment curve slope, rate of change of yawing-
moment coefficient with sideslip angle (dCpn/df) evaluated at
B = 0 deg, per degree

P, - P

Pressure coefficient, =

o

measured side force
q.5

Side-force coefficient,

Core diameter (reference diameter), 0.3535 ft
Free-stream Mach number

Average base pressure for the ith section, psf

Static pressure measured on the pressure model, psf
Free-stream static pressure, psf

Free-stream dynamic pressure, psf

Reynolds number per foot, V_ /v,

Core cross-sectional area (reference area), 0.225 ft2

Effective base area of the ith section, ft2

xi
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ana

anB

SUBSCRIPTS

1
2
3
4

Free-stream velocity, ft{sec
Distance of pressure model orifices from model nose, ft

Longitudinal neutral-point location measured in reference
diameters from the moment reference point (see Fig. 8),
dCpm /dCn at o = 0 deg, positive forward

Lateral neutral-point location measured in reference diam-
eters from the moment reference point {see Fig. 8),
dCp/dCy at 8 = 0 deg, positive forward

Model angle of attack with respect to the tunnel centerline,
deg

Model sideslip angle with respect to the tunnel centerline,
deg

Kinematic viscosity of the free stream, ft2/sec

Roll orientation of surface pressure orifices (see Fig. 9), deg

Gemini section

MOL -Gemini section
Composite model
SRM

CONFIGURATIONS

xii

Bagic Titan III/MOL launch configuration
Titan III/MOL launch configuration with 20-deg SRM noses -

Titan II1/MOL launch configuration with modified Gemini
shape
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SECTION |
INTRODUCTION

Models of the Titan IlI/Manned Orbiting Laboratory (MOL) launch
vehicle were tested in the supersonic (16S) and transonic (16T) circuits
of the Propulsion Wind Tunnel Facility (PWT) to obtain surface pressure
and acoustical data for structural design confirmation and to obtain
force balance data for flight control and trajectory analysis. A calibra-
tion cone was also tested to determine tunnel background noise in
acoustical data obtained for the Titan III/MOL pressure model. The pres-
sure model and calibration cone were investigated at Mach numbers
from 0. 60 to 3, 00 and the force model was tested at Mach numbers from
0.60 to 3. 10.

SECTION Il
APPARATUS

2.1 TEST FACILITIES

Tunnel 16T is a continuous flow, closed-circuit wind tunnel capable
of operation from a stagnation pressure level of 40 {o 4000 psf. The
test section 1s 16 ft square by 40 ft long and is lined with perforated
plates to allow continuous operation with minimum wall interference
through the Mach number range from 0.5 to 1.6.

Tunnel 165 is a continuous flow, closed-circuit wind tunnel capable
of operation between Mach numbers 1.7 and 3. 2 at stagnation pressures
from 100 to 2000 psf. The test section is 16 ft square by 40 ft long.

Details and photographs of the test sections showing model location
and support strut arrangement are presented in Figs, 1 through 4. A
more extensive description of each tunnel is given in the Test Facilities
Handbook. !

2.2 MODEL GEOMETRY

The Titan 1II/MOL launch vehicle combines a Titan IIT 120-in. -diam
core and two 120-in. -diam, 7-segment strap-on solid rocket motors
(SRM's) with the Manned Orbiting Laboratory (MOL), The MOL consists

1Test Facilities Handbook (5th Edition). '"'Propulsion Wind Tunnel
Facility, Vol. 3." Arnold Engineering Development Center, July 1963,
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of a 120-in. -diam cylinder and is mounted aft of a Gemini spacecraft.
Separate, geometrically identical 0, 0535 -scale force and pressure
models of the basic launch vehicle were tested in each tunnel. Model
details are presented in Fig. 3.

One additional configuration each of the force and pressure models
was tested in tunnel 16T. The second force configuration was used to
study the effect of SRM nose shape on composite vehicle axial force and
consisted of the basic model with modified SRM nose geometry. The
modified SRM noses are detailed in Fig. 5. The additional pressure
configuration was the basic model with a modified Gemini shape. Details
of the modified Gemini are shown in Fig. 6. The basic force and pres-
sure models are subsequently referred to as configuration 1; the force
model with modified SRM noses and the pressure model with the modi-
fied Gemini shape are identified as configurations 2 and 3, respectively.

2.3 INSTRUMENTATION

Four internal strain-gage balances, located as sketched in Fig. 7,
were used to measure aerodynamic loads on the force model. The
model centerbody was separated by gaps at the Gemini-MOL and MOL-
core interfaces (Fig. 7), such that balances 1 and 2 sensed loads only on
the Gemini and Gemini plus MOL, respectively. The composite vehicle
loads were sensed by balance number 3; balance number 4 was used to
measure loads on the left SRM. A total of 17 base and cavity pressure
orifices (Fig. 7) were used to measure base pressures on the force model.

The pressure model was instrumented with 32 flush-mounted micro-
phones and 361 surface pressure orifices for respective measurements
of fluctuating and steady-state pressures. Microphone and orifice loca-
tions are shown in Fig. 8.

All microphone outputs were recorded on magnetic tape. The
steady-state pressure orifices were connected to transducers. The
outputs of the transducers and balances were recorded by means of
the PWT data processing system described in the Test Facilities
Handbook.
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SECTION I
TEST DESCRIPTION

3.1 PROCEDURE

Angles of attack (@) and sideslip (8) were obtained by pitching and
rolling the sting to pre-calculated angles corresponding to the scheduled
a-f combinations. The orientation of moments and forces and the
moment reference locations for the force model are shown in Fig. 9.

Data for the force and pressure models were recarded by holding
Mach number constant while @ and 8 were varied from -11 to 11 deg.
Mach number for the force model was varied from 0. 60 tc 1. 40 in tun-
nel 16T and from 1. 80 to 3. 10 in tunnel 16S. The pressure model was
tested at Mach numbers from 0,690 to 1. 40 in tunnel 16T and from 1. 80
to 3. 00 in tunnel 165.

Reynolds number variations for the various installations are shown
in Fig. 10.

3.2 PRECISION OF MEASUREMENTS

The estimated precision of measurements is as follows:

Angle of attack or sideslip +0. 10 deg
Mach number 0.60 to 1, 10 +0.003
1.20 to 1.40 =0.010
1.80to 3.10 £0.020
Dynamic pressure M, < 1,40 +4 psf
M_ > 1.40 13 psf

The coefficient uncertainties are shown in Table I. These uncer-
tainties were determined by a statistical method based on a 95-percent
confidence level and a normal error distribution. The uncertainties
quoted for Mach number relate to the variation of Mach number in the
vicinity of the test article. The uncertainty in setting Mach number
varied from £0. 003 to £0. 010 with increasing Mach number.



AEDC-TR-66-202

SECTION I¥
RESULTS

4.1 FORCE PHASE

Data from the force phase are presented sequentially for the Gemini,
MOL, -Gemini, composite, and left SRM sections. Subscripts 1 through 4
(see Nomenclature) are used to identify coefficients plotted for the four
sections. Where applicable, data from configurations 1 and 2 are com-
pared to determine the effects of SRM nose shape. Configuration 2 was
tested in tunnel 16T only, limiting data comparisons to Mach numbers
from 0. 60 to 1. 40,

4.1.1 Gemini

The Gemini aerodynamic results were essentially identical for con-
figurations 1 and 2; data are therefore presented for configuration 1 only.
Pitching-moment coefficient, Cm, and normal-force coefficient, CN,
are plotted as functions of angle of attack, o, for angles of sideslip, B,
of 0, -4, and -8 deg in Figs. 11 and 12. The variations of yawing-
moment coefficient, Cy, and side-force coefficient, Cy, with B for
a =0, 4, and 8 deg are shown in Figs. 13 and 14. Since the Gemini is
basically a body of revolution, predictable similarities between Cy
and CN and between Cp and Cm are indicated.

Forebody axial-force coefficient, Ca, , and base axial-force coef-
ficient, Cp p, for the Gemini are presented as functions of @ in Figs. 15
and 16. There were no significant variations except at Mach number 0.80,
where both Cp g and Cp p varied erratically with @. Repeat values of
CA, F and CA, p obtained for the Gemini during configuration 2 testing
are also presented at Mach number 0. 80 and corroborate the erratic
variations. Variations of CA,  and Cp , with Mach number at o, $ = 0
are shown in Figs. 17 and 18, Maximum values of Ca, p were exhibited
at Mach numbers 1. 30 and 1, 40; CA, b reached a maximum value at
Mach number 0. 80.

4.1.2 MOL-Genini

The variations of Cy and CN with @ for 8 = 0, -4, and -8 deg are
presented for the MOL -Gemini section in the presence of SRM configu-
rations 1 and 2 in Figs. 19 and 20. Similar variations of Cp and Cy with
B for @ = 0, 4, and 8 deg are shown in Figs. 21 and 22. The modifica-
tion of the SRM noses from configuration 1 to configuration 2 effected a
slight decrease in the absolute magnitude of Cy. The magnitudes of Cy
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were similar from Mach numbers 0. 60 to 1. 00, but configuration 2 ex-
hibited slightly larger absolute magnitudes from Mach numbers 1. 10
to 1. 40,

Trends of C4, F and CA’ p With ¢ are shown for configuration 1 in
Figs. 23 and 24. Variations of Ca, 7 and Cp p with Mach number for e,
B = 0, comparing configurations 1 and 2, are given in Figs. 25 and 26,
The magnitudes of the MOL-Gemini Ca, F for the two configurations are
in close agreement, with maximum values indicated at Mach numbers
1.30 and 1.40. The negative values of Cp p resulted from the location
of the MOL-core interface gap (see Fig. 7) in a high pressure region
between the core and noses of the SRM's. Figure 26 shows consistently
more negative values of Ca p for configuration 1, indicating higher core
surface pressures at the MOL-core gap for the blunter SRM nose.

4.1.3 Composite Model

The variations of Cm and Cy; with @ and C,, and Cy with § for con-
figurations 1 and 2 are presented in Figs, 27 through 30. Trends of the
pitching-moment curve slope, Cmg,, and the yawing-moment curve slope,
Cnﬁ, with Mach number are shown in Figs. 31 and 32, Configuration 1
exhibited slightly more negative values of Cm,, but the two configura-
tions displayed similar trends and magnitudes of CnB' Longitudinal and
lateral neutral-point locations, Xnp, and Xnpg, are shown as functions of
Mach number in Fig. 33. Configuration 1 exhibited a more rearward
Xnpg for Mach numbers from 0. 60 to 1, 20; differences in Xnpg for the
two configurations were not consistent. The Xnpgy for configuration 1 was
most forward at Mach number 0. 60 and was most rearward at Mach num-
ber 3.10. The most forward and rearward Xnpg values for configuration 1
occurred at respective Mach numbers 0.90 and 2.60. The Xppg for con-
figuration 1 was more sensitive to Mach number change than was Xnpgys
Fig. 33 shows maximum travels of 2.6 diameters for ¥npg and only
1. 0 diameters for Xnpgy-

Variations of Ca, r and Cp  with o are presented for both configu-
rations in Figs. 34 and 35. Figures 36 and 37 show variations of Ca g
and Cp p with Mach number at @, 8 = 0. Configuration 2 exhibited sig-
nificantly lower values of Ca, p at the comparison Mach numbers from
0.60 to 1. 40. For configuration 1, Cp p increased with increasing Mach
-number to a maximum value at Mach number 1. 30, and decreased as
Mach number was increased from 1. 30 to 3.10. Configuration 2 exhibited
slightly larger values of CA, b for Mach numbers 0.60 to 1.20. A maxi-
mum value of Cjp, b was observed for configuration 1 at Mach number 1.10.
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4.1.4 SRM

As mentioned previously (Section 2. 3) aerodynamic loads were
measured on the left SRM. It should be noted that, as 8 is varied from
positive to negative values, the left SRM moves from leeward to wind-
ward sides cf the core, i.e., becomes more directly exposed to the free-
stream flow.

Trends of Cm with o for B = -8, -4, 0, 4, and 8 deg are shown for
the two SREM configurations in Fig. 38. Not surprisingly, Cmg values
become increasingly negative as the sideslip angle varies from positive
to negative. The value of Cm at @, 8 = 0 is slighily positive at Mach
numbers froem 0,60 to 2. 20. This occurrence is attributed at least in
part to the location of the thrust vector contrel rocket (TVC, see Fig. 5)
along the bottom, aft portion of the left SRM. A high pressure region
between the core and TVC and a low pressure region aft of the TVC
shoulder along the bottom side are likely and would contribute a positive
pitching moment at @, 5 = 0.

Variations of CN with & are presented in Fig. 38. In agreement
with the effect of 8 on Cmy, the most positive CN, value for configura-
tion 1 occurs at B = -8 deg and CN, becomes less positive as 8 is in-
creased from -8 to 8 deg.

Lateral coefficients Cp and Cy are shown as functions of 8 for the
two configurations at @ = 0, 4, and 8 deg in Figs. 40 and 41. As « was
increased from 0 to 8 deg, Cp became more positive and Cy became
more negative.

Variations of CA, F with ¢ and 8 are compared for the two SRM con-
figurations in Figs. 42 and 43, Figures 44 and 45 show variations of
CA,b with @ and 8. A variation of 8 to more positive values tended to
decrease the CaA, F magnitude and caused the magnitude of CA,b to in-
crease, Variations of Ca, F and Cp p with Mach number at o, 5 =0 deg
are presented in Figs. 46 and 47. The second SRM configuration ex-
hibited smaller values of Ca p at the Mach numbers at which compari-
sons were made. The basic SRM configuration displayed a maximum
Ca, F at Mach number 1. 20 and a maximum Ca, b at Mach numbers from
1.10to 1, 20.

4,2 PRESSURE PHASE

Surface pressure data along the model centerbody were obtained for
the basic launch vehicle (configuration 1) at Mach numbers from 0. 60 to
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3. 00 and for the basic model with modified Gemini paylcad geometry
(configuration 3) at Mach numbers from 0.60 to 1,40, Details of the
modified Gemini shape are described in Fig, 6. Pressure coefficient,
Cp. is presented as a function of model station, x/D, for longitudinal
orifice row orientations, 0, of 0, 90, and 180 deg. The orifice row
locations are shown in Fig. 8.

Variations of Cp with x/D for 6 = 0 and 180 deg and for 8 = 0 are
presented at @ = 0, -6, and -11 deg for configuration 1 in Fig. 48 and
for configuration 3 in Fig. 48. For 6 = 80 deg, Cp is presented as a
function of x/D for e = 0at = 0, 11, and -11 deg in Figs. 50 and 51
for configurations 1 and 3, respectively.

4.3 FLOVW VISUALIZATION

Schlieren photographs of flow characteristics surrounding the launch
vehicle were obtained at Mach numbers from 0.60 to 1.40. Flow photo-
graphs of the SRM noses at 8 = 0, 4, and 6 deg for o = 0 deg are pre-
sented for configurations 1 and 2 in Figs. 52 and 53, respectively.

SECTION V
SUMMARY OF RESULTS

The data results are summarized as follows:

1. Maximum values of CA, F occurred at Mach numbers 1. 30 and
1. 40 for the Gemini and MOL-Gemini sections. Basic configu-
rations of the composite model and the SRM section exhibited
maximum CA, F at Mach numbers 1, 30 and 1. 20, respectively,
Modification of the SRM noses to a less blunt configuration
effected a reduction of Ca, F for the SRM section and the com-
posite model.

2. The most forward Xnp, for the basic model occurred at Mach
number 0, 60 and the most rearward Xnp, was at Mach num-
ber 3.10. The Xnpg was positioned most forward at Mach num-
ber 0,90 and was most rearward at Mach number 2. 60. The
configuration with modified SRM noses exhibited a more forward
Xnpg @t Mach numbers from 0.60 to 1.20. The Xnpg for the
basic model was more variant with Mach number than was Xnpgs
Xnpg displayed a maximum travel of 2.6 diameters compared

to 1.0 diameters for Xnpg-
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TABLE |
COEFFICIENT UNCERTAINTIES
Mach
+ + + + + + +
No. |Component |£&C "5CN _6Cn _OCY _Cp _GCA —éCA,b
0.80 Gemini 0.004 | 0.006 | 0.002| 0.006 {0.015 | 0.015 ]| 0.015
{(Balance
1.10 | Number 1) | 0.003 [ 0.005| 0.001| 0.005 | 0.008 | 0.01C¢ [ 0.011
2.20 0.006 | 0.009 | 0.003 ] 0.009 }]0.002 | 0.005 ] 0.012
2.80 0.006! 0.010| 0.003| 0.010 [ 0.025 | 0.003 | 0.019
=
0.80 MOL- 0.033]10.037} 0.033] 0.037 0.009 | 0.015
Gemini
1.10 | (Balance 0.018| 0.031| 0.018| 0.031 0,008 | 0.011
Number 2)
2.20 l 0.052 ] 0.060 | 0.052| 0.060 0.015] 0.012
2.80 0.055]1 0.063| 0.055| 0.063 0.016 | 0.019
0.80¢ Composite] 0.112 | 0.064 | 0.110| 0.049 0.030 | 0.015
(Balance
1.10 | Number 3) | 0.090| 0.041 | ¢.080| 0.040 0.01¢ ] 0.011
2.20 0.300| 0.102 | 0.143| 0.079 0.0401 0.012
2.80 0.325| 0.103 | 0.146| 0.083 0.042 0.019
0.80 SRM 0.058( 0,048 0.093| 0.030 0.024 ) 0.015
(Balance
1.10 | Number 4) { 0.037| 0.039| 0.088| 0.026 0.020| 0.011
2.20 0.115] 0.077| 0.107| 0.047 0.039{ 0.012
2.80 0.112] 0.081| 0.107| 0.049 ¢ 0.040| 0.019
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