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METHODS OF TABULATING BALLISTIC FUNCTIONS BASED ON
TEE SQUARE 1AW OF DRAG '

ABSTRACT

The solution of the equationsof motion of & projectile subject to
the Newtonian Law of Resistance im e xpressible in terms of quadratures.
By applying certain transformations these quadratures are now greatly
simplified, and the functions leading to the desired information per-
taining to the trajectory are quickly and accurately calculated. There
is, then, given a method of determination of the bagic parameter k which
loads to very good results, as shown by numerous comparative examples.
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LIST OF SYMBOLS AND FORMULAS

= m/1d Ballistic coefficient
G = vFoKD Resistance :.E‘v.motioni
H =,q40° Relative air denagity
KD Drag coefficient

T=T(8,b ) Time function
X =X(B, b ) Bange function

Y=Y(B, b) Altitude function

b I3 (90) + g/(ZkJ’ci), quentity essociated with the squere law
0 o(&) =cos 0(§)
g Gravitational aocoeleration
k pKD/C, quentity assoolated with the square law
8 5(§) = sin 9({)
t Time
v Spesd of projectile
Vor Vo1 Y Speed of projectile at point of deperture, summit, point
of fall, respectively
x Absrissa (horizontal) in system O(x, y) of reference de~-
seribing the motion of the projectile

Ng Ordiﬁéfe (vertical) in system O(x, y)

B=(b-§)N

y - B 1/2

n=-§

8 Inolinetion of trejectory

8(&) Inverse function ofe (9)

£ =& (8) =fog 139039 ae

P Air density at altitude y

@ | Angle of feall
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INTRODUCTION

The application of the Newtonian Law of Resistance to ballistic
investigations has been found to give exact results only in rather
special cases, but does lead to good approximatioms in meny more cages
of practical interest. There are certain projectiles whose velocities
ere limited to relatively small rangee, and whose resistance it is
difficult to determine accurately, As pointed out by L. 8, Dederick
and F, V. Renol, §. J. Zaroodny and D. N, BI‘OOICBZ and otherg, it is
for projeotiles such &s these that the square law of drag may pro-
fitably be employed ~ provided one assumes the product of air density
and drag ococefficlent to be oonstant over the whole trajsotory.

While extensive tables of exterior ballisgtios baged on the square
law of drag =~ such as, for example, the tables of Otto and Lardillon -
have existed for & long time, it was, nevertheless, felt that am
accurate tabulation of the squere law ballistic funotions themselves
would not only be useful, but would elso fill a gap hitherto existing
in this field, I% is for these reasoms that the job was begun, early
in 1945, and carried out on the Aberdeen IBM Relay Caloculators, under
the direction of I. J. Schcenberg.

There are thus now aveilable six %tables, whioch, it is hoped will
grea.tl faollitate the use of the square law in 1ts region of applica-
bllit The functions tabulated are

)

1. £0) = [ sec® 0 doa.

[»}
This teble is the same as the one published in Cranz%, but improved by
the weedine out of numerous errors. -In this table, wh:loh glves € (8) for

] t
8 =0% (1) 87°, the number of decimal places exhibited drops from
seven for low @ to four for large values of 8,

2. s(8) =sin 8(¢), to nine deoimals, for & = 0,00 (0,01) 50.00.
Here 8(¢) is the inverse function of & (8).

3. c(&) =cos 9(&), to eight decimels, fer the sems range of & .

4. X(4,v) =_1/‘6;:(€) 4,8/8 -

! Dederick - Reno, "Soluticn of Differential Equations of Motion of a
Projectlle with Newtonian Resistance in an Atmosphere af Wariable
Denslty , BRL No, 243, 1842,

2 Zaroodny - Brooks, "Charts for the Exterior Ballistiecs of Morter Pire
Based on the Squere.lLaw of Drag", BRL No. 661, 1948,

3 The Bellistic Resesrch Leboratories have a limited supply of thege
tables for distribution, upon request, to those agencies requiring
them. :

4 4. Crenz, "Lehrbuch der Ballistik", Vol., 1, Berlin, 1825.
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5. Y(fb) =1/"%(¢> a8/8.

6. 1(B,) =ljﬂc($) a /87"

These last three functions X, Y, and T, have been tabulated to
eight decimal places, for b = 0.1 {0.1) 2.0,ﬁ= 0,00 (0,02) 3,00, but
with the upper limits 6f these ranges restricted by & (b-1) £2, as
shown in Fig. 2, p. 16. To facilitate interpolations all tables also
show the differences up to the third order,

Moast computations were oonducted to eight or more decimel places,
and checked by differencing, in the case of X, Y, T, with respect to b
as well as 8., A detailed desoription of the construction of each table
will be found in the later seotions. There ig, finally, suggested a
method of obtaining the basio quantity k from the ballistic coeffioient
C which leads to very good results for the range and time of flight,
as shown by various exemples.

THE DIFFERENTIAL EQUATIONS OF THE TRAJECTCRY

The motion of the center of mass. of a projectile will in the fol-
lowing be referred to a system of Cartesian coordinates O (x,y) having
its origin O at the point of departure, the x=-axis being harizontal
and positive in the direction of fire, and the y-axis being vertica
and positive upwards; see Fig. 1. '

!

x|

-

Fig. 1



In such r system of coordinates the equations of motion may be
written in the well-known form

% == B%

. (1)
y=~Ef~g,

where the quantities %, X, eto. occourring in these equationsg have the
fellowing meeningss

X =dx/dt, t being the time,

¥ = d®x/at?, § = ay/at,
g is the gravitational acceleration, and
B =6 EA. (2)

Here

" =f//°° - e-aY

is the ratio of air density at altitude y to that at sea level,

= vk

is the resistence funotiom, the dreg coefficient, v the speed of the
projectile, end C the ballistic cocefficient, Making use of these formulas
for G, H, and CG,E become

E =kv, N

where

‘ k ::PKD/e. (3)

Since Ky is dimenaionless, k itgelf has the dimension of a reoiprooai
length, While k, by (3), is actuelly dependent on altitude y and Maoh
number M, it will here be essumed oonstent along the whole trajeotory.

If, under this assumption, the angle @ of inclination of the tra-
jectory = rather than the time t = is teken as the independent variable,

the equations of motion may be replaced by the squivalent systeml

gd(v cos @) =kv> 4 6

2
gdx =-v d 8

(¢)

gdy =-v2 ten 86 d 8

gdt = -v geo 6 d 8.

1 this is shown, e.g.,in Crenz, "Lehrbuch der Ballistik, p, 110,
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The "principal equation® (4.1)1 integrates into
g{v coe 9)'2 = -2k £ (8) + 2kb, (5)
with
& 3
£(0)_=f sec” € d 9, (6)
4 .

and 2kb being the oomstant of integration. For the initial oconditianss.
at ¥ = to’ x=x, ¥ = Ygr ¥V = Vg e = Oo, b obviocusly becames

b = g/(Zkii) +€° (7)
with

e o =-$ (90):

:':0 =v, 008 8 .

Since at the sunnnit 8 of the trajectory © =0, v =v_, b may also be
8
charaoterized by

= g/(Zlcvs). (8)

Solving eq. (5) for ¥* leads to

vz =g sec? e/2k (b -6(9)),
whenoe
2k dx = - seo” @ d 8/(b =&)

dey--tanaseoz

ede/iv-&) . (9)
(ZKg)l/zdt == sec’ 6 d 8/(® r¢)1/2- |

TRANSFORMATION OF THE DIFFERENTIAL EQUATIONS
While the solution of the problem.is thus reduced to gquadratures,
some further simplications may be achieved by introducing the inverse
function 8 (&) or &(8). Let us put
o(£) =cos 6 (&), s(&) = sin 8(§) (10)
By virtue of d @ = o> (&)d & above equetions (9) take on the form

2kdx=-o0(f) af/(b-§)
2kdy =-8(§) a€/(b-€) (11)

(2kg)/2at = - o(§)ag /(b -4 )/°

1 By equation (4.1) is meant the first equation of set (4).
8




If we now define a new variableﬁby means af

b=-& = b4,
j.6. put
£=1(1-48), (12)

equations(ll) further simplify to
2kax =o(&) afB/B8
“2kdy =s(8) a8/8 - (13)
2 kv dt =o(§) a8/8 12,
By virtue of equatians (5) and (8) the variable B turns out to be
L= v.': sec® 8/<%, ) (14)

Therefore, as © decreases from € to Qa = 0, £ decreapes from € o teo 0,
and 43 increases from °

By = vy 500 0/7)" =1 = & /b

to B, = 1; as the projectile moves down the descending branch & is in-
creased further. In terms of the parameter ,6 the trajectory is now
represented by

2k(x - x,) =X(B,b) - 2(B,, b)

2k(y - y,) =¥(8,p) - Y(B_,v) (15)
2k (t -t ) =T7(8,p) - 1(B, b)
where
X( B, b) s{‘%(& )4 8/8
Y( 4, b) =/1'5s(€)d,a/,a | (16)

8, v ={le(&)b/8M
and ~
£ =10 -A).

The integrations, desoribed in the following sections, were actually
carried out not on the integrals (18), but an related integrals, obtained
as follows: First it is advantageous to replace& by

9 =-& =(B-1). (17)




Bince 6(£) is an odd functian, s(&) 1is also odd, while o{€) is even:

s(€) =-al9); o(¢) =c(9).

Further we may write

X(B,b) =X(B,1) + c(v)1nf,

where

Z(8,) = /%(2) - o)) aA/B.

and
(A1) =Y(B,p) +s(b)1n B
with
YA of Te(n) - s(v)] a8/8.
The trensformetion (17) changes the time integral (16.3) inte
w8y <[ 8 o(pep/p.
It is ot;nvenient here to introduce -
y = ﬁl/z'
8o that
7(B,b) =f S(y, b)ay
with
8(7,0) =26(9), 7 =bv(y%-1), y*=4.

The problem is thus reduced to the calculation of I, T, and T.

(18)

(19)

(20)

(21)

(22) |

Ag the basis for all neocessary integrations there was used the

formala

A, -_-43'1-(5)@6 = (h/2) (fo+ fl) + (hz/io) (!'o - !‘1) +
c
(n°/120) (2 + 13) + B,

(23)-

where dots (*) denote differentistion with respact to 8. This formla
may be derived as follows: Expanding A' in Taylor series about & ,

,61 ﬁ + h, respectively, we have

' i i-1)
A = Ei (h*/11) fo ,

]
10



and
(i=1)
[( )l-lhl/li] f -

By addition, then,
A" = (b/2) (£ 1) + (h%/4) (2, - 3'1) + (05 /12) ('r' +F1) + o(h"')

If we ncrw split up the hz term into two parts one of which is (h /10) x
(f ), end expand the other part, agaln by & Taylor series, we get
the I‘ormula (23) with

R = o(ny.

Having obtained the X, Y, and T for certain equidistant key arguments
;3 e subtabulation was performed by means of second order osoulation,
in the following manner: In order to caloulate the value of a function

(t) tabulated for equidigtant t = ti by means of osoulatory iater-
polat:l.on we put

t —.-.1;°-+1.'h‘, h=t =t

1 0.
glt, * Th) =¢(7) (24)
and getl
¢(t) =D +D1-r+..:.+D £® ’ (25)

where the D are the following functions of. 45 ﬂb(j) J=0,1,

953 2 d¢/dr,¢"
¢ 0
Dl = 4’ -hgo
D, = (1/2)9" = bP/2)g ',
by =109 - 6]+ 100 - 2d. + 1/, - (3/2)p"
D, =15¢ + 8¢; - 15<;61 +7¢ ; - (1/2) ¢ ;' + (:5/2)4>;'
D =6 -3¢ 46 - s, + (1/2)p, - (12 .

Rearranging the terms in formula (25) so as to exhibit the factors of
¢ o’ ¢ 1’ eto., there results

$(r) =@ P (T)+ P (T)+ ¢ ;'Pz(r) +9.,Q (7) +¢. G (T)
+@Pi"Q (7) (26)

1 Por a derivation of this formula, see, for example, LOTKIN, M.,
"Inversion on the Eniac Using Osculatory Interpolation] BRL 632, 1947.

11



with
3 4 ]

P(T)=1-107" +157" - 67
Pl(f) =¥ - erz-‘-.+ gr° - 5r4)
P,(7) =(1/2) v2 (1 -7)°

9y(7) =17 (7)
Q(7) =-7°(4 - 77 + 37%)

Q) = )Tt (0 -7)

Far subtabulation to AT = 0.1 these polynomials Py»

Q'i. assumes the
valusg shown in Table I.

' TAELE I. INTERPOLATION COEFFICIENTS

PUTY | B(7) | By(7T) | Q(7) Q(7) - --Qz(rz
0.1 | 0.991440 | 0,094770 | 0,003645 | 0,008660 | -0.003330 | 0.000406
0.2 | 0,942080 | 0,163840 | 0,010240 | 0,067920 | ~0.021760 | 0.002560
0.3 | 0,836920 [ 0,195510 | 0,015435 | 0,163080 | =-0.068690 | 0,008615
0.4 | 0,682560 | 0.190080 | 0,017280 | 0,317440 | ~0.107620 | 0,011520
0.5 | 0,500000 | 0.156250 | 0,015626 | 0,500000 | =0,156250 | 0.015626
0.6 | 0.317440 | 0.1075620 | 0,011520 | 0,682560 | =0.190080 | 0,017280
0.7 | 0,163080 | 0,058590 | 0,006615 | 0,836920 | =0,195510 | 0.015435
0.8 | 0,057920 | 0.021760 | 0,002560 | 0,942080 | -0.163840 | 0.010240
0,9 | 0.008560 | 0,003330 | 0,000405 | 04991440 | ~0,084770 | 0,003645

' COMPUTATION OF THE FUNCTION & (@)

Since & (8), as defined by (8), is an odd funotion of 8, it is

positive along the ascending branch, venishes at the sumit, and be-

comes negative along the descending branch of the trajeotory. It -may
be written explicitly as
& (8) = (1/2) [tan @ sec @ + log nat ten. (1r/¢ + 6/2)]. (27)

& (9) has been tabulated in Cranz, for_every minute of arc, fram @ = 0°
to @ = 87°90%, to B or less significent figures. Upon differencing this
table up to differences of third order two types of errors showed up, due,
obviously, either to miaprints or small miscalculations., A listing of
these values of & (8) that were found to be in error by 6 or more in the
lagt decimal shown is given in Table II, The errors, when not due to
misprint, were eliminated by recamputation on the basis of eq. (27), in
the following manner: Making use of the nine place WFA Table of tri-
gonametric functions for each 0.0001:radians of argument, we write,

12



TABLE II, ERRORS IN CRANZ'S TABLE OF & ()

CRANZ CORRECT VALUE ERR(R

30| 13! 0,056 2500 0,056 2300 + 200
7 | 28 0.131 3552 0.131 4352 - BOO
14 | 14 0.256 3625 0.256 3525 + 100
15 | 17 0.276 6189 0.276 6199 - 10
17 | 47 0.326 1715 0.326 1615 + 100
18 | 25 0.339 0377 0.339 0337 + 40
20 | 57 0.392 0202 0.392 0212 - 10
21 | 25 0.402 0083 0.402 0683 - 600
21 | 37 0.406 40486 0.406 4036 + 10
- 23 | 55 0.457 6223 0.457 6233 - 10
25 | 16 0.488 0669 | 0,488 9669 =~ 5000
25 | 34 0.496 0831 0.496 0731 + 100
27 | 54 0.553 2731 0.553 2631 4 100
29 | 21 0,590 6981 0.590 6891 + 90
35 | 42 0,777 3334 0.776 3334 + 10000
58 | 27 2,198 352 2.188 352 +10000K
63 | 08 2.893 664 2,893 654 + 10X
66 | 39 3,700 597 3,710 597 -10000X
69 | 24 4,643 374 4,633 374 +10000K
73 | 55 7.238 203 7.238 293 - 90X
81 | 03 21.681 00 21.681 08 ~ BXX
83 | 00 34,811 31 34,811 36 - &KX
84 | 16 51,348 13 51.348 02 + 11XX
85 | 23 78,532 3 78,534 1 ~ 18XXX
B6 | 59 | 182,103 0 182,103 7 - XX

13




8=80 +n, ¢=7/4+9/z=¢0+~9,

where € _, Y _ represent the first four decimals only of @ and ¥,
expreased in radians to, say, 9 decimals, The values of sin 8, cos @ are
then obtained with sufficient accuracy from

sin 8 = (1 - (nz/z)) sin @+ n cos 8
2 .
cos & = (1 - (n/2)) cos 8, - n sin 8

since the error ocurred in‘cuttin off the geries after the terms

shown here is R = n?/6!, n = 1.107%,

Having thus found sin 8, cos ©, sin llf, cos l’f, tan @ seo @ and tan f/ '
were easlly computed. Putting, as above,

tan }lf = (tan ¥ ),o+ qQ,

whers (tan yr) o represents the first four deoimals enly of tan ¥, and
using the notation r = q/(ten y/')o, so that

tan '¢1= (tan yf)o (1 +r),
In tan !}‘waa ottloulated sufficiently acourately from
Inten Y =1In (tan ), + r - r2/2

with the nine place values of ln (tan w )oextracted from the WPA Table,

THE TABELES OF s(€ ) and (&)
If we consider @ as a function of & , eq. (27) may be expressed as
48 =28(8)/2(£) + I san® [m/e+8(&)2],
so that
& = q(s) = (1/4) [(1 )t - A+l em4s)-1a (24 B)J-
(28)

From a table of Q (s) the functien s(&) may thus be computed by inverse
interpoletion, .

To construct an eight place table of Q(s) by means of eq. (28) for
the arguments s = 0,0001 (0.0001) 0.9960 it was necessary firat to
calculate reciprooals w = 1/u for u = 0,0040 (0,0001) 0,9999 to eight
deoimals. Using Barlow's Table to get a first approximation w  of w,
correct to five decimals, a c¢orrection dwo was obtained in the usual
manners If 2 (u, w) =0, and w =w_ + dw , then

d'wo =-2 (u: wo)/zw(u' Wo): 2 w = 3 Z/aw° (29)

14



Since here Z (u, w) =u - w 1, =w (1 - uw_ ), The values of the

natural logarithms needed were a.ga.:.n éxtracted from the WPA Table.

Having made this table an approximate wvalue s_ of s was then
found by inversion for each & = 0,1 {0.1) 2.0 (0,08) 50.00 and improved

by _

dso = - E'({, Bo)/za(e’ 30)3
in this case B (&, 8) =& - Q(s), so that

= [€- 4 )] fat(s,)

and

Q' (s) = (1/4){(1- - s)-l [1 + {1 - s)-l] + (1 + s)-l El + (1 + )-1]}
This process was continued until s had been determined acourately to
nine places, for the key arguments & listed above, Next a subtabulation

%o tenths was performed, and the s(&) obtained for & = 0,00 (0,01) 2,00
by means of the doubly osculating cubio

2 3
95(-;-) =B +Elr+EzT +331'
with Eo = ¢0
=¢’
0
H 1
EB - 3¢o+ 3¢1 - 2¢o -¢1
By =2, - 2 Pl + P,
giving an eight place accuracy in the interpolated values, with a

possibly wrong round-off in the ninth place, The s(&€ ) table was then
checked by forming the advancing differences up tc the fifth order.

Later calculations required knowledge of derivatives s! = dx/d&,
s", and g'", By Eq., (10)

=c*(&) = (1 - )%
Therefore,

s = - 435(1 - 82)3,

" and

s =4(1 - 82)4 [6 -7(1 - sz)].

These derivatives, then, could be camputed easily once s = s(&) was
known,

The determination of the function o(&), too, was based m that of

15



s(£ ), since .
o(&) =1 - o%(&)] /2

The eight place values of the square roots were obtained by secand
order interpolation

"2
plr)=¢ + 02 (A +4A) T+ (02)A T
in an eight place table of roots for arguments 0.00bl (0,0001) 0,9999,

The derivatives of ¢, also needed later, were obtained by repeated
differentiation of

2 2 ‘
o,(ﬁ) + 8 E) =13
expressed in terms of the derivatives a' and s" they are:

o' == 8s8'/fo

I

o" = - (o'z‘ 4 ar’e sst) /o

o = - [S(c_'o" + gts") + ss"'-] /o

oMt = 307 (2802 - 15),
where the last relationship may be obtained by differentiation from

4
o' ==580, 8' =0,

THE FUNCTION X(8, b)

From Bq. (16.1) it is obvious that X @ o for 8 # 1, for all velues
of b, 4s already pointed out previously, the actual calculation of X
was based on Eqs., (18) and (19), The funotion X(4, b) was first cam-
puted for b = 0.1 (0.1) 2.0 and & = 0,0 (0.1) 3.0, with the upper
ranges of b, @B restricted by B (b~ 1) & 2,0, as shom in Figure 2,

°4

1.5

! »~4
2.5 [
Fig. 2
18



As is easlly seen in this region also X ; o for B&1.

In using Bq. (23) for the integrati £ X t £{B8) =4(8) +
PSR\ B WA LS Py Gl S St il ok Mo

as a fixed paremeter, The derivatives of f oceurring in Eq. (23) were
then obtained from

i= (be! - A}/

L= (1% - 2h)/A8
3 =-38/8
B = - 28/4

‘The values of

dir(o)/2 81 =aln(o)/a 8t +a1B(0)/a 8, 1 =0, 1, 2,
which were needed to get started, were found by L'Hoespital's rule:
- be'(b) '
= (b2/2) " (v)
- (b2 /3)e" 1 (b).

i+
By determining the increment A *
taking advantage of the fact that

Hys kg
i 1

1

1 on the basis of Eq. (23), and

X(1, b) = 0 for all b,

the function. X(f, b) was otlculated to ten places, for the range of
/3 and b shown above,
The values of the increments A X thus computed were then checked

o+ ) ‘
by comparing A ]1' ? A ?1 + A?z with A gﬂ obtained by epplying
Eq. (_23) to h' = 2h; this check showed theAKto,be accurate in most

cagses to eight decimals, The integrations were checked further by
differencing the X's listed for all b, but fixed (6 .

These X's were next subtabulated to fifths in the argument &3,
by means of formula (26), which becomes, in this case

X( B+ Th) =X P (T)+n_ +B8)P(T)+ W8 .(Ao + Qo) P,(7)

+X) 9 (F) + 0l +B) (7)) + h(a, + B)) Q,(7).

With these values of X on hand, it was, finally, an easy metter to get
the X's themselves.

17



THE FUNCTION Y( &3, b)

As regards the function Y(4, b) it is sgain epparent fram By, (16.2)
that Y€ o for allb, &3, Nowfor o €« B <l &£=b(1-8)< b, a0
thet s(&) < s{b ), and, therefore, Y >0, For &B> 1, on the other hand,
it follows from Y =¥ + s(b) In &, since ¥.< o0 and 8s(b} 1In B >o,
that necessarily Y « o, '

The region of integration was the same as used for the X, In Eq,
(23) we had to put here, however,:

£(8) =u(B8) + ¥(8)
with

WEY) == a(p)/@ W) =-s(b)/@

Consequently,, |
f = - (bs’ + u)/3 M = - (bzs" + 21?1)/,6
§=-¥/4 ¥=-2/8

Far B=0
£, == bs*(b)
$ = (b2/2) 8" (b)

T == (B25) 1 (B).

The determination of the AT, their ohecking, and the subsequent sub=
tabulation were carried out in the same mamner es previously desoribed
for the function X.

THE FUNCTION T(,&, b)
The time integral (16.3) behaves similarly as the renge integral
X, so thet T 3 0 for B2S1. As mentioned above, it was oaloulated

by means of Eq. (22). To make use of the integration formula (23) it
wasg first necessary to determine the quantities

'hi =.,61/2 -3 1/2

1-1, 1 =1(1) 30

this was done to ten decimals. The derivetives of B with respeot to 7
are

st =4 b8 Y2 o1 (n)
8" =4 b c'(17) + Bbzﬁc“(r;). :

Checking of the values of A T was perfarmed in the same manner as was
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done for the & X and A Y, and showed the A T, too, to be accurate
generally to eight decimals.

Since the h = A )/ depend on B, the subtabulation of T to fifths
was a rather tedious job., It wms, obviousli, necessary to get far each
of the four values of 73 =[ B+(23/100) /2, 2 = 0.0 (0,1) 3,0,

3 =1,2,3,4, the value of T . = (9. - ¥ )/h, then compute the inter-
polational polynamiels P, (T°Y), q,k(Jz-.), k =0, 1, 2, and, finally, to
use formula (26) in the form® - d

(Y + T ) STR(T) + bRy (T )+ n?s) By (T,) +
. 2 v
T, QO(TJ.) + hSlQl(TJ) +h'8, Qa(r,j)'

TRAJECTORIES FOR LARGE 90 AXND C

The tables deseribed in the previous seotions permit the caloulae=
tion of trajectories to & certain limited extent. For such angles 6 ,
or ballistic coefficients € that cause b, Bq. (7) to fall outgide of®
the range of the tables the trajectories may be easily obteined by means
of three simple quadratures, as follows: Let us transform the integrals
(16) by means of Eq. (17) to

x, (7, v) =/ 5(p) an/(y +v)
2,9, 0) ==L %) an/ip+ ) (30)

and | '

b~ (9, v) = 'b"l/z{?:(y) ap/(p + )%

whence
2k(x = %) =X, (%, b) =X, (9. b)
~2k(y - y,) =Y, (9, v) -~ ¥, (5, b) (31)
kv, 626 = 6 )=, 07, B) = T (50 b ),

The tables of the functions c(;?) and s(%) have been computed suffi~
ciently far so as to meke the calculation of the integrals (30) an éasy
matter.

" In order to get the range x,, by means of formulas (31) one first
determines 7 =§>(ﬁ° ~ 1)< 0 and then camputes Y.(», ,l)s Starting
.again from 73 & O.the quantity 23, >0 ik mext calcilateu by integrating
to that value % =77, that will mske Yl( e B ) = Yl.()) o b ).

Finally the range X, is obtained by computing X,(”7 .%o ) and 11(77 P ),
. 17 w'
and applying formula (3l.1). :
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USE OF THE TABIES

The proper use of the taebles described in the previous sectlons
will now be illustrated by means of & few exampless for the sake of
gimplicity let X, TV, = to = 0.

le Given k, 8, v_. To find the angle of fall @ , range xg,,

time of flight tw . a.ng striking veloclity v, e

{a) Compute b =& (90) + g/(2k voz coa2 90)-

(b) Get B8 =1-¢& .
(o) By interpolation findﬁ = B,, 80 that
0 = 2kyg, = ¥( By b) = Y(ﬁo,‘ b).
(d) By interpolation find ey so that
&) =b(l -8,).
(o) Obtein the horizontal range x, from
2ex, = X(B,,, b) - X(B,, b). (31)
(£) Caloulate the time of flight t, from
(zlc\s:/‘b)l/2 tw =T(48,,, ®) - (8, bl

(g) Finally, the striking velocity is found from

2 2
Ve — & 8€0 m/Zkbﬂw.

2, Given Vo e, X e This case can be reduced to the previous
one by assuming a& trial value. of k, and then ¢ omputing the quantities
b, 4, ond B, . This is done until k satisfies equation (31).

The qﬁantities t @ 8nd v, are then obtained as above.

3, Given k, v, X ¢ o Assume a trial value of 9., compute b, A o
AB.,. The correct 87 must agein satisfy equation (31).

DETERMINATION OF k

The calcdulation of that value of k from the data C, €., v, which
will produce the same range and time of flight as the one Sbtafned by
numerical integration is a difficult job. It is, however, not quite so
complicated to get & k that will give a range good enough to be used as
an approximeétion., Such a value of k may be baged on initial and sum-
mital velocity v and v, respectively, as followst

20



(a) Compute k = G(vo)/voc.
o2
(b) Got b, = g/(2k %) +& (9,).
- 1/2
(e) Determine Vs = (g/?kobo) e
= +
(d) calculate A (1/2) (vo vos)'
() Put k = C—(vm)/vmc.
(f} Compute b = g/kgkii) +& (90), and proceed ag in example 1.
This proce&ure for getting k is cobviously justified since, as seen in
Fig. 3, the motion of the projectile along its trajectory is dupli-
cated along the - curve &g & motion, starting at 0, in the direction

of decreasing v, having a point of reversal of direction at 8%, which
is located slightly past the sumit 8, and terminating at T.

Ko"

ot 4

Vg Vm Yo
Pig. 3

In Table III there are compered summital velocities v _, ranges x,, and
times of flight t ¢» obtained by means of the square 18w with those cal-
culated on the basis of the resistaence functions G,, In ocases 3,4, 5
and 6 the values of v_, t ., , and x, , for the sq&are law, were gecured
* by means of formulae ?30)°

As the table shows, the agreement between the trajectories is re-
markable, the discrepency amounting, at worst, to about 2% for the cases
exhibited,
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TABLE ITI, COMPARISON OF TRAJECTORIES

o, v, _E_(ft/seo) te (s00) | x,, (yards)

(degs) |(f£t/s00) c ReL.| 61 [8Q.L.| 61 | 8Q.L.| @1
1| 80 500 C, = 0,5 |457 |459 |22.3 22,2 3462 | 3484
2 | 40 800 C] = 0.6 | 388 (391 | 26,4 | 26.4 | 3475 | 3502
3 | 40 412 C, = 0.979 281 |281 |15,8 | 15.8 | 1473 (1479
4 | 68 747 €] =1.85) 227 |231 |39,2 (39,5 2972 | 3035
6 | 66 900 Cs = 3.7 | 340 (346 (49,2 |48.6| 5469 [5691
g*| 76%°6,8 | 639,9 ¢ = 1,66 | 146 |146 [26.4 | 36.6 | 1762 | 1773

*

This example is & particular oase pertaining to the 106mm Hewltszer
for whioch & special G function is avallable,

M. Lodpie

M. Lotkin
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