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ABSTRACT

A simple one-dimensional theory is given for the steady, compressible,

adiabatic flow of a perfect gas through a porous plate. The Dupuit-Forchheimer

relation, valid for incompressible fiow, is replaced by an igentropic com-
pression when the gas enters the plate and a non-isentropic sudden enlarge-
ment process when it exits. A generalized form of Darcy's equation is
used that is applicable to adiabatic flow. It retains the convective term,
which is necessary if the flow is compressible. An important consequence
of this study is that the Mach number at the downstream surface may be
much smaller than unity, even when the flow through the plate is choked.

As the presture ratio across the plate decreases, the flow remains choked,
but the downstream Mach number increases. In fact, this Mach number will
be greater than unity for a sufficiently small pressure ratio, in which case
the downstream flow is supersonic. Thus, a wide range of downstream
Mach numbers trom subsonic to supersonic is possible, even though the

flow is choked. For incompressible flow, the volumetric flow rate varies
linearly with the pressure differential across the plate. The equivalent
compressible relation is sho'\'avr.x' to consist of a plot of upstream Mach number
versus the prassure ratio across the plate The incompressible result can
also be shown on this plot; it differs from the compressibic one, except

when the plate is thick.
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NOMENCLATURE
drag éoéﬁicient;
Darcy's constant;
a‘verag'e pore diameter;
functions defined by Eqs. {18) and (20);
functic’: defined by Eq. (i4);
Mach number functions;
enthalpy;
porous plate thickness;
Mach number;
pressure;
gas constant;
Reynolds number:
exitmpy;
temperature;
velocity;
distance in the direction of flow;
drag;
porosity;
ratio of specific heats;
viscosity;

density.
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INTRODUCTION

For the vast majority of problems concerning flow of a liquidin a
porouz medium, the tiy'd is considered incompressible {or slightly com-
pressible) and the convective terms are neglected. For most classes of
problems, such ae _.ound water and seepage flow, these asszumptions are
not unreasonable. and have been used in investigations of this type [ 1, 2].
When the fluid is a compressible gas subject to large pressure gradieuts,
such assumptions are no longer valid, and a different methodology must be
applied. The purpose of this-paper is to develop a simple theory for one-
dimensional, compressible flow of a gas through a porous plate.

This work was initially motivated by recent developments in high speed
reentry technology. In an attempt to simulate ablation off the surface of a
reentry vehicle, Hartunian and Spencer [ 3] introduced the concept of massive
blowing in wind tunnel experiments using models of a porous material such
as sintered stainless steel. A substantial presgsure difference, usually greater
than 100 to i, is established across the wall of the model. A large mass flow
rate through the wall ensues and appreciable density gradients occur.

Out interest here is the interaction of the injected gas with the porous
material, not the external flow field of the injected and free-~strezm gases.

In crder to concentrate more fully on the physics of this interaction, the
following simplifying assumptions are introduced:

i. Steady, one-dimensional flow is assumed.

2. The physical model of a gas flowing in a straight, frictionless

duct of constant cross section is adopted. Situated in the duct

is a porous plate of uniform thickness (se¢ Fig. 1).

-1-
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3, A perfect ges is assumed with a constant v2lue for the ratio of

apecific Reats.

4, Cortinuum mechanics govern th. ‘iow.

We take as a mathematical model for the viscous flow inside the plate
the formulation applicable to flow in a straight duct with friction. This
description is intended to represent average flow conditions at any cross
section of the i)ia.te and does not imply the assumption of a capillary model
in which the pores are straight ducts transverse to the plate. The theory
associated with this approach is well established and widely known. (See,
for example, Shapiro {4], whose work is heavily relied upon here.) We
follow [4] and use the Mach number as the independent variable, which yields
a formulation that is physically el-gant and mathematically simple. An
important result of this approach is that momentum considerations can be
dealt with separately, as has been done in the subsequent analysis.

The distinguishing feature of this analysis is the generalization of the
Dupuit-Forchheimer relation [ 1, 2], which says that the volumetric flow rate
is constant across the surface of a porous medium. The fluid thus adjusts to
the smaller flow area available to it in the medium. In incompressible flow
theory, this relation is used regardless of whether the fluid is entering or
leaving the medium. By contrast, instead of the Dupuit-Forcltheimer relation,
we use the isentropic assumption when the fluid is entering the plate. On
exiting, the flow is assumed to adjust to the larger available area by means

of an irreversible process.

L
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The most important consequence of this analysis is that although the
flow may be choked, the Mach number at the downstream surface is generally
not umty. (By choking we mean that the mass flow rate through the porcus
plate is a maximum.) Specifically, as the pressure ratio across the plate
decreases, the flow becomes choked, but the downstream Mach number may
still be much smaller than unity. As the pressure ratio further decreases,
the flow remains choked, while the downstream Mach number increases. In
fact, this Mach number will become greater than unity for sufficiently small
pressure ratios. In other words, although the flow through the plate is choked,
a wide range of downstream Mach numbers ranging from subsonic to super-
sonic is nevertheless possible. In addition, a limiting pressure ratio and
Mach number exist beyond which solutions are no longer possihle according
to this theory.

Results of this work can be given as a plot of upstream Mach rumber
versus the pressure ratio across the plate. This is equivalent, for the com-
pressible case, to the normal incompressible relation of the volumetric flow
rate versus the pressure differential across the plate. The incompressible
result can also be shown on our plot; it differs from the compressible one,
except when all Mach numbers are small or when the plate is thick (see
below).

We formulate the problem in the following section. The case when
choking does not occur is analyzed first. Momentum considerations are

dealt with in a separate section and the validity of Darcy's equation for




bo* isothermal and adiabatic flow through the plate is discussed. The
subcequent section treats the choked-flow case, while the final section
discusses a number of important aspects of the theory, including the gener- i

alization of the plot of flow rate versus pressure differential.
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FORMU LATION

Consider one-dimensional flow of a perfect gas through a plate of
uniform porosity f (see Fig. 1). The crosa-sectional area of the plate is
taken to be unity, consequently, the area available to the flow within the plate
is B, which must be less than unity. A streamtube of fluid thus contracts in
area as it enters the plate and expands in area as it leaves. These changes
are assumed to occur between locationz i and 2, and 3 and 4, resapectively.
Both area changes are assumed to occur in a short distance in comparison to
the plate's thickness.

Upstream of the plate, the flow is at a low subsonic Mach number,

i.e., M1 << {, given by

uz RT (p,u )2
2 _ Sl AL |
M{ = = ' (1)
UEN vpf

where u is velocity, - is the (constant) ratioc of specific heats, p is pressure,
p is density, P is the gas constant, and T is temperature. Because M1 << 1,
the thermodynamic quantities in equation (1) differ negligibly from their

stagnation values. Similarly, in all ensuing formulas we use without further

statement or justification the approxima.ion
2
L+ (y- 1)Mi;’2z 1

Between locations | and 2 we assume the area change is accomplighed
by means of an .sentropic process; the flow is thus analogous to that in the

convergent part of 2 nozzle. Asscciated with t' e flow is a small loss of
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stagnation pressure, but this loss is minute compared with that between
locations 2 and 3 and therefore is neglected.

Between locations 2 an:d 3 we assume the flow is adiabatic but non-
isentropic due to viscous-energy dissipation. ! Flow conditions are described
by a Fanno curve, which combines the adiabatic assumption with continuity,
Such a curve [4] is independent not only of the form of the drag term in the
momentum equatior,, but of the momentum equation itself, This is an
i nportant point to bear in mind, since much of the analysis deals with
properties of the Fanno curve, and is thus valid for any momentum equation.

One of the fundamental properties of a Fanno curve is that at the '"'nose!
(see Fig. 2) the entropy is a maximum and the Mach number is unity.
Associated with this is the phenomenon of choking. Specifically, when M2 < 1,
as is the case here, we have the condition M3 = {, which plays an important
role in the subsequent analysis.

Between 3 and 4 we assume the area change is accomplished by a sudden
enlargement, which is a non-isentropic process. When M3 <1, thisis a
compression, i. e,, an increasing pressure, which results in a lower Mach

number at 4 than at 3. When M, is near unity and § is small, an entropy

1We could also assume the flow between 2 and 3 to be isothermal. However,
[4] (Chapter 6) shows that both assumptions yield similar results qualitatively
and quantitatively. For experiments of long duration involving flow through

a thin plate, we adopt the adiabatic assumption 2s the more realistic one.
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increase occurs which cannot be neglected. Since this case is important, we
use the more exact irreversible process throughout the analysis, even theugh
an isentropic process would otherwise be feasible when M3 < i,

These considerations are conveniently illustrated by a Mollier diagram
(Fig. 2). The ordinate is the enthalpy h, where ho, the stagnation enthali)y,
is constant from 1 to 4, since the entive process is adiabatic. Locations 1,
2,3, and 4 are state points on the diagram and hereafter are so deaignated.
States § and 4 ire connected by a Fanno curve, since these states have
the same mass flux rate and ho. This curve is to the right of the curve pass-
ing through 2 and 3 because of the smaller mass flux per unit area. In the
B =1 limit, both curves coincide; as B decreases from unity they diverge.
In Fig. 2, flow conditions between { and 2 are given by an isentropic subsonic
expansion, flow conditions between 2 and 3 are given by the Fanno curve, while
the irreversible subsonic compression occurs between 3 and 4,

Figure 2 and the process between states 3 and 4 are valid when M3 <1
and in the limit M3 - 1. When M3

be altered to allow for other solutionsg in addition to the M3 - 1 limit,. We

= i, the flow chokes and the analysis must

shall first consider the M3 < 1 case, along with the limit M3 -1,
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M3 < { AND M3 —~1 ANALYSIS

States { and 4 are related by the Fanno curve [4]

M = (5;—‘3) Gy (M3), (2a)
where
l Go(M?) = M? [1 $ly- 1) Mz/z],
States 1 and 2 are isentropically related by [4]
M2 = 8% G, (MD), (2b)
where

MZ

Gi(MZ)E .
2 A /(y-1)
[i+(y-1)M /z]

es 3 and 4 arc related by the momentum eguation for a sudden enlarge-

ment from an area B to unit area. This equation iz {aee [4}, problem 5. 23)

(1« B) py + (Bllps + Py u3) = {1) (g + pg u), (3)
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which is valid only when M, < 1, or in the litnit My =1 By‘-niéini ‘of ‘the
isentropic relation for Py /p ¢ and the Fanno cirve relatwn for pz/p3,

equation (3) can be written as

G, M) \P1] &, (MD)

The three equations (2) relate four: Mach numbers; and: consequently an
. l(r .

additional relation is necessary. Thm is provided by conservatmn of momen-

tum between states 2 and 3, which is given later. ’

A more convenient form for equation (Zc); obtained with the aid of

{2a) and (2b), is

MG + (y - 1)M4/z BIBMS) + (y - 1)(AMS ) /2

. 4)

(1+~,M2) [1+y(pM )]

We deduce from this '1:ha.1‘.‘N'I‘zl < ng. From equation (3) we have

. A
g 1+Y(BM;)

—— I

P31+ yN

(5)

and consequently P3 s Py

(14 ve0df ,'zu',)z‘(1l ' w;;); e

J‘
i
1
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4% A $econd bound.on M4 more useful than the one above, is obtained
from egﬁ;ﬁpm(éﬁu@ the condition M3 < {, and is

b 2
2, y+1
Gy < L5 (Tf‘?‘p) ' (€)

-

‘l
.

where

2
Go(M©)

Gé(MZ) -
o <o (1+yM

28

[

EFigure 3 is a plot of the Gi(.Mz) versus M2 for y = (7/5). ‘Thus, M4 is
bounded, where this bound, M, , is obtained from (6) by replacing the
inequality by an squality sign. Figure 4 shows -ﬁi versus 8 for y = (7/5).

From equation {(22) and inequality (6), we see that (p 1M, /p 4 )2 also
has an upper bound, (m)z, which is shown as a function of ﬂi in Fig. 5
for y = (1/5). For a given value of p there is a maximum value ﬁi (Fig. 4),
which in turn leads t¢ a maximum value m;z {Fig. 5). In the limit
M3—— i, we have M4 =T\-d4 and (p1M1/p4) = m). When M3 =1,
however, other solutions, which are discussed later, are also possible.

It is clear from Fig. 4 that M, will be small when f is small. Suppose
both M1 and M4 are small. This does not imply that the flow is incompressible,
since M3 may still be near unity, Figure 4 further shows (when M3 < 1) that

large values of M, cannot be attained for many porous media, since § is usually

usually less than 0. 6.

-10-
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In the limit when all Mach numbers are small, we obtain from

&

equations (2) the simple result

oo e (e

which ig used later.

(7)
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. The sd¥egoing anzlysis is completely independent of the momentum

e

eq@tim&gﬁiﬁfﬁ&‘im&ﬂe between states 2 and 3. For compressible flow, this
A

equation $an be written as (see [4], Chapter 8)

dp + dX = -pu du . (8)

The drag term is
2 (9)

where x ig distances in the direction of flow, and b is a drag coefficient with
dimensions (length)"i, considered constant when any integration with respect

to % is performed, Equation (9) is identical to that used in {4] {Chapter §),

with b= (4£/D), and was chosen, in part, for this reason. A comparison with

Darcy's law {as given, for instance, in (2], p. 2) shows that b = (2n/ puBo\ ’
where 3{3 is Darcy's conatant and n is the viscosity of the gas. A more
detailed discuasion of the physical implications of the drag coefficient is given

in the last ssction.
The isothermal Case

Darcy's egustion is universally used as the momentum equation for

incompregsible {low in 2 porous medium. Although we are primarily interested

in adibatic flow, iz iz ozeiul to consider the igothermal case in order to show

the relationship of Darcy's 2quation to the preae<rt «work, We begin by pre-

senting the uscal derivation of Darcy's equation for iscthermal flow, neglecting

NI (9.0

AT SN 3y roe,



the convective term pu du. We then present 2 more precise derivation,
which retains the convective term and shows that Darcy's equation is not
uniformly valid in the incompressible limit. Nevertheless, it is also shown
that Darcy's equation usuzily differs negligibly from the correct momentum
equation. As we shall sce later, the same type of nonuniformity appears in
the’adia.batic case.

Consider the isothermal case neglecting pu du and the area changes at
the plate's surfaces. The area changes are included when the adiabatic case

is analyzed. We therefore obtain

1 2 1 2
pdp = - 3bppu” dx = - 5 bRT(p,u,)” &=

and by integrating between { and 4, we obtain Darcy's equation
2 2 2
Py - Py {- (P4/P1)

2 1
i

bL = % =
RTI(Plui) vyM

(10a)
where L is the thickness of the plate, and where equation (1) is used tc obtain
the second equality. The only alteration that the neglected area changes make
is to introduce & 52 factor on the right side of equation (iva}

If we now retain the pu du term, and still assume isotherznal flow, we

obtain (see [4], Chapter 6)

f4-




By means of an equation for M 4 similar t¢ (1), thiz becomes

1 - (p4/p,) ‘
-—-—--2-- +1n (p4/pl) ) (16%)
1

which differs from (19a) by the logarithm term. Because of this term, Darcy's

equation is not a uniformly valid approximation in the incompressible limit.

(In this limit, we replace Mi‘ by equation (i). ) Figure 6 shows, however,

that the absolute value of the logarithm term is small compared to the value

of the right side of (10a), except for exceedingly small values of (p4/p1)2,

when compreesibility should not be neglected in any case.

The Adiabatic Case

Next, consider adiabatic flow from states 2 to 3, and in parallel to the
preceding case, examine first equation (8) without the pu du term. This

equation can be written as

1f1+(i-gm am?
bdx = 4 »
Yt o+ (y - 1)M%)2

which becomes on integration

2 2
{ { y-1 M3 L+ (y - 1)M2/21 )
YMZ yM3 M, L+ (y - 1)M3/ZJ
For small Mach numbers, this can be written as (sse equations (7))
5 b- (p /py)
4 1 y - i) 2
bL = p° : q| ) Int,/p)” (12)

M

i

Vb i sl B T
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This equation differs irom (10a) by the ﬁz coefficient, which is due to tne
area changes, and by the 16garithm term. Again, this term is small com-
pared to the 52 term, except at small pressure ratios. Henceforth, we refer
to equation (12), without the logarithm term, as Darcy's equation.

When the pu du term is retaix;ed, we obtain in place of equation (11)

(see [4], Chapter 6)

bL = F(\/Ig) - F(Mg) , (13)
where
Fm?) = 4 +(Y. * 1\ M ] (14)
PYCRR R [N

which is shown in Fig. 7 for y = {(7/5). For comparative purposes, this figure
also shows 1/ yMz, which closely approximates F for small Mz. For small

Mach numbers, equation (13) becemes

2
L - (py/py)
bL:ﬁz 421 + ng"

2
Ya{p,/p,) ) (15)
Y ) 4'Py

which again differs from Carcy's equation by the logarithm term. This
difference is alsc negligible except at small pressure ratios. It is interest-
ing to note that equations (12} and (15) are identical to the isothermal results,
equations (10bj, whany = 1.

Darcy's equation shows that 532 can be absorbed into b in the incom-

. . 2 .
preszible case. In this case, only one coustant, b/f~, characterizes the
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gas~xsglid intsraction. This is not surprising, since [5] develops a theory in
which § does not énter explicitly. When compressibility becomes important
this ﬁimgc;ificé‘gmn iz no longer possible and both b and B are separately
significant parameters,

We have szhown that Darcy's equation can be considered as the incom-
presaible limit for both the isothermal and adiabatic cases, providing p 4 /p {
is not too small, An estimate of a lower limit for p 4/'pi, denoted by
{p 4/p i) min’ 28 be obtained by assuming the magnitude of the logarithm term:
is, say, 1/10 that of the other term. This results in

|

2
Ip). . =4 ——P—————] (16)
®4/P)min exP{ L0(y + 1)Mf

where the {F, /pi)z guantity in the ﬂz term has been neglected. For example,

equation (16) results in (p‘}/pi)min = 0, 044 when y = (7/5), B = (1/2)", and

2 , . Loy s
A i£ 0,044 < (p4 ?1), Darcy's equation can be used in place

of equation (15), providing 21l Mach numbers are small. Equation (16) shows
\
' i

that small values of%\ﬁ/Mi result in values of (p4/p1)min near unity,t in which

|

|

case Darcy's equation is no longer useful.

A critarion for the use of incompressible flow theory can now be derived.

In doing 80, we approximate F by llyMz and freely use equations (7). Since
.ne largest of the Mach numbers is M3. the flow is considered incomprecsible

if F(M;) 210 or M, = 0,239 (see Fig. 7). From equation {13), we have

3

1 _ 1
-——2--"—'-2*}31_;?.10 .
YM3 YM?_

-16-
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which, after some manipulation, results in
2 2 _ 1
‘ (By/Py)” 2 (o4/P )ine = TFRLITD) 1n

The flow is thus approximately incompressible if (p 4/p1) is greater than
(p 4/p i)inc' This result should not be confused with (16), which concerans
the relative importance of the logarithm term in equation (15).

The Compressible Momentum Equation

In the remainder of this paper, we deal only with the compressible,
adiabatic result, equation (13). This equation, in conjunction with egua-

tions (2), shows that

bL = £(M2, B, vimy/p,) (18)

An important conclusion based on equations (1) and (18) is that for givea values
of 8, v, p4/p1, and PPy the mass flow rate Pyl adjusts to conserve
momentum. Any change in the flow rate through a plate thus requires a new
p4/p1. Fc;r fixed values of B, y, and p4/p‘, an alternative interpretation is
that momentum conservation relates Mf and bL. In fact, this relation is
single-valued as shown in the Appendix.

As noted earlier, the two Fanno curves co.acide when f =1, We

therefore obtain the relation

1

\\l fo(Mfs Ly, p4/pg) = F(Mf) - F(Mi)

-17-




It is important, however, to note that

PV

N ; ‘ | },L #F(Mf) - F(Mi) , (19)

€

when:f-< 1, since erroneous results are obtained if the two area changes are

ignor‘e‘g'l'. — (Cofnpare this with equation (13).) To demonstrate this more

x4

clearly, we determine

2\ .2 2\ .2
oLy _ %o ar(mj) om2 - ar(m3) an’
% "8 amZ ¥ el ¥

where conditions at 1 and 4 are held fixed. We obtain

8bL) _2 )1 1 t- M,
B VPIMS ME 14y -1 yeM

which is always positive. If instead, (9bL/8B) had been zero, fo would not
depend on P and an equality sign in (19) would be correct. Thus, the area
changes cannot be ignored when dealing with conservation of momentum.

This is also evident from tae fact that the average Mach number on the Fanno
curve from 2 to 3 is greater than that on the Fanno curve from 1 to 4. The
positive value of (8bL/8B) means the product bL must increase if §§ increases,

in order to maintain constant conditions at 1 and 4.

-18-
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We conclude this section by examining the limit M3- 1, with MZ' = _Mi
and (lel/p_.;)2 = p1M17p4)2. In this situation,
_ 2,22 \_ 2
bL = £,{M2/p% y) = FlMZ)- Pty (20).

as is evident from equations (2b), (13), and (14). This result is shown as

Fig. 8 for y = (7/5). Hence, for given values of y (e. g., 7/5), B, and p4/p1 we

can determine bl such that M3 = {, To dc this, first determine 'M'i by

Fig. 4, then (p;M,/p,)> by Fig. 5, and finally bL by Fig. 8.
1My/py y Fig

We may, of course, specify y, §, and bL and then determine a value

for p4/p1, denoted in accordance with our notation by (p47p1), guch that

M. =

3 1. Figure 9 shows (p47p1)2 versus bL for y = (7/€) and various values

of ﬂz, including p = 1. Values of p4/p1 greater than (p47p1) result in M3 < 1;

values less than (p4/p1) are considered in the next section. All the curves
in Fig. 9 are parallel because (Mf/ﬁz) = (p47p1)2 g, where g is a function

only of B and y. The solid curve is for both f =0 and § = 1. As P increases,

( /p,) at first increases, reaches a maximum at about f = 0. 6, and then
Py Py

decreases to the B = 1 value. This behavior can be shown to be due to the

curvature of the path that represents the 3 to 4 process, as shown in Fig. 2.

The process twice intersects some constant pressure lines, thereby resuiting
a double-valued behavior for (p47p1). Since the curves are so close together,

the pressure ratio for choking, (p47p1), is insensitive to .

-19-




. Finally, for large bL, i.e., for a thick plats, we have approximately .

‘ -2 2
, , i B .
bL """Z"‘E'E =
; — AR
g W, My (R, TE)” Gy M4)

and hence lu(p"]px)z ie proportiocnal to In bl, as is evident from Fig. 9.
Note that bl (pzlyME) is egsentially Darcy's equation when p 4/p1 is small,

-20-
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CHOKED FLOW: Mj=1.

When (p,/py) < (p4/p,) equations (2c), (3), (4), and'(5).no longer apply,
and state 4 cannot be directly related to state 3 as before. These equations
are replaced by M, = i, and conditions at i, 2, and 3 are unaffected by
changes in Py Since conditions at 1 and 2, as determined by equations (2b)
and (20), are fixed, we concentrate on conditions at 4, where M4 is
determined by equation (2a).

The analysis is again conveniently illustrated by a Mollier diagram
(Fig. 10). State points 1, 2, and 3 are the same as in Fig. 2, except that
3 is at the "nose'" of the Fanno curve. The limit i\43 -1, is shown as 4. For
pressure ra.tios slightly less than (}:7;1- » state 4 is to the righ’t' of 4 on the

Finno curve through state 1. State 4 thus moves in a continuous manner

albng the Fafino curve as p4/F1 decreases.

It P4 is further decreased, state 4 is at the ''nose'' of the curve where

=1, and the corresponding pressure ratio is désignated by (p4/p1)*. A

]

furgher decrease in p4/p1 results in supersonic flow, since M4 >1. Fora

sufficiently small pressure ratio, denoted by (p 4‘/p1)’ ‘conditions at 4 are

rea%hed by an isentropic expansion from 3 to 4, as ghown in Fig. 10.

o

Solufions do not exist for pressure ratios smaller than (p4/p1), which is

refejred to as the limiting pressure ratio. 2 This limit results from our

Thig limiting pressure ratio probably cannot be attained in practice due to
the effects of turbulence downstream of the plate. A smaller downstream

reserfoir pressure than the limiting one should result in a flow at the end of

the dugt analogous to the flow external to an underexpanded nozzle.

21 -

Az
JE———




innattnce ona constant-area. duct. A mdhr pressure ratio, for example,

2 ufequirewan oxpanding flw and an increasing duct cress-sectional area

’ downltream ‘of the ‘plates

“lhould be reah’.zed that the flow may- bc qnitc turbulent downstream
of the’ phte. “In this situatxon. statc 4 does net oq&mr until a uniform duct
¢ flow is achieved Thus, state 4 is frequently downotream of the plate rather
than at its surface.

Conditions at 4, when

|
i (P4/P1)S(P4/p1) S(?4791)

immp b AN

are determined by combining equations (2a), (2b), and (13) to yield

2 . ,
E\Mz)-bL+F(1) . (21a)

1/2
Mg = 3[1 + 20y - 1)p, /o PB% G 1(MZ):‘ ( . (21b)

Thus, M4 depends only on y, bl, and (p,‘1 ﬂ/p.4). The pressure ratio (p4/p1)* )

as a function of bL, y, and f, is obtained by satting M4 = 1. Figure 9 shows
[(p4/p1)*]2 versus bL for y = (7/5) and various ﬁz'. imcluding P = 1. As with
(';_)47';7{ , these curves are also parallel. One difference, however, is that
decreasing P results in a smaller (p4/pl)* for a fized bL.. This is evident
once it is realized that decreasing f separates the Fanno curves, while a

constant bLL means that the Fanno curve threugh 2 is kept fixed.

-22-
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The Mach number M4 at the limiting pressure ratio is determined by
the isentropic relation

L and
o e e e PRET Fy BE

v

Gy(M3) = [2/ty + 0tV v-D g2

st 4

where equations (21) still apply. These may be solved for (p,/p;), Which is

also shown in Fig. 9 for y = (7/5) and various ﬁz, including =1, The

variation of (p 4/p1) with P is much greater than for the other pressure ratios

shown in Fig. 9. We also see that all the curves are again parallei.

Basically, this occurs because the same momentum equation (13) and Fanno

curve equation (2a) apply to all the curves.




3 . DISCUSSION
' . Three principal topics are diecussed in this section, all of which bear
on e&ﬁé:imc;xitél verification. First, the various flow regimes are described

in terms of the pressure ratio. An appropriate gensralization of the volumetric

flow rate versus pressure differential plot is then given. The third topic is

a dii"‘éu‘éiidn'bf the physical implications of the drag coefficient b,
/
‘There are four flow regimee that can be characterized by the pressure

ratio p;/pi. The first is

-

(Pg/Py)inc = (Pa/Py) =1

where (p4/p1)inc is given by equation (17). This is the incompressible regime

5 where Darcy's equation is usually valid. The next regime

:

Pa/ry) = ey /py) <Py /P K

is characterized by compressible subsonic flow everywhere. The third

regime
& S
(p4/py) S (py/py) < (py/py)
* requires a choked flow, with subsonic flow at 4. The final regime

(py/Py1 s (py/p) < (p4/p1)*

also requires a choked flow, with supersonic flow downstream of the plate.

Of the four regimes, there can be no doubt about the characteristics of the first,

~24.



PR e,
Ak 2 - TS,
- Pasiias -—w.t.ﬁ’iag‘m'tmm<w —

{paeR AR
AL P2 R
i

o]
*

. «Jﬁ“"m{?“{.ﬁ"’;"?

Vo .
g oy
" ALkt i LS AN R

;

4
§
’

Y

The others still require experimenta! yerificati;n. This ie particulariy
true of the last, since supersonic flow has not, as yet, .been associated
with flow through a porous mediux:;x. This regime may be the easiest to
verify, however, since standard techniqueg, such as the Schlieren optical

method, can be used to detect the presence of supersonic flow downstream

of the plate. A . .

: Incompressible flow through a pcrous medium is frequently represented
'i by a linear relation between the volumetrir flow rate and the pressure dif-

ferential. This representation does not hold for compressible flow.. More
appropriate would be a plot of Mf versus (p:4/p1)2, as shown in Fig. 11. .
(Once Mi and (p4/pi) are known, M 4 is readily determined by equation (2a). )
This figure is for B2 = 0.2, y = (7/5), and varions bL. The solid curves

are for compressible flow, where the (4) dencies the pressure ratio .

(p 4/p1)inc’ and the (o) denotes the onset of choking. These curves terminate

at (p4/p1). The dashed line is the incompressible result, equation (15), while
the doubly dashed line is Darcy's equation, which differs from (15) when

(p 4/p1) s (p 4/p1 ;min' This difference shifts to smaller pressure ratios as
bL increases in accordance with (16).

For bL equal to { and 10, we see that the compressible and incompres-
sible results depart at (p4/p1 )inc' For bL equal to 1(2‘2 and (;)4/1)1)2 <0.14,
only small changes in Mf are necessary for large changes in M3 and p4/p1.
Since this is true for both the incompressible and wompressible results, the
two remain quite close. For a thick plate, i.e., large bl, Darcy's equation

adequately predicts Mf versus (p4/p1)2, as noted earlier. The incomprassible

golution does not, of course, correctly predict M4 or (p4/p1).
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Experlmental ‘data will not necessarily follow a single bL curve «s flow
cond_i'ti}ihs‘ vary.' Deviations occur because b generally varies with flow
conditions. ' It is therefore necessary to explore the relationship of b to the
othe;ﬁ%afiihefero of the problem, since experimental verification depends to
some extent on this relationship,

Any experimental investigation must deal with at least three types of
parameters. The first are those that characterize the gas, such as y and
the viscosity, The second are those that characterize the porous medium,
such ag . Finally, thefe are parameters associated with the specific flow
situation, such as Py, All parameters used so far, except b, have a
s..aightforward physical interpretation and are experimentally determinable,
Part of the difficulty with b is that it depends on the gas, porous medium,
and flow conditione, Thig ig evident from the relation b = (2n/puBO) given
earlier.

The drag coefficient was introduced with the expectation that it is
independent of B, which must be specified as well. In addition, it is reasonable
to expect that b does not depend on the molecular weight of the gas or ony.
The first exclusion stems from dimensional analysis, while the second is due
to the explicit appearance of y in the theory. In order to define more clearly
the role of b, we proceed by comparing the flow in a porous medium with that
in a pipe with roughened walls. This type of comparison is subject to
criticism, as [1] points out, and our conclusions are, at best, heuristic.

We nevertheless briefly pursue this course in order to introduce concepts

that may be experimentally useful.
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According to this analogy, b should depend on some average pore

diameter d {or equivalently on the specific surface), and on the Reynolds

L e e N e

number Ry = (p,v,d/n ). Thus, b= ('zd/BOR ) and if d/B ) is constant, b is
inversely proportional to the Reynoids nun/zb/er.. a result typical of laminar

! flows. For sufficiently large values of Rd, however, due to turbulence,

' d /B0 is not necessarily constant. The drag coefficient may also depend on
the Mach number, although this dependence is believed to be weak (see

[4], Chapter 6). For a specific medi;zm, b may also change with time due
to surface changes such as adso/rption. In addition, b may deperd st'rongly
on certain characteristics of the material, such as é;’he relative roughness
(see [4], Chapter 6)." For svifficiently large flow rates, the flow is not oaly
turbulent, but b may be nearly independent of R a° In this circumftance, b
depends primarily on the relative roughness alone. This reéime is ideal for
experimentally verifying this analysis, providing it occurs before the flow

chokes.

Even if b does not have precisely the behavior described above, experi-

mental verification is still posaible. For example, use can be made of the

fact that orce choking has occurred, the flow from 2 to 3 does not change

3
and bL remains constant. Furthermore, in the compressible regime when

g - M3 < i, problems associated with b might be avoided by using different plate
£
thicknesses of the same porous material. For engineering purposes, plots of b

é versus the pertinent parameters, such as Rd, are of course necegfoary.
~ &

3We are, of course, aliowing only py to vary.
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- In conclusion, note that although we have dealt exclusively with the
pressure and Mach number, other quantities are casily determined. For
example, the temperature at 4 is knowan for all flow situations from

T

!
1]
+
—
F
[
g
N

since the stagnation temperature, approximately given by T1 » 18 a constant,
Another useful quantity is the stagnation pressure Py At {1 this is approxi-

mately equal to Py» but at 4 it is

P el v/(y-1)

04 [1 + by 1)M2/2] ,

P4 e

and consequently, (p4lpt) < (p04 /pm). This difference in static and stagna-
1} pressure ratios is not necessarily small, e.g., withy = (7/5) and

M, =1 we have (py,/py) = 1.892 (Pq/Py)
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APPENDIX
If (GbL/ GMZ) is non-zero, then bl, and Mf are uniquely related. This

derivative is [ see equation (18)]

2) o2 2) o2 aag
oo Mo aF(ME) o ar(nd) i
Wi - 5= —5 T ToZ o e
sM:  eM:  aM;  aM,  aMi  aM: aM’

where the derivatives, such as (8M§/ aMf), are determined by equations (2)

and (4). We thus obtain

where
2 2 2
2 (s - M3) (1 +vems ) (1 - m5)
n{M}) = 277 2 2y
[ttt -vem ]\1 +y Mé) [1 Fly - 1)M4]
and Mg and Mi are related by equation (4). It is easy to see that H(0) = 1 and
H(1) = 0. One can also show that (dH/dMg) < 0for0s= M3 <’ Conéequently,

H =1 and since M, < M3, we have (GbL/BMf) < 0, and bL and Mf are uniquely
related. Furthermore, since (8bL/8M?) is negative, increasing Mf means
bL must derrease if p4/p1 is to remain constant. In other words, we get

the result that if the pressure ratio Py /'p1 is to remain constant as the mass

flow rate is increased, the dimensionless product (bL) must decrease.
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