UNCLASSIFIED

AD NUMBER

AD800387

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors; Critical
Technology; SEP 1966. Other requests shall
be referred to Air Force Rome Air
Development Center, Attn: EMLI, Griffis
AFB, NY 13440.

AUTHORITY

RADC ltr, 9 Jan 1970

THIS PAGE IS UNCLASSIFIED

ap 00 3287]

AV, GAPB, N.Y., 18 Oct 66-154

STUDY OF ASSOCIATIVE PROCESSING TECHNIQUES

R. M. Bird
J. L. Cass
Richard H. Fuller
et al

This document is subject to special
export controls and each transmittal
to foreign governments or foreign
national:s may be made only with

prior approval of RADC (EMLI),
GAFB, N.Y. 13440.

POREWORD

This final report was prepared under Contract AF30(602)-3756,
Project 5581, Task 556109, during the period of approximately May 1965
to March 1966. The RADC Project Engineer was Morris A. Knapp (EMIID).

The study effort was conducted by the Librascope Group of General
Precision, Inc., and specifically was performed by the Advanced Tech-
nology Center, Glendale, California. Librascope personnel contributing
to the study task or to the report include: R. M. Bird, J. L. Cass,

P. E. Tanner and Dr. J. C, Tu. Principal Investigator was Dr. Richard
H., Fuller.

Release of subject report to the general public is prohibited by
the Strategic Trade Control Program, Mutual Defense Assistance Control
List (revised € January 1965) published by the Department of State.

This technical report has been reviewed and is approved.

e “1,4,7 8/{
. - &4
Approved: mazg/ J. QUINN, JR., OOLONEL, USAF

7/ Chief, Intel and Info Processing Div.

FOR THE COMMANDER!

Chief, Advanced Studies Group

i1

/

o

s
Ve
yd

ABSTRACT

This report is in two volumes and describes results of a study of associative
processing techniques performed by Librascope Group of General Precision
Inc. under RADC cont;,a’ct AF 30(602)-3756. Volume I is an unclassified

document and containé all the material in the report except that concerning

~the ELINT recor?(ssance problem which is contained in Volume II.

volume Il is a ¢fassified document at the SECRET level.
s

Two associ;t{ve processors are formulated and evaluated. The first
processoy,; named the associative file processor (AFP), uses a small
associage memory, in conjunction with a large head-per-track disc
file,/t/o affect content search and retrieval from large formatted files stored

op/t/he disc. The processor also allows efficient updating of large, highly

/éynamic data bases. The applications of AFP in the manipulation of existing

sea surveillance files and command-control data bases are investigated in
detail. In these tasks, the processor offers a reduction of several orders
of magnitude in query response times relative to both presently used equip-
ment and previously proposed associative techniques..' A query language,
presently used in a command and control system, is shown to be suitable

for use with this processor.

The second processor, némed the associative parallel processor (APP),

is optimized for simultaneous processing of many data elements as they
reside in memory. This processor is evaluated for use in the real-time
solution of large network-flowor resource-allocation tasks, and also for
the real-time reduction of ELINT reconnaissance data., It is shown that,
for large problems of either type, the processor offers order-of-magnitude
reductions in solution times over conventional methods. Improvements in
solution times are such that real-time solutions of important tasks in each

problem area are feasible,

All processor configurations presented are based on mechanizations which :
can be implemented in a practical and economic manner with presently
available electronic circuits and memory components. Other applications

of these techniques are recommended and further development and study
areas are suggested.

i1i

1.0

2.

0

CONTENTS

INTRODUCTION

1.1 ASSOCIATIVE FILE PROCESSOR

1.2

1.3

ASSOCIATIVE PARALLEL PROCESSOR

1.2.1 The Use of APP in Solution of Network Flow
Problems

1.2.2 The Use of APP for Processing ELINT
Reconnaissance data)

CONCLUSIONS AND RECOMMENDATIONS

ASSOCIATIVE FROCESSING OF FORMATTED FILES

2.1

2.2

INTRODUCTION

PARALLEL FILE PROCESSING

2.2.1 Introduction

2.2.2 List Structuring of Files

2.2.3 Parallz]l Processing of Fixed Format Files
2.2.4 Evaluation of AFP-1

ASSOCIATIVE FILE PROCESSOR

.1 Introduction

Design Concept of AFP-2

Summary of Hardware Elements
Operations in the AFP P
Search and Retrieval Considerations
Multiblock Record Considerations

NNNNNN_{\J

File Maintenance Considerations

o]

Tradeoffs and Options

[" I Ve I VYR Vv
Ok N e W N

Conclusions

2.4 A QUERY LANGUAGE FOR USE WITH AFP

Page

13
13
15
15
16

2k
36
38
38
38
39
k2

b7
51
52
53
55

56

——

CONTENTS (continued)

Page
3,0 ASSOCIATIVE SOLUTION OF NETWORK FLOW PROBLEMS 65
3.1 INTRODUCTION 5
3.2 THE ASSOCIATIVE PARALLEL PROCESSOR 69
3.2.1 The Structure of the Processor 69
3.2.2 The Command Set 72
3.2.3 Timing Assumption on Command Set 15
3.3 ALGORITHMS FOR SOLUTION OF NETWORK FLOW
PROBLEM 17
3.3.1 Example to Demonstrate Processing Operations 17
3.3.2 Solution of the Binary Assignment Problem £5
3.3.3 Sclution of the General Assignment Problem 9L
3.3.4 Solution of the Transportation Problem 105
3.3.5 Timing Comparisons for Network Flow Problems 121
3.4 SUMMARY AND CONCLUSIONS 123
APPENDIX A AFP SEARCH ALGORITHMS 129
APPENDIX B DDC TYPE SEARCH IN AFP-2 145
APPENDIX C A WOVEN PLATED-WIRE ASSOCIATIVE MEMORY
by R.H. Fuller, R.M. Bird and J.C. Tu
Presented at: NAECON, MAY 1665 1k9
APPENDIX D PROGRAM IN MACHINE LANGUAGE CONTROL
FOR GENERAL ASSIGNMENT PROBLEM 16,

vi

ILLUSTRATIONS

Figure Page
2-1 AFP-2 Major Hardware Elements 40
2-2 Example of Read by Compare Flag L8
3-1 Example of Rating Matrix 67
3-2 Block Diagram of Associative Parallel Processor

for Network Flow Problems T0
3.3 Format for Associative Command b
3-4 Processing Operations in Solving General Assignment

Problem 78
3.5 General Assignment Problem Macro Program 81
3-6 Fundamental Algorithm for Binary Assignment Problem 86
3-7 Flow Diagram of Program for the Binary Assignment

Problem 88
3-8 Machine Language Program for Binary A: ignment

Problem ' 69
3-9 Comparifon of APP with Two Serial Processor for

Solution of Binary Assignment Problem 93
3-10 Fiow Diagram for Initial Adjustment for Maximizing

for Rows, General Assignment Problem 97
3-1 Flow Diagram for Initial Independent Zero Assignmen®, n

General Assignment Problem 90
3-12 ° Flow Diagram for Step 1 - Cost Matrix Test and Step 3 -

Cost Matrix Adjustment, General Assignment Problem 99
3-13 Flow Diagram for Step 2 - Assignment Adjustment,

General Assignment Problem 100
3-14 Transportation Problem Algorithm 107
3-15 Flow Diagram, Initial Allocation, Transportation

Problem 112
3-16 Flow Diagram, Cost-Matrix Test - Step 1 and Cost-Matrix

Adjustment - Step 3 Transportation Problem 113
3-17 Flow Diagram, Quota Adjustment - Step 2 Transportation

Problem 11k

vii

1.0 _INTRODUCTION

This rcport appesrs in two volumes and describes results of a study of associa-
tive processing techniques performed by the Librascope Group of General Precisior
Inc., under RADC contract AF 30(602)-3756. The study herein reported is a contin-
uation of a previous effort funded uander RADC acntract AF 30(602)-33711+2, During
the previous study, Librascope formulated two associative processors. The rirst
processor was optimized to the task of pattern recognition; the second processor
was optimized for retrieval of documents, clarsified by a set of descriptors such
as are used in the Defense Documentation Center (DDC) retrieval system. The
present study has further refined each processor organization, has extended the
defined range of application for each processcr and has provided quantitive

performance evaluations for each application investigated.

Recent years have seen intensive investigations of digital computer organizaticns,
command sets, and usage methods which represent distince departures from -
conventional Von Neuman techriques. Much of this effort has as objectives the
formulation and efficient solution of non-numeric problems for which conventional
techniques are not effective. Complex non-numeric prchlems frequently allow
partitioning of the computational task into many independent subtasks, which

may be allocated over many identical miachine elements with interchange of
results among machine elements. This, together with rapidly developing capa-
bilities for batch fabri-ation and interconne. tion of computer components, has
led to investigation of distributed or parallel computing networks consisting of
many identical computing cells, interconnected in an iterative structure. Examples
of such machines include the Holland machine, the Solomon computer and various

pattern recognition devices such as the ILLIAC 11l computer. The associative

processors described in this report are also machines .f this class.

We feel that the promise of associative processing techniques lies more in their
ability to implement novel and demanding machine requirements, implied by non-
numeric computing tasks, than in their ability to speed solution of presently
solvable problems. Developnent of novel cellular organization allows machine
soluiion of important new classes of problems, in addition to solution of larger
problems of presently solvable types. Accordingly, we have developed associative
techniques for content search and retrieval from large formatted data files, for
adaptive pattern recognition, for ELINT pulse train sorting and for solution of

network flow problems,

The file processing task is implemented by an associative file processor (AFP)
which is a variant of a more restricted ma—éhme developed under the previous
contract for retrieval of Defense Documents.tio\';i Center (DDC) documents. The
data bases, taken as models for the file processing task, were the present Navy
Sea Surveillance Data Base and the present Headquarters ASAF (473-L) Command
and Control Data Base., In Chapter 2 of this report, the AFP is structured and
programmed for f{ile méihipulation tasks required by these problems. A user-
oriented query language, suitable to each pr.oblem environment is described.

The efficiency of AFP in this application is ev.aluated relative to that of pres‘g‘ntly
used equipraent and to that of\.“t'he__ Goodyear Associative Processor (GAP), now

under development for RADC.

The associative pattern processor, developed by Librascope under previous RADC
contract, evaluates threshold logic functions by techniques which may be readily
-extended to transform all or any part of memory conteats according to any
boolean function of memory contents and external variables. The organization,

* logic, and command structure for this processor are thus applicable to a variety
of other problems wh}ch allow parallel processing. In the sequel, we term this
processor the ""Associative Parallel Processor'', APP to denote its general

utility.

Chapter 3 of this report described the application of APP to network flow or
resource allocation problems. These problems arise in a variety of logistic
or tactical environments, in which each of many resources may be allocated to

each of many ends, with some cost or return known for each possible allocation.

The APP is programmed for optimum solution of several variants of this problem
in near real time. Solution rates are compared to those available from state-of-

the-art processors of conventional organization.

Applicability of APP to ELINT pulse-train separation is investigated in Chapter
L, which is classified SECRET and appesrs in a second separate volume. The task
is defined, the APP {s programmed for its solution, and solution rates are again

compared to those available from conventional machines.

These studies collectively illustrate the utility of associative techniques in two
broad areas of non-numeric data processing. The first usage area is content

search and retrieval from large data bases stored in inexpensive mass-storage
media. The second area is simultag_eous processing of many data elements as

)
they reside in memory.

Each application area has a distinct machine organization, AFP and APP
respectively, best suited to it., The rationale for each machine organization
and a summary of its performance in selected applications are presented in the
balance of this report. Each of these machines is structured such that it is
practically realizable using available technology. For example, the associative
memories for these machines can be built using plated wire memory elements
describad in Appendix C. Timing calculations for the processors are based

on this realization.

1.1 ASSOCIATIVE FILE PROCESSOR

Important features of the associative file processor (AFP) are as follows:

1)

2)

3)

4)

The data base is stored on a relatively inexpensive head-per-track
disc file, since it is felt that true associative storage of large data
bases would be prohibitively equensive’both now,and in the foreseeable
future. Further economies are provided by using only a single read-

write head on each disc track.

A large portion of the file (e.g., 1024 tracks) is content .searched in

a single disc revolution (e.g., 40 rﬁs). The comparison operators:
equality, inequality, greater than, less than or bounded search, are
each available as search modes. Rapid search is possible through
use of an extremely high data rate (i.e., highly parallel) transfer

path from the file to a controlling associative memory. Data is
transferred simultaneously from many disc tracks to corresponding
words in associative memory. This fast transfer path is.neceaaary

if search time is not to be obscured by the time to transfer data to
the associative memory.

The AFP requires only a small associative memory (e. g., 1024 words
of 64 bits) to control search oi a much larger data base (e'. g, 3 X 108
bits). Each bit of the associative memory is a tag bit used to dencte
some block of disc storage as matching a search criterion. Elements

of the data base are never transferred into the associative n.emory.
2
The AFP performs all operations requisite to efficient manipulation

of a large highly dynamic data base. The present Navy Sea
Surveillance Retrieval System and the Headquarters ASAF (473-L)
Command and Control System were used as models for the data base
and for operations on the data base. The AFP performs the search

and retrieval tasks and also the file maintenance tasks requisite to

these eavironments. Y

4

5) Records are retrieved from the disc or written onto fhe disc in
""gather read, scatter write'' fashion. In a single disc revolution,
records may be retrieved from many tracks or written into available
space on many tracks. For each of these operations, disc accesses
are controlled by contents of the associative memory, set during a

previous search,

Through its possession of the foregoing features, AFP offers the important
advantages of content search and simple memory management, usually associated
with list structured files, without incurring the speed disadvantages of sequentially
scanning lists and of linkage modifications required to insert or delete records.
AFP incurs some storage inefficiency through the use of a fixed record format.
However, it is felt that storage efficiency will generally compare favorable with
that of list-structured files, due to the elimination in AFP of explicit attribute

(field) names, linkage addresses and reference dictionaries.

The data base structure and machine organization for AFP are described in
Chapter 2, together with a query language suitable to its intended use. Response
times are determined for sample queries derived fromthe Sea Surveillance t;sk.
Comparison of these times to equivalent times developed for the Goodyear
Associative Processor (GAP) show that response times for AFP are several
orders of magntiude less than equivalent times for GAP. Query response times
for AFP are rélatively independent of both query content or complexity and file

size, neither of which is true for list-organized {iles or for GAP.
1:2 ASSOCIATIVE PARALLEL PROCESSOR

The associative parallel processor (APP), developed by Librascope under previous
RADC contract, was recognized ‘lli‘h&ving utility beyond the picture processing
application for which it was duigne‘c.i. Under the present contract, further studies
were undertaken to extend the range of defined applicability for this machine and

to determine the extend to which the machine organization would vary with problem

5

environment., Two further applications for APP were investigated. The first is

4 S e,

optimum solution of network flow or resource allocation tasks. The second is -

processing electromagnetic intelligence (ELINT) data, It was found that APP
was applicable to each problex/'n with only slight modification and that significant
operational advantages acrue to its use., The results of each study are further

described,

1. 2.1 The Use of APP in Solution of Network Flow Problems

The applicability of an associative parallel processor (APP) to the solution of
network flow problems is investigated in Chapter 3. The network flow problem
is couched within the model of the so-called Hitéhcock-Koopma.ns transportation
problem. Three variations on this model are considered, and are iisted .in their

order of model complexity,

1) Binary assignment problem
2) General assignment problem

3) Transportation problem

An APP is formulated which can solve any of these three variations of this model.
The formulation of the APP includes a description of the organization, a description
of the command set and the timing requirement for the commands. A comparison

of this APP with a previous APP formulated for pattern recognition is made.

Algorithms for the solution of the three variations considered for network flow
problems are presented. From these algorithms, programming flow diagrams and
detailed APP machine language programs are written which describe how the APP
solves these problems. From the flow diagrams and machine language programs,
a timing estimate is made to determine the time the APP requires to solve each

of these three variations.

To provide a basis for comparison, the solution times are estimated for a

serial processor to solve each of these three variations on the network flow

problems. Finally, a timing comparison is made between the APP and the serial
é

processor.

[— e

F23

From the study presented in Chapter 3, it is concluded that:

1) The APP has a timing efficiency factor of from one to three orders of
magnitude over its serial processor counterpart for the three variations
of network flow problems considered. The one order of magnitude
factor is applicable for smaller matrices, of around 30 X 30 size,
whereas the three orders of magnitude factor is applic,able for the

larger matrices, of around 1000 X 1000 eize.

2) The timing requirement for the three variations increases approxi-
mateiy linearly or in idrect proportion to ''n'", the order of the cost
matrix, for the APP, whereas it increases nearly in proportion to

"n3”, or the cube of the order of the cost matrix, for the serial

processor,

3) The APP can determine optimum solutions for network flow problems,
even for large matrices of the order 1000, in milliseconds, which must
be considered as virtual real time in respect to human operator
reaction time. In contrast, for a matrix of fhe order 1000, the serial
processor requires from the order of several seconds for the binary
assignment problem to the order of several minutes for the trans-
portation problem, which certainly cannot be considered as real time

for most appiicacions.

4) The basic structure of the APP is identical with that of an APP
previously formulatad for pattern recognition. However, it is found
that several new features are required for matrix manipulation

purposes.

S) The matrix manipulating feature of this APP gives it a utility for
solving other types of problems with matrix manipulation requirements,
including, for initance, linear programming, dynamic programming,
matrix inversion and boundary value problems.

1

6) Many examples of the network flow problem have a virtual real-time
processing requirement. The weapon assignment problem and
message switching to optimally distribute messages in a complex
command and control system are examples. For these problems,
the APP can provide real-time solutions, whereas the serial
processor cannot, Any additional reasonable cost factors of the
APP over the serial processor can certainly be justified for these

types of problems.

1.2.2 The Use of APP for Proceuinl ELINT Reconnaissance Data

In Chapter b contained in Volume II with a SECRET classification, the ELINT
reconnaissance problem is investigated, to determine the feasidility of
employing an APP to process this reccnnaissance dats in real time. The ELINT

problem is described, together with an algorithm for its solution.

v

An APP is then structured and programmed according to this algorithm,

The propcsed ELINT processing algorithm consists of three cycles, namely:

Mode | - Pulse train sorting
Mode 11 - Emitter Position determination
Mode III - Verification of emitters

Flow diagrams, machine language programs and timing calculations are
given for each of three modes. The most time consuming processing step

is the pulse train sorting cycle of Mode 1.

A tradeoff study is made between an ELINTAPP and a state-of-the-art
sequential processor. Cost estimates for each machine are provided. The
sequential processor is programmed to perform the ELINT task. Processing

times are determined and compared to those for the ELINT APP.

1.3 CONCLUSIONS AND RECOMMENDATIONS

The studies herein reported demonstrate the utility of associative processing
techniques for information retrieval and also for parallel processing of

data as it resides in associative rnemory. The associative file processor

(AFP) illustrates that small associative memories, used in a control

capacity, can greatly facilitate search and retrieval of formatted records

from a large data base, and are also of significant use in memory manage-

ment tasks. Order oi magnitude reductions in query response time are

obrained with AFP, relative to use of other known retrieval techniques.

The use of associative retrieval techniques significantly affects the

manner of organizing a data base into a mass file, since files should de

fixed format tabular rather than list structured. AFP does not have apprecia“ble
effect on the grammar or syntax of a user-oriented query language. It was found,
for example, that the present 473-L query language is quite suitable for use with

AFP.

cp—

B

Our studies have shown that the organization and comrnand set for the associative
parallel processor (APP) are ’u'seful with little change for picture processing, for
solution of network flow problems and for processing ELINT reconnaissance data.
In particular, the associative microcommand, which establishes search criteria
for words requiring a particular transformation and defines the required trans-
formation of these words, has direct utility in all three problem areas. This is
not surprising, in view of the generality of the concept of ''sequential state

transformation'' upon which the command is based.

The three problems, investigated for solution by APP, are particularly amenable

to parallel processing, since each may be solved t‘»y algorithms which execute a
single operation simultaneously over many data elements. Problems, allowing

this high degree o! parallelism, will generally be solvable by APP in times
appreciably less than for conventional sequential solution. The time gain depends
on the number of data elements which may be independently processed. For all
problems studied, the speed advantage of APP was one to three orders of m;gnitude.
over conventional processing. Associative memories of 1024 to 2048 words are

suitable to each application studied.

Librascope studies, together with other similar studiessponsored by RADC,
clearly illustrate the importance of integrating an associative memory into the
over-all system, rather than adding it as an afterthought. The efficiency of the
associative parallel processor is strongly dependent on the close integration of
an instruction memory and various search control devices with the associative
array. The efficiency would decrease considerably if the associative array were

peripherally controlled by a conventional computer through a conventional dats

transfer path.

For the associative file processor, the important interface is that between the

e A A

! ' ’ associative memory and the disc file. Unless a highly parallel transfer path
is provided at this interface, data transfer time will vitiate any speed gain due

to associative search.

The Librascope studies also clearly show the importance of the multiwrite

- ?
function to effective associative processing. It has long been recognized that a

multiwrite capability is requisite to associative parallel processing. Our studies

S AR

of APP further illustrate the utility of associative parallel processing and thus

of the multiwrite function. More important,, we show that multiwrite is a

e Ao g S 0 e 5

necessary feature for effective associative file processing, since it allows
i ' realization of the highly parallel transfer path shown necessary for effective file

*‘ processing.

. Based on our studies of associative techniques and un rejated studies by others,
we f{eel that additional efforts should be undertaken in the following areas:

1) Utilization of present application studies: It is felt that both AFP

and APP could be built, using presently available technology to yield M
significant improvements in present operating systems. An AFP
machine of moderate size has been shown by the present study to have

real utility for command and control information retrieval. The

i e ettt sttt 4+

APP machine allows an important increase in the ability to perform
real-time processing of ELINT reconnaissance data. It can also
perform complex weapon assignment or other network flow tasks in
1 4 x real time,

.% 2) Further applications studies: Present digital message switching c

systems represent outgoing queues as list structures in memory.

The AFP organization lends itselfl to associative manipulation of

- P

storage. Also, the APP organization seems suitable to quick-look

3§

[————

; e ! scanning of space telemetry data in real time. Such scanning would

]

{ be of significant help in gaining real-time knowledge of monitored !
events and also in selecting telemetry types for later, more detailed

processing.

3) Further development of technology:

a) In particular, more efficient means for performing the multiwrite
operation into associative arrays should be developed. The size,
cost and power diuipation of semiconductor word electronics,
presently available to perform this function, would preclude the
function from realization in systems of sufficient capacity for-
some important applications. We feel that plated wire realizations
of multi write word electronics, compatible with plated wire

associative arrays, merit further investigation,

\
b) More effective match storage and match resolution circuitry should

— s

be developed. Plated wire devices merit further study for this

function as well.

¢) Following feasidbility demonstrations of the above devices, an
experimental associative processor of either the APP or the AFP
variety should be built. Operational experience gained with these
processors will aid significantly in further development of
associative processing technology and in the demonstration of its

utility.

REFERENCES - CHAPTER |

1) Fuller, R.H., Bird, R.M. and Medick, J.N., "Associative Processor
Study - Interim Report”, DDC No. AD 608-427, October 1964

2) Fuller, R.H., Bird, R.M. and Worthy, R. M., "Study of Associative
Processor Technisues - Final Report”, DDC No. AD-621 516, August
1965

12

X
-~

2.0 ASSOCIATIVE PROCESSING OF FORMATTED FILES

2.1 INTRODUCTION

In developing applications of parallel file processing, it is helpful to
review briefly the evolution of data retrieval techniques as they apply

to data base structure. The most primitive technique is the use of address
calculation with fixed format records. This is of limited applicability,
where the data base is dynamic, i.e., continually changing, because of
severe memory management problems. Another severe handicap exists

in that data retrievali can be done only on the field for which the address
can be calculated.

As information science evolved, great progress has been made through \

the use of list-structured files and serial or sequential list processing.

Through list brocessing, probiems were alleviated in memory management,

data access and freedom of record format. List processing, however, is

time consuminj.__;ﬁ& by and large, in order to retrieve data, files must be .

traversed sequenti'ally following the linkages from one record to the next.

List processing enables the use of a very important aspec: of data retrieval;
namely, content search, which is fundamnental because of the inherent
association of a transaction or query with the contents of certain records

of a file. When a l'istqtrucmred file is being sequentially processed,
record by record, the retrieval criteria can apply readily to record content.

Assocjative techniques have been explored previously, in an attempt to speed
up list processing. However, these efforts have not met with much success
because the processing has remained sequential. Any significant speed
improvement requires some form of parallel processing., which implies
doing a content search over many records simultaneously. As demonstrated
in this section, associative techniques are a great asset in parallel pro-
cessing, provided no exhaustive data transfers are needed. whi:h eat up
more time than searching.

The development of data ratrieval techniques may ba viewed from another
evolutionary standpoint, primarily associated with hardware capability.
The simplest content search is for a single criterion applied sequentially

13

to a single record at a time. The next step in complexity is to apply multiple
criteria to a single record at a time, i.e., to do a multiple search. As the
records are the same for all searches, the speed advantage is the number

of searches that logically can be done simultaneously. This is usually not

a great number.

More complex yet, because of hardware implications, is the scheme of
applying a single search criterion to a multip.:city of records in parallel,
which gains a speed advantage directly proportional to the degx:ee of parallel-
ism. This is the level of the parallel file processor described in this

. section.

The ultimate in speed is achieved by doing a multiple search over a
multiplicity of records, which may be effective where the whole data base .
is a single file, organized for multiple searching. A machine of the latter

type applicable to retrieval of fixed format DDC (formerly ASTIA) records,
‘ L

was developed by Librascope under a previous RADC contract

With the objective of doing parallel file processing, it is necessary to
examine the data base organization, particularly the record formats. In
section 2.2, format constraints, requisite to parallel file processing, are
examined. Section 2.3 presents a machine organiz.a-tion suitable for
parallel processing of filcs stored on a head-per-track disc file. Section

2.4 describes a query language suitable to parallel file processing.

1

T 242 PARALIFL FILE PROCESSING
2.2,1 Introduction

This section presents a critical examination of the current irend in

data processing, namely, the serial or sequential processing of list-
structured files, It also presents a technique that promises signif-
icant advantages in speed, namely, parallel processing by associative
techniques,and compares para?ilel processing with serial processing,

both as to applicability and relative advantages. It is concluded

tt;,at, within the restriction of properly formatting data, parallel o
précessing offers important advantages, not only in lessened retrieval
time, but also in relative ease of use for mesmory management and data

access,

15

e

2,2,2 List Structuring of Files

There has developed in the Information Storage and Retrisval
(IS and R) community a strong tendency to organize large data
bases into list structured fi1336 That is, the members

of each file are identified by being linked or strung together as a

list, rather than say, by physical location. Justification for iist

structuring of files and the use of serial processing for data re-
trieval is given in terms of:

1) Advantages in memory management.
2) Ready access to all stored data.

3) Responsive representation of the nature of the data.

The current approach to data retrieval from a list-structured data
basq is based on content search using serial processing, In real-
time, dynamic-data-base/ query uystm;s, the need is to retrieve
records by conteni, because of the inherent association of trans-

actions or queries with certain records in the data bass. Content

scarch of the data base is natural and efficient, in that it elimin-

ales record position datermination.

Hardware and algorithms, as well as data base struclure, are

orionted toward fast, officiont, serial searches of large bloeis of

stored data, or alse lLoward rapid path tracing through stored relat-

iorships, expressod Ly linkages, until the dasired items are found.
This mode of processing is time consuming, It is not expected that

16

this problem will be alleviated by improvements in conventional
computer hardware, since cormputer system serial processing speeds

are rising slowly compared to the increasing need for fast data
retrieval from large data bases.

As it is the purpose of this study to dotermine the applicability of
parallel processing to content retrieval within large data bases, it is
expeditious to examine the data b se structuring in more detail.

17

S e 4 AR A T o o

i A i e e

?

2.2,2,1 Memory Management

The term, memory management, applies to the task, usually catagorized

as "bookkeeping", of allocating space in storage as it is required.

- Space.may be required when existing dynamic files in the data base

acquire new meibers, or when new files are generated and must be stored,
Deleting records or files makes space available, and tne efficient use
of storage elements requires that mang must be providad for ivuse of
this space.

Dynamic storage allocation is traditionally accomplished via an "available
space" list,in which empty data spaces are strung together to form a list,
Just as is each file, When a new item appears, -it is assigned the first
091l on the available space list, and newly emptied cells are linked to
the end of the 1ist, Thus, the files in the data base may be of indeter-
ninant sise without undue inefficiency in storage space requirements.

The available space technique for memory management is particularly
offective when the data base is stored in random access memory, that is,
vhen there is no preferential aspect to the storage location of any given
item. However, the latter property is not true of currently available
bulk memory devices, namely, disc memories. Tha result is that file
entriss in the data base get scattered all over the disc, with no concern

for the access time required to go from one item in a file to the
next, using the linkage that strings the file together. So far, no
technique has been developed for assigning available apace on a
preferential basis, rather than as "next available®, so that the

18

benalty in access time in tracing th:ough a lz.tvs\t;‘ structured file is
Jjust accepted. This access time tends to swamp out éonputer proces-
sing time ;Hd to constitute the limit on reduction of da\ih\mtrieval
time., ’ \\

AN
N

2.=2‘.2."2 Data Access

It is apparent that access to any desired stored item in a data base
can be virtually guaranteed using list structured files, TFach file
must have associated with it an identification or classification of
the contents of the entries in soms sort of an index or directory.
Then, when a query is presented, the requested data types are matched
against the file directories and the proper files are consulted.

Many files do not involve data sets with intrinsic order relationships,
At best, in special cases, such as personnel files, one, or a very few
order relationships exist. Thus, although an explicit ordering exi‘sts
in a list structured file, in the usual case of data retrieval, a file
entry point at which to start searching cannot be specifisd. This
implies paying the heavy penalty in access time retrieving item after
item, assuming the file occupies random disc locations generated by

the forementioned techniques of memory management.

In some applications, this relatively slow access is acoeptadble,
partisularly wvhere many separate searches or retrisvals are con-
current. A successful technique is to queue disc access requests
and sort them into time sequonce, reducing apparent acoess time,

A strong mltiprogrameing capability is required, and there is no
increass in speed of response .o any given request.

19

N Y

i

TR

Becanse of the format problems, and to help better express the intrinsic
relationships among the data, other structurings have been explored.
Specifically the graphic node-relationship form has been atudied?.

In this form, the concept of "entity" is exploited. Each node corresponds
to an individual person or thing, or a classification of individuals, The

graphical representation consists of laying out all the nodes and then
drawing in pertinent directional relationship lines connecting related
nodes, In the retemnce,a comforiably small number of types of relation-
ship lines seem to suffice to represent a diverse amourt of data in a
data base,

The graphical node-relationship representation of a data base is mention-
ed, not because of its potential value for parallel processing, for this
kind of graph traversal is eminenily a serial process, but because of the
explicit treatment of "entity" and "relationship" as concepts in date
base structuring, Entities, again, are individuals, such as persoas,
places, or things, or classifications and characteristics of individuals
Examples are: Capt. R. Owens, Griffiss Air Force Basae, the Valley Forge
(individuals), Commanding Officer, Airfield, Aireraft Carrier (classifi-
cations), and Age, Elavation, and Maximum Speed (characteristics). The
relationships most readily expressed in a node-relationship graph are
qualitative: for example, " is a: exampleo of",'is a component of’,‘

" is located at", "is a typical". Thess relationships apply among
various individuals and classifications,

Quantative relatioanships do ot yleld so readily ‘o such a graphical

raprasentation, as lhey wxm:esa valuss of characterisiics as applied

e it

{0 individuals or classes, ."A ternary relationship is introduced

in the forementioned reference to haidly quantitative relatiozxgﬁips,

with the cumbersome introduction of overy value or physical quantity

in the data base as a separate node in the graph., Clearly, the dif-

ficulty of traversing such a graph for a conteni search is compounded

by this strategy.

From a study of a graphical node-relationship graph representing a
data base, a definite conclusion can be drawn, namely, that struct -
uring files as lists of entries is a format choics and not an intrinsic
property of the data, It also helps clarify the inherent nature of a
data base in distinguishing entities and relationships which will be

of use in formatting files for parallel processirg.

The preceding sections have shown that serial processing and list struct-
uring of files hoth have serious limitations, particularly in the speed
of processing. They show that neither concepl is irherent in a data
base structure, or in the procassing requirements per se. Taerefore,

i considerirg parallel processing concepls to improve file processing
speeds, it is not unreasonabie to reconsider data formats and choose

file structures that enhance parallel processing,

23

o VDT MR b,

2,2,3 Parallel Processing of Fixed Formai Files

The primary purpose of parallel processing of files is to attain a
high processirg rate,implying short data search and retrieval times.
Tre objective is to make each entry in a file, and, in fact, each
field in each entry, equally transparent to a parallel content search,
and to establish a correspondingly efficient retrisval of desired data.,

Parallel processing of files involves the parallel-by-irack reading of
an assigned region of a disc memory containing the file of interest, and
a simltaneous field-by-field comparison of each bit stream with the
search criteria, flagging for subsequent retrieval those records which
oualify.

The searchable fields of the records in a file io be processzd i-. par-
allel must be in a fixed foimat, That is, lile fields musi appear in
like places from record to record, so that only one field is searched
for the roquired criterion ir each bit stream at any given irstaal of
time. This is because the search criteria, derived from the query,
gunorally specify several fields and required values in these fielids.
A variable format would require looking for all field identification
marks and all fisld values every charactar time, which would overload

ayr reasonable device,

ifaile all records withir a file must conform to the format chosen for
the file, thore is no constraint, or aven preference, with regard to

the saarch, related to the soquence of fields within the record format,

All ficlds are cqually transparent to the search, {or exax:le ir the

24

VIP file in the ses surveillance task (See Section 2,2,3.2), it is

no disadvantage to have the ship identity field follow tns VIP name
field, as the ship namo field can be searched just as readily as it
can be in the ships' file. An important advantage of having all fields
transparent to an associative search is elimination of the need to
sort files on each search criterion of interest.

In this discussion, as well as in the sucoeeding hardware Jescrip-
tion, it is assumed that a single mechanism performs a single ssarch
at & time, While duplicate search squipment could, presumably, double
the search rate, other, more subtle chanpes, such as doudbling the disc
speed, could achisve the same result. Accordingly, the matter will
not be considered further,

r———

2024301 Blocks and Block Flags

Disc memory tracks have a fixed number of bits ¥nd it is natural to divide -

them into a mmber of sectors or blocks of uniform length, Oneo direct
advantage is the ability f.:s use fixed addressing. However, any given
block length is not going ﬁ? suit all of the files in a data base with-
out wasting soms space, It }o normally necessary to dissociate block
length and record length, whioch' _18 done by making provision for multi-
block records. That is, tho formatted, searchable portions of file
ontrhsA-q occupy ssveral adjacent blocks. The block length then be-
comss & somewhat arbitrary parameter and can be optimized for any part-
icular job.

Significant advantages in memory management and datsa reirieval are Eor.-
comitant with the assumption of fixsd block length., These come aboui
by the use of flags, assignsd on a block-by-block basis, and siored
elssvhere than in the data storage blocks themsslves.

Memory managsment, that is, ths accounting for and allocation of disc
storage space as required, is facilitated by the use of an "obsolete®

or "empty"® flag associated with each block. As no ordering exists ia the
obsoleta flags, space can be assigned at software option. The specific
technique wvhich is very effective is to asaign %o a nevw record the first
(in time) obsolsto slot {of one or mors blocks) that can be written into
within a specified region (i.e., a soft-varc -defined set of tracis) of
dise 3mory. This has thrus advantages over the use of an available list,
namely, access Liro is reduced, records can be segregated into regions
undsr softuare control, and trs assigewnt &nd writing of the record are

purely hardware functions., In the case of multi-bloex records, a.
additioral header vlock flapg is needed Lo identify permissive blocis
in which to start writing (see seciion 2.3.0). The obsolete aud header
block flags car conveniently be stored in dedicated tracls ir the disc
momory, provided only that they are (ired to appear wilh their associa-

ted blocks,

Data access by content search is fzciiilaled Ly the use of corpare f{iags
o1 2 block-by-block basis. Since the parallel search is mecha. ized as a
block~by-block comparisorn, ‘.mt records, railo:r ‘ha- blocks. qualif a-d

are read, it is recessary .o do opersa‘io. s ¢ ‘he compare f{'ags., Addi:-
ionally, siatistics may Le wa:.ed zfier a searci.. r;,ihcr ina. roadi -~ ¢
qQualifying records. For Lthese reaso.s, it is ol adva-lLage to ho'd lie

compire {lags in a speéial cgnery, oX 221 o the dise, 1 vhiiehy) ca

e operated ou i parallel.

Thus, ine fixed format structuring of a da:as case for paralie’ piocess! g,
rathers thar list structurincg for serial processing, offers signifieart
advartages for momory management a:d da'a ruirieval, when combined wilh
suilanic hardware elements. Greater cotml, wiih luss effori, may be
exarcised Ly tho software i sterage mace assignneni. llore signifiea:.ly,
aftor a parallel seorch, to which a whole file i3 iLranspare-i, the dexired

records are directly accessible for readirg and further »rocessirs.

2.2.3.2 Data Structure and Required File Formats

This section is addressed to some of the problems and difficulties
encountered in attempting to structure or lay out a data base in fixed-

format, parallel-content-searchable files,

Record vasrsus block length has been treated in the previous section
and will not be treated further, except to remark that sometimes field

length and processing convenience can be traded off against gach other.

Variable-length records arise when file entries contain raw, unformatted
data, such as "comments", or when there are multiple tabular entries.

The raw data portion of a record is more or less intrinsically unsearch-
able, and no capability is lost by storing it separately, with a linkage

in the formatted part of the record,

vhen file entries have more than one value for specific position, the
format problem has been solved by allowing variable-length, variable-
format records. This is.done at significant storage expense, for each
descriptor value must have the descriptor name associated with it., This
technique may be best illustrated by an example taken from the sea surveil-
lance tasks. In one apprevach, a ships dynamic file is main=-

tained, which lists among other things, VIP's aboard each ship. As the
nunber of VIP!'s is variable from ship to ship, the number of VIP fields

is variable, and, furthermore, ¢hanges from time to time. Since the VIP
fields within the given ship's record have non-predictabls positions,

each must be identified within the record as a VIF field.

The above variable length record, with descriptor name-descriplor valus
pairs, can be eliminated by recognizirg a VIP as an entity, Since there

are many VIP's and they all sometimes have the propartiy of beirg aboard

28

—

one snip or another, this constitutes a topic, ard a file can be generated.
This file will have the VIP as the primzry entity, and, as he can, at most
be aboard one specific ship, have boarded at one specific tina, nave one

specific function and destination, the file can have a fixed record format.

The preceding example suggests that using the concepts, deecribed in sec-
tion 2,2.2.3, of entity and relationship, a file in a data base can be
looked uon as a matrix. The rows and columns correspond to entities,
and the matrix elements themselves to gqualitative or quantitative relat-
ionships., A measure of the tractability of the data base and of the
quality of file design is the number of null elements in the files. This,
as does record length, affects primarily the storage efficiency, with

little direct effect on data retrieval capability or speed of parallel
processing.

An important guide to file structure is to include all possible
relationships of the file entries within one file, This avoids
ever having to determine the intersection of two searches, which
cannot be done in parallel, and is, therefore, a slow, serial pro-
cess. For example, take the sea surveillance task. It is highly
undesirable to require searches on both a ships' dynamic file and
a ships' static file in response to a query. These searches will,
in genersl, coms up with with two tables of ships' names (as in
the query considered in the next ssction), and the names common
to both tables must ba found for the query response.

The alternative technique is to maintain a single ships' file with
both dynamic and static data in each ship's entry. For parallel
processing, some positional relationship of data must exist and

it not readily obtained any other way.

The concept of subfiles is also useful in formatting a data base,
Drawing on the provious example, a ship's static data may differ
widely in content, depending on whether the ship is a passenger,
merchant, or naval vessel. However, the dynamic data format may
be identical for all ships. Processing techniques can be devised
that will apply a search to a subset of file entries or to the whole
file as desired, |

The preceding discussion strongly suggests that the requirement
to organize the files of a data base into rigid fixed format or
tabular forr: may not be as restrictive as it may ar first appear.
What restrictiveness there is may well be more than offset by the
gain in processing speed by virtue of parallel processing. A by-
product advantage of retrieving from fixed format files is that
the data is in a natural and effective format for output to an

inquirer, or for further processing into a graphic visual display.

24203.3 Processing Rates

To illustPate the effectiveness of parallel processing, as compared

L)

with same serial processing techniques proposed, including the

employment of associative memoriesl, the following

approximations to search and retrieval times are derived, It is

assumed that the data base resides in disc memory and one or more

searches and retrieval occur in response to a query.

Search and retrieval times:

1)

2)

3)

Disc memory and conputer:

«N T.
T1 E.-erxI

Disc memorv, computer and auxiliary associative memory:

N T N
T2-E.§+iy+ux2

Disc memory with parallel processor and computer:

N x

T3-(k1¢1)'r+k2 3

there:

N is the number of records i the file, or the number of
directory entries that must bs searched.

m i8 the number of records per block transferred al a time
from disc (in case 2, equal to associative memory sise).

T is disc revolution time

(1/2 is the average acoess time to disc memory).

B R T, L o ST 4 S e

4
%
T ﬁ

BT R SISl Wi

1
kp

Commants:

a)

b)

is computer serial comparison and processing time per

record,

is computer processing and transfer time per record using
the auxiliary associative memory.

is computer processing time per record.

is the auxiliary associative memory processing time per
block of records.

ia the number of blocks of each record that must be narched.

is the fraction of the records that satisfy the search,

If N is very large, it may be appropriate to use less than
‘1‘/2 , such as 7/5 or T/10, as disc read requests may be
batched and time sequenced; meverthless, with N large,

‘21% » T

It has been found that, with amall associative mamories,
w% o .gy + Nx 2? and, in either case, the processing
time is swarmped out by the disc access time so that

T, ¥ T

‘l‘3 has time kl'r for search and T for read, If kz is reasonably

small and, assuming X; and x5 are roughly equal,
1‘3~ (k1 + 1) T,independent of N up to relatively large N.

As an example, Averbachl considers the sea surveillance data bues.

and the query, "Nearest (in time) ship/airecraft with aircraft

aboard with doctor to point x,y". With the assumption of only 32 records
in the data base, the disc retrieval time is quoted as being 7.2 seconds,
over 35 times the processing time required. Tt is to be noted that the
Processirg is done largely in an auxiliary associative memory, showing a
slight improvement over doing it in the GPC alone, For each additional
32 records in the file, an additional l.2seconds retrieval time is needed,

Using parallel processing, by contrast, about two searches and one re-
trieval process are needed; one search on the ships' static data, to
establish doctor and aircraft aboard, and one on ships dynamic data in

the same file to determine the ships that are in a region aroung point x,y.
This requires three disc revolutions (3T) independent of file size wp to
several thousand (inﬁt.oad of 32) records per file.

In addition to the seerch and retrieval time, there is processing time
required to find the minimum time in response to the query. This procesasing
time will be amall if koN is small; that is, if the search on the ships'
dynamic data (for location) is sufficiently delimiting.

For representative disc memories, a revolution time (T) is 50 o 70 milli-
ssconds, establishing the parallel processing tims as 0.15 to, say, 0.25
seconds, In the referenced example, the retrieval time is

iz

(access time) = 1,2 { § ‘3!") ncgﬂ;.

N

Thess are compared in the following table:

n

R

Records per Serial Retrieval Parallel Processing
file Time Time
N
32 7.2 sec 0.25 sec

1,000 Lh.L 0.25

10,000 3%0. ' . 0,5 *

% Asouming the search is ¢ N but > N/, records in parallel.
The above exaxples emphatically illustrate:

a) That serial processing, when disc retrisval times are taken
into account, is very slow for real-time search and retrieval,
even with moderate sised files and a multi-directory approach; and
b) that parallel processing has relatively high speed and is indep-
endent of file sise,

R

'2¢2.3.4 General Purpose Computer LEnvironment

It is assumed that the parallel processing takes place in & general
purpose computer (GPC) environment, That is, the GPC runs the show
and makes maximum use of the parallel processirg to ease iis interral
serial processing load, Wilh this,comes ithe corcept of filtering,
wherein the search may be too complex for the parallel processing
hardware, bat the number of candidates for serial processing is grossly
reduced. For example, in a sea surveillance sstem, a search for all
ships within one hour travel time of point p involves a greal circle
distance (GCD) determination and a division by ship speed. At disc
rates this is too much of a calculation to expect to do simulianeously
on all ship location records, so the GI'C would set up a ssarch on
latitude and longitude limits, doing the final elimination in core memory.

Other functions left to ths GPC include input conversion, generation of
ssarch criteria, file purging and \pdating, generating historical tapes,
fallback procedures and output conversion. The requirements on the GPC,
then, include a strong multiprogrammirg capability if all these functions
are to be done in real times.

35

‘=

2.2.4 Evaluation of AFP-1

This section is a discussion of the AFP-1 file processor as descri.ed
in the previous Librascope "Strdy in Associative Processor Techniquas"l.
While AFP-1 offers sirong potential in documsnt retrieval

applications such as the DDC (formerly ASTIA)Retrieval System , it re-
quires modification to achieve the generality required of command and
control quory systems., The AFP-1 configuration constituted an inter- |
mediate step in this study and ssrved as a vehicle for better under-
standing, A generalized version of this processor, termed AFP-2, is
descrived in Section 2.3.

An area of cost improvement, achieved in AFP-2, relates to the number

of heads per disc track. The AFP-1 system has three heads per disc
track. Current disc technology, with the high bit densities available,
makes milti-head tracks prohibitively expensive for bulk data storage.
In addition to the read head, the AFP-1 has a head slightly downstrean
to write data in a slot just identified as emply Oy readiag an emptiy
flar. Y.L has another head a farther dis:s:ce downsirean to drop
corpare flags in records after the records are ssarched. The AFP-2
design elimizates holh of these hoads. Rocords are writian with the

same head with which they are read.

Since AFP=1 wvas intended for search over a singie homogeneous file,

it vas structured to allow search over all tracks in 2 single disc revolu-
tion. In the command and control environment, there are usually masy files,
no more than one of wilch i3 scarched ai a time, It is therefore unnecessary
to scarch all disc tracks simltanously, In AFP=2, ssarches are limited to
somo region of disc momory where the sisze of a region is deterwmined by
storage requiremsnts for a single file,

3%

There are iwo areas in which the definition of AFP-1 was incorplete.
The first relates to the write head necessary to flag empty records.
The separation of this head from the read head determires a maximum
record length. Many small records could occupy this irtierval. How-
ever, no provision is made to queue the compare flags for these records.
A significant increase in AFP-1 complexity would be required to handle
these queues. It now seems impractical to store more than one record

in the maximun-length slot.

Search criteria in the DDC problem are fixed-length document descriptors,
In the general cormand and control environment, search criteria are
normally fislds of characters derived from an input query. Conceivably,
' an AFP could be built in which fislds could be recognized, but every
possible parameter of every search field would have to be interrogated
each character time, thereby throwing an excessive processing load on the

associative memory.

In the AFP-1, neither the read nor the retrieval processes were precisely
defined. In the AFP-2 system presented in Soction 2.3, read and retirieval
processes are defined and the machire is struciured to allow effective

exacution of these processes.

2.3 ASSOCIATIVE FILE PROCESSOR
2.3.1 Introduction

This section presents the design of an associative file processor, designated
the AFP -2 which accomplishes the parallel file processing tasks discussed
in section 2.2. The design is an embodiment of the concept of parallel
processing for data retrieval by content using current state-of-the-art

hardware.

The AFP-2 description is presented in the context of a command and control
application and the design parameters are derived from an existing, success-
fully operating system#* which is limited to serial content search. As such,
the AFP-2 design is responsive to all of the raquirements of an information
storage and retrieval application, involving dynamically changing files in

the data base and a user oriented query system for data retrieval. The
design is broadly, rather than specifically, application oriented. Conse-
quently, no,yunique structure is defined; rather, options and tradeoffs are

pointed out and discussed.

This section contains a description of the major hardware elements and the
individual operations of the AFP-2. Following this, the content search and
data retrieval process is discuse>d. Finally, a nuraber of tradeoff{s and

options are noted.

The AFP-C design description in this section demonstrates the feasibility
of building within the state-of-the-art a parallel {ile processor using
associative techniques. It shows that the inherent high processing rate
advantages can be attained by making use of the parallel processing capa-
bilities of an associative memory while still retaining the relatively low

storage cost of a disc memaory.

2.3.2 Design Concept of AFP-2

The AFP-2 is designed to do a parallel search on data emanating {rom a head-
per-track disc memory. A lorge subset of the tracks is read in parailsl and
the bit streams are comparcd simultaneously with the search criteria held

i separate registers.

eHeadguarters, United States Air Force Command and Control System {473L).

8

o ——— o or———s -

T Sy P

An associative memory is used to perform the parallel comparison and to
store the results as compare flags, assigned on a block-by-block basis. The
compare flags, after possible modification by subsequent parallel operations
in the associative memory, are used to control, and make efficient, a sub-

sequent data read operation.

The AFP-2 implements a number of data handling operations to allow its
performance as a data storage and retrieval system. These, including a

multiplicity of seirch types, are described in section 2. 3. 4.

Certain design parameters are assumed for illustration, although these are
easily subject to modification for a given application. The assumed design
parameters are:

1) Blocks of 128 characters of «ight bits each.

2) One ""obsolete' and one '"header block' flag per block.

3) 64 blocks (65, 536 bits) per disc track.

4) 1024 disc tracks (called a section) searched in parallel.

5) As a result of 3) and 4), an associative memory size
of 1024 words of 64 bits, plus a few tag bits, each.

6) A total disc memory capacity of several (say 5 or 6)
sections (that many groups of 1024 tracks).
Design parameters | and 2 are primarily application derived. The 128
character block is used in the operating command and control system

noted in section 2, 3.1,

Parameters 3 and 6 reflect currently available head-per-track disc technology.
Parameter 4 is largely arbitrary, although there is a relation between the
block size and the number of tracks searched in parallel due to the structure

of the flag tracks.

2.3.3 Summary of Hardware Elements

A summary of the major hardware elements of the AFP-2 follows (Figure 2-1).
Each element will be discussed in turn together with its pertinent {eatures.

2.3.31 Disc Memory

The primary data storage alement is a large head-per-track disc memory.
It is organized inte a number of sections of 1024 tracks each. {The numbers
chosen are primarily illustrative, with some constraints aizd tradeolfs dis-
cussed later.) Each track is divided into 64 sectors, or blocks, of 1024 bits

e

1D313S 119 Wv/401D3S AT RN
B oa 551a ¥ILNNOD £9 - 0 7 == N\
[W—E
T e 12 R I (e e o
In [334S1O3Y SSWAAY | ==) \ . _U\
QYOM WY aNV " TO¥INOD '\ MF~/
MOVl Osia - | N <
o33 \M_mww_,__:wu " ASYW — \M NOILD3IS/S1i8 987801 L9
T - <] NDO018/5118 ¥201
Wl AN NOVIL OV14 ADVAL/SADOTE ¥9
S 7 imeso oumem
“ L "OT_QIOM W'V |
£201 - -
TINNVHD T=
vwa _
g 1L D
0 G-
da 11 ¢ & -8y - oo - ¢o1>% ALOWIW
mwmwuﬁw_u AJOW3IN s1a
JAILVIDOSSY

IVY3INIO

Lo

each, which are intended to hold 128 data characters of 8 bits each. This
gives a total of 65,536 bits per track. All 1024 tracks of a section are read

| simultaneously, providing as many bit streams, and are searched simul-

taneously. Each head has write capability although it is not contemplated

to write in more than one track at a time.

Each disc memory section has two additional specialized tracks carrying
an ""obsolete' (or "empty") flag and a "header block'" flag for each block
in the section. These tracks also store 65,536 bits each,

The disc memory has the usual accessory features of clock and timing
tracks, but for this discussion these will be ignored. Also, there may be

inter -block gaps, so the bit counts are to be considered usable bit counts.
2.3.3.2 Associative Memory

The associative memory has the function of establishing and storing '""compare’
flags for all of the blocks in a disc memory section. It has a word-per-disc
memory track (1024), and the word length is the numer of blocks per track

(64) plus a few tag bits (Figure 2-1). The exact number of tag bits is
determined by some tradeoffs discussed below, but is at least two. A multi-

write or write-on-match®* capability is assumed.

Consideration will be given to other associative memory features and to

the situations in which they are particularly effective. These features
include the priority circuit or resolve operatioﬁ* which selects the ''next"
qualifying word, and the match type or approximate number of matches
operat'ion. There is a difference in the latter two operations, although both
give detector plane statistics. The match type operation is a none-one -many
distinction, while the other gives an approximate count of the number of

matches.

The associative memory has a word register for either -way word transfers,
but no mask register as record data never enters the associative memory.
It has a bit selecting index register which is also associated with disc

block identification.

*Terminology used is taken from Reference 3

41

e

e

s el R A

2.3,3,3 Search Criteria Registers

Three circulating registers, each one block long (1024 bits), are provided

to hold the search criteria. These registers operate bit serially in synchronism
with blocks on the disc memory, and are designated the key, mask, and control
registers. Essentially, their content, mixed with data coming from the disc,
including the obsolete flags, serves to fill the associative memory with com-

pare flags.
2.3. 34 4 General Purpose Computer

The AFP-2 is assumed to operate in a general purpose computer environment.
The AFP-Z is "operated'" by the GPC. For efficient data transfer, a direct
memory access (DM:s:) channel is assumed. Other propertiés of the GPC,
such as word length, interact with the AFP-2, but have only a secondary

effect on its functioning.

2.3.4 OQOperations in the AFP

The macro operations performed by AFP-2 may be broadly categorized
by two characteristics; namely, the identification of record locations, and
what is done to those locations, or the access means and the function,

respectively. The functions will be discussed first.
2.3.4.1 Functions

There are five functions related to operations on a data base stored on a

disc memory. These are:

Write
Read
Change obsolete status

Count

N b W N

Search and set compare flags

2.3.4.1.4 Write - The write function may occur in order to change or add
a bit, character, field, or several fields in a record; to change or add a
record, portion of a file or even a whole file. Since it is not practical to
provide addressing means for individual bits or characters, the write
function is‘offered on a single block, or multi-contiguous block basis. The
management problems of trying to string together scattered block locations
for writing a multi-block record disfavor hardware implementation over

being handled by program in the GPC.

k2

For write functions, when less than a full record is changed, the record is

normally read into the GPC, changed, and totally rewritten,

2.3.4.1.2 Read - The read function may occur in order to transfer into
the GPC memory any of the types of data fields mentioned above from those
locations identified by the access means. It is assumed that the DMA has
a limit register that prevents spillover, when the read function tries to

present too much data in the case where the quantity is unknown.

An important facet of the read function is that usually it is preferred to
transfer only selected fields from the accessed records, to economize on
GPC memory. This feature is provided by the control register which is
loaded with field marks and transfer flags. (In the case of multi-block

records this feature cannot be applied to more than one block per record.)

The read function, as defined, refers only to transfers from the data base
on disc. Obviously there are many other data transfers from {and to)
the AFP-2; e. g, it may do a transfer of the associative memory content

to enable the GPC to do a programmed analysis of a search result.

2.3.4.1.3 Change Obsolete Flags - The function of changing obsolete flags
usually, but not necessarily, accompanies other functions, and is executed
concurrently. The use of obsolete flags is perhaps best illustrated in the
updating of a dynamic file in response to a report. The report uniquely
identifies a file entry. This entry is searched, read (ih entirety), and
obsoleted, by setting the obsolete flag. After being updated, the entry is
written in the ''first obsolete location'' in a defined region on disc, thus
reducing write access time. This operation is particularly effective where
a batch of reports can be treated together, and the updated éntries written
in rapid sequence; With the write operation, the appropriate obsolete flags

are reset.

2.3.4.1.4 Count - The count function is primarily used to provide statistics
on compare flags after a search. It may be mechanized, as noted in the
associative memory description (section 2. 3,3.2), or it may exist implicitly
through program in the GPC after associative memory content transfer. In
situations where the count function is critical, there is also the possibility
of doing it simultaneously in each word in the associative memory, provided
the word length‘is' expanded to include a count field. The technique of doing
parallel by word arithmetic is adequately covered in Reference 4 and will

not be repeated here.

43

L

s NG S N e 2B e e S

2.3.4.1.5 Search and Set Compare Flags - The search and set compare
flags function is the most important and complicated function of the AFP-2,
As such, it is least precisely defined,in that many variations are possible.
A fairly straightforward model is summarized here and variations are

discussed later,.

This function may be defined as follows: Set or leave compare flags (bits)
"on'" in the associative memory in those locations corresponding to non-
obsolete blocks in the specified tracks which meet the search criteria con-

tained in the key, mask, and control registers.

A simple model of the mechanization is presented here to assist in under-

standing the function and hardware. It is assumed that the disc memory bit

duration (reciprocal of the bit rate) is long enough for many associative

memory cycles.

(a) Associative Memory Role
During the reading of each block from all tracks in parallel,
two things are occurring. First, the obsolete flags are being
read into an assigned tag bit of each word of the associative
memory. Second, key, mask and control information is
being used with disc data in one or more tag bits to establish

block comparison. (See Appendix A for tag bit logic;)

At the end of each block, during the spacer bits fime, the
results of the comparisons are "ANDED'" with the obsolete
flags apd the result is stored in the bit of each word corres-
ponding to the block just read. This process may start on any

block so no access time is chargeable to it.

This process continues block after block for a disc revolution,
after which all blocks (in our assumed model, 65, 536) have
been completely searched and appropriate compare flégs are

set,

The search is conjunctive on the specified criteria in the

key, mask, and control registers, i.e., all criteria must

be met for a block to qualify. However, an effective dis-
juncton (logical "OR'") of conjunctive searches can be

attained by doing the necessary number of conjunctive searches

and accumulating the compare flags.

Ly

(b) Key, Mask and Control Register Role

The key, mask and control registers (Figure 2.1) carry
the criteria for a search and provide the following types
of comparison on a field-by-field basis (a field is a number of
contiguous 8-bit characters): ‘
Equals
Greater than or equals

Less than or equals

2
3
4. Not equals |
5. Bounded

For all but the bounded search, the key and mask registers
contain a key and a2 mask. The mask actually in on a bit-by-

bit basis, so individual bits can be used as flags in records.

For bounded search, the key and mask registers are used to
contain the upper and lower hounds, respectively. As no
bit masking is possible, the search applies to full 8-bit

characters.

The control register has associated with it an 8-bit static
register which is loaded each character time. This static
register controls what happens during the subsequent

character time. (Obviously, the control register content

iy ot <

must lead the key and mask regist:r content.) Individual

bits have individual functions. One bit serves to mark off

e & AR i

fields. Another masks data transfers. Three select among

the search types.
2.3.4.2 Access Means

There are three access means characteristic to the data base. These are:

1. Fixed address
2. Obsolete flag
3. Compare flag

S Sier

2.3.4.2.1 Fixed Address - Fixed address access implies that the GPC
can specify any block in any track in any section of the disc memory as
the starting location of a function. It also implies specification of the

duration of the function, e.g., how many blocks are to be transferred.

The transfer can go from track to track uninterrupted.

2.3.4.2.2 Obsolete Flag - Obsolete flag access is used only for the
write function. It may be used.for multi-block records, by applying it

only to the first block of the record.

2.3.4.2.3 Compare Flag - Compare flag access is, of course, the
primary retrieval mode of the AFP-2. From the structure of the word
and bit counters of the associative memory, ali blocks with compare flags
set can be read through the transfer mask into the GPC in one efficient

operation.

Compare flag access is primarily associated with the read function,
although it is not unreasonable to associate it with other functions, such as

"change obsolete status'.

(a) GPC Control - Variations of the read by compare flag
operation are possible as the result of differing levels of
hardvare complexity. The simplest in concept is vhere the
compare flags in the agsociative memory are transferred into
the GPC, whizh then issues a series of fixed address read op-
erations to the disc memory. The fixed addresses are easily
calculated from compare flag positions, but some assistance
may be in order to help find set compare flags. In this
case, after an "or" operation over th= compare flags in the
associative memory into a tag bit, this tag bit, transferred
with the compare flags, will materially assist the GPC. If
GPC time is available, the fixed address accesses to disc

memory can be queued in time to correspond to the sequence
on the disc. Thus, the transfer can be made time efficient,

vith a disc random access only to the head of the jueue.

L€

1

(b) AFP Control ~ A similar, even more efficient E'ransfer
can be made under control of the AFP if the associative
memory has the prioritv circuit option. The AFP starts
the transfer at the current position of the disc without
a random access time lost, but with only a wait for the

first qualifying block in any track.

This read function is mechanized as follows (see the

example in Figure 2-2):

The bit (of each associative memory word), corres-
ponding to the next disc sector to appear, is read into
the detector plane. Then the priority circuit is activated
and the first "one' is used to select the track to be

read. The bit (compare flag), corresponding to the
block being read is then reset to zero, and the process
is repeated. In the next sector & qualifying block may
be read from another track, which is all right, as track

selaction, presuraably, is done at logic level.

With a sparse number of compare flags, by and large
the read function will complete in one disc revolution.
This aseumes that no more than one track carries a
qualifying block in any given sector. When this is not
true, more than one revolution is taken in any possible

read sequence.

2.3.5 Search and Retrieval Consgiderations

The following sections discuss the search and retrieval process in detail,
going through it operation by operation. In some cascs the logic mechani-
zation is detailed. Timing is also discussed. The following sequence of

operations takes place:

2.3.5.1 Region Selection

The search normally must be confined to a region on disc memory established
by software to contain the file of interest. For instance, if a region is used
to contain raw, unformatted data (perhaps linked to formatted files), a search
might produce accidental makes or matches which would have tc be identified
and disposed of. The region selected ir a set of contiguous tracks within a
section of the disc memory.

b7

o

A~ R

8eiq szvdwon
Aq pray Jo apdiiva g F-7 azndeyg

‘oniz
OV JvdWOD S1I ONY GV Nia.
AGYITY SYH L X207 “SNOIHINTOATN
J51Q IRHL NI QIATNLIY NV SADO0W
1HOMI 3HL QYN TV A0 HOHM

(LINDWD ALIBOINd AQ
Q3123139) 1XIN Qv

RER b e}
ABOWIN)
UG O 3
NOti T3

P IIO%

3N UM Z NIl NI 3ONINDIS OGNV SOV TIVIWOD SGFIH TYIE
WOUS L + ! XDON.. 135 ANIVELINI MOHS 8 OL t SYNWNN . 30 NOUISCd
" A0S
NOIIVEIO
INVI4 30123139 3O 186758 1Y
OIN! QTN ISNVYEL SO¥IH IV
1+ ¢ X20M 304 SOY 4 2O ROEHISOd
JVIWO?D ‘! XDOW IO)
JOVSSVd IS0 ONIING '
+
2 [! Lt - £ Z 1]
NIOW AJOMW AIJOW ADOW »IJOW ¥IOMW 40| DOW W
695 Uy 'y by Ity by, Iy 8,
€201 AowvuL o T T —- -
‘woigeom] ° . :
e e R - [M
taova taeom| v € «8
e S N . . ; . . . ; .
€ NOVIL ‘€ GEOM (I 9 o) 4
I Y O - . . L 4
TXOVEL ‘T QUOM| .et i + z ‘
e . & —— — - . . i - -
1 XOVEL 1 GUOM (-] *
0 XOWi1°0 QYOM 0 » | r
d o -
LY S FAN ..
b 31 4] sue SOV MTIWO D
T 30123130 ovi

AUONIW JALLVIDOSSY

LS

¢.3.5.1.1 Section Selection - It is assumed that there are several hardware -
established sections in the disc memory. For example, there may be five
sections, each containing 1024 tracks. Five-way electronic head selection

for each read amplifier would then constitute section selection.

Another possible method of section selection would use a head positioner

to physically move each head to one of several locations.

2.3.5.1.2 Track Selection - In the general case, a region is a subset of

a disc memory section. There are a number of ways in which the region can
be delimited. One way is to preload a dedicated tag bit in the associative
memory, and use this in a way similar to the obsolete flag usage; i.e., both
it and the obsolete flag are '"anded'' with the comparison tag bit to establish

compare flags.

Another way is indicated in Figure 2-1. Through the use of lower limit
(LL) and uper limit (UL) registers on the counter that distributes obsolete
flags, a region can be defined simply by regarding all records outside the

defined region as obsolete.

Both of the foregoing methods operate during the search. Another method
can be used which follows the search; namely, to set unwanted words in the
associative memory to zero, erasing the compare flags. Again the LL and

UL registers can control this.

Whichever method is used, region selection is the first logical step in the

search and retrieval process.

e e

2.3.5.2 Load Key, Mask and Control Registers

As described in section 2.2.2.2, each file has a format directory which
describes the entry format, i.e., the field locations and names, and
permissive values. The query preprocessing uses this directory to
establish the search criteria. These search criteria are then loaded into

the key, mask, and control registers.

The roles of these registers in the search process are described in section
2.3.4.1.5(b) and will not be repeated.

It is possible to load these registers in a number of ways. One i3 to
generate their exact content in GPC and do a simple transfer. This tends
to be cumbersome, and often minor changes to contents are desired between
searches. Another method is to provide specific operations which load
specified fields in any of the registers.

s

- v wE

2.3.5.3 Initiate Search

The search process is initiated after region selection and loading the search
criteria registers. If the search is a simple one, it is preceded by clearing
all the compare flags in the associative memory to "zero". Alternatively,

for a disjunctive search, the compare flags are not cleared, but accumulated.

The search begins as the first complete block begins to be read, regardless

of which one it is, and continues for one revolution until all blocks are read.
The search completion is preferably signalled to the GPC via an interrupt.
2.3.5.4 Derive Search Result Statistics -

Seavch result statistics may or may not be of interest to the GPC program.

If they are, any of the methods described in section 2. 3.4.1.4 may be used.

In particular, if detector plane statistics are available, a logical OR of the
Compare flags is put into the detector plane. Under the assumption of

reasonably random (i.e., Poisson; compare flag distribution, this process
is very accurate for small numbers of compare flags (10-20% of the tracks
have matching records) and deteriorates mildly (63% valid) when there are

as many matching records as tracks.
2.3.5.5 Read Search Result

The process of reading the matching records into the GPC is~described

in detail in section 2.3.4.2. 3 under Compare Flag Access.

"An option of the read operation is-to set obsolete flags as blocks are read,
section 2.3.4.1. 3. This may be for the purpose of deleting blocks (and
possibly writing them onto a historical tape) or for updating with replace-

ment in the file by a write by aobsolete {lag access operation.

Another option of the read operation is to have each block accompasisd. by
118 disc fixed address. This allows replacement in exact locations in, say.
a sequenced file. In fact, the block transler can be totally masked out

and only block addresses made to enter the GPC.

Formatting of the data transferred to the GPC is a function of wts direct namory
access (DMA) channel. Records should start in separate words, and it

may even be desirable to put ficlds in separate words; i.¢., each new

field starts in a new word.

2.3, 6 I_Aultiblock Record Considerations

In instances where the data base contains files with one block records,
files with two block records, etc., and berhaps some ''raw'’ unformatted
data, it is convenient to segregate the files by their record length. That
is, one disc memory region will have only one block records but perhaps
several files intermixed,and another only two block records. Normally,
these regions will not overlap from one section of the disc to another (but
they may; see section 2.3.8.2), and hence can be searched in one disc

revolution,

Multiblock records are considered to have a header block and one or more
trailer blocks. A given file always has a fixed record length, however.
Blocks are tagged internally with not only their file identificatior, but their
sequence number within the record. By including these tags as search

criteria, any fields in the record can be searched on.

When the search fields for a given search are all within: one block, a simple
search suffices to establish compare flags, When the search fields come
from different blocks, each block is treated in a separate search, establishing
compare flags each time. The associative memory is then used to establish
which records have compare flags in all required blocks. Those which do are

left with their compare {lags, adjusted, if required for the read process.

Multiblock records will have their header blocks in given sectors, i.e., two-
block records always start in an even numbered sector. This aliows a read
prucess which is efficient as described in section 2.3.4.2.3. With only one
control register, a field masked transfer is impractical, as each block of
the record would have the same mask applied. It is practical, however, to
mask block by block, as noted above, through operations on compare flags in
the associative memory.

Multibleck write operations are straightforward using fixed addresses brought
along in read operations. However, the multiblock write-first-obsolete-
location operation requires additional hardware to identify header block
locations. An extra disc track, called the header block flag track, is needed.
This track is not a circulator like the obsolete flag track, but needs only a
single head. It is written oy the GPC when disc regions are assigned. With
this refinement, manyv multiblock records can de written in a single write
operation. The heal>r block flag not only identif.es the beginning of an

p}

empty slot, in conjunction with the obsolete flag, but also the beginning:

of the next slot and hence the end of the empty slot.

Writing cannot be masked, even block by block; hence, full records must

be assembled, in general, for write operations.

The comme:its on detector plane statistics relative to a count function

remain valid.

2.3.7 File Maintenance Considerations

File maintenance involves adding, deleting, and changing recoids in the
data base, in contrast with querying, which is concerned primarily with
selective data retrieval. Changing records involves retrieving them and
replacing them on disc memory. Not much can be done about the access
time to retrieve a record, assuming it is done by a content search. As
search and read are separate operations, the total retrieval time is a
random access time plus a disc revolution, averagingl 1/2 revolutions,
The revolution corresponds to the search, and the random access to the
read. Writing, however, is a rapid process, assuming the write in first

obsolete location is used. -

Note that this process does not compare unfavorably in access time with the
technique of keeping a disc map in core memory,random accessing a record
by fixed address, and then waiting a disc revolution to replace the record.
Content retrievel, of course, obviates the need for a disc map in core

memory.

Batching updates, assuming independent records are involved, becomes
somewhat more efficient, as a single read operation, taking most of a disc
revolution on the average, and a very {ast writ first obsolete location are
chargeable to the whole batch of updates. However, a separate search

operation is required for each record. This suggests a new search-and-set’

compare flag function, namely, 'search until a compare flag is found”
which cuts average search time in half. The associative mamory detector
plane "'match type' option is needed for this,

Using the write in first obsolete operation on a dynamic {ile, which is up-

dated frequently, will have the effect of crowding entries in the lowest

‘umbered tracks of the region containing it (because obsolete flags appear
track number sequence). This reduces the validity of the count function

using the detector plane statistic option in the associative memory. However,

it favors the scheme of counting in the GPC after assuciative memory transfer.

~ 2.3.8 Tradeoffs and Options

This section is primarily a resume and discussion of tradeoffs and options

previously mentioned with some additional ones introduced.’
2.3.8.1 Block Length

As discussed in section 2.2.3.1, the block length is a somewhat arbitrary
parameter which cai: be estimated to suit the application. Short blocks
favor disc storage efficiency where formatted files are stored, but both
require a larger associative memory for the larger number of compare
flags per track, and increase the management cost of storing unformatted
data. Also, chort blocks increase the number of obsolete flag tracks and

header block flag tracks.

Because of the way obsolete flags are loaded during the search, it is con-
venient to have an integral relationship between the number of tracks searched
simultaneously and the number cof bits per block. Of course, in static data
base applications, where obsolet: flags are of no utility, this constraint

disappears.
2.3.8.2 Associative Memory

In section 2.3.3.2, the associative memory options of the priority eircuit, or
resolve operation,and detector plane statistics are mentioned. The resolve
operation is particularly useful, as it enabled the very fast read by compare
{lag operation, described in section 2.3.4.2.3 (b).

If structured in a particular way, the resolve operation can be used to obtain
detector plane statistics through an iterative process. Successive resolve
operations are performed and the selected detector plane bit is set to aero.
A count of these operations is the required statistic.

Other means of generating detector plane statics have a usefulness highly
dependent on the application.

The size of the associative memory compare flag region directly determines
the number of blocks that can be searched in one disc reyolution. Both
associative memory cost and the fact that in most applications there . ¢
many files, only one of which is searched at a time, dictate the search of
only a subset of the disc tracks at a time.

53

The tag bits required vary with the application. A total of four are needed
in the presently assumed structure. One is devoted to the obsolete flags
and is loaded one bit at a time as thé'ﬂags are read. Three are needed

lo handle all of the types of searches assumed. The equals, greater than

or equals, less than or equals, and not equals searches require two tag
bits, one active during eac}; searched field and the other to remember the
result from field to field, However, the bounded search requires the three
dedicated tag hits. The §earch operation, exclusive of the field demarcation

is described in the RADC reportb and so is summarized in Appendix A,

The search, insofar described, is a conjunctive 6ne. in that all qualifications
in the search criteria must be met. Disjunctive sgarches, then, become
merely sequences of separate conjunctive searches. It is useful to consider
the complementary structure for some applications. One such application
exists in context of the DDC (formerly ASTIA) retrieval problem, discussed

in Appendix B.

Another relatiorship of the associative memory and the disc memory is

worth consideration; namely, where ther. s one large homogeneous file
occupying most of the disc, and.this file seldom, if ever, changes.

Obsolete flags are not necessary, as it is assumed that file maintenance
consists almost exclusively of adding new items. Also, it may be desirable
to search many or all disc memory sections, establishing compare flags,

in a single (multi-revolution) operation, (Wher combined with the disjunctive-
then-~conjunctive search, this becomes the DDC retrieval problem.)

As the associative memory cannot hold compare flags for more than one
section, it is necessary to use disc mamory for compare {lag storage. As
a consequence, only one bit of comrare flag storage is needed in the
agsociative memory (per word). These bits are written serially, as the
search procecds, into a track structured the same as the obsolete flag track
described previously. Note that compare flag statistics are easy to obtain
by a simple serial counter.

et

2.3.9 Conclusions

This c:ction has discussed in detail the design of an associative file processor,
which can perform the parallel file processing described in section 2.2. It

not only achieves the high search speed ascribed to parallel processing, but

is eflicient in the broad spectrum of cperations required of a dynamic data

base storage and retrieval device,

The AFP-2 design is described in a somewhat generalized manner, pointing
out a number of the speed/hardware tradeoffs and function options, because
it is recognized‘ that any actual design will be highly application oriented.

In spite of the hardware variations, the nucleus of the design goal is retained,
namely, the ability to do a rapid, highly parallel content search of files in

a data base.

55

5
(]
AT A AR SR R i

2.4 A QUERY LANGUAGE FOR USE WITH AFP

This section presents a query lsanguage suitable for use with the AFP
vhen operating in an information retrieval environment.“ The language
is thet developed for the 473L Command and Control Sy-tem.l Identifi-
cation of a suitable AFP query language accomplishes the following
objectives:

1) The languagc aids in delineating expected areas of application

for the machine,
2) AFP hardware was utilized for translation from the query

language to machine language.

The 473L querv language was chosen as the AFP language because it {s
operational, well documenﬁcd, and its intended usage area closely parallels
that of the AFP. Librascope, having developed the 473L hardware, is
-familiar with the language. The original QL wvas implemented on an IBM
1401 system, sbout four years ago, during the "Operational Training
Capability" (OTC) phase. In June 1964, the OTC system was upgraded to

an IBM 1410 system. The sccond generation of 473L was implemented in

the third quarter of 1964, with the {nstallation of a Librascope L-3035
Data Processing System. This was the second phase of incrementsl growth.
It representad the "Initiai Operational Capability" (IOC) atage. Develop-
ment of this system is now in the third phase, the "Complete Operatioral

Capability" (COC), wvhich was initiated in mid-19$S.

During each of these cperational phases, 473L-QlL and its users wers under
constant avalustion. The languare vas thereby refined and iwproved at

each stage of developuent. The fact that 473L-QL ie operationally proven

vas an {mportant tresson for its choice as a mocel for the present study.

The QL is composed of two mzjor sections, vocabulary and grammar. The
vocabulary consists of two parts, fixed and dynemic. Content of the fixed
part is a set of items which describe and control the search and retrieval

processes., There are three types of items: words, symbols and punctuation,

The dynamic part of the vocabulary contains words which describe the data
base information to be processed., The principal word type is "attribute
name'. This part of the language is dynamic in nature since its content is
variable. This occurs when the data base content is sltered, resulting from

files, attribute names and values being added, deleted or modified.

Data files to be used with the AFP are in fixed record format. Why this
structuce has been chosen is explained in Section 2.2, with regard to
paralle]l processing. As a consequence of this fixed format, a constraint
is placed upon the file storage of attribute values associated with each
attribute name, When it is possitle for a variable number of values to

be present under cne attribute name, the format must be strustured so as
to contain the raaximum number of values to be allowed. For some attribute
names, this -*ructure will contain some empty, or blank, value-spaces,

This cannct be avoided under the fixed-record format.

The QL grammar is implemanted by syntax and punctuation. The syntax, ie.,
proper arrangemsnt of words into a weaningful query, is set iato a format
compoaed of items dravn from the fixed part of the vocabularly, as descrided

previously in this subsection.

With regards to using the QL to form gueries, punctustion marks appear as
they would in & normel English sentence. The statement fOrmet approximates
that which is used in English gremmar. Use of specisl sywbols has deen
aleoet eliminated. Thase factors have resulted in a ¢lose spproximation to
the fdeal man-machine relationship.

ST

L 3

e n——p

£l T IS N)

The seven basic statement elements of 473L AL are now described. 1In
ordex of their usc, these eiements are:

Program Indicator (1)

File Indicator (2)

Qualifier Conjunction (3)-

Qualifier (4)

Output Conjunction (5)

Output Director (6)

Output Selector (7)

In certain QL statements (queries) some of these elements are omitted,
others, eloments appear more than once.

1) Program Indicator

In

This is the initial word of the QL statement. It directs the control

progrim to use the QL program. It also provides a logical English

language beginning for the statement,
Example: Retrieve

2) File Indicator

This idcntifies the file from which data are to be retrieved, It

alvays follows the progr:m indicater,
Exsmple: Aircraft (File name)

3) Qualifier Conjunction

The specific word "with" follows the file indicator. It serves as

the conjunction between the file i{ndicator and the qualifier. Also,

it makes a more readabdle statement and eliminates the need for
punctuation to identify the following qualifier.
The OC: with

&) Qualifier

This is the alement of the statement which descridbes the specific

nature of the data to be retrieved. A quelifier consists of a set

$8

i e — .~ oA - AR Oy o

of one or more modifiers, each of which is norwsiiy composed of an
attribute, a comparator, and a value, An attribute Is a characteristic
of the file; a value is one of the states an attribute may assume;-

and a comparator defines the logical or mathematical relationship
between Fhe attribute and the value. RUNWAY LENGTH is an attribute

of the sample aircraft file, and 5000 feet could be a value for

KUNJAY LENGTH. The expression "RUNWAY LENGTHYS000" is therefore a
valid modifier, Another modifier could be "COMMAND = TAC". Placing

these two together as "COMMAND = TAC, RUNWAY LENGTH»5000" forms a

modifier set that describes certain entries in the file more specifically.

The modifiers in a set are separated by commas and are iogically
additive; that is, an entry must meet the requirements of all the
modifiers in a set to qualify. A simple qualifier contains only one
modifier set, A compound qualifier may be constructed by combining
several alternative modifier sets. This could be "COMMAND = SAC, AND
ACFT POS»10; OR COMMAND = TAC, AND RUMWAY LENGTH»5000." The semicolon
(:) defines the end of one modifier set and the beginning of the next.
It also specifies a logical OR rclationship between the sets. Data
may qualify by meeting either of the modifier set's criteria, in

this case. If the (above) semicolon is replaced by a comma, file

dats qualifies only if it meets the criteria in both modifier sets.

$) Output Conjunction

The specific word "then" always follows the qualifier and separates

it from the output director. The conjunction aisc makes the statement
more readable.

The OC: then

59

B s

8) Output Director
This specifies Lhe ocutput devic.. and the format in which the retrieved
data are to be presented.

Excmple: Print, H (horizontal)

7) Output Selector

The last part of the QL statement is the output selector. It coutains

ARl 4 B ol e SO s

the attribute names which are to be output with their associated
values. Also specified, if necessary, if the detail arrangement of
this output, within the format given in the output director.

Example: Command, Afld Nare, Acft. Pos, Runway Length
Query statements are terminated by the "end of message" synbol,-w .

Beyond the nor;nl use of the seven statement elements just described,
there are optional features available tn the user. They are used in
conjunction with the Qualifier (4), Output Director (6) and Nutput

Selector (7). These options ar. descrided as follows:

a) SAVE (with Output Selector)
Thic specifies thet the input query astatement is to be

saved, ie., stored in the SAVE table, for later use.

b) REMARKS (with Output Selector)
! Any comments (free text) which the user wants to have
fncluded wvith his statement are sppended at this point,
This type of information is stored in the sacond section

of the files as previously descrided.

¢) “TITLE (with Qualifier and/or Output Selector)

This option allows fnput and/or retrieved data to be

titled. For its identifi~eticn, an asterisk must be

60

placed at each end of the title, e.g.,

¥TITI.E (Content)*

d) SORT (with Output Selector)
If the output information is to be presented ay sorted
data, the mnemonics, INCR and/or DECR are used. If the
data is to be forward sorted, ic., A to Z and zero to nine,
INCR, ie., increase, is used. For the oppoeitely orderei

sort, DECR, ie., decrease, is inserted.

Soriing can be performed on a number of different attributes

in one statement. Tlie attribute listed first represents

the values to be used in the primary sort, Succeeding
attributes, in tre order listed, represent subsequent

levels of sort.

e) UPDMATE (with Output Director)
If it is required to update data files with new information,
the word, UPDATE, is applied to the attributes and values

to be used.

f) RETAIN (with Output Director)
This director is similar to the previous one, UPDATE. It
specifies the output attribute values vhich are to de

saved in tadular form for later use.

All QL statement information, rapresenticg doth basic elemant and optionasl
items is set into a specified format. In addition to the bdasic elamants

and uptions discussed previsouly, the QL contains & few specific functions.

Their use is indicated by {nsertion of function mnewmonice iato the qualifier
or output selector section within the QL statement formmat. These functions

é1

Mh s

provide a user with the ability to qualify or to generate and select
certain data, using as control criteria, information which iq:not explicitly
stored in the data base files, The functions which currently are available
are defined as follows:

Great Circle Distance (GCD) - computes the GCD between two

geographic points on the earth's surface.

Sum (SUM) - accumulates the sum of values of a particular

" attribute.

New File (COMBINE) - extracts information from several data
files and generstes a new file to be used, as desired, in,

subsequent query statements.
By way of illustration, one of these functions, SUM, is now described.

The SUM function can be performed on any numeric attribute values within
the query statement, It is used in either the Qualifier (4) or Output

Selector (7) part of a query statement,

The general form, in the Qualifier part of a statement, is expressed by
using the term, SUM, followed by: the attributes which contro. execution
of the function, attributes to be summed, and their respective comparators

and values.
A typical example is: SUM BY COMMAND (ACFT RDY»14).

If a sum, as described above, is desired as output inforaation, the Output
Selector' part of a statement is used. Only the term, SUM, is required for

this action,

If attributes which are to be summed for output do not appear in the Qualifier

part of a statement, a particular Output Selector format must be used. This

62

s s —

form consists of only control attributes and the attributes to be summed,

A typical example is: SUM BY COMMAND (ACFT RDY, ACFT POS).

One additional feature of the QL, not previously discussed, provides for
the generation of complex queries., A complex query is composed of more

than one subordinate query. Two successive subordinate queries are

separated by & colon (:); they can address the same or different data files.

In operation, data retrieved in response to a particular subordinate query
are used in succeeding subordinate queries as attribute values. In this
way, the user is provided with a means by which he can use data, from

certain files, to i{dentify and select data from other files,

A complex query examp.e is given:
In English text, 8 a user would present it, the example statement is,
"Retrieve each SAC airfield name and the number of crews
formcﬂ, for those bases having at least as many crews formed

as there are '""COMBAT READY" aircraft at the Offutt SAC base."

Using the foregoing plain test, the query in 473L language is as follows:
RETRIEVE (ACFT WITH) COMMAND = SAC, AFLD NAME = OFUTT THEN
RETAIN ACFT RDY: RETRIEVE PERS WITH COMMAND = SAC, CREWS
FMD 3. (ACFT RDY, CREWS FMD, OR) THEN PRINT, H* OFFUTT, ACFT
RDY * ACFT RDY * AFLD NAME, CREHS.FHD * AFLD NAME, CREWS

™

Explanatory notes, on this query, are presented below:
ACFT, the Afrcraft Data File
The colon (:) separates the two SQ's of this complax query
PERS, the Perscanel Data File

(ACFT RDY, CREWS FMD, OR), denotes comparison of each

$3

S

g,
i
(3

s b e e

ane

R

I

1)

2)

3)

4)

6)

7)

"CREWS FMD" value with "ACFT RDY." The "OR" specifies that
each successful comparison (ie., oni) is a valid result;

meeting the user's requirement,

REFERENCES - CHAPTER 2

Avuerbach Corp. Analysis of Small Associative Memories for Data
Storage and Retrieval Systems Contr. AF 30(60:)3564, Sept. 1965

Barlow, A.E., and Cease, D.R., Commard and Control System
Query Language, Headquarters, United otates Air Force presented
at the Second Congress in The Information System Sciences, 1965

Campi, A. V. et al Content Addressable Memory System Concepts
IEEE Trans on Acrospace and Electrunic Systems Vol. AES],

p. 168 {1965)

Fuller, R.H. et al,Stndy of Agsociative Processing Techniques
RADC-TR-65-210 August 1965 (DDC No. AD 621 516)

IBM Federa: Systema Div., ScaVSprverillance pata Base Representation

A Test Venicle prepared fur ONK June 1964

Kochen, M., Sormie Probiems in Information Science, The Scarecrow

Press, Inc. New Yorl:, 1965

Love, H.H. and Savitt, D.A., Associative Processing Techniques
Study RACD-TR-65-32 April 1965

6

3.0 ASSOCIATIVE SOLUTION OF NETWORK FLOW PROBLEMS

3.1 INTRODUCTION

Inthis section, an associative parallel processor (APP) is structured and
programmed for so‘h‘x‘tion of network flow problems, typified by resource
allocation problems and commodity transportation problems, widely discussed
in operations reséarch literaturel'lz. The structure and command set for
the APP are very similar to those previously developed by Librascope
under RADC contract AF 30-(602)-3371 for picture processing applicationsls' 16
The studies reported in this and in the following chapter are intended to extend
the range of identified applications for which the associative parallel processor
can be efficiently employed when compared to serial processors,and to explore

variations in machine organization and command set occasioned by changed

problem environments.

Each network flow problem, herein considered, is a variant of the general
Hitchcock-Koopmans Transportation probleml’ 2 and is solved by a variant

of the ""Hungarian Assignment Method' due to Kuhns’ 6.

In the remainder

of this section, we describe the network flow problems to be solved, and
show how weapon assignment taske can be couched within these models. We
describe the structure and command set for the APP used to solve these
problems, noting organizational variations from that APP developed for
picture processing. We then program the APP for solution of three distinct
forms of the transportation problem and compare associative solution times
to times for solution of these problems on conventional serial machines. It
is shown that associative parallel solution of each transportation problem
investigated is one-to-three orders of magnitude {aster than conventional

processing, dependent on network sizz. An important consequence of this

result is the ability of associative parallel processors to solve complex weapon

assignment tasks in real time. A summary,and conclusions reached,are included

in subsection 3. 4.

65

.

O iy i Sy W e s

B -]

The general Hitchcock-Koopmans transportation problem was first formulated
by F. L. Hitchcock in 1941}, and independently, during World War IL,by T. C.
Koopmansz. Both men suggested a procedure for solving this problem
similar to the linear programming simplex method3. In 1951, Dantzig4
developed a simplified form of the simplex method for solving this problem.

This method was popularly employed until 1955, when H, Kuhns’ 6

proposed

a method based on a combinatorial procedure. Kuhn termed this method

"The Hungarian Assignment Method'" after the Hungarian mathematician
Egervary7, who provided the essential feature of the proof for a theorem
of\\konig8 concerning linear graphs. Kuhn used this proof as the basis

for his algorithm which provided a simpler meth‘od than Danzig's simplified
simplex method for solving the assignment problem. Later in thaf”same year,
Ford and Ii‘alkersc)‘n9 discovered an algorithm similar to Kuhn's which could
be used to solve the more generai transportation problem. A conci'se
statement of Kuhn's, and Ford's and Falkerson's algorithms can be found in

an article by Munkreslo. "

There are two variations on the Hitchcock-Koopmans transportaticn problem
which have been termed: >

1) The assignment problem

2) The transportation problem

As will become evident, the assignment problem is only a sl-aecial case of

the more general transportation problem. In each case, there is a rating
matrix (aij)' as illustrated in Figure 3-1, where the rows of the matrix
correspond to initial surpluses of materials, eg., missiles, and the columns
correspond to initial shortages, eg,, targets. The elements, aij' of the rating
matrix represent costs or values associated with sending each of the surpluses
to each of the shortages. In Hitchcock's original problem, the row designators

represented warehouses with inventory surpluses and the column designators

represented stores with inventory requirements. The given rating matrix

represented costs associated with shipping the surpluses from each of the

66

Targets —»

—y N :

d (o) .

Z Z z°

- %

- a 4]

M - v

Missiles 2) 0

7 & &

Surplus No. 1 a, - a,
Surplus No. 2 ay 8y~ c------ an

]]

! L]]

!] 1

!] [}

!] i

! ']

!]]
Surplus No. n a1 22 a n

- Given a rating matrix (aij)

Find an assignment matrix (X,)

J

To maximize/minimize the object function:

Figure 3.1

m
P)R TR Y
i=1

=

j=1

Example of Rating Matrix

67

L i o o o b, o L A . AL g .

e s e

T e e

a5 ant e

- T ———— i o S RS

AU

-

¥ s o i gt e

stores. The problem was to find the assignment of the inventory from each
of the warehouses to each of the stores, as repreeented by an assignment

matrix (xij)' sugh that the total shipping cost was minimized, i.e.,

*

m n
Minimum 2 2 aij xij
i=1 j=1
In the case of a weapons assignment problem, the rating matrix can be

thought of as a value matr\ix. where:

and

W. = Worth or value assigned for each target "j"
Dij = Destruction capability for each target '"j'" by each missile '"i"
Pi.i Probability of each missile "i'" reaching each target '"j"

aij = Expected worth of each missile ''i'"' for each target "j"

Here,the problem is to determine the assignment matrix (xij)' so that the
total expected value is maximized, ie.,

m n
Maximum E 2
i=1 j=1

a.. x,.
LV NR Y

For the so-called ""Assignment problem'', each of the row designators contains

one and only one unit of surplus and each of the column designators has a
shortage of gne and only one unit. Accordingly, the rating and assignment

matrices are of dimension n X n where

xij =01

In the so-called "Transportation Problem', eachof the row designators has gpe or

more surplus units and each column dcsignator has a shortage of one or
more units where the total surpius units is equal in number to the total

shortage units. Here the rating and assignment matrices are of dimension

m X n,

Three variations on the network flow problem were considered, namely:

1) Binary assignment problem
2) General assignment problem

3) Transportation problem

The second and third variations above, were previously explained. ‘The
binary assignment problem is a simplified ver.aion of the general assignment
problem where the rating matrix is binary, i.e., consists of only zero's and
one's. In other words, each missile either can or cannot be assigned to a
target. This problem is simply one of finding any feasible solution for the
assignment matrix X450 since all feasible solutions are equally optimum,

This problem was selected for consideration because its solution using two
serial processors, the L-3055 and the AN/FSQ 31(V), was available in a
Librascope report including timing data. The timing data allows a convenient

comparison between the APP and a serial processor.

3.2 THE ASSOCIATIVE PARALLEL PROCESSOR

3.2.1 The Structure of the Processor

Figure 3-2 is a block diagram of the APP, structured to solve the weapons
assignment problern. This APP is similar to the one structured for pattern
recognition described in a prior RADC reportls. Elements of the APP in
Figure 3-2 identical to the previous APP are:

1) Random Access Control Memory - a small memory used to store the

instructions.

2) Central Control - used to interpret the instructions in the random access

control memory and execute control.

3) Associative Array - some of the fields in the array are used to store

data while other fields are used for tagging purposes.

4) Data Drivers and Control - used to exchange data from thes data register

into the data fields of the as ‘ciative array and vice versa and Lo issue
pulses to interrogate the data t..lds of the associative array under a

specified search criterion. Particular fields of the data fields in the

W Y

P L S R YR Ltk L

[R

»
!
s
1||.I. T - WAFIKPAN, At 2w .;.; g...ﬂ-.”—..”..,-.w
BATOSTE m . b “ sa3id AT s e vt X gy Do e by
viva
oo =g HOLYW v aNvd ! Nk iE T
7191L0W H 130 H ovi “ AVEEY SMIVE YOBINOD = = =
| IALVIDOSSY MiV4 ¥I¥Q T
1 —d
-2
——d>7?a|l 1ounode == 22
N==Ncvi| samaviva fq. P
I = dQ 3 '

0=41 .wl i ' I
no YOLVYIAANI - viva
viva HOLYW .]

.||lfl0®|n||0 ASOW I
i W0*LNOD ‘ Y

[T¥e 7 ||t@l|ll NO! I NS
,1‘@'!'[(WOONYS

H 101N0D
) VINID

-3

2 wusion Vs _ Tu—ucﬁ a ! 250# My TI&Q.qu
e ¥USION | _ %‘ aision

10

a1 g e

T T AT fm

A

e

5)

6)

7)

8)

9)

10)

11)

12)

associative array are selected under the control of the "A'" and ""B"

counters.

Tag Drivers and Control - used to execute pulses to interrogate the tag

fields of the associative array under a search criteria specified in the

instructions.

Data Kegister (DR) - used to store data for reading into or out of the

data fields of the associative array or the random access control
memory. All input and output data are processed through the data
register, It is also used to store a key for searching the data fields

in the associative array.

Detector Plane (DP) - used to indicate a match in the associative array

and to multi-write into the associative array for matched words.

Match Indicator DP = 0 - used to indicate when all detector plane elements

are zero (no matches) after an associative search,.

""A'" Counter - used to.specify and limit particular data fields for a

search operation.

"A"FL Register - used to store the final count limit for the ""A'" counter.

""B'" Counter - used to specify and limit particular data ficlds for a

search operation.

"B“FL Register - used to store the final count limit for the ""B' counter,

New processor elements useful in solution of network flow problems are:

13)

14)

1%)

"AIL” Register - used to store the initial limit. After the final limit is

reached on the "A' counter the next increment or decrement count
indication will automatically reset the '"A' counter to the initial limit.

”BIL” Register - same as “AIL“ except for '""B" counter

D" Counter - used to store a value which can be transierred to the data

register into fields as specified by a limit count of either the "A’'' counter

or "B' counter. It is incrementedunder program control and initially

starts with a count of one.

n

A 0 A R R

NN

TR L.

FR R

Sp—

16) "DL" Register - used to store the limit value for the '"D'" counter. When

the limit value is reached, the ""D" counter is automatically reset to one.

17) Match Indieator DP=l - used to indicate when one and only one detector

plane element remains in a one state after a search (a single match),

18) Multiple Match Resolver - when two or more detector plane elements

remain in the one state after 2 search this network selects one matched

element from the two or more.

The purpose of each of the elements in the structure will become more obvious

after reviewing a description of the command set in the next subsection.

3.2.2 The Command Set

The command or instruction set can be partitioned into six different types,
namely:
1) Associative Command
2) Counter Loading Commands
a) Digit driver control counters

i) Set App =xppe Ay XL
i) Set By = ypp Al 7L
b) Data Counter

i) Set DL = 2

3) Branching Commands
a) Jump (unconditional) to
b} IF "A" counter = initial limit, jump to
c) IF "A"” counter # initial limit, jum) to
d) IF "B'" counter = initial limit, jump to
e) IF "B'" counter # initial limit, jump to
f) IF "D" counter = 1, jump to

g) IF "D" counter #1, jump to —

h) IF DP (detector plane) = 0, jump to
i) IF DP # 0, jump to
j} 1F DP =1, jump to

k) IFDP #1, jump to

4) Data Transfer Commands
a) Transfer matched word into data register
b) Transfer data registers into selected word
c) Transfer data register into RAM word
d) Transfer RAM word - nto DI,
e) Transfer ''D" counter into data register urder A counter control

f) Transfer "D'" counter into data register under '"B' counter control

5) Maultiple Match Command
a) Ciear and select first match

b} Select next match

6) 1/0 Commands
a) Read input duta into data register
b) Read data register into output data
c) Stop

d) Begin

The asscciative command is the most complex of the group and is further
described in Figure 3-3. The first bit in the instruction indicates whether
the command iz associative or not. The second bit indicates whether or not

~ the detector plane is set to one before the asuociative operation is exscutes.

The third through eighth bits consern search and multiwriting operations on
the data fields undexr control of the "A' counter. The third bit indicates
whether or not there is a search, the fourth &nd {ifth bits spenify the search

criterion to be 4 sero, on:, the contants of the data register, or the complement

of the data register contents.
13

PEY

b
0
I
g i
] —
T3 < ; 3
£ et o e
E£w £ g .]
S . v 5 O £ 8
U g ¢ l-c) — oV] -
v 38 ot }_;, o o) o
R g - Z Z 4 I
- 5 5 5 = = 3
g-g O] O ?o M ;M O]
") = b o0 0 -
w9 < m ® ® o 7
<0 z = g B = :Q
of1]s|L w1 s 1w 1fsiojwsolwi _[solwlr
IINSDW%DS'DW;DSTIWSIW S 1 W|N
Dl|: L D| | L|} || o
l - Increment counter-I
No increment-N
LW - Write |
-W -Don't write
’ - 0-Search for zerds
L] -Search for one's
F S -Search
L S-Don't search
- N - No increment
- 1 - Single counter increment
- D - Single counter decrement
‘ ~ L - Increment counter through limit
—~ W - Write
L W - Don't write
— 0 - Search for zero's
— 1 - Search for one's
- D - Search on data register contents
L D - Search on complem®nt of data register contents
= S - Search

— 8§ - Don't search

- Set DP to one before search

~Don't set DP before scarch

-0 - Associative Command
=1 - Non-Associative Command

Figure 3-3 Format for Associative Command

< Th

|
{
i
i
!
!

The sixth bit indicates‘whether or not multiwrite is performed. If multiwrite
is specified, then the logical complement of the search critLrion is rewritten.
The seventh and eighth bil:sj indicate the increment or decrement state of the
""A'' counter, where ''N'" means no increment, "I" means increment (single),

"D'" means decrement (single) and L means increment through limit,

The ninth through fourteenth bit apply to the ''B'' counter and have the same

specifications as the third through eight bits do for the ‘A" counter.

The remainder of the associative instruction word, except the final bit, is
partitioned into fields of three bits, each of which specifies search and multiwrite
operations on the tag fields of the associative array. The first field bit,

e.g., bit 15, indicates whether the related tag bit is searched or not; the next
bit, e.g., bit 16, indicates whether or not the search is on a zer6 or one;

the final bit, e. g., bit 17, indicates whether or not the multiwrite operation

is performed. Again, if multiwrite is specified the logical complement of the

search criterion is rewritten.

The final bit concerns the increment state of the '""D'' counter where'N"

represents no increment and "'['' represents increment,

3.2.3 Timing Assumption on Command Set

The timing assumptions are based on a woven plated-wire associative memory
dgscribed in Appendix C. This woven plated-wire associative memory has
a digit scarch time of 50 nanoseconds and a multiwrite time for all like zero's
or one's of 100 nanoseconds. Accordingly, as will be shown later, since no
more than four tag bits are required for any one associative search in any of
these three problems, it is assumed that the basic associative command can
be parformed in 500 nanoseconds with the exception of a limit search. In the
case of a limit search, it is assumed that an additional time of 50 nanoseconds

per digit through the limit will be required for the associative command cycle.

(4]

—

T

P IR

It is assumed, for compatibility reasons, that the random access control

menory has an access time of 250 nanoseconds, and the imstruction decoder

has single instruction look-ahead and can execute a non-associative command,
with three exceptions, in 250 nanoseconds. The three exceptions are:

1) Clear and select 1st match

2) Transfer matched word into DR

3) Transfer DR into selected word

In each of these three cases, it is assumed that 500 nanoseconds will be
required to execute the command. The 500 nanosecond assumption can be
justified in these three cases by referring to the description of th; plated

wire memory in Appendix ¢,

3.3 ALGORITHMS FOR SOLUTION OF NETWORK FLOW PROBLEM
Subsection 3. 3 is organized into four lower ordered subsections. Subsections
3.3.2, 3.3.3 and 3.3.4 contain a description of the detail algorithms for

the binary assignment problem, general assignment problem and transportation
problem, respectively, However, before launching into a description of these
detailed algorithms, it was felt that a simple example to demonstrate the

types of operations required of the APP by the algorithms would be helpful.
Accordingly, in subsection 3.3.1 an example, taken from the general
assignment problem type, is presented. It is hoped that this example will
serve to clarify the detailed algorithms presented in subsections 3. 3. 2,

3.3.3 and 3.3.4.

3.3.1 Example to Demonstrate Processing Operations

Before proceeding to the detailed algorithms presented in subsections 3. 3. 2,
3.3.3 and 3. 3.4, it is worthwhile to present a numerical example to demon-
strate the types of proc;essing cperations required and to show the utility

of the APP in performing these operations. The particular example is
selected from the general assignment problem type. The rating matrix

for the example is presented in Figure 3.4, A). The object function will be
maximized,

The Hungarian Assignment Method is based on the fact that a rating matrix
(Figure 3.1) may be transformed by subtracting a constant from any row or
column, without altering the optim\{m assignment matrix for the rating matrix.
Through a series of such tra.naformyations,e rating matrix is altered to have

a number of '"independent'' zeros equal to ghe order of the matrix. A set of
zeros is independent if no two zeros lie in the same row or in the same column.
The optimum assignment matrix is a binary matrix of the same order as the
given rating matrix. It has onegat elements corresponding to independent zeros

of the transformed rating matrix and zeros elsewhere.

17

PR ———

A)

B)

C)

D)

E)

F)

0
4
5
Initial independent zero assign- *
ment 14-22 "
5
b

RATING - MATRIX

Pick maximum in rows 1-6 6 yﬁ 3 0 0
yﬁ 8 0 14 12
0 2 ;(7 7
/ 0 3 4
5 2 2 f

Obt ain at least one zero in 7 10 10

each column 7-13 15

vV © 0 O b
o 3 O 9 O

R

—
-—G—W—L‘L'L% =Y o W
o0 O VWO

Step No. 1 - Cost Matrix
Test 23-26

27, 28 and 23, 24

Step 3- Cost Matrix Adjustment
39-41

Figure 3-4 Processing Operations in Solving General Assignment
Problem

78

RATING - MATRIX

i T T P TR}

, G) Step 1 - Cost Matrix Test «= 5 1o 7 .
3.26 ° .
- 23-26 " 13 1 |
T Q' "
2] 4
3 0% 4
H) 27, 28 T* :
‘ :
)‘ | I) Stepl - Cost Matrix Test 4 * 5 1o 7
& k 23-26 oL
Ll ‘)
l b . . :
. J) Step 2 - Assignment Adjustment ' B
29-31 ;
K 32-34
i
i
!
| ;
4 | L) 35-36
|
u
Figure 3-4 (continued)

19

o i A N IS o

A S TV S gin 5

e

ity

The terminology used in describing the algorithm is due to Munkres'?

and is
presented below:

1) Covered row or column in matrix - A row or column containing a starred

zero in a transformed rating matrix,
2) Starred zero - Designated by a star (*) and used to indicate a trial assign-

ment of an independent zero.

3) Primed zero in matrix - Designated by a prime (') and used to indicate
a ncn-covered zero which becomes a candidate for starring during the

course of the algorithm,

Addition designators used to point out particular elements in the matrix in the
example of Figure 3-4 are:

4) An element with a single line through it - Used to designate the maximum

value in a row or column,’

5) An element with a square around it - Used to point out a particular element,

as defined in the text, for the convenience of the reader,

The algorithm is illustrated in Figur.e 3-5. Parts A through L of Figure 3-4
represent the transformations on the rating matrix according to the algorithm
of Figure 3-5 in solving this problem. Each alteration is discussed in turn.
A) ' The element(s) with maximum value in each row is (are) determined
and the rating matrix value is subtracted from this value for each element.
These operations correspond to instructions 1 through 6 in Figure 3-5.
The result is shown in Figure 3-4B. These operations transform the
maximizing problem into a minimizing problem. The APP can globally
select the maximum element within a row in a single operation and can
also globally perform the subtraction in a single operation. A serial
processor would have to test each element in a row to determine the

maximum as well as perform the subtraction for each element.

———— - - e e it . A= o S . o e s

Initial Zero Adjustement for Maximizing

1 Set row initial and limit index

(> 2 | Look at row indexed

3 | Pick maximum in row indexed

4 | Replace each row element by the difference between

the row maximum and itself

5 { Row limit index reached? el
16 | Increment row index

7 | Set column initial and limit index o
~ 8 | Look at column indexed F'%'

9 | Any zero's)

10| Pick minimum in column indexed

11 | Subtract minimum {rom elements in column

£912 | Column limit index reached? ~
13| Increment column index

Initial Independent Zero Assignment
114 | Set row initial and limit index

~8{15| Look at row indexed
16 | Any non-covered zero's in row ' no
17| Single zero? [yes
18 | Pick first zero
19| Tag element as * LJ

20| Cover column of # element (by tagging)
21| Check for index limit

22| Increment row index
Step No. 1 - Cost Matrix Test

23} Look for a non-covered zero

JI

24{ Does one exist? no
25} Prime (') non-covered zero
26| 1s there a starred (*) zero in this row? | no

-

7] Cover row of element

28] Uncover column of starred element

Step No. 2 - Assignment Adjustment

N0l 29| Does last primed element have ¢ element in column

30| Tag starred element as in sequence

T

31} Find primed element in row for current starred element
in sequence and tag

32| Un-star each ? element in sequence

33| Remove column cover for each * element in sequence
34| Star (*) each primed (') element in sequence

35| Cover sach column containing a star (%)

FininL Y221 36| Are all calumns covered?

31 Erase all primes (')

38} Uncover avery row

Nap No, 3 - Cost Matrix Adjustmaent

33 Find ‘%' the amallest non-covered elemant in cost matrix k__. ' "!* *
and mark with

401 Add h to non-sero elaments of each covered row

41| Subdtract h from non-3ero elements of cach non-covered column

Fig:re 3.3 General Assignment Problem Macro Program

8

-
4
M—

B)

C)

o

E)

Each column is searched in order to guarantee that it has at least one
zero. When a column is found without at least one zero, the minimum
value for that column is selected and subtracted from all elements in

the column. These operations correspond to instructions 7 through 13

in Figure 3-5. Note that only column 5 does not have a zero, and the
minimum value of one is subtracted from each element as it is shown in
Figure 3-4 C). Again, the determination of no zero's in a celumn, the
selection of the minimum element and the subtraction, can be performed
globally in the APP, whereas these operations would have to be performed
sequentially in a serial processor.

Each row is searched fc':';f at least oneirdon-covered zero. If one or mure
are available, one is selected and starred (*) and each element in the
column for the starred element is covered by a line. These operations
are shown in Figure 3-4 C) and described by instructions 14 through 22

in Figure 3-5, Again, these operations can be performed globally by row
in an APP, whereas a sequential search would be required by a serial
processor.

Here, the rating matrix is searched to determine whether or not a
non-covered zero exists. If one does exist, as it does in Figure 3-4 D),
it is primed as in D) which corresponds to instructions 23 through 26 in

Figure 3-5.

Note that with the AFP, one operation can determine whether or not a

non-covered zero exists. A serial processor would have to search, as
a minimum, all non-covered elements until a zero is found. If no non-
éovered seros exist, then every non-covered element would have to be
searched.

Next, it is determined whether or not a starred {¢) zero exists in the

same row as the primed (') zero, which is the case in Figure 3-4 E).

Since this is the case, the column for the starred zero is uncovered

82

F)

G)

H)

1)

and the row for the primed element is covered. These operations correspond
to instructions 27 and 28 in Figure 3-5, The process is again repeated,
beginning at instruction 23. However, this time, no non-covered zero's
exist, Accordingly, as per Figure 3;5, t.he process jumps to instruction

39,

From the algorithm of Figure 3-5, the minimum of all non-covered elements

is first determined. By referring to Figure 3-4 E), it can be seen tha 2

is the minimum non-covered element. A square has been placed around

-

-

the element 2 to make its position in the matrix clear for the reader.

The numerical value for the minimum element is subtracted from all
non-covered columns and added to all covered rows. Note that the values
for the non-covered column elements that are covered by a row, do not
change. These operations correspond to instructions 39 through 4l in
Figure 3-5. These operations are most gfficiently performed on the

APP since the minimum of all non-covered elements, and the subtractions
and additions can be performed globally, each within a single operation,
To the contrary, a serial processor would have to perform each of these
operations sequentially on all appropriate elements.

The operation returns to instruction 23. Again, there is a non-covered
zero, shown with the square around it, which is primed.

Again, there is a starred zero in the row of the primed zero, so the

cover {or line) in the column of the starred zer§ is removed and the row
of the primed zero is covered, as is shown and as described by instructions.
27 and 28.

The operation again returns to instruction 23 where a non-covered zero,
indicated by the square, can be found. However, this time there is not

a starred zero in the row of the primed zero. Accordingly, the next

instruction jumps to 29.

83

T N

s g kot

e AR i s o

gt R Ry A

s,

J)

K)

L)

First the column of the last primed elemert is searched to determine
whether or not there is a starred zero in the column. In this case, there
is a starred zero in the column, as is shown by the starred zero with the
square around it. This starred zero will always have a primed element

in its row.

These elements are tagged as "'in sequence’’. These operations correspond
to instructions 29, 30 and 31. Next, the operation is again started at
instruction 29, using the last primed zero. However, this time the last
primed element does not have a starred zero in its column, so the operation
jumps to instruction 32, Again, the APP can determine the element with

a starred or primed zero in the respective column and row. The serial
processor would have to check each element in the column or row until

the starred or primed zero is determined.

Each starred element in sequence is unstarred and its covered column

is uncovered. Each primed element in sequence is starred. Again

these operations can b\e pex“(ormed globally with the APP. These operations
correspond to instruéti‘ogs 33 and 34.

The columns for all starred elements are covered and a test is made to
determine whether or not all columns are covered. In this example,

all columns are covered and the optimization process is completed. The
starred elements represent the assignments. If all columns had not been
covered, all primes would be erased and all rows uncovered per instructions
37 and 35 and the process would be begun again at instruction 23. Again,

all of these operations can be performed globally with the APP, but would

have tc be performed sequentially with the serial processor.

As is evident iromthis simple example, the APP is ideally suited for solving

s s ’ s s
problems of this type. It can {ind maximum or minimum elements within any

row or column, the entire matrix or any tagged subset of the matrix. ([t can

»

8

."

*

T e ——__

perform arithmetic operations simultaneously on these elements. [t can chase
through the matrix, going down appropriate rows and columns from tagged
elements. These are.the types of operations required to efficiently solve these

types of problems.

3.3.2 Solution of the Binary Assignment Problem

3. 3.2.1 APP Solution

In this section the binary assignment algorithm is implemented by associative
processing techniques. The algorithm is described in Figure 3-6. 7 :*minology

is defined in Table 3-1. The format for data stored in the APP is shown below:

Row Column
Indication Indication TAGS
Mﬂ M
3 j T, | T,]| T l

If it is impossible to assign some resource tc some Task, i.e¢., if the matrix
element value it zero, the element need not be stored in the memory. The

flow diagram of Figure 3-7 illustrates the computational process.

A program, written in the associative machine language, described in subsection
3.2.2, is presented in Figure 3-8. Note that a total of 3l instructions are required.
The number of instructions is invariant to the size of the rating matrix. Itis

only necessary to alter the limits of the A, B and D counters in the appropriate

instructior.s as the size of the matrix varies.

The following three assumptions were made in working out the timing analysis.

i) There is an average of eight entries in each column of the rating matrix.
2) An average of five iterations through the locp provides a solution.
1) The time required for eazh instruction is as described in subsection 3.2.2.

There are two major timing loops in Figure 3.3 required for the row and column
index iterations, namely:

n Instructions Z6 —p Z12 for rows

2) lastructions 212 —» Z19 for columns.
8s

Finish

=] F—lé"J.

*
o
[N

O 0 N Wy

I el
W nv o

Figure 3-v Fundamental Algorithm for Binary Assignmeant

Search row for single uncovered element
Does one exist?

Cover row and column o1 one selected

Limit of row reached?

Increment row

Search column for single uncovered element
Does one exist?

Cover column and row of one selected
Limit of column reached?

Increment column

Are there any uncovered elements left?
Was any assignment made during this iteration?
Pick first uncovered element

Cover row and column of one selected

Prablem

86

€s

€8

TABLE 3-1
TABLE OF TERMS FOR THE

BINARY ASSIGNMENT PROBLEM

~

i- 1%is2n, indicates a particular row in assignment matrix

j- 15j%n, indicates a particular column in assignment
matrix

p - an index on i

q - an index on j

n - indicates size of the n X n assignment matrix
T1 - tags covered row or column

'I‘z - indicates when at least one assignment is made during
an iteration

’I‘3 - indicates an assignment and represents the optimum
assignment

871

SRR "2 3

-

¥

1 Clear 'I‘1 = 0, T3 =0
p—] Clear TZ =0

i 3 Setp=fL, p=ul
4 Search i = p, T1 =0
5 DP: 1
6 Write Tl' ’I‘2 and ']‘.‘3 =1
7 Transfer matched word into DR
8 Search j = q, Write 'I‘1 =1
9 p:uf ‘ (>
0 p=p+l =
1 Setq=j1, q=u£
2 Search j = q, Tl =0

£h3| pP:1

14 Write Tl’ TZ' and T3 =1

15 Transfer matched word into DR

16 Search i = p, Write T1 =1

[»17| q:uf >
18 q=q+1l
19 Search T
4)————20| DP: 0
22| Search T, =1

22 DP:0

23 Search 'I‘1 =0

24 Select 1st match

25| Write T, =1

26 Transfer from matched word into DR
27 Search i = p, Write '1‘1 =1

28 Search j = q, Write Tl =1

1=0

Tl =z], for a covered row or column

T?. = 1, when at least one assignment is made during
an iteration

'I‘3 = |, when a null eddement is assigned and represents
the optimum assignment

Figure 3-7 Flow Diagram of Program for the Binary
Assignment Problem

e A e R N

wdfqoid juswudissy Areurqg 1oy weadoiyq sfenduery sumyoew g-¢ 2andig Dl
g€1-Z oy dumnl ‘t # g A1 61-2
= {1 a3tam ‘b payorew 105 d yoaesg =1 ---| ---] mos]1tTmasyj| ----| 1 81-2 .
“Q Oa-.-m pIom ﬂQr—QuﬁE EO.—u hOwﬂﬂth\ FunN M.
yorews zo05 ‘1= £ pue 21 ‘g samm -Ilmosjmos| mos| ----]----]n~w 91-2
61-Z 03 dumf ‘1 # 44 41 st-2
Q waswadur ‘g = 'L ‘b = [yoxeag 1| ---jmoOos}] ---t1Tmasj----|1 -z)
[0IU0d PIAYy I2juNod g I3pun Y out (g 13jsuea] £1-2
9-z o3 dwnf ‘7 £ g J1 21-2
1= 'f 21tam *d payojewt 103 b yoaesg -] ---}{ ---lmMmOosfjaITmasj----11 nz &
" W Ojul PIOM pIYdIJEIL WOIfIIjsSuURI Y ol-2
1= € pue 1 Ip atam ~-|mos{mos] mos| ----}----|N 6-2
21-Z oy dumf ‘1 £ @ 31 8-2
g wswaidur ‘g = {1 ‘d = 1 yoaeag 1} ---|---|mos}| ----|imas} -2
JOI1U0> PIaYy 13juNi0d V 19pun WG Ow @ PEIY 9-2
0 = %y 1eard -l---Imis}]--- ===]----11 $-2
suwm{od I0y xaput aurf }B1p 839G uy, | Tg XMy Tdg 40g y-2
smox 10§ xapur aury 3B1p 819§ g . Ty ey . Ty 4ag £-2
JTWI] X3pUl UWIN]OD PUB MOI 833G adp:_ = 198 -2
0 = £1 pue Iy rearp _- [mis |--- _Bﬂm ---- F--- |t -2
sjuswIwo) _o _ €L (47 _ L =] v _ma cn_ﬂ,ﬁ_“w_s

e e —— e

ﬁumﬁﬁﬂcoov 8-¢ aand1 g

i dois 1-S
G-z o3 dumfp 0€-2Z
1= ~.H aj1am ‘paom paydjeuwr 10} b yoaessg - - - - --=-1MOS masty-- - - 1 62-2Z b
1= ~H. 2j1am ‘pIom paydjewr I0} d yoaeag - - - - -l mogq----fTmasj! 82-2 ‘
W@ ojut piom paydjewt wioay Iajsuel] L2-2
1= %1 2mam - mosl -- | -~ ----}---- |N 92-¢
yojew 3s{ 122128 pue Ie31D ¢2-2
0 = \1 ydIess - -l ---lmosl ----}---- 1|t ¥2-Z
G-z o3 dumf ‘0 # 44 d1 £€2-Z
ouN.Hnuu.now - e--Imost---}tVt--"""yvV " °° 1 22-2
1s 03 dwnl ‘o = 4d 41 12-Z
0 = 'L udaess - [-.--1---lmos}f---1---| 02-2
gjuUaWIWIOD) a m.H N.H A.H d v —&Q i3qumnN
. uo11ONIISU]

A | P A S

It is necessary to iterate through instructions 7Z-6, Z-7, Z-8 and Z-12, and
Z.-13, 7-14, Z-15 and Z-19, '"n'' times, multiplied by the number of iterations,
but through either Z2-9, Z-10, and Z-11, or Z-16, Z-17, and Z-18 a total of
only n times indfépler:dent of the number of iterations. Since these loops repre-
sent the principal timing requirement, the total time required can be expressed
as |

T =2Kn({l.75+,050 log2 n)

+n(2.0+ .050 log‘2 n)

where |
n - is the number of columns or rows in the matrix

K - is the number of iterations required.

3.3.2.2 Comparison, APP with Serial Processor

As previously mentioned, a timing analysis for this problem, using two serial
.rocessors, the AN/FSQ-31(V) and the L-3500A, was available from a
Librascope internal report. The data for each of these serial processors and
the calculated data for the APP are presented in Table 3-2. To provide a
reference, the L-3055A has a cycle time of 5. 0 microseconds and requires 113
instructions for this problem and the AN/FSQ-31(V) has a cycle time of 2.5
microseconds and requires 84 instructions. The L-3055A and AN/FSQ-31{V) are

the central processors used in the 473L and 465L command and control systems

respectively.

The data of Table 3-2 are plotted in Figure 3-9 where the abscissa indicates
the size of the matrix, the left hand ordinate indicates the solution time and the
right hand ordinate indicates the solution time ratio of the APP over the two
serial processors. For a 1000 X 1000 element matrix, the time for APP to

solve the problem is less by a factor of 1000 than for either of the serial processors.

One criticism can be made in this comparison regarding the vintages of the

serial processors versus the APP. More sophisticated serial processors are

9

warqoaq
wawudrssy Axeurg xoj s10ssad0xg TR1I38 Y6605 -1 pue
(A)Ig-OSI/NV Witm gdgv ssedwo?) o3 eyeq Jurwry paje[nore) 2-¢ dqey,

- sw g - sw 7 sw [z ° 14 o1
9L sw og o€ sur o7 sus 99 ° g of o
ot sw 00€ Ly suz 001 sw 7[°Z L oot .
cow S 9 091 4 sw 721 6 00S
002¢ S 08 0021 sog| . sw g7 ot 0001
owey | A ouey L 1 u ‘doy u
<mmm?4 | (ang-osasnv YOSSADOUd FALLVIDOSSV

SOLUTION TIME —»

]00 E r §
s
10 .
s —
300
L3055 A - 5u SEC. CYCLE
1 TIME 113 INSTRUCTIONS 100
s
J —
RATIO APP
1'29 OVER L3055 A 100
FRATIO APP OVER]
AN/FSQ 31(V) 1
| 9
o
AN/FSQ 31 (V) 2.5, SEC - A 3
10 CYCLE TIME 84 INSTRUCTIONS f 10
ms , -
ASS&CIATNE PARALLEL
) PROCESSOR (APP)
ma b 7 P A
10 50 100 500 1000
SIZE (COLUMNS) OF MATRIX “n*
Figure 3.9 Comparison of APP with Two Serial Processors
for Solution of Binary Assignment Problem
\
93
:
-

available which can produce processing speed improvements in the order of two
to five over the AN/FSQ-31(V). However, even taking this factor into account,
the APP would still have a significant speed improvement in solving the binary

assignment problem,

3.3.3 Solution of the General Assiﬁxment Problem

3.3.3.1 APP Solution
The algorithm for the solution of the general assignment problem was presented
in subsection 3,3.1. A more detailed program is developed in this subsection

+

. to determine the timing requirements.

The organization of the data within the associative memory of the APP is shown

below.
Rating
Matrix Kow Column
Value No. No. Tags
D i j T1 --- 'I‘8

Note that eight tag bits are required. When "D has a value of zero in the
weapon assignment problem, i.e., when a particular missile is not capable
of reaching a particular target, it is not necessary to store the row and column

indexes within the associative memory.

From Figure 3.5 in subsection 3. 3.], it can be seen that the algorithm for the
general assignment problem is divided into five parts, namely:

1) Initial adjustment for maximizing or minimizing

2) Initial independent zero assignment

1) Cost matrix Test

4) Assigument adjustment

S) Cost matrin adjustiment

Flow diagrams for cach of these five parts of the algorithin were first developed.

Terminology emploved in the five flow diagrams is preseated in Table 3-3.

Note that tags not required in subsegquent parts of the algorithe are te-used.
o

O >o T - >

o o
e

ol

Dy

- isi=n, indicates a particular row in the assignment matrix
1<j <q, indicates a particular column in the assignment matrix
- an index on i

- an index on j

indicates the size of the n X n assignment matrix

rating matrix value for a particular element

a binary digit index on D
the initial binary digit index on D
a limit search on D

- a single digit searchon D

Particular tags used in each of the {ive parts of the algorithm are:

%

Initial adjustment for minimizing
‘I‘l - tags a row {or cnlumn) for a particular iteration sequence
T, - tags used to indicate a digit borrow in subtraction operation

Initial independent zero assignment
Tl - tags all zeros
'I‘2 - tags s.arred zeros

'lI‘.1 - tags covered columns

Cost Matrix Test
- tags all zeros

- tags starred zeros

1

2

4 - tags covered columns

g - tags primed elements

o - tage last primed element

q - tags covered rows

Cost Matrix Adjustment

‘l‘3 - tags smallest non-covered ¢lement in matrix

'rs - used to indicate a digit borrow in the subtraction operation
then a digit carry in the addition operation

Assignment Adjustmaent

T, - tags starred zeros

T, - tags sta:red 2eros in srquence

1“ - tags covered columns

Tq - tags priined elamants

Ts - tags last primed elument initially and then all primed
slements in sequence

T, - Tage covered rows

At completion of algorithm, tag Tl contains the elements representing
the assignmants.

Tadle 3-3 Definition of Terms for General Assignment Problem

e

o

i

Figure 3-10 presents the flow diagram for a minimizing assignment broblem
illustrated only for rows. The program for the columns would be exactly

the same, except that column indexes would be specifiad. 'I"he flow diagrams
for the initial independent zero assignment, the cost matrix test, the cost

matrix adjustment and the assignment adjustment are shown in Figures 3-1],

3.12, and 3-13,

From the flow diagrams, the program in machine language was constructed
and is presented in Appendix D, Note that 132 instructions are required.
Note once again that the number of instructions is inacpendent of the size of

the cost matrix.

In working out the timing requirement, the following assumptions were made:

g

1. D can be represented by 10 significant binary digits

. W

X 100% of the N rows initiall‘y have no independent zeros

3. JN iterations through cost matrix test loop (step 1)

4.N

¥ iterations through adjustment loop (step 3)

5. YN iterations through auignmént adjustment loop (step 2)
where D is the rating matrix value and N is the size of the N X N assignmeut

matrix,

Using these assumptions, Taole 3-4 was prepared to represent the basis for
the timing calculations for the general assignment problem. Based on Table

1-4, the caiculated timing values are shown in Table 3-5,
8

3.3, 3.2 Coinvarison, APF with Serial Processor

The speed utility of the APP compared to a serial srocessor in solving the general
assignment problem was next investigated. In oider that the comparison could

be made on ma<hines representing the samr > technological vintage, a sophisticated
scrial processor 1cpresenting the present state of the art was hypothesized.
Assumptions made on this serial processor are:

1) The memory access time is0.) microse _ond

96

1
Check for 2
a Zero in

A Row 3

4

Reneat fo 5
Columns™,

4 6

2

8

'mf19

Find onNES_ !10

Smalles

Elemen 11

in Row 12

13

\ 14

15

16

17

18

—»{19

20

Subtrac 2l

Smallest 22

Element 23

24

25

Sét pi =11, P = u[
setd=uk, a =4f
Search DI =0, i=p
DP*; 0

P: uk

p=ptl

Clear Ti’el

Set cli =ul, d =1£
Search D, =0, T
DP#*: 0

DPx*: 1

Search Dd =1, ’I‘l =], i
d: £4

d=d-1

Search Tl =1, Write ’I‘l =0

Select * st match, write 'I‘1 =]
i
Setd=u2, d :XI

], i

i
©

d 17

P, Write 'I‘l

=0

Clear T3 =0

Search Dd =0, 'I‘l =]

DP=*0

Search Dd=0, 'I‘3 =1, i =p, Write Dd=l

Search Dd=l, T3=l, i=p, Write Dd=0' 'I'3 =0
Search Dd =1, 'I'3 =0, i =p, Wx-xteADd =0

Search Dd*O, TS =0, i =p, Write Dd=l, 'I‘3 =1
d:ul S
d=d+1

Figure 3-10 Flow Diagram for Initial Adjustment for
Maximizirg for rows, General Assign-

ment Problem

97

To Step 2

O O 3 O e W

10

Figure 3-11 Flow Diagram for Initial Independent Zero

Set p.1 =/ei, p=u£
Search i = p, I‘1=1, T, =0
DP: 0

DP:1
Select 1st match

Write TZ =]

Read q columns for matched word into DR
Search q = DR, Write T4 =1

i

p:iua <

p=p +1

Assignment, General Assignment
Problem

98

e b im0

To Steg2

IV-J - BEEEN T ST N O N

e i o
w N O

Step 1 - Cost Matrix Test

Clear T5=0, T6=0, T7=0
Search 'I‘l =], 'I’4 =0
DP: 0

DP:1

Select 1st match

Write T5 =], T6 =]

Read i columns for matched word into DR

Search i = DR, T2 =1

DR : 0

Search i = DR, Write 'I‘7 =1
Search T6 =]

Read j columns for matched word into DR
Search j = DR, Write T4 = 0, T6 =0

Flow Diagram for Step 3 - Cost Matrix Adjustment

Search T4 = 0, T7 = 0, D = Min (smallest non-covered
element in matrix)

Sear.h T., =1, Add g {Adds gto covered rows)

Search T1 = 0, Subtract g {subtracts g from uncovered
columns)

Figure 3-12 Flow Diagram for Step | - Cost Matrix Tost

and Step 3} - Cost Matrix Adjustment, General
Assignment Prohlem

Eyom Step

]

2

e

S A

From
Step 1

14

O 0 0 O W b W

Finished _
‘____l

4
To 1Step

e o
w N = O

Figure 3-13 Flow Disgram for Step 2 - Assignment Adjustment,

. Search T6 =1

«Read j column for matched word into DR
Search j = DR, Write T4 =1
Search j = DR, T, =1, Write 'I‘3 =1
DP: 0
Read i and j columns for matched word into DR
Search j = DR, Write T, = 0

4
Search i = DR, Write T, =0

2

5
Search T3 =1, Write T2 =0
Search Tb = i, Write T?. =1
Search T4 =0
DP: 0
WriteT5=0, T6=0' T7=O, T3=0

General Assignment Problem

100

Jn

Number
Particular of Time per | Total
Subroutine Section Iterationd Assumptions |[Iteration Time
N Check for 2N Rows an 4A SNA
Initial zero columns
Ade“"me“' Smallest g5N 5% of Finda | 3.5A NA 3, 28
Mi iix:'zin element) rows in, logz D logZ D
1IMIZING| ih rows L.9N and alfway
or .95N|columng thru NA 1.9
columns have |limit 2A 1°32D logZD
zero's
» of rows and
Subtract 1.9 N columns have A1°3. 5 1;1: 61.)56
zero's g g
Initial N4R LN has inde- |, | j2a | -IN)
Independent N pendent zero (65A)
Zero Jﬁ
Assignment VN N has no inde-| 3A VN 3A
pendent zero's
Cost JN iterations
Matrix /f\l- \/I_ﬂ- within loop and
, 10A N 10A
Test UN changes in
allocations
3.5A
.5 | FulD : VN
Minimum logoD 3.0 zA
2.5 A log.D
Cost .5 1/2 D 1082D 2
Matrix m
z 3.5A N
Add log,D |3 435
Adjust g2 logzD
Sub 13(; 3 A @ A 3.5
g, log,D
Assi rmentq Find se- 121N 6A NSM A6
gr quence and '
tag _
Adjust AT 5A |&%
N) N 4. 5A

Table 3-4 Basis for Timing Calculation for General
Assignment Problem for APP

10

F——.

ddV 103 waiqoxd juawudissy [erauar) 1oy uonye[nafe) Surwny g-¢ Qe l

L ren s e

S (1344 SuI S ux 8 I 8
L2L S ‘9¢ 8 %1 s°L 8¢ c¢'7d <€ Iviol
o . juaunenf

€01 286 ° 812" 091" ¥60 ° €90 STYVNA 49V geN rasuraB ey
i) : . . . 2 waunsnlpy
088 056 0S¢ 052 8L g€t a‘sors v Np phtiiniie 4
i i i))) 1991 |
00°S 0§ 2 0°t 005 052 05t Vol N x111eW 1905
N QhﬂN

.. | stie et o .. 28] 9% | 92 g o -
—_— - v wapuadopu
€€ foran | 99 [ors o 549 b] €7 loe | SLT b n|L0T o (57E T csT9N VN P :..:w:“
2 22 b1 ot e ¢ z Butzrustun
29 2°1¢ A §2°9 A A A I R VN (8 + a‘3o1 £ "11) 10} waw
Z/IN 2/ TN 2T N ZIN ZA N ZAN cannlpy teeatel
0001 00S 002 001 0s v einwiao g autinoaqng

N

102

2) The serial processor has scratchpad memory and instruction look-ahea&
so that the instructions and data can he accessed into the scratchpad
memory during and in parallel with the execution of arithmetic and logical
processing.

3) The arithmetic unit is the parallel type so that the processing operations

required for this problem can be performed in less than the access time

of 0. 5 microsecond.

Two basic processing operations are required for the serial processing., The
first involves accessing a word from memory and then making a compsarizon,
An example of this operation is determining the minimum element in 2 row or
column of the assignment matrix. The number of memory accesses required

to perform this type of operation is shown below.

| r—.{l Instruction - bring ,
' 2 | Bring word
l ‘ 3 | Instruction - compare and jump
4 | Instruction - exchange word in scratchpad memory ’
5 | Instruction - jump !
One memory access time is required to bring an instruction as well as to bring
a word from memory. Assuming that the instruction interpretation and the
arithmetic and logic operations are performed in parallel with the memory
access, this instruction sequence is performed in five memory access times in
the worst case, and threeiaccess times in the other case. It is assumed that
s

four memory access times or two microseconds will be required, on the

average, for this type of operation.

The second type of operation involves accessing a word from memory, subtracting

ey

or adding to the word contents and then storing the new value back into the

-

word. An example of this operation is subtracting the minimum element in a

row or column in the assignment matrix. The number of memory accesses

103

i
| i

required to perform this type of operation is shown below:
~ 1 | Instruction-word
2] Bring word

3 Instruction add or subtract (operatxon takes place mg)

parallel with next acces

4 Instructicn store

5 | Store into word

6 | Instruction jimp
In this case,six access times or three microseconds will be required.

Based on these assumptions and on the flow diagram of Figure 3-5, each of
the five subroutines in the flow diagram will require the approximate times

shown below, where
A, - stands for access time of memory

N - represents the number of rows or columns in the rating matrix,

Initial adjustment for minimizing

TO COMPARE - 2N° 4 A

TO SUBTRACT - 2N% 6 A,

—————

Total Time 20 ACNZ

Initial independent zero assignment

VN

Assumes yy 100% of N rows initially have no independent zeros and,on

the average,l/2 N elements are required in rows or columns to find

a non-covered zero,

TO FIND NON-COVERED ZERO- 1/2 N% 4 A,

TO COVER COLUMN OF _ N(N-YRN)4 A
STARRED ELEMENT <

Total Time 6 ACNZ -4 ACNm

Cost Matrix Test

Assumes 3 iterations where no non-covered zeros exist, /N iterations

where non-~-covered zeros do exist, and 0. 25 Nz elemcents must be

searchced on the average to find a non-covered zero when it cxists.
104

WHEN NO NON-COVERED ZEROS EXIST - NZ @4 Ac

WHEN NON-COVERED ZEROS DO EXIST - .25 N3N 4 A,

Total Time 3 AcNgwfl_\J

Cost Matrix Adjustment

Assumes‘fg iterations
TO FIND SMALLEST ELEMENT IN MATRIX NZJ-_!;- 4 Ac
TO SUBTRACT OR ADD SMALLEST ELEMENT szg 6 Ac

Total time 5 ACNZ VN

Assignment Adjustment

Assumes/N iterations and Wlinkages of starred elements in sequence
No linkages - v

No. of column covers removed per linkage - N

Total Time (4N NV/T) 4 A,

The timing requirements for each of the five subroutines are tabulated in Table
3-6 for several cost matrix sizes. The next to last row indicates the total
time required in milliseconds for the matrix sizes shown, and the last row
indicates the speed improvement of the APP over this sophisticated serial
processor for matrix sizes shown. As shown,for a 1000 X 1000 matrix, the
serial processor would require 139 seconds or 2. 3 minutes to solve the general
assignment pyoblem,whereas the APP would require 72. 7 milliseconds, repre-

senting a speed improvement of 1910 times.

3.3.4 Solution of the Transportation Problem

3.3.4.1 APP Solution
The algorithm for the solution of the transportation problem is presented in
Figure 3-14. Note that the algorithm is again divided into five parts, where

adjustrnent for minimizing or maximizing and the cost matrix adjustment parts

105 :

108893204 g Tel19g pajyednisiydog

PawnNsgsy ue 10j warqold judwudissy ressusn 10j uotgeIndte) Jurusr 9-¢ 21qe]
PPV o1
0161 089 061 ZL 82 ¥l paaeduro)
otyey
000 ‘6£1| 008 ‘¥2 0182 0°8¢S| 0 °LOT S °Z¢ IVIOL
. . uawnsnipy
#s¢ sot €2 9 61 8 v/ N jusunSissy
. . . . waunsnipy
00L‘8L | 00S°‘€l 184! 062 . S¥ €2t N ,Ns§°?Z X113ep 1807
. 1921
002°'L¥ 056°1 8¥8 0s1 0°Le S€ 'L N NSt xt11e g 1907
P EITY
. . . - -uBissy caaz
000°‘¢ 2LL 921 r4 Z2°8 0°¢ N NZ-_N¢ wspusdapuy
fettug
Furziusturgyy
000°01 0052 oo¥ oot 0°62 0°6 N o1 405 uaws
-i1sn{py renug
0001 00$ 002 0ot 0s 0¢ emuwiog aunnoiqng
: N
j

SPUODISI[[IW Ul

umoyg sawut]

106

13

14
15
16

7
18
19
20

22
23
24

25

27
— 28
29
30
i
32
33
34

35
P
3
i 1]

Initial Zero Adjustment for Maximizing

Same as Assignment Problem

initial Allocation

Set row initial and limit index

Search row for first zero in cost matrix

llocate 48 much to shortage as is available and tag
{:s essential zero (TZ)
Shortage : 0
IF =Tagas T
Surpius : 0

4

IF = tag as ’I'3

Does row have another zero?
Find next zero

Check for index limit
Increment row index

Cost Matrix Test - Step |

Search for covered zeros

DP: 0

Find any non-covered zero and prime it

Row surplus : positive (for last prime element)
Cover row (of last primed element)

Search for any twice covered essential zeros in row
DP: 0

Pick one and star it

Uncover column of one picked

Clear last primed element tag

Quota Adjustment - Step 2

Fin& Z’l a0%in Z° celumn

Is there one?

Find 0' in 0% row

g'ind min of Z_ row surplus, all 0* allocations and 0'
inal column shortage and call it h

Increase quota for each 0' by h

Decrease row surplus and column shortage dy b

Decrease 0% quota by h

Clear all stars and primes and all rows

Tag all columns where discrepancy is zern

Are all columnz covered?

Cost Matrix Adjustment - Step)

Same as assignmaent problem

Figure 3-14 Transportation Problem Algorithm

107

From
Step 1

are identical to these same parts in the assignment problem. Terms used in

Figure 3-14 not previously defined are defined below:

Quota - indicates the amount of commodity assigned to a particular element in
the assignment matrix,

Surplus - indicates the amount of commodity remaining at a particular source,
At the beginning of the algorithm, the summation of all surpluses
represents the total of the commodities available. At the conclusion
of the algorithm, all surplus values are zero, since all surplus commodities
at sources will have been assigned to the destinations.

Shortage - indicates the amount of commodity yet required for a pariicular
destination. At the beginning of the algorithm, the summation of all

shortages represents the total of the commodities available.

At the conclusion of the algorithm, all shortage values are zero, since
all available commodities at the sources will have been assigned to the
destinations.

Essential Zero - indicates a zero in the cost matrix whose quota is positive

(non-zero).

Also, as in the preceding algorithm, certain rows or columns of ihe cost matrix
are distinguished by covering them, certain zero elements in the cost matrix
are distinguished by starring () them, and others are distinguished by priming
(') them. Definition of tags and other terms uscd in Figure 3-14 are:

T, - a covered column

1
T?. - tags essential zeros
Ti - tags rows where surplus = 0
T* - tags column where shortage = 0
Zo - denotes an uncovered 0' (there @ill be one at point where listed in
algorithm)
Zi - denotes a 07 in 7's cclumn

108

L o — . o 54t et e

A statement of the algorithm in words which helps to clarify Figure 3-14 is
presented below. The statement begins with the initial allncation point in

the algorithm.

Initial Allocation - Find a zero element Z in the cost matrix. If both its

surpluses and shortages are positive, allocate a quota to Z in the
amount of the smaller of the two, and reduce each by that same amount.

Cover a column when its shortage becomes zero. Repeat, for each zero

in the cost matrix.

Cost Matrix Test - Stepl - Choose a non-covered zero and prime it. Consider

the row containing it. If the surplus for this row is positive go at once to
Step 2. If the surplus for this row is 2ero, cover the row, then star each
twice-covered essential zero Z in the row and uncover 2's column.

Repeat, unless all zero's are covered, at which time go to Step 3.

Quota Adjustment - Step 2 - Construct a sequence of zlterna ing starred and

primed zeros as follows: Let Zo denot‘e the uncovered Q' (there is only
onej. Let Zl denote the 0% in Zo's column (if any). Let ZZ denote the

0' in Al's row. Let Z3 denote the 0% in Zz': column (if any}. Continue
until the sequence stops at a 0', ZiJ' which has no 0% in its column.

{This sequence is unique since no column contains more than one 0%,

and no row merc than e¢ne 0'),

The surplus in Zo's row is non-tero, the shortage in Zij‘s colurn is
non-zcro and the quota assigned to each 02 in the sequence Zo R ZU
is non-zero. Let h be the smallest of these positive numbers. Increase
the quota of cach 0' in the sequence by h, and decrease the quota of cach

0% in the sequence by h. Erase all stars and primes, uncover all rows,

and cover every column whose shortage is sero. Return to Step |.

Cost Matrix Adjustment - Step 3 - Find g,the smallest non-covered eloment
in the cost matrix. Add gto every covered row and subkract g {rom every

uncovered column. Return to Step i not altering any stars, primes or

19

covered lines.

The organization of the data within the associative memory of the APP is

shown below: Rating
Matrix Row Column
Quota Surplus Shortage value No. No. Tags
Q Sp Sh D i j T, |--- |T

In comparison to the genersl assignment problem, note that Q, Sp and Sh additional
data columns are required as well as six additional tag bits. Also, as with the
general assignment pi'oblem, it is not necessary to store data for elements where
the rating matrix value "D'" is zero, These types of elements would correspond

tc missiles that could not reach a particular target in the weapon assignment

problem,

Definitions for tags used for each of the five parts of the algorithm are described

belov..
1 Initial adjustrnent for minimizing
T1 - tags a row {cr column) for a particular iteration sequence

T% - tag used to indicate a digit borrow in subtraction operation

.

2. Initial allocation

Tl - tags a covered column

-
1

tags essential zers elemerts in cost ratrix

!
t

3 - tags rows where surplus = 0

T4 - tags columns where shortage = 0

’1‘5 - tags all cost matrix elements with zero value

Tb - temporary shortage for last essential zero

T7 - tags covered rows

'1‘8 - used to indicate that row has only one remaining zero

110

3, Cost Matrix Test (Step 1)
T, - tags a covered column

3 - tags rows where surplus is zero
4 - tags columns where shortage is zero

5 " tags all cost matrix zero elements

T

T

T

Tb - tags last primed element
T7 - tags covered rows

T

9" tags all primed elements excluding the last one from Step 2

4, Cost Matrix Adjustment (Step 3)

Tl - tags a covered column

T5 - tags all cost matrix elements with zeroc value
T7 - tags a covered row
T

g " used as digit carry or borrow in addition or subtraction operation

5. Quota Adjustment (Step 2)
1" tags a covered cclumn

2" tags/sésential zeros

4 - tags columns where shortage = 0

T
T
T3 - tags rows where surplus = 0
T
’I‘6 temporary storage for last essential zero
T7 - tags covered rows

T10 - tags a star (*) on a line segiment

T, - indicates the last tagged O

1
le - tags a prime ('} on a line segment
T13 - indicates the last tagged 0'
Tl4 - tags the smallest element in the sequence

Figure 3-10, the flow diagram for the "initial adjustment for minimizing"
part of the algorithm for the assignment problem is applicable to the
transportation problem, Figure 3-15 indicates the flow diagram for the initial
allocation part »f the transportation problem algorithm, Figure 3-16, the
cust matrix test and cost matrix adjustmen: parts and Figure 3-17, the quota

adjustment part,
111

kAR e e e ot

- g i

b A

From initial zero

adjustment fo
maxxm.mn.&.(

'

To Step 1 =

Lol « IR AT R - Ve I (SR el

— = = = e e e e
DR REE o ®u o0 0 e wN = o0

25
26
27
28
29
30
3

32

Clezn; Tl' TZ' T3 T4 =0

Set p =IA7, P= ui

Clear T6 = 0, T8 = 0, T7 =0
Search i = p, T1 =1, T5 =1
DP: 0

DP :1

Write T8 =1

Resolve a multiple match zero
Write TZ =], T6 =1

SH>SU at '1‘6 =1 ,
Search T6 =1, Write T2 =1

Read i and j columns for matched word into DR
QatT =8Uat T6

Search j = DR, Write T7 =1
S}-Iat'T6=SHatT6~SUatT
Search i = DR, Write SU =0
SH<SU at T, =1

Search T6 =1, Write TZ =1
Read i and j columns for matched word into DR
antT6=SHatT6

Search i = DR, Write T, =1

7

SUatT7=SUatT7-SHatT

6
Search j = DR, Write SH = 0, T1 =1
Search T, =1

6

8
DP: 0
Search T6 =1, Write T?. =1
Read i and j columns for matched word into DR
QatT6=SU atT6 ’
Search i = DR, Write SU =
Search j = DR, Write SH = 0, T, =1
Lim : ud A
p=p+l

Figure 3-15 Flow Diagram, Initial allocation,

Transportation Problem

112

Flow Diagram, Cost-Matrix Test Step 1

1| ClearT, =0, T,=0, T =1, T, =0 o From Step 2
- 2 Search T4 = 0, Write Tl =0
meHL 3 DP : 0 (from last search)
4 Search T, =1, Ty =1, Tg=1, T =1 Pu—
5 DP : 0 =
6 DP:1 =
7 Select 1st match
ToSteg? 18| WriteT, =1, T, =1 :l
9 Search T1 =0, T5 =], T7 =0 —
— 10 DP:0
1l DP:1 =
12 Select 1st match
13 Write T9 =1 (tags as primed element)
14 Search T9 =1, Write T7 = 1 {for row of matched
element)
15 Write Tl = 0, for column of matched element
Flow Diagram, Cost-Matrix Adjustment Step 3
L-.Fl_ Search T1 =0, T7 = 0, D = min (smallest non-covered
element in matrix)
2 Search T7 =1, add g (add g to covered rows)
| Search T, = 0, subtr?.ct g (subtract g from uncovered
‘ columns) N
’ 4 Clear T5 =0
5 Search D = 0, Write T, =1

Figure 3-16 Flow Diagram, Cost-Matrix Test - Step 1 and
Cost-Matrix Adjustment - Step 3 Transportation
Problem

113

pes
-—

Clear TlO =0, T" = 0, TIZ = 0, T“ = 0, 'I'M =

2 Find column j' for Tb = | (last primed zuro)

0

_q 3 Search column j' and Tl =1, 'I'7 =1, 'I‘Z = | {twice covered
essential zero)
DP: O —=1

4

5 Write TlO s, T“ =], {for matched word)

6 Clear T“ =0

7 Find row i for T" =1

8 Search row i and T9 =1, Write le s 1, ’I’ls =]
9 Clear T“ =0

{10 Find column j' for T” =1

I Find minimum at T, =) and SP; T ;=1 and SH; T o=} and Q P-J
12| Write T, =1

13 DP :1

14 Write TH = 0 and huld detector plane
15 Seclect first match, Write TH 2 ‘l

16 Search 'I'14 =1, T, =i

1
17 DP: 0
18 Scarch TH =1, 'l'U 2]
19| DP:0 ?
20 AddSP at T,, =1toQat T , =1

14 12
21 Subtract SP at TN =1 from Q at TlO =]

24 Find)' column for T“ =1

23 Subtract SP at TH =1, from SH at j'
24, SH:0 #
25 Write 'I'4 =0 at)’

26 Find i' row for 'I'h =]

27 Write SP = 0, T3=0al i'

24 AddSHa:THHtuQatTuﬂ
29 Subtract SH at TH z=lfromQatT
30 Find i' row for Tb =1

31 Subtract SH at 'l'H =1 from SP at i’
32 SFP:0

33 Write T’ =0, at v

34 Find §' column for T,, =1

10}

A

13
15 Write SH = 0, '1'4 =0 atj'
b AddQat T, =ltoQatT,=1 -y ———
7 Find j' column for T“ =1
Y] Subtract Q at '1‘H =1 from SH at '
3y SH: 0

40 Write T4 =0 at)’

+ Find i' {or Th=l

12 Subtract Q at TH =] from SP at i’

43 SP: 0

+ Write 'I'3 =0 ati'

45 Subtract Q at TN =] from Q at TlO -1
Write T, =0, T, = 0, Tb=0, T7=0

. | 1 2
ToStepd 1470 Search Q»0, Write T, =1
i

T -

Figure 317 Flow Diagram, Quota Adjustment - Step 2
Transportation Problem

114

s
|
|
|
!

More machine language instructions would be required for the transportation
problem than for the assignment problem. However, all of the fundamental
processing operations have been defined in the machine languagc::.program

for the assignment problem. Accordingly, a machine language brogram was

not written for the transportation problem.

The timing requirement for the transportation problem was worked out in

terms of the flow diagrams.

The following assumptions were made:

1) D, the rating matrix value, can be represented by 10 significant
binary digits.

2) For convenience, the rating matrix will be assumed to be an NX N
square. Note that the square matrix is not a requirement for the
transportation problem as it was for the assignment problem,

3) Initially, the average number of surpluses per source for each row
or of shortages per destination for each column isVN. Note that with
this assumption an analogous assignment problem would require a cost
matrix of size Ny x NYN.

4) In the initial allocation loop, there are an average of 4m allocations
made per row,

5) For Stepl - cost matrix test loop, there is an average of {N consecutive
iterations within the loop, but repeated YN times.

6) The Step 3 - cost matrix adjustment loop is iterated{-gtimes.

7) The Step 2 quota adjust loop is iteratedm'times.

Using these assumptions, Table 3-7 was prepared,representing the basis for
the timing calculations for the transportation problem. Based oa Table 3-7,

the calculated timing values are shown in Table 3-8.

3.3.4.2 Comparison APP with Serial Processor

The speed utility of the APP compared to a serial processor in solving the

transportation problem was next investigated. The same serial processor,
‘ 115

Section| Number
Sub Within of Time per Total
Routine Loop |Iterations Assumptions Iteration Time
Initial
Zero .
Adjust- Same §s in Table|3-4
ment
Initial N4 [Averase o 'R 3o oy oo ol [FRis 543 10g,N)
Allocati allocations per 2 2
‘#ﬂ column but only W&13,5+11.5 logzN +13,5+l11. ‘.‘.olo[;;2
‘-’/ﬁ can be made Arl\‘l-
VN per row
Cost number of
Matrix VN|VN | changes in allo-{(7.5+2 log,N) INA(7.5+2 log,N)
Test cations andVN
iterations
within loop
Mini- [N| .5 Full B 3.5 Alog,D VN
mum -Z— 2 3.0 5 A 10g2'5
.5 1/2D 2.5 A log,b
/R Half the time
N this loop is re-
Cost Add =z quired to adjust 3.54 mglﬁ
i :
Matrix rating matrix
Adjust- /‘R’.‘
Sub 2z " 3.5 Alog,D
ment 2
New fl’:r
zero's Zz log, Q+1
N
TOTAL % (10 log,D
- legz Q+1)
Flnd +
trace |N {3——5‘ 5.5+ 2 log,N
Quuta |and tag l +log, Q
Adjust- é -
. 13.5+1L.5%
ment Adjust VN _ 1082 Q
AN [lungH!. 5
TOTAL $ ¥ 5+exog,uil

Table 3-7 Basis of Timing Calculation for Transportation Problem with APP

116

ddV Uitm wajqoad uoijejaodsuer] Io0j uonjenared Bunury g-¢ 21QeL

¥92 2u 1 4 s'6l |U'8 vy V101 L=0D ‘szot=d
N%otg m+s cr+| avsunsnipy
L-L r3 4 561 80t 09" Ls” 24 wf:as.
o - | e
(N“Bor ¢ +6°5) Eﬂ.@é ¥
(1 + GN&B + uaunsnipy
0°1 8" ¥ 82 12 1 a?%or o1) —% v10n0 m
2 1s3]
€ s S8°1 £9° 9¢ * 8r” (N8012 +S°L) NV xta3ep
Suney
(a%For s ¢ +
181 S oL bLe 0°6 L€ 8°1 2 HonEIelY
D301 g421) V NA N reng
ruauisni
S°29 A {3 G "2t S2°9 2 | L8°T VN (8 + a®Bor L 11) uaunsniPy
027 rentug
0001 00S 002 001 0§ o€ e[nutio g a sunnoaqng
N _
J

SPUODISI[{IIW Ul UMOYS SIWIT]

g

hypothesized for the general assignment comparison descrided in the last sudb-
section, vas assumed for this comparison. The transportation problem also re-
quires the same twc basic processing operations for serial processing as there
described. Therefore, the same basic timing cycles are assumed as there

described.

Based on these assumptions and on the flow diagram of Figure 3-14, each of

the five subroutines in the macro flow diagram will require the approximate

)

tinies shown below, where
Ac - Stands for access time of memory and is assumed to ke 0.5
microsecond

N - represents the number of rows or columns in the rating matrix

Initial adjustment for minimizing (same as assignment problem)

To Compare ZNZ 4 AC
To Substract ZNz 4] Ac
TOTAL 20 A_ N?

Initial allucations

- 4 .

Assumes an average of ¥N allocations made per row and an average of
3/4 N eclements down a row hefore either shortage or surplus becomes
zero.
. 2
To search for 2eres - 3J/4 N7 4 Al
Allocate to Shortage

Greater than compare - N ﬁ\"n4 Ac

Suuntract - N ilN & Al

Update surpluscs and - N N4 A
Shortages =

TOTAL ¢ ACN‘ AN b 5 Ach v

Cont Mateax Test - Step |

AN
Arxutiies ap itematione where surphie for row of non-covered zere i

11°

positive, VN iterations where all zeros are covered and on the average
0.25 N2 elements are searched to find a non-covered zero with a positive
surplus in its row.
When all zeros are covered -

Finding Zeros - NZV—N_‘Q Ac

Row Surplus Test - N ?Vﬁ.b Ac

Neglect remaining operations - 0

Non-covered Zero with positive row surplus

Finding zeros - 0.25 N"@— 4A_
Row surplus positive 0. ZSNZ {g 6 Ac

test -

TOTAL 1.25 A N*/N

Cost Matrix Adjustment - Step 3

o

Assume s“-tg- iterations

Search for minimum non-covered element- 4 ACNZ@
Subtract or add smallest element - 6 ACNZ,/-_I\ZT
TOTAL 5 AN

Quota Adjustment - Step 2

Assumes (N iterations and }VN— sequences on the average
To determine sequence - ‘}\/R’;'-bl_ N 4 A,

Final minimum element - lﬁ‘T/N— 6 Ac
in sequence

Arithmetic operations on - ‘{(NF N o Ac
sequence

Remove row and column - N&/ R 4 A,
tags and primed and
starred elements

ToTaL 12 8P4 ACN"“" *4AN 5/¢

The timing requirements for each «f these five subroutines are tabulated :n

Table 1.9 for sceveral cost matrix sizes. The next to last row indicates the

tatal tume reguired an mtihiscconds o2 the matriy sizee 3= wmn, od - st

119

I0883201d [e113g pajyedtysiydog

pauWINgsSy UEB JOJ WI[QOXg udwudissy 10j uoryenore) Juny H-¢ el

ddv or |
000 ‘2s¢ | 00S ‘09 06L9 1921 rd &4 69 IVIOL

. uunisnipy
009 ‘€9 008 ‘ot o9t 012 9 '8¢ 8 01 e /eNT o ANl 5o NT w1000
. . . . wannanipy
0oL ‘8L | 00€ ‘€1 oT¥l 052 S¥ €2t 26N %7 X1AImIN 190D
. . . . 189} wiswy
000 ‘9.1 | 009 ‘62 091¢ 09S 201 ¥L? 2N e RN
. . o) o b . uonwany
000 ‘%2 | 080S 659 wt | o-ze L6| (o N6+ N[o
Furrnistunyy

.) . P Es)
000 0Ot 00672 oot oot 062 0°6 N.f ot ..:.J,.:uaﬁ.\qsu_(.
A AR 11331

0001 009% 007 00t 05 0¢ ALK avnneantg

N

SPUODAKT[TTN Ul UMNOYG AUt]

row indicates the speed improvement of the APP over the serial processor for
matrix sizes shown, As shown, for a 1000 X 1000 matrix where it has been
assumed that these are N X/ N or 351, 600 tctal allocations made, the sophisticated
serial processor would require 352 seconds or 5.9 minutes to solve the trans-
portation problem, whereas the APP would require 264 milliseconds representing

a speed improvement of 1330 times.

3.3.5 Timing Comparisons for Network Flow Problems

Table 3-10 is a summary of the timing requirement for each of the three variations
of the network flow problem, and illustrates the timing efficiency of the APP
over a serial processor. However, the data shown for the serial processor
should be interpreted as being only representative. Actual values would depend
upon the particular serial processor employed and on the degree of cleverness
used in constructing the program. In addition, the reader should bear in .mind
that the solution times shown are based on assumptions made on the numnber of
iterations ;equired within varicus parts of the algorithms. Even though the size
of the cost matrix might remain constant, partic'ar solution times would vary
as the initial values of the variables change. However, the assumptions were
made on the basis of representing a typical case for a problem statement. °
Nevertheless, the same assumptions were maintained in working »aut the tin.ing
for both the APP and serial processor. Accordingly, even though the solution
times would vary from problem o problem, the ratios of efficiency shown should

remnain relatively constant,

From Table 3-10, note (hat the timing requirement in the three problem cases

for the APP is increasing approximately lincarly‘ or indircet proportioa to "N"‘
the order of the cost matrixywhere the rust matrix was assuined squarc for the
transportation problem. In contrast, the timing requirement in the three problem
cascs for the serial processors 18 increasing nearly in proportion to "N“’. or

the cube of the size of the matrix. This, then, represents the efficiency factor

ol the APP ove - a serial processor for actwork {flow problems, of which the
121

swaqolg Mol YIOM3IaN 10J vieg Sujwr] jo Asewwung Ql-¢ u.Ed.H

\..\
1 ¥
0cgl | szse| swigz| o161 S6ET | swL2L| 0021 s0¢ swgy 0001
0€S sg *09. swzir| 089 sg ¥z| sws9g| 091 67 | swz 7y 005
Fa sg-9 swpg | 061 sg 'z |swg b1 - - - 002
w —
<9 397 ' swg 61 | 2L swigeg . swig L | LY suigQl ' W7 001
o€ swzyz swy'g 82 | sSwWL0l SW8'¢ - - - 0S
91 swgg swpp | BT swgzg swg 'z | 0€ swgz swqgg of
S |
A . AlEOSA/NV
SS9701]| EEELIE 8 g
ouey reriag| 4dV JewEd |TT oV IS 4V oyed $89201d ddVY | yiq1vin N-N
: Tetaag
._ e | | |
WA T60dd _ WAI1904d WA T14d04d o0
NOILV LYOJSNV Y.L INAWNDISSV LNIWNDISSV N TS
IVHINTD AYVNIL -

122

weapon assignment problem is an example,

However, of even greater importance for the weapon assignment problem, is
the fact that the APP can determine optimum snlutions in a matter of milli-
seconds, which must be considered as virtually real time for the weapon

assignment problem.

In contrast, where the matrix is large, the solution time for a serial processor
would require in the order of seconds for the binary assignment problem, and

in the order of minutes for the transportation problem. Obviously, for

realistic weapon assignment problems which do require large matrices, a serial
pr‘:oces sor is not capable of providing real time solutions. In a time of national
emergency, where pertinent initial data in the inatrix could change right up to

the instaat of the weapons assignment and release thereof, the real time solution
capability is essential. This capability is available with the APP and is not

available with a serial processor.

3.4 SUMMARY AND CONCLUSIONS

The applicability of an APP for the sonlution of aetwork flow problems and,in

particularythe weapon assignment problem, was investigated. The network

flow problem was cnuched within the model of the so-called Hitchcock-Koopmans

transportation problem. Three variations on this model were considered as is

listed below in the order of model complexity.

1. Binary Assignment Problem - This is a simplified version of the
assignment problem, where the cost matrix has a value of only zero or

one. The cost matrix is square.

2. Assignment Problem - This is a simplified version of the transportation
problery, where each source initially Fas available only one unit of the
commoditly, and each destination has a requirement of only one u1it of
the commodity. The cost matrix is square.

3. Transportation Problem - In this case, the source initially has available

2

one or more units of the commodity, and each destination has a require-
ment of one or more units of the commodity. The ccst matrix neednot

be square,

An AFI’P;'was formulated, which can solve any of the three variations of this
problem. The formulation of the APP included organization, a description of

the command set and timing requirements for the commands. The basic structure
of this APP is identical with that of an APP previously formulated for pattern
recognitionls’lé. However, it was found that three new features were required

for matrix manipulations, namely:

1, A "D'" counter capable of being incremented as well as transferring its

contents into the data register., It provides row and column indicators
for searching purposes.

2. A match indicator DP=l to indicate when one,and only one word responds
to a search operation.

3, A multiple match resolver to select one word from two or more matched

words,

These additional features not only give the APP a utility for solving the Hitchcock- :
Koopmans transportation problem, but also for manipulating matrices
required for a wide gamut of problem types. Linear programming, dynamic

programming and matrix inversion are examples of possible application extensions.

From the algorithms for the solution of the three variations on the network flow
problem, APP type program {low diagrams were constructed. In the case of the
binary assignment and geaneral assignment problems, programs in terms of the
APP machine language were further written. Since all the basic types of APP
operations were defined in these two programs, a machine language program was
not written for the transportation problem. From these programs and flow dia-
grams, solution timing requirements were determined for problems with cost

matrices of various sizes,

12%

’

The solution times for the APP were compared with a serial processor counterpart,
In the case of the binary assignment problem, a description of the solution on

a particular serial processor wae fortunately found in the literature. In the case

of assigi.ment and transportation problems, a sophisticated serial processor

was hypothesized and an estimate of solution time was derived from the APP

flow diagrams.

It was found that the APP has a timing efficiency factor of from one order to
three orders of magnitude over its serial processor counterpart for the three
variations of the network flow problem considered. The one order of magnitude
factor was applicable for smaller matrices considered, of ’arOund a 30 x 30 size,
and the three orders of magnitude factor was applicable for the largest matrices
considered, of around a 100Q X 1000 size where the cost matrix was assumed
square for the transportation problem. However, of even greater importance

for problems with dynamic' data, and where fast solution times are of the esgence,
as in the case of the weapons assignment problem, the APP determines solutions
in a matter of milliseconds, whereas for large matrices the serial processor
requires from several seconds up to several minutes. The APP determines
solutions in what must be considered as virtual real-time in respect to a human

operator's reaction time, which is not the case for serial processors for large

matrices,

The weapons assignment problem,representative of network flow problems, was
modeled into a Hitchcock-Koopmans transportation problem. However, the
Hitchcock-Kcopmans transportation problem, and therefore the solutions here
presented, have application to problems of interest other than the weapons

assignment probiecm. Gther possible applications include:

1 Other types of network flow problemsu. of which one pertinent example
is message switching to optimally distribatc messages in a complex

command and coatrol system.

125

More conventional transportation probiems, where the cost matrix might
represent estimates of distance or time, as well as cost,and the carriers
might include air tankers, ocean tankers, freight cars, trucks or other

such vehicles.

Personnel assigninent probloms in which,typically, the problem is to

assign N different men optimally to N different jobs.

Forms of the traveling-salesman problemls. The name comes from the
problem cf a salesman wishing to travel from his howne to each of a
number of specified cities, and then return home in such a path as to

minimize the total distance {or time). Distribution of material from one

common carrier with sequential drop-offs at several destinations is one

example of this problem.

126

REFLRENCES - CHAPTER 3
Hitchcock, F.L., "The Distribution of a Product from Several Sources
to Numerous Localities'', Journal of Math. and Physics, Vol, 20, 1941,

pp. 224-230.

Koopmans, T.C., "Optimum Utilization of the Transportation System'’,
Proc. of the Int'l Staiistical Cunfeicnce, 1947, Washington,D. C., (lat~r

reprinted as Supplement to Econometrica, Vol. 17, 1949)

Dantzig, G.B., "Programming in a Linear Structure', Comptroller,

USAF, Washington D.C., February 1948

Dantzig, G.B., "Application of the Simplex Mcthod to a Transportation
Problem'', Activity Analysis of Production and Allocation, Cowles

Commission Monograph 13, 1951

Kuhn, H. W., "A Combinatorial Algorithm for the Assignment Problem",
Issue 1l of Logistics Papers, George Washington University Logistics

Research Project, 1955.

Kuhn, H.W., "The Hungarian Method for the Assign:nent Problem',

Naval Research Logistics Quarterly, Vol.2, Nos. 1 and 2, March-June 1955

Egervary, E., "Matrixok Kombinatoruis Tulajdonsagairol', Mathematikai
es Tizikai Lapok, Vol. 38, 193}, pp.16-28 Translated by H. W. Kuhn as
Paper 4, lssue 1l of "Logistics Papers', George Washington University

Logistics Research Project, 1955,

Konig, Dines, "Theorie der Endlichaen and Unendlichen Graphen'', Akad.
Verl. M.B.H., Leipzig 1936 and Chelsea P hlishing Company, New York

1950,

o A A Wy b 1 eu i e ¢

Ford, L.R.,Jr., and Fulkerson, D.R., "A Simple Algorithm for Finding
Maximal Network Flows and an Application to the Hitchcock Problem',

The RAND Corporation, Paper P-743, Syptember 1955
127

10.

11.

2.

13,

14.

15.

16.

Munkres, J., ""Algorithms for the Assignment and Transportation

Problems", J.Soc. Appl. Math., Vol, 5, March 1957

Manne, A.S., "A Target-Assignment Problem'', Operations Research,

Vol, 6, 1958, pp. 346-35]

den Broeder, G.G. Jr., Xllison, R.E., and Emerling, L., "On Optimum

Target Assignments'’, Operations Reeearch, Vol.7 1959, pp. 322-37%

Ford, L.R. Jr. and Fulkerson, ID.R., '"Maximum Flow Through A

Network'', Can.J.Math, Vol. 8 1956, pg 399-404

Heller, S., '""The Traveling Salesman's Problem, PartI, Basic Facts',

The George Washingten Uni- ersity Logistics Resea'ch Project, June 1964

Fuller, R.H., Bird., R. M., and Worthy, R.M., ''Study on Associative
Processing Techniques'', RADC Report No. TR-65-210 and DDC AD

621 516, August 1965

Fuller, R.H., and Bird, R. M., "An Associative Parallel Processor with
Application to Picture Processing'', Proc. of FJICC, Vol 27, Partl

pp 105-116, Novembe r 1965

128

APPENDIX A
AFP SEARCH ALGORITHMS

1.0 INTRODUC"I‘ION

This appendix describes a va.iety of search algorithms which may be
used in the Associative File Processor (AFP) of Chapter II.

The associative file processor {AFP) may be visualized as a combination
of a rotating disc memory and an ascvociative memory integrated to per-
form rapid searching of very large data files in response to complex

queries.

The data file is stored bit serially on a disc memory having one fixed head
for read or write on each track. An associative memory is employed to
search simultaneously the paraliel bit streams emanating from a number

of disc heads against a set of search criteria.

The data base of the AFP consists of a number of files of records rtored
on the disc tracks. In a typical system each track is divided into 64
blocks, and each block consists of 128 characters with 8 bits per character.
The records are made up of fixed-length characters. There will be no
loss of generality if it is assumed that one record is 128 -characters long,

i.e., one record occupies one block on the disc track.

Referring to Figure |, each record is typically divided into several fields,

each of which consists of one or more characters.

Each field to be searched will have one search criterion, consisting of a

key word, and a specified search mode. The key word is stored in the key
register. and the search mode is stored in the control register which also
danutss the ficlds to be searched. The mask register i3 used for masking or
ignoring some of the bits in the field. In the case of Boynded Scarrh. which
requires two key words, the mask register is used to store the other key
word.

The search types for individual fields may bre designated as follows:

I. Equal o

2. Not equal to

3. Equal to or greater than
4. Equal to or less than

3. Equal to or bounded by

12y

=T

A RECORD =1,024 BITS

A BLOCK f‘ fz f3 f4 XS; fﬂ

po— FIEI.D—:L-

CHARACTER = 8 BITS

d b
KEY REGISTER KEY , KEY , \\
P4
/L.
CONTROL
REGISTER

SEARCH SEARCH
TYPE FCR TYPE FOR
KEY Kty

2 3
MASK * U
REGISTER
&

Figure] Data Format and Search Registers

1%

e et e

Although type 5 is obviously a combination of types 3 and 4, it iy included
as a separate algorithm because of its frequest use. It is interesting to
note that type 2 is the complement of type 1. The word "complement' is

used in the sense that type 2 search can be performe . by using type | and
vice versa.

Types Y and 4 are not complemvntary. The complement of

type 3 is ""less than', and that of type 4 is ""greater than'.

For several fields, the search types are designatad as follows.

1. Conjunctive search

2. Disjunctive search

The search algor:thms with respect to an individual field will be described
first, followed by the search algorithms of several fields.

ill

sk SR

e RIS 5 DS N A i

2.0

2.1

b,‘t

THE SEARCH ALGORITHMS FOR AN INDIVIDUAL FIELD

ALGORITHMS USING ONE TAG BIT PER WORD
(a) Equal to

The sequence of bit-by-bit search is immaterial.

Steps:
(1) Set the initial state of the tab bit T in each word
be I'lll.

(2) The state of the tag bit T, is set to be "0", if
the bit B, in the memory word is different from
the bit K; in the key word. In other words, the tag
bit T, is set to be "0", if B, = 0, Ky =1, orif

B:L:l, Ki=0.

Otherwise, the tag bit remains the same. It should
be noted that once the tag bit Ta is in the ""0" state,
it remains unchanged there throughout the search

sequence.

(3) After the search sequence, the "equal to'" criterion

is met in memory words with tag bit T, being "1".

(b) Not Equal to

The sequence of bit-by-b;\t search is immaterial.

Steps: !
(1) Set the initial state of the tag bit Ta in each word
to be 0", ‘
(2) The tag bit T, is set to be "1", i Bj = 0, K; = 1or if
B; =1, K; = 0.

Otherwise, the tag bit T, remains unchanged.

{3) After the search sequence, the ''not equal to"
criterion is met in the memory word with tag
bit T, being "'1".
The "not equal to' search can be accomplished by
using the '""equal to" algorithm except thaf the ''not
equal to'' criterion is met in thosc words with tag
bit T, being "0".)

(c) Equal to or greater than

The sequence of bit-by-bit search must proceed from

the least significant to the most significant bits.

Steps:

(1) Set the initial state of tag bit T, in each word to
be "',

(2) The tag bit T, is set to be "1", if B; =1, Kj = 0.
The tag bit T, is set to be "0", if B; = 0, K; = l.

Otherwise, the tag bit T, remains unchanged.

(3) After the search sequence, the 'equal to or greater

than' criterion is met in the word with tag bit T,
beinc 1",

It is interesting to note that the ''less than' criterion

is met in ti.ose words with tag bit T, being "0".

(d) Equal tc or iess than

The sequence of bit-by-bit search is the same as that
in (c¢).
Steps:
(1) Set the initial state of tag bit T, in each word to
be 1",
'(2) The tag bit T, is set to be "1", if B; = 0, K;
~ The tag bit T, is set to be 0", if B; =1, K

#
o -

4“

i
Otherwise, the tag bit T, remains unchanged.

(3) After the search sequence the "equal to or less than"
criterion is met m the word with tag bit'l‘a being 1",
4 It should be obvious that the greater ;hin“' criterion

is met in the word with tag bit T, being "0".

2.2 ALGORITHMS USING TWO TAG BITS PER WORD
(a) Bounded Search » o
The bits in the key words.are reg‘reun‘u‘d by M (lower'
limit) and K (upper limit}, so the data [ield satisfies
lhe_criAt_erion:v ' ' .

M & B <K

133

- e Y

Steps:

(1)

(2)

(2)

The initial states of the tag bits Ta and Ty, in each

word are both set to be "l",

Tag bit 7', is set to be "1' if, B; = 0, K; =1, and
set to be "0, if Bi.= 1, Ki = 0.
Tag b.t Ty is set to be "1", if B; =1, M = 0, and

set to be "0", if B; = 0, M; = 1.
Otherwise, the tag bits T, and Ty, remain unchanged.

The final states of both T, and T}, being "1", indicate
the '"equal to or bounded'" criterion is met in the memory

word.

et s e g e ————— A — e <ot i | o nm

W e 3

3.

3.1

3.

2

THE SEARCH ALGORITHMS FOR SEVERAL FIELDS

When a number of different types of searches are performed
on different fields in a record, it is possible to use only

three tag bits per word for the following special cases:

CONJUNCTIVE SEARCHES
All the different types of searches are to be met, i.e.,
the "AND' search of

(Type Sp) (Type 5) (Type S,) ---=- (Type Sy)

where Sg, S)}, S, can be any of the five types of searches

described previously.

Steps:
(1) Set T. to be "l".
(2) Do search Type Sy, Type S| ---- Type S,.

Transfer T, to T, if Ta = 0.
(3) Transfer Tb to T, if 'I‘b = 0.
(4) The final state of T, being '"l" indicates that the

conjunctive search is met.

A special case exists if all searches are '""equal to'
and conjunctive over the fields, which requires only

one tag bit.

DISJUNCTIVE SEARCHES

At least one of the different types of searches are to be

met, i,e., the "OR search' of.
(Type Sg) + (Type S;) + (Type S;) ---- + (Type Sp)

Steps:

(1) Set Tc to be ''0",

(2) Do search Type Sg, Type §;, ---- Type S,

(3) Transfer T to T, ifT, =1.

(4} Transfer Tyto T,, if T, = 0.

(S} The final state of T_ being "1" indicates the fulflillment
of the disjunctive search.

One of the special cases in disjunctive search is
that all types of searches are '"equal to' which requires
only two tag bits.

135

B R ol S S - e
£ i

T e e m— - v SR

4.0 LOGIC IMPLEMENTATIONS FOR THE SEARCH ALGORITHMS

The word logic between the disc track and its associative memory word

of tag bits is as shown in Figure c. ‘

The word logic consists of a sense amplifier, a set-reset-complement

flip-flop, five gates, and a word driver,

The bit logic functions required by the search algorithms are:

1. Clear the flip-flop each word.

2. Complement the flip-flop in each word.

3. Enable the word driver in each word.
There are two Enables, Enable W0 which would
cause the word driver to send a current to the
memory word such that a '"0'"" may be written at
any bit position with bit current present. Similarly,
Enable W, is for the write of « "l". Of course, the
writing can take place only if the flip-flop is in the

"1" state.

4. Interrogate the bit in any one bit position. The
bit driver would send a current for a NDRO at

any one bit position,

5. Enable the bit driver in any one bit position. The
bit driver would send a current for a write at any

one bit position.

6. Enable the gate G for reading the dirc. Disable
the gate G for transfer T, or Ty to any one of the
64 tag bits Cg through Cys.

4.1 ALGORITHMS FOR AN INDIVIDUAL FIELD USING ONE TAG

BIT PER WORD
(a) Equal to
Steps: (at the beginning of search)
1. Clear FF in the word logic
. Complemunt FF
3. Enable W,
Enaole D,

13

DISC TRACK
READ HEAD &

CLEAR

L

COMPLEMENT

Figure 2 The Word Logic Between Disc Track and Tag Bits
Memory Word

137

e e VBl e T T v

R

Steps: (at each bit positions;

1. Clean FF

2. Interrogate B; (equivalent to Enable gate-G)
3. Complement FF (if and only if K; = 1.)

4. Enable Wy
S, Y T
eatle Dy

138

(b)

(<)

{d)

Not equal to
Steps (at the beginning of search)
1. Clear FF
2. Complement FF
3. Enable W,
Enable D,

Steps (at each bit position)
1. Clear FF
2. Interrogate B; (equivalent to £nable gate-G)
3. Complement FF (if and only if K; = 1.)
4. Enable W)
Enable D,

Equal to or greater than

Steps (at the beginning of search)

l. Clear FF

2. Complement FF

3. Enable W,
Enable D,

Steps (at each bit position)

1. Clear F¥

2. Interrogate B; (equivalent to Enable gate-G)

3. Complement FF (if and only if K. = 1;

4. Enable Wj (if and only if K, = 1)
Ea=lle Wl (if and only if K; = 0)
Enable D,

Equal to or less than

Steps (at the beginning of search)
1. Clear FF

2. Complement FF

3. Ernable W,

Enable D,
Stepa (at each bit position)
l. Clear FF

2 Interrogate B; (equivalent to Enable G-gate)
3. Complement FI (if and only if K{ = 1)
3. Enable Wy (if and only if K; = 0)

Enable W {i{ and only if K; = 1)
Enable Dy
139

4.2 ALGORITHMS FOR AN INDIVIDUAL FIELD USING TWO TAG
BITS PER WORD
(a) Ex:iu'al to or bounded
Steps (at the beginning of search)
1. Clear FF
2. Complement FF
3.. Enable W)
Enable O,
Enatie IV,

Steps (at each bit position)

l. Clear FF

2. Interrogate B; (eguivalent to enable G-gate)

3. Complement FF (if and only if Kj = 1)

4. Encble Wo (if and only if Kj = 0)
Enable W) (if and only if K; = 1)
Enable D,
CComplement FF (if and only if M; = 0)
Enable Wq (if and only if M; = 1)
Enable W (if and only if M; = 0)
Enable Dy,

ALGORITHMS FOR SEVERAL FIELDS USING THREE TAG
BITS PER WORD

(a) Conjunctive Searches

Steps (to transfer T, = O to Cj after each search)
1. Clear FF

2. Interrogate T,

3. Complement FF

4. Enable Wy

Enable D
)

Steps (to transfer T, =0 to Cj after cach search)
1. Clear FF
2. Interrogate Ty
}. Complement FF
4. Enable Wy
Enable ch

1ho

(b) Disjunctive Searches

5 | Steps (to transfer T, =1to Cj after each search)
Clear FF

Interrogate Ta ;
Enable W, 3

Enable D
J

Steps (to transfer Ty = 0 to Cj after each search)
Clea: FF

1
¢. Interrogate Ty

AP

W

Complement F'F
4. Enable W

‘ Enable Dc.
- j

"M

5.9 SUMMARY

The foregoing search élgorithms can be summarized with two charts as

shown in Figure 3 and Figure 4.

Figure 3 shows the states of tag bits T, and Ty, in applying various search

algorithms for an individual field.
The mask, key and data bits are represeited by M, K and D respectively.

Figure 4 shows the states of Cj in applying various search algorithme

fur several fields.

The search algorithms have been described by using a minimum of tag
bits. However, it should be pointed out that the search time can be

reduced if more tag bits are used.

The word logic is normally not necessary in describing the search algorithms,
but it may help to understand the algorithms. Furthermore the word logic

may demand the change of logical implementation of the search algorithms.

182

W o 5

nh pue n.v anng 8ey jo saress ¢ Ranhy 3
| | L=aX {=QX {= aW t= Qr ! { CIONHOR
5N KL _

.
1ON 10N : |
asn N

NI \ | = QW t=@ [N1 | z.‘wwumﬂw%
1ON LON |
sn - 35N

NI | = OXW + QW mNON | N o WwNO3 ION
1ION 10N
sn | 3

Nt i INON L= Q)XW + OIW| NI i wno3l
1ON LON

U °1 K
20 31VIS IHL _ o | | -

13W 1= 138 0=9113s t="113 0=°1135 | .o 3ivis uowu.ut

S! NOINILI¥D O1 ol oL O1 N

SNOILIGNOD | SNOILIGNOD | SNOILIGNOD | SNOILIGNOD |

HOYV3IS NIHM

1)

= e e s

(

‘~ Jo sajels

¥ 2andirg

1 1="1 t=91 0 JAHONNISIC
1 INON 1=9 +°L 1 SALLONNINGD
I r
S 40 3iVi1S IHL , c S
1IW t=°D13S 0=-D13S 10 31V1S HO¥V3S
sl NO3LD | Of SNOILIANOD | OL SNOILIGNOD | "o 40 S3dAL

HOY¥VIS NIHM

144

Ty

APPENDIX B
DDC TYPE SEARCH IN AFP-?2

Described in this appendix are the mechanization and functioning of
an associative file processor, specifically tailored to a Defence
Documentation Center (DDC, formerly ASTIA) type of problem of
document retrieval in response to a priority ordered sei of
descriptors. The application of an associative fiis processor
(AFP-I) to this problem was discussed ii the previous Librascope
Study Report (Ref-, Section 2). It is deemed worth while to in-
clude the compurative performance of AFPI with that of the processor

(AFP-2) acescribed in this roport.

A simplified statement of the problem is as follows: Several
hundred thousand documents corstitute a library from which requests
for bibliographies are to be honored. Associated with each document

is a shori list of applicable descriptors (8 ave,, 20 max. in DDC)

- chosen from a relatively static vocabulary of several thousand defined

degcriptors (7000 in DI¥). A& retrisval requost is put in the form
of a list of descriptors and is matched agai-{s,t. the library, evo:ing

matching documants,

Ir practice, a problem arises in that the retrieval request may oe

too general or too smpecific, i.e., it may evoke ioo many documanls,

or too few !(e.g., none). Consequantly, a priority is assigied to

the dncrip%ors in the retrieval requast, and they are used in soguarce

to narrow the sat of evoked documents to an acceptzbdle number, A

ks

relevancy level of the document descriptors in the library is
also utilized, but this is a minor complication and will not be
treated here,

In applying an associative file processor to the retrieval
problem, the first consideration is that in a document's descrip-
tor 1list, a given discriptor may appear anywhere, i.e,, first,
sscond or last, Fortunately, with a well defined descriptor
vocabulary, descriptors can be encoded into fixed length fields,
and, since there is a maximum number allowable to any documernt,
each document can be represented by a fixed length record,

The document retrieval procass is basically a conjunction of dis-
junctive searches, as referred to in section 2,3.8.2. That is, the
search is conducted as follows: The first retrieval descriptor is
loaded into every possible fisld af the key register. Then a
search is performed, leaving compare fiags set if any field matches
(disjunction). Then the next descriptor is loaded and treated
siﬁilarly. The search then leaves those compare flags where some
fisld matches the second descriptor (conjunction of disjunctions),
Actually, the mechanization may be thought of more simply as
follows: The compare flags are initially all set on. Then each
ssarsh ssts the compare fiags off for thoss records where the
descriptor was not found (regardless of position). Thus, the

186

e oo, + b

number of compare flags is reduced with each search, until an

acceptable number of documents are flagged,

As was discussed in Section 2.3.8.2, there is a tradeoff of
associative memory size and retrieval speed., That is, the mosti
cost effective system may well search only a fraction of the

total disc memory per revolution, and take correspondingly many
revolutions per descriptor search., It is possible, in this case,
to store compare flags on the disc, after each descripior search,
rather than in the associative memory, as noted in section 2,3.8.2.
On the other hand, the associative memory word length could be
expandad to accommodate all of the compare flags. However, this
seems unlikely to be economical in view of the per-bit cost of

associative versus disec memories.

The difference in performance between AFP-T and AFP-2 is dependent
on the follow:j.ng factors: AFP-Y searched the whole disc memory
contant on all retrieval descriptors in one revolution. The AFP-2
requires k d revolutions, where 1/k of the disc tracks are searched
at once, and there are d retrieval descriptors. However, offsetting
the speed disadvantage of AFP-2, is the fact that the compare flag
count is available at each stage of the search, so it can be stopped
as desired, and an efficiant readont of qualifying documsnt numoers
is possible. Neithar of these advantages vas a feature of the K!?-I

desiga.

1h7

il

APPENDIX C
A WOVEN PLATED-WIRE ASSOCIATIVE MEMORY

By: ¥.H. Fuller, J.C.Tu and R, M. Bird
Genecal Precision Inc, Librascope Group

1.0 INTRODUCTION

This paper describes an organization and
discusses circuits for an associative (parallel
search) memory using woven plated-wire mem-
ory elements, as initially developed by TOKO,
Inc. of Tokyo, Japan, and now available at
Librascope. This design allows fabrication of
moderate-capacity airborne associative memor-
ies having high processing speeds together with
small size, weight, power and cost. The mem-
ory is operable over a wide temperature range.
Highly iterated word electronics are realized
economically through the use of integrated
circuits and magnetic elements. Novel design
features include the use of batch-fabricated
plated-wire memory slements, bit-parailel
readout from an associative organization of
these elements, and the use of magnetic cores
in word logic to allow simultaneous writing into
selected words. Suitable tasks for such assoc-
iative memories are discussed, Important
characteristice of the Librascope associative
memory are as {ollows:

1) Stored data may be located on the basis of
content which is evaluated simultanecusly
over all stored words,

2) Memory word content may be spacified to be
equal to, greater than, or less than a key
word.

3) Responding words {i.»., words satisfying a
search) may be read out 07 may be rewritten
in a bit-parallel mode.

4) For multiple responses, words may be
accessed sequentially for reading or writing,

5) All responding words may be rewritten
simultaneously in same or all bits {i. e.,
multiwrite).

The sfficiency of associative memory tech-
aiques is closely depandant upon the character-
istics of the mamory slemer .3 uaed for their
implamaentation. The increased logic complex-
ity of associative mamoriss, ovar coaventional
coordinate addressed memories, will laad to
sxcessive system cost unless inexpensive high-
performance elements are used in the memory
array. “ha Librascope associative memory
array consists of parmalloy-plated copper
wires woven together with insulated copper
wires 1o form & wire mesh matrix as shown in
figure . Groups of insulated wires are inter.
connected to form multi-turn digit coils. Bits
are stored in permalioy-plated wires at sach
Mttruc:‘toa with a word coil. Plated wire i
s form of magaetic film memory w ag
tages have deen widaly n:owud.“".t' f‘ﬂ)
but has only receatly becorne available to the
memoty system designer. Thess plated. .wire
tlemants are of interaet as sssociative memory
arrays for the following reasons:

Prescnted at: NAECON, MAY 1965 a9

1) Stored information may be non-destructively
rsad, generating ssarch output voltages wiaich
are significantly larger than have been ob-
tained with other film memories. Highly
iterated word-sense amplifier s may thus be
realized as integrated circuits,

2) Word currents, which may be required with
high multiplicity during multiwrite, are small,
In our design, these currents are simply
generated by magnetic cores set from word.
sense amplifiers.

3) Writing in Foth conventional and multiwrite !
modes is much faster, by a factor of 10 to 30, {
and requires less power than for other known '
non-destructive memory elements, f

4) The memory may be destructively read in &
conventional bit-parallel word-aerial mode,

5) Array cost is now much less, by s factor of
10, thaa for discrets eleinent arrays and will
decrease as woven planes are produced in
volume (perhaps to a factor of 100}

et A T - s

In Section 2 of this paper, we review the
characteristics of plated-wire elements and
arraye and characterise arrays for associative
applications. In Section }, we describe an
organisation and a command set for a plated-
wire associative memory., Memory circuit
considerations are discussed in Section 4. In ‘
the concluding section, plated-wire associative !
memories are conpared with competing reali- :
sations and potential applications for these !
memories are discussed.

2.0 PLATED WIRE MEMORY ELEMENTS AND ;
PLAREY

2.1 MEMORY ELEMENTS

The woven memory plane uses a memory
slemaent in which parmalloy film is plated on a
copper wire with curreat flowing in the wire to
craate 3 circumferential sasy axis of magnati-
sation. The coppar substraie serves as both
a digit drive and sense line for information
stored in the parmalloy film. The flux path {e
closed for the sasy axis in such a manner that
demagnetisation doss not occur and coupling to
the digit drive-sense line (s high. The perm-
slloy film switches in & rotakional mode, and
thus allows extremaely rapid reading and writing.
The combination of sh anisotropy. due to
¢ylindrical geometry of the film and the field
induced anisotropy introduced in plating, gives
small skew and dispersion from the "~ eany
axes, and thus provides a good oper uting margia
{or aon.destructive readout. Batch.labrication
techaiques are used BORA in plating the wire and
in weaviag the planes.

The information state of a il cell i non-
destructively sensed by paseing a curvent

through a coil of drive wires orthogonal to the
plated wires. This current establishes an axial
field, less than the anisotropic field Hk, and
rotates the magnetization vector into a hard
direction by an angle less than 90*. The sign
of voltage induced in the plated wire indicates
the original circumferential flux direction of
the film (f{igure 2). When coil current is
removed, ths magnetisation vector returns to
ite initial state, inducing a voltage uf opposite
polarity in the plated wire, Information is
written into the wire by coincidence of an axial
fisld, less than Hg, with a circumferential
field less than He. The final information state
of the film is determined by the direction of
the circumfsrential field; hence by the direc-
tion of the digit current {lowing in the plated
wire,

2.2 MEMORY PLANES

To form woven memory planes, plated
wires are woven together with insulated drive
lines into a cloth-line mat, using equipment
similar to ordinary textile weaving equipment.
Plated wires run in the weft direction of the
weave; insulated wires run in the warpdirec-
tion. The mat is then mounted on a printed
circuit board to form a memory plane. TOKO
Inc., in cooperation with Kokusai Denshin
Demiva Company, perfected both plating
processes and weaving processes for this type
of memory and TOKO now has production
capability for woven planes.

Librascope will manufacture memory planes
and systems for sale in the United States, We
have designed and experimentally verified
several memory systems using TOKO planes,
and the resulting avaluation has pointed the
way toward the next generation of improved
planes and memory systems. These systems
include a submicrosecond NDRO memary?® and
the associative memory reported herein. OQur
evaluation of woven planes shows that the
weaving technique offers advantages in each of
thess systams over techniques using simple
strip drive lines in the following areas:

1} Density of bits don: & plated wire may be
somewhat increased without intar{erence
betwaen adjacent bita. This is true bacause
proparly designed woven drive lines allow
& {aster {all off in (ringing drive {isid than
do striplines. Packing densities of 23 bits
par inch have been achisved in woven planes
as compared to 20 bits par inch reported
tor strip line planes

2) Ward drive current requirements are lass-
ened by the use of a multitura word liae.

31 Cost of manufacture appaars less, dus to
the availability of more highly automated
plane production techniques. TOKO coil
has successiully expended considerable
production engineering effort to realise
cost trductions possible with weaving
techaigques.

150

Electrical specifications for a typical woven
memory plane are shown in Table 1.

TABLE |
Specifications for a Woven Memory Plane
1

Word Write Current Low 50 ma
Wordql!ud Curnntl L - 100 ma
Digit Write Cm-l'mtl xdw roo ma
Digit Read Current® 1, 150 ma
Word-Line Sense Voltage? 5 mv
Bit-Line Sense Voltage 5 my

: ‘Thia notation applies to associative organiza-

tion of the planes as in figure 1,
28ise time for interrogate current I, is 200 ns.
2.3 ASSOCIATIVE ARRAYS

A practical requirement for associative
arrays is the ability to search the array with-
sut disturbing its information content, The
response of each memory word to a search must
be separately distinguishable. Memory elements
must, therefore, be capable of NDRO operation
with NDRO outputs appearing on word lines.
Since NDRO outputs appear on plated wires in
woven planes, plated wires must serve as word
lines in an associative array (see figure 1).

This contrasts with a conventional coordinate-
addressed organization in which plated wires
serve as digit lines,

Equality search is implementes in a word-
parallel, bit.serial fashion as illustrated in
figure 3. A search key and four stored words,
Wi - W4 are shown in figure 3a, Digit
currents (figure 3b), corresponding to "1's" in
the key, are turned on simultaneously during
a prescarch period, During search time, digit
currents IDl - In4 sre changed sequentially
(i.e. currents are turned on if initially off and
converaely). Recall, (figure 2), that bits stor-
ing 0" have negative autputs during the fall of
the reading current, A word which mismatches
the key in soma bit position will have a nega-
tive output voltage ¢, when the mismatching
bit is ssarched. For words matching the key
(word W4 of figure 4), ¢, is positive at all
bit search timas. Tha described search algor-
ithm thus implemaents the "exclusive or"
function required for squality ssarch. Several
algorithms are available to identify stored
words larger {smallar} than a key. Thesse
ugcrithmg n'an baan wall described in the
literazure®™: * and will not ba rep eatead here.

ft ie desirable that words recponding to a
ssarch be read in dit-parallel fashion. In this
reading mode, the insulated digit wires act as
sense lines. This reading mode may be destruc.
tive since words are read sequentially and may
be rewritten after reading. A aovel sencing
mathod was developed to meet ¢his requirement,

All plated word lines are biased by a small hard-
axis field. A word-read current (figure 4),
sufficient to cause incoherent rotation of the f{ilm,
is applied to a selected word line, Bits initially
in the "1'" state switch to the zero state, inducing
a voltage into the digit line. Bits initially in the
'"0'" state are not changed and induce only a small
voltage into the digit line. The word is rewritten
by applying a smaller current of opposite polar-
ity to the word line, This current, in coincidence
with digit currents on selected digit lines, re-
stores selected bit: of the word to the ""1" state.

3.0 ORGANIZATION AND COMMAND SET

The associative memory is organized as
shown in {igure 5. The data register buffers
communication between this memory and other
system components., The mask register indi-
cates that portion of data register contents
which constitutes search criteria, The detector
plane stores results of searches. The match
resolver allows sequential access to a multi-
plicity of matching words. The match indicator
denotes the presence or absence of some match-
ing word, A data word may be written or read
through the data register. Selected bits of
many data words may be rewritten simultaneously
by a multiwrite command, Equality searches
are implemented in a bit-serial mode.

A simplified }-word by 4-bit search memory
array is shown infigure 1. Bits of each word
are stored along one plated wire, being defined
at each intersection of a plated wire with a digit
coil. Each word has an associated detector
element containing a sense amplifier, a match
storageelement, and circuitry for resolution
of multiple matches. Each word also has an
associated bipolar word driver which, in coin-
cidence with digit current, writes elements to
the "1" or "0'" state, For NCRO reading, digit
current Ip is supplied and sense outputs are
read from the plated-wire word line.

3.1 COMMAND LIST FOR ASSOCIATIVE
MEMORY

Equality Search: Digit currents are first
..hm.i:.a at all unmaskaed "' digits in the
seaarch key. Digit currents are then altered
serially (i. 0., turned on for a "'0" and off for a
“1") for all unmasked key bits. Digit drivers
for "0's" in the key are then turned off. Mis-
mekching words are indicated by negative
voltages in plared wires (figure 4), which ast
initially clearsd detector elements to the mis-
matched siate. The match indicator than
denotes whether any mazck exists. I several
matches exist, these may be accessed sequen.
tially by use of the rmatch resolver dasiribed
in Section 4.

Multiwrite: This command weites simultaneous.
Ty 1-to seiected bits of all matching words.

Two raethods for multiwritiag will ¢ descrided.
For the first mathod, digil currents are eatab-
lishad simuilansausly at all bit columas vhich
are o be writtea to “I''. ln coincideace with
these curreats, "I writing word currents

151

are established at matching words. Only those
bits subject to both currents switch to the "1"
state, The process is repeated using "0"
writing word currents to write selected bits of
matching words to the 0" state,

Operating margins are improved if zll bits
of a column are rewritten simultaneously,
Writing must now be serial by column over all
altered columns. ‘Prior to writing a column,
its contents are read to the detector plane by
a single column search. At matching words,
aew data are inserted into detector ®lements,
ana the entire column is then rewritten, This
method is more time-consuming and requires
some complication of word electronics relative
to the former method, but it requires less-
stringent control of memory plane characteris-
tics,

Word Read: This command reads matching
words, sequenced by the match resolver, into
the data register. Execution of this command
requires bit-oriented sense lines as well as

the word-oriented sense lines used for match
detection. A bit-parallel destructive readout

is obtained by passing a current of approximately
100 ma down plated word lines. This current
switches all bits on this line to the "0 state

and, for bits previously in the '"1'" state, couples
signals in excess of Smv to the non-plated bit
lines. This technique greatly simplifies reading
as compared with previously known methods
which require bit-serial reading of a selected
word through the plated word line. The word
read command may be given repeatedly following
a single search to read sequentially all matching
words, each selected by the match resolver.

Word Write: Contents of the data register, in
Bit positions unmasked by the mask register,
are written into some word, selection on the
basis of a previous search, by match resolution
circuitry. Word contents are unchanged in
masked bit positions, thus allowing selective
alteration of multiple fields stored in a single
word.

The word is firstclaared to 0" by a word
read command. Data in masked fields of the
word are read into the data register for re-
writing. Naew data are insertedin unmasked
fields of the data register. Simultaneously, a
word current is established with a polarity to
write “I's" in the selectad word. The word
werite command must be preceded by & word
read command.

4.0 CIRCUITRY

A discussion of circuitry in this pager is
lirmited, because of spate constraints, to two of
the most critical and costly circuits in the
associative memory, the word circuitry and the
match resolution circuitry.

« 1| WORD CIRCUITRY

Figure 6 illustrates the logic diagram for the
word electronics. The flip-flop is initially

o o . SN NN

cleared to the '1" state, Any serially sequenced
mismatch on the bit line will reset the flip-flop
to the '"0" state. At the conclusion of the search
operation, word flip-flops for matching words
remain in the "1'" state,

A novel word logic, shown in figure 7, uses
the two magnetic cores, as shown, to replace
the flip-flop, the two ""AND'" gates and the word
driver shown in figure 6. The operation is as
follows:

1} The output stage of the sense amplifier is a
latching switch, It is initially cleared.

2) Simultaneously with operation (1), cores 0"
and "1" are reset in the direction of the
arrows by the reset switch common for all
worde,

3) The sense amplifier is strobed to eliminate
spurious signals occuring at times other
than a search cycle,

4) On any one mismatch, cores 0" and "1"
will be set in a counterclockwise direction.

§) After the search cycle, a "]" or "0'" may be
written for matched words by setting either
the set "'1" or set "'0'"' switch respectively
which are comnmon for all words.

This magnetic logic substantially reduces
complexity of word circuitry and thus cost of an
associative memory system.

4.2 MATCH RESOLUTION CIRCUITRY

This circuit s.quentially addresses matched
words in the memwory so that each can be read
or written into.

One type uof mateh resolution circuit, repre-
senting a compromise between high spsad and
cost is *he two-dimeasional type shown in figure
8. The match resolution circuit is implemented
by a matrix of magnetic cores which are set by
the matched word outputs. Each core has five
threaded wirer; one {rom a particular memory
wurd, one each from the row driver and row
register, and one each {rom the column driver
and column register. The operations are as
follows:

a) Before an associdtive memory acarch oper-
ation is started, all matrix cores and column
vegisters are cleared to the matched state.

b} After the sesarch operation, al mismatched
words set their appropriate cores to the mis.
matched state. in turn, these cores set their
curresponding column registers 1o the mismatch
stake.

€] Next, either sequeatial or high-spaed, tree.
type logic natworks are used to talect the first
riatehed column register (starting from Ry)
which was set by the cote or cores in the corres-
ponding columa during the operation in (b).

d) Al row registers are then cleated to the
mismatch state.

152

e¢) Next, a half select current is sent down both
the selected column line and ail row lines, setting
those row registers corresponding to matched
cores for all rows in the matched column.

f) Next, as with the celumn registers, either
sequential or high-speed, tree-type logic nutworks
are used to search through the row registers
selecting matched rows. Knowing a matched row
for a particular matched column, then, deter-
mincs the location of a matched word.

g) Steps (c) through .f) are repeated by selecting
the next matched column intil all matched column
registers have been found.

5.0 CONCLUSIONS

Associative computing methods have found
little use to date, due to their we)l-nigh prohibitive
cost. Nevertheless, their applications are many
and await only a significant reduction in the cost
per storage bit as well as 2 simplified realiza-
tion of the word electronics. Plated-wire assoc-
iative memories afford a reduction in cost per
storage bit by a {factor of the order of 20 to 1.
The magnetic logic implementation for the word
electronics, which has been présented, permits
approximately a 10-to-1 cost reduction for these
circuits, These advantages permit the develop-
ment engineer to take a fresh look at associative
computing methods as solutions to a wide range
of data processing problems,

Plated-wire realisations afford advantages,
other than cost reduction. They provide large
NDRO outputs and employ small word write
currents. Writing selected bits intc many words
simultaneously is possible because of the small
write power requirements. The importance of
this myltiwrite as an associative processing
operation has Yeen stressed by several investi-
gators®. 9. Both write times ani memory search
times are significantly faster than for discrete
magnetic elements. 10

Librascope has extensivaly studied associative
procersing tachniquas, both under contract from
RALC and under independent company funding.
Our studies and those of gthers show associative
processing luhniq%c_n to be uselul in visual
pattern recognition®. .1 in solution of partial
differcential cqumom.. in Elint pulse train
separation, and ir\ : vaciety of information
retrieval systema’®. Use of thess techniques is
indicated whensver somae sequence of computsr
arithmatic or logic commands is to be enscuted
indejandently over many sets of data elaments.
The parallelisam, inherent in associative pro.
cessing, Allows the command sequeace 1o da
snecuted simultaneously over all data sets. The
speed gain over conventional saguential techaigues
can be very large i a high degree of parallelisem
is al'owed by the algorithem chosen for prodlem
solution. Such i3 the case ia all prodlems
raferenced above

———

e ot Aot e

REFERENCES

1} Futami, K., S. Oshima, and T. Kamibyashi,
"The Plated-Woven Wire Memary Matrix",
Proc. Intermag Conference, April 6-8, 1964
Washington, D. C,

2) Danylchuk, 1., Et al, "Plated Wire Magnetic :
Film Memories", Proc, Intermag Conference, |
Washington, D. C., April 6-8, 1964

3) Maeds, H., et al, "Woven Thin Film Wire
Memory", Proc. Intermag Conference
Washington, D. C., April 6-8, 1964

{) Bartik, W.J., et al, ""A 100 Megabit Random-
Access Plated Wire Memory", Proc. Intermag
Conference, Washington, D.C., April 6.8,
1964

PN

S) Bienhoff, M., et al, "Considerations in Design ;
of Plated Wire Memory Systems", Symposium !
on Impact of Batch Fabricaion on Future
Computers, Los Angeles, April 6-8, 1964

6) Fuller, R. and G. Estrin, "Algorithms for
Content Addressable Memory Organizations'’,
Proceedings of the Pacific Computer Confer-
ence, Pasadena, March 15-16, 1963

7} Falkoff, A.D., "Algorithms for Parallel
Search Memories', Journal of the ACM, Vol
9, pp 488-511, October 1562

8) Fuller, R., and G. Ectrin, "Some Applica-
tions for Content Addressable Memorias',
Proc. FICC, Las Vegas, November 1963

9) 'Computer Assotiative Memory Study', Final
Report on Contract AF 04(695)-318, Space :
Technology Laboratoriss, July 1S, 1964

10) '*Research on Ferret Associative Memory"
Interim raport oa Contract AF 33(618)-12%9,
Philco Corp., November 1964

11) "Associative Processing Techniques)' interim
Report on Contract AF 30(602)-3371, Libra-
scope, August, 1964

12) "Associative Processing Techniques” Final

Report on Contract AT)0{602)-1371, Libra-
scope, May 1968,

153

8IT _SENSE
PER

Figure 1.

Associative Memory Array

154

WORD SENSE
AMPLIFIER

DRIVER

WCAD SENSE
ANPLFIER

ORIVER

e ——————————

A. READ

8. WHMTE

\ ¥/
o e o e of STONED "o"

Figure 2. Reading and Writing of Plated-Wire Elements

155

DI D2 D3 D4

0 0 0 0

KEY
wt

w2

w3

w4

SEARCH
TIME

Lo R P _— e —— ———-— D e - - -— = -
Rl S] L RSN A y. .. S S -
— e e . o —— v — i e —— o ——— = an")) = - —) o
- ~ [
» 3 » N
Y [J [J L. 4
- ~ - -
o (-] [-] o
(2] - " -t

Equality Search

Figure 3,

156

Figure 4. Destructive Readcut

157 3 i

DIGIT SENSE AMPS (3) @

DATA REGISTER (D)

MASK REGISTER (M)

DIGIT DRIVERS (DD)

WORD DRIVERS (W) —Jr

MEMORY MATRIX (MM)
WORD

>,
OETECTOR PLANE (Pl‘t—

MATCH
RESOLVER

Figure 5. Block Diagram for Associative Memory

158

WORD
LINE

Figure 6,

Word Logic Requirements

15¢

R R AR ST AN oA e o

.

uotnjejyuowdtduwy 1830 paom 210D p Iandr g

P
— —]
_ I 3
_ W.
A+ " ,
: s |
| oA
l°l —
138 .
|
, |
-

>

COLUMN DRIVERS

ROW REGISTERS

COLUMN REGISTERS

Figure 8. Two-Dimensional Match Resolution Carcuit

161

APPENDIX D

PROGRAM IN MACHINE LANGUAGE CONTROL

FOR GENERAL ASSIGNMENT PROBLEM

163

B e s e s e BRRa s

|
4 |
-,-—--- -t -1 -1 ---F .- et a- - ilaey

0="1amn .mnm_ .
‘T= —.H ‘T = vQ n_u.-aom

o o) mist o amas] wmas] v

-

gi-vordumf 1. 4qg 4 ”2.(

fi-vorduml o.: 40 41 jot-v

nu«.-u-h. , |

0-Pqusaeag | | - ---]---| --- “--] -] mis] 1masinmosfo]e-v
ww'p: Ty oy ‘p s Ty sag | a-v

t="pawors |- | --- | --. - - il Y BV S T BRI SRR 11 I

6z-vordurl{ geaa 419w

d wuawaaduy
‘d=1t"'g =,d Ydreag

taas[Taogifsy

102U0D 13uNed g 29pun Y Cus g nsngn_hjpv.<

L 217 F IR J«‘ g LT J.u& Wy R ey

utw .1 » \=¢ "ol .0 : J.&(e 12y

43j3uN0od UWINTOD PUR MOI 8398

|'Ll|l'|

b - SERE < IR L. -3 BB B3

_

ia

Lo o | o |

ﬁ_.f
g _ v 408

ONIZIWINIW HO4 INIWLISAIAY TVILINI 9§-¥ @ |-y 4—

164

Pa aam

to=fr

0 = Pg yoeag
)

‘0 = vQ Yd>1eaq

0= M.H. 1e21D

1= 11 aaap

0="119mm

1= Yyozeag

—

e

- MOS§ .- ---

- Bom - - - - - -

NMOS 1¢€2 ¥

uy

. QI-v ordumf ‘pung renie] g smunod Y 4] 92-V
IMOS 1¢e2-v
NMLIS 19 Y

§2-y orduung g3-vy

1MtS 182V

gz-vordum{ ‘o 544G 21 22-¥

NMOS toz-v

]
utw 'pa v ‘wew Yo . Tav s g1y

--- --- moOg

YIS 38T 1020108 pue awa|)

Y S ¥

-y 01 dwnl g pEINUY § JUN03 W 4] $1-W

IR I YL

s

- N LI°Y

N 91-¥

—.

“na

B O PIOM PAYIIVUSL SAJFUNEL 1R-y

.6,:‘ ‘ﬁziw,! R S e mea e e e e e+ e v g
(0192 paaaers) -m-'o_nu-_c--ﬂ'- —--.—---Micmﬁw---ﬂ.-.. ~..... N O e9-¥

1=21 sstam !

WITEWs 1941) 100188 PUY I¥81D N $9-¥

-

99-v or dwnl ‘t x40 21 ¥9-V

69-vorduml{ ‘0. 40 41 9-V

I JE ! e S
U E R EERN ---T;Om st ~--|mis |Tmgas * 1 29-v
‘d = 1 ysxeasg i ! - - '

(041402 £23UNOD ¢ J8puUn Y(J O (] SBgSUTL] 9-Y

viw (= My wvw (. My g ge-v

wie t - x_-a ‘MY Y = x_.uc S hG-W

N i e e s n e e e e A P+ RS A s e

0 = P 105 m T T P T * - E i
_nn.-.o:.:s.-m-»- .- T B A .- - - - - -~ MOS8 | ---- NJQOmw.nnJ‘
i . t
m |

I SR I SRR FU, e e e e - m - . - ,m . ..t.l.,»bta .
o="1 »”,
c-imrsf-o-- b

‘0 = 1 tead

mis | o---- w. s~

}
H

INIWNDISSY O¥IZ LNIANIJIANL IVILINI "9V &— 1g-V¥

srivds apunod L 38 4

‘

wwsinosdde 03 sdwnf ynm 72-v YEnosyr G-y ¥ g -V

13

viw (= Vg xew (. Vg yag gg-v

s-vorduwnl § ¢ 41 h?-v

166

YO 0wt Pprom poyd v saguna y 19-v

, , _ _ : S e e ey
1= "1 ydreag T - - - Mmtrs - - - - - . - - - “*ao.i

.:3_ ' | R R B .
: i -] -« - mMOS§ - - - ... -- - - - - - - - -- - JBO& s t bL-%

‘¥d = ' ydzaeag '
it-vordum(‘9. 9wg 41 we-v

. } L - - . e g aie e .. . D ——
=2 5 ') ﬂ
= nam
. ~ h m - - - - - - - - - - - . - - . - - - - B "m - ® a J m ° a - & = - i _. ﬁ“ l‘
YA = t yoreag | } .

HQ 01 pAom PEYIITWE Sagsuvs } -y

R . ‘ =
o,.wo-.—.m-_BOm ---| mos|mos| ---] --- ~ ~ ‘ “z st-v

i6?

YIrews 18t 3o0pde puw VMDD N MW
St-vordwnl ‘1. g4 41 ¢t-v

ba-v oadwnl 9. gaq 41 1-v%

e * -
_ ¥, ,
.-nm.ﬁ B—OU.—ONU% 1 v— -—- - ~ - o - . = - ‘ - - - _B-OW — - . - m - - - ‘ i}.mmm _ - o = - “ IR I | aﬂu(

0uty |
‘0 = ~.~. saearn ¢ }
1S3l XIWLVIK 150D iRV C—— 2.&

19-v 01 dusnf 14 Q 41 69-v

_uv.h.o:.;—- AR B SER ---_BOm ---ﬁ-..‘.--m-.-.
‘Ydd = b yosaeug ' - ‘

Tmas __ "g-y

ettt

1=framam

€

0= ‘.H OumhMS _ |

1= M.H yoIeagqg ;

OMF.H .0u¢.ﬁ_

1=t1 ‘1=Pa woxess |

1

0=%1 0= v.w_

IM « I.v K
1 =L °0="d Yyd21eas;

— T

1= ¢l Xea[d m

L ————— -t

- - - MIS

, -
--- m--- _ ----_----.z $6-V
m :
yoyew I8y 13319¢ _Z ¥6-V
e
U I AR R .
| ‘1 €6V
; :
$8-v o3 dum{ ‘jruwury Tenru] # 19juNod v 41 76V
- - - ---m ----_ a---it1 16-V
. »
H
- - - - - - ----_ NMIS{T 06~V
| :
96-v 03 dum{ 1=da Jd1 68-V
16-v orydwnl o =dg Jd1I 88V
I _
- - - R ----_ZSOmH_ LR~V
| ! t -
H

1
utw p =

- ~s,---- M_ 99-v

T3

P = TV 128 38-V

wﬁ = Jhm 3138 ¥8-V

INAWLISNArIV XIMILVW 1SOD 911-V €—— ¥8 V “

g e e oo e e e ‘_2- — ~ ,.‘
0="10= LM | .-~ |--- Bﬁmﬁ---—\sﬁm*--- --- ---m
‘¥4q = (ysaeas = - i { !
— ‘ -) -
5 7
al %1 tr oL “ e ﬁ 1 _ ‘1 k3 m
| : i

IL-v o1cwmf ¢8-Vy

168

o

o o - .) -
w
W ,
s no,ois, S SRRt tae SR B o - | ¢ 8
. misimrsf--- t---f--- 1 ---) .-V ... I NmOS <-4 sot-v
0= Q:uumow_ _ ;

1 o3 aan

1=¢

= 1

= Pq yosaxeag

8

i
i
!

Ly -

MIS

v e e

1>
)

vot it a s e -_._1 e |
:
‘ 1
4
1

N

0f da 21

{o1-v

<
t

-- - ~ --- | NmoOS
| .
~

- @ . -

i 901-v

-

IMmts

1 oot-v

= Ied - - - - --- - - - - - - - - - - - - - -
0="Laeardy -] m1sg - RIRIEI EEIEIEIT N I T\ L _
o . , Lh-y @1 dwinf ‘uwy renw] ¢ s3wuned g 1 01-V
0="aamm i « A , ‘
o=pri=ta; -lmos|mus| - |- - b oo ool Ll ----
[Pl Y M M : “ ImoOSs 1 fo1-v
.= - - 3 - ca e e m s ——— 1 - B A . >
1= w.H 0= vﬁ— aapm . | . ! -y A”w @ m
- o _ .. . e - o . i :
0= Sp asty| “imos) mrs ; - b --- P NMIs L ---- g 20y R .
Pq yozeag i i : : H ! !
: . : |
- - ~ L) »o1-V o3 dung 1o1-v !
0= 3:3 i m ~ - w i ;
[. { :
U B B I R B !]

‘g =
‘!

v
m.Q TB3S

v. ata M
w h
ek 1

a Auudom

r— o >

MIS

po i

i
e e
H
- - - » - - -

NMOS

201-vorduml o 4 4g 41

1
i

|

- @ o -

[}

»

T 6h-V

86-V

N
E-‘l-l

E S S I U I B w

0= Q:u»nom_ . w‘ w NxOsS AR I Y 1A
e T —_ i i
aea - - - - - - - - - - - - e = e i - -

0="1 G— MITS _A R A ---- |t 96-v

LZ1-v o3 aEs.ﬁ..e =dg 41 12t-v

——

w—— - g oy oo

1=%1 M
1=°L

¥a = (ysaeag

1=Y1 s3tapm

¥da = { ysaeag

-_--- “e - ---_--- --- | mos| mis| --- Tt Tmasit outv
~ -~ |mos iR IR SR s} Tmasjt ozt-v

e ey emen - L . P - TP e N Sengrn 5 et it . gt < 4 vy, i< oot sy~
- - - ~ -

FQ oy paom payoyrwr uﬁ-tsu.—.tﬂ 611~V

. - e geeeaaia - .- . - . I e e e ﬁ\ e e e e e YT i g bt - i o e SO < oo

~nok£uudommo—ouu M1S === i - - - - - - .- - - - -t -o s t oen-v
Y S R R I) R [CTA FO0h SR S wntvns el

INAWLSNIAVY LNIWNDISSY IfI-V &— L1j-¥

IL-¥ o1cdump gyr-vy

170

11

urws f v xews (= Ty a5 cyey

#
1]

11

utes { - g ‘xeus: 13

#

g 138 sli-v . {

901-V 03 dwmf “anuy tentul 4 sswmod @ 41 ¢q1-v

N ——

S e Y - e g e 2O ¥ T

1=Pqgaiam

8. . L
0% =4yl . R R R I i
0 Palionens mos| mrs ims 1 2u-v
0 = Pq aatam
8y =%y
a ysaxeag |

T U, C e - [, S T -

| mos| mrs|--- A B B R NmIs | ---- It v

O"
1="°

fn-vordumg -y

0-%1 '0-Pa a1 m’
ESCIRSETEE IS] U T RIS [DA R T |- - - Imis f---- N so1-v
0 = ' d Yd1eag

o

_ a 8; L 91 St Y £ % — L a v 1a

rv s e IR

swawuSiesy sutequod 73 Swy
doig 7¢1-v
1-v o1 dwng (g1-v
- - - . UV gl . S

1eard i B MIS) m1S Mm1s - - mis - - - - - e t o¢i-Vv

1-S oﬂ...a::_.m .bzu da 4 6z21-v

17

.-~ Pt e Ca e e e e e mee e g en s e s e s o e g e e g e e o e

0 =721 2mam
‘1= m.H Yyoxeag

- - - - - - vy

2) | T = A A | R R
[= "1 aitam ' ,
{=% woaeag: ~ |-~ ---lmis {--- ---}---lmos{ --- R IR 200

611-v 01 dumnp 921-v¥

e R T e T e TRt e o5

0= m.m. AIM

. ¥d = { yoaeag

_®
TR I SR IR B B BD'S T I BRI BRI BRI I W 11 RN T IRY

ua = { ysaeag !

-t ---)imst ---t---}---] --- lhimcs ---- 11 sy

Sg e e e e ae e el w mm o am s cm e L s e e G e ——

A R e I.tt - I e od — L ceme e e e v._ll...4’f ..:gx

W 01U RIOM PIYITEWs IFJIURIY IN (21-VY

a

-u‘u——-

a 8L ‘L % Sy ﬂ YL £ (51 Tt a v

UNCIASSIFIED
Security Classification

DOCUMENY CONTROL DATA - R&D

Socurity classification of iitle. body of ab and muast be d when the oversii report is classilied)
1. ONIGINATING ACTIVITY (Corporate suthor) 20 MECPORTY JECURITY C LASSIFICATION
General Precision, Inc, Librascope Group. UNCLASSIFIED
808 Western Ave, Glendale, Calif 15 enour

N/A

3 REPORT TITLE

Stuty of Associative Processing Techniques

4 DESCRIPTIVE NOTES (Type of report and inclusive detes)

Fnal Report - May 65 - March 66

S AUTHOR(S) (Laaf name, firat neme, Initial)

Bird, R.M, Tanner, P.E.
Cass, J.L. Tv, Dr, J.C.
Nuller, Richard H.
¢ REPOART DATE [7e toTaiL no oF pasts 78 NO. OF REF2
September 1966
[1] Ccu?n;cv OR GARANT NO. 80 CRIGINATOR'S ALPORT NUMBENS)
AP0(602)-3756
b PACIECT NO. N/A
5581
(3 Task '558109 (1} 3:'.".'.:.5}"" NO(3) (Any sther numbere hat mey be assigned
‘ ADC-TR-66-209, Volume I

10 AVAILABILITY/LIMITATION NOTICES
This document is subject to special export controls and

each transaittal ¢o foreign governments or foreign nationals may be made only with
prior approval of RADC (EMLI), GAFB, N.Y. 13440

11 SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Rome Air Development Center (EMIID)
Griffiss Air Porce Base, New York 13440

13 ABSTRACT

This report is in two volumes and describes results of a study of associa-
tive processing techniques performed by Lidbrescope Growp of Genersl Precision
Inc. under RADC contract AF30(602)-1756. Volume I is an unclassified document
and contains all the material in the report eicept that concerning the BLINT

document at the SECRET level.

reconnaissance problem vhich is contained in Volume II. Volume II is a classified

DD 2. 1473

Security Classificetion

P Y R

Security Classification

KEY WORDS

LINK A LINK 8 LINK C

roLdL wY ROLE wT ROLE wT

Associative Processing

Computers

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, graniee, Department of De-
fense sctivity or other organization (corporate suthor) issuing
the report.

Ja. REPORT SECURITY CLASSIFICATION: Enter the over
all securily ctassification of the reports Indicate whether
*'Restricted Data’ is included Msarking is to be-in accord
ance with appropriste security regulations.

26, GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 und Armed Forces Industrial Manual., Enter
the group number, Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as authore’
1zed.

3. REPORT TITLE: Enter the compleie repont title in all
capital letters, Titles in all caser should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classuificution in all capitals in parenthesis
immediately following the title,

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
reporl .., interim, progress, summary, annual, or final,
Give the inclunive dates when a specific reporting period is’
covereyd. : ’ "_
5% AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter 1ast name, first name, middlie initial,
I military, show rank pnd branch of service. The name of
the principal withor iv an absolute minimum requlremeqﬁ:,

6. REPORT DATZL: Enter the date of the report us day,
month, year, or month, year. If n, re than one dete appears
on the report, use date of pubhcn‘hot\.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.c., enter the
number of puges containing information

76. NUMBER OF REFEPT.NCES Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written,

Bh, %, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such «s project number,
subproject number, system numbers, task number, etc,

0a. DRIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating sctivity., This number must
be unique to this report.

96, OTHER REPORT NUMBER(S): If the report has been
axsigned nny other report numbers (cither by the ortginator
or by the sponsor), aiso enter this number(s).

10. AVAILADILITY/LIMITATION NOTICES: Enter any lim-
stations on fwiher dissemination of the report, other than those

imposed by security classification, using stondard statements
such as:

(1) ''Qualified requesters may obtain copies of this
report from DDC."’ ;

(2) “Foreign announcement and dissemination of this
report by DDC is not authorized.’’

(3) *U. S, Government agencies may obtain copies nf
this report directly from DDC. Other qualified DDC
users shall request through

(4) **U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

. O

(S) “‘All distribution of this repo:t is controlled Qual-

ified DDC users shall request through

1f the report has been furnished to the Office of Technical
Services, Department of Commerce, for anle to the public, indi-
cate this fact and enter the price, if known

11. SUPPLEMENTARY NOTES: Use for 'nddmonal explana-
lery notex,
12, SPONSORING MILITARY ACT'VITY: Enter the name of

the depuartmental project office or lut.sratery sponsoring (pay-
ing for) the resedrch and development, Include wddress, -

13. ABSTRACT: %nter an ahstract giving a brivf and factual
summary of the document indicutive of the report, even thrugh
it may also appear elsewhere in the body of the technical re-
port, If additional zpace is required, a continuation sheet shall
be sttached.

It ix highly desirable that the abstract of classified reports
be unclsssified. Each paragraph of the abstract shall end 'with
an indication of the military security classification of the in-
formation in the paragraph, represented an (TS). (5). (C), or (V).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 t2 225 words.

14. KEY WORDS: Key words are techaically mesningful terms
or short phrases thut characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
1ters, such as equipment model designation, trade name, military
project code neme, geonraphic location, may be used as key
words but will be followed by an indication of technical con-
text. The sssignment of links, rules, and weights is optional.

Security Classification

