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ABSTRACT |

Recent observations of seismic noise has indicated 3
large standing wave or isotropic component composed of the
admixture of many propagation modes. Statistical theories
such as equipartition of energy have been reasonably snc-
cessful for deriving the exXcitation of the Propagation modes,
Since such models are classically described by waves from a
zero-mean Gaussian population, we test this hypothesis by
observing if the amplitude envelope is described by a
Boltzman or exponential probability distribution. The results
are affirmative in that, on comparing a large number of
observations of seismic and thermal vacuum tube noise, we
cannot distinguish between the two sets of data in fitting
exponential distributions. The same holds for both narrow-

band and broad-band measurements of the noise.
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1. INTRODUCTION

In recent years, statistical methods have been suc-
cessfully used to predict the change in ambient seismic noise
power sensed by burying a seismometer beneath the surface of
the earth. In abandoned oil explorations wells, noise measure-
ments were carried out by the Geotechnical Corporation for
AFTAC at twelve different locations and by Shell Development
Company for the Air Force Cambridge Research Laboratory at one
deepwell, approximately 4% kilometers in depth. 1In order to
explain the observed noise attenuation and the change in co-
herency between vertically separated seismometers, it was neces-
sary to describe the noise vibration by several propagation
modes. This was pointed out from observations of noise power
spectra by Archambeau, et al., (1964), Douze (1964), sax and
Hartenberger (1964) and Seriff, et al., (1965). A simple
statistical model for the wave motion is a Gaussian distributed
ensemble of standing waves trapped between the walls of a
large arbitrary enclosure. At any point in the medium, the
state of a unit mass particle excited by the system of waves
can be described by the energy changing sequentially in time.
The classical model for obtaining the power spectral density
is to multiply the density of eignefrequencies in each propa-
gation mode times the average energy per normal mode. For a
layered elastic half-space, the spectral value of the normal
mode density was derived for dispersive surface waves by Sax
(1965). The average energy per normal mode is also a spectral
quantity which is constant for an enclosure bounded by rigid
insulated walls but in general is an unknown quantity. For a

geological region, it depends on the equilibrium between the



absorbed incident radiation and the average radiative dissi-
pation at the walls of the enclosure. Fven though the
dissipation mechanism is unknown, at a given frequency the
average energy per mode can be taken constant for all of the
propagation mcdes and their relative excitation can thus be
obtained (Rosenbaum 1964, Sax and Hartenberger 1264, or

Sax 1965). The results obtained in predicting the noise at-
tentuation in a deepwell has been in most cases within several
db of that observed and appears to be within the accuracy of

the observations and given parameters describing the layering.

The purpose of this experiment is to tentatively assume
that the seismic noise is Gaussian and to try to reject the
hypothesis by measuring the relative frequency of occurrence
of specific particle energies sequentially observed on samples
of seismic noise. As control for the experiment, the same
frequency of occurrence observations are made of a thermal
noise sample recorded on tape from a Gaussian noise generator.
The energy envelope of Gaussian noise is theoretically de-
scribed by a Boltzman or exponential probability function, thus
the fit of a straight line to the log of the relative frequency
of occurrence is a test of the Gaussian hypothesis. Two tests
are i1sed; one is the chi-square test of the deviation from the
least squares straight line; the other more powerful test
compares the variance of the seismic noise and that of the

Gaussian noise: generator.

There is scant background of such tests on seismic data.
Galbraith (1963) performed chi-square tests on samples of

seismic noise. Recently, very similar experiments have been

g
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conducted to test the Gaussian and log normal distribution of

radio noise, for example, Aiya (1962).

2. SEISMIC DATA

Three hours of seismic noise was selected which appeared
to be typicai oI the normal ambient background. The noise was
measured by a Geotech model #11167 seismometer, Shappee (1964),
located at a depth of 7,452 feet in a deepwell near Apache,
Oklahoma (Geographic Coordinates - 34%49' 59, " N and
98°26' 09.0" W). The stratigraphic and velocity profiles as
well as the data are described in a research report by the
Geotechnical Coxrporation (1964); the near surface layering is
described as high-velocity limestones of approximately 6 km/sec
overlying an igreous basement complex of velocities in the

neighborhood of 5 km/sec.

3. ANALOG DATA PROCESSING

The purpose of the analog data Processing is to compute
the specific energy (mean squared particle velocity amplitude),
and to divide the energy by magnitude into a number of class
intervals and determine the relative frequency of occurrence
of states in each class interval. The description of the
ahalog equipment used to Process the data are shown on

Figure 1 and Figure 2.

The analog circuit is shown in block diagram form in
Figure 1. The circuit consists of two Khron-Hite low frequency
bandpass filters (Model 330), one narrow-band (hi-Q) filter,

an energy envelope fsrmer, and the energy envelope distribution
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analyzer. All but the Khron-Hite filters are modeled on the

general purpose analog computer (an EAT 231R).

The Khron-Hite filters have a transfer function

2 2.2 z B
+ + s + s
[(s 285 £ + £%) ] [( 288 £, + £, )]

where A = 0.6, and fl and f2 are the low and high cut-off

frequencies,respectively.

For each data frequency analyzed, the high and low
cutoffs are set softhat the effective bandwidth is several
times that desired in the analysis. The Khron-Hite filters
are used to isolate the frequency band pPreventing power
leakage from other frequencies. The hi-Q filters have a

transfer function

where wo = 2n fo and along with the Khron-Hite filters the Q

is computed to maintain a constant bandwidth about each center

frequency, fo - The combination of Khron-Hite and hi-Q isolate
each frequency band by at least 52 db/octave.

The envelope former consists of a pair of all pass

circuits having the transfer functions

e PP g e e
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respectively. Where
_ 2nfo -
W) = 7.35 © Wy = 2m-(1.835) fo ., 40 = 0.322

The outputs of these circuits have the same amplitude
spectrum as the input and have a quadrature (900) phase re-
lationship to each other in a band of about two octaves
around the center frequency, fo . The squared envelope of
the signal amplitude can be formed by taking the sum of the

squares of the two outputs.

The distribution analyzer circuit consists of a ladder
of N (in this case N = 20) identical, precision outputs feeding
into N analog integrators. A pair of typical sections of the
ladder are shown in Figure 2. A detailed description of the
design and operation of the distribution analyzer is given in

Appendix 1.
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4. DIGITAL DATA PROCESSING

The relative frequency of occurrence values for each
class'interval are printed by the analog computer for each
half hour of data along with the system gain, frequency, and
effective bandwidth of the filter. Six, one half hour samples
are taken to cover a three hour sample of seismic noise. The
information is punched on cards as input data for the digital
computer. The relative energy at the center of each class
interval is computed by dividing by the instrument gain. The
geometric mean of the six Samples is computed for each class
interval with a listing of the mean, variance, and confidence

limits.

The logarithm of the mean frequency of occurrence of
each class is taken as a dependent variable, and the relative
energy of the class interval as an independent variable. The
inverse of the variance of the mean (from six samples for each
class) is used to construct a set of normal weights. This
data is put into the l2ast squares Polynomial program to ob-
tain the best fit in the form, v = A - Bx. The slope B is
measured along with its standard deviaticn, the per cent
error (standard deviation divided by the mean), chi-square,
and the variance of the fit to the data. Each set of seismijc
data run at each frequency is accompanied for control by a
Similar run of noise data taken from a thermal noise generator.
The noise generator is vacuum tubs: noise played back at one
sixtieth of the recording speed to pPlace its nearly white
portion in the seismic noise band. All of the above parameters

are also computed for the noise generator for comparison with




seisinic noise.

5. RESULTS

After initially hypothesizing that the seismic noise
is Gaussian, we will attempt to reject the hypothesis on the
analysis of our three hour sample of seismic noise. If the
noise is Gaussian, the Probability distribution of the energy
envelope is Boltzman or exponential. After plotting the re-
lative frequency of occurrence of each class interval on
semi-log paper we compare visually the distribution for seismic
noise and a known Gaussian sample, observing the quality of
the linear trend on each set of data. Furthe:, we fit a
straight line by least squares to the frequency of occurrence
versus energy of each class interval. For the least squared
derivation of the slope through the points we obtain the
percentage accuracy based on the ratio of the standard devi-
ation to the mean, the chi-square of the deviations from the
straight line fit to the data, and the variance of the fit.
The first quantity is a measure of the precision with which
the power spectral density can be computed. The latter two
quantities can be used in statistical hypothesis tests wherein
we require a 99% probability thaﬁ the distribution observed

is Gaussian.

As shown on Figure 3 for seismic noise, the relative
frequency of occurrence is given by the vertical axis and the
class interval in order of increasing energy is shown on the
horizontal axis. On each plot, the center frequency and ef-

fective bandwidth of the filter is labeled. On Figure 4, the
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same information is shown for the Gaussian noise generator.
Comparing Figure 3 with Figure 4, the scatter from a linear
trend is the same overall for both sets of data, seismic and

Gaussian generator.

All of the plots except the last are based on filters
with an effective bandwidth of 0.05 cps. The last two filters
are held constant at 1.0 cps, and the bandwidth is taken as
0.5 cps for one case and 1.0 cps for the other case. These
were computed for the purpose of evaluating broadband data as
well as the narrow band data of the other examples. Since a
linear filter is basically a linear sum of samples, then by the
central limit theorem, a non-Gaussian input occurring at time
intervals much less than the filter memory can be converted to
a Gaussian output by the filter. Thus, the interpretation
that the input of a filter is Gaussian must be qualified as
applying to independent states sampled independently at a time
interval greater than the pulse width of the filter which is
about 20 seconds for the .05 cps filter, 2 seconds for the
-5 cps filter and one second for the 1.0 cps filter. Thus, we
can show that the Gaussian interpretation is as good for inde-
pendent samples separated by only one second as it is for

Separations in excess of 20 seconds.

On Tables 1 and 2, for seismic noise and thermal noise
respectively, we summarize the information obtained from a
least squares analysis of the data. After chi-square we have
a coluin labeled "Chi-Sqaure Test." The word "Gaussian"
placed in this Column means that there is a 99% or better

probability that the sample is from a Gaussian population;




3-HOUR SEISMIC NOISE SAMPLE

MEAN CHI-sQ
FRFQUENCY | BANDWIDTH | SLoPE % ERROR | CHI-sQ TEST F F-TEST

0.2 CPSs 0.05 CPs 0.0011 3.5 % .02 | Gaussian 1.26 Gaussian
0.4 0.0126 2.1 .01 1.05
0.6 0.061 3.4 .01 1.20
0.8 0.131 1.7 .00 1.16
1.0 0.171 1.8 .01 1.00
1.2 0.175 1.6 .00 1.82
1.4 0.0195 8.5 .14 5.10 Gaﬂ::;an
1.6 0.094 2.2 .00 1.41 Gaussian
1.8 0.040 2.3 .00 1.40
2.0 0.0074 1.9 .00 1.78
2.2 0.127 2.5 .01 1.06

.4 0.233 2.1 .00 2.64

.6 0.610 4.5 .01 1.17

.8 0.358 1.3 .00 1.63

.0 ' 0.450 2.1 .01 1.26

.0 0.05 CPS 0.034 2.0 .00 2.44

.0 1.0ces | o0.015 2.4 .01 ' 1.75 '

Table 1. Fit of Exponential Distribution to Energy Envelope of

Seismic Noise




3-HOUR THERMAL VACUUM TUBE NOISE SAMPLE

S e i

MEAN CHI-SQ
FREQUENCY | BANDWIDTH SLOPE % ERROR CHI-SQ TEST F F-TEST
.2 CPs 0.05 CPs 0.033 3.7 % .02 Gaussian 1.26 Gaussiar
.4 0.187 3.2 .0l 1.05
.6 0.174 2.1 .01 1.20
.8 0.159 1.8 .00 1.16
1.0 0.147 2.0 .00 1.00
1.2 0.152 1.7 .01 1.82 ’
1.4 0.165 2.4 .01 5.10 Gaﬂ::;an
l.6 0.176 2.5 .00 1.41 Gaussian
1.8 0.170 2.0 .01 1.40
2.0 0.247 1.2 .00 1.78
2.2 0.274 2.2 .01 1.06
2.4 0.233 2.7 .01 2.64
2.6 0.314 2.9 .01 1.17
2.8 0.208 1.5 .00 1.63
3.0 Y 0.310 2.3 .01 1.26
1.0 0.05 CPs 0.055 1.2 .00 2.44
1.0 1.0 cps 0.015 2.5 .00 ¥ 1.75 !
Table 2. Fit of Exponential Distribution to Energy Envelope of

Gaussian Noise Generator




"no," implies rejection on the basis of less than a 99% proba-
bility that the sample is from a Gaussian population. The
column labeled "F" shows the statistic F computed as the ratio
of the largest to smallest variance of the seismic noise and
noise generator. Then we have another column labeled " F Test."
Again, Gaussian implies 99% or more probability that the devi-
ations of the seismic and thermal noise generator are from the

<

same random population.

Although this experiment was not designed to compute
the power spectral density of noise, the percentage errors
computed for the least squares slope suggest that the method
caun be used to compute noise power with a precision of ap-
proximately 2%. Since the exponential distribution is of the

form [EXP (E/E)] /E » the inverse of the slope can be used to

compute El the mean squared amplitude of the noise. The power
spectral density computed in this way, is shown, both for the
seismic noise and the vacuum tube noise generator, on Figure 5,
as well as for five minute samples based on sample mean calcu-
lations using the Blackman-Tukey method. The general similarity
of the two results verifies that the computer indeed was oper-
ating on the seismic noise sample and thermal noise sample as

stated and not errors produced by our system.

6. CONCLUSION

Based on the chi-square test, it is more than 99% proba-
ble that samples at all of the frequencies are from a zero-
mean Gaussian population. The hypothesis that the class

deviation of the seismic noise sample and the thermal noise

AR TN
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sample are from the same random population is rejected only

for the sample at 1.4 €pPs, suggesting that a non-Gaussian
component may be included with the noise in this band. If we
accept the Gaussian hypothesis, theoretical interest in the

power spectral density of the noise may bear ultimately on
dissipation mechanisms and may possibly lead to analysis of
geological structure, with the real changes in the powerx

spectrum in a region depending Primarily on changes in structure.
Of more practical interest is that modern literature on de-
tection and filtering is most meaningful in the context of

seismic signals added to Gaussian noise.
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APPENDIX I

follows:

1)

2)

When the input voltage ein is smaller than the iEh bias

voltage Bi' amplifier 1 (Figure 2) has @ net negative

of polarity reversal by the operational amplifier). The
Positive output of amplifier #] is, however, helg to a
very small valye by the forward conduction of the zZener
dirode, CRI1. This voltage ang similarly that voltage
from amplifier #5 being small, amplifier #2 has a net

positive input due to the 5V bias. This causes the

When e, ©%ceeds Bi' amplifier #1 has a net positive

input, and its output goes negative to the Zener voltage
of CR1 (approx. 10v). This gives amplifier #2 a net
negative input ang causes its output to go sharply to

the zener voltage of CR2 (also approx. 10v). The
Potentiometer Pi is adjusted so that the net voltage into
integrating amplifier #3, (ez(CR2) X Pi - Ei)' is pre-

cisely 10.0 volts in this state.

L B
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3)

When e exceeds B_+ amplifier #4 is turned "on" (i.e.,
i

1
its output goes negative to the zener voltage just as
that of amplifier #l1 is inverted by amplifier #5 to a
positive 1lOv which summed into amplifier #2 gives it a
net positive input which essentially returns amplifiers

#2 and #3 to the condition described in (1) above where

the net input to the integrator is zero.)

Thus, the input to the iEh integrator is zero except when
the signal value (in this case the energy envelope) is

between the values Bi and Bi+ , and is a constant (10.0v)

1

when the signal is between Bi and Bi+ Therefore, the

1"
output of the integrator is a measure of the amount of
time that the signal remained in the range Bi to Bi+l .
By selecting the proper number of sections in the ladder,

and the proper values of Bi' it is possible to analyze

the probability distribution in any detail desired,

within the accuracy of the equipment used.
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