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ABSTRACT 

The integral equation, first obtained by H, Maruo, 

which determines the pressure distribution generatina flow 

past a slender ship of vanishing draft, is studied further. 

New results obtained include predictions of singular center- 

plane effects of gravity for pointed bodies, a similarity 

solution for ships with cusped parabolic waterplanes, and 

some preliminary numerical solutions of the integral equation 

in the general case. 
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Introducftion 

This paper is an extension of a study by Maruo (1967) on "ships 

of small draft", "flat ships", or "planing surfaces", all of which 

are equivalent descriptions. The small-draft assumption allows 

linearization of the free-surface boundary condition, as in the 

comparable case of thin ships, or ships of small beam (Michell, (1898)). 

However the present linearized problem is much harder to solve, since 

the generating singularity distribution (effectively a distribution of 

pressure points on the limiting waterplane) is not explicitly given in 

terms of hull shape, but requires solution of an integral equation. 

This problem is analogous to the lifting-surface problem of aerodynamics, 

whereas the thin-ship problem corresponds to the simpler thickness 

problem of aerodynamics. 

Although we also give here a brief re-consideration of the general 

flat-ship problem, to emphasize some aspects not discussed by Maruo (1957), 

our attention in the present paper is mainly devoted to the low-aspect- 

ratio limit. Thus the wetted length of the ship is supposed much greater 

than its beam, the latter having already been assumed much greater than 

the draft by the flat-ship requirement. The ship is therefore not only 

flat, but also slender. 

We give an alternative derivation of an integral equation equivalent 

to one obtained by Maruo (1967), which has as its unknown function a 

pressure distribution representing the ship. This integral equation is 

also obtainable from the high-Froude-number slender-body theory of 

Ogilvie (1967), by assuming that the ship is not only slender, but also 

flat. 

Maruo's low-aspect-ratio flat-ship integral equation is formally 

valid only at moderately-high Froude numbers, specifically such that 

U2B/gL2 is a quantity of order unity, where U is ship speed, B its 

beam and L its length, and g is gravity. The equation reduces to that 

of low-aspect-ratio wing  theory in aerodynamics as g-»-0 . One approach 

to practical solution of any planing problem, whether or not the aspect 

ratio is low, is to expand in an asymptotic series for Very  high Froude 

number, commencing with the aerodynamic g=0 limit as the leading 

<-«>r;n (e.^. Wang s Rispin, (1971). Maruo (1967) obtains the first two 

terms in this series for the lift on a flat delta wing, and we give here 

^^muumaamma 
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an alternative treatment of this class of expansion, for general hull 

shapes. In particular, we demonstrate very strong effects of gravity near 

the center plane of pointed bodies. 

We also observe that at all Froude numbers, the low-aspect-ratio 

flat-ship integral equation possesses a "similarity" solution, such 

that the pressure distribution has the same shape at all stations. This 

linearized but gravity-dependent result should not be confused with the 

well-known conical similarity solution for non-linear planing or water 

entry in the absence of gravity (Gilbarg, (1960), p. 360). In fact the 

present geometrical requirement is for a cusped parabolic waterplane shape 

but an arbitrary section shape, whereas the non-linear zero-gravity solution 

requires a triangular plan form and section shape. 

The low-aspect-ratio flat-ship integral equation is amenable to 

direct confutation, and we present here some preliminary examples of its 

numerical solution. Much more work needs to be done to derive efficient 

procedures, and the present computer program can only I"? considered as a 

crude first attempt. However, the results are of considerable interest, 

indicating rather dramatic gravity effects especially near the center 

plane, as predicted analytically, and confirming Maruo's (1967) estimate 

of the lift coefficient of a delta wing at sufficiently high Froude number. 

«Ml 
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2. The General Flat Ship Problem 

We use a rather unconventional co-ordinate system (x,y,s), as in 

Tuck and von Kerczek (1968) and as sketched in Figure 1. The ship is 

supposed fixed with its bow at s=0 and stern at s=L in a stream U. Thus 

the total flow field velocity is 

q = V(üs -Hl)) , (2.1) 

where $    is the perturbation velocity potential. 

The body equation is 

y = n(x,s) , (2.2) 

where 1 is generally expected to be negative,  "-n" being the depth 

of the buttock line x=constant at station s. Equation (2.2) is supposed 

to hold for 

|x| < b(s), (2.3) 

where b(s) is the half-waterplane width at station s. For !x| > b 

we may suppose that (2.2) defines the water surface elevation. The hull 

boundary condition is 

*y = (u + (f>s)ris + (j)xnx (2.4) 

to be applied on the exact hull surface y=r) 

We first make the small-draft approximation, introducing a small 

parameter ot measuring the draft/length ratio. Keeping only leading 

order terms with respect to  a , the boundary condition (2.4) reduces to 

^y = uns , on y = 0. (2.5) 

It is important to note that the small- a approximation is a regular one, 

as distinct from the (potentially) singular perturbation represented by 

the small-e slenderness approximation to be applied next, where e 

measures the beam/length ratio. We shall assume that  a«e so that 

(2,5) may be taken to hold quite accurately when we come to make the small 

E approximation.* 

*It is of interest to note that, according to Acosta and DeLong (1971), the 

infinitc-Froude-number slender-planing-surface analysis of Tulin (1956) is 

valid in the opposite limit G«a . 

m mm 



y = 7](x,s) 

Figure 1:  Sketch of Co-ordinate System 
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The boundary conäition (2.4) also correctly gives the exact kinematic 

condition on the unknown free surface y=^ for ]x| > b . This has to be 

supplemented by the dynamic condition 

^ + U*s + I I?*'2 + & * 0    ' (2.6) 

if the excess of pressure over atmospheric at the free surface is P; usually 

P=0. Again, the small-draft approximation enables linearization not only 

of (2.4) but also of (2.6) to give 

f- + U(|)s + gn on y = 0, (2,7) 

which combines with (2.5) to give the linearized free-surface condition 

,2.1    U g<t)y + u^gg : ps . 
p 

If P=0, this reduces to the usual equation 

g*y + u
2*ss = o. 

(2.8) 

(2.9) 

Howsver, we shall generate solutions by means of pressure distributions P, 

the velocity potentials then satisfying (2.8) whenever P ?< 0. Note that 

(2.9) results from the small-ot approximation, and that alone; when we 

subsequently take E as small, (2.9) may be considered as exact. 

The general flat-ship problem, with e not necessarily small, is that 

of solving the full Laplace equation 

^xx + ^yy + 'J'ss ' 0 (2.10) 

in the space y<0, subject to the hull condition (2.5) on the portion 

|x|<b(s) of the plane y«0 occupied by the projection of the hull, and the 

linearized free-surface condition (2.9) on the portion lx|>b(s). In 

addition we expect to require some kind of radiation condition at infinity, 

and a Kutta-type condition that the pressure reduces to atmospheric 

pressure at any sharp trailing edge in order that the free surface leave 

such an edge smoothly. 

This problem can be converted into an integral equation, which is 

the finite-Froude-number analogue of the lifting-surface integral equation 

of aerodynamics. Maruo (1967) gives one method for accomplishing this; 

perhaps more directly we may set ourselves the task of finding an unknown 

surface pressure distribution P(x,s) which generates the free-surface 

■ 
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displacement r!(x,s). The corresponding integral connection* between P 

and    r\    may be obtained from well-known formulae, e.g. Wehausen and Laitone 

1960, p. 598. For example 

ff V2 

Ti2pU2ns(x,s) =-Im |ld^dOP(C,a) f desecfl (2.11) 

00 

- f dk k2e"ik(S"0) COs9cos(k(x-C)sine) ( 

where the path of k-integration goes above the pole. 

We shall not attempt to solve this integral equation here, since our 

concern is with the low-aspect-ratio case. However, several questions are 

worth noting. Maruo (1967) states that "the kernel of the integral equation 

is complicated enough to frustrate any attempt at solving it." This view is 

perhaps a little too pessimistic. The kernel is simply the complete solution 

for a travelling three-dimensional pressure point, and a number of similar 

computations have been carried out on an ad hoc basis recently (e.g. Monacella 

and Newman (1967)fGadd (1969), and van Oortmerssen (1972)). Of course there 

is more to the solution of the integral equation than just evaluating its 

kernel; however, direct numerical attack on this general flat-ship problem 

would seem worthwhile, and some effort is being put into this. 

The role of the Kutta, or constant-pressure, condition at the trailing 

edge is worth comment. There is a degree of non-uniqueness about the integral 

equation (2.11); the homogeneous equation with ns=0 has a non-trivial set 

of solutions. This is illuminated by performing an indefinite s-integration 

of (2.11), introducing thereby an arbitrary function of x on the left-hand 

side, say C(x). The resulting integrated operator permits a unique solution, 

the non-uniqueness being now absorbed into C(x). This unknown function must 

*An interesting physical interpretation of this connection is the statement: 

"Every planing surface is hydrodynamically equivalent to some hovercraft." 

The equivalent hovercraft does not, of course, have a uniform base pressure. 

MMUUMMI ■-^'-■fes^fc^- 
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somehow be determined by the requirement that P(x,s) vanishes at the 

trailing edge. Physically, this indeterminateness is equivalent to a 

degree of indeterminateness about the vertical location of the hull, and 
1 3 

indeed at infinite aspect ratio (TP- = 0)   ,    C is a constant, reflecting 

bodily upward or downward shift of the original given foil relative to the 

undisturbed free surface at infinity. 

The zero- and infinite-Froude-number limits of (2.11) are of interest. 

In the zero-Froude-number case we obtain simply 

P(x,s) = -pgr|(x,s) , (2.12) 

i.e., the appropriate pressure is hydrostatic. This is the apparent basis 

for the original flat-ship formula of Hogner (see Havelock, (1932)) which is 

however inconsistent, if used in a wave-resistance calculation at finite 

Froude number. At infinite Froude number, the integral equation reduces 

exactly to that of aercJlynamic lifting-surface theory, so that the ship is 

equivalent to a lifting wing with camber surface y=ri(x,s). The role played 

by the Kutta condition is mathematically the same; it eliminates a degree 

of non-uniqueness in the general solution of the integral equation. 

The analogy between the flat-ship theory and lifting-surface theory, 

I       which becomes an exact equivalence at g=0 , illustrates a disturbing 

j       feature of the low-aspect-ratio flat-ship theory, namely that we shall not 

j       in general be able to satisfy the Kutta condition once the low-aspect-ratio 

I       approximation has been made. That is, the pressure predicted by the low- 

|       aspect-ratio theory at the edge of the transom stern will not in general be 
f I       atmospheric. This would be a most unfortunate conclusion, were it not for 

I the fact that low-aspect-ratio wing theory also suffers from this deficiency, 

I       yet nevertheless has proved useful. What presumably happens is that in a 

small neighborhood of the trailing edge there is a rapid change of pressure 

back to atmospheric. The hope is that this occurs over a dynamically- 

insignificant portion of the total hull and has no significant upstream 

effect. Some work has been done (e.g. Rogallo, (1970)) or, the corresponding 

aerodynamic problem. 

ISHtM^^^^MiiiHHHHiK 



3. Derivation cf the Lotf'Aspeat'Ratic Flat-Ship Integral Equation 

We now assume that the hull has a low aspect ratio, i.e. that it is 

slender, in the sense that its beam B is much smaller than its length L, 

say B^U)* L.  Note however that there is a definite heirachy of smallness 

in this problem, thus 

"Draf t«Eeam«Length". 

The case when the draft and beam are comparable gives ordinary slender-ship 

theory, as in Tuck (1964) for low-to-moderate Froude numbers, and Ogilvie 

(1967) for moderate-to-high Froude numbers. 

In the present case we are going to treat moderate-to-high Froude numbers, 

such that 

v = 2ii- (3.1) 
ü2B 

is of order unity. This means that the conventional length-based Froude 

number is large, specifically 

F = -H-= 0(^/8) = 0(e"!5). (3.2) 
v'gL 

This is the regime treated by Ogilvie (1967) and by Maruo (1967). 

In fact the appropriate integral equation can be obtained by specializing 

Ogilvie*s (1967) inner problem, for the case of small draft/beam ratio. 

Ogilvie's (1967) general problem requires solution of a non-linear two- 

dimensional free-surface problem in each cross-section. The small-draft 

approximation linearizes this problem and can lead to the same integral 

equation as is obtained by the reverse procedure, i.e. of "small a, then 

small e," rather than "small e , then small OL", 

Since the body is slender, we expect as usual to have to solve a 

two-dimensional problem in the (x,y) cross-flow plane, i.e. dropping 4)ss 

from the Laplace equation (2.10) to give 

*XX + *yy = 0 (3-3) 

In the Froude-number range in which V=0(1)  it is clear that both terms in 
% — 

the free-surface condition (2.9) must be retained, since T-- = 0(L ) and 
„ ds 

17 = 0(B"1)- 

-8- 
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If we temporarily define a "pseudo-time" co-ordinate t by the equation 

s = Ut, (3.4) 

the free-surface condition (2.9) becomes 

g*y + *tt " 0 (3-5) 

which is identical to the usual unsteady linearized free-surface condition 

for water waves. Thus, since (j) now satisifies (3.3), not (2.10), we can 

use any solution for unsteady two-dimensional linearized water waves, replacing 

t by s/U . 

The solution of roost direct use is again that of a pressure distribution 

P(x,s) over the free surface. This is now to be interpreted as "time"- 

varying pressure distribution imposed on a segment |x| < b(s) of the 

axis y=0, whose width 2b(s) also varies with "time". 

The solution is given by Wehausen and Laitone (1960, p. 615). It is 

convenient to write it in terms, not of the velocity potential (J>(x,y,s), 

but rather of its conjugate, the stream function ij)(x,y,s). In fact, since 

from now on we shall be concerned only with y=0, for brevity we write 

iHx,s) for ty(x,0,s).    Thus 
s   b(a) 

pUlHx,s) = f da f   dCP(?,a) K(x-5,s-0), (3.6) n 
-b(O) 

where 

K(x,s) = —   \    dXsinXx cos ./^j s 
V 
0 

= i F'Oo) 

with .,2    gs2 01 " «!I«I 'M 
and P' (ü)) = 1 + 2a)  dC sin (J;2-0J2) 

< 
0 

01 

= ±   f d? cos(?
2-o)2) ^ 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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The function    F'(w)  can be expressed in terms of Fresnel integrals, 

e.g. 

F« (ü))  = 1 + 2iaj~ jcos u2 S (Jj«) - sin u2 ^'Ij^]1-   (3.11) 

= 1 + 2U.JJ [-1 j- - nj- to,]   t (3.12) 

where S,C are Fresnel integrals, and f(C) is an auxiliary function 

(Abramowitz and Stegun (1964), p. 300). The function F'(w) has convenient 

series and asymptotic expansions, respectively 

F' (u)) - 1 + t     {-::^  >    <3.13) 
msl 1 • 3 • 5 • ... (4m-3)•(4m-l) 

which can be used for small    co    , and 
Woo 

„, ,  ,       /?    ,         2     .     2,      O   1  • 3  • 5  •   ...   (4m-3) • (4in-l) 
F  (u)  = /•r-{i)(cosa) -sxna) )  -)  

1,2 m=l (-4u)i*)m 

(3.14) 

which can be used for large u , for a suitable stopping point m^. 

The kernel K and function F* (w) occur also in classical Cauchy- 

Poisson problems (e.g. Lamb (1932), p. 384) and the physical description of 

the spreading waves produced is well-known.  Indeed one can view the 

representation (3.6) as resulting physically from a "time" history of 

pressure pulses, the pulse P(x,s) at "time" 0=s being applied in order 

to cancel out instanteously the spreading waves produced at earlier "times" 

a<s. Our aim is to choose P(x,s) so that the stream function which is left 

over after this cancellation correctly satisfies the hull boundary condition. 

Somewhat similar ideas were used by Cummins (1956). 

The boundary condition (2.5) is written in terms of <J> . However, 

using the cauchy-Riemann equation ^ =-f   , we have 
y x 

> 

X 

iHx,s) = -U f  M^s) dC (3.15) 's 

Note that we have used the natural antisymmetry condition ty=0  at x=0. 

Thus once the hull shape r|(x,s)  is given, iHx,s) may be treated as 

a known function, and (3.6) then represents an integral equation to 
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determine the unknown pressure P(x,s). For example, if the "ship" is 

a flat plate* at an angle of attack a then 

n{x,s) = -as , (3.16) 

and we have immediately 

(j/(x,s) « Uas. (3.17) 

The analytical character of die integral equation (3.6) is of some 

interest. The equation is of Fiedholm character with respect to the 

(space-like) variable x with dummy K    ,  and of Volterra character with 

respect to the (time-like) variable s with dummy 0    (Tricomi 1957). 

This means physically that information at all values of ^ is needed to 

determine the solution at any x, whereas only information at further forward 

stations o<s is needed to determine the solution at a particular station 

s. We may hope to so.ive the equation in the s-dimension by a time-stepping 

or marching process, proceeding systematically from bow to stem, as in 

an initial-value problem for a differential equation. But at each station 

s we must expect to solve the Fredholm integral equation with respect to 

x in a manner more like a boundary-value problem for a differential 

equation. 

Furthermore, the Fredholm equation in the x direction is singular. 

This is most apparent at g=0, where ü)=0 and F'((*)) = F^O) = 1. Thus 

at g=0 , K(x-^,s-a) =  . _v.   , and the ^-integration is to be interpreted 

in the sense of Cauchy.  In fact for any g^O and Ojts    the  singularity is 

in a sense worse than the simple Cauchy pole, for as w-»-00 we have from 

(3.14) 

F'd^-N-w (cos£i)2-sinaj2). (3.18) 

*0r, in fact, any hull differing from that given by (3.16) by addition 

of a function of x alone, for example, a triangular section with 

a constant deadrise angle qualifies. Only the longitudinal slope n 

is hydrodynamically significant. 

MM mmam mm 
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Thus as    C^x, 

KCx-^s-O-t/^jy (s-o) {x-C)~3/2cos g(s-o)
2  w] 

4U2(x-0 4]. 
(3.19) 

Hence if o?s    ,  tho kernel function behaves like a "-3/2" power 

multiplied by a rapidly oscillating function, as C"**. This behavior 

may be experted to cause some degree of numerical difficulty, and does. 

Instead of tackling the integral equation for the pressure P 

itself directly, it is somewhat more convenient to work in terms of a 

function Q whose s derivative is P, namely 
s 

0(x,s) = f P(x,a) do, (3.20) 

Although the lower limit of (3.20) is written as "-CD", it may equally well 

be replaced by zero, or in fact by s (x)  , where s (x) is the station 

s at which x=b(s)  i.e., the function s (x) is the mathematical inverse 
o 

of the function b{s). This is because PrO outside the hull projection on 

the plane y=0. 

The function Q(x,s) is of course the loading on a unit-width strip 

of the hull at offset x, extending from the leading edge to station s. 

Hence, for example, the total lift force F in the y direction is obtained 

in terms of the values of Q at the trailing edge s=L, namely 

b(L) 
Fy = C   Q(x,L) dx. (3.21) 

-b(L) 

More-complicated formulae involving Q at all stations s apply to the 

pitching moment and the drag. At infinite Froude number, Q is proportional 

to the velocity potential (}); specifically 

Q = -pU(J). (3.22) 

However, as is clear from the boundary condition (2.8), no such identification 

is possible if g^O. 

On substituting V(KI^)-QO^I^)   in (3.6), and integrating by parts with 

respect to a , we have 

;,s) - [f 
b(a) 

' G=S 

0=0 
plHHx,s) = l\   dCQ(^,0) K(x-C,s-0) 

:b(a) 

s     b(o) 

-f da r   d^Q(^,a)Ka(x-C,s-ö) 
0    -b(G) 

%^^M^^^£^^^^i^^^. 
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b(s) s   b(0) 

f  d?Q(C,s)K(x~5,0) * f da J 
-b(s) 0  -b{a) 

=  f  dCQ(C,s)K(x~5,0) - f d0 [   dCQ(C,o)K0(x-C,s-0), 

(3.23) 

using Q=0 at x=b(s). 

The first term of (3.23) involves K(x-C,0) which is simply rr-^gr • 

Thus this term must be interpreted in the sense of Cauchy, and takes the 

form oi a finite Hilbert transform (Tricomi, (1957), p. 173) which we 

write symbolically as 

b(s) 

«W'-'äI J    ^ (3.24) 
b(s) 

Thus (3.23) becomes 
s   b(a) 

pü#i(x,s) ='^/i){s)2(x,s) - f do I  dCQ(C,0)Ko(x-^,s-a). 

0  -b(a) (3.25) 

Equation (3.25) is the principal integral equation we shall attempt to 

solve. The kernel % may, after some manipulation, be written in the form 

Vx-?'s-0)= HiV"  M F,(tü) (3-26) 

where 

2 _ g(s-p)2, 
W " 4U2|x-C| ' (3.27) 

Equation (3.25) agrees with the result of integrating Maruo's (1967) equation 

(51)  with respect to (our)  ? , from ^-0 to £=x. Table 1 shows the 

equivalence of the various symbols used. Note that the function F(x,y) 

used by Maruo in his equation (58) et seq. was never defined, but is 

related to our K(x,s)  . Maruo's equation (56), when similarly integrated 

with respect to (our) K    ,  also agrees with our equation (3.6). 

&^äag«tf^HfeM-^yafe-.a^ .M&iSiiiiif&.m4^ 
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4. The High-Froude-Numbep Limit 

The limit gr+O may be carried out either on (3.6) or (3.25). In 

any case, if g=0 the kernel K(x-C,s-0) = y v;- is independent of s 

and 0. Hence in (3.25), K0=O and the integral equation reduces to 

tftbQi*'*)  = PU)HX,S). (4.1) 

There is now neither upstream nor downstream influence of the loading at 

one station on another, and the problem is solved immediately by inversion 

of the finite Hilbert transform, using the inverse Hubert transform 

operator defined symbolically by 

^b'1 - -(b2-x2) ^(b'-xV1/2 . (4.2) 

(Tricomi, 1957, p. ]79) 

Thus 

C(x,s) = -pü(b2-x2)l/2(^)(b
2-x2)'l/2lf<(x,s) 

pU(b2(S)-x
2)l/2 ^(s)   d^(g>S)       # 

^      -b(s) (b2(s)-C2)l/2(x-C) ' (4.3) 

Normally the inverse operator tfa  l    is not uniquely defined, and to 
b 

any solution such as (4.3) we must add a multiple of the function 

(b2-x2)    whose Hilbert transform vanishes (Tricomi, (1957), p. 174). 

However, we can exclude this possibility in the present case, since this 

would generate velocity and pressure distributions with inverse 3/2 power 

singularities at the leading edge x=b(s).  In order to retain only 

integrable (inverse square root) pressure singularities, we must require a 

square-root zero in Q, leading to the solution (4.3). 

Since Q is proportional to the velocity potential when g=0 , the 

solution (4.3) could also have been obtained directly from the boundary- 

value problem with 4i=0 as the free-surface condition, and simply expresses 

the fact that conjugate harmonic functions such as $ and ty    are Hilbert 

transforms of each other on the x-axis. This solution is of course well 

known in aerodynamic low-aspect-ratio wing theory (see e.g. Newman s. Wu, 

(1973). The solution for a flat plate is simply 

■15- 
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Q(x,s) = pu2a|b2{s)-x2 , (4.4) 

the usual "elliptic loading distribution". 

We are here interested rather in the first correction term to Q, 

resulting from finite-Froude-number effects. That is, we seek an 

asymptotic expansion for small g (or more correctly for small values of 

the apprnpriate normalized gravity parameter v= *—) r which begins with 
00 

a term Q=Q  given by (4.3). Maruo (1967) has performed such an analysis 

on the lift coefficient in a special case and has proved that the first 

correction to the infinite-Froude-number lift is a factor of order v . 

That is, the asymptotic expansion at least begins like a Taylor series with 

respect to v . 

A logical procedure for constructing this expansion is by successive 

approximation, i.e. since (4.3) resulted from dropping the last term of 

(3.25) entirely, the first correction to (4.3) is obtained by substitution 
00 

of Q  inco this particular term. Thus if we put 

Q = Q00 + Q1 (4.5) 

where Q -KD as g or v-K), we have 
s   b(a) 

^b(s)Ql = f da f  ^Q00(C,a)Ka(x-^,s-a). (4.6) 

-b(0) 

While (4.6) may be a useful formula as it stands, we can simplify further, 

since K itself still depends on gravity g. But if for example we were to 

use the (truncated) series (3.13) to estimate ¥^    for small g, we should 

only obtain terms of 0(g2), not 0(g) as expected from Maruo's analysis. 

Furthermore, the resulting integrals would diverge because of a non-integrable 

singularity at ^=x . The highly-oscillatory behaviour of the kernel near 

^=x , as indicated by (3.19), suggests that the limit g-K) needs special 

treatment, and it is clear by analogy with the method of stationary phase 

that only the neighborhood of £=x contributes significantly to the integral 

(4.6), to leading order. 

Thus we expand Q00 in a Taylor series about ^=x , giving 

mmmammmsmmm 
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* -c' - 
0   (nbhd 

of x) 

dK\Q  (x,o) + (C-x)O (x,o) +...1% 

(4.7) 

However, C can only take values near to x for so(x)<0<s where s0(x) 

is as defined below equation (3.20). Further, in view of (3.26), the 

term of (4.7) in Q (x,cr) integrates to zero, and we are left with 
s x-H» 

s„ (x) x-00 

(w) (4.8) 

s0(x) 0 

where x=|C-x| and u2 = |~ ■  . On changing the variable of 

integration from x to w , we have 

s0(x) 0 

(4.9) 

(4.10) 

The last integral with respect to to is a pure constant, taking the value 

"-2^". Thus, finallys 

s 

s0 (x) 

0 

^b^^1^^) = - cf f   do(s-a)Qx(x,a). 

The procedure for computing the leading-order gravity effects on 

the flow ( and in particular on the pressure distribution) is thus to 

compute first the infinite-Froude-number solution Q00(x,s)  by (4.3), 

substitute into (4.11), and then take a further inverse Hilbert transform 

to find Q^XrS) . Except in very special cases this procedure may be 

nearly as difficult as direct numerical solution of the integral equation 

(3.25). However, we note that the leading-order dependence on gravity g 

is linear, as is Maruo's (1967) estimate for the lift coefficient of a 

flat delta wing. 

mmmmmm im 



■18- 

In the special case of the flat plate we may proceed a little further. 

Thus on use of (4.4) for Q00 in (4.11), we have 

s 

# bQl  = 4gpax f 
SQU) 

da(s-o) 

4b2(o)-x2 
(4.12) 

It should be observed that the denominator vanishes at the lower limit 

0=so(x) of the 0 integration. In the further special case of a triangular 

waterplane 

b(s) = As, (4.13) 

we can integrate (4.12) explicitly to give 

^.jjQ1 = 4gp ^ x sJ,og(s+/s2- jr)  - J  'sZ" XT "
SäO

9 -f- 

(4.14) 

Although no doubt the inverse Hilbert transform could now be obtained 

to generate Maruo's solution, our purpose here is rather to observe the 

remarkable introduction of singular behaviour along the center line x=0, 

as evidenced by the term of (4.14) in ")iog|x|". This behaviour is 

characteristic of pointed flat plates. For example, if we consider the 

more general class of waterplanes whose behaviour near the bow is of the 

form 

b(s) = Xs11 (4.15) 

for some positive exponent n, then the behavior of the integral (4.12) as 

x+O is of the form of an analytic function of x, plus a contribution of 
/n 

the order of s.x    , nj^l, or s.x £iog x, n=l. 

Thus for all n>l, the slope of the graph of the function ^jko 

against x is infinite at x=0. The function m^Q      is of course an odd 

function of x. 

The corresponding result for Q1 itself is that Q1 behaves like 

an analytic even function of x, plus a contribution of the order of 
i/n , ,, _ ,, ,_ ._, „ „2, 

S. |X{ 

have 

for all n^l/2, and s.x £og|x|  for n=l/2. Specifically we 

TO (x2), 0<n<l/2 
QMx.s) = QMOJS) + • s.0(x2)k>g|x|), n=l/2 

.s.O(Ix!l/n), n>l/2 . (4.16) 

wm 
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It should be noted that since P=C , and the singular terms of (4.16) 

are linear in s, (4.16) indicates that the pressure distribution P 

itself has the same singular structure, with the strength of the 

singularities invariant along the length of the ship. 

Thus for 0<n<l/2 , the pressure is well behaved, for n=l/2 

(blunt parabolic waterplane) the lateral pressure gradient vanishes 

at x=0 but the lateral curvature of the graph of pressure against x 

is infinite, and similarly for l/2<n<l - For n=l (triangular water- 

plane) the lateral pressure gradient is discontinuous but finite at 

x=0 while for all n>l the lateral pressure gradient is infinite at 

x=0. That is, there is a very sharp but finite-magnitude pressure peak 

along the center line of any sharply-pointed flat plate. 

The above result is of course essentially a gravitaticnai effect, 

and stands in sharp contrast to the smooth behaviour of the elliptic 

loading (4.4) in the gravity-free case. The singularity is presumably 

due to the profound effect of the diverging waves generated at the 

extreme bow, whose wave length tends to zero along the track of the 

bow, irrespective of Froude number (Ursell, (I960)). Although the above 

analytic conclusions were obtained from a high-Froude-number expansion, 

it is probable that the essential character of the singularity is the 

same at all Froude numbers, and the numerical solution of section 7 

tends to verify this. Experimental verification is eagerly awaited. 

■Hi 



5. A Similarity Solution 

We seek in the present section a solution P(x,s) of the integral 

equation (3.6) which has the same basic shape at all stations s. That 

is, the pressure distribution at any one station s is obtained from 

that at any other station by a simple scaling of P and x. The x-wise 

scale is obviously b(s), and it is easy to see that the only possible 

multiplicative scale on P is some power of s. Thus we seek a solution 

of the form 

p(x's) = sY!(bfe-) • 
(5.1) 

for some constant y   and some function P(x) of a single variable 

x. 

Of course we have no guarantee that such a solution ever exists, 

and in particular could not expect it to exist without some special 

restriction on b(s). In fact.we shall now show that (5.1) is a valid 

solution if and only if the waterplane consists of cusped parabolas, 

i.e. if 

b(s) = Xs2 

for some constant X»B/2L2 . The body shape ri(x,s) and thus the 

stream function iMx,s) will also possess a similarity character, and 

we shall verify that, for example. 

(5.2) 

iHx,s) J"V( 
b(s) 

(5.3) 

The above are the most general assumptions which permit a similarity 

solution. To verify that they are consistent, and to find the equation 

satisfied by P(x)  , we substitute (5.1) and (5.3) into the integral 

equation (5.6). 

Thus we have 

pus Y+i vb(s) 

on substituting ^^b (O) 

(3.8) of K gives 

i -1 doaYb(a)l dCP(5)K(x-^b(a),s-a) 

1      J  
0       -1 

Putting x=xb(s)  , and using the form 

(5.4) 

-20- 
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1 

where 

and 

o   -i 

U = b(s)/b(o) , (5.6) 

,2   q(S-0)2/b(a) 
- = 4üiTl^fl    • (--7) 

If we put o=st in (5.5), we have 

-i    o ~ ~ 

where now 

U  = b{s)/b(st), (5.9) 

and 

2 _ qs2(l-t)2/b(st) 
" =   4uäiix-t| ' (5'10) 

So far, we have not made the assumption (5.2).  In order that the 

original assumption (5.1) be valid it is necessary that (5.8) represent 

an integral equation for P(x) , i.e. that it be independent of the 

station co-ordinate s. The parameter p is independent of s if and 

only if b is proportional to some power of s , while the parameter a» 

is independent of s if and only if that power is exactly 2. Thus if 

(5.2) is satisfied, we have 

y = t"2 . (5.11) 

and 

> 

z    g(l-t)2    1.. (1-t)2 ., .-, 
u =4xu2,x-t^i =7vi^rr • <5-12) 

Thus, finally, the integral equation for P(x) can be written 
1 

ptnHx) = C <3§P(§)K(x,C) t (5.13) 

-1 

mmmm 
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where 

K{x £) = i f 511 - ~ -   * J *<* 
Y+2 
g  F'(ü)) , (5.14) 

with u determined by (5.12). 

The task of solving the one-dimensional integral equation (5.13) 

would appear to be considerably simpler than that of solving the general 

two-dimensional equation (3.6). However, the kernel K is obviously 

extremely complicated, and highly singular as £,-*x      .    Hence numerical 

similarity solutions have so far been obtained only indirectly, via 

the general equation, and will be presented in section 7. 

The quantity C(x,s) whose s derivative is P also obeys a 

similarity law, of the form 

Q(x,s) = sY+l Q( Ms) ) . 

On differentiation with respect to s, we establish the connection 

P(x) = (Y+l) Q(x) - 2x Q'(x) 

(5.15) 

(5.16) 

between the similarity profiles of P and Q  . An integral equation for 

Q may also be obtained by substitution of (5.15) into (3.25), 

namely 

1 

pUiHx) =#iQ(x) + I dCQ^-ÄMX'O . (5.17) 

where 

K^x,^) = 
i f dt tY+1 

" 7T  ]    1-t [F'(ü))-1], (5.18) 

0) being given by (5.12,' again. 

The allowed shapes of the hull are of interest. Clearly we are 

allowed only the very specific cusped waterline prescribed by (5.2). 

However, considerably greater latitude is allowed in the shape of the 

cross-sections and some latitude is allowed in the longitudinal profile. 

Thus it is clear that the hull function n also has a similarity 

character, with 
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^*'s) = slr5{bfir) (5.19) 

The arbitrary exponent Y therefore characterizes the longitudinal 

profile or keel line, which is straight if Y=l , blunt if Y<1 and 

cusped if Y
>
1*. The case of a flat plate is included, witu Y=1 

and n(x)= -a=constant. More generally, any cross section shape defined 

by n(x) is al.'j-*!, but the hull shape must of course be similar for 

all stations, according to (5.19). The connection between the shape 

function n(x) and stream function 4)(x) may be obtained from (3.15), 

and we have 

iHx) = 2XUxn{x) - \U(Y+2) | n(OdC 

0 
f (5.20) 

A physical justification of this similarity solution may be attempted 

as follows. At these high Froude numbers we are concerned only with 

the diverging part of the ship wave pattern near the ship's track, 

since the transverse wavelength 2Wz/g    far exceeds the ship length. 

The diverging waves are (Ursell, (I960)) short in wavelength even for 

vanishing gravity, and in fact their crests asymptote to the axis x=0 

accoriing to the parabolic law, x~s2. Thus the growth of the waterplane 

(5.2) precisely matches the spreading of the diverging waves. 

Given this physical picture we may speculate on the character of 

the solution, especially near the leading edges, for other wäterplanes. 

For example, if the waterplane is more highly cusped than (5.2), i.e. 

n<2 in (4.15), the rate of spreading of waves exceeds the rate of 

growth of waterplane, and at some station the diverging waves must emerge 

from beneath the hull, changing fundamentally the character of the leading 

edge singularity and hence the spray sheet. 

* Remarkably, the special case y=2  allows similarity solutions with the 

non-linear free surface condition (2.6). 

^ 
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6. Niar.ei'iaal Fvooeduve 

In this section we discuss a procedure for numerical solution of 

the integral equation (3.25). The program used is quite unsophisticated, 

and further work is needed to develop more efficient programs. However, 

the accuracy attainable with the present method is satisfactory for 

some purposes. 

The only numerical difficulty in solving (3.25) is with the double- 

integral term. Routines for efficiently inverting finite Hilbert 

transforms are easy to construct, so that the first term on the right of 

(3.25) gives no trouble. Notice that the double-integral term contains 

all "time"-history effects; that is, it and only it introduces an 

influence of previous stations 0<s on the pressure at the current 

station s. In this connection it is important to note that the kernel 

K  vanishes at the current station, ie. when 0=s. 

We make use of this property in a "time,,-stepping procedure, by 

first using the ordinary trapezoidal rule on the O-integration. Having 

chosen a station spacvng As,we write 

Qn(x) = Q(x,nAs) (6.1) 

*n{x) = iHx,nAs) (6.2) 

b = b(nAs) (6.3) 
n 

and approximate _1    . 

pity   (x)   =^:   Q  (x)   - As   Jj,     f   dCQ. (OK  (x-C,(n-k)As) 
n 'Djjn (} Ku 

k=l -bk 

(6.4) 

Equation (6.4) can be written in the form of a recursive algorithm 

for Q , namely 

where 

2n(x) ^b1 VX) (6-5) 
n 

n-1   b, 
k 

R (x) = pity (x) + As ) '   C d^Q. (C)K (x-^(n-k)As) • 

k=i   -bi, k (6.6) 

-24- 
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Note that R  is determined from the known quantity ^ M     » together 

with all Q.Cx), k=l,2#...n-1, which are known at the n'th step. 

The next problem is evaluation of the C-integral in (6.6). 

We use a very crude estimate, in which Q (fj) is taken as a constant. 

say Q.k , on each of 2M segments, j=±l,±2,...±M , where the j'th 

segment is defined by 

S-i < ^' S= bksin i (6.7) 

Note that the same number 2M of x-wise segments is used at every 

station s, the segment size increasing with waterplane width 2b.. 

Tsing the formula (3.26) for K  and integrating explicitly with 

respect to C »we have 
n-1 

Rn(x) = PUVX) - | T.  ^K 
k=l 

M     -   xK< 
L ßjklF,<w),L,r

j     (6-8) 

j=-M 'j-1 

with 

,.2  g{As)z(n-k)/ 

" ~  4U2 |x-^| 

We now evaluate (6.8) at a point x=x.  , which is approximately the 

mid-point of the i'th segment, namely 

(i-^ir 

(6.9) 

Xj_ = bjt sin 2M 
(6.10) 

correspondinq set of values of Q.     = Q (x.) 

obtaining a s>et of values R. =R (x.) . Finally, a numerical inverse 

Hubert transform, essentially evaluating an expression like (4.3) by 

the mid-point rule (after removing the Cauchy singularity), provides a 

We now proceed to station 

n+1  , etc. Note that no matrix manipulation (especially no inversion) 

is ever required in this method. 

Difficulties arise because of the highly-singular nature of the 

kernel near C=x , as indicated by (3.19). Of course we never evaluate 

nxactly at^ this point, and in obtaining (6.F) from (6.6) have integrated 

analytically through this singularity. Nevertheless, there is bound to 

be trouble in (6.8) due to large values of a) whenever the point of 

evaluation x=x. at some station s is close to an end pjint £,=C. 

ilii3i3^jä|ij££ 
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of any segment at a previous station ö . Physically, each end point 

of a segment looks like em isolated singularity, which leaves its own 

"trail" in the form of wildly-oscillating waves (Ursell, (I960)). A 

better numerical method could be one in which the step-function 

character of ßj-tC) with C was replaced by a smoother variation, 

thereby moderating the apparent singularity. 

This problem manifests itself in the form of apparently-random 

small fluctuations of R (x) as a function of x, superposed upon a 

"believable" smooth wave. It is cured in a not-altogether-satisfactory 

manner by two separate smoothing procedures. In the first place, we 

test each end point C. while evaluating the sum (6.8) to ensure it is 

not too close to the current evaluation point x. . If it is as close 

to x. as 20% of the ith segment size, we shift x. (staying within the 

ith segment) by that 20% amount. Secondly, after complete evaluation of 

the R (x.)  , we smooth by replacing R (x.) by the mean of R (x. .) 
ni '^ni n i-l 

and R (x. .,). 
n i+l 

The particular trigonometric lateral spacing (6.7) was chosen to 

provide a sufficient density of segments near the edges to counter the 

rapid (square-root) drop to zero of Q. In fact, explicit use is made of 

the nature of this spacing to make the inverse Hubert transform most 

efficient, and for example the program reproduces exactly the result 

(4.4) for flat plates at infinite Froude number. However, this decision 

was made before the singular character of Q near the center plane was 

discovered. Actually the investigation of Section 4 was only carried 

out as a result of the appearance of the numerical results, and in 

retrospect it would appear that a greater density of points near the 

center plane would have been desirable. 
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7. Cisausiiion of Ccmputcd Results 

Figure 2 shows results for Q/pU2ab(s) plotted against x=x/b(s) 

at various stations s, for the case of a flat plate with the cusped 

parabolic waterplane (5.2). This is the case in which a similarity 

solution exists, such that the quantity plotted should be independent 

of s. The results shown are for M=20 and a maximum value of n=20 , 

with the speed choaen so v=1.25 . For example, with a length/beam 

ratio of 5.0, this would correspond to a conventional Froude number F=2.0 . 

We observe that at this fairly-high Froude number, a similarity 

profile is reasonably well achieved by about the mid-section of the 

ship.  In fact departure from similarity very near the bow is inevitable, 

since the program starts with R.. (x) =0 in (6.5). That is, at the very first 

station n=l there is an apparent infinite-Froude-number or zero-gravity 

solution, irrespective of the actual Froude number. This is shown as 

the s=0 curve in Figure 2, and is simply the elliptic loading 

(4.4). The behavior for the first few stations is quite erratic, but 

the oscillations apparently die out as s increases. 

If we now vary V , i.e. vary the Froude number, we obtain the 

family of similarity profiles shown in Figure 3. These are essentially 

plots of Q(x)  , as in (5.15) with Y=l« However, they are actually 

obtained as in Figure 2 from the general program at s/L=1.0 

Similarity is harder to achieve numerically as V increases, i.e. 

as the effect of gravity increases, especially near the center plane. 

The curves are dashed wherever an uncertainty of more than about 5% 

exists, and discontinued altogether as soon as the uncertainty reaches 

10%. 

Corresponding curves of the actual pressure P(x)  could be 

obtained from (5.16), but the necessary numerical differentiation would 

reduce the accuracy of the results unacceptably. However»  it is 

clear that the general character is of a sharp but finite pressure peak 

at the center plane, with a pressure minimum about half-way out, followed 

by an infinite positive-amplitude (inverse-square-root) peak at the 

edge x=l. This infinity corresponds to the leading-edge spray sheet. 

-27- 
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Figure 2:  Similarity check for cusped v/aterplane. Scaled loading 
distribution at various stations, for fixed v -  gL2/U B 
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Figure 3:  Trailing edge loading distribution for cusped waterplane 
at various values of v = gL2/U2B 
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Figure 4 shows the loading Q at the trailing edge s/L=1.0 for 

the case of a triangular waterplane, i.e. for a delta wing, at various 

values of V . The results are analogous to those of Figure 3, but 

the profiles are no longer self-similar with respect to s. On the contrary, 

Figure 4 has an alternative interpretation as a plot of scaled loadings 

at various stations s for a fixed value of v . For example, at 

v=2.5 the loading at the mid-section s/L=0.5 is precisely half of the 

result shown in Figure 3 for the trailing-edge loading at v=1.25. 

In both Figures 3 and 4 the center-plane singularity suggested by 

the analysis of Section 4 is qualitatively evident. Unfortunately, 

program accuracy in this region is, not surprisingly, least satisfactory, 

so that we are not able to verify the differences in tne actual degree 

of singularity, as indicated by (4.16). 

Perhaps a more significant difference between Figures 3 and 4 is 

in the strength of the pressure singularity at the edge x=l, which 

appears approximately invariant with V for the similarity profiles of 

Figure 3.  In the case of the delta wing, however, there appears to 

be a real weakening of the pressure singularity as V increases, or 

as we move from bow to stern at fixed v .  In fact for all v>2.1 

the computer program predicts small negative loadings very near to x=l. 

Since this implies a negative infinity in the pressure, it is not a 

physically-acceptable result. Unfortunately it is hard with the present 

crude program to tell whether these are genuine theoretical predictions, 

or numerical errors. However, the fact remains that no such negative 

values are ever obtained in the similarity case of Figure 3. 

This effect is anticipated by the discussion at the end of Section 

5, and we can illustrate it more strongly by use of the even-blunter 

waterplane n=l/2 in (4.15), ie. one which is parabolic in s against x. 

Figure 5 shows loadings for this case. There is now no doubt from the 

computer output that for V>1.1 the predicted edge loading is negative. 

What actually happens here is not clear; what is clear, however, is that 

the present theory is no longer valid. Note also from Figure 5 that for 

this blunt body, the center-plane singularity has almost disappeared and 

the pressure gradient now appears to vanish at x=0 , as predicted by 

Section 4. 
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Figure 4:  Trailing edge loading distribution for triangular  ? 
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Figure 5:  Trailing edge loading distribution for blunt waterplane 
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Figure 6 shows the variation with v of the lift force F , 

computed according to (3.21) and scaled with respect to the infinite- 

Froude-number (i.e. v=0) value 

00 

F =|-pU2a(b(L)l2    . (7.1) 
y *• 

Results for all three waterplanes discussed above are shown. For the 

triangular case only, comparison may be made with Maruo's (1967) 

very-high-Froude-number approximation 
00 

F /F  = 1 + 0.211V   , (7.2) 

a straight line which clearly gives the correct asymptotic behavior for 

small v . 
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Figure 6:  Lift of various flat plates, scaled with respect to 
the zero-gravity limit, and plotted against v=gL2/U2B. 
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APPENDIX:    Computer Program Listing 

MAIN PROGRAM 

C LCW  ASPECT   RATIO   FLAT   SUP  THEORY 
C CCHPiTES  LCAUl^G   d   (>STAT ILNhlSE   PRESSURE   IMtGRAL»   AND   THE 
C RESULTIMG LIFT   uJEFFICIEM  FUR   SHIPS  JF   SMALL   DRAFT   AND   BE\M 
C REFERENCE:   HARÜÜ   IS67,   TOLK   1^/4 
C 

OIFENSILN   R(5a)fUO(^0)tPSl(bO,50lfJX(5C) 
CCMMCN  X^ISOI ,   SXCSOJ.f.üt'MinP.Ml&JJtTTiiOUGfXXISül,0(50,501.TPOT 

C     *  =   NUMEER  OF LATERAL   PuIMS   (OFFStTS.büTTÜCKS)   IH  A  HALF-MIDTH 
C     OF   THE   SHIP.   NJTEi   SAMt   FCR  ALL   STATIONS.   SPACING   IS   SQUARE  ROJT 
C      dIASSEC   TUMARD EJGE,   SCALcO   MKT   HALF   dEAM   A(J)   AT   STAflON   J   . 
C     N  =   KUMBEB  OF  STATICNS,   EtüALLY   SPACEü 
C 

REAC   15,9)     M,N 
9   FLRMAT(2Ilöi 

MRITE(6,2U   M,N 
21   FCRI»AT(4H1   4»,U,3H   N«,I4,///,3ZH     J TT(J) AIJI PSI(J,K»» 

tH   «   M 
OPFIOP = C.5/EM 
OPHI = 3.1416 ♦ DPHIOP 
HCPHI   «   Cb   *   ÜPHI 
JQ   2     K   =   l,M 
PHI   =   K*CPHI 
XX(K)   *   SIMPhl) 
PHI   »   PHI   -   HOPHI 
XM(K)   =   SINCPHU 
SXIK»   =   CGSCPHl» 
UXIK)   =   SX(K)   ♦   ÜPHI 

2   CONTINUE 
C 
C      PRESENT   PROGRAM   GENERATES   HULL   OATA   INTERNALLY   FOR   FLAT   DELTA 
C     wlNÖ.HALF   APEX  "ANGLEM=0.1,   ANGLE   JF   ATTACK   MSLOPE,,*Ü. I,   SO  TH'.T 
C      THE   HALF   teATERPLANE   wIOTF   IS   AIJ)   =   d.I   •   TT(J)   .     TT   IS   THF 
C     STATICN   CGORÜ,   GOES  FROM  C   TU   I   .   GENERALlSATICN   TO  MORE   GENERAL 
C     WAfERPLANES   IS  EASY;   JUST  REPLACE   DEFINING   STATEMENT  FOR   A(JJ. 
C     GENERALISATICN   TO  OTHER   TFAN   FLAT   PLATE   REQUIRES   MURE   EFFORT,   SEE 
C      TUCK   1974,    TO   SET   UP   MATRIX   OF   STREAM   FUNCTICN   PSIlJ,K) 
C 

SLCPE  =   0.1 
ANGLE   =   0.1 
OT  =   l./N 
TPDT   =   Ü.63661   *  DT 
ARE4MP   -   0. 
JU   IC5     J   =   1,N 
TT(J)   =   DT   ♦   J 
A(J»   =  ANGLE  *   TTUI 
AREA^P   =   AREAMP   ♦   AIJ) 
00   100     K   =   l,M 

100   PSI(J,K)    =   SLCPt   ♦  XM(K)«A(J) 
105 WRITE(6,106)   J,TT(J) ,A (J) ,{PSI(J,K),K   »   1,M) 
106 F0R^AT(I6,12F9.5» 

4RE«*»P   =   2.*ÜT*(AREAWF-0.5*A(N)) 
WPCCEF     =   0.5   ♦   AREAWP   /   AlN) 
ASPECT   =   (4.   ♦   MN)**2   I   /    NREA^P 
dL   =   2.   ♦   A(NI 
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Main Program (continued) 

WRITe(6t61)   BLtASPECT.MPCUEF 
tl  F0RHATI14H  oeA^/LENGTH  -,Fa.4,l5H  AiPELT   RAI10  =,f8.4,l9H fcATERPLA 

INE  CCEFF  »,F8.*» 
C 
C 
c 
c 
c 

INPUT VALUES OF   G*l/F"»*i t F=F«OUDE NO, BASED ON LENGTH. 
NEGATIVE G FAS EFFECT OF ZERU G (INFINITE F ) 
ZERO INPUT G VALUE (ThAT IStBLANK CAKOI STEPS PROGRAM 

10  «EAClJ.iU   G 
U  FCRPAT   (F10.5) 

IF(C»   12,13,14 
12 wRITE(6,l5) 
15 FCR^AT   (5HI  G«OI 

j  »  0, 
GC   TC   17 

14   FROLOE   -   l./SGHTIGI 
-«RITE(6,16)   u,FROLOE 

16 FURMATI4HI   G=,Fb.3,7FFRÜUÜE=,F6.31 
17 *Rl1Ub,ti) 
63 F0RHÄT(26H   g(«,U   t(J,2»   ETC        I 

00 131  J * 1,N 
CALL FLATIJ ,R) 
CALL SMOCTH(R) 
OC 1C2  K = 1,M 

102 R(K)   =   PSUJ.KJ   -  K(K) 
CALL   HiLBINUtifR) 
JC   44  K  =   l,M 

44   ;(J   ,K)   =   UU(K) 
101   WRITE(6,10J)    iU(J   ,K),K=1,M) 
103 FÜRMAT(10Flü.5) 

CLIFT   »   0. 
DO   60     K   *   1,M 

60 CLIFT   « CLIFT  ♦   Q1N,K)   ♦   ÜXlKi   •  A(N» 
CLIFT   =   4.   *  CLIFT   /   AREAfcP 
•<RITE(6,62J   CLIFT 

£2   FÜRfATIFlO.S) 
GU   TO   10 

13 STCP 
cND 

End of Main Program. 
HILBIN and FPRIM2. 

Listings follow for Subroutines FLAT,  SMOOTH, 

; 

"fJÜiflf-'T 



I-. 
-39- 

C 
C 
C 
c 
c 

c 
c 
c 

StßKOUTINE fLAT(MfR» 
EVALUATES RtJJ , AS IN TICK 1974 

UlMfcNSICN RiSO) 
CLHVCfi   KPtSOi,   £X(!>ü)tM.OPhiaPvA(t»attrT(5C)tGtXX(bOifQ(50t5C),TPOT 
DÜ   5     KK   *   l,M 

5   H{KK)   =   C. 
IflM-U      lOatlOOtlUl 

131   IflGl   Iü0tiüü,l02 
102  N  =   M  -   1 

KCLO   =   -   61*11   *   XMdJ 
ÜÜ   3     KK   =   1,M 
X  *   AIM!   »   XMCKKI 

THIS   IS   A CRITICAL   OECISICN LARO.   JXCKlT   IS   THE  CRITICAL 
CLOSENESS   BETWEEN   THE  CURRENT   FIELD  POINT   ANC   THE   TRACK  CF  A 
PREVIOLS  PRESSURE   PCINT.   THE   NUMBER   "J.Z"   USED   IS  RATHER   ARBITKAKY 
VALUES  OF   0.1   AHO   C.3  GIVE   SIMILAR  RESULTS. 

ÜXC«IT   =   J.2   *   (X  -  XCLOI 
SUMCUT   =   0. 
CC   2     J  =   ltN 
r  «   TTIN1)   -   TTU) 
SUMIN  =   0. 

T**2 uNUW   =  0.25 
FKOLO  =  0. 
ÜC   1 
XI   » 
AX « 

HERc IS 
REPLACE 
WITH   A 

♦ Ü ♦ 

K -   1,M 
A{JJ * XXU) 
AÖS(X-X1) 
^HERE JXCRIT IS USEU. IF "AXWIS ÖtLOh OXCRITt WE SIMPLY 
IT dY JXCRIT, THUS CALLING Th£ FRtSNEL INTEGRAL RÜUTINt 

SUBSTANTIALLY REOLCEC ARGUMENT. A VERY RCUoH TRICK 
AX IFUX.LT.OXCRII) 

WMNLS2   =   WNUM/AX 
rtPLLS2   *   WNUM/I**XI) 
FKERN   =   FPRIM2(WMNUS2I   - 
SUMIN   *   SUMIN   ♦   QlJtK)   * 

1 FKCLJ   =   FKERN 
2 SUMCOT   =   SU^UUT   ♦   SUMIN/T 

XCLC   -   X 
3 R(KK)=TPOT*SUKÜLT 

lÜO   KETLRN 
END 

DXCRIT 

FPRIM2(WPLUS2) 
(FKEKN   -   FKOLUi 

SUBPGUTINt   SMÜUTH(R) 
C      SMOOTHS     R     BY  REPLACINÜ  CLD   K   WITH   THt  AVERAGE  OF   ITSELF   AND 
C     «hAT   WE   GET  BY  LINEAR   INTERPOLATING   dtTwEElS   THE  2   NEAREST   VALUES. 

CUMyCN  XMI&J],   SX(&OJ,^,DPHIOP,A(!JJ),TT(IJC)tG,XX(50»,tt(50,50»,TPOT 
U1MENSICN   R(50J .   ftN<50) 

I 

I 

Ml 
00 
JM 
JP 
J 
AM 
AP 
RN(J) 
RN(^I 
00  2 
K(J)   » 
RETURN 
END 

M-l 
J »   2,Ml 
-   I 
♦   I 
/    (XM(JP)   -   XM(JMI 
XMJI   -   XMUMI    )   • 
XMJ)   -   XfUP)    )   ♦ 

«   /»M   *   R(JP)   -   AP   * 
«   1(1.   -   XM(M)    )   / 
J   «   2tM 
O.b   •   (   H<J)   ♦   PMJ) 

I 
0 
0 
H(JM) 

(I.   -   XM(M1) 

> 

J    »   ♦   R(M1) 

m 
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l« 

SUBROUTINE   HILÖIN   (UiKJ 
C   INVfcftSt   HILOEäT   TRANSfCRJ'tSt   USfcS   MIO  PF   «OLE 
C  OUTPUT  Q   AT   SAMfc   (COSINE I   SPACINGS   AS   I^PUl   R 
C     SPACINGS  MUST  t*E   COSINE,   THAT   IS   SUUAkc  RC2T   BIAS   TO  ENDb 
C     ASSUMES   ANTISYMMETRY  OF   INPUT     R   t   SVMHfcTRY   Ch   OUTPUT     C   ,   ABOUT 
C     CENTERLINt   X   »  0.   USES  CMY   POSITIVE   X«S,   «tlLCS.   IN   SYMHETRICS. 

CCMMGN  XM(50),   SJU50J,   M.JPHICP 
ÜIMENSION  HiOit   RISC),   Qi50i 
OC   I     t  =   l»M 
SUM   *  0. 
DC   2     K   »   1,M 
IF   (   K  -   L   )   3,2,3 

3 F(K)   -   (RIU-RUnmMD-XMIKn   *   tRiLI*B(Kn/(XM(LJ*XM(Kn 
2   CONTINUE 

IF(L-l)      4,4,5 
4 Fdl   »  2-*F{2J   -  F(3) 

GC   TO  8 
5 IFCL-fl      6,7,7 
7 IMMJ   »  2.*F(M-1)   -   FlM-2) 

ÜC   TO  8 
6 F(L)   -  U.5  *   IF(L-l)   ♦  FiL*l)    I 
8 DC   9     K   =   l,M 
9 SUM   =   SUM   ♦   FUJ 
I   y(L)   =  DPHIJP   ♦   SX(U   *   SUM 

ÄETLRN 
END 

FUNCTION   FPKIM2(MW) 
FRESNEL   INTEGRAL     ROUTINE 

DOUBLE   PRECISION 
IF(mW-l6.J      1,2,2 
2/   =   -  4.   ♦   4***2 
FPRIM     .   I. 
TER   »   1. 
L)0   3     M  =   1,500 
Mf   =   ^   *   M  -   I 
DO-   MM   *   (M^-2) 
TtR      =   TEK     *   11/ 

ZZ,UC,TER,FPRIM 

00 
TER FPRM     =   FPKIM 

IFJCA8S(TEKJ   -   Ü.OOÜOOli      ^,i,3 
CCNTIMJE 
FPRIM2 = FPKIM 
RETURN 
k  «   SCRTIHM) 
Z  "-A.   *   WW**2 
SUM   =   1. 
TERf»   =   I. 
00   5     M   =   1,20 
MM   =   4   *   M   -   1 
0  *   MM   *   (MM-2) 
TERM   =   TERM  ♦   U   /   Z 
SUM   *   SUM   ♦   TERM 
IF(^BS(TERM*   -   0.0ÜJÜC1J 
CCNTINUE 
FPRIM^ = I. - SUM ♦ 1.253314 *  *   *   (CUSlhW) - SIN(MN)) 
RETURN 
ENH 

6,5,5 

Reproduced from 
besl  available  copy. 


