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SUMMARY

When new or improved pyrotechnic compositions are being
designed, the basic thermodynamic properties of the compo-
nents and of their combustion are of immediate interest.

These properties include the adiabatic flame temperature, the
heat of reaction, the optimum fuel/oxidizer ratio and the
concentrations and phases of product species, especially

those which emit light in a wavelength range of interest. Ia
three separate studies, flame temperature and heats of reaction
have been computed for various fuel/oxidizer combinations.

The first study was a comparison of the alkali nitrates,
a few oxides of sodium, hydrogen peroxide, teflon, air and
nxygen as oxidizers and a comparison of aluminum, magnesium,
beryllium, boron, iron, silicon and iron as fuels. About
half of all the possible fuel/oxidizer pairs were formed.

It has been found that generally the axidizers differ
from each other in approximately the same manner, vregardless
of which fuel is used, and similarly, the fuels differ in the
same way regardless of which oxidizer is used. An exception
is air, whose rank among the oxidizers varies with the fuel
used. Of the fuels, boron and carbon exhibit some irreg-
ularities. Significant differences in flame temperatures and
heats of reaction are noted among the alkali nitrates, in
spite of their similar chemistry.

Where a perchlorate was used as an oxidizer, a large
percentage of the associated alkali metal was combined as the
chloride ever at the adiabatic temperature. This is a
disadvantage for illumination purposes.

y

The purpose of the second study was to compare aluminum
compounds as fuels for illuminating flare compositions. Of
the six compounds computed, aluminum carbide has properties
which may be competitive with those of magnesium. None of
the compounds excelled or exceeded pure aluminum.

The purpose of the third study was to determine which
sodium compounds are thermodynamically the most promising for
enrichment of [1luminating compositions. The most promising
of six tried were found to be the pure meral, the carbide,
and the hydride.

b




PREFACE

The Applied Sciences Department is funded to conduct
exploratory studies aimed at the development of better
pyrotechnic flares for signaling and illumination. The
information presented here is a partial result of these
efforts. A portion of these results have already been
presented in RDTR No. 253, "Theoretical Light Yields From
Different Illuminating Flare Compositions.” See reference 1.
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INTRODUCTION

Numerous computations of flame temperatures and heats of
reaction have been made for pyrotechnic compositions, ®’®
including a few of the compositions mentioned later in this
report. In order to compare a set of compositions, the
computations should all be done with the same set of thermo-
dynamic data for the reactants and products. For this reason
we have repeated the computations of such well known formu-
lations as Mg/NaNO,/binder in order to compare with other
formulations for wgich we could find no previous computations.

For computations of flame temperatures or of heats of
reaction to products at an elevated temperatuge, we used the
NASA computer program of Gordon and McBride.

This versatile program can be used in many ways. In one
option used here, a set of formulas and their heats of
formation are supplied, along with the specification of the
relative amounts of each and of the confining pressure. The
program then computes the equilibrium temperature and mole
fractions of products corresponding to adiabatic conditions.

The other option used here was to specify the final
temperature. In this case, the program computes the equili-
brium mole fractions of products and the final total enthalpy.

Three separate studies are presented. In the first, we
compared a number of common fuels and oxidizers in simple
mixtures along with a common binder. In the second study,
various aluminum compounds were compared as fuels for illumi-
nating formulations. In the third study, several sodium
compounds were compared as candidates for increasing the
sodium content of illuminating formulations.

FUEL/OXIDIZER PAIRS
Method

A small selection of common inorganic fuels and oxi-
dizers has been made. Thermodynamic properties have been
computed for the combustion of about half of all of the
possible fuel/oxidizer combinations. For all combinations
involving a solid fuel and oxidizer, five percent of epoxy
binder is included, of formula CS.7S“8.3601.15N0.3'




The first step was to find for each combination the
fuel/oxidizer ratio giving the highest adiabatic equilibrium
temperature. The results obtained in this step also included
the species mole fractions at this temperature and the theo-
retical density for the initial composition.

In a subsequent computation the energy of reaction was
computed for reactants initially at 298K going to products at
1200K. This latter temperature was chosen as a cutoff
point, below which negligible visible radiation would be
given off as the reaction products cool.

The equivalence ratios were computed by dividing the
weights of fuel and oxidizer by their respective gram equiv-
alent weights, using the following valences: the fuel its
maximum valence, oxygen = 2, fluorine = 1, nitrogen, chlorine,
and the alkali metals = (0, The reason for assigring zero
valence to nitrogen is that it usually ends alnost entirely
as N,. The alkali metals usually are in the atomic form at
high“flame temperatures. With the small amounts f (hlorine
used, the major part of it ends as a chloride of the alkali,
which was already assigned zero valence. Small-r amounts do
act as an oxidizer for the metal fuel and the binder.
However for simplicity it was counted as inert rather than
assigning to it a fractional valence, which would have been
less than 0.5.

Results and Discussion

Temperatures and Heats of Reaction

The two quantities which are most important in giving an
indication of the amount of energy available for visible
light output are the adiabatic flame temperature (K) at
equilibrium and the heat of reaction (kcal per gram of solid).
These are presented together in Tablel . They correspond to
the fuel/oxidizer ratios giving the maximum adiabatic temper-
ature. Remember that the heats of reaction are for reactants
at 298K going to products at 1200K.

The optimized compositions are presented in Table 2,
For each composition, the first line gives the weight percent
of the fuel listed in the left hand cnlumn. The next two
lines give the fuel/oxidizer equivalence ratio without, and
with consideration of the binder, respectively. Since the
binder is a fuel (the equivalent weight of epoxy binder is
3.44) the second number is alwavs larger than the first.




In comparing the alkzli nitrates, the small differences
in adiabatic temperature are much magnified in the heats of
reaction. This is partially due to the varying amounts of
alkali metal oxidized at the cutoff temperature of 1200K
(data not presented). A computation with products at 298K
would show the various alkali nitrates to have more nearly
equal heats of reaction.

In the case of silicon, comparing sodium nitrate with
sodium perchlorate, a small difference in adiabatic tempera-
ture corresponds to a large difference in heat of reaction.
Again it is a matter of theodegree of reaction of the sodium
at the cutoff point of 1200°K. At this temperature the
perchlora e sodium is completely combined as chloride, whereas
the nitrate sodium is mostly in elemental form, and will
liberate a large amount of energy when it reacts with the
water and other oxides present as the temperacure is lowered
toward 298K.

The high heats of reaction obtained with air or oxygen
as the oxidizer are not the result of any unusuval chemistry,
but simply result from not including them in the calculation
of the total weight of reactants. This was done because in
actual usage these gases are in the environment and thus may
be had "free".

Optimum Fuel/Oxidizer Ratios

Generally it can be expected that a stoichiometric mix-
ture yields the highest temperature. However, several
factors can cause this expectation not to be precisely
fulfilled:

The most common deviation here is caused by the
competition between two fuels of greatly different reducing
powers--a metal and a binder. An optimum is reached when the
weaker fuel is only partly oxidized. Hence in nearly all
cases in Table 2, the optimum equivalence ratio counting the
binder, and that not counting the binder lie on opposite
sides of unity. The closer the latter is to unity, the more
successful the metal is in excluding the binder from the
available oxygen.

When the prcduct of combustion is considerably
dissoclated at equilibrium, the optimum is shifted in the
direction of the component having the lowest heat capacity




and/cr the most positive heat of formation. This is well
demonstrated in the mixtures with air, where the optimum
fuel/oxidizer ratios are relatively high.

The low equivalence ratios seen in the combinations
of carbon and iron with sodium nitrate can be explained by
the low flame temperatures in these cases. The sodium is able
to compete for the oxygen and so should have been included
as a fuel in calculating the fuel/oxidizer equivalence ratio.

Reaction Products

There is a wealth of information in the listings of
reaction products in Table 3. Only a few things will be
pointed out:

For all but the weakest fuels, carbon and iron, the
alkali elements are present mostly in the atomic form when
chlorine is absent. Except for the case of lithium, the
atomic form accounts for more than 95% of the total.

When perchlorate is the oxidizer, however, a large
portion of the alkali elements are present in the form of the
chloride. Other calculations (not presented) show that the
percentage of chloride increases rapidly as the mixture cools
below the adiabatic temperature.

The metals vary considerably in the extent of
dissociation of the oxidation product at equilibrium. Mag-
nesium oxide or chloride is the least stable, with increasing
stability for the compounds of aluminum, beryllium, boron,
and iron, in that order.

Boron nitride is sufficiently stable so that nitrogen
can be an effective oxidizer of boron after all the oxygen
has been consumed, and can influence the optimum composition.
An example is seen in the case of boron plus air.

Table 4 gives computed densities of various fuel-oxidizer
combinations.

Example of a Prediction

The purpose of accumulating this data has been to help in
predicting luminous output, As an example, we might use the
numbers in Tables 1 and 2 to predict relative output of the
sodium~containing oxidizers used with magnesium as fuel.




The heats of reaction and adiabatic temperatures both
indicate that light output when using sodium peroxide (Na 02)
should be much lower than for the other cases. This hag beéen
verified by experiment.

Sodium superoxide should have a slight edge over sodium
nitrate due to a somewhat higher heat of reaction and a
significantly higher sodium atom content.

A comparison between sodium perchlorate and sodium nitrate
is more difficult. The thermodynamic factors both favor the
sodium perchlorate, but the tving up of the perchlorate sodium
by the chlorine operates in favor of the nitrate as yielding
the greater light output. A computation where these factors
are combined in a more sophisticated manner might be able to
successfully predict the result.

ALUMINUM COMPOUNDS
Introduction

Aluminum has for some time been considered a very promising
compound for illumination pyrotechnics because of the high
flame temperatures which it is theoretically capablec of attain-
ing in combustion. Test results have not borre out these
expectations. The failure is believed due to incompleteness
of combustion of the aluminum, which 1s in turn caused by the
very low volatility of the metal and its oxide.

One way of more completely exposing all of the aluminum
to the oxidizer would be to have it present in the form of
molecular compound, with the other elements beir~ =>.e volatile.
A penalty would be paid for the presence of these elements,
since they would almost certainly have lower energies of
combustion, and thus would lower the reaction temperature,

We have here investigated which aluminum compounds would
be most promising by computing adiabatic flame temperatures
of various ones, in each case reacting with a stoichiometric
amount of sod.um nitrate. No binder is included. Where
carbon or sulfur is involved and the stoichiometry is in
doubt, several fuel/oxidizer ratios were calculated and the
maximum temperature estimated.




Results and Discussion

The computed flame temperatures of the aluminum com-
pounds and of magnesium are presented in Table 5. As ex-
pected, all of the calculated adiabatic temperatures fall
below that for metallic aluminum. Futhermore only one com-
pound, aluminum carbide, gives an adiabatic temperature above
that for magnesium metal, which is the present standard
pyrotechnic fuel.

It 18 doubtful that aluminum carbide is promising even
from a thermodynamic standpoint in comparison to magnesium
for 1illumination pyrotechnics. Although the former has a
higher theoretical flame temperature, this would be at least
partially offset by its lower heat of combustion.

EN/ICHMENT WITH SODIUM COMPOUNDS

Introduction

It is well known that the principal emitter in illumin-
ation formulations is the sodium atom. The possibility
exists then that an increase in the sodium content of the
composition might iIncrease the light emission.

The final result will be determined by several con~-
flicting factors. One of these is that sodium compounds are
not very energetic in the flare reactions, and thus their
presence will decrease the flame temperature.

To determine which sodium compounde would be most pro-
mising for increasing the sodium content, we have computed
flame temperatures for a basic mixture of 3 moles magnesium
and 1 mole sodium nitrate, to which an additional mole of
sodium~containing compound is added. This additional mole is
balanced between the compound under consideration and a
stoichiometric amount of sodium nitrate. Thus the proportions
when adding sodium amide are: 3 Mg + 1.25 NaNO, + .75 NaNH,.
In computing stoichiometry, several valences weie tried for
carbon and sulfur. Those giving the maximum temperatures
were 3 and 4, respectively.
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Results and Discussion

Tue compositions and computed adiab- ic flame tempera-
tures are presented in Table 6. It can be seen that,
judging by computed flame temperature, the best method of
increasing sodium content is by the addition of metallic
sodium itself. Next bdest would be the addition of the
hydride or carbide.

Although heats of reaction have not been computed for
these formulations, it seems probable that they lie in about
the same order as the flame temperatures.
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TABLE 5

Computed adiabatic temperatures for the combustion of aluminum

compounds.
Reaction

2A1 + NaNO3

A14C3 + 3 NaNO3

3 Mg + NaNo,

4A13 + 17 NaNO3

* A1H3 + NaNO

6 Mg

3

* 3 MgALHy + 8 NaNO,

* 6 LiAlHA + 7 NaN03

A1283 +3 NaN03

* A considerably higher adiabatic temperature would probably be

Temperature (K)
3758
3321
3158
3147
2879
2794
2448

1616

computed for a more fuel-rich mixture.

TABLE 6

Computed adiabatic temperature for enrichment with sodium compounds.

Fuel Compound Added
No additive

Na

NaZC2

NaH

Na,S

NaN

NaNH

17

Temperature (K)
3158
3098
3048
3034
3017
3010

2987




