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RESOURCE ALLOCATION AND SCHEDULING 
IN BALLISTIC MISSILE DEFENSE ADAPTIVE CONTROL SYSTEMS 

DOYCE E. SATTERFIELD 
THE ADVANCED BALLISTIC MISSILE DEFENSE AGENCY 

HUNTSVILLE, ALABAMA 

INTRODUCTION 

The radar and computer system can be considered as the eyes 
and brain of a ballistic missile defense (BMD) system. Given no limi- 
tation on resources, a ballistic mipsile system's operational philoso- 
phy may be to utilize predetermined battle plans for the allocation of 
radar and computer resources. However, it is rarely economically 
feasible to provide excessive resources, and, since the defensive and 
offensive situation changes dynamically, it becomes imperative that 
the allocation of such resources adapt to these changes. 

This paper treats the radar and computer system as an adap- 
tive control system in which the allocation of the computer preprocess- 
ing rate, radar pulse rate, and computer postprocessing rate are 
varied dynamically. To determine the optimal real-time allocation of 
the radar and computer resources, the problem was first formulated 
mathematically and then solved in two phases. 

PROBLEM FORMULATION 

\ 

To develop quantitative as well as qualitative results, a 
typical BMD system problem is considered. The principal physical 
elements of the problem are a radar, a computer, interceptors, and 
threatening reentry vehicles with decoys. The radar and the inter- 
captor battery are under the control of a computer. The problem is 
then to allocate the two major resources, i.e., the radar and the com- 
puter, to the task of searching for potential future threats, tracking 
identified objects, launching Interceptors, guiding Interceptors, 
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tracking interceptors, and processing all related data. A typical 
objective of this allocation is to maximize the probability that the 
radar survives the attack. Any similar criteria, subject to the 
constraints on the available resources, such as minimizing the proba- 
bility of a reentry vehicle penetrating the defet je, may also be con- 
sidered as the objective. 

The measurement of the achievement of the obje:tive of the 
problem can be considered a function of the following variables: 

• The number of redar pulses allocated to searching 
• The number of objects presently detected and the possi- 

bility of detecting future objects 
• The number of radar tracking pulses allocated to the ith 

object 
• The impact points of the threatening objects 
• The possibility of an object being a decoy 
• The reliability cf the interceptor 
• The possible intercept points of the engagement 
• The mmber of interceptors allocated to each target* 
• The number of radar guidance pulses allocated to the jth 

interceptor which has been committed to the ith object 
• Natural and man-made environmental effects. 

Based on the sample problem, i.e., to maximize the probability that 
the radar survives tha attack, the control variables of the problem 
are as follows: 

• The search rate tor future objects, F 
• The future track rates of t'.ie n objects presently 

detected, Ki, ..., K„ 
• The number of track and guidance pulses for each inter- 

ceptor assigned to the n objects, L\,   ..., Ln 

The major constraints of the sample problem are the available 
radar power, the computer processing speed, and the scheduling of 

Kit •••» Kn» *»I» •••» ^n* 

The sample problem can then be stated as follows: 

Maxiuize:  (0) Probability the radar survives - f (F, K^, L^) 

n n 
Subject to: (1) aMF + ai2 (I  K<) + ai3 (2  L.) « bi(t) 

i-1 l i-1 * 

*Each target is assigned a single interceptor. 
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(2) a21F + a22 
n 
(2  K.) 
i-1 

+ a23 

n 
(2 
1-1 

Li> b2(t) 

where bi(t) 
b2(t) 

«ii 
an 

an 

821 

a22 

«2 3 

(3) Scheduling of Ki, .... Kn; Li, ..., l^ 
subject to time frame limitations, 

Maximum amount of radar energy available per second 
Maximum number of basic computer instructions available 
per aecond 
Radar energy required for a single saarch pulse 
Radar energy required for a single target radar track 
pulse 
Radar energy required for a single interceptor radar 
pulse 
Number of basic computer instructions required to 
process °ach search pulse 
Number of basic computer instructions required to pro- 
cess each target track pulse 
Number of basic computer instructions required to pro- 
cess each interceptor track pulse 

The probability of radar survival (Equation 0) must be expressed quan- 
titatively as a function of the search, discrimination, and tracking 
algorithms, and other associated functions. Thus, given a particular 
BMD system's characteristics, one can decompose the probability of 
survival into various subfunctions which can be determined analyti- 
cally. 

The equations of the first two constraints are formed 
straightforwardly; however, the third con3trai.it, i.e., scheduling, 
b'is a nonlinear, time-varying nature and cannot easily be expressed in 
an analytical form. Therefore, it would be difficult to solve the 
problem directly by considering all three constraints simultaneously, 
but it ia possible to separate the problem into two phases. In Thase 
I, the allocation problem is solved without considering the third con- 
straint, i.e., assuming that the transmitted and receive radar and 
computer times are contiguous. In Phaue II, the required computer and 
radar times that were determined in Phase I are scheduled such that 
the overall schedule time is minimized. 

PHASE I 

Phase I is used to establish the optimal blend of resources 
for the problem formulation which, as stated previously, is: 

•-■ 
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Maximize:   (0) Probability the radar survives - f (F, K , L ) 

n n 
Subject to: (1) «*nF + a12 (2  K ) + ai3 (I  L ) * bi(t) 

i-1 i-1 x 

(2) a2,F + a22 (2  K ) + a2J (2  L ) « b2(t) 
i-1 i-1 x 

F, K4, L± a 0 

and is solved using the nonlinear, constrained search method denoted 
as the Complex method [1]. 

The following example problem with n threatening objects was 
solved by the Complex method programmed in FORTRAN and executed on a 
Control Data Corporation 7600 computer system. Although the problem 
is somewhat smaller than would be encountered in practice, it does 
exhibit the typical form of real-life problems. 

The performance criterion for measuring the achievement of 
radar survivability ean be expressed as: 

n 
Z = PD(F) {H  P^K.) P-td^)} 

i=l 

where 

PD(F) = Probability of detecting all future threats, as a func- 
tion of search rate F 

Pipd^) * Probability of survival against the ith object attacking 
the radar, as a function of object track rate K^ 

Pj(L^) = Probability of survival egainst the ith object attacking 
the radar, as a function of track rate L^ of the inter- 
ceptor assigned to ith object 

n = Number of threatening objects 

The eisumed typical performance functions are: 

PD(F) a  1.0 - 0.8 exp(-F/1.5) 

kk 
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PT(Ki) = 0.95 - 0.7 exp(-Ki/2.?) 

Pjd^) ■ 1.0 - 0.6 exp(-Li/3.5) 

These functions are both monotonic (more resource produces more 
performance) and concave (more resource means that incremental per- 
formance gain decreases) and therefore, it can be shown that the 
necessary and sufficiency conditions for a unique global optimum are 
satisfied. The problem, with assumed values for radar energy per 
pulse, computer instructions per pulse, and total radar and computer 
resources, becomes: 

Haximize:   Z - )l.0-0.8 exp(-F/1.5)f jO.95-0.7 exp(-K/2.5)|° 

jl.0-0.6 exp(-L/3.5)}n 

Subject to: 0.1P + n(0.02K) + n(0.003L) «1.0 

1.0F + n(0.2K) + n(0.3L) < 20.0 

F, R, L a 0 

n - 1, 2 10 

The solution obtained is given in Table 1, along with the computer 
execution time for each solution. 

PHASE II 

Phase II is used to establish the optimal schedule of tne al- 
location results obtained in Phase I for the radar pulse rate and com- 
puter processing rate so as to minimize total system processing time. 
The problem of optimally scheduling tasks (n pulse group,;) through the 
computer and radar is treated as a "two' machine problem with feedback 
That is, tasks are first passed through the computer (machine 1) for 

preprocessing, to the radar (machine 2) for transmission and reception, 
and then back to the computer for postprocessing. 

This scheduling problem is a special case of the flow-shop 
sequencing problem which has been the topic of considerable research 
in the past few years [2][3][4][5] 6][7]. However, because of the com- 
binatorial natare of the problem (ul combinations) which results in 
large storage requir»Tents and/or long computational times, most work 
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has been limited to small problems or to heuristic methodology. To 
illustrate the immense size and nature of the scheduling problem, con- 
sider a 20-job problem. If one could evaluate the solution to each 
permutation (there are 20!) in a picosecond, it would take more tha>: 
28 days to try all possibilities. 

Another solution method ufing a mixed integer formulation 
modified for evaluation with the branch-and-bound procedure his been 
investigated [7]. This method produces a linear programming problem, 
with from 3n to a maximum possible 3(2n-l) constraints and with 3n+l 
variables, that must be evaluated in order to obtain a solution at each 
branch-and-bound node. It is clear that this method is not suited for 
large problems because of both storage requirements and computational 
time requirements. Other methods and examples of the scheduling 
problem can be found in Reference [8]. 

The two-machine problem with feedback is a special case of 
the flow-shop problem, but it retains enough similarity that heuristic 
scheduling appears to be the most feasible method of approach. Two 
heuristic algorithms have been developed especially for solving this 
scheduling problem and they hold for the following assumptions: 

• All jobs and machines are simultaneously available. 
• All jobs are of equal importance. 
• No jobs can be processed simultaneously by more than one 

machine. 
• No machine can simultaneously process more than one job. 
• Process times are Independent and deterministic. 
• Transportation time is either included in the process 

time or is negligible. 

Now, define the process time of job a on machine m to be ta K 
for the first round of job a and t"a m for the second round*. Also, ' 
consider a partial schedule o_ (which may be null) and a job a which, 
when augmented to o_, yields the schedule (perhaps incompleteT oa. Now, 
let T(aa,m) be the completion time of partial schedule oa at machine 
a (first round) and let T'(oa(m) be the completion time of the partial 
schedule (second round) on machine m.  (The completion time of the 
laut job on the last machine is often called the MAKESFAN.) 

The first heuristic algorithm (Method 1) developed for solv- 
ing this scheduling problem will now be described. 

Step 1.  For each Job i, calculate f(i) - t, 1/t±  2 

he 
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Step 2. 

Step 3. 

Step 4. 

Arrange the jobs in alternating order of f(i), 
beginning with the smallest f(i). Let the com- 
plete schedule n so generated be 

S - (ai, a2, ..., an). 

Calculate the completion times T(a.,1) and 
T'(a1,2). 

If T(a 1) + t»  , > T(a .2), indicating 

that the schedule obtained is optimal, go to 
Step 11; otherwise, continue with Step 5. 

Step 5. 

Step 8. 

Step 9. 

Calculate A - 2  (t  . + t'  ,) 
i-1  ai»1   ai'1 

and B Z     (t      ,\ + min ft  . + V  .1 

Step 6.  If A > B, go to Step 11; otherwise, continue 
with Step 7. 

Step 7.  Find the smallest t. . and the smallest t1  ,. ai,l «j.l 

If i i* j, set job a^ first in the schedule and a., 
last, and then go to Step 10; otherwise, continue 
with Step 8. 

Find the smallest t- i (k 4  i) and the smallest 

''af.l (f 4 j). 

If t  , + t*  . < t  , + t'  ., set job a. 
»i»l    «f»l   «k»1   *j»l        * 

first in tl.J schedule and af last; otherwise, set 
job a^ first in the schedule and a*  last, and 
continue with Step 10. 

Step 10. Arrange the remaining jobs in alternating order of 
f(i), beginning the second scheduled job with the 
smallest f(i). Let the final schedule n so gener- 
ated be —' 

S ■ (aj, *2» • • •» an) • 

hi 
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Step 11. Calculate the MAKESPAN of the schedule so 
obtained. 

The second heuristic algorithm (Method 2) developed for solv- 
ing this scheduling problem is now described*. 

Step 1.  For each job 1, calculate 

f(i) 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

sign (t1<;L - t  ) 

010 (ti,r hj    ' 
Arrange the jobs in ascending order of f(i). Let 
the complete schedule a so generated be 

S - (aj, a2, ..., an). 

Calculate the completion times T(a ,1) and 
1^,2). * 

If T(a ,1) + t'  .> T(a ,2), indicating that 
n      *1»*    Q 

the schedule is optimal, go to Step 6; otherwise, 
continue with Step 5. 

Find i such that T(a^,2) z  T(aQ,l). Arrange jobs 
1 + 1 through n in aicending order of t±  2* Let 

the final schedule n, as obtained, be 

S - («i, a2, .)• 

'V 

Continue with Step 6. 

Calculate the MAKESPAN of the schedule so obtained. 
Repeat Steps 4 and 5 until no further improvement 
is possible or until an optimal solution is 
obtained. 

♦Development of this algorithm was based on suggestions offered by 
Dr. J. N. D. Gupta.. 
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ALGORITHM COMPARISON 

A branch-and-bound algorithm has been programmed for compar- 
ing the effectiveness of the two heuristic scheduling algorithms. As 
stated earlier, the branch-and-bound method requires large storage and 
long computational time. However, it was felt that for the class of 
problems that it could handle some inference could be made as to the 
efficiency of the heuristic methods. 

The branch-and-bound method developed to solve this schedul- 
ing problem is an adaptation of one by Lomnicki [2], Each node in the 
branch-and-bound method represents a sequence of from 1 to n jobs. 
Consider node P, corresponding to the partial schedule or where or 
contains a particular subset (of size r) of the n jobs. Then a lower 
bound on the MAKESPAN of all schedules that begin with sequence o is: 

LB(or) MAX 

I-(cr.l) +L_r (fai>1) 1 

I<V2)+£Jr(H.2)+"ln'r(
t'«l.4j 

where T'(or,l) and T(or,2) are the completion times lot  the last job 
of the r jobs in the sequence on machine 1 (second round) and machine 
2, respectively, and 5r is the set of n-r jobs that have not been , 
assigned a position in the sequence. 

the n classes of permutations, 
..., n, respectively. Prom the 

The LB is first evaluated for 
i.e., for those starting with 1, 2, 
vertex with the lowest value, the LB is evaluated for the n-1 sub- 
classes. From these values and the previously calculated values, the 
lowest vertex value is found, from which the LB is again evaluated. 
Proceeding in this manner and after a finite number of steps, a 
MAKESPAN LB* is found such that all the remaining vertices of the 
scheduling tree have values greater than LB*. The permutation with 
this label LB* gives an optimal solution to the scheduling problem. 

Some preliminary results will now be discussed. A total of 
69 problems have been solved by all three methods. The problems were 
all constructed with machine times (tja) selected randomly from a 
uniform distribution of numbers from 1 to 50 for machine 1 and from 1 
to 100 for machine 2. 

First, a comparison of the average computational times for 
the three methods is shown in Figure 1. As expected, the branch-and- 
bound method required more time than either of the heuristics and is 

^9 
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not consistent with real-time control requirements, increasing rapidly 
as the number of jobs n increases. The highest average time for either 
heuristic was less than 0 1 second for n - 200, which is within real- 
time control constraints. 

Next, heuristic Method 1 found the optimal solution in 66 
percent of the cases, whereas heuristic Method 2 found the optimal 
solution in 45 percent of the cases. Heuristic Method 1 found 
solutions equal to or lower than Method 2 in 85 percent of the problems 
solved. However, in no case did the solutions by either heuristic, 
method exceed the optimal solution by more than 3 percent. More work 
is needed to evaluate the effects of the distributions and ranges of 
machine times on the heuristic methods' efficiency and selection. 

CONCLUSION 

\^> 
f 

A two-phase method for solving the resource allocation and 
scheduling problem of an adaptive control system such as that of a BMD 
system has been developed and is under evaluation. The allocation and 
scheduling have been placed into an analytical context from which it 
is possible to derive a dynamic methodology that can allocate BMD 
resources in an effective manner. 

In Phase I, a nonlinear, constrained, search method wac; shown 
to solve a typical example of a BMD resource allocation problem involv- 
ing search, interceptor tracking, and object tracking in less than 0.1 
second. Tills solution time is well within the constraints for a real- 
time control BMD system. 

*./ 

\ 

In Phase II, the scheduling problem was structured as a two- 
machine problem with feedback so as to minimize total system process- 
ing time. Because of the often immense size of the problem, heuristic 
scheduling was employed, with two competing algorithms developed. A 
preliminary investigation of the efficiency of the algorithms was per- 
formed by using a branch-and-bound algorithm for finding the solution 
to restricted cases. The investigation indicates that the heuristic 
method solutions and computational times are consistent with real- 
time control requirements. 

It is concluded that the scheme that has been developed, 
which gives an analytical approach for structuring and relating 
resource functions, ie adequate for real-time performance criteria. 
Results to-date indicate the practicality of utilizing this scheme 
under the stringent real-time requirements of a typical BMD system. 

J 
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TABLE 1. PROBLEM RESULTS 

\ 

NO. OF OBJECTS RAO".!? SEARCH 'RACK RATE FOH TRACK RATE FOR PROBABILITY OF SOLUTION 
THREATENING, A RATE, F OBJECTS, X INTERCEPTORS, L RADAR SURVIVAL, Z TINE (sic) 

1 6.5 13.5 23.6 0.937 0.032 
2 4.7 10.3 18.5 0.846 0.04. 
3 3.7 8.6 12.3 0.706 0.036 
4 3.0 7.3 9.3 0.521 0.028 
5 2.4 6.4 7.4 0.336 0.073 
6 2.1 5.7 6.2 0.191 0.035 
7 1.8 5.1 5.3 0.096 0.035 
8 1.5 4.6 4.6 0.OC3 0.053 
9 1.3 4 2 4.1 0.018 0.028 

1         io 1.2 3.8 3.-7 0.007 0.024 
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FIGURE 1. COMPUTATION TIME REQUIREMENT AS 
A FUNCTION OF THE NUMBER OF JOBS 

52 

* 

'; C1DES 

* 


