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Abstract: A formal theory i{s given concerning =

situetions, ceusality end the possibility
and effects of actions {s given, The
theory 1ia intended to be used by the
Advice Taker, e computer program that is
to decide what to do by reasoning. Soms
simple examples are given of descriptions
of situations and deductione chat certaia
goels cen be achieved.
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1. INTRODUCTION

Although formalized theories have been devised to express the most
important fields of mathematics and some progress has been made in formalizing -
certain empirical sciences, there is at present no formal theory in which one
csn express the kind of means-ends analysis used in ordinary life, The closent
approach to such a theory »f which I am aware is made by Freudenthal in Liggo;_[l].

Our approach to the artificial intelligence problem requires a formal
theory. Namely, we believe that human intelligence depends essentially on the
fact that we can represent in language facts about our situation, our goals, and
the effects of the various actions we can perform., Moreover, we can draw
conclusions from the facts to the effect that certain sequences of actions ara
likely to achisve our goals,

In Programs with Common Sense [ 2], I discussed the advantages of having
a computer program, to be called the Advice Taker that would reason from
collections of facts about its problem and derive statements about what it could
do, The name Advice Taker came from the hope that ite behavior could be improved
by giving it advice in the form of new facts rather than by rewriting the program,
The reader is referred to that paper for further information about_the Advice

Taker and to Mineky's paper Steps Towards Artificial Intelligence [3] for a general
introduction to the subject,

The first requirement for the Advice Taker is a formal system in which
facts about situations, goals and actions can be expressed and containing the
general facts about means and ends as exioms, A start is made in this paper on
providing a system meeting the following specifications

#1, General properties of causality and certain obvious but until
now unformalized facts about the possibility and results of
actions are given aeg axioms.

/
#2, It is a logical’ consequence of the facts of a situation and the
general axioms that certain persons can achieve certain goals
by taking certain actions.

#3. The formal descriptions of eituations should correspond as closely

as possible to what people may reasonably.be presumed to know about
them when deciding what to do,
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2. SITUATIONS AND FLUENTS

One of the basic entities in cur theory is the situation. Intuitively,
a situation is the complete state of affairs ¢t some instant of time,
The laws of motion of a system determire from a situation all future
situations. Thus a situation corresponds to the notion in physics of a
point in phase space. In physics, laws are expressed in the form of
differential equations which give the complete motion of t1e point in
Phase space.

Our system is not intended for the complete descript.on of
situations nor for the description of complete laws of mo-icrn. Instead,
we deal with partimsl descriptions of situations and partia’ laws of
motion. Moreover, the emphasis is on the simple qualitative laws of
everyday life rather than on the quantitative laws of physics. As an
example, take the fact that if it is rairing and I go cutside I wiil get

webt.

Since a situation is a complete state of affairs we can never describe
a situatiocn completely, and therefore we provide no notation for doing so
in our theory. Instead, we state facts about cituations in the language
of an extended predicate calculus. Examples ol such facte are:

1. raining (s)
meaning that i: is raining in situation s
2. time (s} - 1963.720%

Ziving the value of the *ime in situation s. It will usually
prove convenient to regard tre time as a function of the
situation rather than vice versa. The reason for this is
that tne nunerical value of the time is known and important
only where the laws of phrssics are being used.

3. at(l,home,s) or at(i,home)(s)

rearing that I am at home in situation s. We orefer and
will use the second of the given notations that isolates
the situation variable since in most if not all cases we

will bte avle to suprress it completely.

We sna.l pot describe i1n “his memorandum the logical system we
intend to use. Basically, i* is a predicate calculus, but we shall use
the -notarion and 1f necessary conditicrnal expressions as in LISP or
ALCO.  We sra.l extend the meaning of the Boolean operators to cperate on
predicates. Thus by

at(1,home; A raining
we mean tre same as
\s. at!i,hema}(s) A raining(s)

A predicate or function whose argument 1s & situation will be called
a fluent, the fo.er being cailed a propositional fluent. Thus. raining,
time. arc g@jglgome) are all fluenus, the first and last being propositional
flnent*s.

S
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The term was used by Newton for a physical quaatity that depends on tima, end
according to my limited wnderstanding of vhat he -unt. the present use of the
term 13 j“ltu“‘o

In our forsules we will usually manage to use the fluents without
explicitly writing varieblee ropreseating situations, This correspouds to the
use of rendom variables in probability theory witheut using variables representing

points {n the sample space evea though random variables are supposed to be
regarded as functions defined on a sample space.

In fect we shell go further and givenan interpretation of our theory as
a sort of modal logic in which the fluente are not regardsd ee functions et all,
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3. CAUSALITY

In order to express causal laws we introduca the gecond ordar predicate
cause, The statement '
cause()(s)
vhere T i{s a propositional fluent is intended to mean.that tha situation s will

lead 1in the future to a situation that satisfies tha fluent 7 . Thus, cause(7})
is itealf a propositional fluent, As an exsmple of its usa we write

Va. Vp. iperlon(p) Araining Aoutside(p) Dcause(wet(p) )] (s)

which asserts that a person who is cutside whan it is raining will get wet., Wa shall
make the convention that 1f # is a flueant then

vr

neans the same as
Ve, 77 (s).

With this convention we can writa the pravious statessnt as
Viprperson(p) A raining 5 outside(p) D causa(wet(p),

which suppresses explicit mention of situations, As a second example we give a
special case of the law of falling bodies in tha forms

YVt Vb, Vt'.Vh(real(t)A real(t')Araal(h)Abody (b}
A unsupported(b)a| height(db) = lJAE;tzchJA
{tm - tj: cause(height(d) = h-htzl\ time=t'wt)

The concept of causality is intended to satisfy the two following
general laws, which may be taken as axioms:~

Cl. V. cause(TA [ V.7 D PIocausa(p)
c2, V casuse (cause(® )) > cause()
c3. V.cause(? ;) Vcausa(®32) D cause(?y v Ty)

The fact that we can suppress axplicit mention of situations has the
following interesting consequence, Instead of regarding the M's as pradicatas
we may regard them as proppsitions and regard causz as a new modal operator, The

operator V geems then to be equivalent to the N (necessary) operator of ordinary
modal logic,

Conversely, it would appear that modal logic of necessity might be
ragardad as a wonadic pradicata calculua where 111 quantifiars ara over situations.

In the present case of causality, we seam to have our choica of how to

proceed, Regarding tha system aa a modal logic saems to have the following two
advantages,

e 57 g i 5 2 T M (7
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1, If we usa the predicate calculus tnterpratation ve zequirs sacond
order predicata calculus in order to handla causa (1) (s), while if we take the
modal interpratation we can gat by with first order prodicats caloulus,

ures for as

2, We shall went decision procaduras or at laast proof procad
much of our system &8 possidle. If we usa the modal approach many problems will
imvolve oanly substitution of constants for verisbles in universel stetements and

will therafore fall into a fatirly reedily decidabla domain.

le of causality s givea by e 2-bit bDinary countsr that
formaliem its behavior may be described by the

Another axamp
counts avery sacond, In our

statement!

4o

Wt VxoVxy/ tims = tADLLD = X, Abitl = xgDcause (

time = t+1A (bit 0 = x, @ DA (bit 1 = x, @ (xo A1)

pit00 ead bitll ere fluents vhila t, % and x] ars

In this example time,
The distinction is madu: clesrer 4f wa uze the wore loug-

sumerical veriables.
winded statement

VsVtVx Vx1. time(s) =
') = e+l A (b1t0(s') =x°01)_/\(b1:l(|') - 81.(!°A1)))(l)

tA bit O(s) = x, Abitl(s) = X2

cause() o' . time{s

In this case however we cén rewrite the statement in the fora

Vs.cause(As'.(tine(s') = cime(a)+1]A [b1e0(s )= BL£O(a)OR]A

[bier(s') = bitl(s) ® (bic o AD ) (s

Thus we ses that the suppression of explicit mention of the situations forced ue
to introducs the suxiliary quantities t, X, and x) vhich are requirad because
situationa in the same formmla,

we can no longer use functions of two differsnt
Nevertheless, the s-suppressed form may still be worthwhila simes it admits the

msdal interpretation.

a fluent setisfies cartain axioms. The fact that there i»

The time as
to a given value of the time may be axpressed by

enly one situation corvesponding
the axioce

T1.WaVp V. cause(time = TAMIA cause(tims = tAf)’P

cause (time = tA?Af)

Another axiom is
72, Wt real(t)At > time Dcavsa(time = ¢)

Caem e e e PR ‘
Prs .
: o 3
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4, ACTIONS AND THE OP"I.iiux can

We shall regard the fact that a person performs a certain action in a
situation as a propositional fluent. Thus

moves (person, object, location) (s)

is regarded as asserting that person moves object to location iu the situation s.
The =ffect of moving something is desciribec by

Wp Vo V1. moves (p,0,1) O cause (at(o,1))

or in the long form
¥s Vp Yo Vl.mocves (p,0,1)(s) D cause (As'.at {0,1)(s'))(s)

In ucder to discuss the ability of persons to achieve goals and
to perform actions we introduce the operator can.

can(p,n) (s)

asserts that tL. person p can make the situation s satisfy. We see that

can (p,n) is a propositional fluent and that lilke cause, can may be regarded
either as a second order predicate or a modal operator. Our most common use of
can will be to assert that a person can perform a certain action. Thus we write

can(p, moves (p,0,1)) (s)

to assert that in situation s, the verson . can move the object o to location 1.
The operator can satisfies the axioms
Kl. W¥n Vp ¥p. {can (p,n)A(n D p) 2 eo(p, p)
K2. Wen Vo, Vp,. { ~'can(pl, n);\can(plyfan)}
K3. Wp ¥n¥p [can(p,x) vcan (p, p) 2 can(p,n v p)]
Using K1 and

can(p, moves {p, o, 1))
and

Wpo Vo V1. moves (p, o, 1) 2 vause (at{o,1))
we can deduce
can (p, cause (at {o,1}))

which shows that the operators can and cause often show up in the same fprmula.

The ability of people to perform joint actions can be expréssed by
formulas like

can(pl, can (p,, marry (pl,pa)))
which suggests the commutative axiom

Kb, WY P, Vp, V. can(pl, can(pa,n)) > can (pa, can(pl,u))
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A kind of transitivity is expressad by the following:-

gorem = From

1) can(p, cause(®))

axd

2) v, D can(p, cause(0))

it follow. that

3) cen(p, cauze(can(p, cause(0))))

Proof ~ Substituta can(p, chusa( p)) for F in axiom Cl and substituts

cause () for 7p and cause(can(p, cluu(f))) for P in axiom K1, The

conclusfon then follows by propositional caleulus,

In order to discuss the achievement of goals requiring several consecutive
actions we introduce canult(p ,#) whith is intandad to mean that the person p csa
, ultimately bring about a situation satisfying 7M. Wa counect it with can and cauge
3 : by msans of the axiom

KCL, ¥, ¥p VIr. VY can(p,cause(camult(p, ):}Dumlt(p.-”)
This axiom partially corresponds to the LISP=type recursive definition
canult(p,7?) = TV can(p, cause(canult(p,7')))

We also want the axiom

KC2, VWpVmp. cause(canult(p,e)) > canult(p, 2}
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5. EXANPLES
1. The Honkey can get the Bananas

The first example we shall consider is a situstion in which a monkey
18 in a room wvhere a bunch of bananas is hanging from the ceiling too high to
reach, In the corner of the room is » box, and the solutiom to the monkay's .
problem {s to mova the box under the bananss and climb onto the box from which
tha bananas can be reached,

Wa want to describe the situation in such s way that £t follows from
our axioms and the description that the monkey can get the bananas, In this
mmorandum wve shall not discuss the heuristic problam of how wonkeys 4o or even
might solva the problem, S8pecifically, we shall prove that

canult(monkey, has(monkey, bsnanas))

Tha situation is described in a very ovarsimplified way by the followiang seven
statementst= '

REl,  Wes. placa(u)d can(monkey,move(monkey, box,u))

H2, VVu Vv Vp wove (p,v,u)® causa(at(v,u))

3. V con(monkey ,climbe (monkey, ox))

H4, V VubwWp, at(v,u) Aclinbe(p,v)®> cause(at(v,u) Aon(p,v))

HS, V placa(undar(bananas))

6,  V at(box, under(bansnss)) A on(monkey,box):>can(monkey,re ch{monksy,banenss))
Ry, ¥ vp Vx, raach(p,x)D csuse(has(p,x))

The reasoning procesds as follows: From 1 and 3 by substitutim of under(bananas)
for u and PC (propositional ca..ulus) wa gat

1) can(monkey, mova(box, undar(bananas)))
Using 1) and H2 and axiom C1, we gat
2) con(monkay, csuse(at(box, undar(bananas))))
Similarly H3 and H4 and C) giva
3) st(box) under(bananas)) Dcan(monkay,causa( at(box,under(benanas) A on(monkey,ben)))
Than H6 and H? give
4) at(box,under(bananas)) A on(monkey,box)? zsn(monkey,sause (hae(monksy,besasss)))
Wow, Theorem 1 (s used to combine 2) ) and 4) to gst
3) can(wonkey,cause(canimuidey, csuse(can(monkay ,couse (hae (monkey,benanes))))))
Using KC1, we tedute thie ¢
canult(monkay, hss(s. kuy, bananas),"

6
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2, AN ENDGAME

A simple sifuation in a two person game can arise vhe

a

i

player p; has

two moves, but whichevsr he choosas player p, has a move that will beat him, Thie

situation may be described as follows:-
1)  ean(pr,m)Acan(py,m)A (m1 V m3)
2) [_m1-'3 causo(ﬂ‘),)] A [nz ») emu(‘ll‘ﬁ)J
3 whHvh Dﬁun(pz- n1) Acan(p2,n2) A (ng Vﬂz)]
4)  V(Ti1An)Y (T2 Ary) D cause(win(pp)®
We would like to be able to draw the conclusion
3) canult(py,vwin(py))
We proceed as follows: From 1) and 2) we get
4)  cause(Ty) v cause(7T,)
and wve unelaxiou C3 to get
$)  cause(T; v T2)
Next we weaken 1) to get
6) V.1, Decan(pz, n)) and
7 V.T3 Dean(pz. ny)
snd then we use Kl to get
8) V.T Decan(py, M ; Any) and
9) ¥, Ty Dcan(pz, T3 Any)

The propositionsl calculus gives
10) V.7 v T Dcan(pa, My Any) can(py, Ty Ang)
and using K3 we get
11) VT Ty Dean(py, (T A 01) v (T Ang))
vhich together with 4) and K1 gives
12) V. 7y v T Dean(py, cause(vin(py)))
vhich togethar with 5) ano Cl gives
13)  cause(can(py, cause(win(p,)))

Usiog the axioms for capult we now get
14) canult(pz, win(p2)).




6. NOTE

After finishing the bulk of this memorandum I cams across The 3
of Time Distinc*ions 4 by A,N,Prior, Prior defines model operators P ¥ vhere

P(9r) means 'it has been the case that?' end,

F(70) means 'it will be the case that 7

He subjects these operators to a number of axioms and rules of inference
in close analogy to the well-known| 5] modal logic of possibility. He also interprets
this logic in a reatricted predicaté calculus where the variables range over times,

He then extends his logic to include a somewhat undetermined future and claims
(unconvincingly) that this logic cannot be interpreted in predicate calculus,

I have not yet made a detailed comparison of our logic with Prior's, Lut
here ere some tentative conclusions,

1. The causality logic should be extended to allow infersnce about ths past,

2., Causality logic should be extended to allow inference that certain
propositional fluents will always hold,

3. cause(7]) satisfies the axioms for his F(7?) which means that his futurity
theory poseesses, from his point of view, nonestandard models, Namely, a collection
of functions p;(t),py(t) may satisfy his futurity axioms and sssign truth to
P(1)A ~(Fp)(0). In our system this is okay because something cen happen without
being caused to happen,

4. If we combine his past and futurity axioms, our eyetem will no longer fit
his axioms and

PFl. p D ~vER(~P(p))
PF2. p D ~P(~F(p))

eince we do not wish to say that vhatever {s, was always insvitable,

1y

Konim . bt s
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