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INTRODUCTION

This paper addresses the real world problem faced by 150 cotton
farmers and 20 cotton gin operators in the Mesilla Valley of New Mexico
and illustrates the importance of considering alternative formulations of
large scale mathematical programming problems in order to reduce their
size and complexity. The weekly cotton production of each farmer for the
approximately 20 weeks of cotton picking are known. Also known are the
weekly gin capacities. Since the transportation costs are available, it
may seem to be an ordinary transportation problem. However, both the
weekly and the seasonal ginning cos* functions must also be considered
and these are nonlinear with a fixed charge on the seasonal function.
Furthermore, it is possible to store cotton from one week to the next, but
at a price. Thus, tli» problem of scheduling the shipment of cotton from
farms to gins becomes a large scale nonlinear programming problem,

In this paper we first illustrate how this problem can be formulated
as a large scale mixed integer transportation problem with extra linear
constraints, and outline a possible solution procedure usiitg decomposition.

Unfortunately, the transportation part of this formulation yie'’ds 2 prublem
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with 4,201 nodes and 2,460,000 arcs. While this size transportation
problem is within the solution limits of state-of-the-art transportation
computer codes [4], the extra linear constraints and the 0-1 integer
variables imply that the transportation problem will have to be solved
sevaral times and the repetitive solution of such large scale transporta-
tion problems may not be computationally feasible.

By fully exploiting the topological characteristics of the problem,
we show that this problem can also be formulated as a fixed charge minimum
cost flow network consisting of 3,441 nodes, 61,640 arcs and twenty 0-1
variables associated with the operation or nonoperations of the gins.

Such a problem can easily be solved by branch and bound procedures [2] if
codes are used which exploit the structure of the minimum cost flow sub-
problems. For example, the fastest knuwn minimum cost flow network code
[4], which can handle a problem of this size, solves minimum cost flow
network problems with 3,000 nodes and 60,000 arcs in less than four minutes
on a COC 6600.

For completeness, the paper concludes with a description of a branch
and bound algorithm and the solution of a 5 farm, 4 gin example. The
primary purpose for the inclusion of this material is to illustrate the
entire Operations Research modeling and solution process.

THE PROBLEM

This cotton gin problem is designed to minimize the costs involved in
processing cotton. The costs involved are storage costs, shipping costs,
and gin-processing costs. The problem involves 150 cotton farms and 20
cotton gins in the Mesilla Valley of New Mexico. Each of the farms has

cotton ready for ginning each week during a twenty-week picking period.
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This cotton riay be shipped immediately to a gin or may be stored on the
farm and shipped at a later date. Because cotton is a seasonal crop, it
is not feasible to keep the gins operating all year round. Thus, the

gins are available for ginning cotton only during the twenty-week produc-
tion period plus an -additional ten or so weeks. ODuring the five month
period when no cotton is available for ginning, all gins are shut down.
Before the picking of cotton actually begins, planting information leads
to quite accurate forecasts of the amount of cotton that will be available
for shipping from each of the farms during each week. Further, not all
cotton picked in any given week need be ginned in that week. For example,
during a particularly productive week, it may be preferable to store
cotton and have it ginned the following week.

One of the decisions which has to be made each year is how many of
the gins should be put into operation. In recent years the production of
cotton has been going down and thus the total production fér a cotton
picking season is now considerably less than the seasonai capacity of the
twenty gins. Thus, it may be feasible to operate only some of the gins.
This decision is dependent on the cost of running each gin and its
efficiency. For each gin there is a seasonal cost function that is a
convex, piecewise linear function with a fixed charge, an example of which
is illustrated by Figure 1. The fixed charge represents one time charge
for activating a gin that has been closed dewn for five nionths, and
includes such things as utility hook-up charges, clearing, and hiring of
personnel. The variable cosi> in this seasonal gin cost function are due
largely to the cost of electric power. The initial seasonal variable costs

are lower than the regular costs because most of the initial costs are
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absorbed by the hook-up charges.

Further, the total weekly capacity of each gin is divided into the
regular capacity and an additional capacity available if an overtime shift
is utilized. Thus, there are two levels of variable direct labor costs
associated with each gin--one for the regular shift and another for over-
time. If the capacity of the regular shift is exceeded, all of the
additional cotton must be processed at this more expensive overtime rate,
However, pruu - nt use of this overtime may be profitable if it avoids the
necessity of activating an additional gin.

The solution to the problem of minimizing shipping, storing, and
ginning costs yields information necessary for implementation of this
least-cost program. In particular, the solution designates which gins
should be activated for processing cotton, how much cotton should be
stored on each farm in each week, how much cotton each farm should ship
each week and to which gins, and how much cotton should be ginned at over-
time rates at each of the gins being used.

There are nine main factors which affect the optimal solution to this
problem:

(1) The cost of shipping cotton from each farm to each gin.

(2) The start-up cost for each gin.

(3) The capacity of each gin's regular shift and its overtime shift.

(4) The variable weekly costs of ginning at regular rates.

(5) The variable costs of ginning at overtime rates.

(6) Each farm's holding costs for storing cotton.

(7) The variable initial utility rates.

(8) The variable regular utility rates.

(9) The transition point in seasonal gin production between initial

and regular rates.




EXAMPLE DATA

In order to study the structure of this problem better, a small
example of five farms which produce cotton available for shipping each week
for three weeks will be used. There are four gins which may operate for
these three weeks pius an additional three weeks. Each gin has two levels
of weekly costs for ginning. The first level is applicable to all cotton
ginned during the regular shift, while the second level applies to all
cotton ginned during the overtime shift. Also each gin has a seasonal
start-up cost and two levels of seasonal costs. The seasonal costs, the
regular shifts' capacities with their associated costs, and the overtime
shifts' capacities with the associated overtime costs are given in Table
I. The production level for each of the five farms during the three weeks
of cotton picking, the shipping costs from each farm to each gin, and the
holding cost for storing cotton on the farms is also inthqed in Table I.

The next sections develop different formulations for this problem.
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TABLE 7
PRODUCTION, COSTS, AND CAPACITIES

Farm

DV PDWN ~

SHIPPING COSiS PRODUCTION
Gin Farm
1 2 3 4 Week 1 2 3 4 J Total
6 2 4 7 1 15 40 30 15 15 115
3 5 8 4 2 35 75 45 50 50 255
2 6 2 9 3 20 60 20 35 20 155
5 3 7 6
4 5 9 4 Total Production 525
GIN CAPACITIES
Gin Reqular Shift Overtime Shift Total 6-Weeks Total

W N =

20 10 30 180
15 10 25 150
20 10 30 180
50 20 70 420

Total Capacity 930

GIN COSTS

Weekly Costs
Gin T 2 3 4
Regular per-bale Cost 1 2 2 1
Overtime per-bale Cost 3 7 §5 2

Seasonal Costs

Start-up Cost 300 200 500 650
Initial per-bale Cost 1 6 2 1
Regular per-bale Cost 6 10 7 5
Transition Point 40 20 30 70

between initial and

regular rate in

bales

Holding Cost
Cost per-bale per-week = 1

Tt et e i e
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FORMULATION ONE

In order to solve the problem of minimizing the total costs associated

with storing cotton, transporting it to gins, starting the gins, and ginning
the cotton, we first considered decomposing the problem into two subproblems.
One of the subproblems is a weekly problem in which the costs of shipping

cotton to gins, storing cotton at farms, and ginning labor costs are

T mistararad

minimized. In the second subproblem the total searonal ginning costs are
minimized.

Consider first the weekly subproblem. A farm may ship the cotton
picked during its first week to any of the four gins, or it may store the

cotton on the farm at a cost of $1 per-bale per-week and ship it to a gin

A b s L

for processing during any of the next five weeks. Similarly, during the
other cotton picking weeks, a farm may ship the production to a gin or

store it and ship it during any of the remaining weeks. Thus, a trans-

portation tableau can be constructed for which there is an origin node

for each farm for each week of production, and an additional origin node
designating excess gin capacity for the six weeks of processing. Since
there are five farms and three production weeks, this yields sixteen
origin nodes. Each farm may ship to any of the four gins each week. For
each processing week two destination nodes for each gin can be createc.
One of these two nodes has a demand representing the weekly capacity of
the gin's regular shift; the second node has a demand representing the
weekly capacity of the overtime shift. Since there are four gins and
each may process for six weeks, this yields forty-eight destination nodes.
Each farm may ship the cotton picked during a given week to any gin during

the week it is picked or during any subsequent week. Thus, there are six
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hundred variables representing shipments to gins. There are an additional
48 slack variables representing the excess of gin capacity over farm pro-
duction. This totals 648 variables and 64 constraint equations for the
transportation problem.
Consider the costs for the cells in the transportation tableau of
Table II. Each cost consists of three component costs (inadmissible cells
have no costs indicated):
(1) The cost of shipping the cotton from the farm to the gin.
(2) The holding cost which is applied only if the cotton is stored
rather than being shipped in the same week it is produced.
(3) The labor cost of the cotton gin to which the cotton is shipped.
In the seasonal subproblem there is for each gin a 0-1 variable and
a constraint equation representing total seasonal gin production. If a
gin is activated, then its 0-1 variable will be one, and this veriable
will incur a cost equal to the start-up cost of the gin; %f the gin is not
activated, the variable will be zero. Probably the most efficient way of
finding these variables is by implicit enumeration. Also, if a gin is
activated, it will have a corresponding constraint equation. The associated
variables of this constraint equation will have cost values in the objective
function that correspond to the variable seasonal ginning costs. This means
that each set of 0-1 values defines a new set of seasonal constraint
equations and a corresponding objective function, which together with the
transportation subproblem can be solved by the usual decomposition proce-
dures.
Generaliy, decomposition requires the solving of each of the subproblems

over and over again, especially since the convergence often is slow. In
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addition, with the implicit enumeration, the number of these decomposition
problems to be solved in itself could be very large. Since the actual
problem of 150 farms and 20 gins would have transportation probiems with
up to 4,201 constraint equations and 2,460,600 variables, the computational
effort appeared to be fantastically large. Therefore, alternate formula-
tions seemed to be required.

FORMULATION TWO

This problem may be reformulated so as to reduce the number of
variables and constraints. T .rst, we set up a minimum cost flow network
problem which ignores the fixed charges and includes only variable costs,
including the seasonal variable costs. This is given by Figure 2. The
enclosed area, which considers only the arcs from farm one to gin one, is
shown more clearly in Figure 3. 0

This problem will have an urigin node representing each farm for each
of the shipping weeks. Level iAj nodes represent farm i in week j of
Figures 2 and 3. The supply of each of these nodes is the amount picked
at the farm during this week. The amount stored from one week to the next
at each farm is represented by arcs which ship between each farm's origin
nodes representing subsequent weeks. In the small example of five farms
there are a total of thirty origin nodes for the six shipping weeks. An
additional twenty-four nodes as represented by iBj in Figures 2 and 3
arise from the six weeks of availability for ginning for each of the four
gins. A1l cotton processed in each gin during the six weeks is then
channeled through a single node, calleu the weekly master node for the gin.

Level iC node corresponds to the weekly master node for gin i. This

structure eliminates the need for creating two arcs from each farm node to




Figure 2

NETWORK DIAGRAM FOR FORMULATION TWO




e 7 v e - T T e e

-
- [} o & (e}
-~ o~ 1 —
v vi v Vi v
H HE E s .,_

-13-
Figure 3

NETWORK DIAGRAM FOR FARM 1 AND GIN 1 OF FORMULATION TWO
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accomodate the two weekly ginning costs, but adds four nodes representing
the four gins. Another four nodes are also added to accomodate the

variable seasonal rosts. These nodes are represented by the D level

nodes in Figures 2 and 3. Finally, all flow is channeled through a single
node, node E, which acts as a sink for the entire production. By setting
its demand equal to the total supply, the need for slack arcs is eliminated.
This formulation of the problem contains a total of sixty-three nodes.

For each week the cotton picked on a farm for that week may be shipped
to any one of the four gins or may be stcred at the farm. Shipping to the
gins is represented by four arcs (one to each gin), while storage at the
farm is accomplished by shipping the cotton to the source node representing
the subsequent shipping week of that farm. The effect of storing the
cotton is to increase the amount available for next week's shipping. For
each of the five farms, each week's production may be shipped to any of
four gins or tc a subsequent week's shipping node at the same farm. Since
there are five farms and six weeks, and since the cotton for the last week
cannot be stored, there are 145 shipping and storage arcs.

Each gin has a node for each week of ginning. For a given single week,
the amount shipped to the weekly master node of a gin is limited to the
weekly capacity of the gin. In order to represent the two levels of labor
costs, there are two arcs representing the weekly labor costs at each gin.
One of these arcs has an associated cost equal to the lebor cost of the
regular shift, and is capacitated by the amount of cotton which can be
ginned during the regular shift. The second arc has an associated cost
equal to that of the overtime shift and is capacitated by the amount of

cotton which c»n be ginned in overtime. For each week of ginning at each
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of the four gins there is a set of the two arcs. Since the two arcs ship
between the same two nodes, the arc with the higher cost will not be used
until the arc with the lower cost has reached its capacity; this insures

that no overtime is used until the capacity of the regular shi{t has been
reached. Since there are six weeks of processing and there are four gins,
these twenty-four sets of arcs add forty-eight additional capacitated arcs

to the network.

In addition, from each gin's weekly master node there are two more

arcs leading to the gin's seasonal master node. These two arcs represent

e o

the initial and regular seasonal ginning costs. The capacity of the arc

associated with initial costs is the number of bales at the transition

point between initial and regular costs. These add eight more arcs, but

at the same time eliminates the need for decomposing the problem into two ;

subproblems. %
Finally, the single arc from each gin's seasonal master node to (he

sink node adds four more arcs. This gives a total of 205 arcs for the §

network formulation. This reformulation not only has reduced the number

of variables from 648 to 205, but also it has included the seasonal ginning

costs. It should be noted, however, that 52 of these arcs are capacitated.

This reduction in number of arcs has come from splitting each of the costs

in the transportation problem into its three components: the shipping

component, the storage component, and the labor component. Various combi-

nations of these three component costs can duplicate all of the costs in

the transportation tableau.

The number of nodes in this reformulation has decreased from 69 to 63

in spite of the addition of the seasonal ginning costs. This net reduction
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in the number of nodes results from an increase due to having an origin
node for each farm for each shipping week instead of merely for each
production week and from a decrease due to the need for only one node
for each week for each gin.

The corresponding reduction on the 150 farm problem results in the
number of variables being reduced from 2,460,600 to 95,610. The number
of nodes will increase from 4,201 to 5,141. Such a minimum cost flow :
network problem is well within the solution capability of .state-of-the-art
network codes; e.g., the code in [4] can solve problems of this size in
Tess than 6 minutes on the CDC 6600.

FURTHER REDUCTIONS

Since it has been assumed that the shipping costs are constant over
the season, and since the holding costs are the same on all farhs, this
problem may be reduced even more. It is not important to.know which farm
actually stores the cotton. Just knowing how much cotton each farm sends
to each gin and how much of the cotton to be ginned at a given gin must be
stored is sufficient infornation.

Since no farm picks cotton in weeks four, five, and six, the only
reason these nodes exist is to show how much stored cotton is ginned by
each gin in weeks four, five, and six. Since the assumption has been made
that weekly storage costs are the same at each farm, one may just as well
consider that all cotton to be ginned in weeks three, four, five. and six
is shipped in the third week and stored at the gin. While this is not
actually the case, this assumption will not change the optimal solution.
Although setting up arcs which enable one to simulate storage at each gin

during weeks three, four, and five adds three arcs at each of the four gins,
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it enables one to eliminate these storage arcs in weeks three, four, and
five at each of the five farms. As long as there are less gins than there
are farms, this change results in a net reduction in the number of arcs.
Since there actually is no cotton picked at the farms during weeks four,
five, and six, the dnly cotton available for shipping is that stored from
previous weeks. With the cotton now being stored at the gins instead of
the farms in weeks three, four, and five, there is no cotton available for
shipping from the farms during these last three weeks of ginning and the
nodes representing weeks four, .ive, and six may be removed from the problem
without changing the solution. This eliminates 15 nodes and 75 arcs while
adding twelve new arcs. This reduction is illustrated in Figure 4. In the
150 farm problem the corresponding reduction eliminates 1,500 nodes and
31,500 arcs while adding 200 arcs, so that this problem now has 3,641

nodes and 64,310 arcs.

Since there are more farms than gins, an additional réduction may be
made by storing cotton at the gins for all weeks instead of storing at the
farms. In the five farm example there are presently ten arcs used to
denote storage of cotton for weeks one and two. By moving this storage
to the gins this number is reduced to eight, a reduction of two, and
therefore this problem now has 140 variables and 48 nodes. The reduction
is illustrated in Figure 5. The corresponding reduction in the 150 farm
problem results in elimination of 2,470 arcs, leaving 61,340 variables and
3,641 nodes.

A final reduction may be made because the nodes rapresenting the
additional weeks of ginning for each gin are dummy nodes. In weeks four,

five, and six, all flow passing a node in a gin is due only to cotton
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stored from the previous week. During these weeks there is no currently
picked cotton to be ginned. The nodes representing weeks four, five, and
six may be eliminated. The arcs from each of these nodes to the weekly
master node for the gin can be tied directly to the noce representing the
third week of ginning at the gin. Each of these arcs incurs an additional
cost equal to the storage costs of the now-eliminated storage arcs. One
set of arcs represents cotton ginned in the third week. A second set of
arcs from this same node represents cotton stored for one week and then
ginned in the fourth week. Similarly, the other two sets of arcs will
represent cotton stored for two weeks and three weeks before being ginned.
Obviously, the optimal solution will always gin as much cotton as possible
rather than storing it for an additional week and then ginning it at the
same gin. The only exception might be if the overtime processing cos: for
one week is more expensive than storing the cotton for a week and then
processing it at reqular rates. This reduction removes twelve nodes and
twelve arcs from this problem, leaving 128 variables and 36 nodes as shown
in Figure 6. The 150 farm problem is reduced by two hundred arcs and two
hundred nodes, leaving a network consisting of 61,640 variables and 3,441
nodes. ‘

The reformulations discussed in this section can be quite helpful in
reducing the size of the problem for solution purposes. However, from the
decision maker's viewpoint, these reductions present some awkward problems.
For example, given a solution to the first reformulation, the decision
maker must decide how much each farm will ship in weeks four, five, and
six, which although not difficult, can involve considerable handwork.

Thus, recourse to these reduction techniques are desirable orly if the
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larger model is not computationally solvable.

The final reduction considers only the weekly and seasonal variable
costs. Let us now consider the effects of the seasonal fixed charges and
obtain the final solution to the problem,

SOLUTION PROCESS

The resulting fixed charge minimum cost flow network problem can be
solved by branch and bound procedures [2] using special purpose minimum
cost flow network codes [1,3,4] to solve the associated subproblems. When
these minimum cost flow network codes are used, the arcs from the level D
nodes to the level E node will be given a cost of zero since these arcs
have no costs which are proporticnal to the flow through these arcs. The
subproblems to be tested in the branch and bound procedure consist of
every possible "off" gin combinations. (Note: to turn off a gin in the
network formulation simply corresponds to capacitating'thg arc from the
level D node to the level E node asscciated with this gin to zero.) These
combinations are illustrated in the decision tree given in Figure 7. Each
node in this tree represents a combination of gins that have been turned
off and not allowed to gin any cotton. For instance, to reach node | 1,3 |.
one must remove gins 1 and 3 in that order. Al}l gins not named in a node
name are considered available for processing cotton.

Before describing the branch and bound procedure, observe that the
topological structure of minimum cost flow network problems can be used
to reduce greatly the size of the decision tree. In particular, a minimum
cost flow network problem is feasible only if total supply is less than the
total canacities of the gins available for processing. In our example the

total production is 525 bales. The total capacity of all gins for the six
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weeks is 930 bales. If gin 4 is removed, the capacity is reduced to 510
bales; thus, the problem is infeasible without gin 4 in operation. Also,
simultaneously removing gins 1, 2, and 3 reduces capacity to 420 bales.
Thus, without even attempting to solve any minimum cost flow problems,
several combinations have been eliminated and need not be checked. The
simplified decision tree is shown in Figure 8. This illustrates one
computational advantage of the reformulation as a network problem. The
primary computational advantage of the reformulation, however, is that
each subproblem to be solved is a minimum cost flow network probiem.

Consider starting at node | 0_| of the decision tree in Figure 8,
This assumes that the mirnimum cost flow network problem is to be solved
with no gins turned off. Solving this probiem yields a solution which
uses all four gins and has an objective function value (including the
fixed charge costs) of 7,005. Similarly, the testing of nodes | T |, |72 |5
and [:3:] of the decision tree yield objective function values (including
the fixed charge costs of 7,240, 6,895, and 6,755, respectively. These
results indicate that gin 1 will always be used; therefore all nodes which
involve turning off gin 1 can be eliminated. This leaves only node | 2,3 |
to be tested. Solving this probiem yields an objective function value of
6,785. Consequently, the optimal solution corresponds to using gins 1, 2,
and 4, Teaving gin 3 idle and unused. The solution, which required less
than 2 seconds on the CDC 6600 using SUPERK [1], is summarized in Tables II1
and TV,

While this is a small problem having only 6 nodes and 221 arcs, it
does illustrate the speed with which such problems can be solved by

exploiting the network structure of the model. Additionally, we believe
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that the reduction of the real world cotton gin probiem to a fixed charge

) minimum cost flow network problem with 3,641 nodes and 64,310 arcs anu 20

T e ——E. ¢ 4o g e

"on-off" variables yields a problem which is computationally feasible to
solve. In particular, we estimate that the state-of-the-art large scale
: minimum cost flow network code [4] can solve 100 subproblems per hour on
a CDC 6600. Since the New Mexico Department of Agriculture will use this

model during the next cotton production season, this estimate will soon

be tested.
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TABLE TII

FAPM-TO-GIN SHIPPING ACTIVITY FOR OPTIMAL SOLUTION

Bales Shipped to Gin

Farm | Week | Bales Picked 1 2 4 Bales Stored

1 1 15 15
2 35 15 20
3 20 15 25
4 0 5 15 5
5 0 5

2 1 40 40
2 75 5 20 50
8 60 60 50
4 0 10 40

3 1 30 30
2 45 25 20
3 20 20 20
4 0 20
5 0 20

4 1 15 15
2 50 50
3 35 10 75
4 0 10 20 45
5 0 45

5 1 15 15
2 50 50

20 10 10
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TABLE IV

GINNING ACTIVITY FOR OPTIMAL SOLUTION

Bales Shipped from Farm Total Regular | Overtime

Gin | Week Bales Shift Shift
1 2 3 4 5 Shipped | Ginning | Ginning

1 ] 30 30 20 10

2 5 25 30 20 10

8 20 10 30 20 10

4 5 10 10 25 20 5

5 20 20 20 0

2 1 15 15 15 0

2 15 15 15 0

3 15 15 15 0

4 15 15 15 0

5 0 0 0 0

4 1 40 15 15 70 50 , 20

2 20 50 70 50 20

3 60 10 70 50 20

4 40 20 10 70 50 20

5 5 45 50 50 0
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