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SUMMARY

PROBLEM

Develop a mathematical model that accurately describes the electrical and acoustical
response of a tangentially polarized piezoelectric-ceramic, staved, free-flooded cylinder trans-
ducer. Implement this formulation in a package of computer programs that, from a set of
user-specified dimensions and parameters, will automatically produce plots of the complex
electrical impedance and transmitting voltage response as functions of frequency and, at any
selected frequency, will calculate the vertical directivity pattern and cylinder displacement
distribution. Compare the predicted response of a cylinder to that measured experimentally.

RESULTS

A finite-element approach was taken to the problem of solving the equations of
motion for a tangentially polarized, piczoelectric-ceramic free-flooded cylinder immersed in
an infinite acoustic fluid medium. The use of finite-zlement techniques makes it possible to
predict the broadband response of the transducer. Three computer programs are used in ihe
analysis: (1) a data generation program which produces the necessary finite-clement input
information; (2) an instruction program for the MARTSAM finite-element structural analysis
and matrix system program; and (3) a program which solves thc matrix equations that
approximate the fluid-loaded cylinder’s equations of motion for the electrical impedance,
tsansmitting voltage response, and radiated power as functions of frequency. in addition,
for a given frequency, the vertical dircctivity pattern and cylinder displacement distiibution
can be calculated. The ability of the mathematical model to accurately predict the in-air
and in-water responses of free-flooded cylinders was shown by comparing the theoretical
predictions to the experimentally measured responses of three cylinders.
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1 INTRODUCTION

The free-flooded cylinder transducer offers several distinct advantages over other
types of underwater sonar projectors. Free-flnoded cylinders have good power-to-weight
ratios and bandwidths and are also, as their name implies, automatically pressure compen-
sated for any change i3 operating depth. They are, therefore, nearly depth insensitive and
have broad applications whenever a nieed arises for high-power sonar projectors with deep
depth requirements or for sonar projectcrs with very broad bandwidtk:s.

A S N AR A i 2 80

Acoustic propagation studies such as Project Artemis and LORAD have shown the
advantages that deep acoustic installations offer over ncar-surface jocations. Most types of
transducers, such as the longitudinal vibrator, moving coil, or piezoelectric disk, require :
internal pressure compensation to keep the exterior ambient pressure from damaging the
device or at least to prevent the response from greatly varying with changes in depth. This
also provides a high degree of desired acoustic decoupling from the m lium and trarsducer
housing case at the back or inside of the radiating surface. Typical pn sure conpensation .
devices are pressure-release materials such as air or other gases, corpsvi -, onionskin paper, }

|
j

R W Bt e - S e St

Min-K and Sonite. Compliant tubes have also found zreat use as press', r»-relcase devices,
particuiarly in low-frequency bender-bar transducers. Most of thee-  *:2s. however, lose
their dynamic compliance under prolonged exposure to high press.. o~ .. 4\~ depth limited, or
in the case of gas compensation, need complex external equipsrer-

A N A R 1 R, AT R e PN I A AR S it

{ As one solution to this problem, the free-flooded ring ¢+ «  ‘nder was developed.
Initially, free-flooded cylinders were cast in one picce of piezoel ctric ceramic and were
radially polarized. These transducers used the K31 coupling of the clectric and elastic ficlds.
The use of vertically striped electrodes made it possibie to polarize the solid cylinder in an
approximate altemating tangential polarization; this allowed the usc of the higher K33

{ coupling.

kbt ke i

When lower frequency usc was desired and the larger cylinders became difficult to
fabricate in a single piece, 2 scgmented or staved construction was designed {Ref. 1). This
corstruction allowed the full usc of the K33 coupling.  £ach stave was cast and electreded
scparately and then glued into a cylindrical configuration. A drawing of a typical tangen-
tially polarized, frec-flooded cylinder is shown in Fig. 1.
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Free-flooded cylinders have been analyzed in the past with several different mathe-
maticzi methods (Refs. 2-9). Thesc techniques, however, often could not predict the broad-
band responsce of the cylinder because of inadequacies in the vibrational models of the
structure. Finite-clement techniques have been used to develop very accurate models for }
the cylinder that can predict the in-air response of the cylinder over a wide frequency band. !
3

ALY
St

These models have been experimentally validated through the use of holographic interfero-
metry (Ref. 10). A finite-clement modcl of a tangentially polarized-ceramic cylinder hzs
been combined with an acoustic radiation program with good success (Ref. 11). In this
analysis, finitc-cleryent techniques were used to calculate the normal velocities on the
boundarics of the: ylinder. Then the Helmholtz integral radiation program CHIEF (Ref. 12)
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N
f was used to calculate the acoustic radiation impedance and the pressure at points in the near
j and far-fiekds at cach driving frequency.
e E
b This last technique. although successful, is limited in its applications due to the g
2 necessity for numerically evaluating numerous asd expensive integrals. The method that is %
deveioped in this report uses finite-cleinent techniques as the inathematical approximation ?_
L scheme for the elastic, piczoelectric-ceramic structurz. Finite-clement techniques are also -ig
b used to mathematically model the acoustic fluid within a spherical surface which encloses the E
e cvlinder. Boundary conditions which are simple ratios of Hankel functions cas now be “g
E applicd tc the sphcrical surface to give the mathematical appearance of a transducer immersed g
9 ; in an infinite acoustic fluid medium (frec-fickd response). No numerical intcgrations arc E
E: i performed for the scoustic radiation part of the problem since the wave equation separates é
3 : on a spherical surface when the pressures and normal velocities are expanded in spherical §
: harmonic serics. é
3 Scction 2 of this report presents the derivaticn of the matrix cquations that %
represent the equations of motion of a free-flooded cylinder. Techniques for calculating %
. both the cylinder’s in-air znd in-water responsces are given. i §
= H E
5 ‘ Section 3 describes the computer programs that have beer developed to implemeat P2
- : the mathematical icchniques described in Section 2. From a st of user-specified dimensioas ; %
1 . and paameters, three pmerams actomatically gcncntc the necessary finite-ciement idcaliza- . 7
: : tions for the cylisxler and surrounding sphere of acoustic fluid, sct up the roquived matrix : E
: oquations. and ithen acaiculate the complex clectrical impedance. transmiting voltage response ;
= . and radiated power as functions of froquency. In addition. at any frequency, the vertical i;
3 ) directivity pattern and the dispiacement distribetior: on the cylinder can be calculated. 3
=
i Scction < compares the theeretically caleulated aad cipenmentally measured :é
z ) responses of three free-flooded cylinder transducers. Comparisons are made between the £
3 : in-2ir resonance and antircsenance frojucncics, clectrical capacitznes. in-water clectrica! 3
3 ! impedance, transmitting voltage response. and directivity pattems. Pradictions are mzde %
3 : for maximum source kevel and maximum radizted power at sclecied frequencies. The diffi- 3
3 ¥ cuitics involved in predicting the response of a ceramic cylinder housed in a2 caster-osi-filked gf
: rubber and brass ;ase by mcans of 3 mathematical model for only the bare ceramic cyiinder 3
= ) are discussed. §
- 2 FORMULATION ;o #
. Al of Euclidcan 3-space is divided into two regions. Ry and R4 (Fig- 2). Region R; 2
4 has a finite voium< and contains all sources of sound: i.c., Ry contains  the free-flooded 2
3 P cylinder und a portion of the acoustic fluid. This regicn is bounded by the spherical seface
3 H S;- Region R, is infinitc in extent and is filied with a homogencous acoustic fluid. The
& t outward-drawn normal from a point { on surface Sy is Jefined as ne The vectord(x.£) is
= the distance from: a point § on $; to the ficki point x in regin Ry. The point X is interior
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Farwee 2. Fudidenm 3apuce disidad Ssto two scgoms, R' and R,. by the dosed wf:ccsl.
Visa poist iz R,y Ua joiet i R 2ad E:po'-'msl.

to S in rugion Ry. Becsuse the surface Sy is spherical. simple analytical expressions can be
found for the relationship between the surface pressures and normal velocitics. This
acoustic radiatior impedance is thie boulidary condition that must be applied to the equa-
tions of region Ry to vicld the intcraction: of region R with region Ry. Hence, the solution
of the coupied sinc ure-vidratinn/acoustic-radiation problem can be reduced to a system of
toundary-value oquations whose spatial domain is now a finite volume. A more detailed
cxplanation of this formulation can be found in Ref. 13. An approximation method is

now ussd to solve thie equations of rogion Ry subject to the analytical boundary conditions
for sustace ). This approximation scheme wtilizes the finite-clement method (Refs. 14-16).
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In the finite-clement formulation, tiie equations of motion for an elastic solid can
be written in the matrix form

[Mg] (i} + [K ] (u}= (U}, )

where [M(] is the structural mass matrix, [K] the structural stiffness matrix, {U} the
genceralized nodal-point forces, and {u} the nodal-point displacements. The derivative ii is

-

(Ml 2 p° ST av @)
v

1 P s b T B4

where p’ is the density of the piezoclectric ceramic and [N’] the structural-clement inter-
polation function. The structural stiffncss matrix is defincd by

[RteT A

Kl = ﬁs'lel (B']av , 3)
\'

where [B'] is the matrix of derivatives of the structural-clement interpolation function
(the matrix that reiates the strzins 1o the nodal-point displacemients), and D] denoiss the )
clasticity matrix containing the appropriatc material propertics.

T W N Mecetba IR vedan K Ay S

The gencralized nodal-point forces can be written as the sum of two forces,
iUl= (P} +{F} . 4

where {P} is a vector consisting of the rodal-point forces arising from the fluid pressure on
the fluid-structure inicrfaces, and {F }is 2 vector consisting of externally applied nodal-
point forces (in this case, an ckectrical forcing function applicd to the piczeelectric structure
via a sinusoidally varying charge).

Similarly, the equations of motion which govern the bzhavior of the acoustic fluid
in region Ry are formulated in Refs. 17 and 18 as

M} {5} + (K] {p)=(C}, )

wiicre [Mg] is the fluid mass matrix, [K¢ ] the fluid stifiness matrix, {C} the generalized
nodal-pomt forces,and {p} the nodal-poml pressurss. Again, ji is defined as a"’p The
fli:id mass matrix is defined by atz

M 5—-f INITINpav (6)

+
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where ¢ is the speed of sound in the fluid and [N] the fluid-¢lement interpolation function.
The fluid stiffness matrix is defined by

(Kl = { (B1T(B] 4V , )

where [B] is the matrix of derivatives of the fluid-element interpolation function.

The generalized acoustic fluid nodal-point forces can also be written as the sum of
two forces.

{C} = (S}+ {F¢}, 3)

where (S} is a vector consisting of the nodal-point forces due to the zcceleration of the
boundaries of the clastic structure, and {Fg} is a vector consisting of the nodal-point forces
that arise from the interaction between the acoustic fluid in region Ry and the acoustiz
fluid in the infinite exterior region RZ-

If the pressure intcrpolation function N;(x,y,z) for the acoustic fluid elements is
defined as

p(xy2) =2 N; (xy.2) p; , 9)
1

where p; is the pressure at the ith node and p(x,y,2) is the pressure anywhere in the
clement. then Ref. 17 defines the fluid forces at node 1 as

®y= > [4Ni g% ds] : (10)

elements

P . . .
where »_n"s the normat derivative of the pressure. Using the boundary condition
o

ap .
— = -pv

n
an 7

where v is the norma! velocity of the fluid, Eq. (10) can be written as

Sy=» > ﬁs‘i ¥ ds
elements S




But ¥! itself can be written in terms of the nodal-point accelerations as
V=3IN: i (13)
I

where N is the anpropriate structural-element interpolation function for the normal dis-
placement at 1iie structure~fluid boundary, and {i; is the acceleration of the jth nodal point
of the structure. Combining Eqs. (12)and (13), ('Si) now has u e form

N\

o -
Gl =0 ..
clenients

z fNiNinij ds| . (14)
iLs .

Similarly, the riuid-stiucture forcing function in Eq. (4) can be written as

:3‘\; = z f [{N; NJ pj dS . (15)

elements

The force {erms (S); and (T'); are the coupling between the acoustic fluid ar the
elasti: struviure. Comparing Eqs (14) and (15) reveals that by defining a coupling matrix
1 1) such that

My - 2 [{N; N dS] , (i6)

elements
Eqge. (14) and (15) can be written in matrix form as
(st=-pImT (@}, a7

and

{P} = (T] {p} . (18)

The combined structure-vibration/acoustic-radiation problem can now be written
as two sets of coupled equations. The structure equations of motion appear as !

Mgl {ii} + (K] {u} = [T] {p} + {F§} , 19

TR AL T IS Y AN DTS IR BRSO

and the fluid equations appear in the form

g
r
M1 (8) + [Kel {p} = -TIT (u} + {F) . (20) ]
’: f
ﬁ IN-AIR STRUCTURAL RESPONSE é

The structure being considered here is composed of a material having not only elastic
properties but piezoelectric properties as well. Reference 19 formulates the equations of
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motion for a piezoelectric solid. The assembled set of structural equations can be written

in the form
i
4 Mum 9 u N R o , @) |
e 0 ol ¥ Kpu Kppl ¥ Q

where {r} is the vector of nodal-point electrical potentials, {Q} the vector of electrical
charges, [K;,,1 replaces [K 1, [Myy,,] replaces [M], [K;,p] is the piezoelectric stiffness
matrix, and [Kuv] and [K ul are the electro-elastic coupling matrices.

Equation (21) can now te used to predict the in-air response of the free-flooded cylinder
transducer by calculating the resonance (short circuit) and antiresonance (open circuit)
frequencies and electrical capacitance.

el

The electrical-potential degrees of freedom must first be condensed to one degree of b
freedom by applying the appropriate boundary conditions. This one electrical-potential
degree of freedom is the potential which is applied across the transducer’s input terminals.
The potential degrees of freedom for the nodal points on one side of a stave of the cylinder
are all set equal to the driving potential ) and the potential degrees of freedom on the
opposite side of the stave are all set to zero. These two sides are the silvered surfaces (see
Fig. 1) to which the driven ard grounded input terminals are attached. The remaining
potential degrees of freedom in the stave’s interior are left free. The application of these
boundary conditions and a repartitioning makes it possible to write Eq. (21) in the form

O T LAy Cy e ey
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o !olly Kz,,;Kz,2 v o) - (22)
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The second equation of Eq. (22} can be written as

TS E—
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U
Ve
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S5

(K1) {,‘,’Ol + [Kyql )= {0},

»

or

W= Kyl Ky ) l,‘,‘o} : (23)

Substituting Eq. (23) into the first equation of Eq. (22) yields

i u . u 0
,,0} + Ky 1) ["Ol' (K} 5] (Kp 21! 1Kg ] [,,0] = [Q] ,
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or

) B o
My ;] [30} * Ky ) {:0’ = [Q] ’ 24)

where

(K [Ky 11 - (K9] Kyl Kyl (25)

1,1]

Equation (24) can itself be written in the partitioned form

ol 1
Muu u + Kuu Kuv u = 0 . 26)
0 01 17 Kou Kppl [0 Q

A resonance of the piezoelectric-ceramic cylinder occurs when the difference in the
electrical potentials applied tc the silvered surfaces of each stave is zero. Therefore, with

Vg = 0, Eq. (26) reduces to

[-wh My, + Kyl (ug)= {0} @7

if a harmonic time dependence is assumed. The resonance frequencies and their associated
modeshapes can now be found. This is sometimes referred to as the short-circuit case.

S et PRV RATATR MM o T oo X
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An antiresonance of the cylinder occurs when the current to the transducer is zero.
3 Therefore, with Q = 0, the last equation of Eq. (26) can be written as

<Kuu> {u}+ Ky, »9=0,

or

<Kvu>
{u}. (28)
vy
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Substituting Eq. (28) into the first equation of Eq. (26) yields
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& My, ] (U} + iK,,J (u} = {0}, (29)

% where

é é

e — K

£ (Kyy) = [Kyyl - Kyl <ll1> : 30) :
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Again, assuming a harmonic time dependence, Eq. (29) becomes

ot i Y i e

[-wi My, + Kyl {upd= (0}, 31)

and the antiresonance frequencies and their associated modeshapes can now be found. This
is the open-circuit case.

For a free-flooded cylinder, three resonant modes of vil:ration are of interest: the
breathing, the bending, and the length modes. Fig. 3 shows these three modes in a cross-
sectional display of the cylinder. The breathing mode is the best radiator of sound and is
strongly excited in air. The bending mode is weakly coupled to the electrical drive and is
weakly excited in air. The length mode is a poor radiator of sound because of the small

f volume displacements involved. When the cylinder is placed in water, however, combii.ations
i of the free-vibrational modes of the cylinder may become excited because of the acoustic
? 1adiation coupling.
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Figure 3. Cross-scctional drawing of the first three resonant modes of a frez-flooded cylinder.
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The electrical capacitance at a circular frequency w, can be calculated by rewriting
Eq. (26) in the form

K

uu”@Wa Muy Ky - , 132)

Kyy Kw | 1%0 Q

Solving the first equation of Eq. (32) for {u} yiclds

u) = - [Kyy- My, ) (K)o - (33)
Substituting Eq. . 33) into the latest equation of Eq. (32) results in

l: ‘\/.":vu [Kyy - @02 Myl (Kyd + Kw) v =Q, (34)
or

Cpy=Q,
wiicre the capacitanice C is defined by

C 2 Ky - (Kpy) [Kyy-2 Myl (K} - 35)

IN-WATER RESPONSE

If the in-air results calculated by means of Eqs. (27), (31) and (35) are as desired,
ther this finite-element mathematical model for the free-flooded cylinder transducer can
now be combined in a mathematical model of the transducer immersed in an infinite fluid
medium; i.e., the in-water, free-field response of the transducer can now be calculated.

Eqguations (20) and (26) can be combined into one matrix equation of the form

M oTT 01(s)] [Kf 0 0 (p Fg

0 My, Offil+]T K,, Kyl{u} = {o}. (36)
o ol

0 ) Lo x,, K,Jl Q

The nodal-point forces F acting on the surface Sy arise from the presence of the
exterior infinite acoustic fluid of region R,. To obtain an expression lor this forcing
function, the surface Helmholtz integral equation can be used (Refs. 20-22). This can be
considered as the boundary condition that is applied to surface S because of the interaction
between region Ry and region R,. The integral formulation relates the acoustic pressure p
at any point x in the region R, to the integral of the acoustic pressure and its normal
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derivative over the closed surface Sy. The surface Helmholtz integral equation can be
written in the form

where k is th¢ wave number w/c (w the circular frequency and c the speed of sound in the
fluid), and th: pressure in region Ry must satisfy the radiation condition on a spherical
surface SR a* infinity (Ref. 21); ie,,

The relationship between the pressure field and its normal derivative on the surface
Sy can be calculated in several ways (Refs. 12, 23 and 24). However, since the surface S
has been cliosen to be spherical, the steady-state acoustic-radiation Green's function
separates v iien expanded in spherical harmonics (Ref. 25), and the radiation impedance
associated with cach spherical harmonic subspace can be obtained in an analytical form.
This avoid: the costly numerical evaluation of numerous integrals, such as is performed in
the formu‘fztion given in Ref. 11. By expanding the pressures and normal velocities at the
finite-cler..ent nodal points on surface Sj in a finite spherical harmonic series, it is possible
to derive an analytical solution for the radiation impedance on S;. Reference 13 gives the
details of this calculation. Writing Eq. (11)as

the relationship beiween the cocfficients of a spherical harmonic expansion of the pressure
and the coefficients of normal velocity on the spherical surface Sy ¢f radius a can be

written as

The radiation admittance 1/A g(ka) is defined in Appendix A of Ref. 13 as

PR S 2T

)

Dty

el
(gl

37

! Akd(x)
=L S [p(z) 2 [‘ ] | @

A ang | d(xf) ang

D]
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PO 4 ko)
aor

lim /'
Roo

SR

ds=0 . (38)

r=R

—n—- = Jwpvh @& ., (39

] 1
n =
vy @ jwpa Ag(ka) Pg @)

h‘,;){ka)

Il)\z(ka) z o+1-ka m .
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where h(‘)(ka) is the 2,"' order spherical Hankel function (Ref. 26). The expansion
coctficients pg(a) and vi(a) are the 2th components of the surface pressure and normal
velocity, respectively, and are given by

p@0$) = X p@YO$) , “2)
2=0
and
" @0.8) =2 v @Y) 0.4) , 43) ;
2=0 §.
with i
2r n
py@ = f s [ pa0.0)Y) @.0) sin@) a0 (44)
0 O

CTTURTRT
W et

and . . \\

vo@) =f d¢_0[ vi (3.0,¢)Yg(0,¢)sin(0)d0 , (45)
0

v b

where (a,0,9) are the spherical coordinates of the point £ on Sl .

KT

In practice, the summations in Eqs. (42) and (43) are carried out over only the first
few terms. The exact number of terms that is necessary can be found by first calculating
the maximum value of ka and then finding the maximuin value of £ for which the imaginary
part of the acoustic admittance is zero below this ka value. Figure 4 is a graph of the greatest
value of ka versus the greatest value of 2. For e::ample, for a cylinder to be operated to a

maximum frequency of 20 kHz and enclosed in a fluid sphere 0.1 m in radius, the greatest
2xfa
value of ka = —z— is less than ten. From Fig. 4, the greatest value of £ (denoted by L ) is

S A s

(o

thercfore fourteen. However, only the cven-order terms need be retained because the
orientation and electric drive configuration of the cylinder produce an even symmetry plane
at 0 = 90 deg. Therefore, only those spherical harmonics which are even functions under a
reflection through this symmetry plane are retained. The summations for tiic above example
contain only eight tcrms.

LN TIRIRASACNCUN

The form of the forces acting on the fluid-sphere surface Sj is the same as that of
the for s due to the presence of the vibrating cylinder that act on the acoustic fluid {Eq. (17)].
except that the coupling matrix now couples the infinite acoustic (luid exterior region to
the acoustic fluid sphere via the surface-fluid finite-clement interfaces. This coupling matrix
will be denoted by [M l since its elements arc analogous to a consistent mass matrix; ¢.g.,
they are the integrals o!' a quadratic form of the interpolation function N over the closed
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spherical surface Sj. The clements of the coupling matrix are defined by

T
bt

: Mghi; = 2 S NN as (46)
= surface Sl
3 clements

T

¥ The vector {F; }therefore has non-zero clements for thosc degrees of freedom a-sociated
with the finite-clement nodal points that lic on the surface S;. Partitioning Eq. (36)intoa

(bR

2 form v.here the surface and interior degrees of freedor are scparated, the partitioned matrix %
equations becgiite E
- P T| (:) %
Mplse C© (Mpg;  (pT)g Pg 3
: o o0 o 0 i :
g Mo T 4 g 4
3 Mglis o Mg);  (eT); i g
3 0 c 0 Muu ] 7. 47 g
‘ - T r b g
(Kps 0 (Kpg; O Ps Fs %-’
A 3
3 + |0 Ky 0 Kou | 3v 110 : 2
3 J(Kl')i,s 0 Kpy; 0 Pi 0 z
E g
16 :
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where
{F} = -piMgi (¥} . , @8
n )
The vector {v®} contains the accelerations defined by %—:- for cach nadal puint on §;.

The subset of spherical harmonics that has been chosen must now be normialized to
be compatible with the finite-c.ement idealization of surface Sy. The normalized spherical
harmonics that are the elements of the linear transformation n. .trix [L) are given by

Ly @) = -2-;—/—; Y0 @) . @9

and the full transfomation matrix appcars in the form

L €0) L, (O Lg(C) ~"Lo (D i §
4 (L} = LO_(";i) L?__(Oi) L4.(0;) L £ @ :. {50) %
; ] L@/ L) L) L @) 2
4 1 - 3
3 ‘ The transformation matrix has been normalized such that E
= 3
3 ' T Mgl L1 =111, 31) g
2 : wiiere [1] is the identity matrix. -
} 3 =
3 % To transform the equations for surface S; to the chosen subset of normalizad §
5 § spherical harmonic basis vectors, the right-hand side of Eq. (47) is multiplied by 2 transfor- : ;g
3 £ mation matrix such that i 3
] 3 I
3 1 tT o o o »IL1T (Mg} ™) 3
= - 0 1 0 O _ Q ) 2
1 0 0 0 0 3
E The spherical harmonic expansion of the derivatives of the nodal-point velocitics can be %
2 written in the matrix form ;E
it =
v"}=(L] (v"} . (53) ,
L E
17 b
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Usingz £qs. (51) and (53). Eq. (52) becomes

4 ki
1+ e ng o s ot 0 bara sy A YR Y

LT

o

o—=o ©
)
o
by
u:
"

0
3 0
3 0

o0 -

Q 54
0 . (54)
0

Substitutinz Eq. (40} for the normal velocity components in Eq. (54) yields

H T ) .

= L ¢ 0 0 lfa “/72] Diag g}

. 0 1 0 O] RHS.= Q (53)
: : 0 o 1 0 0

3 | 0 0 0 1 0

Similarly. the left-hand side of Eq. (47} can be multiplicd by the transformation
matrix and the surface pressures expanded in sphierical harmonics.

I PR SR AR B st e E ) et

{pls= L] {p;g} (56)

G e ol it e (e
(e .WQVVW‘ LA A ENEAR SUEHERE S

such that
Lf o 0 o LTl 0 LTMpg; (TopT| |Pe
3 0 1 0 0, o 0 0 0 o 1y
‘ 0 o 1t ¢ e Mp); (L 0 (Mf)i,i (PT)? i
3 0o 0 0 1 0 0 0 My, i
LTk, L Tkpg; o | (o,

0

0 K
: (Kp)i 5L 0
_ TL K

(57)
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Combiring Eqs. (55) and (57), the transformation of Eq. (47) can now be cxpresscd as

% I . 3

Top, L 0 tTp;  Tenl | |5,

v -9 ___ 0 _.%.....0....__.._.0_.... d b .

Mp); L 0 1 (Mp;; DY B; i

= | 0 0 1] Muu ] i | f

Tk L+ sl dpsae, O 1 LTKpe; O 0 *
L (Kp) sL+ 1al fygpiag 1 LP(Kpd i P2 i

0 ?

u R % S TN ) 3 U5 ] SR

= (Kp); sL 0 Kpyj; 0 rij 10 f

1 H .TSL KUI' : ‘Ti Kuﬂ u 0

At o

Equation {58) can be solved at a set of circular driving frequencies «for the unknown
2 ficld variables p 2+ V- Pj and u in terms of the known clecirical forcing function Q. However,
E this is a large system of equations, and a totzl solution at cach frequency would be costly.

5 Typically, the equations are morc than one hundred fifty in aumber. To reduce the number
of equations that need to be solved at cach frequency, Eq. (58) is partitioned as shown above.
The second set of equations of Eg. (58) can be solvad for

o

and the solution substituted into the first sct of equations. Partitioning the matrices such

that the interior problem (Refs. 12 and 20) can be solved scparatcly yiclds a small system

of surface equations to be solved at cach driving fraquency. If the driving frequency is

ncar an cigenfrequency of the interior problem, then the surface equations are overdetermined
by one degree of freedom. That onc degree of freedem is the cigenvector of the interior
probicm that is associated with that cigenfrequency.
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To calculate the interior cigenvalues and cigenvertors, the lower right-hand blocks of
Eq. (58) can be written scparately. However, a simple modification, suggested by O. C.
Zienkiewicz and B. M. Irons (Ref. 17), produccs a symmetric form for the equations
describing the interior problem which makes it casicr and less expensive to calculate all of
the eigenvalues and cigenvectors. Solving the third cquation of Eq. (58) for {p}i yiclds

daputeeatinn sl RS s
{ !
s

(k= K} Mgl g TLI (B} - (Kehh Mgl ; (B )
IRel; o T (i - IKgl) (Kglig LT tpg)

& Pate

T AR AR AL 1 CEIALC 0 A RO IR

A SR F N
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Substituting this expression for {p}; into the fourth equation of Eq. (58) yields

[T3; (Kl ] (Mgl g L) (B} + TH; (KD Mgl (5);
+(Myd + T Kl 1oT1]) ()
+ CITgl L) + T3 [Kgl3k (Kglig ILD) (pg)
+ {Ky,} v +[Ky,] {u}=1{0}. (60)

Multiplying Eq. (59) by [Mg¢]; ; and Eq. (60) by p and substituting them for the third and
fourth equations of Eq. (58) results in

The lower right-hand blocks of Eq. (61) arc now symmetric matrices and can be con-
sidered as a matrix equation of the form

B N
]
LT (Mp, L 01 LTMpg; LT DI

——— 0 4o 0 0

Mp;; Kk ML 0 ! Mp;; Kk My Mpy; Kpps D] T

GTRKOE ML 0 1 (T (K Mp; oMy + 6 (Kp )]

LT KL+ 1alhgpe, 0 ) LTapy; 0 n,] [o :
$ |————— 0 --____._-.K"_"_.:_._o_ _____ E".“_ Y Q 3

M) (Kpik (Kp; L 0§ (Mp; 0 o ;,

DL+ (oD K Ky L pKwy 0 oKy, [ L0) 0] :

N - (61) g

Mgy ; Kok Mgy (KL DT
(Mg); ; (gl 5 Mg Mp); i (Kp); (0T {p,
(v D); (Kf).il,i Mpli;  PMy, + (e (Kf).i!i (PT);r ii

Mpy; O nl_ Jo
+ E) PKuu i S P . (62)

These arce the equations of motion for the free vibrations of the coupled structurc/acoustic-
fluid-sphere problem with the boundary condition of zero pressure on the sphere surface
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(the Dirichlet boundary condition). The eigenvectors of this system form a square trans-
formation matrix {U] such that the first column of the matrix is the cigenvector that corres-
ponds to the smallest eigenvalue. Operating with this transiormation on the “mass™ and
“stiffness” matrices of £q. (62) results in

(63)

Mpy; K o oMy Kpik DT
W=, ,

uiT .
I (pT); (Kf).il,i ( Mf)i,i M, +(pT); (Kp) il,i (PT)’li-

E and

4 2 1

— (Mf)l,i 0 wi' 02 ...... 0

it 0wy ...... 0 1= WilDig.  (69)
E ; ] PK S :

2 2]

:A P 0 ...... mn.J

é Applying the transformation [U] to Eq. (61) and expanding lg‘; such that

’ HEEETEI

Gt

where g}is the set of unknown coefficients of an expansion in the eigenvector basis
functions, yiclds a set of equations of the form

Ly
1

Aof <Ny

| P i p 0

My Mg) | F Kip o Ki2 .

! v + L v Q

2 MLl Ka: Ve el 0
Mypi Iy g [KZ,I | @ndpiag|fe | | ©

-3
£
%
$
;
1
¥
;
!
Y
3
f
i
t
¢
£

if the following definitions are made:

LTMpg L 0
0 o]

W i i ghs iy

My ) =
: | Topg; LTen!
My 5] =[ Os" o | WU,
el
Myl = (UIT (Mf)i.i“‘f_)li.imr)i.s'- of
- (pD; (Kp)j; MplisL O
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Ki il = LT KpssL+Uhgpiag 0
Kl 0 K ’
L. vy

Tkps; 0 ]

0 Kyu

(K 5l

(ujy ,

A
and

[Ky;) = (UIT M) (Kp)i (K L 0
B DL+ 6D, K KpygL oKy

Equation (66) can be solved in the frequency domain by first solving the second
set of equations for {g} and substituting the solution into the first set of equations. For
driving frequencies that are close to an interior eigenfrequency, a solution to the first set of
equations cannot be {oiind because factors of 1 /(m? - wz) are present. To avoid this singularity
problem, the transformed surface pressure and electric potential equations arc augmented by
the eigenvector that is associated with the interior cigenfrequency that is close to the driving
frequency. Therefore, the system of equations never needs to be overdetermined by more
than one equation. However, for convenience, all those equations that are associated with
eigeifrequencies of the interior preblem that lie inside the frequency band of interest can

as a block be used to augment the surface equations; i.c., [Kl 1] and [M, 1 ] are enlarged
by k rows and columns. Equation (66) now appears as i

-y Py oz Py 0
K
Mg Mo | 1,1t Kip ) Q
- RN S T | LN b or ., @&
v ) . s 2
Mast Ink | UEnk Ky i (i 0piad [k |0
if the following definitions arc made:
— M M
My g1 =) 1 Mkt (69a)
’ | (M2, 1)k I
— (M ),
My o) = "2""] , (69b)
| o

=
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ORI R U (694)
(K?.,l K (‘*’i )Diag
e [ i (69)
[Kl,zl z i 3
and
[hyy) = [Kyppy O . (690)

The subscripts k and n-k refer to the blocks of the matrices that are associated with the k
smallesi and n-k largest (the remainder out of n total) interior eigenvalues. The value of k
is associated with the lowest eigenfrequency that lies above the frequency band of interest.

Assuming a time dependence of ej‘*’t. the second equation of Eq. (68) can be solved for

) = | ST A
8n-k m%,k-(uz Diag [w M2,1 'K2,1] : . (70)
K

Substituting Eq. (70) into the solution to the first equation of Eq. (68) results in

Py

_ 3 - - 1
v} =1 My KD+ Gl My 4K ) (w2 "*’2) '
. : nk Diag
0
. (wz Mz’l - Kz’])J-l 1 Q . (7!)
0

In general, this set of equations is not large; therefore, solving the system at a great number
of frequencies is not expensive.

The complex elecirical impedance of the piezoelectric-ceramic cylinder can now be
calculated as a function of frequency. Defining the complex impedance Z from

v =17, (72)

where the current I is defined by

3R

[ = —
ot

’
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and :

Q = Qqelvt
the electrical-charge forcing function can be written as ‘ ;%%

=— k:
o (73) .
3 Substituting Eqs. (72) and (73) into Eq. (71) yields %
g o2 25 L% VIS SR [ S ;
; Z ¢ = [Cw™ My Ky )+ o™ My 5+ Ky 9) (wz _wz) , :
o b ko g 3
2 1 > | 3
A c W My -Ky DI (liwp - (74) % Z
b 5
e The solution vector for Eq. (71) that is obtained for constant-voltage drive ’%
i 5 1
A ; &
3 : : %
2 ; _ :
| Bk g g
; ; can be calculated from Eq. (74) by normalizing the solution to Eq. (74) to the impedance ’fiz
! Z; ie., j
. ] .
. Py ye = ye o 1 i
- P} = ™My + Ky )+ o™ My 5 + Ky 9) (T—z‘) ;
e - “p-k © @ / Diag Z
b i Bk J a
e [ o %
1 e W?Mgq-Ky 171 Ml/iwz (75} ;
5 w-M21-5"2,1 Jw . Y %
s 0 -
%
b The surface and interior acoustic-fluid-sphere pressures and the cylinder displacements 3
;: ] per input volt can now be calculated from Egs. (56), (65) and (70). ;;?
4 Since the mathematical formulation presented here includes no structural damping, =
~ ¥ the efficiency of the tiansducer is 100 percent. Therefore, the radiated acoustic power is @
e 5 equal to the electric power delivered to the transducer. The radiated power P can be calculated 3
A from E. E;
- P = % Re (vI%). (76) ;
A 3 i
Y ¥ 1
i & 24 « :
] e Z
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Substituting Eq. (72) into E 1. (76) yields

P = % Re (w*Z*) .

Sy e T TR
o\ e (N b NG SN E M, G WPy e
A PSP R T ST Gy SV ERE AR

(77
When ww* = 1, Eq. (77) calculates the radiated power per input volt and can be written as
P Re(Z)
» P=¥—>x
7 *z12 - (78)
The components of a spherical harmonic expansion of the pressure at ary point
. x(r,8") in region R, are given by
b n§kn) f
14 (1) = pyla) —; ; (79)
: PR R R
'ﬁ where po(a) is given by Eq. (75). The actual pressure at x can now be calculated by using
% Eq. (56) for the appropriate angular coordinates; i.e.,
= {p(.0")} = [LO"] {py(r)} (80)
The derivations of these ecvations are found in Appendix B of Ref. 13. If the transforma- g
. tion matrix [L] of Eq. (56) is now used in iiq. (80), then the pressures in region R, are cal- 4
3 culated at points on the surface of a sphere of radivs r with the same angular distribution as %
k- the nodal points on surface $. The calculated vector {p(r,0')} is really a vertical directivity b
“ pattern. %
’3 3 COMPUTER IMPLEMENTATION 5
- The mathematical formulation that has been constructed for the analysis of %
tangentially polarized, piezoelectric-ceramic, free-flonded cylinder transducers was E
k- : : . N : 3
; implemented ‘1t a series of three computer programs. The first program generates input data 4
9 for the second and third programs. The second program is a MARTSAM finite-element 3
«; instruction program, and it calculates the cylinder’s in-air response and forms the matrices %
‘ that comprise Eq. (74). The third program performs a frequency sweep, and at each frequency : g
3 : it calcuiates the complex electrical impedance, radiated power per input volt, and transmit- ]
. ting voltage response. Directivity patterns and cylinder displacement distributions can be %
calculated for selected frequencies. £y
5 %j;
| 3
H 7 é
25 { 2
4 g 3
Ix: %
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A PROGRAM DATFFC*

, This program takes given dimensions of the cylinder to be analyzed and specified

2 finite-element idealizations of the acoustic-fluid-sphere surface and the cylinder and generates
g the necessary data for the second and third programs. The computer program DATFFC

needs to have the following input parameters specified by the user in MKS units:

SRkt

i

R, inner radius of the cylinder

RO, outer radius of the cylinder

RLNTH, total length of the cylinder

NSTAVE, number of staves that comprise the cylinder

SMALLA, radius of the fluid-sphere surface S;

RHO, density of the acoustic fluid

RCV, speed of sound in the acoustic fluid

DENSTY, density of the piezoelectric-ceramic material

RMATPM(I), ten piezoelectric-ceramic material parameters (see Ref. 8)
NPSR, number of fluid-sphere surface element:

: NLR, number of structure elements along the half-length of the cylinder
' NTR, number of structure elements through the thickness of the cylinder

R R I et o

L

TGS

iﬁ NSPHH, number of terms used in the spherical harmonic expansions

:; KAUG, number of degrees of freedom used to augment the surface

Z equations to prevent singularities in the solution over the frequency
% band of interest

7 3 CAPFRQ, the frequency at which the in-air electrical capacitance of the

: transducer is to be calculated

‘ The structure has midplane reflective symmetry in the z-direction and N-fold

24 : reflective and rotational symmetry about the z-axis. The structure therefore consists of N

o ' unit cells. It is necessary to mathematically model only one unit cell and apply the boundary
conditions of zero azimuthal displacement for the boundaries of the unit cell that are
f shared by its ncighboring cells. Because the electrical driving force is axisymmetric, only

; m = 0 circular harmonic motion is considered (see Ref. 13). This means that the cylinder
displacements and the acoustic-fluid pressures are independent of the azimuthal angle ¢, and
3 if the displacements of the cylinder are written in terms of a cylindrical coordinate system,
e then all azimutha) degrees of freedom can be set to zero with no loss of accuracy over the

¢ frequency band of interest. The mathematical modeling can therefore be reduced to a two-
i dimensional problem even though the unit cell of the cylinder, one stave, is not axisymmetric.
4 In addition, because the cylinder has midplane reflective symmetry (see Fig. 5), modeling of
3 only the top half of a stave and the top half of the fluid sphere and applying the symmetry
| boundary condition of setting to zero the z-displacements of the cylinder in this plane is

;; sufficient to generate the results for the entire cylinder (Ref. 27).

2

a8

From the list of input parameters, the fluid sphere is idealized into FTAXI2
MAPRTSAM finite elements based upon the number of zlements specified for the sphere

* DATFFC: from data gencration program for the analysis of free-flooded cylinders.

e
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4 Figure 5. Cross-sectional d-awing of the cylinder and iluid sphese surface showing the ,2
““ rotational symmetry axis and reflcctive symmetsy midplanc. %
[
s 3 g
- 3
3 f surface and the cylinder length and thickness. The FTAXI2 element is a compressible fluid %
g t‘ axisymmetric element with a triangular cross section. Each element has six nodai points B
§ with a single degree of freedom, the pressure, associated with each node. Figure 6 shows a "’-g
H ; typicai fluid-sphere idealization. The triangles are calculated by means of a triangularization i &
{ routine developed for a contour plotting program (Ref. 28). Lists of the (r, z) coordinates 4
=1 H of each nodal point in the fluid sphere idealization (COORDF) and the fluid material para- %
meters and element assembly data (ELMNTF) are produced. 3
R A
3 The finite-element model for the piezoelectric-ceramic cylinder is gencrated by E:
7 : modeling the top half of one stuave of the cylinder with PHEX20 MARTSAM finite clements. g
E: 3 Again, the idealization is determined from the list of input parameters. The PHEX20 3
2 2 clement is a solid, threc-dimensional element with 20 nodal points for cach clement. Each %
£ nodal point has threc displacement degrees of freedom (x, y and z in a rectangular coordinate 3
: t %
27 £
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. Figure 6. Cross-sectional display of the finite-clement idealization of the top half of
E the acoustic fluid sphere that encloses the cylinder.
E system) and an electrical-potential degree of freedom v. Fig. 7 shows a typical stave
3 idealization. Lists of the (x, v, z) coordinates of cach stave nodal point (COORDS) and the
: piczoelectric-ceramic material parameters and stave element assembly data (ELMNTS) are
calculated.
When the coordinate data COORDS and assembly data ELMNTS are used in the
MARTSAM finitc-clement program. the mass and stiffness matrices are generated for the
stave model in a rectangular coordinate system. Becuase an axisymmetric structural repre-
sentation is desired, it is necessary to transform the cquations to a cylindrical co~dinate
system. The DATFFC program generates a list of rotation angles for cach nod . point
(BCLIST), which MARTSAM can then use to perform the coordinate system transformation.
3 28
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SRR

Two lists arc gencrated that will provide MARTSAM with the recessary information
to constrain the three-dimensional stave mode! into a plane (i.c., a two-dimensional axisym-
3 metric model) whiic still retaining the proper clectrical propertics for a tangentially polarized,
staved cylinder. The BAKADL list sets equal the radial- and vertical-displacement degrees
of freedom for nodal points with identical r- and z-coordinates. The MPACKL list packs
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out the appropriate radial, azimuthal, and vertical degrees of freedom. In addition. the two
lists apply the appropriate electrical-potential boundary conditions. All of the potential

degrees of freedom for the nodal points on one side of the stave are set cqual to represent
the driven foiled surface, and all of the potential degrees of freedom for the nodal points on
the opposite side of the stave are set equal to zero to represent the grounded foiled surface.

The remaining clectrical-potential degrees of freedom are left free and are condensed out
later.

o et e ey -

The program DATFFC also generates the sphcerice! harmonic transformation matrix
{L] and the structurefacoustic fluid coupling matrix {Tj. Finally, lists of paramecters and
matrix sizes are produced for use in boti the second and third programs.

PROGRAM MRTFFC*

This instruction program forms and assembles the mass and stiffness matrices of the
fluid and for the piezoelectric-ceramic stave, transforms the equations for the stave from
rectangular to cylindrical coordinates, constrains the displacement degrees of freedom into
an axisymmetric representation, and applies the appropriais displacement and electrical-
potential boundary conditions.

Following the procedure given on pages 10, 11, the clectrical-potential degrees of
freedom are condensed down to the one driving potential. Equations (23) and (24) are then
used to calculate the resonance (short circuit) and antiresonance (open circuit) frequencics
of the cylinder in air (FREQST and FREQOT). The clectrical capacitance (CAP) in air is
also calculated from Eq. (30).

The cigenvalues and cigenvectors of the interior problem are calculated from
equation (57), and the KAUG lowest cigenfrequencies (FREQY) should contain at least
one frequency above tie frequency band of interest. Augmenting the surface equation by
too many degrees of fresdom does no harm except to slightly increase computational costs,
but augmentaticn by too few equations can cause singularity problems.

B o it

bl

Finally, the matrices that comprisz Eqs. (70) and (74) are asscmbled for use in the
third computer program.

L

PROGRAM FRQFFC**

A b 1A

This program requires the following input paramcters to be specified by the user:

IFFQ, the lowest frequency of interest

ILFQ, the highest frequency of interest

IFQINC, the frequency increment

R(1), distances chosen for the calculation of the transmitting voltagc
response and/or directivity patterns

N P T s (L s

MA R_TSAj\& program for the anzlysis of frec-flooded cylinders.
**  Frequency-sweep computer programs for the analysis of [ree-flooded cylinders.
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Using Ea. (74), the computer program FRQIFC calculates the real and imaginary
parts of the electrical impedance Z for cach frequincy. Also at each frequency, Eq. (78) is ,
used to calculate the radiated power, and then the solution vector is normalized to Z and
the tronsmitting voltage response 1s calculated from Egs. (79) and (80) at 0 = 0 deg and
0 =90 deg. The O-deg response is calculated off of the top of the cylinder along its symmetry

axis, while the 90-deg responsc is calculated off of the side of the cylinder on its symmetry
plane (see Fig. 5).

Vertical directivity or beam pattems can be calculated for any frequency and distance.
Pressures at nodal points that are interior to the fluid-sphere surface and the structural dis-
placements can also be calculated for any frequency. From this data, contour plots can be
madc of the magnitude and phase of the near-ficld pressure distribution.

4 EXAMPLE ANALYSES AND COMPARISONS WITH EXPERIMENTS

To assess the accuracy of predicaiions made with the mathemat®al model presented
in this report, three existing free-flooded cylinders were analyzed. These cylinders were
cihosen because they have quite Gifferenct characteristics, and experimental measurements
previously made of the electrical impedance, transmitting voltage response, and directivity
pattems were readily available.

A TN

Cylinder A is constructed from 32 staves of barium titanate (Ceramic B type)
piczoelectric ceramic. To waterproof the bare ceramic element, the cylinder was fiberglass
coated. This was done to keep to 2 minimum the discrepancies between the physical trans-
ducer and thie mathematical modcl of the transducer. Except for the waterpmof coating,
no otlicr additions were made to the bare ceramic element before testing. The agreement
between this experiment and the predicted results will be the best possible.

Cylinder B is 2 60-stave cylinder constructed from a type of lead zirconate-lead
titanate ccramic (2 PZT-8 varicty). This transducer consists of the ceramic cylinder wrapped
with fiberglass to provide mechanical bias that will protect the ceramic from fracture when
driven at high levels, inner and outer rubber boots. brass end-rings, and castor oil surround-
ing the cylinder between the inner and outer rubber boots. (Sce Fig. 8 for a cross-
sectional sketch of a cylinder in a typicai case.) The cylinder can now be casily mounted,

driven at high levels, and is clectrically insulated from the water by the rubber boot and
: castor oil.

Rl At A aaled

Cylinder C is a 30-stave cylinder constructed from another type of Jead zirconate-
: Icad titanate ceramic (2 PZT-4 varicty). This transducer again was tested with the piczoelcctric-

veramic cylinder wrapped in fiberglass and installed in a case similar to the onc described for
Cylinder B.

uw;.@.mmmm.mamanmmmmmwamﬁmmmmmmmw' ;




R o e i e e e e R e T - i e PR i e e R o

— e -~

BRASS EN\D RING
NN Q

-, -
I .
< Pl

»

»

| olL

iy

A A St bl

INNER ‘| ouTER
RUBBER—p /= RUBBER

800T 'l BOOT

Sl L

PIEZOELECTRIC- | -
CERAMIC :
CYLINDER

\\\ RTINS

Fzure & Ceossanctional draming of a typial free-flondad oy limder tanduccs i ks case. isclading the coramic cyhmder.
brass ¢z rings, inser and outes tebber boots, and cntar ol (dim; of the cxe

BRASS END RING

D D R T S T P S




e
Lk

LR

RN

oL

(e ot

N Pr 1 oo

o

afa,
|

- e

———— e

N e T A oy = rd = g
s e o e S R N oy )

CYLINDER A

Cylinder A was constructed only for the purpose of comparison with thecretical
predicticns. The 32-stave barium titanate (ceramic B type) cvlinder is not wound with
fiberglass filaments nor does it have a protective case or any provision for mounting. Com-
parisons between experiments conducted with this cylinder and theoretical predictions
should yield the best possible agreement.

Table 1 gives some of the parameters uszd as inputs to the computer programs. As
was pointed out in Ref. 11, material parameters that are listed in handbooks (Ref. 29) are
often very inaccurate. Ceramic varies from manufacturer to manufacturer, and differences
in material parameters as great as 20 percent are not uncommon in supposedly identical
types of ceramic. In an attempt to produce matesial parameters which more accuratcly

describe the ceramic out of which the cylinder under consideration was constructed, a simple

perturbation technique was used to fit the breathing resonance, breathing antiresonance,
and the clectrical capacitance of the cylinder in air. In generai, this technique works well.
The took and perturbed values for the piczoclectric-ceramic material parameters are listed
in Table 2. Table 3 gives the mcasured values for the electrical capacitance and the first
thirec resonance and antiresonance frequencics of the cylinder in air and also the predicted
values on the basis of both the book parameter values and the perturbed parameter values.

Table i. Input parameters for the three example free-flooded cylinders.

[ - P IR SRR

Parameter Cylinder A Cylinder B Cylindesr C
Rl (m) 0.1641 0.09843 G 08573
RO (m) 0.1927 0.1151 0.09287
RLNTH (m) 0.1272 0.08636 0.07938
NSTAVE 32 60 30
SMALLA (m) 0.22 0.14 0.12
RHO (kg/m>) 1000 1000 1000

RCV (m/scc) 1500 1500 1500
NPSR 9 9 9

NLR 2 2 2

NTR 1 1 1
NSPHH 10 10 10
KAUG 10 10 10

The measured and predicted real and imaginary parts of the in-water clectrical
impedance arc shown in Fig. 9. Thc small discrepancics between the computed and the
measurcd responscs are attributed to inaccurate material parz,n:ters and limitations in the
model {inclusion of no material losses and the inability to model gluc joints, for example).
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Figure 9. In-water complex clectsical impedance of Cylinder A as a function of frequency.
Salid lines are for experire:nt and dashad lines for theosy.

36

E
E
-3
2
|
<
E
2
x
%
Bl
k-]
H
=
=
S
E
3
3
*
3

ot et e——

Py
oo A Are P R e I )

- D,
e d o g et B U R, T Y e~
ki i, il PR R 2o Ay e et v Fa PN Doty e
b " 2 S T i 2
a2 z o




" A AR AN S I -
< 53\17‘;“rg ;»5?‘%\!3345?“’?1‘??\"‘{9'5“7 AL R L R e s B S A P S e SV A P S

v s e o o —— AN 2

N R
~4 é-."»('.‘“-u_ i 3

PO
i e S

i

The measured and predicted transmitting voltage responses are shown in Fig. 10.

<

kv
The measurements and calculations were made at a distance of 1 m off of the side (8 = 90- '
deg) of the cylinder. The agreement is again excellent. k.
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Figure 10. Transmitting voltage response of Cylinder A as a function of frequency.
3 Solid line is for experiment aad dashed line for theory.

Figures 11 and 12 display the measured and predicted vertical directivity or beam
patterns at 3,000 and 7,000 Hz, respectively.

The maximum source level and maximum radiated power can be calculated by

! assuming the maximum permissible electrical field will occur for an applied voltage of
5V/0.001 in. (2,000 V/cm, a conservative estimate). For Cylinder A, the minimum distance
between adjacent electrodes is 3.2 cm and the maximum voltage is therefore about 6,400 V.
At 3,000 Hz, the maximum source level is 213 dB re 1 uPa at 1 m, while at 7,000 Hz, the
maximum source level is 210 dBre | uPa at 1 m. The minimum source level for the cylinder
driven at 6,400 V over the frcquency band from 1.5 to 10.0 kHz occurs at about 5,000 Hz
and is 190 dB re 1 uPa at 1 m. The maximum radiated power at 3,000 Hz is 6 kW, and the
maximum radiated power at 7,000 Hz is 1.7 kW.

A &“’m‘i ]ggsz.‘-niﬁsﬁ A A

CYLINDER B

)

A Ve

Cylinder B is constructed from 60 staves of lead zirconate-lead titanate (PZT-8 type)
tangentinlly polarized piezoelectric ceramic. The in-air measurements of the iesonance and
antiresonance frequencies and « 'ectrical capacitance were performed on the bare ceramic
element, but the ii-water experiments were conducted with the cylinder wrapped in fiberglass
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and mounted in the case shown in Fig. 8. Table 1 gives the dimensions of the ceramic
cylinder, Table 2 lists book and perturbed piezoelectric-ceramic material parameters for the
PZT-8 like ceramic material, and Table 3 shows the measured and predicted in-air response

of the cylinder. Again, the use of perturbed material parameters produccs good agreement

between theory and experiment.

The measured and predicted real and imaginary parts of the electrical itapedance are
shown in Fig. 13. The agreement between experiment and theory for this cylinder is not as
good as it was for Cylinder A. The presence of the case appears to have two major effects
on the response of the transducer. First, the case ir creases the length of the cylinder, giving
the cavity a greater volume; thercfore, the first cavity resonance occurs at a lower frequency

LB ‘E.,‘ 4o

0

5
A

than predicted. Second, the rubber boots and castor oil introduce larger losses into the « ié

system than were present in Cylinder A. Because the mathematicai formulation used for 2

these predictions includes no structural damping, at frequencies wherc losses i the rubber %

and castor oil are appreciable, the predicted impedance does not compar«. very well with 4

the measured impedance. :%

‘ :
§ Figure 14 shows the measured and predicted transmitting voltage responses. Agair, %
§ the lack ot damping in the mathematical model and the increase in cavity size cause some 5
t discrepancies. In addition, it appears that minor resonances of tiie case or mounting hardware 3
; have been introduced into the system. %
: 5
; Figures 15 and 16 show tiie measured and predicted vertical directivity pattems at }j
? the frequencies cf 4,500 and 6,000 Hz, respectively. The agreement of 4,500 Hz is excelient %
and the agreement at 6,000 Hz is good. The differences in geometyy and damping between 3
! the bare cemmic cylinder and the transducer as tested appear to produce the greatest effect §
3 off of the top of the cylinder (for small angles of 0). '%
i 32
: The maximum source level and maximum radiated power can be calculated in the ;
ﬁ same manner used for Cylinder A. Assuming a maximum voltage of 2,000 V the maximum .
; source level is approximately 206 dB re 1 uPa at 1 m at 4,000 Hz and 193 dB re 1 pPua at g
2 1 m at 8,000 Hz. The maximum radiated power at 3,000 Hz is 5 kW, at 4,000 Hz is 1 kW, =
f and at 8,000 Hz is about %2 kW, é
| ;s
’ CYLINDERC 3
* 3
Cylinder C is a 30-stave cylinder constructed from lead zirconate-lead titanate %
5 (PZT-4 type) piezoelectric ceramic with the dimensions given in Table 1. The in-air measure- z
$ ments of the resonance and antiresonance frequencies and electrical capacitance were per- 7
i formed on a bare ceramic clement, and quite interesting results were found. From Table 3, f}‘,
% the measured in-air response of the transducer shows that the bending resonance and anti- g
4 resonance frequencies Jie between the breathing resonance frequency and the breathing 5
§ antiresonance frequency. This was verified by using an optical probe to measure the 1‘3
; displacement distribution along the length of the cvlinder at the frequencies of interest. ﬁ
: The caiculated in-air response made with book material parameter values also predicted this ~§
f, phenomenon but not at the correct frequencies. Performing the same simple three-parameter :E
39 %
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Figure 15. Vertical directivity pattern for Cylinder Bat 4,500 Hz. Solid linc is for cxperiment
and dashed line for theory Pressures are plotted indBre 1 fiPafor 1 Vinputat 1 m.
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Figure 16. Vertical directivity pattem for Cylinder B at 6,000 Hz. Solid line is for cxperiment
and dashed line for theory. Pressures are plotted indBre ¥ UPa for 1 Vinputat I m.,
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perturbation calculation that was performed for Cylinders A and B resulted in only a

partial success. The calculated resonance and antiresonance frequencies more closely fitted
the measured frequencies, but the bending resonance and antiresonance frequencies no

longer lay between the breathing resonance frequency and the breathing antiresonance
frequency. It appears that either the simple perturbation calculation performed here is not
sufficient to fit all of the material parameters or the finite-element model of the cylinder

has too few clements to predict the proper bending. However, this discrepancy in frequencies
i3 only about 5 percent and should not affect the in-water respons¢ of the transducer. Table 2
».¢s the book and perturbed piezoelectric-ceramic material parameter values.

Figure 17 shows tiie measured and predicted real ané imaginary parts of the electrical
impedance. The experiment was performed with the ce.amic cylinder again housed in a case
similar to Fig. 8. The predicted impedance closely follows that measured experimentally
except at the two frequencies where again damping lattens the measured response.

- e —m——

The measured and predicted transmitting voltage response for Cylinder C is shown
in Fig. 18. Except for the overestimation of the level at the cavity resonance frequency, the

two curves show excellent agreement.

=
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Figures 19, 20 and 21 display the measured and predicted vertical directivity pattems
at 3,000, 6,000 and 10,000 Hz, respectively. Just as for the previous cylinder housed in a
case, the measurzd and predicted patterns do not agree as well at 0 == 0 deg, as they do at
0=90dcg. The added structure and the presence of structural damping give the transducer
S a response that is slightly altered from that of the bare ceramic elements.

PR LI
Qe ¥t

v pn

= The maximum source level and maximum radiated power are found by assuming a

-3 maximum voltage of 3,500 V. The maximum source level is therefore, for example, 203 dB
re 1 pPaat 1 mat 3,500 Hz and falis to only 197 dB re 1 uFa at 1 m at 8,000 Hz. The
maximum radiated power is 7.4 kW at 3,00u Hz but down tc 0.4 kW at 5,750 Hz and to
0.2 kW at 8,000 Hz. These are again conservative figures since acceptable drive levels are

often 6 or 8 V per 0.001 in.

?
At S

5 CONCLUSIONS

RN R R
PO S v A i U i s Bt b s bt

o gy P .
I ’ vy o
S (_‘« X AR SAR LA o (A0

The powerful mathematical modeling techniques that have been presented in this
4 report can be used to calculate the response of any axisymmetric transducer (or transducer :
: that can be approximated by an axisymmetric representation over the frequency band of ;
( interest) when immersed in an infinite acoustic fluid medium. In particular, this report
k: describes the computer programs that have been written to use this mathematical formula-
3 tion in the analysis of tangentially polarized pieznelectric-ceramic, free-flooded cylinder

transducers. The programs are designed to take a few basic parameters and produce a set

of graphs that display the complex clectrical impedance, transmitting voltage response, and
radiated power as functions of frequency. At any selected frequency, the vertical directivity
pattern (the horizontal directivity pattern is always circular since an axisymmetric response
is assumed) and displacement distribution on the cylinder can be calculated.
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Solid lines are for xpeziment and dashed lines for theory.
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Fizgwe 19. Vertical directivity pattern for Cylinder Cat 4,000 Hz. Solid line is for experiment
and dashad linc for theory. Pressuics are plotted indBre 1 #Pafor I Vinputat I m.
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Figure 20. Vertical directivity pattem for Cylinder Cat 6,070 Hz. Solid line is for experiment
and dashad line for theory. Pres.uresare plotted = “sre i dPafor ] Vinputat I m.

46

e e N AT ST TP R e h RYCR NI g BT




Sy e T SRR

[ L

— P O P ——— W

. RS
210" ~¢ 2> 150°

. \--‘L,_h i Y
180°

Figure 21. Vertical dircetivity pattem for Cylinder Cat 10,000 Hz. Solid line is for experiment
and dashad line for theory. Pressuses are plotted indBre I fiPa for 1 Vinput at I m.

Three free-flooded cylinders were analyzed and the resuits compared with experiment.
The first experiment was designed to approximate as closely as possible the transducer that
was mathematically modeled. No fiberglass wrapping or transducer casc was employed.

The comparison between theory and experiment for this cylinder is excellent at all
frequencies.

The agreement between theory and experiment for the othzr two examples is no
longer excellent, but the predictions are still good over a broad frequency band. The
assumptions in the mathematical model remain the same; i.e., no structural damping and
no case. The transducer used in the experiments, however, consists of the piczoelectric-
ceramic cylinder enclosed between inner and outer rubber boots and brass end rings and

filled with castor ojl. This additional structure increascs the minimal damping that exists .
for the ceramic cylinder to a significant amount. .

In addition to the structural damping {particularly in the rubber bouts and castor
oil), the added structure makes its own contribution to the produced pressure field. Since
the model includes none of this added structure, it cannot predict the scattering from the
case of the pressure field produced by the ceramic cylinder.

These deficiencies are not considered to be serious. If more exact predictions are
needed, future mathematical modeling efforts can be directed toward modeling of the
compicte transducer, including the brass end rings, castor oil, and rubber boots. Structural
daniping may also be included in the model. These improvements should pose no great
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mathematical modeling difficulties but would increase computational costs. At present
computer rates, the minimum total cost to operate the computer programs described in this
report is approximately $125. This high cost for the analysis of each proposed free-flooded
cylinder limits the design capabilities of the model. However, as a final ckeck or 2 last
iteration on a set of dimensions chosen by some simpier and more economical means, the
mathernatical modeling techniques described in this report offer predictions that are nearly
as accurate as experimental measurements and are much cheaper and faster.
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