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FOREWORD 

Mathematical models, methods and techniques which are useful and appropriate for estimating 
the accuracy of position (in some coordinate systems); velocity, and acceleration data are presented in 
this document. The development and use of the techniques discussed have evolved through the years 
and in some cases out of work not related to missile testing. Preparation and coordination of the 
material contained herein have extended over the past six years with contributions from the various 
organizations in IRIG. The material is not meant, or expected, to yield complete agreement as to the 
relative merits or importance of these procedures. However, this document is a step in the direction 
toward the eventual establishment of IRIG "guide lines" for recommended techniques for determining 
and presenting the accuracy estimates of data collected from instrumentation systems in support of 
operational testing. In addition, this volume will provide a source of documentation on current and 
available procedures as well as definitions concerning error, accuracy, and precision. 



1.0        PREFACE 

The Inter-Range Instrumentation Group has had as one of its goals the establishment of an IRIG 
standard for techniques in determining the accuracy estimates for instrumentation systems and 
methods of presenting these estimates. The IRIG Steering Committee assigned the task of 
accomplishing this goal to the Data Reduction and Computing Working Group (DR&CWG). 

During the past several years DR&CWG has endeavored to investigate the many aspects of this 
task. Work has proceeded slowly because the formulation of standard and acceptable methods for 
determining accuracies is not easy. Furthermore, it is difficult to obtain agreement on the means of 
presenting the accuracy estimates. This work has required extensive communication and coordination 
on techniques in use at t^ie various member ranges. As a result of this continued exchange of 
information, a common language and increased understanding have evolved. This evolution has been 
slow, but it now appears that sufficient agreement between member ranges and adequate technical 
maturity have developed. 

In an effort to get some results completed in print, the DR&CWG decided to break the task into 
two parts. The first portion, dealing with the positional data accuracies, appeared as IRIG Document 
Number 104-62. The second portion, scheduled to deal with velocity and acceleration data accuracies, 
was written in 1963 and coordination was undertaken. However, at the 21st meeting of DR&CWG it 
was concluded that there was much overlap in the two documents and that it would be desirable to 
consolidate them since 104-62 was then at least three years old. The resulting document, 103-64, was 
greatly amplified and contained many new topics. 

This new document basically contains the material in 103-64, with amplified material, and 
includes some of the newer techniques developed and used during the past few years. 

Preceding page blank 



2.0 INTRODUCTION 

To assess the accuracy of the final result of processing data from range instrumentation is 
extremely difficult. To obtain agreement among the various member ranges on a standard for 
techniques is even more difficult. The major reasons for these difficulties stem from the variety and 
diversity of: 

1) Various types and amounts of instrumentation used 

2) Application of these instruments 

3) Operational techniques employed 

4) Data handling procedures 

5) Mathematical and computational techniques 

6) Types of requirements for reduced data 

Although the member ranges have a wide variation in instrumentation and operational 
techniques, it is generally agreed that the measurement, Xt, collected at an instrument at time, t, is 
composed of a "true value" or "signal," ßt, and an error component, et. Thus 

Xt=Mt + et 

or (2.0.1) 

The common problem in data reduction (and error estimation) is to devise mathematical models and 
corresponding numerical analysis techniques which will effectively separate the signal from the error in 
some "optimum" manner. 

In discussions and conferences pertaining to error estimation, much has been said about the "true 
value" of a parameter. First, it is emphasized that the true value of a parameter being measured is 
unknown. If the true value were known there would be no need for further discussion of errors or for 
taking any measurements in the first place. As Cassius J. Keyser has remarked, "Absolute certainty is a 
privilege of uneducated minds -- and fanatics." Even though the true value cannot be known exactly, it 
is still a very useful concept which is used in the construction of mathematical models to represent and 
estimate the error in a measurement or set of measurements. 

Since the true value of the signal is unknown, the approach is to devise mathematical models and 
experimental design techniques to give "good" or "best" estimates of the signal. In data reduction 
terminology, these estimates are often referred to- as "computed values" or as "standards for 
comparison" in error analysis. The computed value, JLL, is a numerical function of the measurements 
Xt or may be a simultaneous measurement from a more accurate instrumentation system or several 
systems. The estimate of the error is 
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et*et = Xt-/it. (2.0.2) 

Tho quantity et is called a residual, and applied error analysis utilizes this quantity as its basic 
input in estimating error characteristics. 

It is important to note that the measurement Xt is a random variable and since iJtt and et are 
numerical functions of Xt, they are also random variables. Each of these quantities are functions of 
time and thus make up a realization or sample from a stochastic or random process. If the observations 
are taken at discrete times, they form a sequence of random variables or a stochastic sequence and are 
commonly referred to as a discrete time series. This concept readily suggests that probability and 
statistics play an important role in error estimation, as well as in obtaining parameter estimates from 
the data reduction process. 

The concept of accuracy with respect to measured and/or reduced data is closely related to the 
error therein, but is not identical to it. Certainly "small error" implies high accuracy or "accurate" 
data, and "large error" corresponds to low accuracy or inaccurate data. In general it is sufficient to 
state that accuracy is some function of the error distribution, and in the final analysis, accuracy itself 
must be estimated and based on quantities which are approximated numerically, assumed, or based on 
statistical estimation of parameters which characterize the error distribution. 



3.0        ERROR CLASSIFICATION, ACCURACY, AND PRECISION 

In accordance with Section 2.0 the error et is estimated by the residual et and the accuracy of the 
measured and/or reduced data is estimated by some function of the residual. This function usually 
involves the expected value of the error. The expected errors are generally classified into two basic 
types, the random (noise) errors and the systematic errors. The theoretical error model is 

et = St+Nt (3.0.1) 

where 

St = systematic error, and 

Nt ■ random or noise error. 

The random error is nondeterministic. This means it is not described by an analytic function but 
must be characterized in terms of its probability distribution function. The systematic error is 
generally considered to be deterministic and can be represented with an analytic model. If the error 
distribution is thought of in terms of variation, then the systematic error comprises the "explained 
variation" while the random erro"- corresponds to the "unexplained variation." 

Another type of error which is not explicitly covered by the model (3.0.1), but which cannot be 
overlooked is "gross error." This type of error is usually due to some type of malfunction in the 
measurement process and is not a usable or valid measurement. For this reason data with this type of 
error is referred to as "bad data," "wild points," or more formally as "outlyer data." This type of 
error does not belong to the statistical population described by the probability distribution function 
of Nt and hence must be removed or edited out so it will not bias or corrupt the data reduction 
process. Many different types of editing techniques are used on the various ranges and are not 
discussed in this report. However, it is emphasized that if outlyers are ignored in the data reduction 
process their effect will corrupt reduced data from neighboring valid measurements and render the 
otherwise valid data unusable. 

It is important to note that it may often be difficult to distinguish random from systematic error 
in a given set of measurements. This may be due to the fact that certain constraint conditions exist 
(geometry limitations, availability and capability of instrumentation, cost, safety, etc.) and no feasible 
test can be designed which will allow a reduction process to give adequate residuals; or it may be that 
St is very complicated and an adequate error model is not available; or it may be that the variance of 
the random error is large and the ratio of systematic error to noise error is small (error signal to noise 
ratio), which corrupts the estimates made of St. Nevertheless, in concept, and often in practice, it is 
possible to treat random errors statistically while the systematic errors may be estimated in a 
deterministic manner and corresponding corrections made to the observed data. 

The combination of systematic and random error is referred to as total error, et, and in this 
document the accuracy of a measurement is defined as the root mean square of the distribution of the 
total error. In statistical terms 

  (3.0.2) 

Accuracy - •£ [(total error)'] - •fefe z] 



where E (•) is the expected value of the quantity in brackets. 

If the systematic error and random error are independent, then 

Accuracy ~ •fe   [(systematic error)2] + E  [(random error)2]. (3.0.3) 

Another important term which should be distinguished from accuracy is "precision." There are 
probably few words as loosely used by scientific personnel as precision and accuracy. Accuracy can be 
described as "closeness to the truth" while precision is the "closeness together" or internal consistency 
of a set of measurements (see Figure 1).   From these descriptions we define precision as 

Precision - /E  [(random error)2]. (3.0.4) 

It is seen that accuracy requires precision but precision does not necessarily imply accuracy. If 
the systematic error ^ random error then in this special case 

Accuracy - /E  [(systematic error)2]. (3.0.5) 

It is recognized that among the ranges there is not necessarily unanimous agreement regarding the 
classification of errors and the corresponding concepts of precision and accuracy. However, in the 
interests of practicability the errors are classified as random and systematic with the important 
distinction that the term "bias error" is considered to be systematic error and "constant bias error" is 
considered to be the constant component of systematic error. 

At times it is convenient to characterize and analyze error in the frequency domain. When this is 
done for trajectory type data the error classification may be grouped into two categories. The high 
frequency category may correspond in a sense to random noise errors while the low frequency end of 
the spectrum may correspond to systematic errors (although not necessarily). The systematic error has 
a special case corresponding to zero frequency which is constant bias error. The frequency spectrum is 
a useful tool in the analysis of error and is discussed in more detail in Section 11.0. 

To effectively estimate systematic errors with the idea of predicting what accuracy can be 
expected on future tests, reliance must be made on experience from past error analyses concerning the 
variation of systematic errors within a test and from test to test. Viewed in this manner, the systematic 
errors are random variables which may be characterized by a probability distribution function. An 
example of how the constant bias estimate from a residual distribution of an instrumentation system 
such as a radar will vary from test to test is illustrated in Figure l.a. 

The variation of errors within and between tests, and between instrumentation sites leads one to 
look for techniques which will determine whether or not significant differences exist in the error from 
variable factors and to estimate what effects changes in these factors have on the error. Techniques 
relating to this type of error analysis deal with the analysis of variance and are discussed in Section 

6.3. 



It is recognized that there are other descriptions which may be applied to errors. Correlation of 
errors in all of its detail may not be fully understood at this time. The various interdependencies of 
data and the added complications which arise from auto, serial, and/or time series correlation makes it 
unwise to attempt a full classification at this time; however, the importance of correlation between 
and within errors should not be ignored and a general discussion of correlation and its effects on error 
estimation is given in Sections 3.3 and 4.7. 
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FIGURE 1.  The concepts of accuracy, precision and error are Illustrated. 
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FIGURE l.a The systematic  errors Ä In azimuth A, as measured  by a radar, 

have variations as pictured   above both  from test to test and as a function 

of time for a particular test. 
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3.1 ERRORS IN BASIC QUANTITIES 

Thus far only errors in measurements or observations have been discussed. However, a great 
variety of error sources enter into the accuracy considerations for data systems ..»ed in tracking 
missiles. At this time and within the present state-of-the-art, it is not practical or even possible to 
accurately estimate the error in position, velocity, and acceleration due to each of these error sources. 
In an attempt to meet demands for more and more stringent accuracy requirements, great effort has 
been directed toward the improvement of instrumentation. However, it must be realized that even 
with perfect instrumentation, there are basic theoretical limitations on the accuracy which may be 
achieved. These limitations may introduce errors which make impossible the accuracy which is being 
demanded of the tracking systems. 

Typical errors associated with some basic quantities are listed below. These exist quite apart from 
the instrumentation and place limitation or lower bound on the accuracy which may be attained. It is 
realized that there may be no unanimity regarding these magnitudes, or for that matter, their types, 
i.e., probable, absolute, etc., but they will be given as points of departure. 

First order. Class I surveys (distance) 
Velocity of light 
Index of refraction 
Changes in refraction due to rapid 
fluctuations in atmosphere 
Errors in direction cosines caused by 
the above fluctuations 
Overall ballistic camera accuracy 
Errors in reading ballistic camera film 
due to 10C fluctuation in reading 
room temperature 
Star catalog error 
Error in 100 mile base line 
Error in origin of national survey 
Differences between International 
Spheroid and Clarke 1866 Spheroid 

1)      Undulations of the geoid (Aa) 
m)    Capability to determine relative geoid 

heights at widely separated stations 
Voltage level (secondary standard) 
Mass 
Timing (atomic standard) 
Timing (laboratory electronics) 
Timing (instrument crystal) 
Timing correlation between separate stations 

a) 
b) 
c) 
d) 

f) 
g) 

h) 
i) 
j) 
k) 

n) 
o) 

P) 
q) 
r) 
s) 

10 ppm (parts/1000000) 
1-2 ppm 
25 ppm 

30-40 ppm 

10 ppm 
5-15 ppm 

5 ppm 
1 ppm 
1-5 feet 
50-100 feet 

150-300 feet 
50-100 feet 

30 feet 
100 ppm 
.0001-100 ppm 
10"12 seconds 
IGT8 seconds 
10"6 seconds 
10~s seconds 

Some of the above values are contained in Reference (1). 
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It is interesting to observe the effects of the quoted survey and refraction errors when propagated 
into spatial position and velocity at a range of 250 miles. The resulting errors due to these sources 
alone are: 

Position:    15 feet in horizontal coordinates 
40 feet in vertical coordinates 

Velocity:    0.15 foot/second in horizontal coordinates 
0.40 foot/second in vertical coordinates 

Obviously, these are facts which must be considered when imposing tracking accuracy 
requirements and in designing instrumentation systems to meet them. One is immediately faced with 
the operation of the law of diminishing returns. 

14 



3.2        CAUSES OF ERRORS IN INSTRUMENTATION TRACKING SYSTEMS 

Once a set of residuals has been calculated with corresponding estimates of the random and 
systematic errors, the process of determining the cause of the errors is often extremely difficult. The 
diffculty encountered in determining the cause of error depends on several factors such as the ability 
to effectively design and control an experiment, knowledge of the variables which effect the error, 
correlations and effects between variables, correct assumptions concerning error model and probability 
distribution functions. 

Some causes of random errors in measurements may be tropospheric and ionospheric 
scintillations, electronic noise, instrumentation wear, mechanical play, granularity, or tolerances in the 
measurement capabilities of the instrument, errors in computing and timing, multipath, scintillation 
due to echo or skin track, film reading, and so on. 

Systematic errors are caused by physical limitations in achieving a true geodetic survey, 
electronic, optical and mechanical misalignment, servo lag, phase and frequency drift, frequency and 
timing bias, encoder nonlinearity, antenna droop, mislevel, lens distortion, beacon delay, 
tniscollimation, dial eccentricity, and nonorthogonality of azimuth and elevation axes. One of the 
most important types of systematic error is usually considered to be constant bias or zero set error. 
This error is very important because it is often the most significant component of the systematic error 
St. In addition, it is the easiest component to estimate and to correct for; in fact, under actual flight 
conditions, the dynamics and geometry are often of such nature that the constant bias error is the 
only component of the systematic error which can be effectively estimated. Because of its constant 
nature, attempts to correct the instrumentation for this type of error can be made using static 
calibration tests before and after the actual flight tracking operation. Although constant bias error in 
the raw measurements can be considered practically constant for the duration of a single test, its 
propagated effects on position error may vary considerably during a single test because of sensitivity 
to tracking geometry. Neighboring spatial points in the time and space domains will in general have 
nearly constant error due to a fixed bias in misalignment. However, propagated position error would 
be significantly different at t+10 seconds (close range) from what it would be at t+150 seconds (slant 
range of several hundred miles). However, position errors due to the misalignment in the period t+140 
to t+160 seconds would be expected to remain almost constant depending on geometry changes in 
that particular interval. 

15 
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3.3 CORRELATION OF RANDOM ERROR 

The random errors N^...,^ corresponding to measurements X, ,...,Xn may be interrelated so 
that the error in the jth measurement may be dependent upon the errors in X: , ,X-2,...X:_p, p<j. If 
this relationship exists, the errors are dependent and said t»» be correlated. In the case of a time series 
this interdependence is called the autocorrelation and is estimated by means of computing the serial 
correlation. 

From a mathematical standpoint two random variables X and Y are independent if their joint 
probability density 

F(x.y) = f(x)g(y) 

where f(x) and g(y) are the probability density functions corresponding to X and Y respectively. Two 
random variables are uncorrelated if E(XY)=E{X)E(Y). It can be shown that independence implies two 
random variables are uncorrelated, but not vice versa. The correlation coefficient between the random 
variable X and Y is defined as 

xy 
E[(x-px)(Y-uY)3 a^ 

[E(X - yx)2 E(Y - M^)
2

]**      VY 
(3.3.0) 

From relation (3.3.0) we see the correlation coefficient is the ratio of the covariance to the product of 
the standard deviations of X  and  Y. If a sample X, ,...,Xn, Y| Yn is taken, the correlation 
coefficient, pxv, is estimated by N 

xy 

N 

(N - 1)    |    (Xi - X) (Yi - ?) 

 1^1  
/- N N 

I     (X1 - X)2    I     (Yi - Y)2 

(3.3.1) 

4-1 i-1 
IfX^Xi,.. Xn is a realization the autocorrelation p(k) at lag k is estimated by the serial 

correlation 

rk- 

N-k 

N - k I     (Xi" 
i-1 

x)(x1+k-x) 

N N-k 

  » (3.3.2) 

N^T I <xi - *)2 iHrrr I <xi+k-*)2 

i-l i-1 

k - 0,1.2 M<N 
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(3.3.2) is analogous to (3.3.0) in that the autocorrelation function is the ratio of the autocovariance to 
the standard deviations of Xj and Xj^. If we let the autocovariance estimate at lag k be R(k) and if 
the stochastic process is stationary, then the correlation coefficient can be replaced by the relation 

^•MI (3.3.3) 
R(0) 

(3.3.3) is called the normalized auto-covariance or the circular correlation coefficient. The graph of r^ 
is sometimes called a correlogratn (see Figure 3). 

The autocorrelation between errors is especially known to be present if the measurements are 
from an instrument whose measurements are taken with a small time increment between them. Most 
types of range instrumentation are of this type and as a result the autocorrelation of the errors occurs 
frequently. 

The effects of high correlation between errors can lead one to trouble in both data reduction and 
error analysis. If the correlation among errors is high and does not "die out" or become small in a 
short time the observed data will deceptively appear to be smoother (see Figure 2), or to contain what 
appears to be low frequency oscillations and trends which could very easily be falsely assumed to be 
"signal" or valid information, and could lead one to false conclusions about the proper technique for 
editing and smoothing of the data. In addition, it can be shown that if high correlation exists, then 
estimates of the variance of the error distribution will be biased (see Section 4.7). 

Several methods are used for modeling autocorrelated data. The general idea is to express the 
random error as a stochastic function which depends on parameters which are random variables. The 
most common is a pth order stochastic difference equation or pth order Markov process. The first 
order Markov process gives a probabilistic model of the form 

Ni = pNi.1+Tji (3.3.4) 

where Tjj is an independent random variable 0 <p < 1. The serial correlation coefficient corresponding 
to this process can be shown to be exponential, i.e., the correlation between the errors in the ith and 
(i+k)th measurement is p , where p is the correlation coefficient between adjacent measurements. 
Figure 2 shows independent noise (p=0) and correlated noise corresponding to a first order Markov 
process with p=.3, p=.6, and p=.99, respectively. Inspection of the graphs of the errors in Figure 2 
shows that as the correlation becomes high, the data appears smoother and systematic trends appear in 
the error profile which can be very misleading. 

The second order Markov process is 

N^a^N^ +a2Ni.2+T?i 

where la, I < 1, |a2| < 1, and Tj| is an independent random variable. In this model the 
autocorrelation damps out exponentially but also contains a sinusoidal oscillation. An example of 
FPS-16 error estimates which follow this type of autocorrelation is given in Figure 3. Note that on this 
figure the autocorrelation is low at a lag of 0.5 seconds between points (i.e., the correlation between 
points separated by 0.5 seconds is low). 

18 
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4.0        METHODS USED TO ESTIMATE RANDOM ERRORS 

From the previous discussion it is seen that random errors are estimated in terms of parameters 
which describe or characterize their behavior in terms of a probability distribution function. The 
parameters estimated are almost always in terms of the first and second sample moments 
corresponding to the residual distribution. If €i, 62,—, en is a set of errors, then the variance of the 
random error is expressed as 

a*   - E(eJ) - [E(Ci)]
2, (4.0.1) 

1 

and if e,, e2,...,en is a set of n residuals from a stationary time series, which estimates this set, then the 
random error is estimated by 

K-Jrh I «i-^ a. -./r-rr  I   1*4 - *) (4-o-2) 
i-1 

where 

i-l 

Relation (4.0.2) is the sample standard deviation of the residual distribution. In general, the trajectory 
measurements themselves are changing and do not form a stationary process. However, the random 
error of the measurements is usually assumed to be stationary random process. This means that 
effective methods for removing nonstationary effects must be devised. Thus, the problem in estimating 
the random error is to be able to separate the nonstationary signal from the error, obtain a set of 
residuals, then separate the systematic error from the random error. This process is dependent on 
many factors including such elements as computational techniques, autocorrelation and cross 
correlation and assumptions concerning the analytic form of the systematic error model. 

It is especially desirable to have a good estimate of the random errors for a particular system on a 
particular test as a function of time. This information is needed to settle such important questions as 
whether or not the successive errors in the measured quantity are correlated, what the optimum 
smoothing functions are, and what the best methods are for estimating velocity and acceleration data 
from position data. 

Assuming that the autocorrelation and the cross correlation are zero, several methods of 
estimating random errors may be considered, and are given in Sections 4.1 through 4.6. 
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4.1        GRAPHICAL TECHNIQUES 

In some instances graphical profiles of the residual distribution versus time are available for 
analysis. This is especially true of electronic measuring equipment where the servo feedback voltages 
are recorded graphically in analog form. In cases such as this, the residual profile can be inspected to 
see if there are systematic trends, etc. If the residual data is free of trends due to systematic error and 
correlation, one can select a fixed or variable sample rate and use relation (4.0.2) in estimating the 
random error. 

If the residual is from a population characterized by the normal distribution then a much simpler 
method is available and is based on peak-to-peak or the sample range over a selected group or block of 
residuals. In selecting groups, we take k groups each containing n points. The ranges R; which are 
peak-to-peak values for each jth group are estimated by 

R; = max ejj - min e- (4-1.1) 

The average range R of the sample ranges 's tV'.n computed, and the standard deviation is 
estimated from the relation 

ä = anR (4.1.2) 

where an is the ratio o/E(R) for the standard normal distribution and is available in tables of the 
distribution of the standardized range for a normal population (see Reference 23 for tables). 

Since the peak-to-peak technique is relative to the "envelope" of the residual distribution for 
each group or subinterval, the size of the subinterval can be selected so that trends can be removed if 
they exist in the data. 

The graphical techniques can be very useful for "quick look" analysis but have a drawback in 
that they usually involve much manual analysis. When using this technique one must be careful that 
"wild points" are omitted since the range technique is not as stable as estimating a by relation (4.0.2). 
In addition, one must be certain that the serial correlation between sampled points is not high. 



4.2        LEAST SQUARES POINT ESTIMATES OF RANDOM ERRORS 

This method can be most easily used when a point-by-point least squares fit to a redundant data 
set is being used for reduction of the data. 

Examination of the discrepancies between the solutions and the observed measurements will 
yield information regarding the distribution of errors in the measurements. By combining many of 
these residuals one may estimate their standard error. A comparison of this estimate with that 
predicted by the a priori statistics of the adjustment gives an approximation to the error in this a priori 
variance data. By repeating this procedure using new estimates for the a priori variance data, an 
improved figure for the data error may be found. 

The sample standard deviation of the space position residual at each ith time point is 

d. iiL 
'ij 

kn - 3 
(4.2.1) 

where 
ej: is the residual distance at the ith time for the jth instrument 
k = number of measured parameters (R, A, E, etc.) 
n ■ number of instruments 
3 = number of parameters being estimated (X, Y, Z). 

The term kn-3 represents the number of degrees of freedom available in the estimate of the variance. 
In the case of an optical-only solution the degrees of freedom would be 2n-3, and 3n-3 for a solution 
using n radars. In the case where ni radars and nj optical instruments were used, we would have 
3n, +2n2-3 degrees of freedom. 

Position error estimates in the required coordinate system are almost always correlated and as a 
result, the position error distribution is characterized by the estimate of the variance-covariance or 
"dispersion" matrix. The variance-covariance matrix estimate for the ith time point is 

'i*i 

Vt 

Vi 

Vi 

Vi 

Vi 
- N-1 e2 

i      i 
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where  N'1   is the inverse coefficient matrix corresponding to the normal equation obtained by 
computing the partial derivatives in the least square process. 

Care must be taken in applying this method, because it is capable of detecting systematic or bias 
error as well as random error. An examination of the time-dependent behavior of the residuals should 
be made to determine whether or not apparent serial correlations or trends among these errors are due 
to systematic causes. 

If corresponding residuals from point to point display "trends," residual systematic errors are 
indicated which often may be estimated and removed by techniques such as a "best estimate of 
trajectory" (BET) solution, a multiple regression analysis or numerically filtering over a series of 
points. After the trends or systematic error estimates have been removed, estimates of random error 
may be made utilizing the new residuals which correspond to the "unexplained" or random variations 
about the trend. 

In cases where all observations have equal weight, the standard error in the observations may be 
estimated by (4.2.1). For the weighted case the quadratic form of the dispersion matrix of the 
residuals mav be used to obtain an estimate of the unit variance. That is a^e-'We where e is a column 
vector, W a weight matrix. In this case the dispersion matrix would be 

^-flJWi'Ti)-»*! (4.2.3) 

In (4.2.3) T is the "design" matrix, T is its transpose and the coefficient matrix of the normal 
equations is N=TT, The matrix Wj is the weight matrix. The consistency of this estimate may be 
established by comparing its diagonal terms with a value of the variances known a priori. 
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4.3        MULTI-INSTRUMENT ESTIMATE OF RANDOM ERROR 

This method, sometimes called Simon-Grubbs, estimates .andom error using over determination 
from additional independent systems. In these computations (simplified) the mathematical model for 
three measurements is 

jTjl   =xii  +eii, 

Xi2   =Xi2    +ei2' 

Yi3 =xi3 +ei3. 

where yj: is the measured value of the ith characteristic x- with associated measurement error ej; for 
the jth instrumentation system. Form the three differences: 

^1.2  ■ ej, -e^ 

Ai ,3  ■ ej, -ejj 

^2,3  = e^ -ejj. 

The bias error is tacitly assumed to be some fixed value; the variance estimates for the above 
difference equations are computed about the mean difference. If the bias is changing, it adds 
components of variance estimates given below: 

Sl,2   =   S^j +S22 

s?,3  = s2, + s^ 

«2,3    "   S*l  +S23 

The above equations are solved for s2,, s22. and s23, the respective error variance estimates for 
instrumentation systems 1, 2, and 3. The variance of the estimated error variance for instrumentation 
System One is given by: 

2» 2 

Var (sM - i el
1> + , 1 TV (s2 s2 + a2 s2 +8282). 

ei   (n - 1)  (n - 1)  ei e2   ei es   ez es 

For measurement Systems Two and Three, similar expressions with the subscripts permuted are 
appropriate. 
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4.4        VARIATE DIFFERENCE METHOD 

The variate difference method is a technique which uses the pth order successive difference to 
"detrend" data and estimate the variance of the random error about the trend. It can be shown that 
the coefficients aj of the linear combinations for the pth difference follow the binomial expansion law 
and thus the sum of the a^ for the pth difference is 

I 
1-1 

(2p)l 
*1      p!(2p - p)! (2P) 

(4.4.1) 

Since successive differences are an analog to the time derivative it is obvious that constant linear and 
quadratic trends will be removed from the measured data by a first, second and third order 
differencing scheme. In actual practice the third difference is usually sufficient and in almost all cases 
the third, fourth and fifth difference estimates give equivalent results. 

If Xt «•••Xn is a set of measurements or sample from a set of independent random variables with 
mean Mx and variance a^ then the linear combination 

n 

I 
1-1 

a  .X. si 1 (4.4.2) 

is a random variable with mean 

1-1 

(4.4.3) 

and variance 

{ n ■j 

I d 
U-i i 

(4.4.4) 
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When taking successive differences, the resulting difference turns out to be a linear combination 
of the original random variable. Each difference gives a new random variable which can be expressed as 
a sum of the original measurements { Xj }. For example, the first difference is 

Yii " ^ " Xl " Xi-i •   «i - 1. -2 - " 1 

For the second and third differences we get 

Y2i " ^ " Xl+i " 2X1 + h-i '   •! - 1. "2 - - 2. a, - 1. 

Y>i ' ^ ' Xi+2 " 3Xl+i + 3X1 " Xl-i . *1 - 1. *2 - -3, aa - 3, aH - -1 

and so on. 

From (4,4.4) and (4.4.1) the equation for the variance of the pth difference is 

^P "  fj 0x (4.4.5) 
x 

Now the estimate of a2    is 

x i-i        » 

so that 
n-r 

1 

■    (p
2p) Ü - P) 

where 

Aj?.= pth successive difference in Xj 

n = number of data points in sample 

p = order of the successive difference 

^ 
27 
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The variate difference method is widely used since it can be applied to data when no knowledge 
concerning the trend in the data is available. However, caution must be used because of the 
assumptions which were made concerning independence of the errors. It should be emphasized that if 
the error is highly correlated, then the error variance estimates will be biased, and in fact usually 
underestimated (see Section 4.7). In addition to the correlated effects on the variate difference 
method the technique is also highly unstable if "wild points" or outlyers are sampled. One method of 
compensating for autocorrelation in the data is to compute the differences using a larger time spacing 
At between the measured Xj's. However, one must be careful that when large time increments are 
used, the effects of aliasing do not bias the variance estimates. A more satisfactory technique is to 
estimate the autocorrelation function and use this to correct the biasing effects on (4.4.7). The 
amount of biasing caused by autocorrelation is discussed in Section 4.7. 

Since the variate difference method is based on differencing it is a useful tool in examining the 
frequency content of pth order differences obtained. If At is the time interval between successive data 
points, the maximum distinquishable frequency is (l/2At) cycles per second and is called the Nyquist 
frequency. Higher order differences around the order of 4, 5 or 6 effectively examines the error 
contributions of frequencies between 0.82/2At to the Nyquist frequency. This is due to the fact that 
frequencies below 0.82/2At have been removed by differencing. If we can assume the noise is uniform 
over all frequencies, we may estimate the component of the variance in the interval .82/2At to l/2At 
by dividing the variance obtained using the variate difference method by four. The frequency range of 
0.82/2At to l/2At is based on the frequency response of the variate difference method. For a fourth 
order difference the weights are (1, 4, 6, -4, 1). If we take the Fourier transform of these weights we 
obtain the frequency response as given in Figure 4. 

Figure 4 - Frequency response for fourth order variate difference method with 

lag At between successive points. 
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4.5        THE LEAST SQUARE CURVE FITTING METHOD 

In the least square method a polynomial is fitted to the data points by any standard least squares 
curve fitting technique. 

In particular, if a series of measurements, X,, Xj Xn of a parameter such as a rectangular 
coordinate are made as a function of time and a polynomial of degree p is fitted to this data and if the 
corresponding points on the curve are X',, Xj ,...Xn, then: 

ax -   J ,- * TV      )       (X.   - Xl)2 (4.5.1) 

is an estimate of the standard deviation of the random error in the measurements Xj ,X2...,X . 

If p, the degree of the polynomial, is small compared to n, the number of points, the value of a 
approximates the usual definition of RMS error, i.e.. 

vj l  (xi-^ RMS -   V *      I      (Xi - X')2 (4.5.2) 

i-1 

Estimated standard deviations are frequently plotted against the time of the mid-point of the span, 
and significant information concerning the variation of random errors with time or geometry can be 
obtained from these plots. 

If the error is serially correlated then the estimates of the variance of the random error will be 
biased depending on the extent of the correlation. This is discussed in more detail in Section 4.7. 

However, in estimating the errors by either the variate difference and/or least square curve fitting 
methods, it is usually assumed that autocorrelation und cross correlation are zero or very nearly so. In 
actuality, the following possible conditions may exist in data acquired by range instrumentation: 

1. The errors in the measurements X, Y, Z at each point in time are not independent-cross 
correlation, 

2. The errors in successive trajectory points are not mutually independent-serial or 
autocorrelation, 



3. All measurements of a given type do not possess a common variance heteroscedastic 
(versus homoscedastic), 

4. Time measurements are not error free-time error. 

Whenever one  or all  of the above conditions exist  in  the acquired  data, more advanced and 
sophisticated techniques are needed to estimate the random errors in the data. 
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4.6        USE OF A DIGITAL HIGH PASS FILTER 

In Section 3.0 random error was characterized in the frequency domain as comprising the higher 
frequency portion of the power spectrum of the error distribution. If this is the case, then 
frequency-constraining digital fdters can be constructed which will effectively separate the 
high-frequency components from the low at a designated cut-off frequency. This technique is often 
more desirable than using a least square polynomial to smooth the data and then subtracting the 
smooth data from the raw measurement. The reason for the desirability of the digital fdter over the 
least-square polynomial is that the digital filter can be designed so that its frequency response has a 
sharper roll off with less "leakage" or side lobe effect so that undesirable frequencies do not pass 
through the filter. Examples of second-degree polynomial frequency responses over 31 and 21 points 
and digital filters with approximately the same cut-off frequencies are given in Figure 5. It is noted 
from the graph that the high-frequency "leakage" of the polynomial fits is as high as 25 per cent. The 
corresponding leakage for a low-pass digital filter over 25 points with a cutoff of 0.05 cycles per unit 
time is 2 per cent. 

When the residual distribution is obtained from a high-pass numerical filter, the standard 
deviation and RMS of the distribution can be estimated using relations (4.5.1) and (4.5.2) where p is 
the highest degree of a polynomial which will pass through the corresponding low-pass filter without 
change. 
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4.7        EFFECTS OF AUTOCORRELATION OF THE ESTIMATION OF RANDOM ERRORS 

In Section 3.3 it was pointed out that high autocorrelation makes the random error appear 
smoother and can lead one to false conclusions concerning reduction techniques. This is due to the 
fact that high correlation may appear as signal information. Because of this trait, autocorrclated 
random errors will bias the data, and the amount of bias usually depends on how high the correlation 
is. 

To illustrate how autocorrelation affects data reduction and random error estimation, the 
difterent random errors illustrated in Figure 2 were superimposed on a known quadratic function, ao + 
a,t + a2t2, with ao = -1,3, = -1, a2 =1, and the variance of each error distribution was a2 = 0.01. The 
results of approximating the quadratic signal with uncorrelated random error are shown in Figure 6 
while the results with high autocorrelated error are given in Figure 7. Each of these figures displays a 
complete picture of the analysis. The first graph displays the predicted curve (line) with the raw data 
(signal plus noise) on the same graph as circles. The second graph displays the residuals. The 
information on the bottom of the figures describes how good the approximation is. A comparision of 
the two figures is summarized in the following table 

TABLE I 

|         Auto 
Correlation 

j         (rho) 

Fez 
ao 

cent Ei 
ai 

ror 
82 

Stan 
aao 

dard Erz 
0 
ai 

or 
a 

82 

Variance 
Estimate 

Best Degree 
Fit 

0 1.852 

20.687 

3.808 

29.893 

1.474 

11.406 

.07311 

.05548 

.04750 

.02418 

.02310 

.01176 

.0095 

.0025 

2 

10 

Table I shows that highly correlated error gives invalid results in every area. The error in the 
regression coefficients with rho = .99 is much higher and the estimates of the standard errors in the 
regression coefficients are grossly underestimated and are not consistent with the actual errors. With 
rho = 0 the variance estimate is very close (.0095 versus 0.01) while the variance estimate for rho = .99 
is underestimated. It is noted that the best polynomial fit was correct with uncorrelated noise. 
However, when rho = .99 was present, the best fit was a polynomial of degree 10. The example given 
has shown that data containing random error with high autocorrelation can cause the following 
adverse effects. 

1. Often makes data appear smoother. 

2. May appear as signal or information. 

3. Biases estimates of regression coefficients. 



4. Biases estimates of variance of error distribution. 

5. Biases estimates of variance of regression coefficients. 

6. Biases "goodness-of-fit" tests. 

The effects of correlated error on estimates of the variance when the variate difference method is 
used is also adverse. High correlation causes the variance estimates to be low. If the autocorrelation is a 
first order variate difference on each point to eliminate a quadratic trend, it can be shown that the 
variance estimate will be 

d2 - (1 - p)(l - .5p+ .lp2) o2 (4-7-0' 

where 

p = correlation coefficient of lag 1 

o2 = variance of error distribution 

If we use the same technique on every other point (i.e., with a lag of 2) then the variance 
l stimate is 

d2 - (1 - o2)(l - .8p + .2a2) a2 (4.7.1) 

The results of (4.7.0) and (4.7.1) are illustrated in Figure 8. Note from the figure that with a lag 
of 1 (every point) and wich p = 0.9, the variance of the error is underestimated by a factor of 0.0631. 

It is stressed that there are techniques which may be used to estimate and compensate for 
autocorrelated error. If the correlation is known a priori, it can be compensated for by "extended" or 
weighted least-square techniques which utilize the inverse of the autocovariance matrix to obtain a 
weighted estimate which compensates for correlation. If the autocovariance/correlation is not known, 
it can be approximated by analysis of residuals from first estimates. An iterative approximation 
process can be set up to obtain updated estimates of the autocovariance functions which are used for 
updated estimates of the regression coefficients. Information regarding the autocorrelation function 
may often be obtained by establishing a history of data analysis from previous operations. 
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5.0        INTERVAL ESTIMATION OF RANDOM ERRORS 

in the previous section, techniques for point estimation of the variance, standard deviation or 
root mean square of the random error distribution were discussed. It should be noted that the 
estimates of these parameters are themselves random variables and have corresponding probability 
distribution functions. This fact points out that the use of sample random variables (or residuals in the 
case of error analysis) involves the concept of confidence, tolerance and prediction regions. In the case 
of o.ie dimensional random variables, these regions are intervals on the real line. The regions 
corresponding to higher-dimension random variables will be discussed in Section 8.0 after the 
covariance matrix has been discussed. 

Interval estimation is an important concept and, in general, if we are given a sample of n residuals 
e, ....en from the population e, ,...,e , the problem is to find two statistics (L, U) defining an interval 
which has 100«% probability of containing 1007% of the individual values in the population. Such an 
interval is called a tolerance interval with lower and upper tolerance limits L and U. The value of a, 0 
< a < 1, is called the confidence coefficient. For example, if a = .90 and 7 = .95, we are 90% 
confident that at least 95% of the individual values will be in the interval (L,U). 

Besides interval estimation for individual values of the population, we are interested in interval 
estimates for the parameters, Ö. nl ich define the probability density function of the population. We 
want to find statistics L(ö) such that 

Prob(L(ö)<fl<U(ö)) = 7 (5.0.1) 

where 0 would be a parameter, such as the mean or variance of the distribution. In this case, 
the interval L(ö), U(ö),is called a confidence interval for the true (but unknown) value of the parameter. 
Another interval estimate is the prediction interval. In this case, we construct an interval   that has the 
preassigned probability of containing the next observation. 
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5.1        THE CASE OF THE NORMAL DISTRIBUTION 

it is often assumed that the random error et is a random variable which has the normal or 
Gaussian distribution. This assumption may be based on experience or used because it is well known, 
convenient, and gives approximately correct results. It is pointed out that in the real world many 
random variables are not normally distributed, and this includes random errors. An example of an 
error which is uniformly distributed (rather than normally distributed) is round-off error. However, 
the importance of the normal distribution in error analysis is recognized and some of its basic uses are 
considered in this document. 

A figure of the standard normal distribution (i.e., n = 0, a2 = 1) is given in Figure 9. if ct is a 
sample from the population et which corresponds to the normal distribution with mean fi and variance 
a2 (assumed known in this instance), then tolerance intervals of the form /i± ka corresponding to a = 
1 (absolute certainty) can be constructed. The values of k corresponding to the more widely used 
values of y are given in the following table 

AREAS (1007%) UNDER THE NORMAL CURVE iN THE iNTERVAL jU±ko 

k 7 

.6745 .5000 

.7979 .5751 
1.0000 .6827 
1.6449 .9000 
2.0000 .9545 
3.0000 .9973 

These particular values of k and y correspond to the following error quantities 

.6745a: probable error (PE) 

.7979a: mean absolute error (ME) 
a: standard deviation 

1.6449a: map accuracy standard (MAS) 
2a: significant error 
3a: highly significant or near certainty error 

Another important quantity is the standard error of the mean, or standard error of estimate. If 
the mean and variance of a sample are estimated from n points, then he standard error is a/Jn. 
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1  -X2/2 e    , u 0, o 
/27 

Z/a 

a - Standard Deviation 

Z - Actual Deviation 

AREAS UNDER CURVE 

100.00% 

50.002 
57.51% 
68.27% 

Total Area 
Area Between: 
+ Probable Deviation 

Mean Deviation 
+ Standard Deviation 
+ Significant Deviation 95.00% 

2 Standard Deviations 95.45% 
♦ Highly Significant 

Deviation        99.00% 
+ 3 Standard 

Deviations      99.73% 

STANDARD MEASURE, X 

FIGURE 9.  Standard Normal Frequency Distribution Curve. 



5.2        CONFIDENCE INTERVALS ON ERROR PARAMETER ESTIMATES 

Suppose e,,..Men is a sample observed from the population et ~ normal (M,a2) where the 
population parameters (i and a2 are unknown. Assuming that the observations are independent, then ß 
and a are estimated by the sample mean Fand sample standard deviation se, where 

n 

n    *•      1' 
1-1 

i-i 

Fand se are random variables with e" *• normal {/i,o2/n) and the quantity 

(5.2.1) 

(n - lUl 
Z -r-S. (5.2.2) 

has the Chi-square distribution with n - 1 degrees of freedom (i.e., Z has X^ , distribution). It can 
further be shown that the statistic 

(5.2.3) 

has the "student" T-distribution with n - 1 degrees of freedom. From relation (5.2.3) we can obtain a 
confidence interval for ju by 

Prob <^Ji< t 
n-!.^)       8e/^       n-!.^) - Y 

or (5.2.4) 

e ± t 
•.»,«*)  Ä 
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is a 1007% confidence interval on /i, where t depends on the confidence coefficient a and the degrees 
of freedom v which in the case of n observations correspond to (n - 1). When tüa = 1, then the 
confidence interval is "e ±se//ifr and the quantity sjjnis called standard error of the mean or just 
"standard error." Values for tv a can be obtained from tables in most statistical texts. 

In a similar manner we can get a confidence interval on o utilizing (5.2.2). From (5.2.2) we get 

Prob 
(n - Ds* 

x2 <  i .   ^ 

m < X m (5.2.5) 

which leads to a 1007% confidence interval on a2 which is 

(n - 1)8*                (n - Ds* 
-^ £ < a2 < — £ 

m ^ 

(5.2.6) 

Values of x^ can be obtained from Chi-square tables in statistical texts. 
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6.0        METHODS USED TO EVALUATE SYSTEMATIC ERRORS 

The problem of evaluating systematic errors in a given instrumentation system is considerably 
more difficult than that of evaluating random errors, unless a suitable comparison standard is available. 
Unfortunately, the systematic errors can be several orders of magnitude greater than the random errors 
and no absolute comparison standard exists. There are, however, several approaches which can be used 
to evaluate systematic errors. 

6.0.1        ANALYTICAL INVESTIGATION OF POSSIBLE ERROR SOURCES 

This involves representing the system by as comprehensive a mathematical model as possible. 
Reasonable perturbation of each of the model parameters is introduced and the resultant effects of 
this on the data are calculated. From this analysis may be obtained an estimate of the likely range of 
systematic errors. This approach is limited by the store of scientific knowledge, which makes it 
extremely difficult to construct a sufficiently comprehensive mathematical model of the system. This 
would appear to be especially true of propagation anomalies which particularly affect electronic 
systems. 

6.0.2        COMPARISON OF OBSERVATIONS FROM DIFFERENT SYSTEMS 

If it is known that System 1 is significantly more accurate in an absolute sense than System II, 
then an estimate of the systematic error in II can be made by noting the discrepancies between 
observations of the two systems. The estimate of the total error in System II is made by computing 
tl i difference 

A = (System II - System I) 

at each time point. The difficulty with this approach lies in selecting a suitable standard. Emphasis 
must be placed upon the fact that upper bounds on possible systematic errors in the standard must be 
known, and these bounds must be narrow compared with reasonably lower bounds for the systematic 
error in the system being investigated. Thus, for the calibration standard it is absolute accuracy, not 
relative or internal accuracy, which is of prime importance. This fact makes it unprofitable to compare 
systems indiscriminately. Also, it is necessary to employ a mathematical model of the system being 
treated in order to transform the standard data and propagate any error in the standard into the tested 
system. 

The observations collected and used for error analysis may be from actual operational tests or 
from tests which are specifically designed for the purpose of error analysis. Tests of the latter type are 
called calibration tests. The most simple, economical, and frequently used calibration technique is the 
"static" 'calibration test. This utilizes calibration equipment and objects as "line-ups," boresight 
towers, and stars. In most instances, however, the static calibration test is not effective in estimating 
the many errors encountered during an actual operation. The reason for this is that most of the 
systematic error components are dynamic in nature and depend upon variables such as distance, 
tracking rates, atmospheric conditions (temperature pressure, humidity, etc.), and the direction in 
which the instrumentation system is pointing. As a result, dynamic calibration tests utilizing a good 
test design and a standard with sufficiently small error provides a better estimate of the systematic 
error. 



6.0.3        ANALYSIS   OF   MEASURING   RESIDUALS   FROM   OVER-DETERMINED   LEAST 
SQUARES SOLUTIONS 

When a given instrumentation system provides a redundancy of data, a least square solution may 
be performed. The adjustment leads to a set of measuring residuals (or corrections) for each trajectory 
point. The criterion for adjustment is the principle of maximum likelihood. If these residuals indicate, 
from point-to-point, a randomness about zero, there is good indication that the systematic error is 
small. If the residuals do not display this randomness about zero, one must conclude that the original 
observations are biased or have systematic error. A total error computed from the residuals gives an 
estimate of the upper limit of the systematic error in the observations. 

6.0.4        ANALYSIS OF RESIDUALS FROM A BEST ESTIMATE OF TRAJECTORY 

When there is simultaneous track with more than one instrumentation system, a Best Estimate of 
Trajectory (BET) can be computed. This trajectory and the residuals of the individual systems 
referenced to it can then be analyzed to determine estimates of the systematic errors. The BET is a 
powerful method of estimating systematic errors in both the reduced data and the measured 
parameters. There are several methods of obtaining a BET, depending upon the criteria for test. The 
most powerful of the methods developed to date involves the use of mathematical models of the errors 
of the individual systems. In all the applications of BET to error studies, the basic idea is that, 
according to the criterion agreed upon, a best estimation of what the observations should have been is 
made and then compared with the observed data. 

6.0.5        MULTILATERATION 

As in the case of BET, when redundant data from several instruments is available a 
multilateration technique which uses inputs from several different sources such as doppler, pulse radar 
data, and inertial guidance data can be used. This technique has the error model design as part of the 
solution and attempts to "weight out" the effects of error sources by associating each source with an 
uncertainty which is estimated from a priori testing and is updated by the multilateration solution. If 
error sources are correlated, they adversely affect the solution and must be taken out, using estimates 
from calibration performed prior to the test. Once this is done, estimates of the magnitudes of all the 
error model coefficients are made simultaneously employing a maximum likelihood technique, which 
is mechanized using the Kaiman filter approach. 



6.1        ERROR MODELS 

In Section 3.0 it was stated that systematic errors are deterministic. This means the systematic 
error S(t) can be represented analytically in terms of a mathematical model. Since the random error is 
nondeterministic, it must be represented by some probability model. In general, one may set up error 
models which fall into the following categories: 

I. Deterministic 

Parametric estimation—an analytic model which describes the error in terms of parameters 
which are the components of the error. 

Nonparametric estimation—a numerical model which approximates the error numerically, 
i.e., as a sequence of numbers such as the output from a digital filter. 

II. Nondeterministic 

Parametric estimation—a stochastic equation depending upon parameters which are random 
variables, e.g., the expression of a random process by a pth order Markov Process. If the process is 
stationary it can be characterized in terms of parameters which index its probability density function. 

The most simple systematic error model would be 

S(t) = /i (6.1.1) 

In this case the systematic error is a constant bias, "offset" or "zero set" error. If S(t) is 
estimated by a sequence of n Aj's, then 

n 

It * I .i   I    Aj (6.1.2) 

j-l 

The Aj's also contain random error and the averaging in (6.1.2) separates ju from N(t). The 
estimate of the random error parameter would be 

JS Ö-Ml    (AJ-Ä)2. (6-l-3) 
j-l 

If the error components are independent, then the error model can be expressed as a linear 
combination of independent variables, i.e., 

k 
ei" I Y±+ ni i6-1-4) 

j-i 
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The error model given in (6.1.1) can be expanded to include terms which describe various error 
components. A good example is a typical error model frequently used for the AN/FPS-16 radars. The 
error models for range, azimuth, and elevation are given below. 

AR   - ao + aiR   + a2R, + asR. + a^S/N) + asR. + aeR.R. 

277     • 2TT    • 
+ a7 esc Ei + a8 sin 6ÖÖÖ Rj + a9 c08  60ÖÖ Rj + ai0 1 

+ a 11 II 
RJ     d 

j 

(6.1.5) 

where 

ao ■ constant bias 
a! = timing delay 
a2 ■ acceleration servo lag 
a3 = jerk servo lag 
a4 ■ beacon delay 
as = oscillator drift or 

scale factor 
a6 = time dilation 

a? = residual refraction 
ag = resolver nonlinearity 
a.9 = resolver nonlinearity 
aj o ^ x survey error 
aj i = y survey error 
a j 2 = z survey error 

Nj ■ random error 

A A    • bo + l^Ä. + hzk. + bsA   + bi^sln A.  tan E. + h5 cos A^  tan E^ (6.1.6) 

where 

+ b6R.Ä. + b? sec E. + bg  tan E. + bg sin A    + bio  cos A 

+ bn j- cos A    sec E   + Bi2 J- sin Aj  sec Ej + N^ 

bo ■ constant bias 
bi = timing bias 
b2 ■ acceleration servo lag 
h3 = jerk servo lag 
b4 = mislevel 
bs = mislevel 
b6 = time dilation 

h1 = collimation 
bg ■ nonorthogonality 
h9 = encoder nonlinearity 
bi o = encoder nonlinearity 
bj j = x survey 
bi 2 = y survey 
N: = random error 
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AE - co + ciE + C2E, + C3E. + Ck  sin A. + cs cos A. + c R.t. (6.1.7) 

♦ C7 cot E. + cs sin E. + C9 cos E. + C! 1 
J J J «j 

♦ C12 — cos A    sin E. + C13 ^T cos E. + N. 

sin A.   sin E 

where 

c0 = constant bias 
C! = timing delay 
C2 ■ acceleration servo lag 
C3 = jerk servo lag 
C4 = mislevel 
Cs = mislevel 
c6 = time dilation 

C7 = residual refraction 
c8 = encoder nonlinearity 
C9 = encoder nonlinearity 
Cyo = x survey 
C! 1 = y survey 
C12 = z survey 
N: = random error 

In the linear error models the dependent variable is the total error residual, and the indepenHent 
variables are usually assumed to be uncorrelated and are determined by the physics or geometry of the 
situation. The independent variables are assumed to be known without (or at least with negligible) 
error. Since the independent variables depend on the physics and geometry of a particular test for a 
certain instrumentation system, it is important to stress that the error model depends not only on 
analysis of the physics involved, but on the design of the test itself. For example, if one had a 
near-perfect standard for comparison for obtaining good error estimates, one could not obtain a valid 
estimate of the mislevel error coefficients if the test design failed to enable the instrumentation system 
to traverse less than 180° in azimuth. Also, one could not estimate scale factor error if the range 
remained approximately constant. It is obvious that in order to estimate dymanic errors one must have 
a corresponding dynamic test design. 

One proposed test for dynamic error estimation involves the use of a calibration satellite. This 
type of vehicle would allow tracking in virtually every quadrant over a wide variety of rates, look 
angles, and positions. Further, its trajectory can be predicted very accurately using the equations of 
motion as a model. The orbital parameters can be determined by BET techniques, using world-wide 
networks of instrumentation systems. Many problems would still exist in a program of this type, such 
as unmodeled parameters in the orbital model, nonuniformity in the earth's gravitational field, etc. 
However, during certain satellite passes and combinations of passes, the effects of such errors can be 
minimized. For further detailed information on the use of a calibration satellite, see Reference 24. 



6.2        REGRESSION ANALYSIS 

The linear error models discussed in the previous section are generally approximated utilizing 
multiple linear regression techniques. The techniques for regression analysis are discussed in this 
section and the techniques for evaluating the validity of the analysis are discussed in Section 6.3, 
Analysis of Variance. 

When an acceptable standard is available and e|, ei, ..., en obtained they are assumed to be a 
realization from the process 

ei"QlO + alXil  +a2Xl2  +   •'•   +akXik+ni 
(6.2.1) 

i = 1,2, ..., n. The a's are unknown parameters and tjj is the random error, rj is assumed to be a 
stochastic process whose elements are homoscedastic, indepe.'lent, with mean /*_ = o and variance al. 
In matrix form (6.2.1) is 

e = Xa + T? (6.2.2) 

where c and rj are n x 1 column vectors, o is a (k-» 1) x 1 column vector and X is an n x (k+1) matrix of 
known elements 

X 

«11 

X21 

• 

Xnl 

Xl2 

X22 

Xn2 

Xlk 

X2k 

Xnk 

(6.2.3) 

The matrix X consists of the n values of the k independent variables and is called the design 
matrix. In the analysis and design of experiments, the independent variables are called factors, the 
dependent variable (in this case the error) is called the response variable or yield. The n values of the 
independent variables are called levels. 

In the standard least squares analysis of (6.2.2), estimates a are made of the parameters a such 
that the sum 

1-1 

(6.2.4) 

is minimized. This done by taking 

3S_ 

3*. 
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3s      n ■ — ■ 0. 
(6.2.5) 
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The system (6.2.5) twes the normal equations for a. These are 

(XTX)a = XTe (6.2.6) 

and it can be shown that (XX) is a positive definite matrix and has an inverse. Thus 

a=(XTX)",XTe (6.2.7) 

The a's are called regression coefficients and are least square estimators of the parameters a. Since 
the a's are dependent upon the ej's they themselves are random variables and are characterized by a 
kth dimensional probability density function. Since the system of normal equations was linear, the 
variance of the regression coefficients is estimated by the sample covariance matrix: 

,TX1-1S2 (6.2.8) V«r(a)  - d* -  irir*lj 

where 

N.2 

SN-    I    n-k-r (6-2-9) 
1-1 

SJ^J is the estimate of the variance of TJ, computed from the residuals Hu where 

Nl " ei -  Iao +   I    -JV (6"2'10) 

j-i 

i.e., the N's are the residuals about the regression estimate of e. 

If the TJ'S are assumed to be characterized by the normal distribution, then since the a's are linear 
combinations, they are also normal variates with expected value estimated by (6.2.7) and variances 
estimated by (6.2.8). Confidence intervals on the parameters a! and oq can be obtained using the 
Chi-square and normal distributions as discussed in Section 5.2. 

If the errors are not independent, then it can be shown that if this is not accounted for, the 
estimate of a will be biased. The techniques for handling correlated error come under regression 
analysis with "extended" or weighted least squares approximation. A detailed discussion of this topic 
is found in Reference 26. 



6.3        ANALYSIS OF VARIANCE 

Many of the previous sections show that error analysis is actually the analysis of the variation of 
measurements about some accepted standard. The problem involved in error analysis is to evaluate it 
in terms of explained variation (systematic error) and unexplained variation (random error). If one 
should obtain error estimates from several sources such as various tests, different instrumentation 
sites/systems, several runs, flights, times, aircraft, missiles, etc., he might desire to consolidate the 
results and design a technique to break the total variation into components which will explain the 
effects these varied sources have on the total ■ ariation. For example, the error models in Section 6.1 
give several oources which will contribute t le total variance of the error. The questions are "how 
much do they contribute" and "is the contribution due to any one source significant?" If the answers 
to questions such as these can be obtained, we would then know which variables to use or delete in 
our regression analysis. The technique used to break variation in data into source components is called 
Analysis of Variance, which is highly dependent upon the design of experiments briefly mentioned in 
Section 6.2. 

The sources of variation considered in analysis of variance are called variables or factors. The 
factors may be quantitative (such as a dynamic error model) or qualitative (such as different missiles 
or radars). Analysis of variance can correspond to several test designs. The most simple test design is 
the "completely randomized" or between-group and within-group design. In this case there is only one 
source of variation. For example, suppose that total error estimates y are made for a particular radar 
for k different tests from the same type of missile. The data would be grouped according to tests and 
the problem is to estimate the amount of variation (out of the total variation) between tests; the 
amount of variation within tests, and to test whether or not such variation is "significant." Such a test 
is called completely randomized because the grouping of the tests is accomplished in a random manner 
to eliminate any systematic trends which might exist from test to test. The mathematical model for 
such a design is 

y      - y + o^ + e^ , j - 1 ni; i - 1,   .... k (6.3.1) 

where 

yj; = ith measurement from the jth group 

nj = number of observations in the ith group 

JU = mean of population from which groups are sampled 

CKj = deviation of mean of ith group from M 

ej; = unexplaineH variation in y-. 
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The a's are regarded as random variables with mean zero and variance a£. The term €■■ is often called 
experimental error, and in the between-within experiment a^: would be the variance within the groups. 
Table 6.3.0 gives a typical between-within analysis of variance design (one-way analysis of variance) 
and illustrates how the parameters are estimated. 

TABLE 6.3.0 

ONE WAY ANALYSIS OF VARIANCE 

Source of 

Variation 

Degrees 
of 

Freedom 

Sum of 

Squares 

Mean 

Squares 

Expected 
Mean 
Square 

Between 
j    groups 

k-i In (y - 7)2 - A 
1 1 1 

A/k-1 o2 + koä 

1 Within 
i    groups 

N-k 
i.j  J 

B/N-k o2 

TOTAL N-l 
ij   1J 

C 
N-l 

-   v  ni?i) 
y-l  ■■„ - 

k - (N2 - I n2)/[N(lc-l)l 
1 1 

If the errors are not independent, the analysis of variance is not valid. Errors from different 
groups may reasonably be assumed uncorrelated, but errors within groups are often correlated, 
especially if the measurements within a group come from a time series. However, this can be offset by 
randomizing within each group. Thus, in order to be effective, the one-way analysis of variance should 
be completelyrandomized. 

The analysis of variance usually has a "test of significance" associated with it. That is, we 
hypothesize that the means of each group are equal, then (under the assumption the groups have been 
completely randomized and are independent normal variates), test for the rejection of this hypothesis 
at a prescribed probability level. The most widely used test is the ratio of the variance from the source 
(between) to the variance of the experimental error. This forms a statistic which has the F probability 
distribution with (k-1) and (N-k) degrees of freedom. This is the same as saying 

Prob 
1 • variance between groups  „ 
2 variance within groups 

f K 

(k-1) 

(6.3.2) 

Suppose we select K such that Prob(Sf/S^  < k)   = .95, and then set up the hypothesis H,,: Mi = Ms 
=...= Mij = M (i-e., the means of each group are equal). From the analysis of variance we estimate F 

•! 

(6.3.3) 
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If F is then compared to the theoretical value of F from the F distribution, and F > F we reject H0 and 
say the group means are significantly different, if P < F we cannot reject H0 and there is  no 
significant difference. 

When certain factors which are known are placed in the experimental design, additional 
constraints are added to the design. For example, we could select the p radars and k groups from the 
same type of test. We block the k groups and block the p radars in each of the k groups. This type is a 
randomized block design as shown below 

TESTS 

1 2 • • • k 

1 fix fit 
• • • yik  I 

2 yn Vll 
• • • yak 

• • • 
• • • 

• • • 
• • • 

• 
■         j 

P 
»». V • * * v 

The analysis for the randomized block design is called a two-way analysis of variance, and the 

component variances measure the effects between tests and between radars with respect to the 
variance of the experimental error. If the ceUs in the design of Figure 6.3.0 contain r replicates each, 
then it becomes possible to estimate the effects of interaction between radars and tests. 

The completely randomized design and the randomized block design are special cases of a more 
generalized design technique called factorial design. This technique handles several variables, each with 
several levels and each having replicates. This type of analysis could be used in conjunction with the 
error models (6.1.5) and (6.1.7). The error model for radar range error (Relation 6.1.5) would consist 
of 12 factors, each having n levels (corresponding to n observations), with one replicate. An example 
of an analysis of variance on a similar radar range error model is given in Table 6.3.1. 

Table 6.3.1 is an example of an analysis which summarizes Sections 6.0, 6.1, 6.2, and 6.3, and 
needs some explanation. The coefficient of determination estimates the percentage of variation out of 
the total variation, which is explained by the regression analysis. The computed T value is the ratio of 
the regression coefficient to its standard error estimate. The partial correlation coefficient is an 
estimate of correlation between the two variables, keeping the effects of the other variables fixed. The 
multiple correlation coefficient is the correlation between the observed dependent variable and the 
regression estimate. The "proportion of variance cumulated" estimates the percent of the total 
variation due to each individual variable. Examination of the table shows that the fit explains only 
49% of the total variations with 31.4% and 17.2% of this due to scale factor and timing. The T value 
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shows these two regression coefficients are significantly different from zero at the 95% confidence 
level. The total error estimate is RMS (AR) = 9.7 feet. The bias estimate is -7.54 feet, while the noise 
estimate  is 4.63 feet. Since the ratio ((mean AR)/ä^) |is small it is difficult to obtain a large 
coefficient of determination (i.e., a large proportion of the total error is random or "unexplained"). 
However, the test for significance and T values indicates the regression fit is significant. 
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7.0       THEORY OF ERROR PROPAGATION 

In addition to estimating the error in the measurements from instrumentation systems, it is 
necessary to estimate the error in the final reduced data. This data usually consists of position, 
velocity, and acceleration information in some coordinate (usually rectangular) system. Thus, errors in 
range, azimuth, and elevation or direction cosines, film coordinates, range sums or differences must be 
propagated into rectangular coordinates. Furthermore, if velocity and acceleration are to be inferred 
from this positional data, the manner in which the errors propagate must be known. At least three 
factors are of importance here: (1) the manner in which observing sites are located with respect to 
each other (assuming that several are involved), (2) the errors in the measurement systems, and (3) the 
position of the object in space whose coordinates are to be determined. 

Let x be a random variable with mean y and variance a£. If y 

It can be shown that 

- ao + aix, 

o2 - afo2 
v   1 x 

(7.0.1) 

Further, If mt» Sf* S| \ •" Independent random variables with 

variance a2, then the sum 

■ 

yj ■  I  *|i*i* ^ " l*2 N (7.0.2) 

has mean 

1-1 ■'1 
(7.0.3) 

and variance 

J2    -    I    a2 a2. 
yj   lit jix 

(7.0.A) 
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Further, the covarlance of y., y. , J, k ■ 1,2,..., N IS 

) 3  & 
yJyk  ^i-l ^i ki^ (7.0.5) 

If y - f(x) Is some function, we can approximate f(x) In the neighborhood 

of x ■ x by a first order Taylor series expansion. That Is 

y ; f(xo) + df (X " Xo) 
0 

(7.0.6) 

In the same manner, using (.7.0.1) we approximate the variance In y by the 

relation 

,2 : df 
dx 'o2 . (7.0.7) 

Now suppose y - f(xi,X2), then the first order Taylor Series expansion In the 
o o, 

neighborhood of (xi,X2) ■ (xj,X2) Is 

y - f(xi,x2J +—  o [S] . «,) ♦^  ^ (x2 - x2J, 
«1 

9X9   0 
X2 

(7.0.8) 

and from (7.0.4) and (7.0.5) the form of a2 would be 

3xiJ  Xj   I.3X2J  X2    3xi 3x2  xlx2 
3f l-  2 (7.0.9) 

In general If yi - y^x^ xn), i m ^ ^ then the Taylor Serle8 

expansion estimate of the covarlance matrix of y Is 

62 - RS R y    x 
(7.0.10) 
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where 

a2 

y 

yi yiyz 

a        8 2 

y2yi    yi 

Vi    Va 

yiy. 

yzy, m 

ym 

(7.0.11) 

ö 2 

x1X2 

a        a 2 
X2X!       X2 

^x, 
n  1 

a 
XnX2 

3X2 

*V2 
3xi 

3y? 

3X2 

3xi 3x2 

. • • 

XlX A    r 

X2Xn 

a 2 
X n 

3ZJ. 
3xn 

3y? 
3x 

3ym 
9xn 

(7.0.12) 

(7.0.13) 

anc 

R   is the transpose of R 

If the xj's are independent random variables then Sx is a diagonal matrix, i.e., the covariances are 
all zero. In this case 

Vj  ■  3^7    3^ ^^  + 
[3X2 

o ^ + ... + 
«2 

f^il 
3x_ 

(7.0.14) 

n-' 
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2 T 
The relation    0y " ^x^      's usuaUy called the covariance equation and is classically referred 

to as the Gaussian law of error propagation. This technique is based directly upon approximating the 
change in the dependent variable by the differential, i.e., the linear portion of a Taylor Series 
expansion. This leads one to wonder how much error is involved in the variance estimates. Actual 
examples using simulation techniques have shown the method to be very good and, as John Tukey is 
quoted as saying, ''The most important conclusion is that the classical propagation formula is much 
better than seems to be realized. Examples indicate that it is quite likely to suffice for most work." 
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7.1        PROPAGATION OF ERRORS INTO POSITION 

Since most of the measured quantities are angle, direction cosines, film coordinates, range sums, 
and range differences, the effects of errors in these observations are present in rectangular coordinates 
derived from these quantities. While it is most convenient to consider the errors in the actual 
measurements of the instrumentation system when discussing its accuracy, these errors do not 
necessarily give the desired information. The relation between errors in range, azimuth, and elevation 
and errors in derived position data depends upon three factors: (1) the location and geometry of the 
instrumentation sites, (2) the errors in the measurements of the system, and (3) the position of the 
point in space that is to be determined. 

Methods can be developed and programmed which give estimates of the errors in rectangular 
coordinates when items (1), (2), (3) in the above paragraph are taken into consideration. The end 
product of these programs tests estimates of errors in rectangular coordinates, and is referred to as 
geometric dilution of precision (GDOP). For examining the capabilities of given instrumentation on a 
particular test, significant estimates of the rectangular coordinate accuracies can be obtained by using 
the nominal trajectory for the test, the actual instrument sites to be used, and the best estimates of the 
errors of measurement for the particular systems. Further information on GDOP may be obtained 
from the Bibliography. 

Although GDOP is widely used, the more sophisticated concept of an ellipsoid of error is gaining 
acceptance as spatial measurements are made with higher orders of precision. Whereas GDOP utilizes 
only information from the diagonal terms (o^, o^, Oj) of the variance-covariance matrix, the 
ellipsoid of error utilizes all of the information which can be extracted from the entire matrix, if an 
ellipsoid of error is used, confidence regions can be set up about each spatial position point and the 
orientation of the axes of the ellipsoid can be obtained. This is discussed in more detail in Section 8.0. 

The basic problem in error propagation is to determine the effect of the random errors of 
measurement in the particular instruments on the rectangular coordinate data. Suppose, for example, 
that the quantities, a, 0, 7, are measured at time, t, with errors Aa, A0, A7. If there is a known 
mathematical relation between X, Y, Z and a, ß,y: 

x«f,(«M, 

Y = f2{a^,7), (7.1.0) 

Z=f3(aj3,7), 

then the errors in X, Y, and Z produced by Aa, Aß, A7 can be approximated by 

«•!}*•♦§•♦£*». 

4Y-Sta + i46+f ^• 

"•f to*ft*»*£*»' 

(7.1.1) 



where the partial derivatives are evaluated using fj, fj, fa and the measured values of a, j3,7. This type 
of estimation of the errors is also satisfactory when discussing the effects of systematic errors if these 
errors are relatively small with respect to the magnitudes of X, Y and Z. 

A discussion for other systems involving multiple stations and least square solutions is based upon 
the same ideas. However, they ire complicated by the fact that more variables are involved and more 
complex mathematical manipulation must be carried out. For simplicity, methods are illustrated here 
for radar. 

The relations between the measured quantities, azimuth (A), elevation (E), and range (R) and the 
space position (X,Y,Z) in left handed coordinates are: 

X = R cos A cos E 

Y = RsinAcosE r (7.1.2) 

Z = R sin E. 

Errors may exist singly in one of the measurement R, A, E or simultaneously in R, A, E. Using 
the above relations and simultaneous errors in R, A, E, the first order effects of these errors upon X, 
Y, Z are given by: 

AX » AR cos E cos A - R AA cos E sin A - R AE sin E cos A 

(7.1.3) 
AY - AR cos E sin A + R AA cos E cos A - R AE sin E sin A 

AZ i AR sin E + R AE cos E 

Using the covariance equation (7.0.10), we estimate the elements of the variance-covariance 
matrix a for the radar assuming the errors in R, A, E are uncorrelated. The estimates are 



„2 .    (&\2 -2 + fi&2 a2 + rJX)2 „2 

- oj co82A co82E + a2R2 co82A 8in2E + a2R2 8ln2A C082E, 

r3Y 3Y^ r3Y> 
"Y ■   «)   "J + © "I + (f )   « 4 

r2   _^_2i f2D2   «^.2 2D2   _J_2. a; 8lnzA co8'E + afR' co8'A co8'E + a'R" sin'A sln^E, 

feJ    aR +  TO    aA +  W    aE 

a2 8ln2E + a2R2 co82E, 

„       ixiIrr24.ixiIfT2.3xiI-2 
üxy      9R 9R aR      3A 3A ÜA + 9E 9E aE 

(7.1.4) 

- (co8 A sin A C082E) a2 - (R2 cos E2 sin A cos A) a? 
R A 

+ (R2 cos A 8in2E sin A) a|. 

.ixiz_2.ixiZ24.9xiZ2 
0xz  9R 9R ÖR ^ 9A 9A ÖA  9E 9E aE 

* (cos A cos E sin E) a2 - (R2 cos A sin E cos E) a2. 

il ii „2 . 91 il rt2 . il 9z _2 
yz " 9R 9R 0R  9A 9A aA  9E 9E aE 

(sin A cos E sin E) a2 - (R2 sin A sin E cos E) a2. 
R £• 



The variances and covariances correspond to the error distribution which has been propagated 
into a left handed coordinate system tangent to the spheroid with the radar at the origin of the 
system. 

In many instances, it is desired to propagate the error into a coordinate system with a different 
origin and orientation. For example, it is often desired to propagate the error into a coordinate system 
whose origin is a launching pad and whose +X axis is down the launch azimuth. In this case the R A E 
data is first transformed into a local tangent plane system, (Xfp.YfpZjp). Based on the geodetic 
position (0,'X) of the radar, the tangent plane coordinates are transformed so that each axis is parallel 
to a geocentric (earth centered) system, translated to geocentric origin, translated to new origin 
(bunch pad), then the axes are rotated into the tangent plane system with the +X axis parallel to the 
desired orientation. This process is accomplished by the following matrix equation 

in 

where 

^TP 

til Y 
TP 

ZTPJ 

♦       [GR]-[Gp] 

*j.p 

TP 

Z' 
^TP 

(7.1.5) 

[R] = rmtrix which rotates radar tangent plane into geocentric system 

(GpJ and [Gp] are geocentric coordinates of radar and launch pad 

[P] * ■ Matrix which rotates axes parallel to local tangent plane so translation from earth's center 
can be obtained. [P] corresponds to [R] only is for the launch pad. 

a = orientation azimuth of transformed system 

XTP 

YTP 

LZTPJ 

local tangent plane coordinates with origin at launch pad P with +X axis 
oriented parallel to a degrees 

a 

The matrices [R] and [P] are linear transformations whose elements are constants which are 
functions of a, 0 and X. Since the transformations are linear, the propagated estimate for the 
covariance matrix in the new coordinate system is 

a. AdTD    A' TP (7.1.6) 

w'iere     ö-ro " covariance matrix with respect to radar tangent plane 

A- [P]1 [R] 
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It is pointed out that the error propagation techniques can propagate from X,Y,Z back to the 
original observations of R,A,E. In order to do this the geometry (X,Y,Z) and the covariance matrix 
must be known. For example, for 

R = f(X.Y.Z) 

+ 2 (f (If) v+ 2 © t) «a+ 2 © (ID 0vZ' 
(7.1.7) 

Should it be necessary to differentiate the position to acquire velocity, it is assumed that any 
low-frequency systematic error is virtually eliminated in the process. It is noted, however, that cyclic 
errors may not be disposed of in this manner. 

It is noted that, under certain conditions, the effects of total errors can be propagated into spatial 
position error. If the variance of the systematic error corresponding to the same point in space is 
estimated over several tests, then the effects of this can be propagated into spatial position error. In 
this case the variance of the total error input for propagation would be 

9 9 3 
aTOTAL " SYSTEMATIC + aRANDOM (7.1.8) 

and the propagated error would have a variance-covariance matrix corresponding to total spatial 
position error. 
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7.2        PROPAGATION OF ERRORS INTO VELOCITY AND ACCELERATION 

In general, position and range rate data are the basic measurements received by instrumentation 
systems which are external to a vehicle in flight. The basic trajectory-related measurements from on 
board systems are acceleration components parallel to the missile coordinate system. In the first case, 
velocity and acceleration data are obtained by numerically estimating the first and second derivatives 
of the position data. In the latter, velocity and position are obtained by successive integration with 
respect to time. 

Very low frequency systematic errors in position data may be regarded as constant over short 
spans of time. In this instance a measured variable can be represented as a function of time by 

V = F(t) + B (7.2.1) 

where B is the bias error. Upon numerical differentiation with respect to time we obtain 

V = F'(t) (7.2.2) 

which is independent of B. The significance of this fact is that a differentiation derived from a 
measured function with low frequency bias error is virtually free of this bias. However, higher 
frequency cyclic error and random error will persist and must be considered. The amount of random 
error for a particular instant of time is, of course, unknown and cannot be predicted as a function of 
time, but under the assumption that it is a stationary process (at least during short spans of data), its 
statistical properties remain constant. 

Inertial guidance systems currently in use in many missile programs provide examples of 
acceleration measuring devices. The functions these instruments perform are varied and complicated. 
Inertial guidance systems are discussed in more detail in Section 10.0. In this section we are concerned 
primarily with errors propagated due to numerical differentiation of position data with respect to 
time. 

If "raw" velocities in space position data were computed by successive differences, the "average" 
velocity estimate over the time increment would be 

X - AX2i+1    -^ (Xi - X^j). (7.2.3) 

The Xj's are random variables and assumed to be independent with mean (i and variance ah. 
Then, using the propagation techniques of Section 7.0, the variance in AX is 

AY     0X. + aX,   ,      2aA (7.2.4) 
„       mX-\ i l-l       X var y —ip   • w 
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From (7.2.4) it is obvious that the random variable AX contains more random error than X. For 
example, if Of 2 feet and At = 0.1 second, then the error in raw velocity would be ±2QJ2OT ±28.28 
feet per second. In the case of "raw" acceleration it is much worse, and for a-^ = 2 feet, (Jy = ±500 
feet per second2! These examples were given to show that filtering/smoothing techniques are needed 
to achieve reasonable X and X estimates when derived from numerically differentiating position data. 

Most methods presently used filter the position data as a function of time and then numerically 
differentiate the filtered data. The most common type of filter used is a kth degree polynomial which 
is fitted by some criterion (usually least squares) to a span of m points. The first and second 
derivatives of the polynomial are evaluated at an appropriate time, usually the midpoint, since this 
gives velocity and acceleration data with smaller random errors than end point estimates. The point of 
evaluation which gives minimum random error is between the end and center points. The moving arc 
technique of fitting the polynomial of kth degree of the data, X2 to Xm+2 and t2 to tm+i, and 
evaluating first and second derivatives is used. This is continued until all desired velocity and 
acceleration components are computed. In the so-called simple differencing method, the degree of the 
polynomial is 2. If the data is equally spaced in time, i.e., 

tj = to+(At)j, (7.2.5) 

then the polynomial filters for velocity and acceleration will consist of weights b; and c- and the 
velocity and acceleration estimates are made from the following linear combinations: 

dX 
m 

dt       At    »    DJ Äl-j+d 
j-1 

(7.2.6) 

and 

A2? ,n 
d Xl  .       1 r Y (7-2.7) 
dt2 " "(ZtF    L    Cj     i-J+d 

J-1 

respectively, where d is lelated to the delay (i.e., if m = 2n+l and evaluation is at the end point then d 
= m). The b: and c; depend on the degree k of the polynomial, the span of points, m, used in the 
moving average, and the number d. The b: and C; are fixed constants and are precomputed. Using 
formulas of the type above and assuming that a polynomial of kth degree approximates the data to a 
sufficient degree of accuracy over the span of m points, and that the errors in successive values of X: 
are uncorrelated, the relation between the random errors in position data and the random errors in 
velocity and acceleration data can be expressed in the form 

9        m ' 

j-1 
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and 

öv (7.2.9) 

SimUar relations can be obtained if the errors are correlated and the form of the correlation is known. 
In the case of midpoint smoothing the equations for a^ and a^become 

•   9x /   12    , 0x m 
aX - It ''mOn2 - 1)      Atm   r    ' /m 

(7.2.10) 

for second degree polynomial, and 

ä X      / 720 
H ' TÄtF Vmdn2 - l)(inz - 4)       (Atm)7 

Tm 

(7.2.11) 

for a third degree polynomial. It is evident from the approximations that if the sampling rate is 
stepped up and the smoothing time span (Atm) held constant, the velocity and acceleration errors are 
reduced approximately by a factor of m"72. Truncation errors limit the extent to which this can be 
applied. If smoothing is performed at some point other than the midpoint the same general argument 

applies. 

In the discussion of the effects of random errors on velocity and acceleration, it was pointed out 
that the method presented was valid only if the errors in successive values of a given coordinate are 
uncorrelated. This assumption is not true for a systematic error by definition. Hence, different 
techniques are required for determination of the effects of systematic errors. 

In the case of single station systems, the errors in velocity and acceleration in Cartesian 
coordinates may be found by differentiating the XYZ equations with respect to time and utilizing the 

Gaussian approximation. 

5 
3a, 

(7.2.12) 

a. 
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where fj = X, Y, Z, X, Y, "t and a.- = R, A, E, R, A, fe for radar. For example, the variances of the 
velocity errors for radar become 

o? »   (-E sin E cos A - A cos E sin A)2 a* 
X R 

+ (-R sin E cos A - E R cos E cos A + A R sin E sin A)2 a2     (7.2.13) 

+  (-R cos E sin A + E R sin E sin A - A R cos A cos E)2 a2 

+ (cos A cos E)2 o^ + (-R cos A sin E)2 o| + (-R sin A cos E)2 a^ 

a? .  (_E gin £ sin A + A cos E cos A)2 a2 

Y R 

+ (R cos E cos A - E R sin E cos A - A R cos E sin A)2 a2       (7.2.14) 
A 

• • . 
+ (-R sin E sin A - E R cos E sin A - A R sin E cos A)  a2 

£ 

+ (sin A cos E)2 a« + (-R sin A sin E)2 a» + (R cos E cos A)2 a» 
R E A 

a* -   (E cos E)2 a2 + (R cos E - E R sin E)2 a2 (7.2.15) 
Z R £• 

+  (sin E)2 al + (R cos E)2 a| 



The expressions  for the covariance terms o^y,   a^^, a-^ may be written according to the 
following expression for a^y. 

iX3Y „2. 1X31^2.   3X11-2 axy ' ayx " 3R 3R 0R      3A 3A 0A + 3E 9E aE 

^ 9X 3Y „2 j. 9X 3Y „g   . IX 3* „2 
+ 3R3RaR+3A3lai+3?350Ä  ' 

(7.2.16) 

In a similar manner, a partitioned variance-covariance matrix can be estimated giving all position, 
velocity, acceleration error variances and covariances. The matrix would be 

r* "xy \z 
a . 

XX öxy 
axz 0xX a •• 

xy xz 

axy 
a* "yz V ayf ayt öyx ayy 0y~z\ 

pxz "yz °l 0zic az> 
azz azx ^ •*\ 

kx' "°*' "°kz' %' '**' 
5xl '5iÜ' "5xy ' ' 5." xz 

kc °n °iz av 4 an fffi ^y 
ari\ 

kx °iy •ta . a*i a^ 4 0ix aiy ai-z\ 

5..' 
XX '%' ■ "h ■ " ä... 

XX '5x^ 5xi 

Laf 0,.., 
xy 

' 5..' xz 

\9m yx °yy a- yz 1  ay* ay* 
ay4 xy o| 

yz 

a- 1  zx 
% 

a.. zz 1  azx a... azi xz 
0.... 

yz •ll 

(7.2.17) 

In the case of multiple station systems requiring least squares solutions for data reduction, the 
variances cannot be readily determined analytically as for radar. The same reasonable assumption is 
made, however, that the variances of the instrument errors represents a normal distribution at the 
same point in the trajectory over many tests. With this the Gaussian approximation is again utilized, 
except that the partial derivatives are replaced by increments, i.e.. 

The ratio of Afj/Aa; is determined by numerically computing Afj with a predetermined value of A«' 
with all other j values of the instrument variables held constant. 
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8.0 ERROR TOLERANCE REGIONS 

Confidence and tolerance intervals on the point estimates of error parameters were discussed in 
Section 5.2. The next points in question are confidence regions on two- and three-dimensional spatial 
position data. In general, the type of tolerance regions used consist of ellipses in the two-dimensional 
case and ellipsoids in the three-dimensional cases. (Special cases of these are circles anH spheres.) 

In obtaining any type of confidence/tolerance region one must first make an assumption 
concerning the underlying probability distribution function, and then know or have a good estimate 
on the parameters which characterize the distribution. The usual assumption is that the underlying 
distribution is approximately Gaussian which means that all nth dimension distributions can be 
characterized in terms of the first and second moments of the distribution (i.e., the means and 
variances). Thus, the basic tool for the confidence region is the variance or variance-covariance matrix. 
The probability density function for the Gaussian distribution in three dimensions is 

,-1 

f(X,Y,Z) 
-1/2 Q   '(X.Y^) 

"     3/2,    ,1/2   e 

(2TI) o 

whe re 

|o| ■ determinant of covariance matrix a 

Q"1 (X,Y,Z) = quadratic form of the inverse covariance matrix a"1 

The quadratic form of the matrix is 

-1- (X.Y, Z) [o *! 
W 

.2. 
- X2o2 + Y2o2 + Z2o2 + 2XYa ' + 

x     y      z       xy 
2XZa       +  2YZa (8.0.1) 

XZ yz 

where the prime designates the elements of a"1. The above relation is the general equation of an 
ellipsoid and it can be transformed into standard form 

^"+a at' 
z 

(8.0.2) 

by rotating the axes of the general form equation parallel to the (X,Y,Z) coordinate system. It can be 
shown that this process is equivalent to diagonalizing the inverse covariance matrix which, in turn, is 
equivalent to finding the eigenvalues of o-1. 

The diagonal matrix D of o-1 is the matrix of eigenvalues 

Xi 0 0 

0 *1 0 

0 0 A 
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and its quadratic form is 

[X, Y,  Z]D 

or 

^2 «2 «2 
XlX   + X2 Y    + X3Z 

-2 ~'l -2 (8.0.4) 

The variances of the standard trivariate or ellipsoidal normal distribution are 

ol - C2/^,  o2 - C2A2, a2 - C2/X3 
x y z * 

(8.0.5) 

It is noted that if the errors in X, Y and Z are independent, then the general equation of the ellipsoid 
has no cross product terms and corresponds to a matrix a"1, which is already a diagonal matrix. If the 
errors are independent and ax = av = 0z ' t^e '^"bution is the spherical normal distribution (3 
dimensions) or the circular normal when two axes are equal and the third is zero. 

When the errors in X, Y and Z are correlated, then a has off-diagonal terms and the 
corresponding error ellipsoid is not in standard form, but is skewed in space. The eigenvalues of o"1 

provide the length of the axes and the eigenvectors of a"1 will tell the orientation of each of the axes 
with respect to the coordinate system (X,Y,Z). 
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8.1 TOLERANCE ELLIPSOIDS 

Once an error ellipsoid has been obtained, the question of how much of the spatial error 
distribution is contained in the ellipsoid is encountered. Since the errors are assumed to be normal, it 
can be shown that the axes of the standard ellipsoid equation have the Chi-square distribution with 
three degrees of freedom. With three degrees of freedom, the probability, p, that a point will be in an 
ellipsoid with constant term C2 is 

X23 dx' (8.1.0) 

The value of C2 corresponding to p can be obtained from any Chi-square table. The following 
table gives values of C versus p. 

p C 

.95 2.79 

.90 2.50 

.80 2.15 

.70 1.91 

.50 1.54 

.20 1.00 

TABLE 1 

Thus, for a 90% error tolerance ellipse, C = 2.50 so that the axes would be 

0*- 
2.5 2.5      „ 2.5 

AT (8.1.1) 

The values of C = 1.538 and C = 4.0 are the values of C corresponding to "probable" ellipsoid of 
error and ellipsoidal near-certainty error, respectively. 

In the two-dimensional case, the same procedure is used except that a-1 is a 2x2 matrix and the 
standard equation of the ellipse is Chi-square with two degrees of freedom. A table of p versus C is 
given below. 

p C 

.99 3.37 

0.95 2.45 

0.90 2.146 

0.865 2.00 

0.50 1.177 

0.394 1.00 

TABLE 2 
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When C = 1.774 we have a tolerance ellipse called the probable ellipse of error. When the axes are 
equal, the tolerance region corresponding to C = 1.774 is called "Circular Probable Error" (CPE). 

In actual practice aj* 4 Oy^a* and the errors will not be independent, so it is usually more 
valid to work with ellipsoids and ellipses rather than circles or spheres. There are certain instances, 
however, when it is desired to obtain a circular or spherical tolerance region from an ellipse or 
ellipsoid. That is, it is desired to find the radius of a circle (or sphere^ which contains the same number 
of points as the tolerance ellipse (ellipsoid) with axes ClJ\i, C//X2. To accomplish this, we make the 
change of variables letting x = r cos 0, y = r sin 0 then integrating the bivariate elliptical normal 
distribution with respect to r and 6 we find p as a function of 

^ R 
Max 

0-    a 
-*   -X 
aA * a* 

y   x 

and B 

where R_ is the radius corresponding to p. The following table gives A and B versus p • 0.90. 

A 1 

1.0 2.1460 

1.5 2.2501 

2.0 2.4565 

• 2.5 2.6865 

3.0 2.9118 

4.0 3.3290 

5.0 3.7058 

10.0 5.2111 

15.0 6.3756 

20.0 
50.0 

100.0 

7.3594 
11.631 
16.449 

TABLE 3 

For example, if the maximum ratio of a^to a - is A = 2.0 then the radius of a circle containing 90% of 
the error distribution would be R ^Q = 2.4565/0^0-. 

The radius R of a sphere containing p% of an error distribution can be obtained from a 
probability ellipsoid in a similar but more complicated manner, and will not be discussed in this report 
(See Reference 29 for details). 
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9.0        DIGITAL FILTERING/SMOOTHING OF DATA 

As stated in Section 2.0, the measured or raw data contains signal with error superimposed on it. 
The basic reason for using a digital filter is to separate or suppress the noise error from the signal. 
There are many different filtering techniques used at the various ranges but, in general, a digital filter 
is evaluated by the following criteria: 

1) How effectively the noise components of the input data are attenuated or removed. 

2) How much distortion in the signal. 

3) How effectively the filter recovers and smooths the first, second, and higher order 
derivatives. 

4) Amount of serial correlation in the data. 

5) Amount of computing time required. 

It would be desirable to select a filter which would give the best of each item above, but 
unfortunately this is not usually the case. Often a filter may be designed to accomplish 1, 2, or 3 in 
some "best" manner, but usually Item 5 is then sacrificed. 

In general, most filters used are linear operators on the raw data. If X| ...>Xn is a set of raw data, 
the filtered data is usually expressed as a linear combination of subsets or data spans of the set. For 
example, if the filter gives a point estimate corresponding to the center time point of a span consisting 
of 2N+1 points then the expression for the output of the filter would be 

i-+N 

Xt *    ^      WiXt+l (9.0.1) 
i—N 

where the Wj are filter weights. These weights are constrained so that 

I wi - 1 (9.0.2) 

This is necessary since the signals occuring in missile trajectory work usually have a very large 
low-frequency trend, and the response of the filter at these low frequencies should be exact!) one (i.e., 
no distortion or biasing at zero frequency). 

if the filter is an end point estimation or "predictor" filter, then the weighted sum would consist 
of k previous points. 
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Many of the digital filters being used are of the general-purpose type. The parameters which 
define the weights of such a filter are adjusted according to the sampling rate of the input data and 
some estimate as to the frequency composition of the signal. Some types of general-purpose filters are 

1) Straight moving average 

2) Classical least squares polynomial fit 

3) Constrained least squares polynomial fit 

4) Variable span 

5) Frequency constraining 

The straight moving average is comparable to a center point estimate from a first degree 
polynomial in item (2). The polynomial curve fitting technique gives a single point estimate from a 
polynomial curve fit to n consecutive data points. The estimate may be end point, center point, or any 
other point on the curve. The constrained least squares uses the classical approach but adds constraint 
conditions on the filter parameters based on some known information concerning the data preceding 
the current filter span. The variable span filter is any of the filter types with the added characteristic 
that the filter span is adjusted ("opened up" or "closed out" and "reinitialized") based on some 
characteristics of the input data. 

All linear digital filters are frequency-constraining in that they suppress certain frequencies, pass 
other frequencies without distorting, and may distort or amplify other frequencies. 

Because of the low frequency trend characteristics in trajectory data, the filters used to smooth 
this data are of the "low pass" type. That is, the filter weights are designed to suppress high 
frequencies and to output the low frequency components with a minimum amount of distortion. In 
many filters such as the least square polynomial type, the cut-off frequency is determined as a 
function of the number of points in the filter span. As a number of points in the filter span becomes 
larger, the cut off frequency becomes lower, i.e., more smoothing is applied to the data. There are 
other filters, however, which construct the weights for a specific cut-off frequency, and the increase in 
the filter span does not change the cut-off frequency of the filter, but rather improves the filter's 
frequency response corresponding to the desired cut-off frequency. 

In addition to low-pass filters, weights can be constructed for high-pass, band-pass, and 
band-reject filters. All filters mentioned thus far can be evaluated by estimating their frequency 
response function H(f). The frequency response is estimated by taking the Fourier Transform of the 
weights Wj as a function of i. A typical frequency response versus the ideal frequency response or step 
function is given on the following page: 
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H(f) 

( 1.0) 
*%^k. 

z 
^ i 1 

KS \ 
WH '\ 
ZU i \ n •v   _      _ 
»->*• 

(0.0) FREQUENCY 

An example of some frequency response functions was discussed in Section 4.6 and illustrated in 
Figure 5. The frequency response function is very important when it comes to error analysis, because 
knowledge concerning the cut-off frequency, the high-frequency "leakage" (side lobe effect), the 
sharpness of filter roll-off at the cut-off frequency, and the distortion or amplification of the low 
frequencies, can indicate whether or not the appropriate filter was used for a given set of data. The 
frequency response for a finite number of weights will never follow the ideal response curve. The 
frequency response oscillates or has side lobes at the higher frequencies because the filter is truncated 
in the time domain, and significant weights Wj have been discarded, causing discontinuities in the time 
response of the filter. These time discontinuities in the time domain result in the oscillations in the 
frequency domain at the higher frequencies. To avoid this result, a function must be chosen which 
decays very quickly in the time domain, so that truncation at a reasonable span length will discard 
data multipliers of much smaller magnitudes. Slowness of decay in the time domain is caused by 
discontinuities in the derivatives, particularly the zeroth and other low order derivatives, in the 
frequency domain. This suggests that, where possible, functions having all continuous derivatives be 
chosen for use. 

The error introduced into the filtering process by the oscillations in the transfer function (curve) 
is inversely proportional to the number of points used in the filter and the roll-off frequency specified. 
However, there are means whereby this response can be controlled and a fixed cut off specified, and at 
the same time have a rapid roll off and very low passage in high frequency areas. Such filters are 
described in Reference 3. 

A discussion of differentiation and prediction filters (see Reference 4) would be too lengthy to 
pursue in detail. Nevertheless, a few guiding comments will be added here. Two frequency filters with 
different cut-off frequencies can be "cascaded" in the data reduction process to achieve the digital 
equivalent of either a band-pass or a band-elimination filter, depending upon the arrangement of the 
data multipliers and of the filter outputs and residuals. To preserve the high rate of change in slope 
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and avoid filter lags at the acceleration discontinuities at staging, it becomes necessary to have a 
/ariable span filter, and collapse the filter weighting function into the discontinuities and build up the 
weighting function again on the other side. Unfortunately, such a process does not, in general, preserve 
the desired qualities of the function. Therefore, if an integration step accompanies the smoothing 
process, such as occurs in deriving velocity from acceleration, it is necessary either to filter through the 
discontinuity, thereby sacrificing the high-frequency response of the data, or to perform the 
integration process first .md then filter, collapsing the filter when desired. However, this does require 
additional computations since the raw data is generally at a higher sample rate than the smoothed 
data, and in common with the prefiltering approach, careful editing of the raw data is required to 
prevent integration errors due to large noise spikes in the raw data (see Reference 2). 

Another type of frequency digital filtering has become feasible and desirable due to a recently 
derived algorithm for spectral analysis called the Fast Fourier Transform (FFT) (Reference 27). 
Besides making digital spectrum analysis more attractive from an economic standpoint, the FFT has 
enabled many to change their concepts of digital filtering, in that the intellectually appealing approach 
of filtering in the frequency domain is now often simpler, faster, and just as effective as filtering in the 
time domain, although two transforms between the time and frequency domain are employed in the 
process. Suppose, for example, we desire to filter the data Xi ,X2 Xn with a low-pass filter at some 
cut-off frequency f . Instead of computing the weights for a time domain convolution we use the FFT 
to estimate the real and imaginary parts of the spectrum of the time series. Once we obtain the 
spectrum we truncate it at the appropriate cut-off frequency then take the inverse FFT. The resulting 
data in the time domain corresponds to the truncated spectrum and, as a result, has been "low pass" 
filtered with cut-off fc. 

In addition to the so-called general-purpose filters, there are special-purpose digital filters which 
obtain each filtered data point from the preceding data point using the recursive relationships and 
information concerning the variance of preceding data contained in the "state vector." The state 
vector describes the mathematical model of the total system generating the data which is to be 
filtered. For 'his filter to function in an optimum manner, the following must be given: (1) system 
parameters and their configuration, (2) state vector initial values and variance-covariance matrix of 
state variables, (3) time and effects of special events. The special-purpose filter is much more 
sophisticated from a mathematical standpoint than the general-purpose or simple digital filter. The 
special-purpose filter can be a very effective analysis tool especially when used in conjunction with 
multi-instrument solutions. One of the more well known special-purpose filters is the Kaiman filter 
(see Reference 28). 
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9.1 EFFECTS OF SMOOTHING ON DATA 

There is a diversity of opinion among people who process and analyze data concerning the many 
numerical methods used in smoothing measured quantities and in the retrieval of information from 
erroneous observations. The literature on this subject is voluminous. Of the many methods, all use 
assumptions on the functional form of the basic data trend or the statistical properties or origin of 
errors in an effort to obtain a numerical process which will, within the imposed constraints, improve 
the data by minimizing errors. The choice of a technique must depend upon the objectives sought. 
Some investigation of a given technique's potential in describing the data must be made. For example, 
statistical smoothing methods depend upon the character of errors, their distribution, their variances, 
and their dependence or independence. One might choose a second-degree moving arc polynomial over 
successive 51 point spans of 10 samples per second on position data to achieve a certain reduction in 
error variance. 

Least squares polynomial smoothing has long been used as a general-purpose filter. How well the 
objectives may be achieved in choosing a smoothing technique may be determined by the knowledge 
of the functional equations of motion and the error characteristics. Figures 10 thru 17 contain 
important facts relative to polynomial smoothing and Figure 18 corresponds to a particular set of 
frequency-constraining digital filters. A description of each follows: 

Figure 10 shows estimates of position and velocity error using a polynomial of degree two and 
various (Ns) smoothing intervals. Evaluation is at midpoint of smoothing interval. 

Figure 11 gives the relative smoothing in velocity determinations obtained by using a span of 
2n+l points and evaluating at points other than the midpoint for the case where X can be expressed as 
a quadratic function of time and the errors in X are uncorrelated. 

Figure 12 give curves for higher degree polynomial fits for both velocity and accleration errors. 

Figure 17 gives the values 

K I    a 
j-l 

Kb- I    b 
J-l 

K    - 
c 

r m 

I 
J-l 

'1 

for center point smoothing as a function of the number N of points in the smoothing span. 

Figure 18 gives the reduction factor in the standard deviation of the random error of position 
data. The family of curves represents low-pass filters with spans from 3 to 400 points with cut-off 
frequencies from 0.0200 hertz to 0.500 hertz. 



Estimates of Errors In Velocity Data (ov) vs. Errors In 

Position Data (a ) at Midpoints of Dlf. Quadratic Smoothing Intervals(N) 

Figure 10 
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FIGURE   18 
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10.0 INERTIAL GUIDANCE DATA 

Traditionally, attention and effort have been centered upon attaining velocity and accleration 
data from position data. Techniques for determining the accuracies of the derived quantities have been 
discussed. Recently, there has been a development of strong interest in utilizing data from 
accelerometers of guidance systems to assess velocity accuracies. Historically, this may appear to be a 
paradox. Development of the many tracking systems on the various ranges had, as a primary objective, 
the evaluation of guidance systems. Hence, it seems odd now to consider the use of guidance systems 
to evaluate tracking systems. However, the weight of accumulated evidence and experience has forced 
the conclusion that the quality, performance, and reliability of these systems are high. Nevertheless, 
the simple integration of acceleration data to produce velocities has an inherent disadvantage in that 
additional unknowns are introduced. 

In view of the above, techniques have been developed for combining this data with that of other 
sources to establish trajectories. It has been suggested that errors in velocity arise from accelerometer 
errors such as bias, scale factor, quadratic nonlinearity, platform misalignment, gyro mass unbalance, 
and gyro constant drift. Errors from these sources are relatively small during the initial portions of 
flight, but after 50 seconds or so tend to exceed those present in data from the better CW Doppler 
interferometers. For a typical system, these errors have been identified as follows, in the order listed: 

0 ■v 
it] - KjX 

AX2 - K2/a2dt 

AX3 - K3Z 

AX,, - K4Z
2 

AX5 - Kja tdt 

K   - 30 x 10"6g 0 ■ 

Ki ■ 10 ppm 

K2 ■ 3 ppm/g 

K3 - 2 sec. 

Kk ■ 0.01 deg/hr/g 

K5 - 0.05 deg/hr. 

(10.0.1) 

It may be observed that few of these are identifiable in functional form and in certain cases a high 
degree of correlation is present. Furthermore, some of these are time dependent and tend to grow with 
time. A factor not appearing above but one exerting considerable influence on the analysis of velocity 
is the propagation of tracking noise into the velocity vector. This also tends to grow with time, and 
hence, tends to obliterate the data towards the end of powered flight. It should be noted that on 
conventional solid-propellant vehicles, loss of guidance data is usual following missile burnout because 
of the dynamics of the vehicle attendant to thrust termination. Consequently, no free-fall flight data 
are ordinarily available. 

Ik 

For powered flight data analysis, velocity error estimates may be obtained directly by comparing 
the velocity data derived from the tracking systems positional data with inertial guidance velocity 
data. Inertial guidance data are subject to long term drift errors, but exhibit good characteristics in the 
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very low frequency errors (errors below, .05 cycles per second); whereas, the data from external 
systems are subject to errors in the high frequency and middle frequency regions (errors above .05 
cycles per second), but exhibit good characteristics in the low frequency or near zero frequency 
region. It is this very fact, i.e., that these differences exist in the frequency characteristics of the two 
systems, that the guidance data may be used as a standard for noise estimation in the external data, 
and the external data, in turn, may be used as a standard for the estimation of long term drifts or 
biases in the guidance data. 

The analysis of free-fall data may proceed along two lines. It may be assumed that the observed 
X, Y, Z data are serially correlated and processed through smoothing filters in order to obtain velocity 
data (X, Y, Z) and acceleration data (3(, V, 2). Then estimates of the error in the derivative data may 
be obtained as a function of the variance estimate of the random + cyclic error in position. The 
position error variance which propagates into velocity and acceleration is a composite of the high and 
low frequency noise in the data. This error is also referred to as the random + correlated error, or 
perhaps most appropriately described as the total error minus the constant bias error. Constant bias 
errors in the position data introduce negligible effects in the derivative velocity and acceleration data, 
since by their very nature they tend to disappear in the process of differentiation. It is (cyclic) low 
frequency error which has the most deleterious effect on the quality of the derivative data. Smoothing 
over spans appreciably shorter than the typical low frequency «iocs little to reduce its influence. The 
rigorous propagation of correlated errors through any specified smoothing filter requires a knowledge 
of the autocorrelation function of the errors. If the autocorrelation coefficients for successive values 
of X and 1, P|, P2, P3..., the variance of the value of X obtained from the smoothing filter 

Xi "    I    bi  Xi+i (10.0.2) J    i+j 
J-m 

Is given by 

a2x    " 0x b R b (10.0.3) 

in which b is  the row vector of data multipliers 

b " (b-» b-m+l   •'•  b-lbo V" bm-l V (10-0-4) 



R Is the auto-correlation matrix: 

R - 

and a2 i 
x 

1 Pi P2 P3 

Pi 1 Pl P2 

P2 Pi 1 Pl 

P3 P2 Pl 1 

• 
■ 
• 

• 
• 

• 

P2m P2in-1 P2in-2        P2in-3 

s the variance of X.. 

... 

r2m 

P2in-1 

P2m-2 

P2m-3 

(10.0.5) 

Similarly, the variance of X obtained from the smoothing filter 

Xi -I  c. X 
j"-m 

j  1+J 
(10.0.6) 

Is given by 

a* - a2 c R cT 

X,    X 
(10.0.7) 

in which c is the row vector of data multipliers 

c - (c c    ... c , c ), 
-m -m+l     m-1 m 

(10.0.8) 

R is the autocorrelation matrix. 

An estimate of the autocorrelation function is best obtained from the residuals about a free fall 
ellipse (Keplerian ellipse) fitted to a long span (preferably 100 to 200 seconds) of post burnout data. 
The autocorrelation function may be obtained from the power spectrum analysis computer program. 
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There have been many difficulties associated with the use of aircraft and ballistic camera coverage 
on missile tests to calibrate external ti eking system velocity errors to acceptable accuracies, which 
have led to the use of a second techniqu . This method consists of fitting the Keplerian equations of 
motion to data taken at both ends of the tree flight trajectory, i.e., data taken by an up-range tracking 
system of the missile position after missile burnout and data taken by a down-range tracking system of 
missile position prior to atmospheric re-entry. Position parameters are fitted to a Taylor series 
expansion of the equations of motion truncated at the fourth power. Because the time between the 
two data spans is accurate, velocities obtained from the trajectory reconstructed in this manner will 
also be accurate (typically on the order of 0.1 fps) although there may be sizeable position 
uncertainties (typically 200-300 feet) in the data taken at each end. 

Center of Earth 

At t - t. 

r T 

^T 
R + V (T - t ) + 
o   o 

g dtdt. (10.0.9) 

'o   '. 

Hence, 

tL - R T   o 
f T 

o   T - t   T - t 
o      o 

g dtdt. (10.0.10) 
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The derivation of this result is not difficult. From the Figure, R0 is the radius at injection time to 
and T is time of re-entry where radius is Rj. Since this portion of the trajectory is substantially 
outside the atmosphere the use of no-drag formulation with only gravity force acting is justified. Thus, 
acceleration is: 

or 

a=g 

dv 
dt TT * 8 

dv g dt 

t   T 

g dt + C! 

(10.0.11) 

and 

R - V (T - t ) + 

or 

R-R +V(T-t) + 
T   o   ov    o' 

t   T 

0    o 

This may then be solved for V . 
' o 

g dtdt + C2 

(10.0.12) 

r T  rT 

o   o 

g dtdt. 
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11.0        ERROR ANALYSIS IN THE FREQUENCY DOMAIN 

A very effective tool to use in the evaluation of error is spectral analysis. It is assumed that the 
errors et are a realization from a stochastic process {e} which is stationary in the wide sense. That is, 
the process has a constant mean and its autocovariance is independent of time, but is dependent on 
time lag. That is 

and 

E(et) = n{t) = CONSTANT 

R£  (k)  - E[(et - u)(Et+k - u)], k - 0,1,2 m. 

(11.0.1) 

The assumption of stationarity is generally true over subsets of the data, and if et is not stationary it 
can usually be "prewhitened" or "detrended" so that nonstationary effects can be removed from the 
data. The variance of et is obtained from R(k) when k = 0, i.e., aJ2 = R{0), The autocorrelation 
function of et is given by 

P(k)  - J^- 

It can be shown that if et is a stationary process then the autocovariance has the following 
properties 

R(0)   >  0 

R(-k)  - R(k) 

|R(k)|  4R(0) 

lim    R(k)  - 0 
k-K» 

(11.0.2) 

Further, it can be shown that the autocorrelation matrix 

[p] 

P(o) p(l) p(2)   ... P(p) 

o(-l) P(0) Pd)   ... P(p-l) 

'• 
• • • 

• 
• 

• • • 

P(-P) p(-p+l) P(0) 

(11.0.3) 

is positive definite 

L 
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The spectral density function for continuous e    Is 

t • 

f (u)) - 4r 1 
2Tr e-lwTR(T)dT (1.1.0.4) 

and if e    Is discrete (stochastic sequence)   then 

«^•4rl   e'iü)TRü) t% 
T"-00 

Conversely, If we know the spectral density f(ü)) then 

(11.0.5) 

R(T) -     \      elu,Tf(ü))dü) (11.0.6) 

and 

r TT 

R(T) e      f(u)du (11.0.7) 

for the continuous and discrete cases respectively. In digital analysis it is clear we are interested in 
using the discrete case to approximate the continuous function, and from (11.0.7) we can see that the 
quantities 

(11.0.8) 

T- R(-0,  (T-0,+1,+2 ), 
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are the Fourier coefficients of the function f(c*;). In actuality et is generally continuous but a 
realization et is usually discrete. In addition to the spectral density function, another important 
function in the frequency domain is the spectral distribution function 

f(X) 
f x 

-IT 

f(u))dü) (11.0.9) 

which distributes the variance or power as a function of frequency increments. If the Fourier 
Transform of the autocorrelation function is taken, then the total area under the spectral density 
curve is unity. If the Fourier Transform of the autocovariance is taken, then the total area under the 
curve is R(o) = o2 (in this case the spectral density is often called the power spectrum). 

In actual practice the autocovariance is approximated from n error estimates ei ,--,€n over a total 
of m < n lags. 

n-p 

R^-r-^    I    (e< " e)(e..    - i), p - 0,1,2 M (11.0.10) e        n -p    ^        i i+p 

w here 

»<»>. 

i-1 

R (pAt), At ■ time increment. 

The "raw" spectral density is estimated by numerically estimating the Fourier transform of R.(P) using 
the trapezoidal rule 

M 

i 
P 

f(8)   .M    l  eR<P)   COS^.   8-0,1 M 

p-O 

where 

(11.0.11) 

f(s)   - f(« )  -  f   (• 
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The raw spectral estimates are smoothed using a Hamming spectral window. In the frequency 
domain the Hamming weights give a three-point moving average and the filtered spectrum estimates 
are 

f(0)  -  .54 f(0) + .46 f(l) 

f(s)  -  .23 f(s-l) + .54  f(8)  +  .23 f(8+l) 

f(M)  -  ,54 f(M) + .46 f(M-l) 

(11.0.12) 

The Hamming weights are used to reduce the side band effect caused by discrete approximation when 
frequencies are not exactly on the discrete spectral estimate point. The frequency response of the 
Hamming weights and others are well known and there is much literature on the subject. Since 

8TT       _    o       r 

MAT" 2v V 

then the spectral density estimates will be in increments of Af = 2MAt *or = = ^At • The 
frequency jj^ is called the Nyquist or "folding frequency," ftj, and is the maximum frequency 
which can be resolved for a given sampling rate At. The Nyquist frequency is called the folding 
frequency because it can be shown that if significant frequencies exist in the data which are higher 
th an hertz, they will "fold" about the Nyquist frequency and appear on the spectrum as a 

lower frequency between 0 and ^^ hertz. This is illustrated in Figure 19 below. For example, 
suppose et is a continuous (analog) function which contains a 60 cycle "hum" component from a 
power source and it is digitized at At = .05 seconds.      _J_       = 10 cycles = fj^ and the 60 cycle 

component would falsely appear as a zero frequency component or bias in et. The folding of higher 
frequencies is called aliasing. 

SPECTRAL 
DENSITY 

FREQUENCY 

FIGURE 19 EFFECTS OF FOLDING OR ALIASING 
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The concept of aliasing immediately points to the fact that if the data are sampled with At such 

that __ <significant frequencies, erroneous frequencies will appear in the data. The effects of these 

frequencies on the error in position, velocity and acceleration data can be highly significant. If the 
data are such that a large At (low sampling rate) is required, then one must be assured that significant 
frequencies do not exist above the Nyquist frequency. This can be assured by prefiltering the data 
using a higher sampling rate and a low pass filter with a cut-off frequency equal to the Nyquist 
frequency corresponding to the desired low sampling rate. This is sometimes necessary when spectral 
analysis on low frequency error components is to be accomplished. 

Since the relation between the autocovariance and the spectral density function is known, we can 
utilize these two functions in the analysis of many types of data and for error analysis specifically. For 
this, several examples of autocovariance and spectral density functions corresponding to different 
error models are given (see Figure 20). 

Suppose e,,...,en is a realization from a random process which is independent (uncorrelated). 
Since the ej are discrete, the realization will have a low pass frequency band and since the realization is 
uncorrelated, it is called white noise. In this case 

• o2,  k 

MW '< (11.0.13) i ̂
o,   k 4 

Then, according to (11.0.2) the corresponding spectral density is 

o2 

f(co)=^p~ . Thus stationary sequences of uncorrelated random errors are characterized by the fact 
that their spectral densities are constant over the interval w = 0 to w = 7r/At. An example of the 
estimated correlation of white noise from radar data is given in Figure 21. 

Suppose now that the realization e1 .ej ,...,en is correlated with autocovariance 

R(k) - a2p  ,  |el  < 1. (11.0.14) 

. Mil   . 
Autocorrelation isR/Q\ ■ P and this form of correlation corresponds to a first order Markov process, 
i.e., et 

= P et.i 
+'?t- The autocorrelation decays exponentially and from (11.0.5) it can be shown that 

f/  x       a2      1 - e2 

f(ü))  "ZZTU 7 (11.0.15) 
|e      - e| 

which is an exponential type spectral density function (see Figure 20). 
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R(T) 

-at 

f(ü)) 

0        T 

■N       4 8in2(a)T/2) 

Ö    Sir 
T 

JL 
2TT 

0) 

E 
_1_ 
2n 

(i) 

F 

cos ßt 1 
u 

Figure 20 Examples of some continuous autocorrelation functions and corresponding spectral 
density functions. Types A and C are the continuous analogs to a first and second order Markov 
Process respectively, 
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LAGS (k) 

FIGURE 21 Estimate of autocorrelation function of independent random error 

(white noise) . 
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Markov processes can be estimated by the so-called autoregressive scheme. For example, the 
autocorrelation and the power spectrum can be estimated for a particular set of error estimates. If the 
shape of the autocorrelation and power spectrum indicate that the underlying stochastic process is 
Markov, it can be approximated by an autoregressive scheme. To accomplish this, the error estimates 
are staggered in the following manner 

es •* ea e2 ei 

«6 es •i» ea e2 

«7 ee es e.* ea 

G 6 6 6 G 
n n-l n-2 n-3 n-it 

The first column is considered to be the dependent stochastic variable. The relation ej = <*ie[.-[ + 
0£2ej.2 + a3ei.3 + 0!4ei.4 + ^i ls t^en estimated by regression techniques. An analysis of variance can 
indicate which coefficients are significant, and then the process can be repeated using the appropriate 
order for the Markov process. An example of such a technique is illustrated in the autoregressive fit in 
Figure 23. The corresponding autocorrelation estimate is in Figure 22. An analysis of variance 
corresponding to the autoregressive scheme is tabled in Figure 24. The analysis of variance indicates 
the process is of the first order because the regression coefficients a}, as, 34, are not significant. Figure 
23 gives the graph of the approximation of Tjj. If ei ,...,en is a realization from the process 

et = a|et 2 +a2et+2+rlvrk*s independent random variable, then it can be shown the autocorrelation 
function is an exponentially damped harmonic of the form. 

Pk 
[a2/2 sin (kV + W)]   /sin W (11.0.16) 

where 

V - cos"1   [^] 
2a2* 

W - tan 
• 1   [(1 + a?)   tan v] 

L        1 - a2        J 



IIIilM 

LAGS (k) 

FIGURE 22 Estimate of autocorrelation function for first order MABKOV process 

with p a «| ■ 0.99. The estimate at LAG k«l is 0.97. Note the error in the 

estimate for large lags. KHO is not supposed to become negative for this parti- 

cular process. 
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The spectral density corresponding to p^ will be a band of frequencies about CJ0 =W and the 
general form of the spectral density will be 

et \ A(u)2 + b2) 

where 

A - — 

b - •'FTw2' (11.0.17) 

a - k2 - W2 

The continuous case of damped oscillatory covariance function is 

R(T) - a
2e"a|T|cos a)oT (11.0.18) 

Another example of random error would be the so-called moving average of 

a sequence of uncorrelated random variable. The stochastic model is 

n 

tj - I    a1^. |a| < 1, (11.0.19) 

k-i 
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where the r}'s are independently distributed with zero mean. In this case it can be shown that in the 
limit as n -* <» the autocovariance function is of the form 

iOO-rAr (1LC-20) 
X   "   ä 

which corresponds to a spectral density similar to (11.0.15) if a = p and a2 =  1 
l^a7^ 

The most general type of correlated noise is one where the correlation is varying and its graph has 
varying amplitude and periods. In this case the stochastic error model is 

n 

Zt "    I    (*1 C08 H* + bi •*• *£«) (11.0.21) 
1-1 

where the aj and bj are independent random variables with mean zero and variance a^ +0^.=? a?. 
In this case the autocovariance function is 

n 

R(k) -    I    o2 cos o^k (11.0.22) 

and   the   spectral   density   function is a sequence of frequency bands made up  of "impulses" 
corresponding to a?/Aco at C0j. The analytic form of f(ü;) is 

f(a))   - IT     I    o^  [6   (u - a^)  + 8C« + ^i)] (11.0.23) 

i-1 

where S is the Dirac delta function. 

(11.0.21) is often the type of spectral density encountered in error analysis. An example of (11.0.23) 
is given in Figure 25. 

Analysis of error in the frequency domain can be made more efficient from a computational 
standpoint if the fast Fourier transform is used (Reference 27). The autocovariance function can be 
obtained with less computation time by taking the fast Fourier transform, computing the modulus, 
smoothing, then taking the inverse fast Fourier transform. 
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FIGURE 25    Estimate of the spectral density function for a stochastrlc process 

with random amplitudes and phases.    The ordlnate estimates the variance per 

frequency Increment Af ■ öüTT • 
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Once the frequency content and autocovariance of the error et have been estimated, one can 
filter the data to remove both high frequency random error and oscillatory systematic errors of 
moderately low frequency (say 0.05 hertz). In addition, the autocovariance function can be used to 
remove biased estimates of the variance of the error by extended least squares approximation. The 
analysis of data in the frequency domain can be utilized in conjunction with multiple regression and 
analysis of variance. For example, suppose the error is a stationary process of the Form (11.0.21) 
However, the significant frequencies Wj are not necessarily harmonics and are not known. A spectral 
analysis would show significant frequency components and the corresponding squared amplitudes (see 
Figure 25). With k significant CJj's selected from the spectrum, (11.0.21) could be approximated using 
multiple regression and solving for the aj's and bj's. An analysis of variance would then enable one to 
determine how good an approximation would be made on the expected values of aj, bj and their 
standard deviations a_ , Oi, . a;     Dj 

As an example a regression ;.nalvsis was done in conjunction with error data corresponding to the 
spectrum estimates in Figure 25. The results of this analysis are given in graphical form in Figure 26. 
An analysis of variance indicated the regression analysis explained 82% of the total variation in the 
data. Finally, an estimate of the spectral distribution function corresponding to the spectral density 
function is given in Figure 27. The spectral distribution gives the estimate of variance as a function of 
frequency bands. From the graph we see that the total variance estimate corresponds to the 
intercept: F (0) - F (*i-) ■ 0.954. The variance estimate over the band w^ < W3 < Wg is F(ajg) - 

F(WA) or a' va;B = 0-0365- 
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FI6URE 26 Regression analysis of data based on frequency information obtained 

from spectral density estimate (FIGURE 25). Line is predicted error while dots 

represent error measurements. 
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FREQUENCY CPS 

FIGURE 27    Estimate of spectral distribution function, F,  corresponding to 

spectral density function in FIGURE 25. 
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