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Biomedical Applications of Stochastic Processes*
by
Prem S. Puri

Purdue University

1 INTRODUCTION. Tt is well recognized that in the biological and medical

-z s, variability among the observations is much larger, more funda-
r2atal qand intrinsic than in some other disciplines such as Physics, where

it is ~frer passikle (although not always) to dispose of a major part of

the variability by controlling certain relevant factors in the laboratory.
This variability in turn makes the stochastic models much more appropriate
in biology and medicine than their deterministic analogs. Again the basic
evolutionary characteristics of living things such as births and deaths,
&mw. % ond decay, change and transformation, lead us in biology and medicine
to many dynamic processes of development in time and space. Thus one is led
to the use of the so called stochastic protesses as a natural vehical for
stochastic model-building for the study of Various biological phenomena.

In short, a random phenomenon that aris¢s through a process which is

developing in time or in space in a manner (ontrolled by probabilistic laws
}

is called a Stochastic process. The exampl s are many, for instance, the
growth of a population such as a bacterial -oleny; the spatial distribution
\
of plants and animal communities; spread ofian ypidemic; spread of cancer
|

growth within the body; and so on. Mathematicai\y a stochastic process is

defined as a collection {X(t), t € T} of random \wriables indexed by a

parameter t, which takes values over an 1ndex set | the process.

*This research was supported by the Office of Naval Rese\rch under Contract
NGOG14-67-A-0226-00014 and Air Force Contract AFOSR-72-.150 at Purdue University.
Reproduction in whole or in part is permitted for any piipose of the United
States Government.




Typfcally either the set T consists of nonnegativc intcgers, or T is the
nonnegative half of the real line i.e. [0,~). In the first case the
collection can be rewritten as {Xn’ n=0,1,2,...}, the so called discrete
(time) parameter process. The second case {X(t), t > 0} is called the
continuous (time) parameter process. In practice, the discrete time case
arises for instance when Xn represents the number of progeny in the nth
wen-atien of the growth of a tribe., In the continuous time case, X(t) may
reprasent itne aumber of patients in a hospital present at time t, and so on.

In the following sections we describe briefly some of the key stochastic
processes, which have been commonly used as stochastic models suitable for
many of the biological éhenoména. I# each case a brief sketch is followed
by a few examples of the live situations where these processes arise in

practice. However it is only fair tY add the following remarks at this point

for the sake of the reader. The autll>r could have selected for the following

presentation the various stochastic pmycesses according to their classical
properties such as Markov or nonMarkof, stationary or nonstationary, etc.
However such classifications appeared {oo broad for our purpose here. Instead,

it was felt appropriate to mention only|the 'special processes', which have

emerged in their own right as useful modyls in biology and medicine. Of course,

even within this limited scope, the authgr does not claim the present account
to be either complete or exhaustive in tiiching the various milestones in
this area of biomedical applications of .{iochastic processes. A similar remark
applies to the reference list (given at t\: end of the paper) of the various
contributors in this area. Also it shoulc{not be taken to mean that the

broad classifications mentioned above had |n anyway less influence on the

study of various live phenomena. In fact ‘tese classifications are natural,

when one embarks on a theoretical investigz{ion of the stochastic processes.




The reader may find an excellent account of such investigations in treatiscs
such as by Doob [17], Dynkin [19], and Feller [28]}, [29]. In particular, in
the last two references by Feller, the reader may find a colorful and rich
account of probability, both theory and its applications. Another two-volume
treatise, recently published, is due to losifescu and TXutu [45). Here the
authors devote the first volume to the theory of stochastic processes and the

socood volune entirely to its applications in biology and medicine.

2 BRANCHING PROCESSES. An important class of processes arising in many
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live situations is what is commonly known as Branching Processes, a term

which appears to have been introduced in 1947 by the Russian mathematicians

A. N. Kolmogorov and N. A. Dmitriev [62]. Historically tﬁese processes go

back nne hundred years ago to Francis Galton, a British biometrician. Galton
was interested in 1870s in the decay of families of men who occupied conspicuous
positions in the past. The questii raised was whether this extinction of
family names was merely a chance thnomenon or in fact whether the physical

comfort and intellectual capacity w&re necessarily accompanied by a decrease
\ a

in fertility, In 1873, Galton [33] ﬁpsed the following problem, which appeared
: \

as problem #4001 in Educational Times | a mathematical periodical then published

in London.

Problem 4001: A large nation, of whom ie will only concern ourselves with

adult males, N in number, and who each i)sar separate surnames, colonize a
district. ‘Their law of population is si\:h that, in each géneration, a, per cent
of the adult males have no male children\who reach adult life; a, per cent have
one such child; a, have two, and so on. /(Find (1) what proportion of the surnames
will have become extinct after r gener:jions; and (2) how many instances there

will be of the same surname being held |y m persons. (In Galton's case, the

number of possible positive ai's went {s far as five, but this is a minor point).




After some persuasion by Galton, Henry William Watson, a clergyman and
a mathematician, attacked this problem. The underlying discrete time stochastic
process as described here is now commonly known after their names as Galton-
Watson process (G-W process for short). Watson [98] showed that if q is the
probability of a family name ultimately becoming extinct, then this probability

L . k .
Wuai satlsty tne squation x = Z akx , where of course Z a. = 1. And since
k=0 1:0 1

X - 1 1s a su.urion of this equation, Watson thus concluded from this, that
tne provab:lity of ultimate extinction is always one, no matter what the

probabilities 3qr3),3 are. What he failed to notice was that under

greee
certain conditions on ai's, there are two solutions of the above equation
lying between 0 and 1 and that it was%smaller of the two, which was the corfect
answer. Anyway, it took another aboué sixty years before the problem was

compietely solved by J. F. Steffensow in 1930 (see [93], [94]). The solution

he gave 1s the following:

1f a, # 100 per cent, then the [jrobability of ultimate extinction of a

given family name is one if the averaie number of sons of the type mentioned,
born per male parent is no more than c<ge; and this extinction probability is
strictly less than one if this average wmber is greater than one. As it
turned out, the later investigations sh{wed that the detailed behavior of
these processes.véries according to whether the average number of sons is

[ . ..
less than one, the so called subcritica)] case; is equal to one, the critical

¢

case; or is greater than one, the supe(:ritical case.

There is of course much more histcly behind all this and instead the
reader is referred to a paper by Kendal}\[56], where he has given an excellent
chronological account of the early histhry {f these processes.

After 1940, interest in the brancikng pa\cess model increased along with

the interest in the applications of prgbabilit)\theory and also of course

|




because of its analogy between the growth of families and the nuclear chain
reactions. Several other aspects of the Galton-Watson problem were studied
during 1940-?0. Also the original process was generalized in many directions
inspired by various live situations. Particular reference should be made
here to the works of Hawkins and Ulam {[41], Harris [37], [38], Everett and
vias [£0]), [21], Beilman and Harris [8], [9] and Otter (75], all in the

vn. °d States. and of Kolmogorov and Dmitriev [62], Yaglom [101], Kolmogorov

ind g 1 yeaov {63] and Sevast'yanov [85], [86], [87], [88], in the Soviet

Union. Again the G-W process as defined above is a Markov process. The

Markov processes in simple terms are defined as those processes, where the

future probabilistic course of the process depends only on the present state
the process is in and not on the past history of the process. Thus a non-
Markoviai generalization of a continuous time analog of G-W processes was
developed in 1948 by Bellman and Harris [8], the so called Bellman-Harris
age-dependent branching processes, although a special case of these was
already studied as early as 1939 by Feller {22]. In analogy with cell growth,
here an individual lives fo? a random length of time and then at death is
replaced by a random number of progeny; the basic feature of the branching
processes as always being that each individual, independent of the other
individuals, undergogs the same chance process, under the same probability
laws as did its parent. Another generalization of the original G-W process
was developed and studied by Everett and Ulam [20], (21 ] in 1948, and is called
the Multi-type Galton-Watson processes, which were later generalized further
to the age-dependent multitype branching processes. Here an individual could
give offspring not only of its own type but of other types as well. An
example, for insténce is in cell populations, where some of the progeny at
birth may undergo mutation, yielding mutant types, different from the normal

'wild' type.




In 1963, came out the book on branching processes by Harris [40], giving a
complete account of these processes until about that time. This book served as
a great stimulus for further research both in theory and in applications of
these processes. Meanwhile the work became so much in volume that since then
three more books have come out on the subject, one by Mode [68 ], and another
;y £ hreya ané Ney |1], both in the United States, and finally the third in
Piy:ian by Sevast'yanov [gg], who along with his students have contributed
eom, Tderab 'y 2n the subject.

The list of the applications of these processes is of course too long to
mention. However we shall mention a few. One application is in disease-
epidemics, where the battle is between the infectivés, the carriers of the
disease-causative agent and the susceptibles. In 1964, Neyman and Scott (73]
stad:cvd a stochastic model of the phenomenon underlying the disease epidemic,
which takes into account the spacial movement of the infectives in the habitat,
an important factor missing in most of the earlier models. However another
important feature of their model is the extensive use of branching processes.
Here the progeny of an inféctive are to be identified with the susceptibles
getting infected by this infective during the time he remains infectious.

Another example where the branching processes are used is the extensive
work of Karlin and McGregor [51] on genetic models, particularly the fixed
size or the so called finite population.models, similar to the ones originally
intruduced by Wright [0g] in 1931 and Fisher [31] in 1930. At first sight it
would appear inconvenient to study a fixed size population model while using
branching processes, because the population size in these processes varies
from generation to generation. However, it is possible to define a branching
process conditioned on the presence of the same pumber of individuals in each

generation. This resulted in what Karlin and McGregor call a Direct Product

branching process. They used this approach to formulate among others, a




one-locus, two allele model of a finite population with the incorporation in
the model of factors such as selection, mutation, migration and drift due to
finite population size, etc. The reader may refer to Karlin B7 ], 48], for
an expository account of these and other stochastic models in population
genetics.

Among many situations, where the branching processes have been used as
ruois for tleoretical investigations of other related processes, one situation
arises in the study of the distribution of the length of a busy period in
queueing theory. Here a branching pr&:ess is observed as imbedded in an
M/G/1 queue, as pointed out by Kendal% [53]. The symbol M/G/1 stands here
for a queueing system with a single se{ver, in which customers arrive according
to a homogeneous Poisson process and il which the service times are independent
and 1dentically‘distributed with an arjltrary common distribution. The
imbedding of a branching process as ex;hained by Kendall [53] goes as follows:

Let the customer whose arrival initiatds the busy period be called the 'ancestor'.

This customer forms the zero-order geneﬁation corresponding to a G-W process.

During his service time the new custome!s arriving, say X1 in number, form the

first generation. During their total se\vice time, the further (new) customers
arriving, say X, in number, constitute th} second generation corresponding to

a G-W process, and so on. Here the new cuitoyers arriving during the service

time of a customer constitute the progeny of tl\s customer. As it turns out
in an M/G/1 queue, the random variables denoting\the numbers of progeny for
various customers (defined in this manner) are inji'pendent and identically
distributed, a condition essential for Xn to be a {-W process. The busy
period ¢f course terminates as soon as this proces { or the 'family' becomes
extinct., The length'in time of a busy period is eq}.l1 to the aggregate of
the service times of all the individuals in various \'nerations (including the

ancestor) until the family becomes extinct. Thus the\ibove interpretation

|




leads to a simple way of studying the busy period and some other properties
of an.M/G/l queue, with the help of an already well developed G-W processes.
The reader may refer to Neuts [70] for an investigation of M/G/1 queue along
these lines,

Finally the reader may also refer to Harris [ 39], Bharucha-Reid [10], [11],
saxtoszynski [ 5], Buhler [12) and Puri [78], for other applications of

~ranching processes.

3 BIRTH AND DEATH PROCESSES. Another class of processes commonly arising in

P L

applications is the so called Birth and Death processes (B-D processes).:

These are nonnegative integer valued continuous time Markov processes. Some
members of this class are also known to share propérties of those of continuous
time branching processes. Here the process after waiting for a random length

of time in a given state jumps up by one step if there is a birth and down by

one if there is a death. The birth and death events are of course also random
events. Feller [22] was the first to study these processes extensively as early as
1939. These and his later contributions made far reaching impacts on the use

and further investigations of these processes. Polya studied a pure time
nonhomogeneous (i.e. the birth rates being time-dependent) birth process, now

widely known as Polya process. Here the birth rates are both time as well as

state-dependent. Bates and Neyman [7] also used the birth processes in connection
with stochastic models on accident proneness, the history of which Professor
Neyman himself has already touched in his presentation at this symposium. Kendall
[ 52] gave a complete solution for the first time of a linear time nonhomogenous
birth and death process. Lederman and Reuter [64] and later Karlin and

McGregor [49], [50], made extensive studies of the spectral properties of the
time-homogeneous B-D processes, which led to further insight into the behavior

of these processes.




Practical situations where B-D processes arise are beyond enumeration.
One such situation where these processes commonly arise are the queueing theory
problems. Here a person leaving the queue after service is considered as a
death, while a person arriving for service is considered as a birth. Again
these processes have also been used extensively in develqping stochastic
models for carcinogenésis, see for instance, Neyman [ 71], Neyman and Scott [/3 ]
and Kendall [55]. Another situation, where a B-D process has been used as a
model initially in the work of Steinberg and Stahl [95] and later by Gani [34 ],

is the Bacteriophage Reproduction. The reader is referred to a detailed account

of this work and of other authors in this area, appeared in a expository paper
by Gani [35]. Some later work also appears in Puri [79]. Briefl} the non-
mathematical details are as follows:

The bacteriophage or a phage for short, is a virus which feeds and multiplies
only in a bacterium. Gani was concerned with the so called T-bacteriophages.
Such a phage in its mature form consists of a DNA strand enclosed in a protein
head, and attached with it is a syringe type mechanism, which helps the phage to
insert the DNA strand into éhe bacterium. After insersion the DNA strand, called
the vegative phage, starts multiplying in the bacterium. Meanwhile the protein
coatings and other parts necessary for the assembly of a mature phage are also
under production. The bacterial own growth processes are of course considered
stopped and it is considered as dying after infection. Soon some of ;he
' vegetative phages start turning into mature ones, after their assembly. The
phages in their mature form are of course no longer capable of multiplying.
Finally, after a random length of time from initial virus infection, the life
of the bacterium ends with a burst, the so called Lysis, at which point it
yields a random number of mature phages, which are then ready to infect other
bacteria in the suspension medium and the phage parasitic cycle starts all over

again. Here, since the mature phage is no longer capable of multiplying, Gani

—
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treated the conversion of a vegatative phage to a mature one as a death,
in his B-D process model of the above phenomenon. This is of course one
of the many examples, where B-D processes have been used as part of the

underlying mechanism in developing appropriate stochastic models. Again

there is an extensive literature available on the discrete time analogs of

B-D processes, the so called the Random Walk Models defined on integers.

The reader may refer to an excellent treatise on this subject due to

Spitzer [92].

4 EMIGRATION-IMMIGRATION PROCESSES. Another class of proéesses of considerable

T I S A N I I VPV R

importance in biology goes under the name Emigration-Immigration Processes, and

are extensively used in demographic models on population dynamics as the

name suggests. Hoﬁever they appear elsewhere too. One of the early papers,
which gave an iﬁpetus to further rese%rch in this area is due to Fix and
Neyman [32] appeared in 1951, where tﬁky studied a stochastic model of
recovery, relapse, death and loss of pgtients in connection with cancer.

Since then many of Neyman's students ar{l others have contributed to the study
of such processes and in particular toftheir applications. In particular, the
work of Chiang [13], [14], in connectfon with competiﬁg risks of illness and

of death is worth mentioning. Here i individual is considered to be migrating

from one state of illness to another jor from life itself to death, and so forth.

5 SEMI-MARKOV PROCESSES. Most of the|models mentioned in the previous two

B I R e T e e R T ey

sections are so called Markovian in niture and in the time homogeneous case,

this means that the random length of s\iy of the process in a given state
before jt moves to another state has an|:xponential distribution. Because
of the well known lack of memory proper{- of such distributions this means,
for instance in the case of Emigration-!jpmigration processes, when you leave

the present state you are in and where y)a go, does not depend on how long you
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have already been in that state. In many diseases such an assumption appears
unrealistic. For instance, in the cése of a cancerous disease, the change of
state of a person will depend more critically on how long he has had the
growth. Weiss and Zelen [93] were led by these considerations, to the use of

somewhat more general processes, the so called Semi-Markov Processes. Here the

length of stay in a given state is assumed to have an arbitrary distribution
not necessarily exponential. Such processes were originally introduced
independently in 1954 by Levy [65], [66] and Smith [90] and later in 1961

were extensively stqdied by Pyke [82], [83]. These processes are now finding
more and more use in many live situations. For instance, Weiss and Zelen [99]
as mentioned earlier have considered a semi-Markovian model and have applied

it to the study of behavior of patients with Acute Leukemia. This I believe

is a step in the right direction, and is most welcomed in so far as the applica-

tions of these processes in biology is concerned.

6 RENEWAL PROCESSES. Another class of processes, which may.be considered as a

e

special case of semi-Markov processes, is called the Renewal Processes. These

processes have traditionally been used extensively in the areas of Life-testing

and Reliability theory. In fact the name 'renewal theory' comes from problems

&
in these areas, where one is concerﬁed with the study of successive replacements

(renewals) of items subject to failujre. An item may be a machine, a light bulb,
a vacuum tubé, etc., which is replaﬂ:d at the end of its lifetime by an item éf
the same kind. It is assumed that vhe lifetimes of items (all of the same kind)
are independent and identically dis:ributed random variables. Mathematically
the renewal process X(t) is defined fis the number (counps) of renewals (failures)
occurring during the interval (0,t]; An important special case where the common

liftime distribution is exponential/, is called the Poisson process, which in

turn is also a special case of birt} \processes touched in Section 3. These

\

processes have been used as models fgr the number of car accidents occurring




at an intersection, the number of telephone calls arriving at a telephone
exchange, the number of immigrants arriving in a town, etc. Here the succes-
sive inter-arrival times of calls (or accidents) are to be identified with the
lifetimes of the items mentioned earlier, while a call itself with a failure
of an item.

Again if the time is measured in discrete units, one gets the so called
discrete time renewal processes. These are also commonly known as recurrent

event process, a term originally introduced by Feller, who is also credited

for recognizing and studying these processes quite extensively (see Feller [23],
[24], [28]).

The list of contributors to the theoretical study of renewal processes is
long and it will suffice for the present to mention two references; the first
is an expository paper due to Smith [91], who among others have extensively
contributed to this area, and the other is a monograph due to Cox [16].

Again the Poisson processes have been extensively used for Modelling in
Biology and Medicine; on the other hand their generalized version, namely the
renewal processes have just started finding its proper place in their applica-

tions to these areas. A recent example is of their use in building models

related to neuron firing (see Coleman %nd Gastwirth [15] and Hochman and

Feinberg [42]). |

R T R T T

that the process X(t) takes discrete vglues usually over nonnegative integers,

being a number or a count of something.| However, there is another class of

processes called the Diffusion Processej, where X(t) takes values on a continuous

scale. For instance, in practical sitifations X(t) could be the amount of sugar
or cholestrol in the blood at time t ar{l so on. The difference between these

processes and the ones, where X(t) takef discrete values, is basically the following:
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In the discrete valued processes, the probability of a transition in a
small interval of time At is small, but the size of the transition when it
occurs is appreciable. For example, in a simple birth process the probability
of a birth in interval At in a population of size n is a small quantity, but
when a birth does occur, it adds a whole unit to the population. On the other
hand, in diffusion processes where X(t) is continuous va}ucd, it is certain
that some change will occur during interval At; however for small At this change
will also be small.

Among others, Soviet mathematicians such as Dynkin [18)] and U.S. mathematicians
such as Feller [25], {26], [27] and Stone [96] and also Ito and McKean [46], have
extensively contributed to the studies of these processes. One way, in which
these processes arise often in biology, Fs the following:

Many problems in biology involve r@latively large populations, subject to the
transitions resulting from birth, death} mutation, infection (in epidemics), etc.

When the population size is large, the 9ransitions are relatively speaking small

in size. However for a suitably chosen|\time scale, these transitions may be

relatively frequent. Under these condifions it has been possible in many

3

situations to use an approximate model (f the diffusion type in which both the
variable X(t) and the time are continuo{;. This is analogous to the normal
distribution approximation in Statistics\used for the sum of a large number of
small random variables. Among many, Feller [25], Kolmogorov [61] and Kimura
[60] have used these processes extensively as suitable approximations to many

live situations, arising particularly in |ienetics connected with gene-frequency.

8 QUANTAL RESPONSE PROCESSES. Another t;

B e T e e

)e of processes called the Quantal

Response processes arise as follows. Conj.der the situations where X(t)

t

f disease causing organisms such

denotes the variable, such as, the number

as viruses or bacteria in the body of the }>st at time t, the size of the tumor
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at time t, the numbgr of tumors present at time t, or the amount of toxic

drug present in the body of the host at time t, etc. In many live situations,
aséociatéd with such a variable is a well defined response of the host called
the quantal response, such as death of the host, burst of the cell, development
of local lesion or some other detectable symptom. The host may be animal, egg
membrane, tissue culture or a bacterium itself. The length of time T the host
takes to respond starting from a convenient origin, is typically known as the
response time and is a random quantity. In this connection it is usually

convenient to introduce the so called Quantal Response process denoted by Y(t),

{
where Y(t) = 1 if the host has not resganded by time t; Y(t) 0 otherwise, so

n

that the random variables Y(t) and T ai\> related as P(T > t) P(Y(t) = 1). Here
one is concerned with the fundamental cMestion as to the nature of connection
between the quantal response process Y(ft) and the process X(t) itself. Until
about 1963, in many of the models concgrned with the above situation, it was
assumed that there exists a fixed thrdshold, same for each host, so that as
soon as the process X(t) touches this/threshold, the host responds; i.e. the
quantal response process Y(t) changej its value from one to zero, an absorption
state for the process Y(t). Although tﬁkxe are few situations where such a
hypothesis may appear reasonable sucp as Wie models for neﬁron-firing, however
in many other live situations such a fixed\threshold hypothesis does not appear
to be strictly correct. Thus in [77], an & ternal\ive hypothesis originally
suggested by LeCam, was adopted, namely, th&t the c\anection between the
process X(t) and the host's response is indéterminist. in character. In

other words, it is‘assumed that the value of X(t), or ¢{ a random variable
whose distribution is dependent on the process {X(t)}, d\termines not the
presence or absence of response, but only the probability \f response of

the host. Here, unlike the model based on a threshold hypotYesis, the state
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of the process X(t) ét the moment of the quantal response is a random quantity.
The reader may refer for fu;ther‘details about the quantal response processes
based on the nonthreshold hypothesis in Puri [77], [80]. Later similar
nonthreshold assumptions were used in studying quantal response processes
arising, in controlling a lethal growth process by Neuts [69], in bacteriophage
reproduction by Puri [79], and more recently in developing a stochastic model
for Rabies by Bartoszynski [6]. A third hypothesis also of the threshold

type is often used for situations involving biological assays (see Finney [30]).
Here each subject is assumed to have a threshold called its tolerance limit.
Unlike the first threshold type model, this limit is assﬁmed to vary from
subject to subject in a random fashion over the population of subjects.

However, in such cases this (tolerance) distribution is picked up typically on a
ratlizr adhoc basis; This and other objections led Puri and Senturia [81] to

the consideration of models based on}a nonthreshold hypothesis suitable for
quantal response assays. {
f

LR i

. . L\ . . .
exception of the multi-type branching processes, involve a single population.

Yet in many applications specially in'bioll>gy, medicine and in ecology, one

——

is confronted with processes involving two\or more interacting populations.
The problems here are relatively more challetging mathematically. These

processes are typically called the Competitidi Processes. Some of the proba-

bilistic aspects of these processes have beeﬁ studied in some generality by
Reuter [84] and Iglehart [43], [44]. More ri:ently Kesten has studied the limit
behavior of somewhat related processes fallifig in the present category, in a
series of interesting papers ([57], [58],\[{)]). His work was inspired in

part by the asymptotic behavior of certai; biinching processes and also the

direct product branching processes introducea\by Karlin and McGregor [S51].
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Historically models involving competitions between species, the so called
Prey-Predator models, date back to Lotka [67] and Volterra [97] for their
deterministic theories of struggle for existence. Extensive experimental work
of Park [76] with flour-beetle Tribolium inspired further stochastic modelling
in fhis area. The important paper of Neyman, Park and Scott [7] on 'Struggle
for existence: The Tribolium model', needs a special mention. Here the compe-
tition between the two species of beetles is in part due to the fact that they
eat each others' eggs and also their own, the so called Cannibalism.

Another area, where models of two or more interacting populations arise
is the disease epidemics, where there is a continuing battle between the
infectives (plus the carriers) and the susceptibles, Here the British researchers
such as Bailey [2], Bartlett [3], [4], Kendall [54] and Gani [36], need a
special mention. 3

Another situation, where competiti%n processes appear in biology is the
following: In certain disease processe% initiated within the body of the host

by the invading organisms, such as virujes or bacteria, the host is known to

put up some kind of defense mechanism tl\rough entities such as antibodies.

Here then the battle is between the infccting organisms and the antibodies
with the host's life hanging in between. \ Unfortunately not many models have
been considered in liferature to cover sutar situations.

And finally, in essence, if I may adc\anather example, our life itself
is full of all kinds of competition and in1eraé\ing processes and perhaps

|

this is what makes life even more interesti?g.
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