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Biomedical Applications of Stochastic Processes* 

by 

Prem S. Puri 
Purdue University 

1 INTRODUCTION.  It is well recognized that in the biological and medical 

•:.-' -L>, variability among the observations is much larger, more funda- 

r.»n♦".'>! «nd intrinsic than in some other disciplines such as Physics, where 

it .* * ••f4 c" ps«,!Me (although not always) to dispose of a major part of 

the variability by controlling certain relevant factors in the laboratory. 

This variability in turn makes the stochastic models much more appropriate 

in biology and medicine than their deterministic analogs. Again the basic 

evolutionary characteristics of living things such as births and deaths, 

y.iw.V, 2nd decay, change and transformation, lead us in biology and medicine 

to many dynamic processes of development in time and space. Thus one is led 

to the use of the so called stochastic processes as a natural vehical for 

stochastic model-building for the study of j/arious biological phenomena. 

In short, a random phenomenon that arises through a process which is 

developing in time or in space in a manner Controlled by probabilistic laws 

is called a Stochastic process. The examples are manya for instance, the 

growth of a population such as a bacterial iolony; the spatial distribution 
1    \ 

of plants  and animal  communities;  spread of Jan vpidemic;  spread of cancer 

growth within the body;  and so on.    MathematicaiVy a stochastic process  is 

defined as  a collection (X(t),  t € T}  of random variables  indexed by a 

parameter t,  which takes values over an index set jl c¥ the process. 

*This  research was supported by the Office of Naval ReseWch under Contract 
N00014-67-A-0226-00014 and Air Force Contract AFOSR-72-.y50 at Purdue University, 
Reproduction in whole or in part is permitted for any purpose of the United 
States Government. 



Typically either the set T consists of nonnegative integers, or T is the 

nonnegative half of the real line i.e. [0,°°).  In the first case the 

collection can be rewritten as {X , n = 0,1,2,...}, the so called discrete 

(time) parameter process. The second case (X(t), t _> 0} is called the 

continuous (time) parameter process.  In practice, the discrete time case 

arises for instance when X represents the number of progeny in the nth 

y <■ ■y,i: KT! oi  the growth of a tribe.  In the continuous time case, X(t) may 

represent rne number of patients in a hospital present at time t, and so on. 

Tn the following sections we describe briefly some of the key stochastic 

processes, which have been commonly used as stochastic models suitable for 

many of the biological phenomena.  In each case a brief sketch is followed 

by a few examples of the live situations where these processes arise in 

i 

practice. However it is only fair ti> add the following remarks at this point 
i, 

for the sake of the reader. The autlbr could have selected for the following 

presentation the various stochastic processes according to their classical 

properties such as Markov or nonMarkol, stationary or nonstationary, etc. 

However such classifications appeared yoo broad for our purpose here.  Instead, 

it was felt appropriate to mention only! the 'special processes', which have 

emerged in their own right as useful moovls in biology and medicine. Of course 

even within this limited scope, the author does not claim the present account 

to be either complete or exhaustive in t-uching the various milestones in 

this area of biomedical applications of .1 ochastic processes. A similar remark 

applies to the reference list (given at t.\» end of the paper) of the various 

contributors in this area. Also it shoulclnot be taken to mean that the 

broad classifications mentioned above had |n anyway less influence on the 

study of various live phenomena.  In fact \ese classifications are natural, 

when one embarks on a theoretical investigs ion of the stochastic processes 



The reader may find an excellent account of such investigations in treatises 

such as by Doob [17], Dynkin [19], and Feller [28], [29].  In particular, in 

the last two references by Feller, the reader may find a colorful and rich 

account of probability, both theory and its applications. Another two-volume 

treatise, recently published, is due to Iosifescu and TSutu [45]. Here the 

authors devote the first volume to the theory of stochastic processes and the 

sfco.d volu.'W entirely to its applications in biology and medicine. 

2  BRANCHING PROCESSES. An important class of processes arising in many 

live situations is what is commonly known as Branching Processes, a term 

which appears to have been introduced in 1947 by the Russian mathematicians 

A. N. Kolmogorov and N. A. Dmitriev [62]. Historically these processes go 

hack one hundred years ago to Francis Galton, a British biometrician. Galton 

was interested in 1870s in the decay of families of men who occupied conspicuous 

positions in the past. The question raised was whether this extinction of 

family names was merely a chance phenomenon or in fact whether the physical 

comfort and intellectual capacity vn\ve  necessarily accompanied by a decrease 

in fertility.  In 1873, Galton [33] ^sed the following problem, which appeared 
\ 

as problem #4001 in Educational Times\  a mathematical periodical then published 

in London. 

Problem 4001;  A large nation, of whom 

adult males, N in number, and who each l 

district. Their law of population is si 

e will only concern ourselves with 

ar separate surnames, colonize a 

■:h that, in each generation, a„ per cent 

of the adult males have no male children\who reach adult life; a. per cent have 

one such child; a2 have two, and so on. /(Find (1) what proportion of the surnames 

will have become extinct after r genernions; and (2) how many instances there 

will be of the same surname being held \y  m persons.  (In Galton1 s case, the 

number of possible positive a.'s went /s far as five, but this is a minor point). 



After some persuasion by Galton, Henry William Watson, a clergyman and 

a mathematician, attacked this problem. The underlying discrete time stochastic 

process as described here is now commonly known after their names as Galton- 

Watson process (G-W process for short). Watson [98] showed that if q is the 

probability of a family name ultimately becoming extinct, then this probability 

•r.ü.v äutislv t;-io equation x = j[ a.x , where of course £ a. = 1. And since 
k=0 K i=0 x 

X ~  1 >*> a s:., uzion  of this equation, Watson thus concluded from this, that 

the prob ah j.1±ty  of ultimate extinction is always one, no matter what the 

probabilities an,a.,a_,... are. What he failed to notice was that under 

certain conditions on a.'s, there are itwo solutions of the above equation 

lying between 0 and 1 and that it was[smaller of the two, which was the correct 

i 
answer. Anyway, it took another abouf sixty years before the problem was 

completely solved by J. F. Steffenson» in 1930 (see [93], [94]).  The solution 

he gave is the following: j 

If a] t  100 per cent, then the probability of ultimate extinction of a 

given family name is one if the average number of sons of the type mentioned, 

born per male parent is no more than cW; and this extinction probability is 

strictly less than one if this average \\umber is greater than one. As it 

turned out, the later investigations sh wed that the detailed behavior of 

these processes varies according to wh« her the average number of sons is 

less than one, the so called subc;ritic'a| case; is equal to one, the critical 

case; or is greater than one, the supe critical case. 

There is of course much more histcly behind all this and instead the 

reader is referred to a paper by Kenda])\f56], where he has given an excellent 

chronological account of the early hisi )ry \f these processes 

After 1940, interest in the branching pAacess model increased along with 

the interest in the applications of probability theory and also of course 



because of its analogy between the growth of families  and the nuclear chain 

reactions.    Several other aspects of the Galton-Watson problem were studied 

during 1940-50.    Also the original process was generalized in many directions 

inspired by various  live situations.    Particular reference should be made 

here to the works of Hawkins and Ulam [41], Harris   [37],   [38]>  Everett and 

Ulan.  i^J],   [21],  Bellman and Harris   [8],   [9]   and Otter  [75],  all  in the 

: r-.    ü Stativ   and of Kolmogorov and Dmitriev  [62], Yaglom [lOl],   Kolmogorov 

-i-id   i:..    .>'/"'"•oy  [63]  and Sevast'yanov  [85],   [86],   [87],   [88],  in the Soviet 

Union.     Again the G-W process as defined above is a Markov process.    The 

Markov processes in simple terms  are defined as  those processes, where the 

future probabilistic course of the process depends only on the present state 

the process is in and not on the past history of the process.    Thus a non- 

Karkovioii generalization of a continuous time analog of G-W processes was 

developed in 1948 by Bellman and Harris   [8], the so called Bellman-Harris 

age-dependent branching processes,  although a special case of these was 

already studied as early as  1939 by Feller  [22].     In analogy with cell growth, 

here an individual  lives for a random length of time and then at death is 

replaced by a random number of progeny;  the basic feature of the branching 

processes as always being that each individual,   independent of the other 

individuals,  undergoes the same chance process, under the same probability 

laws  as did its parent.     Another generalization of the original G-W process 

was developed and studied by Everett and Ulam  [20],   [21]   in  1948,   and is  called 

the Multi-type Galton-Watson processes, which were  later generalized further 

to the  age-dependent multitype branching processes.    Here an individual  could 

give offspring not only of its own type but of other types  as well.    An 

example,   for instance is in cell populations, where some of the progeny at 

birth may undergo mutation, yielding mutant types,  different  from the normal 

'wild'   type. 



In 1963, came out the book on branching processes by Harris [40 ], giving a 

complete account of these processes until about that time. This book served as 

a great stimulus for further research both in theory and in applications of 

these processes. Meanwhile the work became so much in volume that since then 

three more books have come out on the subject, one by Mode [68 ], and another 

uy  /. hreya and Ney [l], both in the United States, and finally the third in 

P ? v-: ?" by Sevast'yar.ov [89], who along with his students have contributed 

r.nn. visrfh'y ort the subject. 

The list of the applications of these processes is of course too long to 

mention. However we shall mention a few. One application is in disease- 

epidemics, where the battle is between the infectives, the carriers of the 

disease-causative agent and the susceptibles.  In 1964, Neyman and Scott [73] 

stoJ.:LJ a stochastic model of the phenomenon underlying the disease epidemic, 

which takes into account the spacial movement of the infectives in the habitat, 

an important factor missing in most of the earlier models. However another 

important feature of their model is the extensive use of branching processes. 

Here the progeny of an infective are to be identified with the susceptibles 

getting infected by this infective during the time he remains infectious. 

Another example where the branching processes are used is the extensive 

work of Karl in and McGregor [51] on genetic models, particularly the fixed 

size or the so called finite population models, similar to the ones originally 

introduced by Wright &00] in 1931 and Fisher [ 3l] in 1930. At first sight it 

would appear inconvenient to study a fixed size population model while using 

branching processes, because the population size in these processes varies 

from generation to generation. However, it is possible to define a branching 

process conditioned on the presence of the same number of individuals in each 

generation. This resulted in what Karlin and McGregor call a Direct Product 

branching process. They used this approach to formulate among others, a 



one-locus, two allele model of a finite population with the incorporation in 

the model of factors such as selection, mutation, migration and drift due to 

finite population size, etc. The reader may refer to Karlin p7 ], [4g ], for 

an expository account of these and other stochastic models in population 

genetics. 

Among many situations, where the branching processes have been used as 

'-00'is for tlic-ui'Sticai investigations of other related processes, one situation 

arises in .he study of the distribution of the length of a busy period in 

I 
queueing theory. Here a branching process is observed as imbedded in an 

1 

M/G/l queue, as pointed out by Kendall) [53]. The symbol M/G/l stands here 

for a queueing system with a single setver, in which customers arrive according 

to a homogeneous Poisson process and ill, which the service times are independent 

and identically distributed with an art 

imbedding of a branching process as ex{ 

Ltrary common distribution. The 

lained by Kendall [53] goes as follows: 

Let the customer whose arrival initiates the busy period be called the 'ancestor' 

This customer forms the zero-order generation corresponding to a G-W process. 

During his service time the new customers arriving, say X. in number, form the 

first generation. During their total se.Wice time, the further (new) customers 

arriving, say X~ in number, constitute th\ second generation corresponding to 

a G-W process, and so on. Here the new cu\toYers arriving during the service 

time of a customer constitute the progeny of tl\s customer. As it turns out 

in an M/G/l queue, the random variables denotingV.he numbers of progeny for 

various customers (defined in this manner) are independent and identically 

distributed, a condition essential for X to be a |-W process. The busy 

period of course terminates as soon as this processor the 'family' becomes 

extinct. The length in time of a busy period is eql.l to the aggregate of 

the service times of all the individuals in various Venerations (including the 

ancestor) until the family becomes extinct. Thus theybove interpretation 



leads to a simple way of studying the busy period and some other properties 

of an M/G/l queue, with the help of an already well developed G-W processes. 

The reader may refer to Neuts [ 70] for an investigation of M/G/l queue along 

these lines. 

Finally the reader may also refer to Harris [39], Bharucha-Reid [10], [11], 

hs.xzoszyriski [5], Buhler [12] and Puri [78], for other applications of 

branching processes. 

3 BIRTH AND DEATH PROCESSES.  Another class of processes commonly arising in 

applications is the so called Birth and Death processes (B-D processes).- 

These are nonnegative integer valued continuous time Markov processes.  Some 

members of this class are also known to share properties of those of continuous 

time branching processes. Here the process after waiting for a random length 

of time in a given state jumps up by one step if there is a birth and down by 

one if there is a death. The birth and death events are of course also random 

events.  Feller [22] was the first to study these processes extensively as early as 

1939. These and his later contributions made far reaching impacts on the use 

and further investigations of these processes. Polya studied a pure time 

nonhomogeneous (i.e. the birth rates being time-dependent) birth process, now 

widely known as Polya process. Here the birth rates are both time as well as 

state-dependent.  Bates and Neytnan [7] also used the birth processes in connection 

with stochastic models on accident proneness, the history of which Professor 

Neyman himself has already touched in his presentation at this symposium.  Kendall 

[ 52] gave a complete solution for the first time of a linear time nonhomogenous 

birth and death process.  Lederman and Reuter [64] and later Karlin and 

McGregor [ 49], [ 50], made extensive studies of the spectral properties of the 

time-homogeneous B-D processes, which led to further insight into the behavior 

of these processes. 



Practical situations where B-D processes arise are beyond enumeration. 

One such situation where these processes commonly arise are the queueing theory 

problems. Here a person leaving the queue after service is considered as a 

death, while a person arriving for service is considered as a birth. Again 

these processes have also been used extensively in developing stochastic 

models for carcinogenesis, see for instance, Neyman [71], Neyman and Scott [73 ] 

and Kendall [55]. Another situation, where a B-D process has been used as a 

model initially in the work of Steinberg and Stahl [95] and later by Gani £54 ], 

is the Bacteriophage Reproduction. The reader is referred to a detailed account 

of this work and of other authors in this area, appeared in a expository paper 

by Gani [35]. Some later work also appears in Puri [79]. Briefly the non- 

mathematical details are as follows: 

The bacteriophage or a phage for short, is a virus which feeds and multiplies 

only in a bacterium. Gani was concerned with the so called T-bacteriophages. 

Such a phage in its mature form consists of a DNA strand enclosed in a protein 

head, and attached with it is a syringe type mechanism, which helps the phage to 

insert the DNA strand into the bacterium. After insersion the DNA strand, called 

the vegative phage, starts multiplying in the bacterium. Meanwhile the protein 

coatings and other parts necessary for the assembly of a mature phage are also 

under production. The bacterial own growth processes are of course considered 

stopped and it is considered as dying after infection. Soon some of the 

vegetative phages start turning into mature ones, after their assembly. The 

phages in their mature form are of course no longer capable of multiplying. 

Finally, after a random length of time from initial virus infection, the life 

of the bacterium ends with a burst, the so called Lysis, at which point it 

yields a random number of mature phages, which are then ready to infect other 

bacteria in the suspension medium and the phage parasitic cycle starts all over 

again. Here, since the mature phage is no longer capable of multiplying, Gani 
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treated the conversion of a vegatative phage to a mature one as a death, 

in his B-D process model of the above phenomenon. This is of course one 

of the many examples, where B-D processes have been used as part of the 

underlying mechanism in developing appropriate stochastic models. Again 

there is an extensive literature available on the discrete time analogs of 

B-D processes, the so called the Random Walk Models defined on integers. 

The reader may refer to an excellent treatise on this subject due to 

Spitzer [92). 

4 EMIGRATION-IMMIGRATION PROCESSES^ Another class of processes of considerable 

importance in biology goes under the name Emigration-Immigration Processes, and 

are extensively used in demographic models on population dynamics as the 

name suggests. However they appear elsewhere too. One of the early papers, 

which gave an impetus to further research in this area is due to Fix and 

Neyman [32] appeared in 1951, where th^y studied a stochastic model of 

recovery, relapse, death and loss of panients in connection with cancer. 

Since then many of Neyman's students arid others have contributed to the study 

of such processes and in particular to/their applications.  In particular, the 

work of Chiang [13], [14], in connect/on with competing risks of illness and 

of death is worth mentioning. Here •' 

from one state of illness to another 

ii individual is considered to be migrating 

)r from life itself to death, and so forth. 

5 SEMI-MARKOV PROCESSES. Most of the models mentioned in the previous two 

sections are so called Markovian in ntture and in the time homogeneous case, 

this means that the random length of syy of the process in a given state 

before it. moves to another state has an Exponential distribution.  Because 

of the well known lack of memory proper [• of such distributions this means, 

for instance in the case of Emigration-'1 
emigration processes, when you leave 

the present state you are in and where y>j go, does not depend on how long you 
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have already been in that state.  In many diseases such an assumption appears 

unrealistic.  For instance, in the case of a cancerous disease, the change of 

state of a person will depend more critically on how long he has had the 

growth. Weiss and Zelen [93] were led by these considerations, to the use of 

somewhat more general processes, the so called Semi-Markov Processes. Here the 

length of stay in a given state is assumed to have an arbitrary distribution 

not necessarily exponential. Such processes were originally introduced 

independently in 1954 by Levy [65], [66] and Smith [90] and later in 1961 

were extensively studied by Pyke [82], [83]. These processes are now finding 

more and more use in many live situations. For instance, Weiss and Zelen [99] 

as mentioned earlier have considered a semi-Markovian model and have applied 

it to the study of behavior of patients with Acute Leukemia. This I believe 

is a step in the right direction, and is most welcomed in so far as the applica- 

tions of these processes in biology is concerned. 

6 RENEWAL PROCESSES. Another class of processes, which may be considered as a 

special case of semi-Markov processes, is called the Renewal Processes. These 

processes have traditionally been used extensively in the areas of Life-testing 

and Reliability theory.  In fact the name 'renewal theory' comes from problems 

in these areas, where one is concerned with the study of successive replacements 

(renewals) of items subject to failujre. An item may be a machine, a light bulb, 

a vacuum tube, etc., which is replaced at the end of its lifetime by an item of 

the same kind.  It is assumed that The lifetimes of items (all of the same kind) 

are independent and identically dis' ributed random variables. Mathematically 

the renewal process X(t) is defined /is the number (counts) of renewals (failures) 

occurring during the interval (0,t]l An important special case where the common 

liftime distribution is exponential/, is called the Poisson process, which in 

turn is also a special case of birtl \processes touched in Section 3. These 

processes have been used as models for the number of car accidents occurring 
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at an intersection, the number of telephone calls arriving at a telephone 

exchange, the number of immigrants arriving in a town, etc. Here the succes- 

sive inter-arrival times of calls (or accidents) are to be identified with the 

lifetimes of the items mentioned earlier, while a call itself with a failure 

of an item. 

Again if the time is measured in discrete units, one gets the so called 

discrete time renewal processes. These are also commonly known as recurrent 

event process, a term originally introduced by Feller, who is also credited 

for recognizing and studying these processes quite extensively (see Feller [23], 

[24], [28]). 

The list of contributors to the theoretical study of renewal processes is 

long and it will suffice for the present to mention two references; the first 

is an expository paper due to Smith [91], who among others have extensively 

contributed to this area, and the other is a monograph due to Cox [16]. 

Again the Poisson processes have been extensively used for Modelling in 

Biology and Medicine; on the other hand their generalized version, namely the 

renewal processes have just started finding its proper place in their applica- 

tions to these areas. A recent example is of their use in building models 

related to neuron firing (see Coleman and Gastwirth [15] and Hochman and 

Feinberg (42]). I 

! 
7 DIFFUSION PROCESSES. Most of the prlcesses mentioned so far, are such 

that the process X(t) takes discrete values usually over nonnegative integers, 

being a number or a count of something. However, there is another class of 

processes called the Diffusion Processed, where X(t) takes values on a continuous 

scale. For instance, in practical situitions X(t) could be the amount of sugar 

or cholestrol in the blood at time t aril so on. The difference between these 

processes and the ones, where X(t) take/ discrete values, is basically the following 
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In the discrete valued processes, the probability of a transition in a 

small interval of time At is small, but the size of the transition when it 

occurs is appreciable. For example, in a simple birth process the probability 

of a birth in interval At in a population of size n is a small quantity, but 

when a birth does occur, it adds a whole unit to the population. On the other 

hand, in diffusion processes where X(t) is continuous valued, it is certain 

that some change will occur during interval At; however for small At this change 

will also be small. 

Among others, Soviet mathematicians such as Dynkin [18] and U.S. mathematicians 

such as Feller [25], [26], [27] and Stone [96] and also Ito and McKean [46], have 

extensively contributed to the studies of these processes. One way, in which 

these processes arise often in biology, (is the following: 

Many problems in biology involve relatively large populations, subject to the 

transitions resulting from birth, deathJ mutation, infection (in epidemics), etc. 

When the population size is large, the transitions are relatively speaking small 

in size. However for a suitably chosenltime scale, these transitions may be 

relatively frequent. Under these conditions it has been possible in many 

situations to use an approximate model if the diffusion type in which both the 

variable X(t) and the time are continuol;. This is analogous to the normal 

distribution approximation in Statistics]used for the sum of a large number of 

small random variables. Among many, Fel er [25], Kolmogorov [61] and Kimura 

[60] have used these processes extensive y  as suitable approximations to many 

live situations, arising particularly in henetics connected with gene-frequency 

8 gUANTAL RESPONSE PROCESSES. Another tJ>e of processes called the Quantal 

Response processes arise as follows. Con 

denotes the variable, such as, the number 

der the situations where X(t) 

of disease causing organisms such 

as viruses or bacteria in the body of the bost at time t, the size of the tumor 
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at time t,   the number of tumors present at time t,  or the amount of toxic 

drug present  in the body of the host  at time t,  etc.     In many  live situations, 

associated with such a variable is a well defined response of the host called 

the quantal response,  such as death of the host, burst of the cell,  development 

of local   lesion or some other detectable symptom.    The host may be animal,  egg 

membrane,  tissue culture or a bacterium itself.    The length of time T the host 

takes to respond starting from a convenient origin,  is  typically known as  the 

response time and is  a random quantity.     In this connection it is usually 

convenient to introduce the so called Quantal Response process denoted by Y(t), 
i 

where Y(t)  =  l if the host has not responded by time t;  Y(t)  = 0 otherwise,  so 

that the random variables Y(t)  and T aiU related as P(T > t)  = P(Y(t)  =  1J.    Here 

one is  concerned with the fundamental c 

between the quantal  response process Y( 

lestion as to the nature of connection 

c)  and the process X(t)   itself.     Until 

about  1963,  in many of the models concerned with the above situation,  it was 

assumed that there exists a fixed threshold,  same for each host,  so that  as 

soon as the process X(t)  touches thif/threshold,  the host responds;  i.e.   the 

quantal response process Y(t)  changej its value from one to zero,  an absorption 
/    \ 

state  for the process Y(t).    Althougi thft^re are few situations where such  a 

hypothesis may appear reasonable such as me models  for neuron-firing, however 

in many other live situations such a fixed\threshold hypothesis does not appear 

to be strictly correct.    Thus in  [77],  an £.VternaM.ve hypothesis originally 

suggested by LeCam, was adopted, namely,  th.it the connection between the 

process X(t)  and the host's response is inde^erminist.V in character.     In 

other words,  it is assumed that the value of X(t), or c\ a random variable 

whose distribution is dependent on the process (X(t)},  dVermines not the 

presence or absence of response, but only the probability \p response of 

the host.    Here, unlike the model based on a threshold hypoYesis,  the state 
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of the process X(t) at the moment of the quantal response is a random quantity. 

The reader may refer for further details about the quantal response processes 

based on the nonthreshold hypothesis in Puri [77], [80].  Later similar 

nonthreshold assumptions were used in studying quantal response processes 

arising, in controlling a lethal growth process by Neuts [69], in bacteriophage 

reproduction by Puri [79], and more recently in developing a stochastic model 

for Rabies by Bartoszynski [6], A third hypothesis also of the threshold 

type is often used for situations involving biological assays (see Finney [30]). 

Here each subject is assumed to have a threshold called its tolerance limit. 

Unlike the first threshold type model, this limit is assumed to vary from 

subject to subject in a random fashion over the population of subjects. 

However, in such cases this (tolerance) distribution is picked up typically on a 

rathe-r adhoc basis. This and other objections led Puri and Senturia [81] to 

the consideration of models based on ja nonthreshold hypothesis suitable for 

quantal response assays. I 
t 
I 

? COMPETITION PROCESSES. Most of thfe processes mentioned thus far with the 

exception of the multi-type branching, processes, involve a single population. 

\        V 
Yet in many applications specially in\biolpgy, medicine and in ecology, one 

is confronted with processes involving two\or more interacting populations. 

The problems here are relatively more challenging mathematically. These 

processes are typically called the Competitiili Processes. Some of the proba- 

bilistic aspects of these processes have beeil studied in some generality by 

Reuter [84] and Iglehart [43], [44]. More r«<:ently Kesten has studied the limit 

behavior of somewhat related processes fall:/Ig in the present category, in a 

series of interesting papers ([57], [58],|[:u]). His work was inspired in 

part by the asymptotic behavior of certain b\inching processes and also the 

direct product branching processes introduceo\by Karlin and McGregor [51]. 
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Historically models involving competitions between species, the so called 

Prey-Predator models, date back to Lotka [67] and Volterra [97] for their 

deterministic theories of struggle for existence. Extensive experimental work 

of Park [76] with flour-beetle Tribolium inspired further stochastic modelling 

in this area. The important paper of Neyman, Park and Scott [7] on 'Struggle 

for existence:  The Tribolium model', needs a special mention.  Here the compe- 

tition between the two species of beetles is in part due to the fact that they 

eat each others' eggs and also their own, the so called Cannibalism. 

Another area, where models of two or more interacting populations arise 

is the disease epidemics, where there is a continuing battle between the 

infectives (plus the carriers) and the susceptibles.  Here the British researchers 

such as Bailey [2], Bartlett [3], [4], Kendall [54] and Gani [36], need a 

special mention. 1 

Another situation, where competition processes appear in biology is the 

following:  In certain disease processej; initiated within the body of the host 

by the invading organisms, such as virujes or bacteria, the host is known to 

put up some kind of defense mechanism through entities such as antibodies. 

Here then the battle is between the infclcting organisms and the antibodies 

with the host's life hanging in between. \ Unfortunately not many models have 

been considered in literature to cover suA'i situations. 

And finally, in essence, if I may adc\ another example, our life itself 

is full of all kinds of competition and interacting processes and perhaps 

this is what makes life even more interesting. 
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