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SUMMARY

PROBLEM

Optical systems for search and recovery missions in the deep ocean require
pressure-resistant windows that will transmit images without distortion. This can
: be readily accomplished utilizing a spherical-shell sector as the window shape. But
in order for the spherical-shell window to-satisfy all of the optical requirements it
must also be fabricated from a transparent material that will undergo only very
minute displacement and virtually no deformation under hydrostatic loadings en-
countered at abyssal depths in the ocean.

Although acrylic plastic spherical shell sectors have been utilized widely in
manned submersibles, they have not been found adequate for precision optical
systems because they experience large displacement and deformation when subjected
to high hydrostatic pressure.

APPROACH

Spherical shell sectors with 150-degree included spherical angles were
fabricated from optical glass, chemically surface-compressed glass, or transparent
ceramic and mounted ¢n a compliant, metallic flange with a plane conical window
seat covered by a fiber-reinforced epoxy-plastic bearing gasket, Because the angles
on the bearing surface of the window and on the flange window seat matched
closely, stress concentrations in the window were minimized. The bearing gasket
sandwiched between the window and the flange decreased stress concentrations.
further,

RESULTS

Extensive testing has shown that chemically surfaced-compressed glass or
ceramic spherical-shell windows with a 150-degree included spherical angle and
a ratio of thickness to inner radius (t/Ri) of 0.33 will perform reliably for at
least 300 long-term cycles to an external hydrostatic pressure of 20,000 psi. At
lesser operational pressure the minimum cyclic life is significantly larger.

Spherical shell windows made from annealed optical glass were found to
have a cyclic life of only 200 long-term cycles to 20,000-psi pressure.
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RECOMMENDATION

It is recommended that the NUC-developed 150-degree spherical-shell window-
flange assembly utilizing a chemically surface-compressed glass or céramic window be
employed in unmanned submersible systems for abyssal depths. It is postulated with
reasonable assurance that a submersible system equipped with such windows can
operate to any ocean depth with a minimum projected fatigue life of 1,000 cycles.
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INTRODUCTION

L am 2222

The Naval Uindersea Center (NUC), working with a spherical-shell window
with a 150-degree spherical angle and a matching compliant flange, has developed
a -window-flange assémbly that utilizes a glass or ceramic witidow and is suitable
for operational pressures up to 20,000 psi. This paper describes the design,
fabrication, and testing of the assembly and presents recommendations for the
engineer who may wish to pattern similar assemblies after the NUC prototype.

ACUiSh 114 4 Kitain e

BACKGROUND

Pressure-resistant optical windows are required both on land and in the sea.
On land, they are incorporated into internal pressure vessels serving as deep-ocean
simulators and hyperbaric chambers. In the sea, they are employed in the external
pressure hulls of manned and unmanned submersibles. In either case, it is desirable
that the window-flange assembly, consisting of the window and flange, should take
up a minimum of space in the hull while providing a maximum field of view and
pressure resistance.

Optical man-rated windows have been developed over the years (references
1-11) to meet operational requirements in the pressure range from —15 to 20,000
psi and the temperature range trom —40 to 150° F. Almost without exception,
they have been made of methyl metacrylate plastic (acrylic plastic). These windows ‘
have been found to be reliable and inexpensive. Because of the acrylic plastic’s
low strength and tendency to creep, however, window-flange assemblies incorporating
acrylic plastic windows are very bulky, particularly those designed for the 10,000- to
20.000-psi pressure range. For example, the ratio of thickness to minor diameter of
a 90-degree conical frustum acrylic window for abyssal depths is at least 2.0.

Glass windows have also been used, but as a rule only for low-pressure
applications in the chemical processing industry, or for high-pressure applications in
deep—submergence photographic systems. In both cases, the windows have been
thick, circular, flat disks of small diameier with a thickness-to-diameter ratio approach-
ing or equaling that of flat-disc acrylic plastic windows.

Some spherical-shell glass windows were also built and used on a experimental
basis, but their structural performance was in most cases less than successful when
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4
they were subjected to hydrostatic pressures in eéxcess of 10,000 psi. As a rule, !
their failure was initiated at the window-flange interface through the formation of
circumferential cracks that propagated parallel to the curved shell surface (references
12-15). But, despite the documented failures, research on spherical-shell windows
made of glass continued, as this approach was known to assure a larger field of
vision and, theoretically, to offer the maximum potential pressure resistance for any i
given membrame shell shape. The NUC window-flange assembly described in this
report represents the successful conclusion to this research.

NS

THEORETICAL CONSIDERATIONS

CBIJECTIVE

The objective of the research study was to develop a proven glass or ceramic
( window-flange assembly with panoramic vision for operational pressures up to
1 20,000 psi. In order for the window-flange assembly to be adaptsble without
‘ changes to many potential undersea applications, it was to be designzd as a self-
sufficient structural element independent of the pressure hull on which it would be
mounted.

APPROACH

The approach taken to satisfying the objectives of the study was to use
the spherical-shell configuration for the window shape, plane conical bearing surfaces ;
for mating the window to: the support flange, fiber-reinforced epoxy for the bearing i
gasket, and transparent glass ceramic or chemically surface-compressed glass for the g
window. This approach was based on the rosults of past studies conducted by the 5
author and the published data of other investigators. i

The spherical-shell configuration was chosen because both theoretical considera- :
1 tions and experimental findings (reference 3) have proven beyond doubt that this
5 shape is structurally and optically superior to flat-disc and conical-frustum windows.
Structurally, it distributes compressive stresses in the window without major ccncen-
trations; while optically its convex-concave lens effect gives a larger and truer view of
objects in hydrospace. The 150-degree spherical angle was chosen because it provides
almost the same field of view as a complete hemisphere while retaining the advantages
associated with the fabrication and mounting of smaller spherical sectors. Also, a
previous experimental study with acrylic spherical-shell scctors under extcrnal hydro-
static loading has shown that the 150-degree spherical-shell sector undergoes smaller
shear and tensile stresses at the interface of the sector and flange than does a 90-de-
gree sector.

The plane-conical bearing surfaces on the edges of the shell and the flange
~ere deemed adequate for the bearing stresses predicted and were less expensive
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than toroidal- or sphierical-conical surfaces. They also make mass-produced
windows and flanges intérchangeable in the field.

The fiber-reinforced epoxy gasket was considered to possess sufficient com-
pliance for cushioning the point contacts resulting from an imperfect match between
the window and the flange while offering adequate strength to withstand the
80,000-psi axial bearing stress predicted for some locations on the window-flange
interface.

Transparent glass ceramic and chemically surface-compressed* glass were :
chosen because they offer superior resistance to the tensile and flexural stresses often: '
encountered in spherical shell windows at the window-flange interface. In addition, :
ordinary glass and acrylic plastic windows were included in the study to compare
their structural performance with that of the ceramic and chemically surface< !
compressed glass windows.

DESIGN

During the design of the window-flange assembly, three parameters were to
be met: (1) the assembly was to be a self-contained structural subsystem: independent
of the stress levels and deformations of the hull, (2) concentrations of compressive
stresses and presence of tensile stresses were to be avoided in the window, and (3) :
all components were to be interchangeable from one assembly to another in the field. *
To imake the assembly a self-contained structural subsystem (Appendix A),
the window was.designed to rest on a flange and be retained by rings that do not
form a part of the hull structure (figure 1). Since the flange mounting-ring that
bolts to the hull is not rigidly attached to the flange, the latter is free to contract
radially under the influence of hydrostatic pressure. The sliding friction betwesn the
flange and the hull imposes some restraint on the flange; but this is minor and, in
addition, the frictional constraint between two flat surfaces does. not readily transmit
bending moments from the hull to the flange. The mounting ring also, although
bolted to the hull, is not subjected to high stresses by the hull because it is made
of DELRIN plastic with a significantly lower modulus of elasticity than that of a
typical metallic hull.
All tensile stresses and the concentration of compressive stresscs in the window
were to be avoided through the use of a flange that would contract radially at a rate
approximately matching that of the window and would possess sufficient axial flexibility
to insulate the window from rotational moments -in the reinforcing boss around the
penetration in the hull. Several designs and fabrication materials for the ‘flange were
studied exhaustively before the final choice was made.
Of great help here was the finite element analysis applied to the proposed
flange configurations by Mr. K. Nishida of the Naval Ship Research and Development
Center (NSRDC). This analysis is reported in Appendix B. Although the.simplifying
assumptions used in the analysis (unrestrained slippage between the window and the

*Chemically surface-compressed glass denotes in this paper a glass whose surface has been precompressed by
an jon-exchange process.
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gasket and between the flange and the hull) make the calulated stress values

(figure 2) diverge somewhat from actual values, the finite element analysis showed
that (1) the chosen flange configuration does not generate tensile stresses in the
glass or glass ceramic: window and that (2) flange material with a modulus of
elasticity somewhat in excess of 30 x 10° psi was needed to match the radial
rigidity of the flange to that of the window. Since it is known that the coefficient
of static friction between two metal parts is in the 0. 3-t0-0.5 range, a flange material
with a modulus of elasticity somewhat less than 30 x 106 would be just right for
this application, The family of Monel alloys fall into this range of elastic moduli,
and they were considered prime candidates for the flange.

3 Monel K-500 was chosen for the flange because (1) it possesses the required
3 resistance to corrosion, (2) it minimizes .the galvanic corrosion that occurs when
dissimilar metals are mounted on a steel hull, (3) its strength is adequate, and (4)
the radial deformation of a Monel K-500 flange under hydrostatic loading matches
more closely the deformation of glass or glass ceramic window than would that of a
titanium or aluminum flange.

DA A A SRR N SO i %
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FABRICATION

FLANGE

The flange was machined from Monel K-500 plate hot-finished and aged to
: C-30 hardness so that a minimum yield point of 100,000 psi could be achieved.
< The ungle of the plane-conical bearing surface was within +5 minutes of the
specified 150-degree included conical angle (figure 1).

WINDOWS

Windows were fabricated from several materials (figurel). The primary
material was an Owens-Illinois Cer-Vit glass composition that could be used in the
glassy phase (SSC-201) or converted to a ceramic: state (C-101) that also was
transparent.

, The windows remaining in the glassy phase: were -subjected ‘to ion-exchange

3 treatment that placed their surfaces into compression. The windows which had the
‘ glassy phase converted by heat treatment into the ceramic state received no surface-
compression treatment. This was considered advantageous as it permitted an
experimental comparison of two techniques for imparting additional tensile strength
to a given material. Because of impurities both the plass and ceramic had a yellow
tint,

il | s

Secondary window n. terials were Schotts annealed BK-7 borosilicate crown
glass and Rohm and Haas Plexiglas G acrylic plastic. These materials were chosen
because they represent the structural performances of a typical unstrengthened
optical giass and typical plastic transparent material used today in pressure-resistant
undersea windows,
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Figure 2, Finite element stress analysis of the NUC window-flange assembly
subjected to external hydrostatic pressure; a gless window was sapported
by a Monel K-500 flange on an epoxy-coated PRD4Y cloth gasket. (sheet 1 of 10)
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NUC 150 DEGREE WINDOW MODEL 1 18 JAN 73

P26
OISPLACED STRUCTURE

Figure 2, Finite element stress analysis of the NUC window-flange assembly
subjected to external hydrostatic pressure; a glass window was supported

by a Monel K-500 flange on an epoxy-coated PRD-49 cloth gasket, (sheet 2 of 10)
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Figure 2, Finite element stress analysis of the NUC window-flange assembly
subjected to external hydrostatic pressure; a ylass window was supported
by a Monel K-500 flange on an epoxy-coated PRD49 cloth gasket, (sheet 3 of 10)
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Figure 2. Finite element stress analysis of the NUC window-flange assembly
subjected to external hydrostatic pressure; a giass window was supported
by a Monel K-500 flange on an epoxy-coated PRD49 cloth gasket, (sheet 4 of 10)
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Figure 2, Finite element stress analysis of the NUC window-flsnge assembly
subjected to external hydrostatic pressure; a glass window was supported
by a Monel K-500 flange on an epoxy-coated PRD-49 cloth gasket, (sheet 5 of 10)
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Figure 2, Finite element stress analysis of the NUC window-flange assembly
subjected to external hydrostatic pressure; a glass window was supported
by a Mone! K-500 flange on an epoxy-coated PRD-49 cloth gasket, (sheet 6 of 10)
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Figure 2, Finite element stress analysis of the NUC window-flange assembly
subjected to external hydrostatic pressure; a glass window was supported
by a Monel K-500 flange on an epoxy-coated PRD<49 cloth gasket, (sheet 7 of 10)
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Figure 2. Finite element stress analysis of the NUC window-flange assembly
subjected to ex‘ernal hydrostatic pressure; a glass window was supported
by a Monel K-500 flangs on an epoxy-coated PRD-49 cloth gasket, (sheet § of 10)
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Figure 2, Finite element stress analysis of the NUC window-flange assembly
subjected to external hydrostatic pressure; a glass window was supported

by a2 Monel K-500 flange on an epoxy-coated PRD49 cloth gasket, (sheet 9 of 10)
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Figure 2, Finite element stress anaiysis of the NUC window-flange assembly
subjected to external hydrostatic pressurc; a glass window was supported
by a Monel X-500 flange un an epoxy-coated PRD-49 cloth gasket, (sheet 10 of 10)
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The Cer-Vit SSC-201 and C-101 windows were fabricated by hot-pressing
oversize hemispheres and subsequently grinding them down on all surfaces to the
specified size (Appendix C). The ground Cer-Vit SSC-201 windows were later

subjected to ion-exchange treatment that chemically compressed the window surfaces.

The fabrication of borosilicate crown glass and acrylic plastic windows consisted
of grinding the hemispherical shapes from oversize -glass and plastic castings.

To insure interchangeability between the 20 window specimens and 5 flanges
used in the study, the spherical angle of the window’s plane-conical bearing surface
was maintained within £l minute. The dimensions of the convex and concave
surfaces were kept within £0. {20 inch and the finish on the surfaces was of
optical quality.

BEARING GASKET

The bearing gasket was formed in a permanent mold by laminating two
layers of DuPont PRD49* cloth with epoxy resin. The resulting product was
0.020 inch thick and had a 150-degree included conical angle to match the bearing
surface of the window (figure 1).

RETAINING RINGS

The clamp ring for holding the window in the flange and the mounting ring
for the attachment of the flange to the hull were made from Nylon and Delrin,
respectively. Plastics were chosen for this application because of their compliance
to hull deformation and superior corrosion resistance (figure 1).

TESTING PROGRAM

The testing program focused primarily on the experimental evaluation of the
spherical window-flange assembly developed during the study. Secondary goals were
the evaluation of bearing gaskets for the window, and the material quality control
for the window material.

BEARING GASKET

Since the predicted bearing stresses on the gasket were to be in the

-40,000- to 80,000-psi range, it was deemed important to select gasket material

capable of withstanding such high stresses repeatedly. Bearing materials were tested
using a hardened tool-steel plunger 0.975 inch in diameter which pushed against
a flat anvil of similar material.

*The new trade name for PRD-49 is KEVLAR-9.
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The following gasket materials were tested (figure 3):

DuPont’s Fairprene 5722A 0.022 inch thick
Rasbestos Manhattan AS56 0.018 inch thick
Armstrong Accobest AN 8012 0.015 inch thick
Fiberglas cloth, epoxy-coated (1

layer of cloth) 0.012 inch thick
Fivberglas cloth, epoxy-laminated

(2 layers of cloth) 0.020 inch thick
DuPornt’s PRD-49 cloth, epoxy-

coated (1 layer of cloth) 0.012 inch thick
DuPont’s PRD-49 cloth, epoxy-

laminated (2 layers of cloth) 0.020 inch thick

After 10 applications of a 40,000-psi bearing stress to the materials it was
found that only the neoprene-coated nylon-cloth Fairprene 5722A and epoxy-coated
PRD-49 cloth were undamaged. When the bearing stress was increased to 80,000
psi, only the gasket made by impregnating two layers of PRD49 cloth with epoxy
was found to be free of damage. Thus, the only gasket considered reliable for service
in the window-flange assembly under cyclic hydrostatic pressure loading to 20,000
psi was the laminate composed of two PRD-49 cloth layers impregnated with epoxy
resin. For service to hydrostatic pressure in the 0- to 10,000-psi range, the Fairprene
5722A material is considered quite adequate.

The gasket testing program showed also that if no bevel is present on the
plunger applying the bearing stress, the gasket will be severely damaged at a fraction
of the load that it could carry if the edge of the plunger were beveled. Conse-
quently, a slight bevel was specified for the edges of the glass and ceramic windows.

MATERIAL QUALITY CONTROL

The testing of window inaterials attrmpted to answer two important
questions: (1) What are the mechanical properties of the materials, and (2) what
is the effect of inclusions like bubbles on their compressive strength? Since the study
focused on Cer-Vit C-101 and SSC-201 transparent materials, the bulk of the tests
addressed themselves to these materials.

Mechanical properties of the window materials were determined by testing
material coupons cast from the same material and subjected to the same thermal
and chemical trecatment as were the windows. Two types of tests were applied to
the test specimens. The four-point loading flexure test was applied to 0.25-inch-
diameter, 5.5-inch-long rods to determine the modulus of rupture (MOR), while the
uniaxial loading test was used on 0.5-inch-diameter, l-inch-long rods to find the
ultimate compressive strength.

The rate of ioading was sufficiently high to load the test specimens to failure
in less than a minute. To make the tests more realistic, the surfaces of some specimens
were abraded, and during tests to determine compressive strength the end conditions
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Figure 3, The following gasket materials were evaluated for use in the NUC window-flange assembly;
(1) DuPont’s Fairprene 5722A; (2) Rasbestos Manhattan A56; (3) Fiberglas cloth, epoxy-coated;
(4) Fiberglas cloth, 2 layers laminated with epoxy; (§) DuPont’s PRD-49 cloth, cpoxy-
coated; (6) Dupont’s PRD-49 cloth, 2 layers laminated with epoxy; and (7) Arm-
strong Accobest AN 8012,
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were varied to introduce the effect of bearing surface hardness and gasket extrusion.
On the basis of test data and visual observations the following findings have been made:

The modulus of rupture in flexure for abraded Cer-Vit SSC-201 surface com-
pressed glass is significantly superior to that of abraded Cer-Vit C-101 ceramic
(60,900 psi average and X = 3,700 psi versus 14,500-psi average and X = 2,100 psi)*.
Still, the modulus of rupture for Cer-Vit C-101 ceramic is somewhat higher (Table 1)
than that of a typical glass composition (reference 14) (14,500-psi average and X =
2,100 psi versus 6,500-psi average and X = 700 psi) widely employed in the man-
ufacture of deep-submergence glass buoys.

The ultimate compressive strengith of abraded Cer-Vit SSC-201 surface :com-
pressed glass and Cer-Vit C-101 ceramic rods tested between identical hardened tool-
steel anvils (figure 4) was approximately the same (173,000-psi average; X = 12,780
psi for SSC-201; versus 174,000-psi average; X = 3,740 psi for C-101). The com-
pressive strength of these materials (Table 2) is only moderately superior to that
of glass compositions used in deep-submergence buoys (134,818-psi average; X =
13,243 psi).

The effect of bubbles on the ultimate compressive strength of both
Cer-Vit C-101 and SSC-201 was found to be significant. For C-101 the difference
between the average strength of perfect specimens (174,000-psi average; X = 3,740
psi) and that of specimens with hubhles (155,117-psi average; X = 11,700 psi)
was about 19,000 psi. For SSC-201 ihe difference in average strength between
perfect specimens (173,000-psi average; X = 12,780 psi) and those with bubbles
(164,000-psi average; X = 14,000 psi) was similar to that of C-1G1.

The specimens with bubbles (figure 5) failed at lower loading than did perfect
specimens because the bubbles served as crack initiators. As a rule, the cracks
would appear on the surfaces of bubbles (figure 6) before the ultimate failure
load was reached. Cracks were initiated by large bubbles at approximately 30
percent of ultimate loading, by small bubbles at about 60 percent. The cracks
originated at the poles of bubbles facing the ends of the compressive test specimen.

The effect of gaskets on the ultimate compressive sirength of the spe~imens
was very significant. In all cases the specimens resting on a gasket failed at iower
compressive loading than did those resting on bare steel. In this respect, the worst
gasket was Rasbestos Manhattan A56, with an average ultimate stress of 72,000 psi,
while the best gaskets were epoxy-laminated PRD-49 and Fairprene 5722A, wiih
an average ultimate stress of 83,000 psi.

The effect of the test jig configuration on the ultimate compressive strength
was also significant. During the tests on Cer-Vit C-101 specimens, in which the
diameter of the anvil matched that of the test specimens (figure 4), the average
ultimate compressive loading at failure was higher (203,666 psi; X = 21,400 psi)
than that measured during tests in which the diameter of the anvil was several
times larger (174,000 psi; X = 3,740 psi). At the termination of tests for which

*x = standard deviation
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Figure 4. Test apparatus for determining the uniaxial compressive strength of glass and ceramic.
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Figure 5. Typical Cer-Vit C-101 glass ceramic specimen with a large
air bubble in its interior,
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Figure 6. Cracks initiated at the boundary of a bubble located in a Cer-Vit C-101
glass ceramic test specimen under uniaxial compressive loading.
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specimens resting between wide anvils were loaded to no more than 50 percent
3 of their ultimate strength, cracks were observed in the bearing surfaces of the specimens
when the load was decreased to zero.

These conclusions were drawn from testing of material specimens: (1) chemical
b precompression of the surface improves the ultimate tensile but not compressive
strength of glass; (2) Cer-Vit C-101 glass ceramic has only a moderate mechanical
strength advantage over typicai glass whose surface is not chemically precompressed;
(3) nonmetallic bearing gaskets should be employed only where their use is
L absolutely necessary, as they will cause the glass or ceramic specimen to fail at a
lower compressive stress than is observed when the specimen rests on an elastically
matched metal block.

Ao g e

HYDROSTATIC TESTING OF WINDOWS

Hydrostatic testing of window assemblies explored three questions. (1) How
3 deep can the NUC spherica! window assembly operate without failure? (2) What is
the cyclic fatigue life of the window assembly at different depths? (3) How resistant
are the window assemblies to underwater shock?

For all of the hydrostatic tests, the window assemblics were bolted to
individual, 5-inch-thick steel plates. Great care was taken during mounting to
2 center the window in the flange and keep grease off the window’s bearing surface.
- The assemblies (figure 7 a,b) were tested at the Southwest Research Institute
in a pressure vessel with a diameter of 10 inches and an internal pressure capability
of 20,000 psi (figure 8). The assemblies were externally pressurized with oil at
room tempecature. Underwater shock tests were conducted in a pressure vessel 30
inches in diameter and 180 inches long. Water was used as the medium and the
shock was generated by explosive charges (figure 9). Pressure pulses set up by the
explosive charges were measured at the test assemblies and recorded using the
instrumentation shown in figure 10. Some of the windows were instrumented
with electric-resistance strain gages and sensitive transducers (figure 11) to measure
strains and acoustic emissions generated by the window undergoing hydrostatic pres-
surization (Appendix D).

.‘Wm
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EVALUATION OF WINDOW ASSEMBLIES

.
>
1
A
2

3

The window assemblies were evaluated in two series of hydrostatic tests. Each
serics attempted to answer a different set of questions that might be asked by a po-
tential user of NUC spherical-shell, glass or glass-ceramic windows.

Long-term_cyclic tests (Table 3) were performed to give the user
evidence that the window assembly will without any doubt perform satisfactorily
for at least 300 cycles at any chosen hydrostatic pressure in the 0- to 20,000-psi
range. To make the tests realistic, the length of each cycle was set at 8 hours,
of which 4 hours were under pressure and 4 without pressure. This cycle was
thought to approximate the typical dive profile of a submersible system.

Acoustic emissions (Appendix D) recorded during several pressurizations of
Cer-Vit C-101 and SSC-201 windows to a pressure of 20,000 psi indicate that C-101
ceramic is a good acoustic emitter while SSC-201 glass is a very poor one.
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Figure 7. The NUC 150-degree spherical-shell window-flange assembly.
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Figure 8, Holding jig for static and cyclic pressure testing of NUC window-flange assemblics
in the 20,000-psi pressure vessel of the Southwest Research Institute,
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Furthermore, C-101 very definitely displavs the Kaiser effect during repeated
pressurizations; thus, acoustic emissions can be used to detect the initiation and
growth of cracks in the transparent glass ceramic material.

During these tests separate groups of windows were subjected to cyclic
tests over the pressure ranges from 0 to 4.500; 0 to 9,000; 0 to 13,500; and
0 to 20,000 psi. in this manner, if the specimens were found to fail in service
at a pressure of 20,000 psi, it would be known for what lesser pressure service
they are acceptable. Dupont PRD-49 and Fairprene 5722A fiber-reinforced gaskets
were used for the cyclic tests to 4,500 and 9,000 psi to establish their prospective
rates of wear at these pressures. For the 13,500- and 20,000-psi cyclic tests, only
the PRD-49 epoxy-laminate gasket was utilized, aithough the Fairprene 5722A
gasket was evaluated in a single 2-cycle test to 20,000 pst.

None of the 19 Cer-Vit C-101 glass ceramic and SSC-201 chemically
surface-compressed glass windows failed, nor were any cracks initiated during
the long-term cyclic tests. This was true even for windows that contained striae
and many bubbles (about Z0 bubbles in the 1- to 3-mm size, figures 12 and 13).
The PRD-49 fiber-reinforced gaskets were found to show very little wear even
after 300 long-term cycles to a hydrostatic pressure of 20,000 psi, while the
Fairprene 5722A gasket began to show wear after 130 cycles to a pressure of
9,000 psi.

Experimentally measured circumferential strains on the flange and adjoining
glass ceramic window were found to differ considerably (Appendix E), indicating
that sliding of the window on the gasket-covered flange took place. Also, the
strains show that the free sliding which was assumed in the finite element analysis
to occur between the flange and the steel bulkhead was decreased significantly
by friction (table 4).

The window mmade from annealed BK-7 optical glass failed after 207 pressure
cycles to 20,000 psi of internal hydrostatic pressure. The failure was catastrophic
resulting in a complete disintegration of the window. Origin of failure was located
to be on the bearing surface of the window (figures 14 and 15).

The acrylic plastic window was found to perform successfully for 100
cycles at a hydrostatic pressure of 4,500 psi even though the bearing stresses
were in the 9,000-psi range. This is amazing when one considers that the
cyclic pressure was approximately equal to 50 percent of the short-term failure
pressure for such a window (reference 3). This can be explained only by the
fact that the loading in each pressure cycle lasted only 4 hours, a Fairprene
5722A gasket was used to eliminate shear stress at the bearing surface, and only
100 cycies were applied to the window.

Shock Tests were conducted to establish a qualitative comparisoii of the
resistances of the four transparent materials to underwater shock. Four NUC
spherical window assemblies equipped with acrylic plastic, Cer-Vit SSC-201 surface-
compressed glass, Cer-Vit C-101 glass ceramic, and BK-7 optical glass windows
were chosen for the tests (table 5).

The tests were conducted at a 450-psi static pressure simulating a 1,000-foot
depth. This depth was chosen for the tests because it (2) represented only a
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Table 5. Resistance of Windows to Dynamic Pressure

Impulses at a Simulated Depth of 1,000 feet.

1 {
! | Cer-vit SsC-201"

chemically
surface- , BK-7
| Size strengthened  Cer-Vit C-101 : borosilicate
! of Acrylic plastic glass glass ceramic crown glass
' charge specimen no. 19 specimen no. 6 specimen no. 9| specimen no. 10
! e e s . e e e
W grams 48 inches 48 inches 48 inches 48 inches
§ 1.1 grams 36 inches 36 inches * 36 inches 36 inches
5 ' . .
« L1 grams 24 inches 24 inches : 24 inches 24 inches
I 1.1 grams 12 inches 12 inches - 12 inches® ' 12 inches?
i N SR
4,6 grams 48 inches 48 inches?
i
| 4.6 grams . 36 inches
4.6 grams ; 24 inches ; :
' i
i 4.6 grams 12 inches !
8.2 grams 48 inches '
8.2 grams 36 inches |
f ¥
] [}
| 8.2.grams | 24 inches i '
. i ;
i 8.2 grams ' 12 inches? ' ‘ |
| \
Note: 1. The standoff is measured between the tip of the charge and the outer

d

surface of the window.

The explosive used is a mixture of 50 percent PETN, 50 percent TNT.

No cracks

Few cracks

Many cracks
Fracture, everywhere
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fraction of the window’s potential static depth capability and thus its brittle failure

3 under a given shock loading would be a measure of material brittleness rather than
static strength; and yet (b) it represented a depth at which the failure of a window

3 due to shock loading would be disastrous to a manned vehicle because the crew

! could not escape alive after their breathing atmosphere was suddenly compressed

] from O to 450 psi.

During the tests each window was subjected individually to a series of

4 hydrodynamic shock tests generated by small explosive charges inside a pressure
vessel. Tne distance of the windows from the explosive charges was varied from
48 to 12 inches, while the size of the charge was varied from 1.1 to 8.2 grams.
] All of the windows save that fabricated of acrylic plastic failed under

{ hyvdrodynamic shock (figures 16 and 17). The glass and ceramic windows were
found to be several orders of magnitude weaker than the acrylic plastic windows;
- of those the most resistant to shock was made of chemically surfacecompressed
glass Cer-Vit SSC-201, while the least resistant was made of annealed BK-7
optical glass (figure 18 a,b; 19; 20 a,b; 21; 22).

T

T

FINDINGS

Laac 2 m e L g (0 0 i
« T

1. NUC 150-degree spherical-shell window-flange assembly utilizing chemically
surface-compressed glass or transparent gliss ceramic, with a thickness-to-imier-radius
ratio of at least 0.333 has a proven minimum fatigue life of 300 cycles consisting
of 4-hour pressurizations to a hydrostatic pressure of 20,000-psi.

2. Similar windows fauricated from annealed BK-7 optical glass have shown

to have a proven fatigue life of only 200 pressure cycles from O0- to 20,000-psi
hydrostatic pressure,

3. Similar windows fabricated from acrylic plastic have a proven minimum
fatigue life of 100 cycles consisting of 4-hour pressurizations to a hydrostatic
pressure of 4,500 psi.

4, Epoxy-laminated PRD-49 cloth and neoprene-impregnated nylon cloth
Fairprene 5722A are acceptable bearing gaskets for the NUC 150-degree spherical~
shell window-flange assembly providing that the hydrostatic pressure does not exceed
20,000-psi. The cyclic fatigue life of epoxy-laminated PRD-49 bearing gaskets appears
to be an order of magnitude longer than that of Fairprene 5722A under a bearing
stress of 40,000-psi on the gasket,

5. Chemically surface-compressed glass Cer-Vit SSC-201 is significantly superior
in structural applications to anncaled glass and transparent glass ceramic Cer-Vit
C-101 when the structure is subjected to tensile stresses, but possesses only
moderate advantages when the structure is subjected to compressive stresses only.

6. Transparent glass ceramic Cer-Vit C-101 is only moderately superior in
structural applications to anncaled glass regardless of whether the structure is sub-
jected to tensile or compressive stresses.
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Gage 1 2v/div
Gage 3 2v/div
2
é,
3
4 50 usec/div
3
Gage 1 Gage 2 Calculated
Peak Shock Overpressure, psi: 5,020 3,250 4,950 psi
3 Unit Impulse, psi-sec: 244 138 0.140 psi sec
] Duration, usec: 150 160 150

Figure 17, These data were recorded for the Plexiglas G acrylic plastic window
subjected to hydrodynamic impluse testing,
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Figure 18. Cer-Vit C-101 window failed when subjected to the hydrodynamic impulse
of a L,1-gram charge set off at a 12-inch standoff and a simulated 1,000-foot depth,
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!
20 mv/div
1 .
50 mv/div
b
:
]
1 50 usec/div
2
1 Gage | Gage 2 Calculated
4
: Peak Shock Overpressure, psi: NA 2,350 2,290
’ Unit Impulse, psi-sec: NA 0682 .0358

Duration, pusec: 120 120 NA

Notes: (1) Model failed.

Figure 19, These data were recorded for the Cer-Vit C-101 window
subjected to hydrodynamic impulse testing,
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Figure 20, Cer-Vit SSC-201 chemically surface-compressed glass window failed when subjected
to the hydrodynamic invpuise of a 4.6-gram explosive charge set off at a 48-
inch standoff and a simulated 1,000-foot depth,
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: Gage 1 50 mv/div

{ Gage 2

1

:

; N .

; t 50 wsec/div

1

Gage 1 Gage 2 Calculated

: Peak Shock Overpressure. psi: 1,360 1,270 835
Unit Impulse, psi-sec: .0382 .0364 0216
Duration. usec: 700 800 NA

Note: Model failed.

Figure 21, These data were recorded for the Cer-Vit SSC-201 chemically surface-
compressed glass window subjected to hydrodynamic impulse testing.
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CONCLUSIONS

Spherical-shell sectors with a 150-degree included angle and a plane conical
bearing surface have been found to serve successfully as windows with abyssal ocean
depth capability if (a) fabricated from transparent glass ceramic Cer-Vit C-101,
chemically surface-compressed glass Cer-Vit SSC-201 cr annealed optical glass, (b)
mounted in the compliant NUC window-mounting flange, and (c) cushioned by an
epoxy-impregnated PRD-49 cloth or neoprene-impregnated nylon Fairprene 5722A
cloth bearing gaskets. For maximum fatigue life the chemically surface-compressed
glass or transparent glass ceramic Cer-Vit C-101 are preferred to annealed optical

glass.

AT WW“‘WTWWMW R b 2l X witihal 4
. f

DESIGN RECOMMENDATIONS

Since some of the design parameters entering into the successful performance
of NUC 150-degree spherical window assembly are not very well understood, some
precautions must be taken if successful performance is to be assured from window
assemblies patterned after the NUC prototype.

WINDOW ASSEMBLY

1. When the NUC design is copied in every detail the resulting window assembly
3 will have a 100-percent assurance of successful performance to an external pressure

¢ of 20,000 psi.

3 2, When the NUC design dimensions are scaled up but the material, finish,

and dimensional tolerance specifications are retained, the resulting window assembly

r may have an estimated 90- to 99-percent assurance of successful long fatigue life

to an external pressure of 20,000 psi.

3. When only the key features of NUC design are retained including the (a)

PRD-49 or Fairprene 5722A gasket material, (d) chemically surface-compressed
glass with a minimum 50,000-psi precompression stress on the surface, glass
ceramic with a minimum 12,000-psi MOR in abraded test condition, and (e)
mounting flange with radial deformat.on theoretically matching that of win-
do ., the resulting assembly may have an estimated 60- to 70-percent assurance
of successful long fatigue life to 20,000-psi.

Thus, it appears to be highly desirable for users of glass or glass ceramic
spherical windows to pattern their designs as closely as possible on the NUC
design so that the performance of their window assemblies is essentially the same
as described in this paper, Annealed optical glass BK-7 may be used instead of
the mechanically superior transparent ceramic or chemically surface-compressed
glass providing the user is will to accept the shorter cyclic fatigue life of this material.
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PRESSURE HULL

In addition to the precautions that should be observed during the design,
fabrication and assembling of the window assembly, certain minimum conditions
must be met also by the pressurc hull on which the assembly is to be mounted:

1. The flange seat on the hull rnust be initially flat and should remain flat after
the hull is subjected to its proof test depth.

2. The flange-seat diameter on the hull should decrease under hydrostatic loading

at a rate that is equal to or less than that caiculated for the window flange.
3. The finish of the flange seat should be in the 32 to 63 rms range.

OPERATIONAL RECOMMENDATIONS

There are several operational procedures that should be followed to insure
successful performance of the window assemblies:

1. The bearing surface of the window, gasket, and flange should be wiped com-
pletely dry of water and grease prior to assembling them.

2. If the Fairprene 5722A gasket is utilized, it should be bonded to glass with
Pliobond or equivalent contact cement. The joint in the gasket should be radial
and without overlapping.
3. Two O-rings instead of a single one snould te wedged between the window
and the window flange (figure 1, item 3). Using iwo 1/8-inch-thick O-rings helps
to center the window in the seat and keeps it from working loose during handling
on the deck.
4. The bottor surface of the flange, which rests on the pressure hull, should
be wiped clean and well greased, prior to mounting the flange on the pressure hull.
If these procedures are followed every time that the window assembly is
put together, the integrity of the assembly will be assured to 20,000 psi and the
premature appearance of cracks in the window’s bearing surface will be prevented.
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APPENDIX A
ASSEMBLY OF THE WINDOW-FLANGE SUBSYSTEM

The window-flange subsystem has been designed to be assembled independently
of the submersible system on which it will be used from interchangeable, mass
produced parts. This reduces to a minimum the number of parts to be stocked by
the supplier as well as the operational delay — and thus the cost — required to
replace a damaged window-flange assembly in the field.

Assembly of the subsystem entails fastening together five components in a
specific sequence, The components should be laid out on a work bench in an
orderly sequence and kept free of grease (figure A.1). First, the window-flange
mounting ring (figure A.2) is fitted over the flange (figure A.3). Second, the
window-bearing gasket (figure A.4) is place atop the flange and the window
(figure A.S) is set upon it, Third, an O-ring is carefully inserted into the annular
space between the convex surface of the window and the window flange lip
(figure A.6). Finally, the window retainer (figure A.7) is slipped over the window
and fastened to the mounting ring with screws (figure A.8). Tightiening of the
screws completes assembly (figure A.9).

Only after the window-flange subsystem is assembled can grease be liberally
applied to the bearing surface of the window flange that will be mated to the
submersible’s hull. The grease will prevent corrosion on the mating surfaces,
which slide over one another, and will substantially aid the lower O-ring in sealing
the interface between the hull and the window flange. After the insertion of the
O-ring into the groove located in the bearing surfaces of the window-flange subsystem
(figure A.10), it can be mated to the submersible’s hull,

Scale drawings of the window-flange subsystem and its components are pre-
sented in figures A.11 through A.15 in order of assembly.

36

: VA RO o AT AN TR - T La, i o o | -~ .
- . 2. el sty e S N il Lz e = Canmai la S TR TIRY, 3 <0 RSO LAT

[




Sh aache ki

TR XY

RET IO

Figure A.1, Components of the window-flange subsystem,
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Figure A.3. Flange (K-500 Monel).
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Figure A4. Window-bearing gasket (two layers of PRD-49 fiber cloth laminated with CpoXy resin).
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Figure A5, Window (acrylic, glass, or ceramic),
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Figure A.6. Placement of the upper O-ring into the annular space between the
convex surface of the window and the inner surface of the flange lip,
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Figure A7, Window retairer (Nylon).
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Figure A.9. Tightening of the screws.
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Figure A.10. Placement of the lower O-ring into the groove
in the bearing surface of the window-flange subsystem,
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APPENDIX B

FINITE ELEMENT STRESS ANALYSIS OF NUC
SPHERICAL-SHELL WINDOWS

by

Kanehiro Nishida
Naval Ship Research and Development Center (":SRDC)

DESCRIPTION OF PROBLEM

Two window-flange assembly configurations were submitted by the Naval
Undersea Center to the Naval Ship Research and Development Center for stress
analysis. Each specified a spherical glass ceramic window with an included angle
of 150 degrees and a metallic support flange. The two assembly configurations
differed solely in the cross-sectional area of the support flange. All other structural
parameters such as the included angle, window seat, window dimensions, and method
of sealing were identical for both.

The following boundary conditions were specified for this stress analysis:

1. Slipping would occur at the interface between the window and the gasket.

2. The metallic flange was free to move only radially at the equator on
roller supports with no axial displacement allowed.

Only the combinations of material properties shown in Table B.1, where E = Young’s
modulus and Y = Poisson’s ratio, were to be analyzed.

APPROACH TO THE PROBLEM

The finite element technique was applied to the two window-flange assembly
configurations, This method, as utilized by NSRDC, requires three basic steps:
(1) the generation of the structural idealization, (2) the running of the finite element
computer program, and (3) the plotting of results. The structural idea'izations for
both window assembly configurations are shown in figures B.3 and B.4. The two
basic idealizations were generated by a computer program written by Rockwell
and Pincus (reference B.1). In both cases the ineshes consisted of 342 nodes and
545 clements. The finite element computer program utilized for this work was
written by Gifford (reference B.2). It utiiizes triangular ring elements and can be
applied to any axisymmetric problem. It will handle nonlinear effects of the con-
tact problem and nonlinear effects of material properties like plastic deformation.
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Table B.1. Summary of Material Parameters

8
8
5
Problem "2 Flange Gasket Window
number | E I E u E M
101 | Al 30x106 | 03 | 20x106 | o3 | 134x 106 | 025
102 | A 5 x 106
103 | A 0.5 x 106
104 |A .005 x 106
104A | A] 26x106 | 03 5x106 | 03 | 13.4x100 | 025
105 |A] 17x105 | 03 | 20x106 | 03 | 134x100 | 03
106 | A 5x 106
107 | A 0.5 x 106
108 |A .005 x 106
109 |A] 30x106 | 03 | 20x106 | 03 | 10.5x 106
110 | A 5x 100
1t | A 05 x 106
112 |A .005 x 106
1124 | Al 26x10° | 03 5x106 | 03 | 105x10% | 025
113 |A] 17x106 | 03 | 20x106 | o5 | 10.5x10% | 03
114 | A 5x 106
115 | A 0.5 x 106
116 | A .005 x 106
201 |B] 30x106 | 03 5x 106 03 | 13.4x 105 | 025
202 |B| 17x106
203 |B| 10x10°
204 |B 5 x 106
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As shown in Table B.1, a total of 22 computer runs were made, 18 of Configuration
A and 4 of Configuration B. For each configuration combinations of materials for
the window, flange, and gasket were analyzed. Results of the analysis are presented
in graphical form. One plot for each combination shows the structure in the

original and deformed state. Other plots show the stresses in the form of contour
maps. On these contour maps stresses are given in sensitivities, i.e., the stress for

1 psi of external hydrostatic pressure,

FINDINGS
Configuration A

Changing inechanical properties of the various parts (figure B.5 and B.6)
did not have a very significant effect on the stress in the glass ceramic windows
mounted in flange Configuration A (Problems 101 through 108). In practically
every case the compressive circumferential stress at the bearing surface, however,
was slightly lower than the Lame’ stress for thick-walled spheres. This indicates
that a hoop tensile stress is superimposed on the membrane stress. The deviation
from the membrane stress appears to te only about 10 percent and, therefore,
should not be a significant factor. The axial stress plots indicate that the major
portion of the load is transmitted through the central portion of the bearing
surface. At midthickngss, the stress sensitivity is about —2.25 psi/psi; at the edges,
the sensitivity drops off to about ~2 psi/psi. The parabolic stress distribution is
caused by the shape of the metal flange web, which has a narrower width than the
thickness of the glass ceramic window.

It appears that the steel flange provides a radial displacement (figure B.7)
that better approximates the membrane displacement of the glass ceramic window
than does the titanium flange. However, it appears that the glass ceramic has a
tendency to slide outward from the steel flange. This probably causes the iower
hoop stress in the glass ceramic part noted earlier. The titanium flange has &
tendency to deflect radially almost twice as much as the glass ceramic window.

Computer problems 109 through 116, which were identical to 101 through
108 except that the window material was a glass with a lower Young's modulus,
(10.5 x 106) produced stress distributions. which were nearly identical to those
in the higher modulus (13.4 x 10°) glass ceramic windows. This is mainly due
to the basic assumption that slipping occurs at the interface. Although various
properties for the gasket were tried, their effect was practically unnoticeable,
again because of the slippage assumption.

Configuration B

Changing mechanical properties of the metai flange Configuration B produced
change in the stresses in the glass ceramic window (figures B.8, B.9, and B.10}, It
appears that as the stiffness of the flange was decreased by lowering Young’s modulus,
a very local increase in the circumferential and axial stress was created at the inner
edge of the glass ceramic bearing surface. Although this stress is compressive, it
should nevertheless be viewed with caution.
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The manner in which the glass ceramic window and flange move rclative
to one another should be carefully considered (figure B.i11). It should be noted
that slipping between window and flange may not occur in the actual case. This
would cause shear stresses at the interface and possibly local tensile stresses at flaws
in the window. It womnld, therefore, appear that a good choice for a fiange material
would be aluminum since it deflects in approximately the same manner as the
window. This minimizes the effect of shear stresses between the window and the
flange.

B an Do thhial el RS h U ek aiiiat B A el

CONCLUSIONS

Steel appears to be suitable as the construction material for flange Con-
figuration A while aluminum and titanium appear still to be suitable for flange
Configuration B. The local contact stresses at the inner edge of the aluminum
and titanium flanges of Configuration B and the relative outward movement of
the glass ceramic window with respect to the steel ring of Configuration A should
be noted, as they may become sources of window assembly failure.

REFERENCES

1. Rockwell, K. D. and Pincus, D. S., “Computer Aided Input and Cutput for
Use with the Finite Element Method of Structural Analysis” NSRDC Report 3204
(August 1970).

2. Gifford, L. N., “Finite Element Analysis for Arbitrary Axisymmet.ic
Structures,” NSRDC Report 2641 (March 1968).
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Figure B.3, Structural idealization of Configuration A,
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Figure B.4. Structural idealization of Configuration B,
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CONTOUR INTERYAL IS .25

3
T. . . . : ! ]
‘o K L .
j‘ j . : \ N :
; e aeesy 5\‘ N ! pe.1s
: s oy \ \ \ 1 Vi
1

\ 1.
7526 \\\‘\ \ L L

rmuos [ZINES Y 1708 N TR )
CONTOUR PLOT % EFFECTIVE STRESS * [ CREMENT NUMBER

Figure B.5, Magnitude and distribution of stresses in window-flange
assumbly Configuration A utilizing a steel flange, fiber-reinforced-epoxy
gastet, and glass ceramic window (problem 102). (sheet 1 of 7)
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Figure B.5., Magnitude and distribution of stresses in window-flange
assembly Configuration A utilizing a steel flangs, fiber-reinforced-epoxy
gasket, and glass ceramic window (problem 102). (shéet 2 of 7)
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Figure B.S, Magnitude and distribution of stresses in window-flange
assembly Configuration A utilizing a steel flange, fiber-reinforced-cpoxy
gasket, and glass ceramic window (problem 102), (sheet 3 of 7)
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Figure B.S, Magnitude and distribution of stresses in window-flange
assembly Configuration A utilizing a steel flange, fiber-reinforced-cpoxy
gasket, and glass . :tamic window (problem 102), (sheet 4 of 7)
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Figure B.5. Magnitude and distribution of stresses in window-flange
assembly Configuration A utilizing a steel flange, fiber-reinforced-epoxy

gasket, and glass ceramic window (problem 102). (sheet 5 of 7)
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Figure B.S, Magnitude and distribution of stresses in window-flange
assembly Configuration A utilizirig a steel flange, fiber-reinforced-epoxy
gasket, and glass ceramic window (problem 102). (sheet 6 of 7)
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Figure B,5, Magnitude and distribution of stresses in window-flange
asserably Configuration A utilizing a steel flange, fiber-reinforced-cpoxy
gasket, and glass ceramic window (problem 102).(sheet 7 of 7)
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Figure B,6. Magnitude and distribution of steesses in window-flange assembly
Configuration A utilizing a titanium flange, fiber-reinforced-epoxy
laminate gasket and glass ceramic window (problem 106). (sheet 1 of 8)
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Figure B.6. Magnitude and distribution of stresses in window-flange assembly
Configuration A utilizing a titanium flange, fiber-reinforced-epoxy
laminate gasket and glass ceramic window (problem 106). (sheet 2 of 8)
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Figure B.6, Magnitude and distribution of stresses in window-flange assembly
Configuration A utilizing a titanjum flange, fiber-reinforced-epoxy
laminate gasket and glass ceramic window (problem 106). (sheet 3 of 8)
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Figure B.6. Magnitude and distribution of stresses in window-flange assembly
Configuration A utilizing a titanium flange, fiber-reinforced-cpoxy
laminate gasket and glass ceramic window (problem 106). (sheet 4 of 8)
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Figure B.6., Magnitude and distribution of stresses in window-flange assembly
Configuration A utilizing a titanium flange, fiber-reinforced-epoxy
laminate gasket and glass ceramic window (problem 106). (sheet 5 of 8)
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Figure B.6. Magnitude and distribution of stresses in window-flange assembly
Configuration A utilizing a titanium flange, fiber-reinforsed-epoxy
laminate gasket and glass ceramic window (problem 106). (sheet 6 of 8)
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Figure B.6. Magnitude and distribution of stresses in window-flange assembly
Configuration A utilizing a titanium flange, fiber-reinforced-epoxy
laminate gasket and glass ceramic window (problem 106)., (sheet 7 of 8)
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Figute B.6. Magnitude and distribution of stresses in window-flange assembly
Configuration A utilizing a titanium flange, fiber-reinforced-epoxy
laminate gasket and glass ceramic window (problem 106). (sheet 8 of 8)
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Figure B,7, Radial displacements of window and flange in Configuration A under
external hydrostatic loading: problem 102, glass ceramic on steel,
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Figure B.7, Radic] displacements of window and flange in Configuration A under
external hydrostatic loading: problem 106, glass cerzmic on titanium,
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Figure B,7. Radial displacements of window and flange in Configuration A under
external hydrostatic loading: problem 110, glass on steel,
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Figure B.7, Radial displacements of window and flange in Configuration A under
external hydrostatic loading: problem 114, glass on titanium. 1
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Figure B.8, Magnitude and distribution of stresses in window-flange
assembly Configuration B, utilizing a glass-reinforced-plastic ilange
and glass ceramic window (problem 204). (sheet 1 of 8)
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Figure B.8. Magnitude and distribution of stresses in window-flange
assembjy Configuration E, utilizing a glass-reinforced-plastic flange
and glass ceramic window (problem 204), (sheet 2 of 8)
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Figure B,8, Magnitude and distribution of stresses in window-flange
assembly Configuration B, utilizing a glass-reinforced-plastic flange
and glass ceramic window (problem 204), (shcet 3 of 8)
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Figure B.8. Magnitude and distribution of stiesses in window-flange
assembly Configuration B, utilizing a glass-reinforced-plastic flange
and glass ceramic window (problem 204). (shect 4 of 8)
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Figure B.8, Magnitude and distribution of stresses in window-flange
assembly Configuration B, utilizing 2 glase-reinforced-plastic flange
and glass ceramic window (problem 204). (sheet 5 of 8)
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Figure B.8, Magnitude and distribution of stresses in window-flange
assembly Configuration B, utilizing a glass-reinforced-plastic flange
and glass ceramic window (problem 204), (sheet 6 of 8)
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Figure B.8, Magnitude and distribution of stresses in window-flange
assembly Configuration B, utilizing a glass-reinforced-plastic flange
and glass ceramic window (problers 204). (sheet 7 of 8)
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Figure B8, Magnitude and distribution of stresses in window-flange
assembly Configuration B, utilizing a glass-reinforced-plastic flange
and glass ceramic window (problem 204). (sheet 8 of 8)
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Figure B.9. Magnitude and distribution of stress in window-flange assembly
Configuration B utilizing an aluminum flange, fiber-reinforced-epoxy
gasket, and glass ceramic window (pzoblem 203), (sheet 1 of 8)
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Figure B.9, Magnitude and distribution of stress in window-flange assembly
Configuration B utilizing an aluminum flange, fiber-reinforced-epoxy
gasket, and glass ceramic window (problem 203), (sheet 2 of 8)
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Figure B,9, Magnittde and distribution of siress in window-flange assembly
Configuration B utilizing an aluminum flange, fiber-reinforced-epoxy
gasket, and glass ceramic window (problem 203). (sheet 3 of 8)
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Figure B.9. Magnitude and distribution of stress in window-flange asserbly
Configuration B utilizing an aluminum flange, fiber-reinforced-epoxy
gasket, and plass ceramic window {problem 203), (sheet 4 of 8)
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Figure B.9. Magnitude and distribution of stress in window-flange assembly
Configuration B utilizing an aluminum flange, fiber-reinforced-cpoxy
gasket, and glass ceramic window (problem 203), (sheet 5 of 8)
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Figure B.9, Magnitude and distribution of stress in window-flange assembly
Configuration B utilizing an 2luminum flange, fiber-reinforced-epoxy
gasket, and glass ceramic window (problem 203), (sheet 6 of 8)
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Figure B.9, Magnitude and distribution of stress in window-flange assembly
Configuration B utilizing an aluminum flange, fiber-reinforced-epoxy
gasket, and glass ceramic window (problem 203). (sheet 7 of 8)
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Figure B.9. Magnitude and distribution of stress in window-flange assembly
Configuration B utilizing an aluminum flange, fiber-reinforced-epoxy
gasket, and glass ceramic window (problem 203), (sheet 3 of 8)
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Figure B.10, Magnitude and distribution of stress in window-flange assembly
Configuration B utilizing a titanium flange, fiber-reinforced-epoxy
gasket, and glass ceramic window (problem 202), (sheet 1 of 8)
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Figure B.10. Magnitude and distribution of stress in window-flange assembly
Configuration B utilizing a titanium flange, fiber-reinforced-cpoxy
gasket, and glass cerami¢ window (problem 202). (sheet 4 of 8)
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Figure B.10, Magnitude and distribution of stress in window-flange assembly
Configuration B utilizing a titanium flange, fiber-reinforced-epoxy
gasket, and glass ceramic window (problem 202). (sheet S of 8)
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Figure B.10. Magnitude and distribution of stress in window-flange assembly
Configuration B utilizing a titanium flange, fiber-reinforced-epoxy
gasket, and glass ceramic window (problem 202). (sheet 6 of 8)
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Figure B.10. Magnitude and distribution of stress in window-flange assembly
Configuration B utilizing a titanium flange, fiber-reinforced-epoxy
gasket, and glass ceramic window (problem 202). (sheet 7 of 8)
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Figure B.10. Magnitude and distribution of stress in window-flange assembly
Configuration B utilizng a titanium flange, fiber-reinforced-epoxy
gasket, and glass ceramic window (problem 202), (sheet 8 of 8)
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Figure B,11. Radial displacements of window and flange in Configuration B under
extemal hydrostatic loading: problem 201, ceramic on stecl,
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Figure B.11. Radial displacements of window and flange in Configuration B under
external hydrostatic loading: problem 202, ceramic on titanium.
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Figure B,11, Radial displacements of window and flange in Configuration B under
external hydrostatic loading: problem 203, ceramic on aluminum,
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Figure B.11. Radial displacements of window and flange in Configuration B under
external hydrostatic loading: problem 204, ceramic on glass-reinforced plastic,
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APPENDIX C
FABRICATION OF WINDOWS

Since the windows evalvated in this study were fabricated srom four different
materials, the fabrication processes differed considerably from one material to
another.

The acrylic plastic windows were machined from 4-inch-thick Plexiglas GM
sheets using standard metalworking machine-shop equipment. Sincs the plastic
window is much more tolerant to mismatch at the bearing surfaces than glass, the
tolerance on the beveled bearing surface was relaxed for plastic windows to 15
minutes,

After polishing, the windows were annealed to preclude any subsequent
crazing during the test program. Since the mechanical and optical properties of
Plexigias GM acrylic plastic are available from the supplier (Cadillac Plastics, Inc.)
they will not be discussed here in detail, but are summarized for the reader’s
convenience in Table C.1.

The optical glass windows were ground from gobs of BK-7 optical glass using
standard lens-grinding techniques. The beveled bearing surface on the windows was
controlled to within £ 1 minute to eliminate any serious stress raisers. Since
the mechanical and optical properties of BK-7 are a..ilable from Schott Glass, only
a brief summary is given for the reader’s convenience in Table C-2.

The glass ceramic windows were pressed in glassy stage (figures C.1 and C.2)
by Owens Illinois into graphite molds. The rough hemispherical castings (figure C.3)
were subsequently subjected to a controlled heat treatment that converted the glass
into nonporous, polycrystalline material exhibiting a high degree of isotropy in all
its properties. The resulting Cer-Vit C-101 ceramic hemicpheres were ground to
final shape (figure C.4) utilizing standard lens-grinding techniques. The transmission
of light through the Cer-Vit C-101 window was adequate, but was significantly less
than that through the acrylic plastic and BK-7 windows, Mechanical properties of
the ceramic are discussed in the body of the report but they are summarized here
for the reader’s convenience (Table C.3 and figures C.5 through C.13).

The chemically surface-strengthened glass Cer-Vit SSC-201 windows were
formed by Owens Illinois in the same molds and from the same glassy material
used in the ceramic windows, The major difference was that the cast hemispheres
were not subsequently subjected to the thermal treatment that would induce
crystallization of the glass. After grinding to the final shape by typical lens-grinding
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techniques, the windows were subjected to the chemical surface-strengthening process
of immersing the finished windows into a bath of NaNOg salt at 400°C. The depth
of ion-exhange in the surface of the glass windows was controlled by the length of
immersion in the salt bath, which was approximately 5 hours. The magnitude of the
compressicn stress induced in the surface of the glass by the bath was established
experimentally by immersing rod-shaped test coupons of the same material 0.250
inch in diameter and 5.5 inches long in the same salt bath. This procedure s..owed
that the salt bath imparted to the glass an average surface-compression stress of
60,900 psi.

Of the four fabrication processes the most economical was found to be that
used for the acrylic plastic window (under $250 in quantities of 20). Also, the
local availability of Plexiglas G stock made the procurement time less than one week.

The most expensive fabrication process was found to be the grinding of
windows from gobs of optical glass (under $1,000 in quantities of 20). The delivery
time is on the order of 4 weeks, since the gobs of glass must be ordered from the
fabricator,

The fabrication of Cer-Vit SSC-201 and C-101 windows by pressing and
subsequent grinding is slightly less expensive than that of optical glass windows
(under $900 in quantities of 20); but it requires considerably more time, since the
graphite tooling for pressing the windows must be prepared first. Also, it is only
fair to mention that both the Cer-Vit C-101 and SSC-201 windows contain a
significant number of inclusions in the form of bubbles, while the optical glass and
acrylic plastic ones do not, Also, the absence of tint and higher light transmission
noted for the BK-7 and acrylic plastic windows make them more acceptable for
applications where the ligating is poor or where true rendition of color is desired.
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Specific gravity

i Cocefficient of expansion (-30° to 70°C)

Specific heat (at 20°C)

war e N e -

Thermal conductivity (at 20°C)

P ”

Modulus of elasticity

Modulus of rigidity

ek ak e ® (e i et

Poisson’s ratio

Micro indentation hardness
i (Vickers diamond with 136-degree angle
50 g load for 10 seconds)

an i

e

Index of refraction (Nd)

*Schott glass composition

135

Table C.2. Properties of Borosilicate Crown Glass BK-7*.

2.51
71 x 107/9C

0.205

0.208

633 <&,

mm

1.5168
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[, ; Table C.3. Properties of Cer-Vit Glass-Ceramic C-101.
|
{
: Density (p), gfcc . . . . . . . . .o e e e e e 2.50
Hardness, Knoop (200 g loading) . . . . . . .. .. ... .. 540
' Compicssive Strength (psi). . . . . . . . . . . . . . . .. > 200 X 103
ﬁ ; Modulus of Rupture (psi) . . . . . . . . . . 14.5 X 103
- e e
s ' Chemical Properties
1 (Chemical Durability)
3 Spercent HCI at 95°C . . . . . . . . . o ... 17.8 mils/yr
4
1 Spercent NitOHat 95°C . . . . . . . . « v v v v v .. 204.4 mils/yr
3 Water at 100°C . . . . . . . . .. . ... ... ... 15.7 mils/yr
A Electrical Properties
3
‘ Dielectric constant 25°C, 100 Hz . . . . . . . . .. 11.7
25°C, 1 MHz . . . .. ... .. 9.1
250°C, 1 MHz . . . . . ... .. 14.2
Dissipation factor 25°C, 100 Hz . . . . . . .. 0.076
259C, 1 MHz 0.023
250°C, 1 MHz . . . . . . . ... 0.093
Volume resistivity 259C . L L 1014
(ohm-cm) 2500C . . ... 108
Surface resistivity 25C . L 10!3
at 0 percent relative 250°C . . ... 3 X 1010
humidity (ohm/sq.)
Optical Properties
Index of Refraction (Np, 25°C) . . . . . . . . . . . .. 1.540
137
el N et ¥ A TR R Y P © T S £ . TN P U Fr T o R T P

R o ek

P T T S AU PR, 7y wpgey rpw w3

T T AETAR T I T AT T T T e

e ——— . ey




TN

R

Ry

TN

~ VRIS KT SO VAP I e

Table C.4. Properties of Cer-Vit

Mechanical Properties

Modulus of elasticity
Shear modulus
Poisson’s ratio

Cocfficient of thermal expansion

(0 - 300°C)
Density (p), g/cc
Modulus of Rupture*
Compressive Strength

Optical Properties**

aaade

Material SSC-201.

12.2 x 106 psi
5 x 106 psi
p=022

44.0 x 10°7/oC
2.50
60.9 x 103 psi
= 200 x 103 psi

e LT s MKl

138

Wave length, microns 0.30 | 0.50 | 0.75 ’ 1.00 | 1.25 | 1.50 | 1.75 | 2.00
Percentage 0 92 92 89 89 90 91 91
Transmittance

Wave length 2251250126014 2701} 2801290 |3.001 3.10
Percentage 90 90 89 80 36 35 40 45
Transmittance

Wave Length 3201330 340 3.50{ 3.60 | 3.70 | 3.80 | 3.90
Percentage 50 55 60 65 68 68 67 65
Transmittance

Wave Length 400 | 4.10 | 4.20 | 430 | 440 | 4.50 | 4.60 } 4.70
Percentage 60 55 42 35 15 8 6 5
Transmittance

Wave length 4.80 | 4.90 | 5.00

Percentage 4 4 3

Transmittance

* after ion exchange treatment that puts the surface of the specimen into compression.
** gample thickness 0.125 inch.
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Figure C.1. Molten glass is poured into a graphite male moid,
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Figure C,2, After the gob of glass has been pressed by the insertion
of the male mold it is ready for removal from the female mold,
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(b) Concave surface

Figure C,3. Rough glass casting,
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(a) Convex surface

(b) Concave surface

Figure C.4. Ground glass window,
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Figure C.5, Transmittance curve typical of Cer-Vit C-101; sample thickness 0.125 inch.
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L Figure C.6, Young’s modulus for Cer-Vit C-101.
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Figure C.7. Shear modulus for Cer-Vit C-101.
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Figure C.,9. Poisson’s ratio for Cer-Vit C-101.
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Figure C,11, Thermal diffusivity for Cer-Vit C-101,
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APPENDIX D
ACOUSTIC EMISSICNS

DISCUSSION

Since recording of acoustic emissions from structural test specimens under
load has been found since its inception (reference D.1) to be a valuable research
tool (reference D.2), several NUC 150-degree spherical window assemblies were
instrumented with accelerometers (160-kHz response) so that their acoustic
emissions could be recorded while they were subjected to hydrostatic pressure
tests.

As test specimens served glass ceramic Cer-Vit C-101 window specimen 2
and chemically surface-compressed Cer-Vit SSC-201 window specimen 12, They
were mounted on regular NUC 150-degree spherical window flanges using Fairprene
5722A bearing gaskets, After the whole window assembly was bolted together,
it was placed on a steel bulkhead and locked inside a 10-inch-diameter pressure
vessel at the Southwest Rescarch Institute, Steps were taken to isolate the test
specimen from the vibrations generated by the pump and the expanding pressure
vessel so that the acoustic emissions recorded would represent only the response
of the window assembly and bulkhead to increasing external hydrostatic pressure.

The vessel was pressurized at a rate of 500 psi/minute with a small,
positive-displacement, air-operated pump, After the vessel was pressurized to
20,000 psi, ihe pressure was maintained for two hours and then dropped to 0 psi.
After 30 minutes of relaxation the vessel was pressurized again to 20,000 psi and
held at that pressure for two hours prior to de-pressurization.

RESULTS

Because of the intimate contact between the window and other components
of the window test assembly, the recorded acoustic emissions represent a sum of
emissions from all of the components. Thus, it is impossible to place a numerical
valuc on the acoustic emissions generated only by the window. Still, comparison of
(figure D.1 and D.2) the acoustic emissions from glass and glass ceramic windows

generated during the first and second pressure cycles permits certain general
observations.
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1. The number of emissions generated during the first pressurization was an
order of magnitude larger than the number of emissions generated during the second
pressurization of the same window test assembly.

2. The number of acoustic emissions generated by the window test assembly
incorporating the Cer-Vit C-101 glass ceramic window was several orders of

magnitude larger (figure D.1) than the number of acoustic emissions generated by
the window test assembly incorporting the Cer-Vit SSC-201 glass window (figure D.2). :

o e e e — Pt N ey e e

3. The rate of acoustic emissions began to increase rapidly only after the
pressurization of a window test assembly passed the 16,000:psi pressure value.

4, The rate of acoustic -emissions generated by Cer-Vit C-101 glass ceramic !
window test assembly during sustained pressure loading at 20,000 psi decreased :
rapidly with time (Table D.1). ;

5. The number of acoustic emissions generated by Cer-Vit C-101 glass y
ceramic window test assembly during the first sustained pressure loading (Table D.1) ;
at 20,000 psi was an order of magnitude larger than during that generated during

the second sustained pressure loading.

CONCLUSIONS

1. Since identical window test jigs were used to test the C-101 glass ceramic /
and SSC-201 glass windows, it must be concluded that surface-compressed glass :
windows are poor sources of acoustic emissions prior to the appearance of macro-
cracks. In all probability, the few acoustic emissions recorded during testing of
SSC-201 glass windows were generated by the metallic parts of the assembly rather
than by the glass window. This substantiates a previously reported finding
(reference D.2) that while ceramics are excellent sources of acoustic emissions

glass is a very poor one,

2. Since the acoustic emission pattern of glass ceramic exhibits a very pronounced
Kaiser effect, it may be concluded that the use of acoustic emission instrumentation
during structural tests and analysis of acoustic emissic © data may be applied to glass
ceramic material for detection of incipient failures.

i\ e g e e
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APPENDIX E
COMPARISON OF EXPERIMENTAL AND ANALYTICAL STRESSES

Since during the calculation of stresses an assumption was made that the
window flange was going to slide freely upon the hull it was of great interest
to find out whether the flange behaved as predicted. For this purpose electric-
resistance strain gages were bonded to the interior surfaces of the window and
the flange at critical locations and their output was recorded at 100-psi pressure
intervals as the external hydrostatic pressure was increased at 2 rate of 1000 psi/min-
ute from 0 to 20,000 psi.

Several interesting observations can be made on the basis of plotted ex-
perimental data.

First, the negative circumferential strains in the window increase with the
distance from the contact with the flange. The highest strain is at the apex, while
the lowest on is at the bearing surface.

Second, the negative circumferential strains in the flange are about seven
times smaller than those in the Cer-Vit C-101 window at the point of contact
with the flange (figure E.1).

Third, the axial strains in the window at the point of contact with the
flange are not only fifteen times smaller than those at the apex, but are also
positive instead of negative (figure E.2).

On the basis of these observations it can be concluded that, contrary to the
assumption previously made that sliding is not restrained, very little sliding occurred
between the flange and the hull. Sliding between the window and the flange is
very pronounced; but it also falls short of the ideal, unrestrained sliding. It can be
also concluded that some moments are generated between the window and the
flange,

When the experimentally generated stresses (figures E.3 and E.4) are compared
to the calculated stresses (figures E.5, E.6, E.7, and E.8), a fair agreement is found
between them on the window. On the flange, agreement is good only along the
axial direction; in the circumferential direction, the experimental stress is three
times lower than the calculated one. The reason for this is, of course, the absence
of the assumed free sliding between the flange and the hull.

The sliding that does occur is only about one-third of that predicted
(figure E.9) because of friction between the flange and the hull. The net effect
is that the flange contracts in the radial direction as if it were made from
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a material with a modulus of elasticity of 78 X 106 psi rather than 26 X 106 psi.
Thus, one must conclude that the decision to fabricate the flange from a material
with a modulus of elasticity of 26 X 10 psi was a sound one, as the friction forces
that would have been superimposed on a stiffer flange would have decreased its
ravial contraction to such a degree that the flange would have failed to support the
radially contracting window at its inner edge.

It can be concluded that the chosen design and materials for the window-
flange assembly make it function within acceptable stress levels and displacements
even at the maximum 20,000-psi hydrostatic pressure loading.
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HYDROSTATIC PRESSURE, psi
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12,000
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8000
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B 4
|
= |
i
]
SPECIMEN:
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,C-101 CERVIT CERAMIC
"~ FIXTURE:
| j NUC WINDOW i*LANGE
| K-500 MONEL /
|
i
L
I
L
!
|
I
|
— |
!
! : LOCATION: INTERNAL SURFACE
I 1 APEX — CERAMIC
*‘,' 2 75° ELEVATION — CERAMIC
I l' 3  60° ELEVATION — CERAMIC
| 4 45° ELEVATION — CERAMIC
— 5 30° ELEVATION — CERAMIC
,’ 6 15° ELEVATION — CIRAMIC
I~ P
'! 7  § ELEVATION — MONEL
L
! CIRCUMFERENTIAL
“,' STRAINS
i
[
f
l
[ SN S R O A M DAY T SR N B T
0 ~1000 -2000 -3000
STRAIN, pin/in

Figure E.1. Comparison of circumferential strains in Cer-Vit C-101 window and Monel K-500 flange.
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HYDROSTATIC PRESSURE, psi
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SPECIMEN:
150° SPHERICAL SHELL
C-101 CERVIT CERAMIC

FIXTURE:
NUC WINDOW FLANGE
K-500 MONEL

LOCATION: INTERNAL SURFACE
1 P _
5000 A oEx CERAMIC
2 75° ELEVATION — CERAMIC
3 60° ELEVATION — CERAMIC
4 45° ELEVATION — CERAMIC
6000 5 30° ELEVATION — CERAMIC
6 15° ELEVATION — CERAMIC
7  5° ELEVATICN — MONEL
4000
AXIAL STRAINS
2000
0 [T NN NS N SRS SN SV NS SR SR U N SR
+250 O 1100 -2000 -3000

STRAIN, uin/in

Figure E.2. Comparison of axial strains in Cer-Vit C-101 window and Monel K-500 flange,
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HYDROSTATIC PRESSURE, psi
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SPECIMEN:
150° SPHERICAL SHELL
C-101 CERVIT CERAMIC

12,000

FIXTURE:

NUC WINDOW FLANGE
K-500 MONEL
10,000

LOCATION: INTER!OR SURFACE

APEX - CERAMIC
75° ELEVATION — CERAMIC
60° ELEVATION — CERAMIC
45° ELEVATION — CERAMIC
30° ELEVATION — CERAMIC
15° ELEVATION .- CERAMIC
5° ELEVATION — MONEL

8000

6000

N O AR WN -

CIRCUMFERENTIAL STRESSES

2000

-20,000 -40,000 -60,000

STRESS, psi
Figure E.3. Experimentally generated stresses in Cer-Vit C-101 window and Moncl K-500 flange,
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HYDROSTATIC PRESSURE, psi

20,000 — @

SPECIMEN:

18,000 |- 150° SPHERICAL SHELL
C-101 CERVIT CERAMIC
FIXTURE:
16,000 |- MUC WINDOW FLANGE
K-500 MONEL
i /
/
14,000 |~ /
/
5 /
/
//
12,000 |- p
'/
- /I
/
10,000 |~
//
i LOCATION: INTERNAL SURFACE
8000 1  APEX — CERAMIC

2 75° ELEVATION — CERAMIC
//3 60° ELEVATION — CERAMIC
6000 4 45° ELEVATION — CERAMIC
5 30° ELEVATION — CERAMIC
6 15° ELEVATION — CCRAMIC
7

5° ELEVATION — MONEL
4000

AXIAlL STRESSES

%

2000

1 1 l 1 1 | l 1

—

-20,000 -40,000 -60,000
STRESS, psi

Figure E4. Experimentally generated axial stresses in Cer-Vit C-101 window and Monel K-500 fiange.
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NUC 150 DEGREE WINDOW MODEL 2 18 JAN 73
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CONTOUR PLOT * CIRCUMFERENTIAL STRESS * INCREMENT NUMBER 1

Figure E.5. Calculated circumferential stresses in Cer-Vit C-101

window and Monel X-500 flange, (sheet 1 of 2)
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NUC 150 DEGREE WINDOW MODEL 2 18 JAN 73

CONTOUR INTERVAL 18 U580

N

P26 '
CONTOUR PLOT * CIRCUMFERENTIAL STRESS * INCREMENT NUMBER

Figure E.S, Calculated circumferential stresses in Cer-Vit C-101
window and Monel K-500 flange. (sheet 2 of 2)
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Figure E.6, Calculated axial stresses in Cer-Vit C-101
window and Monel K-500 flange, (sheet 1 of 2)
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Figure E.6, Calculated axial stresses in Cer-Vit C-101 :
window and Monel K-500 flange. (sheet 2 of 2) *
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NUC 150 DEGREE WINDOW MODEL 2 18 JAN 73
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CONTOUR PLOT  *  RADIAL STRESS * INCREMENT NUMBER

Figure E.7. Calculated radial stresses in Cer-Vit C-101
window and Monel K-500 flange, (sheet 1 of 2)
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Figure E.7. Calculated radial stresses in Cer-Vit C-101
window and Monel K-500 flange, (sheet 2 of 2)
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Figure E,8, Calculated effective stresses in Cer-Vit C-101
window and Monel K-500 flange. (sheet 1 of 2)
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Figure E.8, Calculated effective stresses in Cer:Vit C-101
window and Monel K-500 flange, (sheet 2 of 2)
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Figure E.9, Calculated displacements of Cer-Vit C-101 window and Mone! K-500 flange,
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