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ABSTRACT

Several models for the analysis of the modulation
of the ocean surface wave spectrum by a prescribed surface
current are reviewed. Both an eigenmode desc:ription and
WKB approximation will be studied in two hori:.ontal
dimensions. The results will be expressed as a modulation

of the surface wave amplitude power spectrum.
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1.0 Introduction

In this paper ve review several models for analysis
of the modulation of the ocean surface wave spectrum by a
prescribed surface current. A quasi-linear approximation
will be used. The free surface waves will be treated in
the linear approximation and the coupling to the surface
current will be proportional to the product of the surface
wave and surface current amplitudes. Both a modal descrip-
tion and the WKB apprnximation will be studied. The results
will be expressed as a modulation of the surface wave ampli-

tude power spectrum.

(1) (2)

The notation of Parts I and II will generally

be followed.




2.0 Description of the Problem

The model system we consider in this paper is that of
an irrotational, incompressible ocean. We treat the surface
in two horizontal dimensions with the undisturbed ocean sur-
face chosen to be the z=0 plane of a rectangular coordinate
system with z-axis directed upward. The depth of the water
is assumed to be very large comrared with 211 wavelengths
of interest. The ascumption of irrotational. ty allows us to
use a velocity potential description of the surface waves
[¢(;,t)] and the vertical displacement of the water surface
from equilibrium is written as ;(;,t). The prescribed surface
current is assumed to be parallel to the x-axis and a super-

poéition of modes of the form
UE,t) =1 Z U cos (k) (2.1)

where

£ = x - c. .t (2.2)

with cr a phase velocity, K representing a set of wave numbers

and the UK a set of amplitudes.

The linearized equations to determine ¢ and ¢ were

(3)

obtained for one-dimensional waves by Zachariasen and

(4)

and also in Part II. These can be generalized to

Milder




two dimensions; the resulting equations are (3)

3

t+_[l°Vs¢+ gc= 0,

Q)

QL

_C . . =
*Uv_ v 0 =@ o . (2.3)

@

Here g is the acceleration of gravity, ¢ is the velocity
potential at the surface, and ¢ is the vertical displacment
4 of the surface from the plane z=0. The operator Vs is the

gradient in the (x,y) plane and

Fa

Following the notation of Part I, we write

> - ik.r v |
o(r,t) = Z - o F B lb_f” B b(i)*) (2.4)
% V2 k| k -k

and for the surtface displacement from equilibrium

- 2 k| k -k
k

where v, = /g/k, the b(+) are expansion amplitudes, and the
b k
sum runs over sirface wave number vectors E. Substitution of
|

Egqs. (2.4) and (2.5) into (2.3) leads to the equation for the

bi+):
k




where we have seen in Part II that the coupling between

(+) ()% b . (=0T} . .
b, and b = is very weak and therefore ignored and
k -KX k

Q, T Ke_ and w, = Vg}il . (279

Continuing to follow the nocation of Part I, we set
the eigenmode expansion amplitudes to be of the form
-iw, t
b_E+) k 2—% (2.8)

e q
k Kk

and define the complex fmplitude

>

L i(Ker-u,t) A
3(r,€) % e qa. k . (2.9)

e

k

In terms of this complex amplitude we may write the surface

displacement as,

Z(T,t)

Im{z (?:,t)}

(z&,t) = z*(?:,t)) . (2.10)

5 A
2
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Until now our discussion has been concerned with the
mechanical interaction of waves and the resulting surface
displacement. Suppose we shift our focus and determine the
spectral development induced by the interaction of the sur-
face current and surface gravity waves. Let us suppose that
at a given time t, we observe q, to have the value Q_]E . A
series of such observations at time intervals long compared
to correlation times will lead to an ensemble of values for
the qﬁ's. We shall assume the different Q 's to be uncorrelated

k
so that for an ensemble average denoted by the brackets (...)

we have the relations,

<o ,>=<Q, 0 >=0 ,
k- x £

o o' >=<lo %> : (2.11)
k 2 lil ki

We can use these considerations to construct the cor-
relation function for the surface displacement r between two

points separated by a distance %X as follows,

c(x) = (L (T,t) T (T+x,t)D

= Z%{P(E) + p(-iE)} elkex (2.12)

X
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where P(i) is the power spectrum of the complex amplitude Z.
Using the expression for the surface displacement in terms
of the complex amplitude, i.e., Eq. (2.10); in Eq. (2.12)

yields the expression,

P(k) = ——1—5 Pz B ™ B ) BB D
2(2m)
= <IQE|2> /2k% (2.13)

which is the power spectrum in terms of the measured slope

variables.

The corresponding power spectrum of the surface dis-

placement ¢ is defined by Phillips(6) as

y(k) = % {p(iE) + p(-i)} . (2.14)

The normalization of the functions W(E) and P(E) are such that

Z Y (k) = Z p(k) = <z2> . (2.15)
k k




3.0 Analysis of the Coupling

O — e S ——

In the remainder of this paper will assume that there
{ is a single nondispersive internal wave which gives rise to

the surface current. We write Eq. (2.1) as
> 3
U=1i Uo coskKg (3.1)

where the wavelength of the internal wave (2n/K), i.e., sur-

face current, is very much larger than the surface waves of

T e = T S5 s

interest. Thus, we have the relation

k >> K, all k of interest. (3.2)

To simplify our two-dimensional problem we parameterize

the dependence of the surface wavenumber in the direction

orthogonal to the current by introducing

p =z ek (3.3)

into Eq. (2.6). With p as a fixed parameter in Eq. (2.6),

the component of k parallel to th: current U is written as,

TR TR TR (R T — (2. 4)

- e




Eq. (3.4) is reasonable because of condition (3.1); i.e.,
; we can establish the periodic boundary conditions for the

surface gravity waves over an arbitrary patch of ocean.

] Implementing Eq. (3.4) allows us to replace the eigen-

(+)

mode amplitudes b by a discrete set of quantities B(n):

l pith & o7IHE guny | (3.5)

k

i where

Kc (3.6)

i
<
i

is the frequency of an internal wave of wavenumber k

ard phase velocity c Substituting the discrete variables

I°
defined by Eg. (3.5) intc the interaction equation [Eq. (2.64

results in

i B(n) - E; B(n) = £(n) B(n+l) + g(n) B(n-1) (3.7)
vhere
KU )
iy o n-1 n n
g(n) = n — N . 3 {n-l & “’n—l} . (3.8)
{ (n-1) “+(p / K)

KUo n+l { s 11 )n }
4 5 n+l w (3.9)
Wn+1) 2+ (p/K)

fip) = n




B e s i e
and
Enzwn—nﬂ

H A further transformation on Eq. (3.7) puts

; with we S w, .
L - k]
it into the form,

A _

1 3¢ Hy

Q

where H is Hermitian. Indeed, the transformation

B(n) = v, ¥(n)

leads to the equation, wusing Eq. (3.7),

id(n) -E ¥(n) =V p VD) + VL b(n-l) (3.17)

where the matrix elements are given by

Vn,n+l= £(n) Yn+l/Yn

Vn'n_l = g(n) Yn_l/Yn .

The matrix V will be symmetric if we choose



Ynnl/yn % (f(n-l)/g(n))k (3.14)
] so that
Vi ne1 = YEM) g(n¥D)
and (3.15)
V) pe1 = /E(-D g

Eq. (3.12) now has the form of a "Schrédinger equation",

i g—ii (K + V)y (3.16)

where

Eigensolutions to Eq. (3.16) are

2%
iy =™ gm0 (3.17)

where X labels the eigenfunctions wA and eigenfrequencies

EA. Substitution of (3.17) into (3.16) leads to the

equation

A = =
(E —En) wx(n) = vn,n+1 wx(n+l) + Vn,n—l wx(n 1) . (3:18)

Because of physical limitations on our model, as well as

mathematical limitations on our equations, it is useful to

10
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truncate the set of Eq. (3.18) at some maximum value of n,

say n We suppose that N oax is chosen sufficiently large

max "’
that for time intervals of interest this truncation does not
affect our conclusions. Convenient boundary conditions are

to be imposed on the wx , such as

Uy (Mpin? = ¥y (pay) = 0 (3.19)

where Noin is an assumed minimum value of n.

The eigenfunctions wx(n) are supposed to be so chosen

that they satisfy the ortho-normality relations

}: 9,000 b =8, a6 7

n

A

To discuss the solutions of Eg. (3.16) several para-

(3.20)

meter regimes must be recognized. There is, first, the

condition of "resonance", def.ned by the relation

aEn kx
___an = K{-k_ cg - CI} = 0 J (3.21)

where cg = (g/k)%/Z is the group velocity of the surface waves.
The condition (3.21) determines a value of kx , say kx = NK,

&t which resonance occurs. Condition (3.2) implies that

11




N >> 1, so we may conveniently take N to be an integer.

Eq. (3.21) can be rewritten in the more convenient form

NK/[p2 + Nzxz];5

; (3.23)

3 5 ad
tha- is, © is the angle between the surface current and k.
For values of the suriace wavenumbers near resonance, i.e.,
n = N, we may expresz the diagonal matrix element in Eg. (3.16)

by the expansion about n = N

Using Eq. (3.22), we may re-write this as

2
- - +
Enm EN o (n=N)

where a 1is

KcI 2
S — [3 cose - 2] : (3.24b)
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From the form of a above, we anticipate that anomalous

resonance effects wilil occur for

cos 0 =

wiN

or

6 = 359 ., (3.25)

We shall see that for 6 < 35° modes with n near N tend to

be "trapped" in this neighborhood, whereas when 6 > 35°,

modes originally near N tend to spread indefinitely away.
When we are interested in mode numbers n near n = M,

we can use Egs.(3.14) and (3.15) to write

UOK

L ’ 1
Va,ntl = Vnel,n (‘2“) n{nt [1 +O’(;§)] ' (3.26)

and

Y, = (M/n) % exp [(n—M) (% c0326+1)/(2M)] [1 +@f(;dl§)] , 13,27

where we have specified that Yy = L
When the cuupling V is sufficiently weak, we have the

first order perturbation solution to Eq. (3.18):

Vv
» n, A
vy (n) = 8, + E -E, [Gx,ml + 5A,n-1] '
g = B, . (3.28)

13




We anticipate that this will he a useful approximate

solution when

& Bwey |
Everon

= <<l
. Byl ™%

This condition is most stringent at X = N, where we intro-
duce the parameter

VN,N+l

= |2Uo N /[cI(3 cos®o 2ﬂ’

When S and SA (all X) are sufficiently small, we can
use perturbation theory. Vhen S, is not small and when X is
not near a resonant mode, the WKB method is probably the
simplest to discuss the surface wave modulation. The WKB
method fails near resonance, so for SA' large special tech-
niques are required.

For convenient reference, in Fig. (1) we show |E E

n+l_ n|

as a function of (n-N) for the case that 6 = 0 and that

1 m/sec
= 10-2 m-1
250 cos®6

2445 cosze




o | L | L | |
=60 =40 -20 0 20 40 60

Figure 1. The difference in frequency between adjacent modes
is given by the solid curve. The dashed curve shows

the frequency shift from resonance.

15
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The quantity (EN-En) is also shown in Fig. (1) for these
same parameters.

To discuss the resonant strong coup'ling (& >> W)
solution, we consider mode numbers near n = M = N and define

an integer vV, as most closely approximating the relation
Y. W 4R . {3 843

. Laet og '
For |n-M| = v_ we set E = E, and

\Y = V, = U, KM/ 2 (3.22)
in Eq. (3.18), which becomes simply

ey Uy = 5[0, (D) + (D] (3.33)
where &

- A
€y = (E -EM)/(ZVO) : (3.34)

The boundary conditcns (3.19) are now taken as

UJ)\(Mi\)) =0 . (3.35)

This choice of boundary condition will ncot limit the validity

of our results for initial modes having n-values well within

16
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the interval M=v < nc«< M+vo ard times short enough that
modes are not excited near n = (Ntvo) or (Mtvo).

The eigenfunctions of Egqs. (3.33)-(*.35) are then
~ sin[—l— A(n - M + vo)] i

o
2vo

LY (n) =v

€, = cos 7;; ) ’

n=M-\) +1,...,b1+\)o-1'
A 15 g e 2vo-l . (3.36)

Equation (3.33) can be generalized if we use (3.16)

in (3.18), but continue to set E = EM. The resulting

equation 1is
U K

(EA-EM) ¢y (n) = (—‘21- /n [/m v, (0+1) + /A-1 wk(n—l)] .

If we define

6, (s) = z gl b, (n) (3.37)
n

there results the equation

_d 2

e e B e R e



% A
vy = 2(E -EM)/(UOK) 2

COn integrating (3.38), we obtain

Cc
A -1
$, (s) = -—% exp|v, tan (s)
. 1+s [ A ]

where Cy is a constant.
Following Rosenbluth(7), we can give a somewhat
‘ s more elaborate analysis near resorance by treating n as a

continuous variable and using the aporoximation (3.24) for

E,- Using the approximation (3.22), we set M = N and obtain
2
A 2 2 e
] E = EN - 2Vo + a (n-N) wk(n):z vy ——gnz . (Be41)

We now have Vo = Uo KN/2, since we have taker M = N. In

dy
deriving Eq. (3.41) we have neglected a term of order —a%,/N)
compared with wx(n) and have neglected derivatives of higher

order than the second.

Equation (3.41) is the "harmonic oscillator" equation
1 with "spring constant” a. For cosf > (%)Li [Eq. (3.24)] o
is positive and the "restoring force" limits the spreading of
modes. For cosf < (%)% the force is "anti-restoring" and

indefinite spreading in mode-space occurs.

Sl L e e L o e



If we define the quantities,
Az l2- (B - B (V )‘11 /s;5 (3.42)
A= N o J 3

and WA(V) g wx‘“)

then Eq. (3.41) can be written as

dz\yA 3
+ (A, - VY)Y, =0 (3.43)
2 A A

dv
This has the solutions,

AA =20 E b, N =06 A 2%

X A 1 2
Wx(v) =|s* 2" At /7 HA(V) exp[—v /2] (3.44)

LY {n)

where H,y is the Hermite polynomial

2
i 2vz-z dz



and the contour of integration is a circle about 2z = 0(8).

The normalization of Eq. (3.44) 1is s» chosen that

"0

[dn U)A (n) U)A.(n) =x By

- 00

and the eigenvalues of EA are of the form

where

9 X
__2,2 (3 cos“s - 2) K ; (3.47)

The above result is similar to that obtained by Rosenbluth(7)

for the one dimensional impulsively applied inteinal wave;

the eigenvalues being identical for 6 = 0.




—

4.0 The Initial Value Condition

The general form of bé+)

, Eq. (3.5) is seen to be

it = 7Pty yin,t) , (4.1)

where y(n,t) is a solution to Eq. (3.16). We suppose that
at time t = 0,
V(n,0) =8, 2— (4.2)

corresponding to an initial simple wave of mode number M.

For other times we write

-iE .t (M)
plipt) 2 @ 0 Re——difn;t) . (4.3)

V2 Tisg

The complex amplitude Z [Eq. (2.9)] is then

- —
7 = & o™ }E: n_M i(n=MIKE o 0 ¢y, (4.4)
M

n

[Mz L o pz]%

with £ given by Eq. (2.2) and kM

To first order in M-l,

K. Y 2
M 'n cos“0
_f—?; 1l + —aM (n-M) ,

21




so (4.4) becomes now cosf = MK/kM

i(k, x-w,t)
g = €= o oOW W
kM
3 !
G(M) = [1 ] __%%%_g g%] :E: el(n-M)KE (n,t) « (4.5)
n

1f we expand in terms of the eigenfunctions of Eq. (3.18)

and use (4.2), we obtain

(M) g
Wi, ) = =R Z T E ) v, | . (4.6)
2 vy LS

Evaluation of (4.5) when we can use the perturbation

solution (3.28) is straightforward. There results

U_KM

(M)_l_{o iKE

2 2M 2

Y
M+l M
A [1 2l ] //(EM+1-EM)
U_KM .
Q Hl - (Lt 3 cosze)) el

2

~i(By_ -yt ) (4.7)
x[l_e ]/(EM_ By) -

On expanding Eq. (4.7) in t near t = 0, we obtain

cosze)) e

(1+-1—(1+l

e . Ty M — T T TP “W'r!wmm'w.r-mm

22
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6™ | = r_ [¢™)

U KMt 1 2 .
=1 + ( °2 )[(1 + 5 cos e)/M] sin (K¢)

BZE

3 cos (KE) . (4.8)

2

. UOKMt
4

oM

For 8 = 0 and M = N, this agrees with the results of

Zachariasen(3)

when an error in his work is corrected.
To obtain a more accurate description near resonance,
we write (K + V) in Eq. (3.16) in the form

1
K+V=H, +H ,

HY = E, (n) + v, [w(n+1) + w(n-l)] .
1
k. 1 1
Hy = (En-EM) v(n) + Vn sl v(n+l) + Vn oy v(n=-1) , (4.9)
where
|
| 1 L -
% vn,nil = Vo (n-M+%) /N . (4.10)
l We next take
v(n) = y°(n) + wl(n) ' (4.11)
treat Hl and wl as small, and specify that

23




ia_‘L=H wo . (4.12)

Substitution of (4.11) into (3.15) then gives the first

order equation

Th 1. .1 0

i - S Ho Y H™ y (A= A3}

to determine wl. If we set wl(n,t) = 0 at t = 0, the

boundary condition {(4.2) gives us

gt (M)
v = Z e EE y ) g, 00 8 : (4.14)
) 72 Yy

where EA and the ¥, are given by Egs. (3.34) and (3.36).

The transformation (4.3) then lets us write

% -i2VoteX
¢ (n) = e wAtn) lJJA(M)

A
m
1 -1(2V_t) cosa
o o
- da e cos (va)
o
=iV 3 (-2v_t) (4.15)
Y o '
x Here we have set a = 5%— A, replaced the sum by an integral,
' o
i and have defined
v £ (n=M). (4.16)

24




In anticipation of the evaluation of (4.5), we use (4.15)

and find that

Z e1VKE 40 (1) = exp{-iUoKMt cos(KE)} g (4.17)

If we neglect the term of O(1/N) and substitute the
above into (4.5) we see that the effect of the surface
current is to modulate the phase velocity of the surface

wave. This velocity is

=
X‘I €
= IR

+ Uo cosfd cos(KE) , (4.13)

a result that could have been deduced from elementary
considerations.
To obtain corrections of O(1/N) we must integrate

Eq. (4.13). On setting

-iE_.t (M)
iy ze M 2 ol (4.19)
V2 Ty
we obtain
1l -~ t2
d" (Mxl) =<Fit/(2N) + (EMtl-EM) 5 Vo (4.20)

for small t. Evaluation of (4.5) finally gives us

25




vV t
g™ :_5[1 + _%__ %: cos 26 sin(Ki)] e

—iZVOt cos (X&)

2
29 EM

| t
+ Vo — sin(Kf) - T 5

N cos (K¢) . (4.21)
oM

This agrees with the Zachariasen expression (4.8) for short
times. Since the second term above has been evaluated only
for small t, we cannot use (4.21) for late times. From
Eq. (4.15) we see that the probability that mcde number

n is excited is proportional to [Jv (2Votﬂ 2. Thus, when

<&

> =1 2
t""tp'Z'VO 2
the neglect of (En—EM) in Eq. (3.33) is no longer valid and
we must use the Rosenbluth eqguation (3.41) to study the
interaction.

Before doing this, it is instructive to construct
the wave amplitude Z using the function ®A of By, (3:40).

After some simplification, and with the identification that

we obtain
—iEMt i (py+KE&) 2
Z = e (V2 v../k,) e ’ 1 + ( ( cos 0—2)/(4Mﬂ
MM L

4

(s 3s + 1 - M)} (S5 ) & (4.22)

26




S\ ig  t
I'(s,t) = :E: P o, (s)| e M

A

= [ dv. C(v) v(B=a)
1l+s

Here we have replaced the sum over X bv an integral over

v = 2(E)‘-EM)/(UOR\ (4.24)

and have set

<@
1]

tan “(s) , a

itUoK/Z 8 (4.25)

The coefficient CA 2 C(v) is chosen to satisfy the boundary

condition that

r(s,0) = s"! Qm)/ (Zyy,) - (4.26)

Using (4.26) we obtain

- 2 6. (M)
F(s,t) = tan™] (g-q) LL* tan { 0] o
(1 + tan“e) V2 Yo

(4.27)

— -

On evaluating (4.22) we obtain the envelope function:




IG(M)l = (1-02) [1 + ol% cosze—l) sin(K§)/
(1 + 02 - 20 sin(KEﬂ] /(l + 02 - 20 sin(KE)) . (4.28)

Here

o = tanh (UOKt/Z). (4.29)

For small t, o = Vot/N and Eq. (4.28) is in agreement with
the linear t-dependent terms of Eqg. (4.21). Eg. (4.28) is
singular for o = 1, sinkKf = 1. Including the effect of *he

(En-EM) term in (3.18) would remove this singularity

For o << 1 we can simplify Eq. (4.27) to obtain

V. t

c™M =1+ %(wscosze) sin(K£)| exp [-Zivot cos(Ké:)] , (4.29)

which modifies Eq. (4.21) with a plausible phase factor

correction and, of course, omits the term involving azzM/aMZ.

Returning to the Rosenbluth equation (3.41), the

DRSS RSN NN EET— L "

general form of Y(n,t) is

y(n,t) =Zei6th Cy wx(n) . (4.30)
A

where we have dropped a phase factor,

and Sw and wx(n) are given by Egs. (3.42) to (3.47). The
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= -aﬁﬂ".’mﬂ‘m“

coefficients CA are

CA - fdn ""A(n) y(n,0) . (4.31)

For an initial Gaussian,

_ 2 Q(M)
¥ (n,0) = exp [- (v-vo) /2A (4.32)
2y
M
where % * (M-N)/Sk and A is a parameter, (4.31) is easily
evaluated and we find
: 2 '
v(n,t) = exp {vo [1/(J.+A ) - 1/(1+A)] /2}
2 Q(M)
exp {f(v-vé) /(27" )) ->—— . (4.33)
Y Yy
Here
1-A 2idwt
A' = [1 C m 3 ] ’
l1-a 2ifwt
[1 + -m- e ]
2%
7 1-a'
Vo ™ ¥ l—-? 5 (4.34)

A special case of some interest is that of the "non-

spreading" wave packet, with

A=1], A' =1,

v & gy griost (4.35)
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In this case

2
(M) g
|¢'(n,t)|2 = 8 exp {-[n - N - (M-N) cos(dwt)]z/sk} :
Y2 Yy
(4.36)
The most probable value of n is
n =N+ (M=N) cos(Swt) (4.37)

Returning to Eg. (4.33), we re-write this as
2 Y
Y (n,0) ~ exp |- (n=-M)“/(2AS7)

To satisfy our boundary condition (4.2) we evidently require

that

J 2AS° << 1 . (4.38)

Reference to Eq. (4.34) shows then that when

e216wt wriall

|a'| is very large and we encounter Rosenbluth's "pile-up"

near cos%t = 1. This "pile-up" is greatest at
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t = Tp # 355 . (4.39)

f
G(M): 1+ R(M), R(M) > 0
=1, R(M) < 0 (4.40)
. 1/8 _.
(M) _ sinl2.8 s*/® gin(ke)] _
R = sin (KE) 1 (4.41)
On setting M = N in Eq. (4.9), we model G(M) as follows:
1 2
G(M)~l+ t)(l-i-icos 0) )
= — s8in (K¢)
T N
v
+ COs (KE) (JL . < & &
S Ty Tp
t\4
+ 17| R exp [-iMKU(C)t y EE T (4.42)
{ p P
i
! where
- -1
‘ T, = (UKN/2)71 (4.43)

and Tp = % Ty S% » an alternate form for Eq. (4.39).

For applications it will be desirable to re-label

the envelope function (4.5) with the wave number k = (MK, p),

31




setting

= oM
€5 =G : . (4.44)

For times much larger than Tp , phase mixing
substantially reduces the resonant modulation of the

envelope function. We note that for t = rp , the variable

(4.29) is
g = tanh (% S%/N) ;

which we anticipate to be small compared with unity. This

seems to justify the linear approximation in (4.42).
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5.0 The WKB Approximation

For a mode number M sufficiently far from resonance
that we can set

oE

M
Em+1 = Ep oM b

M

the parameter (3.29) is

UOM

S, = - . (5.1)
M 2(cI cg cosH)

I1f this is greater than unity the perturbation solution (3.28)
cannot be used, but the WKB approximation can be. To develop

this we re-write Eq. (2.3) in terms of t, ¢ = x - c.t , and y:

I
L) 9¢ =,
97 14 du =
SErVsEtoar @, ¢ (5.2)
Here
V E U = CI . . (5-3)

Next, we write




B

£

ale) ot (BY0E) ifaene

>
0

_&( ) dE
. i ] ]
- afr) e (PYut) o R - (5.4)

™
I

As usual, we consider q, A and a to be slowly varying
functions and neglect higher than first derivatives of these

as well as products of derivatives.

Treating A' and q' as small, we then work out the relation(g)

2
. 2 : if qde
= -4 S - 2hy - 19 i(py-wt)
®s¢)_ ka - i 2 A 3 [l lk) ]q'A e e o WB SN
where
2 2
k2 4 +4¢q )li 8
Substitution of Egs. (5.5) and (5.4) into Eq. (5.2)
is straightforward and A can be eliminated from the coupled
dw
equations. There results here a' = da , etc., and c_ = X
dg g dk

2 :
&m—qV) - mi]a + ik P cg(V + cg cose)] a'

2 .. 8.4
sal2c V' +2c'V+4 ' + in =
a [ g 5 cg cg cosé 2 cg sin ek] C

(5.6)
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The first term, involving no derivatives, gives the usual

dispersion relation
w=-qV= we = vgk

for waves traveling in the positive x-direction. The terms

involving derivatives may be integrated to yield

VEg(V + cg cosf) a(§) = const.

To first order in U, Eg. (5.8) becomes

~ U _ .2] - 2
a(g) = a, 1+ 7 Cos® [cI 2 cg cosf + 2 cg sin“e /(cI cg cosf)

(5.9)

where again M labels the mode.
For sufficiently short wavelengths, we may neglect

cg compared to Cr above. Then

- U cosb
a(5)=ao[l+—4—E—I——] .

The short wavelength will be subject to modulation effect

due to interaction with long wavelength waves. Let L be




a wave number for which & << k. In the linear approximation

we have
| U-& = VQ d, cos(&-ﬁ—;nit)
= VQ Q& Gi cos(i-ﬁ—mkt) : (5.11)
|
!
Here V, = wo /i and G, is the envelope modulation function
for the wave ¢. Then, in Eg. (5.8) we have
v =1, (qifl) = (VQ-UM) (512
where
Uy = VQ QQ Cosg;zi-mvt) 3 (5.13)

-~

Linearizing the relation (5.8) 1in (Gy-l), and again assuming

d(A)k -~
cg : R << VQ , we find
!
£ S ~ . -
Ke g QR COS(ﬁ,ﬁ mkt) T
:y = s s =TH JERSIO U
ali) @ a {1+ =7 T og;ces (L, ) o T AT
r = ~—~y "~

(5.14)
Here we have added the direct interaction given by Eg. (5.10).
On squaring and performing an ensemble average, we

obtain
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K- .
' TG (|a0|2>[1 + o Q; Re(G-1) + 9%359 EU“

L 1

>
=N

l

i Here we have neglected higher moments than the second of the

slope function 4 - If we sum over & and introduce the

spectral function (2.12), this becomes

2. _ 2 2
a2 = <aly gl

e e e

j: 2

> 2 Al . cosf U

Jagh™ {1+ = (£95) R(L) Re(B,-1) + =3F= .=

% ~ I
(5.15)
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